1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 69 cl::init(false)); 70 /// SearchLimitReached / SearchTimes shows how often the limit of 71 /// to decompose GEPs is reached. It will affect the precision 72 /// of basic alias analysis. 73 STATISTIC(SearchLimitReached, "Number of times the limit to " 74 "decompose GEPs is reached"); 75 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 76 77 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 78 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 79 /// careful with value equivalence. We use reachability to make sure a value 80 /// cannot be involved in a cycle. 81 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 82 83 // The max limit of the search depth in DecomposeGEPExpression() and 84 // GetUnderlyingObject(), both functions need to use the same search 85 // depth otherwise the algorithm in aliasGEP will assert. 86 static const unsigned MaxLookupSearchDepth = 6; 87 88 bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA, 89 FunctionAnalysisManager::Invalidator &Inv) { 90 // We don't care if this analysis itself is preserved, it has no state. But 91 // we need to check that the analyses it depends on have been. Note that we 92 // may be created without handles to some analyses and in that case don't 93 // depend on them. 94 if (Inv.invalidate<AssumptionAnalysis>(F, PA) || 95 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) || 96 (LI && Inv.invalidate<LoopAnalysis>(F, PA))) 97 return true; 98 99 // Otherwise this analysis result remains valid. 100 return false; 101 } 102 103 //===----------------------------------------------------------------------===// 104 // Useful predicates 105 //===----------------------------------------------------------------------===// 106 107 /// Returns true if the pointer is to a function-local object that never 108 /// escapes from the function. 109 static bool isNonEscapingLocalObject(const Value *V) { 110 // If this is a local allocation, check to see if it escapes. 111 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 112 // Set StoreCaptures to True so that we can assume in our callers that the 113 // pointer is not the result of a load instruction. Currently 114 // PointerMayBeCaptured doesn't have any special analysis for the 115 // StoreCaptures=false case; if it did, our callers could be refined to be 116 // more precise. 117 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 118 119 // If this is an argument that corresponds to a byval or noalias argument, 120 // then it has not escaped before entering the function. Check if it escapes 121 // inside the function. 122 if (const Argument *A = dyn_cast<Argument>(V)) 123 if (A->hasByValAttr() || A->hasNoAliasAttr()) 124 // Note even if the argument is marked nocapture, we still need to check 125 // for copies made inside the function. The nocapture attribute only 126 // specifies that there are no copies made that outlive the function. 127 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 128 129 return false; 130 } 131 132 /// Returns true if the pointer is one which would have been considered an 133 /// escape by isNonEscapingLocalObject. 134 static bool isEscapeSource(const Value *V) { 135 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 136 return true; 137 138 // The load case works because isNonEscapingLocalObject considers all 139 // stores to be escapes (it passes true for the StoreCaptures argument 140 // to PointerMayBeCaptured). 141 if (isa<LoadInst>(V)) 142 return true; 143 144 return false; 145 } 146 147 /// Returns the size of the object specified by V or UnknownSize if unknown. 148 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 149 const TargetLibraryInfo &TLI, 150 bool RoundToAlign = false) { 151 uint64_t Size; 152 ObjectSizeOpts Opts; 153 Opts.RoundToAlign = RoundToAlign; 154 if (getObjectSize(V, Size, DL, &TLI, Opts)) 155 return Size; 156 return MemoryLocation::UnknownSize; 157 } 158 159 /// Returns true if we can prove that the object specified by V is smaller than 160 /// Size. 161 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 162 const DataLayout &DL, 163 const TargetLibraryInfo &TLI) { 164 // Note that the meanings of the "object" are slightly different in the 165 // following contexts: 166 // c1: llvm::getObjectSize() 167 // c2: llvm.objectsize() intrinsic 168 // c3: isObjectSmallerThan() 169 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 170 // refers to the "entire object". 171 // 172 // Consider this example: 173 // char *p = (char*)malloc(100) 174 // char *q = p+80; 175 // 176 // In the context of c1 and c2, the "object" pointed by q refers to the 177 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 178 // 179 // However, in the context of c3, the "object" refers to the chunk of memory 180 // being allocated. So, the "object" has 100 bytes, and q points to the middle 181 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 182 // parameter, before the llvm::getObjectSize() is called to get the size of 183 // entire object, we should: 184 // - either rewind the pointer q to the base-address of the object in 185 // question (in this case rewind to p), or 186 // - just give up. It is up to caller to make sure the pointer is pointing 187 // to the base address the object. 188 // 189 // We go for 2nd option for simplicity. 190 if (!isIdentifiedObject(V)) 191 return false; 192 193 // This function needs to use the aligned object size because we allow 194 // reads a bit past the end given sufficient alignment. 195 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 196 197 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 198 } 199 200 /// Returns true if we can prove that the object specified by V has size Size. 201 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 202 const TargetLibraryInfo &TLI) { 203 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 204 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 205 } 206 207 //===----------------------------------------------------------------------===// 208 // GetElementPtr Instruction Decomposition and Analysis 209 //===----------------------------------------------------------------------===// 210 211 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 212 /// B are constant integers. 213 /// 214 /// Returns the scale and offset values as APInts and return V as a Value*, and 215 /// return whether we looked through any sign or zero extends. The incoming 216 /// Value is known to have IntegerType, and it may already be sign or zero 217 /// extended. 218 /// 219 /// Note that this looks through extends, so the high bits may not be 220 /// represented in the result. 221 /*static*/ const Value *BasicAAResult::GetLinearExpression( 222 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 223 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 224 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 225 assert(V->getType()->isIntegerTy() && "Not an integer value"); 226 227 // Limit our recursion depth. 228 if (Depth == 6) { 229 Scale = 1; 230 Offset = 0; 231 return V; 232 } 233 234 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 235 // If it's a constant, just convert it to an offset and remove the variable. 236 // If we've been called recursively, the Offset bit width will be greater 237 // than the constant's (the Offset's always as wide as the outermost call), 238 // so we'll zext here and process any extension in the isa<SExtInst> & 239 // isa<ZExtInst> cases below. 240 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 241 assert(Scale == 0 && "Constant values don't have a scale"); 242 return V; 243 } 244 245 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 246 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 247 // If we've been called recursively, then Offset and Scale will be wider 248 // than the BOp operands. We'll always zext it here as we'll process sign 249 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 250 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 251 252 switch (BOp->getOpcode()) { 253 default: 254 // We don't understand this instruction, so we can't decompose it any 255 // further. 256 Scale = 1; 257 Offset = 0; 258 return V; 259 case Instruction::Or: 260 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 261 // analyze it. 262 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 263 BOp, DT)) { 264 Scale = 1; 265 Offset = 0; 266 return V; 267 } 268 LLVM_FALLTHROUGH; 269 case Instruction::Add: 270 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 271 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 272 Offset += RHS; 273 break; 274 case Instruction::Sub: 275 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 276 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 277 Offset -= RHS; 278 break; 279 case Instruction::Mul: 280 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 281 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 282 Offset *= RHS; 283 Scale *= RHS; 284 break; 285 case Instruction::Shl: 286 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 287 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 288 Offset <<= RHS.getLimitedValue(); 289 Scale <<= RHS.getLimitedValue(); 290 // the semantics of nsw and nuw for left shifts don't match those of 291 // multiplications, so we won't propagate them. 292 NSW = NUW = false; 293 return V; 294 } 295 296 if (isa<OverflowingBinaryOperator>(BOp)) { 297 NUW &= BOp->hasNoUnsignedWrap(); 298 NSW &= BOp->hasNoSignedWrap(); 299 } 300 return V; 301 } 302 } 303 304 // Since GEP indices are sign extended anyway, we don't care about the high 305 // bits of a sign or zero extended value - just scales and offsets. The 306 // extensions have to be consistent though. 307 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 308 Value *CastOp = cast<CastInst>(V)->getOperand(0); 309 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 310 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 311 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 312 const Value *Result = 313 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 314 Depth + 1, AC, DT, NSW, NUW); 315 316 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 317 // by just incrementing the number of bits we've extended by. 318 unsigned ExtendedBy = NewWidth - SmallWidth; 319 320 if (isa<SExtInst>(V) && ZExtBits == 0) { 321 // sext(sext(%x, a), b) == sext(%x, a + b) 322 323 if (NSW) { 324 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 325 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 326 unsigned OldWidth = Offset.getBitWidth(); 327 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 328 } else { 329 // We may have signed-wrapped, so don't decompose sext(%x + c) into 330 // sext(%x) + sext(c) 331 Scale = 1; 332 Offset = 0; 333 Result = CastOp; 334 ZExtBits = OldZExtBits; 335 SExtBits = OldSExtBits; 336 } 337 SExtBits += ExtendedBy; 338 } else { 339 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 340 341 if (!NUW) { 342 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 343 // zext(%x) + zext(c) 344 Scale = 1; 345 Offset = 0; 346 Result = CastOp; 347 ZExtBits = OldZExtBits; 348 SExtBits = OldSExtBits; 349 } 350 ZExtBits += ExtendedBy; 351 } 352 353 return Result; 354 } 355 356 Scale = 1; 357 Offset = 0; 358 return V; 359 } 360 361 /// To ensure a pointer offset fits in an integer of size PointerSize 362 /// (in bits) when that size is smaller than 64. This is an issue in 363 /// particular for 32b programs with negative indices that rely on two's 364 /// complement wrap-arounds for precise alias information. 365 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 366 assert(PointerSize <= 64 && "Invalid PointerSize!"); 367 unsigned ShiftBits = 64 - PointerSize; 368 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 369 } 370 371 /// If V is a symbolic pointer expression, decompose it into a base pointer 372 /// with a constant offset and a number of scaled symbolic offsets. 373 /// 374 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 375 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 376 /// specified amount, but which may have other unrepresented high bits. As 377 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 378 /// 379 /// When DataLayout is around, this function is capable of analyzing everything 380 /// that GetUnderlyingObject can look through. To be able to do that 381 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 382 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 383 /// through pointer casts. 384 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 385 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 386 DominatorTree *DT) { 387 // Limit recursion depth to limit compile time in crazy cases. 388 unsigned MaxLookup = MaxLookupSearchDepth; 389 SearchTimes++; 390 391 Decomposed.StructOffset = 0; 392 Decomposed.OtherOffset = 0; 393 Decomposed.VarIndices.clear(); 394 do { 395 // See if this is a bitcast or GEP. 396 const Operator *Op = dyn_cast<Operator>(V); 397 if (!Op) { 398 // The only non-operator case we can handle are GlobalAliases. 399 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 400 if (!GA->isInterposable()) { 401 V = GA->getAliasee(); 402 continue; 403 } 404 } 405 Decomposed.Base = V; 406 return false; 407 } 408 409 if (Op->getOpcode() == Instruction::BitCast || 410 Op->getOpcode() == Instruction::AddrSpaceCast) { 411 V = Op->getOperand(0); 412 continue; 413 } 414 415 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 416 if (!GEPOp) { 417 if (auto CS = ImmutableCallSite(V)) 418 if (const Value *RV = CS.getReturnedArgOperand()) { 419 V = RV; 420 continue; 421 } 422 423 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 424 // can come up with something. This matches what GetUnderlyingObject does. 425 if (const Instruction *I = dyn_cast<Instruction>(V)) 426 // TODO: Get a DominatorTree and AssumptionCache and use them here 427 // (these are both now available in this function, but this should be 428 // updated when GetUnderlyingObject is updated). TLI should be 429 // provided also. 430 if (const Value *Simplified = 431 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 432 V = Simplified; 433 continue; 434 } 435 436 Decomposed.Base = V; 437 return false; 438 } 439 440 // Don't attempt to analyze GEPs over unsized objects. 441 if (!GEPOp->getSourceElementType()->isSized()) { 442 Decomposed.Base = V; 443 return false; 444 } 445 446 unsigned AS = GEPOp->getPointerAddressSpace(); 447 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 448 gep_type_iterator GTI = gep_type_begin(GEPOp); 449 unsigned PointerSize = DL.getPointerSizeInBits(AS); 450 // Assume all GEP operands are constants until proven otherwise. 451 bool GepHasConstantOffset = true; 452 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 453 I != E; ++I, ++GTI) { 454 const Value *Index = *I; 455 // Compute the (potentially symbolic) offset in bytes for this index. 456 if (StructType *STy = GTI.getStructTypeOrNull()) { 457 // For a struct, add the member offset. 458 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 459 if (FieldNo == 0) 460 continue; 461 462 Decomposed.StructOffset += 463 DL.getStructLayout(STy)->getElementOffset(FieldNo); 464 continue; 465 } 466 467 // For an array/pointer, add the element offset, explicitly scaled. 468 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 469 if (CIdx->isZero()) 470 continue; 471 Decomposed.OtherOffset += 472 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue(); 473 continue; 474 } 475 476 GepHasConstantOffset = false; 477 478 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType()); 479 unsigned ZExtBits = 0, SExtBits = 0; 480 481 // If the integer type is smaller than the pointer size, it is implicitly 482 // sign extended to pointer size. 483 unsigned Width = Index->getType()->getIntegerBitWidth(); 484 if (PointerSize > Width) 485 SExtBits += PointerSize - Width; 486 487 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 488 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 489 bool NSW = true, NUW = true; 490 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 491 SExtBits, DL, 0, AC, DT, NSW, NUW); 492 493 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 494 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 495 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 496 Scale *= IndexScale.getSExtValue(); 497 498 // If we already had an occurrence of this index variable, merge this 499 // scale into it. For example, we want to handle: 500 // A[x][x] -> x*16 + x*4 -> x*20 501 // This also ensures that 'x' only appears in the index list once. 502 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 503 if (Decomposed.VarIndices[i].V == Index && 504 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 505 Decomposed.VarIndices[i].SExtBits == SExtBits) { 506 Scale += Decomposed.VarIndices[i].Scale; 507 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 508 break; 509 } 510 } 511 512 // Make sure that we have a scale that makes sense for this target's 513 // pointer size. 514 Scale = adjustToPointerSize(Scale, PointerSize); 515 516 if (Scale) { 517 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 518 static_cast<int64_t>(Scale)}; 519 Decomposed.VarIndices.push_back(Entry); 520 } 521 } 522 523 // Take care of wrap-arounds 524 if (GepHasConstantOffset) { 525 Decomposed.StructOffset = 526 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 527 Decomposed.OtherOffset = 528 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 529 } 530 531 // Analyze the base pointer next. 532 V = GEPOp->getOperand(0); 533 } while (--MaxLookup); 534 535 // If the chain of expressions is too deep, just return early. 536 Decomposed.Base = V; 537 SearchLimitReached++; 538 return true; 539 } 540 541 /// Returns whether the given pointer value points to memory that is local to 542 /// the function, with global constants being considered local to all 543 /// functions. 544 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 545 bool OrLocal) { 546 assert(Visited.empty() && "Visited must be cleared after use!"); 547 548 unsigned MaxLookup = 8; 549 SmallVector<const Value *, 16> Worklist; 550 Worklist.push_back(Loc.Ptr); 551 do { 552 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 553 if (!Visited.insert(V).second) { 554 Visited.clear(); 555 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 556 } 557 558 // An alloca instruction defines local memory. 559 if (OrLocal && isa<AllocaInst>(V)) 560 continue; 561 562 // A global constant counts as local memory for our purposes. 563 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 564 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 565 // global to be marked constant in some modules and non-constant in 566 // others. GV may even be a declaration, not a definition. 567 if (!GV->isConstant()) { 568 Visited.clear(); 569 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 570 } 571 continue; 572 } 573 574 // If both select values point to local memory, then so does the select. 575 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 576 Worklist.push_back(SI->getTrueValue()); 577 Worklist.push_back(SI->getFalseValue()); 578 continue; 579 } 580 581 // If all values incoming to a phi node point to local memory, then so does 582 // the phi. 583 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 584 // Don't bother inspecting phi nodes with many operands. 585 if (PN->getNumIncomingValues() > MaxLookup) { 586 Visited.clear(); 587 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 588 } 589 for (Value *IncValue : PN->incoming_values()) 590 Worklist.push_back(IncValue); 591 continue; 592 } 593 594 // Otherwise be conservative. 595 Visited.clear(); 596 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 597 } while (!Worklist.empty() && --MaxLookup); 598 599 Visited.clear(); 600 return Worklist.empty(); 601 } 602 603 /// Returns the behavior when calling the given call site. 604 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 605 if (CS.doesNotAccessMemory()) 606 // Can't do better than this. 607 return FMRB_DoesNotAccessMemory; 608 609 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 610 611 // If the callsite knows it only reads memory, don't return worse 612 // than that. 613 if (CS.onlyReadsMemory()) 614 Min = FMRB_OnlyReadsMemory; 615 else if (CS.doesNotReadMemory()) 616 Min = FMRB_DoesNotReadMemory; 617 618 if (CS.onlyAccessesArgMemory()) 619 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 620 621 // If CS has operand bundles then aliasing attributes from the function it 622 // calls do not directly apply to the CallSite. This can be made more 623 // precise in the future. 624 if (!CS.hasOperandBundles()) 625 if (const Function *F = CS.getCalledFunction()) 626 Min = 627 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 628 629 return Min; 630 } 631 632 /// Returns the behavior when calling the given function. For use when the call 633 /// site is not known. 634 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 635 // If the function declares it doesn't access memory, we can't do better. 636 if (F->doesNotAccessMemory()) 637 return FMRB_DoesNotAccessMemory; 638 639 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 640 641 // If the function declares it only reads memory, go with that. 642 if (F->onlyReadsMemory()) 643 Min = FMRB_OnlyReadsMemory; 644 else if (F->doesNotReadMemory()) 645 Min = FMRB_DoesNotReadMemory; 646 647 if (F->onlyAccessesArgMemory()) 648 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 649 else if (F->onlyAccessesInaccessibleMemory()) 650 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 651 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 652 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 653 654 return Min; 655 } 656 657 /// Returns true if this is a writeonly (i.e Mod only) parameter. 658 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 659 const TargetLibraryInfo &TLI) { 660 if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly)) 661 return true; 662 663 // We can bound the aliasing properties of memset_pattern16 just as we can 664 // for memcpy/memset. This is particularly important because the 665 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 666 // whenever possible. 667 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 668 // attributes. 669 LibFunc F; 670 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 671 F == LibFunc_memset_pattern16 && TLI.has(F)) 672 if (ArgIdx == 0) 673 return true; 674 675 // TODO: memset_pattern4, memset_pattern8 676 // TODO: _chk variants 677 // TODO: strcmp, strcpy 678 679 return false; 680 } 681 682 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 683 unsigned ArgIdx) { 684 // Checking for known builtin intrinsics and target library functions. 685 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 686 return MRI_Mod; 687 688 if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly)) 689 return MRI_Ref; 690 691 if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone)) 692 return MRI_NoModRef; 693 694 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 695 } 696 697 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 698 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 699 return II && II->getIntrinsicID() == IID; 700 } 701 702 #ifndef NDEBUG 703 static const Function *getParent(const Value *V) { 704 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 705 if (!inst->getParent()) 706 return nullptr; 707 return inst->getParent()->getParent(); 708 } 709 710 if (const Argument *arg = dyn_cast<Argument>(V)) 711 return arg->getParent(); 712 713 return nullptr; 714 } 715 716 static bool notDifferentParent(const Value *O1, const Value *O2) { 717 718 const Function *F1 = getParent(O1); 719 const Function *F2 = getParent(O2); 720 721 return !F1 || !F2 || F1 == F2; 722 } 723 #endif 724 725 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 726 const MemoryLocation &LocB) { 727 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 728 "BasicAliasAnalysis doesn't support interprocedural queries."); 729 730 // If we have a directly cached entry for these locations, we have recursed 731 // through this once, so just return the cached results. Notably, when this 732 // happens, we don't clear the cache. 733 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 734 if (CacheIt != AliasCache.end()) 735 return CacheIt->second; 736 737 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 738 LocB.Size, LocB.AATags); 739 // AliasCache rarely has more than 1 or 2 elements, always use 740 // shrink_and_clear so it quickly returns to the inline capacity of the 741 // SmallDenseMap if it ever grows larger. 742 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 743 AliasCache.shrink_and_clear(); 744 VisitedPhiBBs.clear(); 745 return Alias; 746 } 747 748 /// Checks to see if the specified callsite can clobber the specified memory 749 /// object. 750 /// 751 /// Since we only look at local properties of this function, we really can't 752 /// say much about this query. We do, however, use simple "address taken" 753 /// analysis on local objects. 754 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 755 const MemoryLocation &Loc) { 756 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 757 "AliasAnalysis query involving multiple functions!"); 758 759 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 760 761 // If this is a tail call and Loc.Ptr points to a stack location, we know that 762 // the tail call cannot access or modify the local stack. 763 // We cannot exclude byval arguments here; these belong to the caller of 764 // the current function not to the current function, and a tail callee 765 // may reference them. 766 if (isa<AllocaInst>(Object)) 767 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 768 if (CI->isTailCall()) 769 return MRI_NoModRef; 770 771 // If the pointer is to a locally allocated object that does not escape, 772 // then the call can not mod/ref the pointer unless the call takes the pointer 773 // as an argument, and itself doesn't capture it. 774 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 775 isNonEscapingLocalObject(Object)) { 776 777 // Optimistically assume that call doesn't touch Object and check this 778 // assumption in the following loop. 779 ModRefInfo Result = MRI_NoModRef; 780 781 unsigned OperandNo = 0; 782 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 783 CI != CE; ++CI, ++OperandNo) { 784 // Only look at the no-capture or byval pointer arguments. If this 785 // pointer were passed to arguments that were neither of these, then it 786 // couldn't be no-capture. 787 if (!(*CI)->getType()->isPointerTy() || 788 (!CS.doesNotCapture(OperandNo) && 789 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo))) 790 continue; 791 792 // Call doesn't access memory through this operand, so we don't care 793 // if it aliases with Object. 794 if (CS.doesNotAccessMemory(OperandNo)) 795 continue; 796 797 // If this is a no-capture pointer argument, see if we can tell that it 798 // is impossible to alias the pointer we're checking. 799 AliasResult AR = 800 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 801 802 // Operand doesnt alias 'Object', continue looking for other aliases 803 if (AR == NoAlias) 804 continue; 805 // Operand aliases 'Object', but call doesn't modify it. Strengthen 806 // initial assumption and keep looking in case if there are more aliases. 807 if (CS.onlyReadsMemory(OperandNo)) { 808 Result = static_cast<ModRefInfo>(Result | MRI_Ref); 809 continue; 810 } 811 // Operand aliases 'Object' but call only writes into it. 812 if (CS.doesNotReadMemory(OperandNo)) { 813 Result = static_cast<ModRefInfo>(Result | MRI_Mod); 814 continue; 815 } 816 // This operand aliases 'Object' and call reads and writes into it. 817 Result = MRI_ModRef; 818 break; 819 } 820 821 // Early return if we improved mod ref information 822 if (Result != MRI_ModRef) 823 return Result; 824 } 825 826 // If the CallSite is to malloc or calloc, we can assume that it doesn't 827 // modify any IR visible value. This is only valid because we assume these 828 // routines do not read values visible in the IR. TODO: Consider special 829 // casing realloc and strdup routines which access only their arguments as 830 // well. Or alternatively, replace all of this with inaccessiblememonly once 831 // that's implemented fully. 832 auto *Inst = CS.getInstruction(); 833 if (isMallocOrCallocLikeFn(Inst, &TLI)) { 834 // Be conservative if the accessed pointer may alias the allocation - 835 // fallback to the generic handling below. 836 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 837 return MRI_NoModRef; 838 } 839 840 // The semantics of memcpy intrinsics forbid overlap between their respective 841 // operands, i.e., source and destination of any given memcpy must no-alias. 842 // If Loc must-aliases either one of these two locations, then it necessarily 843 // no-aliases the other. 844 if (auto *Inst = dyn_cast<MemCpyInst>(CS.getInstruction())) { 845 AliasResult SrcAA, DestAA; 846 847 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 848 Loc)) == MustAlias) 849 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 850 return MRI_Ref; 851 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 852 Loc)) == MustAlias) 853 // The converse case. 854 return MRI_Mod; 855 856 // It's also possible for Loc to alias both src and dest, or neither. 857 ModRefInfo rv = MRI_NoModRef; 858 if (SrcAA != NoAlias) 859 rv = static_cast<ModRefInfo>(rv | MRI_Ref); 860 if (DestAA != NoAlias) 861 rv = static_cast<ModRefInfo>(rv | MRI_Mod); 862 return rv; 863 } 864 865 // While the assume intrinsic is marked as arbitrarily writing so that 866 // proper control dependencies will be maintained, it never aliases any 867 // particular memory location. 868 if (isIntrinsicCall(CS, Intrinsic::assume)) 869 return MRI_NoModRef; 870 871 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 872 // that proper control dependencies are maintained but they never mods any 873 // particular memory location. 874 // 875 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 876 // heap state at the point the guard is issued needs to be consistent in case 877 // the guard invokes the "deopt" continuation. 878 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 879 return MRI_Ref; 880 881 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 882 // writing so that proper control dependencies are maintained but they never 883 // mod any particular memory location visible to the IR. 884 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 885 // intrinsic is now modeled as reading memory. This prevents hoisting the 886 // invariant.start intrinsic over stores. Consider: 887 // *ptr = 40; 888 // *ptr = 50; 889 // invariant_start(ptr) 890 // int val = *ptr; 891 // print(val); 892 // 893 // This cannot be transformed to: 894 // 895 // *ptr = 40; 896 // invariant_start(ptr) 897 // *ptr = 50; 898 // int val = *ptr; 899 // print(val); 900 // 901 // The transformation will cause the second store to be ignored (based on 902 // rules of invariant.start) and print 40, while the first program always 903 // prints 50. 904 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 905 return MRI_Ref; 906 907 // The AAResultBase base class has some smarts, lets use them. 908 return AAResultBase::getModRefInfo(CS, Loc); 909 } 910 911 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 912 ImmutableCallSite CS2) { 913 // While the assume intrinsic is marked as arbitrarily writing so that 914 // proper control dependencies will be maintained, it never aliases any 915 // particular memory location. 916 if (isIntrinsicCall(CS1, Intrinsic::assume) || 917 isIntrinsicCall(CS2, Intrinsic::assume)) 918 return MRI_NoModRef; 919 920 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 921 // that proper control dependencies are maintained but they never mod any 922 // particular memory location. 923 // 924 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 925 // heap state at the point the guard is issued needs to be consistent in case 926 // the guard invokes the "deopt" continuation. 927 928 // NB! This function is *not* commutative, so we specical case two 929 // possibilities for guard intrinsics. 930 931 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 932 return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef; 933 934 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 935 return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef; 936 937 // The AAResultBase base class has some smarts, lets use them. 938 return AAResultBase::getModRefInfo(CS1, CS2); 939 } 940 941 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 942 /// both having the exact same pointer operand. 943 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 944 uint64_t V1Size, 945 const GEPOperator *GEP2, 946 uint64_t V2Size, 947 const DataLayout &DL) { 948 assert(GEP1->getPointerOperand()->stripPointerCastsAndBarriers() == 949 GEP2->getPointerOperand()->stripPointerCastsAndBarriers() && 950 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 951 "Expected GEPs with the same pointer operand"); 952 953 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 954 // such that the struct field accesses provably cannot alias. 955 // We also need at least two indices (the pointer, and the struct field). 956 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 957 GEP1->getNumIndices() < 2) 958 return MayAlias; 959 960 // If we don't know the size of the accesses through both GEPs, we can't 961 // determine whether the struct fields accessed can't alias. 962 if (V1Size == MemoryLocation::UnknownSize || 963 V2Size == MemoryLocation::UnknownSize) 964 return MayAlias; 965 966 ConstantInt *C1 = 967 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 968 ConstantInt *C2 = 969 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 970 971 // If the last (struct) indices are constants and are equal, the other indices 972 // might be also be dynamically equal, so the GEPs can alias. 973 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 974 return MayAlias; 975 976 // Find the last-indexed type of the GEP, i.e., the type you'd get if 977 // you stripped the last index. 978 // On the way, look at each indexed type. If there's something other 979 // than an array, different indices can lead to different final types. 980 SmallVector<Value *, 8> IntermediateIndices; 981 982 // Insert the first index; we don't need to check the type indexed 983 // through it as it only drops the pointer indirection. 984 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 985 IntermediateIndices.push_back(GEP1->getOperand(1)); 986 987 // Insert all the remaining indices but the last one. 988 // Also, check that they all index through arrays. 989 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 990 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 991 GEP1->getSourceElementType(), IntermediateIndices))) 992 return MayAlias; 993 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 994 } 995 996 auto *Ty = GetElementPtrInst::getIndexedType( 997 GEP1->getSourceElementType(), IntermediateIndices); 998 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 999 1000 if (isa<SequentialType>(Ty)) { 1001 // We know that: 1002 // - both GEPs begin indexing from the exact same pointer; 1003 // - the last indices in both GEPs are constants, indexing into a sequential 1004 // type (array or pointer); 1005 // - both GEPs only index through arrays prior to that. 1006 // 1007 // Because array indices greater than the number of elements are valid in 1008 // GEPs, unless we know the intermediate indices are identical between 1009 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1010 // partially overlap. We also need to check that the loaded size matches 1011 // the element size, otherwise we could still have overlap. 1012 const uint64_t ElementSize = 1013 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 1014 if (V1Size != ElementSize || V2Size != ElementSize) 1015 return MayAlias; 1016 1017 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1018 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1019 return MayAlias; 1020 1021 // Now we know that the array/pointer that GEP1 indexes into and that 1022 // that GEP2 indexes into must either precisely overlap or be disjoint. 1023 // Because they cannot partially overlap and because fields in an array 1024 // cannot overlap, if we can prove the final indices are different between 1025 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1026 1027 // If the last indices are constants, we've already checked they don't 1028 // equal each other so we can exit early. 1029 if (C1 && C2) 1030 return NoAlias; 1031 { 1032 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1033 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1034 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1035 // If one of the indices is a PHI node, be safe and only use 1036 // computeKnownBits so we don't make any assumptions about the 1037 // relationships between the two indices. This is important if we're 1038 // asking about values from different loop iterations. See PR32314. 1039 // TODO: We may be able to change the check so we only do this when 1040 // we definitely looked through a PHINode. 1041 if (GEP1LastIdx != GEP2LastIdx && 1042 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1043 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1044 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1045 if (Known1.Zero.intersects(Known2.One) || 1046 Known1.One.intersects(Known2.Zero)) 1047 return NoAlias; 1048 } 1049 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1050 return NoAlias; 1051 } 1052 return MayAlias; 1053 } else if (!LastIndexedStruct || !C1 || !C2) { 1054 return MayAlias; 1055 } 1056 1057 // We know that: 1058 // - both GEPs begin indexing from the exact same pointer; 1059 // - the last indices in both GEPs are constants, indexing into a struct; 1060 // - said indices are different, hence, the pointed-to fields are different; 1061 // - both GEPs only index through arrays prior to that. 1062 // 1063 // This lets us determine that the struct that GEP1 indexes into and the 1064 // struct that GEP2 indexes into must either precisely overlap or be 1065 // completely disjoint. Because they cannot partially overlap, indexing into 1066 // different non-overlapping fields of the struct will never alias. 1067 1068 // Therefore, the only remaining thing needed to show that both GEPs can't 1069 // alias is that the fields are not overlapping. 1070 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1071 const uint64_t StructSize = SL->getSizeInBytes(); 1072 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1073 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1074 1075 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1076 uint64_t V2Off, uint64_t V2Size) { 1077 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1078 ((V2Off + V2Size <= StructSize) || 1079 (V2Off + V2Size - StructSize <= V1Off)); 1080 }; 1081 1082 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1083 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1084 return NoAlias; 1085 1086 return MayAlias; 1087 } 1088 1089 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1090 // beginning of the object the GEP points would have a negative offset with 1091 // repsect to the alloca, that means the GEP can not alias pointer (b). 1092 // Note that the pointer based on the alloca may not be a GEP. For 1093 // example, it may be the alloca itself. 1094 // The same applies if (b) is based on a GlobalVariable. Note that just being 1095 // based on isIdentifiedObject() is not enough - we need an identified object 1096 // that does not permit access to negative offsets. For example, a negative 1097 // offset from a noalias argument or call can be inbounds w.r.t the actual 1098 // underlying object. 1099 // 1100 // For example, consider: 1101 // 1102 // struct { int f0, int f1, ...} foo; 1103 // foo alloca; 1104 // foo* random = bar(alloca); 1105 // int *f0 = &alloca.f0 1106 // int *f1 = &random->f1; 1107 // 1108 // Which is lowered, approximately, to: 1109 // 1110 // %alloca = alloca %struct.foo 1111 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1112 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1113 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1114 // 1115 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1116 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1117 // point into the same object. But since %f0 points to the beginning of %alloca, 1118 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1119 // than (%alloca - 1), and so is not inbounds, a contradiction. 1120 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1121 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1122 uint64_t ObjectAccessSize) { 1123 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1124 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1125 return false; 1126 1127 // We need the object to be an alloca or a globalvariable, and want to know 1128 // the offset of the pointer from the object precisely, so no variable 1129 // indices are allowed. 1130 if (!(isa<AllocaInst>(DecompObject.Base) || 1131 isa<GlobalVariable>(DecompObject.Base)) || 1132 !DecompObject.VarIndices.empty()) 1133 return false; 1134 1135 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1136 DecompObject.OtherOffset; 1137 1138 // If the GEP has no variable indices, we know the precise offset 1139 // from the base, then use it. If the GEP has variable indices, we're in 1140 // a bit more trouble: we can't count on the constant offsets that come 1141 // from non-struct sources, since these can be "rewound" by a negative 1142 // variable offset. So use only offsets that came from structs. 1143 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1144 if (DecompGEP.VarIndices.empty()) 1145 GEPBaseOffset += DecompGEP.OtherOffset; 1146 1147 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1148 } 1149 1150 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1151 /// another pointer. 1152 /// 1153 /// We know that V1 is a GEP, but we don't know anything about V2. 1154 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1155 /// V2. 1156 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 1157 const AAMDNodes &V1AAInfo, const Value *V2, 1158 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1159 const Value *UnderlyingV1, 1160 const Value *UnderlyingV2) { 1161 DecomposedGEP DecompGEP1, DecompGEP2; 1162 bool GEP1MaxLookupReached = 1163 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1164 bool GEP2MaxLookupReached = 1165 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1166 1167 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1168 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1169 1170 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1171 "DecomposeGEPExpression returned a result different from " 1172 "GetUnderlyingObject"); 1173 1174 // If the GEP's offset relative to its base is such that the base would 1175 // fall below the start of the object underlying V2, then the GEP and V2 1176 // cannot alias. 1177 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1178 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1179 return NoAlias; 1180 // If we have two gep instructions with must-alias or not-alias'ing base 1181 // pointers, figure out if the indexes to the GEP tell us anything about the 1182 // derived pointer. 1183 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1184 // Check for the GEP base being at a negative offset, this time in the other 1185 // direction. 1186 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1187 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1188 return NoAlias; 1189 // Do the base pointers alias? 1190 AliasResult BaseAlias = 1191 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1192 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1193 1194 // Check for geps of non-aliasing underlying pointers where the offsets are 1195 // identical. 1196 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1197 // Do the base pointers alias assuming type and size. 1198 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1199 UnderlyingV2, V2Size, V2AAInfo); 1200 if (PreciseBaseAlias == NoAlias) { 1201 // See if the computed offset from the common pointer tells us about the 1202 // relation of the resulting pointer. 1203 // If the max search depth is reached the result is undefined 1204 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1205 return MayAlias; 1206 1207 // Same offsets. 1208 if (GEP1BaseOffset == GEP2BaseOffset && 1209 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1210 return NoAlias; 1211 } 1212 } 1213 1214 // If we get a No or May, then return it immediately, no amount of analysis 1215 // will improve this situation. 1216 if (BaseAlias != MustAlias) { 1217 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1218 return BaseAlias; 1219 } 1220 1221 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1222 // exactly, see if the computed offset from the common pointer tells us 1223 // about the relation of the resulting pointer. 1224 // If we know the two GEPs are based off of the exact same pointer (and not 1225 // just the same underlying object), see if that tells us anything about 1226 // the resulting pointers. 1227 if (GEP1->getPointerOperand()->stripPointerCastsAndBarriers() == 1228 GEP2->getPointerOperand()->stripPointerCastsAndBarriers() && 1229 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1230 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1231 // If we couldn't find anything interesting, don't abandon just yet. 1232 if (R != MayAlias) 1233 return R; 1234 } 1235 1236 // If the max search depth is reached, the result is undefined 1237 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1238 return MayAlias; 1239 1240 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1241 // symbolic difference. 1242 GEP1BaseOffset -= GEP2BaseOffset; 1243 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1244 1245 } else { 1246 // Check to see if these two pointers are related by the getelementptr 1247 // instruction. If one pointer is a GEP with a non-zero index of the other 1248 // pointer, we know they cannot alias. 1249 1250 // If both accesses are unknown size, we can't do anything useful here. 1251 if (V1Size == MemoryLocation::UnknownSize && 1252 V2Size == MemoryLocation::UnknownSize) 1253 return MayAlias; 1254 1255 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1256 AAMDNodes(), V2, MemoryLocation::UnknownSize, 1257 V2AAInfo, nullptr, UnderlyingV2); 1258 if (R != MustAlias) { 1259 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1260 // If V2 is known not to alias GEP base pointer, then the two values 1261 // cannot alias per GEP semantics: "Any memory access must be done through 1262 // a pointer value associated with an address range of the memory access, 1263 // otherwise the behavior is undefined.". 1264 assert(R == NoAlias || R == MayAlias); 1265 return R; 1266 } 1267 1268 // If the max search depth is reached the result is undefined 1269 if (GEP1MaxLookupReached) 1270 return MayAlias; 1271 } 1272 1273 // In the two GEP Case, if there is no difference in the offsets of the 1274 // computed pointers, the resultant pointers are a must alias. This 1275 // happens when we have two lexically identical GEP's (for example). 1276 // 1277 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1278 // must aliases the GEP, the end result is a must alias also. 1279 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1280 return MustAlias; 1281 1282 // If there is a constant difference between the pointers, but the difference 1283 // is less than the size of the associated memory object, then we know 1284 // that the objects are partially overlapping. If the difference is 1285 // greater, we know they do not overlap. 1286 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1287 if (GEP1BaseOffset >= 0) { 1288 if (V2Size != MemoryLocation::UnknownSize) { 1289 if ((uint64_t)GEP1BaseOffset < V2Size) 1290 return PartialAlias; 1291 return NoAlias; 1292 } 1293 } else { 1294 // We have the situation where: 1295 // + + 1296 // | BaseOffset | 1297 // ---------------->| 1298 // |-->V1Size |-------> V2Size 1299 // GEP1 V2 1300 // We need to know that V2Size is not unknown, otherwise we might have 1301 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1302 if (V1Size != MemoryLocation::UnknownSize && 1303 V2Size != MemoryLocation::UnknownSize) { 1304 if (-(uint64_t)GEP1BaseOffset < V1Size) 1305 return PartialAlias; 1306 return NoAlias; 1307 } 1308 } 1309 } 1310 1311 if (!DecompGEP1.VarIndices.empty()) { 1312 uint64_t Modulo = 0; 1313 bool AllPositive = true; 1314 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1315 1316 // Try to distinguish something like &A[i][1] against &A[42][0]. 1317 // Grab the least significant bit set in any of the scales. We 1318 // don't need std::abs here (even if the scale's negative) as we'll 1319 // be ^'ing Modulo with itself later. 1320 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1321 1322 if (AllPositive) { 1323 // If the Value could change between cycles, then any reasoning about 1324 // the Value this cycle may not hold in the next cycle. We'll just 1325 // give up if we can't determine conditions that hold for every cycle: 1326 const Value *V = DecompGEP1.VarIndices[i].V; 1327 1328 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT); 1329 bool SignKnownZero = Known.isNonNegative(); 1330 bool SignKnownOne = Known.isNegative(); 1331 1332 // Zero-extension widens the variable, and so forces the sign 1333 // bit to zero. 1334 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1335 SignKnownZero |= IsZExt; 1336 SignKnownOne &= !IsZExt; 1337 1338 // If the variable begins with a zero then we know it's 1339 // positive, regardless of whether the value is signed or 1340 // unsigned. 1341 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1342 AllPositive = 1343 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1344 } 1345 } 1346 1347 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1348 1349 // We can compute the difference between the two addresses 1350 // mod Modulo. Check whether that difference guarantees that the 1351 // two locations do not alias. 1352 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1353 if (V1Size != MemoryLocation::UnknownSize && 1354 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1355 V1Size <= Modulo - ModOffset) 1356 return NoAlias; 1357 1358 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1359 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1360 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1361 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1362 return NoAlias; 1363 1364 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1365 GEP1BaseOffset, &AC, DT)) 1366 return NoAlias; 1367 } 1368 1369 // Statically, we can see that the base objects are the same, but the 1370 // pointers have dynamic offsets which we can't resolve. And none of our 1371 // little tricks above worked. 1372 return MayAlias; 1373 } 1374 1375 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1376 // If the results agree, take it. 1377 if (A == B) 1378 return A; 1379 // A mix of PartialAlias and MustAlias is PartialAlias. 1380 if ((A == PartialAlias && B == MustAlias) || 1381 (B == PartialAlias && A == MustAlias)) 1382 return PartialAlias; 1383 // Otherwise, we don't know anything. 1384 return MayAlias; 1385 } 1386 1387 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1388 /// against another. 1389 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1390 const AAMDNodes &SIAAInfo, 1391 const Value *V2, uint64_t V2Size, 1392 const AAMDNodes &V2AAInfo, 1393 const Value *UnderV2) { 1394 // If the values are Selects with the same condition, we can do a more precise 1395 // check: just check for aliases between the values on corresponding arms. 1396 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1397 if (SI->getCondition() == SI2->getCondition()) { 1398 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1399 SI2->getTrueValue(), V2Size, V2AAInfo); 1400 if (Alias == MayAlias) 1401 return MayAlias; 1402 AliasResult ThisAlias = 1403 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1404 SI2->getFalseValue(), V2Size, V2AAInfo); 1405 return MergeAliasResults(ThisAlias, Alias); 1406 } 1407 1408 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1409 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1410 AliasResult Alias = 1411 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1412 SISize, SIAAInfo, UnderV2); 1413 if (Alias == MayAlias) 1414 return MayAlias; 1415 1416 AliasResult ThisAlias = 1417 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1418 UnderV2); 1419 return MergeAliasResults(ThisAlias, Alias); 1420 } 1421 1422 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1423 /// another. 1424 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1425 const AAMDNodes &PNAAInfo, const Value *V2, 1426 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1427 const Value *UnderV2) { 1428 // Track phi nodes we have visited. We use this information when we determine 1429 // value equivalence. 1430 VisitedPhiBBs.insert(PN->getParent()); 1431 1432 // If the values are PHIs in the same block, we can do a more precise 1433 // as well as efficient check: just check for aliases between the values 1434 // on corresponding edges. 1435 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1436 if (PN2->getParent() == PN->getParent()) { 1437 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1438 MemoryLocation(V2, V2Size, V2AAInfo)); 1439 if (PN > V2) 1440 std::swap(Locs.first, Locs.second); 1441 // Analyse the PHIs' inputs under the assumption that the PHIs are 1442 // NoAlias. 1443 // If the PHIs are May/MustAlias there must be (recursively) an input 1444 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1445 // there must be an operation on the PHIs within the PHIs' value cycle 1446 // that causes a MayAlias. 1447 // Pretend the phis do not alias. 1448 AliasResult Alias = NoAlias; 1449 assert(AliasCache.count(Locs) && 1450 "There must exist an entry for the phi node"); 1451 AliasResult OrigAliasResult = AliasCache[Locs]; 1452 AliasCache[Locs] = NoAlias; 1453 1454 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1455 AliasResult ThisAlias = 1456 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1457 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1458 V2Size, V2AAInfo); 1459 Alias = MergeAliasResults(ThisAlias, Alias); 1460 if (Alias == MayAlias) 1461 break; 1462 } 1463 1464 // Reset if speculation failed. 1465 if (Alias != NoAlias) 1466 AliasCache[Locs] = OrigAliasResult; 1467 1468 return Alias; 1469 } 1470 1471 SmallPtrSet<Value *, 4> UniqueSrc; 1472 SmallVector<Value *, 4> V1Srcs; 1473 bool isRecursive = false; 1474 for (Value *PV1 : PN->incoming_values()) { 1475 if (isa<PHINode>(PV1)) 1476 // If any of the source itself is a PHI, return MayAlias conservatively 1477 // to avoid compile time explosion. The worst possible case is if both 1478 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1479 // and 'n' are the number of PHI sources. 1480 return MayAlias; 1481 1482 if (EnableRecPhiAnalysis) 1483 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1484 // Check whether the incoming value is a GEP that advances the pointer 1485 // result of this PHI node (e.g. in a loop). If this is the case, we 1486 // would recurse and always get a MayAlias. Handle this case specially 1487 // below. 1488 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1489 isa<ConstantInt>(PV1GEP->idx_begin())) { 1490 isRecursive = true; 1491 continue; 1492 } 1493 } 1494 1495 if (UniqueSrc.insert(PV1).second) 1496 V1Srcs.push_back(PV1); 1497 } 1498 1499 // If this PHI node is recursive, set the size of the accessed memory to 1500 // unknown to represent all the possible values the GEP could advance the 1501 // pointer to. 1502 if (isRecursive) 1503 PNSize = MemoryLocation::UnknownSize; 1504 1505 AliasResult Alias = 1506 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1507 PNSize, PNAAInfo, UnderV2); 1508 1509 // Early exit if the check of the first PHI source against V2 is MayAlias. 1510 // Other results are not possible. 1511 if (Alias == MayAlias) 1512 return MayAlias; 1513 1514 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1515 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1516 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1517 Value *V = V1Srcs[i]; 1518 1519 AliasResult ThisAlias = 1520 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1521 Alias = MergeAliasResults(ThisAlias, Alias); 1522 if (Alias == MayAlias) 1523 break; 1524 } 1525 1526 return Alias; 1527 } 1528 1529 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1530 /// array references. 1531 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1532 AAMDNodes V1AAInfo, const Value *V2, 1533 uint64_t V2Size, AAMDNodes V2AAInfo, 1534 const Value *O1, const Value *O2) { 1535 // If either of the memory references is empty, it doesn't matter what the 1536 // pointer values are. 1537 if (V1Size == 0 || V2Size == 0) 1538 return NoAlias; 1539 1540 // Strip off any casts if they exist. 1541 V1 = V1->stripPointerCastsAndBarriers(); 1542 V2 = V2->stripPointerCastsAndBarriers(); 1543 1544 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1545 // value for undef that aliases nothing in the program. 1546 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1547 return NoAlias; 1548 1549 // Are we checking for alias of the same value? 1550 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1551 // different iterations. We must therefore make sure that this is not the 1552 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1553 // happen by looking at the visited phi nodes and making sure they cannot 1554 // reach the value. 1555 if (isValueEqualInPotentialCycles(V1, V2)) 1556 return MustAlias; 1557 1558 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1559 return NoAlias; // Scalars cannot alias each other 1560 1561 // Figure out what objects these things are pointing to if we can. 1562 if (O1 == nullptr) 1563 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1564 1565 if (O2 == nullptr) 1566 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1567 1568 // Null values in the default address space don't point to any object, so they 1569 // don't alias any other pointer. 1570 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1571 if (CPN->getType()->getAddressSpace() == 0) 1572 return NoAlias; 1573 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1574 if (CPN->getType()->getAddressSpace() == 0) 1575 return NoAlias; 1576 1577 if (O1 != O2) { 1578 // If V1/V2 point to two different objects, we know that we have no alias. 1579 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1580 return NoAlias; 1581 1582 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1583 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1584 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1585 return NoAlias; 1586 1587 // Function arguments can't alias with things that are known to be 1588 // unambigously identified at the function level. 1589 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1590 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1591 return NoAlias; 1592 1593 // If one pointer is the result of a call/invoke or load and the other is a 1594 // non-escaping local object within the same function, then we know the 1595 // object couldn't escape to a point where the call could return it. 1596 // 1597 // Note that if the pointers are in different functions, there are a 1598 // variety of complications. A call with a nocapture argument may still 1599 // temporary store the nocapture argument's value in a temporary memory 1600 // location if that memory location doesn't escape. Or it may pass a 1601 // nocapture value to other functions as long as they don't capture it. 1602 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1603 return NoAlias; 1604 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1605 return NoAlias; 1606 } 1607 1608 // If the size of one access is larger than the entire object on the other 1609 // side, then we know such behavior is undefined and can assume no alias. 1610 if ((V1Size != MemoryLocation::UnknownSize && 1611 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1612 (V2Size != MemoryLocation::UnknownSize && 1613 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1614 return NoAlias; 1615 1616 // Check the cache before climbing up use-def chains. This also terminates 1617 // otherwise infinitely recursive queries. 1618 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1619 MemoryLocation(V2, V2Size, V2AAInfo)); 1620 if (V1 > V2) 1621 std::swap(Locs.first, Locs.second); 1622 std::pair<AliasCacheTy::iterator, bool> Pair = 1623 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1624 if (!Pair.second) 1625 return Pair.first->second; 1626 1627 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1628 // GEP can't simplify, we don't even look at the PHI cases. 1629 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1630 std::swap(V1, V2); 1631 std::swap(V1Size, V2Size); 1632 std::swap(O1, O2); 1633 std::swap(V1AAInfo, V2AAInfo); 1634 } 1635 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1636 AliasResult Result = 1637 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1638 if (Result != MayAlias) 1639 return AliasCache[Locs] = Result; 1640 } 1641 1642 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1643 std::swap(V1, V2); 1644 std::swap(O1, O2); 1645 std::swap(V1Size, V2Size); 1646 std::swap(V1AAInfo, V2AAInfo); 1647 } 1648 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1649 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1650 V2, V2Size, V2AAInfo, O2); 1651 if (Result != MayAlias) 1652 return AliasCache[Locs] = Result; 1653 } 1654 1655 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1656 std::swap(V1, V2); 1657 std::swap(O1, O2); 1658 std::swap(V1Size, V2Size); 1659 std::swap(V1AAInfo, V2AAInfo); 1660 } 1661 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1662 AliasResult Result = 1663 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1664 if (Result != MayAlias) 1665 return AliasCache[Locs] = Result; 1666 } 1667 1668 // If both pointers are pointing into the same object and one of them 1669 // accesses the entire object, then the accesses must overlap in some way. 1670 if (O1 == O2) 1671 if ((V1Size != MemoryLocation::UnknownSize && 1672 isObjectSize(O1, V1Size, DL, TLI)) || 1673 (V2Size != MemoryLocation::UnknownSize && 1674 isObjectSize(O2, V2Size, DL, TLI))) 1675 return AliasCache[Locs] = PartialAlias; 1676 1677 // Recurse back into the best AA results we have, potentially with refined 1678 // memory locations. We have already ensured that BasicAA has a MayAlias 1679 // cache result for these, so any recursion back into BasicAA won't loop. 1680 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1681 return AliasCache[Locs] = Result; 1682 } 1683 1684 /// Check whether two Values can be considered equivalent. 1685 /// 1686 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1687 /// they can not be part of a cycle in the value graph by looking at all 1688 /// visited phi nodes an making sure that the phis cannot reach the value. We 1689 /// have to do this because we are looking through phi nodes (That is we say 1690 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1691 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1692 const Value *V2) { 1693 if (V != V2) 1694 return false; 1695 1696 const Instruction *Inst = dyn_cast<Instruction>(V); 1697 if (!Inst) 1698 return true; 1699 1700 if (VisitedPhiBBs.empty()) 1701 return true; 1702 1703 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1704 return false; 1705 1706 // Make sure that the visited phis cannot reach the Value. This ensures that 1707 // the Values cannot come from different iterations of a potential cycle the 1708 // phi nodes could be involved in. 1709 for (auto *P : VisitedPhiBBs) 1710 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1711 return false; 1712 1713 return true; 1714 } 1715 1716 /// Computes the symbolic difference between two de-composed GEPs. 1717 /// 1718 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1719 /// instructions GEP1 and GEP2 which have common base pointers. 1720 void BasicAAResult::GetIndexDifference( 1721 SmallVectorImpl<VariableGEPIndex> &Dest, 1722 const SmallVectorImpl<VariableGEPIndex> &Src) { 1723 if (Src.empty()) 1724 return; 1725 1726 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1727 const Value *V = Src[i].V; 1728 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1729 int64_t Scale = Src[i].Scale; 1730 1731 // Find V in Dest. This is N^2, but pointer indices almost never have more 1732 // than a few variable indexes. 1733 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1734 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1735 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1736 continue; 1737 1738 // If we found it, subtract off Scale V's from the entry in Dest. If it 1739 // goes to zero, remove the entry. 1740 if (Dest[j].Scale != Scale) 1741 Dest[j].Scale -= Scale; 1742 else 1743 Dest.erase(Dest.begin() + j); 1744 Scale = 0; 1745 break; 1746 } 1747 1748 // If we didn't consume this entry, add it to the end of the Dest list. 1749 if (Scale) { 1750 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1751 Dest.push_back(Entry); 1752 } 1753 } 1754 } 1755 1756 bool BasicAAResult::constantOffsetHeuristic( 1757 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1758 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1759 DominatorTree *DT) { 1760 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1761 V2Size == MemoryLocation::UnknownSize) 1762 return false; 1763 1764 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1765 1766 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1767 Var0.Scale != -Var1.Scale) 1768 return false; 1769 1770 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1771 1772 // We'll strip off the Extensions of Var0 and Var1 and do another round 1773 // of GetLinearExpression decomposition. In the example above, if Var0 1774 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1775 1776 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1777 V1Offset(Width, 0); 1778 bool NSW = true, NUW = true; 1779 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1780 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1781 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1782 NSW = true; 1783 NUW = true; 1784 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1785 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1786 1787 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1788 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1789 return false; 1790 1791 // We have a hit - Var0 and Var1 only differ by a constant offset! 1792 1793 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1794 // Var1 is possible to calculate, but we're just interested in the absolute 1795 // minimum difference between the two. The minimum distance may occur due to 1796 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1797 // the minimum distance between %i and %i + 5 is 3. 1798 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1799 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1800 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1801 1802 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1803 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1804 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1805 // V2Size can fit in the MinDiffBytes gap. 1806 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1807 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1808 } 1809 1810 //===----------------------------------------------------------------------===// 1811 // BasicAliasAnalysis Pass 1812 //===----------------------------------------------------------------------===// 1813 1814 AnalysisKey BasicAA::Key; 1815 1816 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1817 return BasicAAResult(F.getParent()->getDataLayout(), 1818 AM.getResult<TargetLibraryAnalysis>(F), 1819 AM.getResult<AssumptionAnalysis>(F), 1820 &AM.getResult<DominatorTreeAnalysis>(F), 1821 AM.getCachedResult<LoopAnalysis>(F)); 1822 } 1823 1824 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1825 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1826 } 1827 1828 char BasicAAWrapperPass::ID = 0; 1829 1830 void BasicAAWrapperPass::anchor() {} 1831 1832 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1833 "Basic Alias Analysis (stateless AA impl)", true, true) 1834 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1835 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1836 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1837 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1838 "Basic Alias Analysis (stateless AA impl)", true, true) 1839 1840 FunctionPass *llvm::createBasicAAWrapperPass() { 1841 return new BasicAAWrapperPass(); 1842 } 1843 1844 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1845 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1846 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1847 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1848 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1849 1850 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1851 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1852 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1853 1854 return false; 1855 } 1856 1857 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1858 AU.setPreservesAll(); 1859 AU.addRequired<AssumptionCacheTracker>(); 1860 AU.addRequired<DominatorTreeWrapperPass>(); 1861 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1862 } 1863 1864 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1865 return BasicAAResult( 1866 F.getParent()->getDataLayout(), 1867 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1868 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1869 } 1870