1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic AliasAnalysis interface which is used as the 11 // common interface used by all clients and implementations of alias analysis. 12 // 13 // This file also implements the default version of the AliasAnalysis interface 14 // that is to be used when no other implementation is specified. This does some 15 // simple tests that detect obvious cases: two different global pointers cannot 16 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 17 // etc. 18 // 19 // This alias analysis implementation really isn't very good for anything, but 20 // it is very fast, and makes a nice clean default implementation. Because it 21 // handles lots of little corner cases, other, more complex, alias analysis 22 // implementations may choose to rely on this pass to resolve these simple and 23 // easy cases. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/ScopedNoAliasAA.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 39 #include "llvm/Analysis/ValueTracking.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/AtomicOrdering.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <functional> 56 #include <iterator> 57 58 using namespace llvm; 59 60 /// Allow disabling BasicAA from the AA results. This is particularly useful 61 /// when testing to isolate a single AA implementation. 62 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, 63 cl::init(false)); 64 65 AAResults::AAResults(AAResults &&Arg) 66 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) { 67 for (auto &AA : AAs) 68 AA->setAAResults(this); 69 } 70 71 AAResults::~AAResults() { 72 // FIXME; It would be nice to at least clear out the pointers back to this 73 // aggregation here, but we end up with non-nesting lifetimes in the legacy 74 // pass manager that prevent this from working. In the legacy pass manager 75 // we'll end up with dangling references here in some cases. 76 #if 0 77 for (auto &AA : AAs) 78 AA->setAAResults(nullptr); 79 #endif 80 } 81 82 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, 83 FunctionAnalysisManager::Invalidator &Inv) { 84 // Check if the AA manager itself has been invalidated. 85 auto PAC = PA.getChecker<AAManager>(); 86 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 87 return true; // The manager needs to be blown away, clear everything. 88 89 // Check all of the dependencies registered. 90 for (AnalysisKey *ID : AADeps) 91 if (Inv.invalidate(ID, F, PA)) 92 return true; 93 94 // Everything we depend on is still fine, so are we. Nothing to invalidate. 95 return false; 96 } 97 98 //===----------------------------------------------------------------------===// 99 // Default chaining methods 100 //===----------------------------------------------------------------------===// 101 102 AliasResult AAResults::alias(const MemoryLocation &LocA, 103 const MemoryLocation &LocB) { 104 for (const auto &AA : AAs) { 105 auto Result = AA->alias(LocA, LocB); 106 if (Result != MayAlias) 107 return Result; 108 } 109 return MayAlias; 110 } 111 112 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 113 bool OrLocal) { 114 for (const auto &AA : AAs) 115 if (AA->pointsToConstantMemory(Loc, OrLocal)) 116 return true; 117 118 return false; 119 } 120 121 ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { 122 ModRefInfo Result = ModRefInfo::ModRef; 123 124 for (const auto &AA : AAs) { 125 Result = intersectModRef(Result, AA->getArgModRefInfo(CS, ArgIdx)); 126 127 // Early-exit the moment we reach the bottom of the lattice. 128 if (isNoModRef(Result)) 129 return Result; 130 } 131 132 return Result; 133 } 134 135 ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) { 136 // We may have two calls 137 if (auto CS = ImmutableCallSite(I)) { 138 // Check if the two calls modify the same memory 139 return getModRefInfo(CS, Call); 140 } else if (I->isFenceLike()) { 141 // If this is a fence, just return ModRef. 142 return ModRefInfo::ModRef; 143 } else { 144 // Otherwise, check if the call modifies or references the 145 // location this memory access defines. The best we can say 146 // is that if the call references what this instruction 147 // defines, it must be clobbered by this location. 148 const MemoryLocation DefLoc = MemoryLocation::get(I); 149 ModRefInfo MR = getModRefInfo(Call, DefLoc); 150 if (isModOrRefSet(MR)) 151 return setModAndRef(MR); 152 } 153 return ModRefInfo::NoModRef; 154 } 155 156 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS, 157 const MemoryLocation &Loc) { 158 ModRefInfo Result = ModRefInfo::ModRef; 159 160 for (const auto &AA : AAs) { 161 Result = intersectModRef(Result, AA->getModRefInfo(CS, Loc)); 162 163 // Early-exit the moment we reach the bottom of the lattice. 164 if (isNoModRef(Result)) 165 return Result; 166 } 167 168 // Try to refine the mod-ref info further using other API entry points to the 169 // aggregate set of AA results. 170 auto MRB = getModRefBehavior(CS); 171 if (MRB == FMRB_DoesNotAccessMemory || 172 MRB == FMRB_OnlyAccessesInaccessibleMem) 173 return ModRefInfo::NoModRef; 174 175 if (onlyReadsMemory(MRB)) 176 Result = clearMod(Result); 177 else if (doesNotReadMemory(MRB)) 178 Result = clearRef(Result); 179 180 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) { 181 bool DoesAlias = false; 182 ModRefInfo AllArgsMask = ModRefInfo::NoModRef; 183 if (doesAccessArgPointees(MRB)) { 184 for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) { 185 const Value *Arg = *AI; 186 if (!Arg->getType()->isPointerTy()) 187 continue; 188 unsigned ArgIdx = std::distance(CS.arg_begin(), AI); 189 MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI); 190 AliasResult ArgAlias = alias(ArgLoc, Loc); 191 if (ArgAlias != NoAlias) { 192 ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx); 193 DoesAlias = true; 194 AllArgsMask = unionModRef(AllArgsMask, ArgMask); 195 } 196 } 197 } 198 // Return NoModRef if no alias found with any argument. 199 if (!DoesAlias) 200 return ModRefInfo::NoModRef; 201 // Logical & between other AA analyses and argument analysis. 202 Result = intersectModRef(Result, AllArgsMask); 203 } 204 205 // If Loc is a constant memory location, the call definitely could not 206 // modify the memory location. 207 if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false)) 208 Result = clearMod(Result); 209 210 return Result; 211 } 212 213 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1, 214 ImmutableCallSite CS2) { 215 ModRefInfo Result = ModRefInfo::ModRef; 216 217 for (const auto &AA : AAs) { 218 Result = intersectModRef(Result, AA->getModRefInfo(CS1, CS2)); 219 220 // Early-exit the moment we reach the bottom of the lattice. 221 if (isNoModRef(Result)) 222 return Result; 223 } 224 225 // Try to refine the mod-ref info further using other API entry points to the 226 // aggregate set of AA results. 227 228 // If CS1 or CS2 are readnone, they don't interact. 229 auto CS1B = getModRefBehavior(CS1); 230 if (CS1B == FMRB_DoesNotAccessMemory) 231 return ModRefInfo::NoModRef; 232 233 auto CS2B = getModRefBehavior(CS2); 234 if (CS2B == FMRB_DoesNotAccessMemory) 235 return ModRefInfo::NoModRef; 236 237 // If they both only read from memory, there is no dependence. 238 if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B)) 239 return ModRefInfo::NoModRef; 240 241 // If CS1 only reads memory, the only dependence on CS2 can be 242 // from CS1 reading memory written by CS2. 243 if (onlyReadsMemory(CS1B)) 244 Result = clearMod(Result); 245 else if (doesNotReadMemory(CS1B)) 246 Result = clearRef(Result); 247 248 // If CS2 only access memory through arguments, accumulate the mod/ref 249 // information from CS1's references to the memory referenced by 250 // CS2's arguments. 251 if (onlyAccessesArgPointees(CS2B)) { 252 ModRefInfo R = ModRefInfo::NoModRef; 253 if (doesAccessArgPointees(CS2B)) { 254 for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { 255 const Value *Arg = *I; 256 if (!Arg->getType()->isPointerTy()) 257 continue; 258 unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I); 259 auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI); 260 261 // ArgModRefCS2 indicates what CS2 might do to CS2ArgLoc, and the 262 // dependence of CS1 on that location is the inverse: 263 // - If CS2 modifies location, dependence exists if CS1 reads or writes. 264 // - If CS2 only reads location, dependence exists if CS1 writes. 265 ModRefInfo ArgModRefCS2 = getArgModRefInfo(CS2, CS2ArgIdx); 266 ModRefInfo ArgMask = ModRefInfo::NoModRef; 267 if (isModSet(ArgModRefCS2)) 268 ArgMask = ModRefInfo::ModRef; 269 else if (isRefSet(ArgModRefCS2)) 270 ArgMask = ModRefInfo::Mod; 271 272 // ModRefCS1 indicates what CS1 might do to CS2ArgLoc, and we use 273 // above ArgMask to update dependence info. 274 ModRefInfo ModRefCS1 = getModRefInfo(CS1, CS2ArgLoc); 275 ArgMask = intersectModRef(ArgMask, ModRefCS1); 276 277 R = intersectModRef(unionModRef(R, ArgMask), Result); 278 if (R == Result) 279 break; 280 } 281 } 282 return R; 283 } 284 285 // If CS1 only accesses memory through arguments, check if CS2 references 286 // any of the memory referenced by CS1's arguments. If not, return NoModRef. 287 if (onlyAccessesArgPointees(CS1B)) { 288 ModRefInfo R = ModRefInfo::NoModRef; 289 if (doesAccessArgPointees(CS1B)) { 290 for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) { 291 const Value *Arg = *I; 292 if (!Arg->getType()->isPointerTy()) 293 continue; 294 unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I); 295 auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI); 296 297 // ArgModRefCS1 indicates what CS1 might do to CS1ArgLoc; if CS1 might 298 // Mod CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If 299 // CS1 might Ref, then we care only about a Mod by CS2. 300 ModRefInfo ArgModRefCS1 = getArgModRefInfo(CS1, CS1ArgIdx); 301 ModRefInfo ModRefCS2 = getModRefInfo(CS2, CS1ArgLoc); 302 if ((isModSet(ArgModRefCS1) && isModOrRefSet(ModRefCS2)) || 303 (isRefSet(ArgModRefCS1) && isModSet(ModRefCS2))) 304 R = intersectModRef(unionModRef(R, ArgModRefCS1), Result); 305 306 if (R == Result) 307 break; 308 } 309 } 310 return R; 311 } 312 313 return Result; 314 } 315 316 FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) { 317 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 318 319 for (const auto &AA : AAs) { 320 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS)); 321 322 // Early-exit the moment we reach the bottom of the lattice. 323 if (Result == FMRB_DoesNotAccessMemory) 324 return Result; 325 } 326 327 return Result; 328 } 329 330 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { 331 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 332 333 for (const auto &AA : AAs) { 334 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); 335 336 // Early-exit the moment we reach the bottom of the lattice. 337 if (Result == FMRB_DoesNotAccessMemory) 338 return Result; 339 } 340 341 return Result; 342 } 343 344 //===----------------------------------------------------------------------===// 345 // Helper method implementation 346 //===----------------------------------------------------------------------===// 347 348 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 349 const MemoryLocation &Loc) { 350 // Be conservative in the face of atomic. 351 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) 352 return ModRefInfo::ModRef; 353 354 // If the load address doesn't alias the given address, it doesn't read 355 // or write the specified memory. 356 if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc)) 357 return ModRefInfo::NoModRef; 358 359 // Otherwise, a load just reads. 360 return ModRefInfo::Ref; 361 } 362 363 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 364 const MemoryLocation &Loc) { 365 // Be conservative in the face of atomic. 366 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) 367 return ModRefInfo::ModRef; 368 369 if (Loc.Ptr) { 370 // If the store address cannot alias the pointer in question, then the 371 // specified memory cannot be modified by the store. 372 if (!alias(MemoryLocation::get(S), Loc)) 373 return ModRefInfo::NoModRef; 374 375 // If the pointer is a pointer to constant memory, then it could not have 376 // been modified by this store. 377 if (pointsToConstantMemory(Loc)) 378 return ModRefInfo::NoModRef; 379 } 380 381 // Otherwise, a store just writes. 382 return ModRefInfo::Mod; 383 } 384 385 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) { 386 // If we know that the location is a constant memory location, the fence 387 // cannot modify this location. 388 if (Loc.Ptr && pointsToConstantMemory(Loc)) 389 return ModRefInfo::Ref; 390 return ModRefInfo::ModRef; 391 } 392 393 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 394 const MemoryLocation &Loc) { 395 if (Loc.Ptr) { 396 // If the va_arg address cannot alias the pointer in question, then the 397 // specified memory cannot be accessed by the va_arg. 398 if (!alias(MemoryLocation::get(V), Loc)) 399 return ModRefInfo::NoModRef; 400 401 // If the pointer is a pointer to constant memory, then it could not have 402 // been modified by this va_arg. 403 if (pointsToConstantMemory(Loc)) 404 return ModRefInfo::NoModRef; 405 } 406 407 // Otherwise, a va_arg reads and writes. 408 return ModRefInfo::ModRef; 409 } 410 411 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 412 const MemoryLocation &Loc) { 413 if (Loc.Ptr) { 414 // If the pointer is a pointer to constant memory, 415 // then it could not have been modified by this catchpad. 416 if (pointsToConstantMemory(Loc)) 417 return ModRefInfo::NoModRef; 418 } 419 420 // Otherwise, a catchpad reads and writes. 421 return ModRefInfo::ModRef; 422 } 423 424 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 425 const MemoryLocation &Loc) { 426 if (Loc.Ptr) { 427 // If the pointer is a pointer to constant memory, 428 // then it could not have been modified by this catchpad. 429 if (pointsToConstantMemory(Loc)) 430 return ModRefInfo::NoModRef; 431 } 432 433 // Otherwise, a catchret reads and writes. 434 return ModRefInfo::ModRef; 435 } 436 437 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 438 const MemoryLocation &Loc) { 439 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 440 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 441 return ModRefInfo::ModRef; 442 443 // If the cmpxchg address does not alias the location, it does not access it. 444 if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc)) 445 return ModRefInfo::NoModRef; 446 447 return ModRefInfo::ModRef; 448 } 449 450 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 451 const MemoryLocation &Loc) { 452 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 453 if (isStrongerThanMonotonic(RMW->getOrdering())) 454 return ModRefInfo::ModRef; 455 456 // If the atomicrmw address does not alias the location, it does not access it. 457 if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc)) 458 return ModRefInfo::NoModRef; 459 460 return ModRefInfo::ModRef; 461 } 462 463 /// \brief Return information about whether a particular call site modifies 464 /// or reads the specified memory location \p MemLoc before instruction \p I 465 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up 466 /// instruction-ordering queries inside the BasicBlock containing \p I. 467 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 468 /// BasicAA isn't willing to spend linear time determining whether an alloca 469 /// was captured before or after this particular call, while we are. However, 470 /// with a smarter AA in place, this test is just wasting compile time. 471 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 472 const MemoryLocation &MemLoc, 473 DominatorTree *DT, 474 OrderedBasicBlock *OBB) { 475 if (!DT) 476 return ModRefInfo::ModRef; 477 478 const Value *Object = 479 GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); 480 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || 481 isa<Constant>(Object)) 482 return ModRefInfo::ModRef; 483 484 ImmutableCallSite CS(I); 485 if (!CS.getInstruction() || CS.getInstruction() == Object) 486 return ModRefInfo::ModRef; 487 488 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 489 /* StoreCaptures */ true, I, DT, 490 /* include Object */ true, 491 /* OrderedBasicBlock */ OBB)) 492 return ModRefInfo::ModRef; 493 494 unsigned ArgNo = 0; 495 ModRefInfo R = ModRefInfo::NoModRef; 496 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 497 CI != CE; ++CI, ++ArgNo) { 498 // Only look at the no-capture or byval pointer arguments. If this 499 // pointer were passed to arguments that were neither of these, then it 500 // couldn't be no-capture. 501 if (!(*CI)->getType()->isPointerTy() || 502 (!CS.doesNotCapture(ArgNo) && 503 ArgNo < CS.getNumArgOperands() && !CS.isByValArgument(ArgNo))) 504 continue; 505 506 // If this is a no-capture pointer argument, see if we can tell that it 507 // is impossible to alias the pointer we're checking. If not, we have to 508 // assume that the call could touch the pointer, even though it doesn't 509 // escape. 510 if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object))) 511 continue; 512 if (CS.doesNotAccessMemory(ArgNo)) 513 continue; 514 if (CS.onlyReadsMemory(ArgNo)) { 515 R = ModRefInfo::Ref; 516 continue; 517 } 518 return ModRefInfo::ModRef; 519 } 520 return R; 521 } 522 523 /// canBasicBlockModify - Return true if it is possible for execution of the 524 /// specified basic block to modify the location Loc. 525 /// 526 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 527 const MemoryLocation &Loc) { 528 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); 529 } 530 531 /// canInstructionRangeModRef - Return true if it is possible for the 532 /// execution of the specified instructions to mod\ref (according to the 533 /// mode) the location Loc. The instructions to consider are all 534 /// of the instructions in the range of [I1,I2] INCLUSIVE. 535 /// I1 and I2 must be in the same basic block. 536 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 537 const Instruction &I2, 538 const MemoryLocation &Loc, 539 const ModRefInfo Mode) { 540 assert(I1.getParent() == I2.getParent() && 541 "Instructions not in same basic block!"); 542 BasicBlock::const_iterator I = I1.getIterator(); 543 BasicBlock::const_iterator E = I2.getIterator(); 544 ++E; // Convert from inclusive to exclusive range. 545 546 for (; I != E; ++I) // Check every instruction in range 547 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode))) 548 return true; 549 return false; 550 } 551 552 // Provide a definition for the root virtual destructor. 553 AAResults::Concept::~Concept() = default; 554 555 // Provide a definition for the static object used to identify passes. 556 AnalysisKey AAManager::Key; 557 558 namespace { 559 560 /// A wrapper pass for external alias analyses. This just squirrels away the 561 /// callback used to run any analyses and register their results. 562 struct ExternalAAWrapperPass : ImmutablePass { 563 using CallbackT = std::function<void(Pass &, Function &, AAResults &)>; 564 565 CallbackT CB; 566 567 static char ID; 568 569 ExternalAAWrapperPass() : ImmutablePass(ID) { 570 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 571 } 572 573 explicit ExternalAAWrapperPass(CallbackT CB) 574 : ImmutablePass(ID), CB(std::move(CB)) { 575 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 576 } 577 578 void getAnalysisUsage(AnalysisUsage &AU) const override { 579 AU.setPreservesAll(); 580 } 581 }; 582 583 } // end anonymous namespace 584 585 char ExternalAAWrapperPass::ID = 0; 586 587 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 588 false, true) 589 590 ImmutablePass * 591 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 592 return new ExternalAAWrapperPass(std::move(Callback)); 593 } 594 595 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 596 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 597 } 598 599 char AAResultsWrapperPass::ID = 0; 600 601 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 602 "Function Alias Analysis Results", false, true) 603 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 604 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass) 605 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass) 606 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 607 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 608 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) 609 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 610 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 611 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 612 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 613 "Function Alias Analysis Results", false, true) 614 615 FunctionPass *llvm::createAAResultsWrapperPass() { 616 return new AAResultsWrapperPass(); 617 } 618 619 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 620 /// 621 /// This is the legacy pass manager's interface to the new-style AA results 622 /// aggregation object. Because this is somewhat shoe-horned into the legacy 623 /// pass manager, we hard code all the specific alias analyses available into 624 /// it. While the particular set enabled is configured via commandline flags, 625 /// adding a new alias analysis to LLVM will require adding support for it to 626 /// this list. 627 bool AAResultsWrapperPass::runOnFunction(Function &F) { 628 // NB! This *must* be reset before adding new AA results to the new 629 // AAResults object because in the legacy pass manager, each instance 630 // of these will refer to the *same* immutable analyses, registering and 631 // unregistering themselves with them. We need to carefully tear down the 632 // previous object first, in this case replacing it with an empty one, before 633 // registering new results. 634 AAR.reset( 635 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI())); 636 637 // BasicAA is always available for function analyses. Also, we add it first 638 // so that it can trump TBAA results when it proves MustAlias. 639 // FIXME: TBAA should have an explicit mode to support this and then we 640 // should reconsider the ordering here. 641 if (!DisableBasicAA) 642 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 643 644 // Populate the results with the currently available AAs. 645 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 646 AAR->addAAResult(WrapperPass->getResult()); 647 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 648 AAR->addAAResult(WrapperPass->getResult()); 649 if (auto *WrapperPass = 650 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 651 AAR->addAAResult(WrapperPass->getResult()); 652 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 653 AAR->addAAResult(WrapperPass->getResult()); 654 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 655 AAR->addAAResult(WrapperPass->getResult()); 656 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 657 AAR->addAAResult(WrapperPass->getResult()); 658 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 659 AAR->addAAResult(WrapperPass->getResult()); 660 661 // If available, run an external AA providing callback over the results as 662 // well. 663 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 664 if (WrapperPass->CB) 665 WrapperPass->CB(*this, F, *AAR); 666 667 // Analyses don't mutate the IR, so return false. 668 return false; 669 } 670 671 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 672 AU.setPreservesAll(); 673 AU.addRequired<BasicAAWrapperPass>(); 674 AU.addRequired<TargetLibraryInfoWrapperPass>(); 675 676 // We also need to mark all the alias analysis passes we will potentially 677 // probe in runOnFunction as used here to ensure the legacy pass manager 678 // preserves them. This hard coding of lists of alias analyses is specific to 679 // the legacy pass manager. 680 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 681 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 682 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 683 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 684 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 685 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 686 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 687 } 688 689 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, 690 BasicAAResult &BAR) { 691 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()); 692 693 // Add in our explicitly constructed BasicAA results. 694 if (!DisableBasicAA) 695 AAR.addAAResult(BAR); 696 697 // Populate the results with the other currently available AAs. 698 if (auto *WrapperPass = 699 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 700 AAR.addAAResult(WrapperPass->getResult()); 701 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 702 AAR.addAAResult(WrapperPass->getResult()); 703 if (auto *WrapperPass = 704 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 705 AAR.addAAResult(WrapperPass->getResult()); 706 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 707 AAR.addAAResult(WrapperPass->getResult()); 708 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 709 AAR.addAAResult(WrapperPass->getResult()); 710 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 711 AAR.addAAResult(WrapperPass->getResult()); 712 713 return AAR; 714 } 715 716 bool llvm::isNoAliasCall(const Value *V) { 717 if (auto CS = ImmutableCallSite(V)) 718 return CS.hasRetAttr(Attribute::NoAlias); 719 return false; 720 } 721 722 bool llvm::isNoAliasArgument(const Value *V) { 723 if (const Argument *A = dyn_cast<Argument>(V)) 724 return A->hasNoAliasAttr(); 725 return false; 726 } 727 728 bool llvm::isIdentifiedObject(const Value *V) { 729 if (isa<AllocaInst>(V)) 730 return true; 731 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 732 return true; 733 if (isNoAliasCall(V)) 734 return true; 735 if (const Argument *A = dyn_cast<Argument>(V)) 736 return A->hasNoAliasAttr() || A->hasByValAttr(); 737 return false; 738 } 739 740 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 741 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 742 } 743 744 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { 745 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if 746 // more alias analyses are added to llvm::createLegacyPMAAResults, they need 747 // to be added here also. 748 AU.addRequired<TargetLibraryInfoWrapperPass>(); 749 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 750 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 751 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 752 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 753 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 754 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 755 } 756