1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
17 
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/ilist.h"
22 #include "llvm/ADT/ilist_node.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/ArrayRecycler.h"
32 #include "llvm/Support/TrailingObjects.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <utility>
37 
38 namespace llvm {
39 
40 class DILabel;
41 class Instruction;
42 class MDNode;
43 class AAResults;
44 template <typename T> class ArrayRef;
45 class DIExpression;
46 class DILocalVariable;
47 class MachineBasicBlock;
48 class MachineFunction;
49 class MachineRegisterInfo;
50 class ModuleSlotTracker;
51 class raw_ostream;
52 template <typename T> class SmallVectorImpl;
53 class SmallBitVector;
54 class StringRef;
55 class TargetInstrInfo;
56 class TargetRegisterClass;
57 class TargetRegisterInfo;
58 
59 //===----------------------------------------------------------------------===//
60 /// Representation of each machine instruction.
61 ///
62 /// This class isn't a POD type, but it must have a trivial destructor. When a
63 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
64 /// without having their destructor called.
65 ///
66 class MachineInstr
67     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
68                                     ilist_sentinel_tracking<true>> {
69 public:
70   using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
71 
72   /// Flags to specify different kinds of comments to output in
73   /// assembly code.  These flags carry semantic information not
74   /// otherwise easily derivable from the IR text.
75   ///
76   enum CommentFlag {
77     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
78     NoSchedComment = 0x2,
79     TAsmComments = 0x4    // Target Asm comments should start from this value.
80   };
81 
82   enum MIFlag {
83     NoFlags      = 0,
84     FrameSetup   = 1 << 0,              // Instruction is used as a part of
85                                         // function frame setup code.
86     FrameDestroy = 1 << 1,              // Instruction is used as a part of
87                                         // function frame destruction code.
88     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
89     BundledSucc  = 1 << 3,              // Instruction has bundled successors.
90     FmNoNans     = 1 << 4,              // Instruction does not support Fast
91                                         // math nan values.
92     FmNoInfs     = 1 << 5,              // Instruction does not support Fast
93                                         // math infinity values.
94     FmNsz        = 1 << 6,              // Instruction is not required to retain
95                                         // signed zero values.
96     FmArcp       = 1 << 7,              // Instruction supports Fast math
97                                         // reciprocal approximations.
98     FmContract   = 1 << 8,              // Instruction supports Fast math
99                                         // contraction operations like fma.
100     FmAfn        = 1 << 9,              // Instruction may map to Fast math
101                                         // intrinsic approximation.
102     FmReassoc    = 1 << 10,             // Instruction supports Fast math
103                                         // reassociation of operand order.
104     NoUWrap      = 1 << 11,             // Instruction supports binary operator
105                                         // no unsigned wrap.
106     NoSWrap      = 1 << 12,             // Instruction supports binary operator
107                                         // no signed wrap.
108     IsExact      = 1 << 13,             // Instruction supports division is
109                                         // known to be exact.
110     NoFPExcept   = 1 << 14,             // Instruction does not raise
111                                         // floatint-point exceptions.
112     NoMerge      = 1 << 15,             // Passes that drop source location info
113                                         // (e.g. branch folding) should skip
114                                         // this instruction.
115   };
116 
117 private:
118   const MCInstrDesc *MCID;              // Instruction descriptor.
119   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
120 
121   // Operands are allocated by an ArrayRecycler.
122   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
123   unsigned NumOperands = 0;             // Number of operands on instruction.
124 
125   uint16_t Flags = 0;                   // Various bits of additional
126                                         // information about machine
127                                         // instruction.
128 
129   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
130                                         // the AsmPrinter to emit helpful
131                                         // comments.  This is *not* semantic
132                                         // information.  Do not use this for
133                                         // anything other than to convey comment
134                                         // information to AsmPrinter.
135 
136   // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
137   // to properly pack.
138   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
139   OperandCapacity CapOperands;          // Capacity of the Operands array.
140 
141   /// Internal implementation detail class that provides out-of-line storage for
142   /// extra info used by the machine instruction when this info cannot be stored
143   /// in-line within the instruction itself.
144   ///
145   /// This has to be defined eagerly due to the implementation constraints of
146   /// `PointerSumType` where it is used.
147   class ExtraInfo final
148       : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> {
149   public:
150     static ExtraInfo *create(BumpPtrAllocator &Allocator,
151                              ArrayRef<MachineMemOperand *> MMOs,
152                              MCSymbol *PreInstrSymbol = nullptr,
153                              MCSymbol *PostInstrSymbol = nullptr,
154                              MDNode *HeapAllocMarker = nullptr) {
155       bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
156       bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
157       bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
158       auto *Result = new (Allocator.Allocate(
159           totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>(
160               MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
161               HasHeapAllocMarker),
162           alignof(ExtraInfo)))
163           ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
164                     HasHeapAllocMarker);
165 
166       // Copy the actual data into the trailing objects.
167       std::copy(MMOs.begin(), MMOs.end(),
168                 Result->getTrailingObjects<MachineMemOperand *>());
169 
170       if (HasPreInstrSymbol)
171         Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
172       if (HasPostInstrSymbol)
173         Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
174             PostInstrSymbol;
175       if (HasHeapAllocMarker)
176         Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
177 
178       return Result;
179     }
180 
181     ArrayRef<MachineMemOperand *> getMMOs() const {
182       return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
183     }
184 
185     MCSymbol *getPreInstrSymbol() const {
186       return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
187     }
188 
189     MCSymbol *getPostInstrSymbol() const {
190       return HasPostInstrSymbol
191                  ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
192                  : nullptr;
193     }
194 
195     MDNode *getHeapAllocMarker() const {
196       return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
197     }
198 
199   private:
200     friend TrailingObjects;
201 
202     // Description of the extra info, used to interpret the actual optional
203     // data appended.
204     //
205     // Note that this is not terribly space optimized. This leaves a great deal
206     // of flexibility to fit more in here later.
207     const int NumMMOs;
208     const bool HasPreInstrSymbol;
209     const bool HasPostInstrSymbol;
210     const bool HasHeapAllocMarker;
211 
212     // Implement the `TrailingObjects` internal API.
213     size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
214       return NumMMOs;
215     }
216     size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
217       return HasPreInstrSymbol + HasPostInstrSymbol;
218     }
219     size_t numTrailingObjects(OverloadToken<MDNode *>) const {
220       return HasHeapAllocMarker;
221     }
222 
223     // Just a boring constructor to allow us to initialize the sizes. Always use
224     // the `create` routine above.
225     ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
226               bool HasHeapAllocMarker)
227         : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
228           HasPostInstrSymbol(HasPostInstrSymbol),
229           HasHeapAllocMarker(HasHeapAllocMarker) {}
230   };
231 
232   /// Enumeration of the kinds of inline extra info available. It is important
233   /// that the `MachineMemOperand` inline kind has a tag value of zero to make
234   /// it accessible as an `ArrayRef`.
235   enum ExtraInfoInlineKinds {
236     EIIK_MMO = 0,
237     EIIK_PreInstrSymbol,
238     EIIK_PostInstrSymbol,
239     EIIK_OutOfLine
240   };
241 
242   // We store extra information about the instruction here. The common case is
243   // expected to be nothing or a single pointer (typically a MMO or a symbol).
244   // We work to optimize this common case by storing it inline here rather than
245   // requiring a separate allocation, but we fall back to an allocation when
246   // multiple pointers are needed.
247   PointerSumType<ExtraInfoInlineKinds,
248                  PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
249                  PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
250                  PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
251                  PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
252       Info;
253 
254   DebugLoc DbgLoc; // Source line information.
255 
256   /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
257   /// defined by this instruction.
258   unsigned DebugInstrNum;
259 
260   // Intrusive list support
261   friend struct ilist_traits<MachineInstr>;
262   friend struct ilist_callback_traits<MachineBasicBlock>;
263   void setParent(MachineBasicBlock *P) { Parent = P; }
264 
265   /// This constructor creates a copy of the given
266   /// MachineInstr in the given MachineFunction.
267   MachineInstr(MachineFunction &, const MachineInstr &);
268 
269   /// This constructor create a MachineInstr and add the implicit operands.
270   /// It reserves space for number of operands specified by
271   /// MCInstrDesc.  An explicit DebugLoc is supplied.
272   MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL,
273                bool NoImp = false);
274 
275   // MachineInstrs are pool-allocated and owned by MachineFunction.
276   friend class MachineFunction;
277 
278   void
279   dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
280             SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
281 
282 public:
283   MachineInstr(const MachineInstr &) = delete;
284   MachineInstr &operator=(const MachineInstr &) = delete;
285   // Use MachineFunction::DeleteMachineInstr() instead.
286   ~MachineInstr() = delete;
287 
288   const MachineBasicBlock* getParent() const { return Parent; }
289   MachineBasicBlock* getParent() { return Parent; }
290 
291   /// Move the instruction before \p MovePos.
292   void moveBefore(MachineInstr *MovePos);
293 
294   /// Return the function that contains the basic block that this instruction
295   /// belongs to.
296   ///
297   /// Note: this is undefined behaviour if the instruction does not have a
298   /// parent.
299   const MachineFunction *getMF() const;
300   MachineFunction *getMF() {
301     return const_cast<MachineFunction *>(
302         static_cast<const MachineInstr *>(this)->getMF());
303   }
304 
305   /// Return the asm printer flags bitvector.
306   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
307 
308   /// Clear the AsmPrinter bitvector.
309   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
310 
311   /// Return whether an AsmPrinter flag is set.
312   bool getAsmPrinterFlag(CommentFlag Flag) const {
313     return AsmPrinterFlags & Flag;
314   }
315 
316   /// Set a flag for the AsmPrinter.
317   void setAsmPrinterFlag(uint8_t Flag) {
318     AsmPrinterFlags |= Flag;
319   }
320 
321   /// Clear specific AsmPrinter flags.
322   void clearAsmPrinterFlag(CommentFlag Flag) {
323     AsmPrinterFlags &= ~Flag;
324   }
325 
326   /// Return the MI flags bitvector.
327   uint16_t getFlags() const {
328     return Flags;
329   }
330 
331   /// Return whether an MI flag is set.
332   bool getFlag(MIFlag Flag) const {
333     return Flags & Flag;
334   }
335 
336   /// Set a MI flag.
337   void setFlag(MIFlag Flag) {
338     Flags |= (uint16_t)Flag;
339   }
340 
341   void setFlags(unsigned flags) {
342     // Filter out the automatically maintained flags.
343     unsigned Mask = BundledPred | BundledSucc;
344     Flags = (Flags & Mask) | (flags & ~Mask);
345   }
346 
347   /// clearFlag - Clear a MI flag.
348   void clearFlag(MIFlag Flag) {
349     Flags &= ~((uint16_t)Flag);
350   }
351 
352   /// Return true if MI is in a bundle (but not the first MI in a bundle).
353   ///
354   /// A bundle looks like this before it's finalized:
355   ///   ----------------
356   ///   |      MI      |
357   ///   ----------------
358   ///          |
359   ///   ----------------
360   ///   |      MI    * |
361   ///   ----------------
362   ///          |
363   ///   ----------------
364   ///   |      MI    * |
365   ///   ----------------
366   /// In this case, the first MI starts a bundle but is not inside a bundle, the
367   /// next 2 MIs are considered "inside" the bundle.
368   ///
369   /// After a bundle is finalized, it looks like this:
370   ///   ----------------
371   ///   |    Bundle    |
372   ///   ----------------
373   ///          |
374   ///   ----------------
375   ///   |      MI    * |
376   ///   ----------------
377   ///          |
378   ///   ----------------
379   ///   |      MI    * |
380   ///   ----------------
381   ///          |
382   ///   ----------------
383   ///   |      MI    * |
384   ///   ----------------
385   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
386   /// a bundle, but the next three MIs are.
387   bool isInsideBundle() const {
388     return getFlag(BundledPred);
389   }
390 
391   /// Return true if this instruction part of a bundle. This is true
392   /// if either itself or its following instruction is marked "InsideBundle".
393   bool isBundled() const {
394     return isBundledWithPred() || isBundledWithSucc();
395   }
396 
397   /// Return true if this instruction is part of a bundle, and it is not the
398   /// first instruction in the bundle.
399   bool isBundledWithPred() const { return getFlag(BundledPred); }
400 
401   /// Return true if this instruction is part of a bundle, and it is not the
402   /// last instruction in the bundle.
403   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
404 
405   /// Bundle this instruction with its predecessor. This can be an unbundled
406   /// instruction, or it can be the first instruction in a bundle.
407   void bundleWithPred();
408 
409   /// Bundle this instruction with its successor. This can be an unbundled
410   /// instruction, or it can be the last instruction in a bundle.
411   void bundleWithSucc();
412 
413   /// Break bundle above this instruction.
414   void unbundleFromPred();
415 
416   /// Break bundle below this instruction.
417   void unbundleFromSucc();
418 
419   /// Returns the debug location id of this MachineInstr.
420   const DebugLoc &getDebugLoc() const { return DbgLoc; }
421 
422   /// Return the operand containing the offset to be used if this DBG_VALUE
423   /// instruction is indirect; will be an invalid register if this value is
424   /// not indirect, and an immediate with value 0 otherwise.
425   const MachineOperand &getDebugOffset() const {
426     assert(isNonListDebugValue() && "not a DBG_VALUE");
427     return getOperand(1);
428   }
429   MachineOperand &getDebugOffset() {
430     assert(isNonListDebugValue() && "not a DBG_VALUE");
431     return getOperand(1);
432   }
433 
434   /// Return the operand for the debug variable referenced by
435   /// this DBG_VALUE instruction.
436   const MachineOperand &getDebugVariableOp() const;
437   MachineOperand &getDebugVariableOp();
438 
439   /// Return the debug variable referenced by
440   /// this DBG_VALUE instruction.
441   const DILocalVariable *getDebugVariable() const;
442 
443   /// Return the operand for the complex address expression referenced by
444   /// this DBG_VALUE instruction.
445   const MachineOperand &getDebugExpressionOp() const;
446   MachineOperand &getDebugExpressionOp();
447 
448   /// Return the complex address expression referenced by
449   /// this DBG_VALUE instruction.
450   const DIExpression *getDebugExpression() const;
451 
452   /// Return the debug label referenced by
453   /// this DBG_LABEL instruction.
454   const DILabel *getDebugLabel() const;
455 
456   /// Fetch the instruction number of this MachineInstr. If it does not have
457   /// one already, a new and unique number will be assigned.
458   unsigned getDebugInstrNum();
459 
460   /// Fetch instruction number of this MachineInstr -- but before it's inserted
461   /// into \p MF. Needed for transformations that create an instruction but
462   /// don't immediately insert them.
463   unsigned getDebugInstrNum(MachineFunction &MF);
464 
465   /// Examine the instruction number of this MachineInstr. May be zero if
466   /// it hasn't been assigned a number yet.
467   unsigned peekDebugInstrNum() const { return DebugInstrNum; }
468 
469   /// Set instruction number of this MachineInstr. Avoid using unless you're
470   /// deserializing this information.
471   void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
472 
473   /// Drop any variable location debugging information associated with this
474   /// instruction. Use when an instruction is modified in such a way that it no
475   /// longer defines the value it used to. Variable locations using that value
476   /// will be dropped.
477   void dropDebugNumber() { DebugInstrNum = 0; }
478 
479   /// Emit an error referring to the source location of this instruction.
480   /// This should only be used for inline assembly that is somehow
481   /// impossible to compile. Other errors should have been handled much
482   /// earlier.
483   ///
484   /// If this method returns, the caller should try to recover from the error.
485   void emitError(StringRef Msg) const;
486 
487   /// Returns the target instruction descriptor of this MachineInstr.
488   const MCInstrDesc &getDesc() const { return *MCID; }
489 
490   /// Returns the opcode of this MachineInstr.
491   unsigned getOpcode() const { return MCID->Opcode; }
492 
493   /// Retuns the total number of operands.
494   unsigned getNumOperands() const { return NumOperands; }
495 
496   /// Returns the total number of operands which are debug locations.
497   unsigned getNumDebugOperands() const {
498     return std::distance(debug_operands().begin(), debug_operands().end());
499   }
500 
501   const MachineOperand& getOperand(unsigned i) const {
502     assert(i < getNumOperands() && "getOperand() out of range!");
503     return Operands[i];
504   }
505   MachineOperand& getOperand(unsigned i) {
506     assert(i < getNumOperands() && "getOperand() out of range!");
507     return Operands[i];
508   }
509 
510   MachineOperand &getDebugOperand(unsigned Index) {
511     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
512     return *(debug_operands().begin() + Index);
513   }
514   const MachineOperand &getDebugOperand(unsigned Index) const {
515     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
516     return *(debug_operands().begin() + Index);
517   }
518 
519   SmallSet<Register, 4> getUsedDebugRegs() const {
520     assert(isDebugValue() && "not a DBG_VALUE*");
521     SmallSet<Register, 4> UsedRegs;
522     for (const auto &MO : debug_operands())
523       if (MO.isReg() && MO.getReg())
524         UsedRegs.insert(MO.getReg());
525     return UsedRegs;
526   }
527 
528   /// Returns whether this debug value has at least one debug operand with the
529   /// register \p Reg.
530   bool hasDebugOperandForReg(Register Reg) const {
531     return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
532       return Op.isReg() && Op.getReg() == Reg;
533     });
534   }
535 
536   /// Returns a range of all of the operands that correspond to a debug use of
537   /// \p Reg.
538   template <typename Operand, typename Instruction>
539   static iterator_range<
540       filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
541   getDebugOperandsForReg(Instruction *MI, Register Reg) {
542     std::function<bool(Operand & Op)> OpUsesReg(
543         [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
544     return make_filter_range(MI->debug_operands(), OpUsesReg);
545   }
546   iterator_range<filter_iterator<const MachineOperand *,
547                                  std::function<bool(const MachineOperand &Op)>>>
548   getDebugOperandsForReg(Register Reg) const {
549     return MachineInstr::getDebugOperandsForReg<const MachineOperand,
550                                                 const MachineInstr>(this, Reg);
551   }
552   iterator_range<filter_iterator<MachineOperand *,
553                                  std::function<bool(MachineOperand &Op)>>>
554   getDebugOperandsForReg(Register Reg) {
555     return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
556         this, Reg);
557   }
558 
559   bool isDebugOperand(const MachineOperand *Op) const {
560     return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
561   }
562 
563   unsigned getDebugOperandIndex(const MachineOperand *Op) const {
564     assert(isDebugOperand(Op) && "Expected a debug operand.");
565     return std::distance(adl_begin(debug_operands()), Op);
566   }
567 
568   /// Returns the total number of definitions.
569   unsigned getNumDefs() const {
570     return getNumExplicitDefs() + MCID->getNumImplicitDefs();
571   }
572 
573   /// Returns true if the instruction has implicit definition.
574   bool hasImplicitDef() const {
575     for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
576       I != E; ++I) {
577       const MachineOperand &MO = getOperand(I);
578       if (MO.isDef() && MO.isImplicit())
579         return true;
580     }
581     return false;
582   }
583 
584   /// Returns the implicit operands number.
585   unsigned getNumImplicitOperands() const {
586     return getNumOperands() - getNumExplicitOperands();
587   }
588 
589   /// Return true if operand \p OpIdx is a subregister index.
590   bool isOperandSubregIdx(unsigned OpIdx) const {
591     assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
592            "Expected MO_Immediate operand type.");
593     if (isExtractSubreg() && OpIdx == 2)
594       return true;
595     if (isInsertSubreg() && OpIdx == 3)
596       return true;
597     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
598       return true;
599     if (isSubregToReg() && OpIdx == 3)
600       return true;
601     return false;
602   }
603 
604   /// Returns the number of non-implicit operands.
605   unsigned getNumExplicitOperands() const;
606 
607   /// Returns the number of non-implicit definitions.
608   unsigned getNumExplicitDefs() const;
609 
610   /// iterator/begin/end - Iterate over all operands of a machine instruction.
611   using mop_iterator = MachineOperand *;
612   using const_mop_iterator = const MachineOperand *;
613 
614   mop_iterator operands_begin() { return Operands; }
615   mop_iterator operands_end() { return Operands + NumOperands; }
616 
617   const_mop_iterator operands_begin() const { return Operands; }
618   const_mop_iterator operands_end() const { return Operands + NumOperands; }
619 
620   iterator_range<mop_iterator> operands() {
621     return make_range(operands_begin(), operands_end());
622   }
623   iterator_range<const_mop_iterator> operands() const {
624     return make_range(operands_begin(), operands_end());
625   }
626   iterator_range<mop_iterator> explicit_operands() {
627     return make_range(operands_begin(),
628                       operands_begin() + getNumExplicitOperands());
629   }
630   iterator_range<const_mop_iterator> explicit_operands() const {
631     return make_range(operands_begin(),
632                       operands_begin() + getNumExplicitOperands());
633   }
634   iterator_range<mop_iterator> implicit_operands() {
635     return make_range(explicit_operands().end(), operands_end());
636   }
637   iterator_range<const_mop_iterator> implicit_operands() const {
638     return make_range(explicit_operands().end(), operands_end());
639   }
640   /// Returns a range over all operands that are used to determine the variable
641   /// location for this DBG_VALUE instruction.
642   iterator_range<mop_iterator> debug_operands() {
643     assert(isDebugValue() && "Must be a debug value instruction.");
644     return isDebugValueList()
645                ? make_range(operands_begin() + 2, operands_end())
646                : make_range(operands_begin(), operands_begin() + 1);
647   }
648   /// \copydoc debug_operands()
649   iterator_range<const_mop_iterator> debug_operands() const {
650     assert(isDebugValue() && "Must be a debug value instruction.");
651     return isDebugValueList()
652                ? make_range(operands_begin() + 2, operands_end())
653                : make_range(operands_begin(), operands_begin() + 1);
654   }
655   /// Returns a range over all explicit operands that are register definitions.
656   /// Implicit definition are not included!
657   iterator_range<mop_iterator> defs() {
658     return make_range(operands_begin(),
659                       operands_begin() + getNumExplicitDefs());
660   }
661   /// \copydoc defs()
662   iterator_range<const_mop_iterator> defs() const {
663     return make_range(operands_begin(),
664                       operands_begin() + getNumExplicitDefs());
665   }
666   /// Returns a range that includes all operands that are register uses.
667   /// This may include unrelated operands which are not register uses.
668   iterator_range<mop_iterator> uses() {
669     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
670   }
671   /// \copydoc uses()
672   iterator_range<const_mop_iterator> uses() const {
673     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
674   }
675   iterator_range<mop_iterator> explicit_uses() {
676     return make_range(operands_begin() + getNumExplicitDefs(),
677                       operands_begin() + getNumExplicitOperands());
678   }
679   iterator_range<const_mop_iterator> explicit_uses() const {
680     return make_range(operands_begin() + getNumExplicitDefs(),
681                       operands_begin() + getNumExplicitOperands());
682   }
683 
684   /// Returns the number of the operand iterator \p I points to.
685   unsigned getOperandNo(const_mop_iterator I) const {
686     return I - operands_begin();
687   }
688 
689   /// Access to memory operands of the instruction. If there are none, that does
690   /// not imply anything about whether the function accesses memory. Instead,
691   /// the caller must behave conservatively.
692   ArrayRef<MachineMemOperand *> memoperands() const {
693     if (!Info)
694       return {};
695 
696     if (Info.is<EIIK_MMO>())
697       return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
698 
699     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
700       return EI->getMMOs();
701 
702     return {};
703   }
704 
705   /// Access to memory operands of the instruction.
706   ///
707   /// If `memoperands_begin() == memoperands_end()`, that does not imply
708   /// anything about whether the function accesses memory. Instead, the caller
709   /// must behave conservatively.
710   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
711 
712   /// Access to memory operands of the instruction.
713   ///
714   /// If `memoperands_begin() == memoperands_end()`, that does not imply
715   /// anything about whether the function accesses memory. Instead, the caller
716   /// must behave conservatively.
717   mmo_iterator memoperands_end() const { return memoperands().end(); }
718 
719   /// Return true if we don't have any memory operands which described the
720   /// memory access done by this instruction.  If this is true, calling code
721   /// must be conservative.
722   bool memoperands_empty() const { return memoperands().empty(); }
723 
724   /// Return true if this instruction has exactly one MachineMemOperand.
725   bool hasOneMemOperand() const { return memoperands().size() == 1; }
726 
727   /// Return the number of memory operands.
728   unsigned getNumMemOperands() const { return memoperands().size(); }
729 
730   /// Helper to extract a pre-instruction symbol if one has been added.
731   MCSymbol *getPreInstrSymbol() const {
732     if (!Info)
733       return nullptr;
734     if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
735       return S;
736     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
737       return EI->getPreInstrSymbol();
738 
739     return nullptr;
740   }
741 
742   /// Helper to extract a post-instruction symbol if one has been added.
743   MCSymbol *getPostInstrSymbol() const {
744     if (!Info)
745       return nullptr;
746     if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
747       return S;
748     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
749       return EI->getPostInstrSymbol();
750 
751     return nullptr;
752   }
753 
754   /// Helper to extract a heap alloc marker if one has been added.
755   MDNode *getHeapAllocMarker() const {
756     if (!Info)
757       return nullptr;
758     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
759       return EI->getHeapAllocMarker();
760 
761     return nullptr;
762   }
763 
764   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
765   /// queries but they are bundle aware.
766 
767   enum QueryType {
768     IgnoreBundle,    // Ignore bundles
769     AnyInBundle,     // Return true if any instruction in bundle has property
770     AllInBundle      // Return true if all instructions in bundle have property
771   };
772 
773   /// Return true if the instruction (or in the case of a bundle,
774   /// the instructions inside the bundle) has the specified property.
775   /// The first argument is the property being queried.
776   /// The second argument indicates whether the query should look inside
777   /// instruction bundles.
778   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
779     assert(MCFlag < 64 &&
780            "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
781     // Inline the fast path for unbundled or bundle-internal instructions.
782     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
783       return getDesc().getFlags() & (1ULL << MCFlag);
784 
785     // If this is the first instruction in a bundle, take the slow path.
786     return hasPropertyInBundle(1ULL << MCFlag, Type);
787   }
788 
789   /// Return true if this is an instruction that should go through the usual
790   /// legalization steps.
791   bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
792     return hasProperty(MCID::PreISelOpcode, Type);
793   }
794 
795   /// Return true if this instruction can have a variable number of operands.
796   /// In this case, the variable operands will be after the normal
797   /// operands but before the implicit definitions and uses (if any are
798   /// present).
799   bool isVariadic(QueryType Type = IgnoreBundle) const {
800     return hasProperty(MCID::Variadic, Type);
801   }
802 
803   /// Set if this instruction has an optional definition, e.g.
804   /// ARM instructions which can set condition code if 's' bit is set.
805   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
806     return hasProperty(MCID::HasOptionalDef, Type);
807   }
808 
809   /// Return true if this is a pseudo instruction that doesn't
810   /// correspond to a real machine instruction.
811   bool isPseudo(QueryType Type = IgnoreBundle) const {
812     return hasProperty(MCID::Pseudo, Type);
813   }
814 
815   /// Return true if this instruction doesn't produce any output in the form of
816   /// executable instructions.
817   bool isMetaInstruction(QueryType Type = IgnoreBundle) const {
818     return hasProperty(MCID::Meta, Type);
819   }
820 
821   bool isReturn(QueryType Type = AnyInBundle) const {
822     return hasProperty(MCID::Return, Type);
823   }
824 
825   /// Return true if this is an instruction that marks the end of an EH scope,
826   /// i.e., a catchpad or a cleanuppad instruction.
827   bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
828     return hasProperty(MCID::EHScopeReturn, Type);
829   }
830 
831   bool isCall(QueryType Type = AnyInBundle) const {
832     return hasProperty(MCID::Call, Type);
833   }
834 
835   /// Return true if this is a call instruction that may have an associated
836   /// call site entry in the debug info.
837   bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
838   /// Return true if copying, moving, or erasing this instruction requires
839   /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
840   /// \ref eraseCallSiteInfo).
841   bool shouldUpdateCallSiteInfo() const;
842 
843   /// Returns true if the specified instruction stops control flow
844   /// from executing the instruction immediately following it.  Examples include
845   /// unconditional branches and return instructions.
846   bool isBarrier(QueryType Type = AnyInBundle) const {
847     return hasProperty(MCID::Barrier, Type);
848   }
849 
850   /// Returns true if this instruction part of the terminator for a basic block.
851   /// Typically this is things like return and branch instructions.
852   ///
853   /// Various passes use this to insert code into the bottom of a basic block,
854   /// but before control flow occurs.
855   bool isTerminator(QueryType Type = AnyInBundle) const {
856     return hasProperty(MCID::Terminator, Type);
857   }
858 
859   /// Returns true if this is a conditional, unconditional, or indirect branch.
860   /// Predicates below can be used to discriminate between
861   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
862   /// get more information.
863   bool isBranch(QueryType Type = AnyInBundle) const {
864     return hasProperty(MCID::Branch, Type);
865   }
866 
867   /// Return true if this is an indirect branch, such as a
868   /// branch through a register.
869   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
870     return hasProperty(MCID::IndirectBranch, Type);
871   }
872 
873   /// Return true if this is a branch which may fall
874   /// through to the next instruction or may transfer control flow to some other
875   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
876   /// information about this branch.
877   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
878     return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
879   }
880 
881   /// Return true if this is a branch which always
882   /// transfers control flow to some other block.  The
883   /// TargetInstrInfo::analyzeBranch method can be used to get more information
884   /// about this branch.
885   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
886     return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
887   }
888 
889   /// Return true if this instruction has a predicate operand that
890   /// controls execution.  It may be set to 'always', or may be set to other
891   /// values.   There are various methods in TargetInstrInfo that can be used to
892   /// control and modify the predicate in this instruction.
893   bool isPredicable(QueryType Type = AllInBundle) const {
894     // If it's a bundle than all bundled instructions must be predicable for this
895     // to return true.
896     return hasProperty(MCID::Predicable, Type);
897   }
898 
899   /// Return true if this instruction is a comparison.
900   bool isCompare(QueryType Type = IgnoreBundle) const {
901     return hasProperty(MCID::Compare, Type);
902   }
903 
904   /// Return true if this instruction is a move immediate
905   /// (including conditional moves) instruction.
906   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
907     return hasProperty(MCID::MoveImm, Type);
908   }
909 
910   /// Return true if this instruction is a register move.
911   /// (including moving values from subreg to reg)
912   bool isMoveReg(QueryType Type = IgnoreBundle) const {
913     return hasProperty(MCID::MoveReg, Type);
914   }
915 
916   /// Return true if this instruction is a bitcast instruction.
917   bool isBitcast(QueryType Type = IgnoreBundle) const {
918     return hasProperty(MCID::Bitcast, Type);
919   }
920 
921   /// Return true if this instruction is a select instruction.
922   bool isSelect(QueryType Type = IgnoreBundle) const {
923     return hasProperty(MCID::Select, Type);
924   }
925 
926   /// Return true if this instruction cannot be safely duplicated.
927   /// For example, if the instruction has a unique labels attached
928   /// to it, duplicating it would cause multiple definition errors.
929   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
930     return hasProperty(MCID::NotDuplicable, Type);
931   }
932 
933   /// Return true if this instruction is convergent.
934   /// Convergent instructions can not be made control-dependent on any
935   /// additional values.
936   bool isConvergent(QueryType Type = AnyInBundle) const {
937     if (isInlineAsm()) {
938       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
939       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
940         return true;
941     }
942     return hasProperty(MCID::Convergent, Type);
943   }
944 
945   /// Returns true if the specified instruction has a delay slot
946   /// which must be filled by the code generator.
947   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
948     return hasProperty(MCID::DelaySlot, Type);
949   }
950 
951   /// Return true for instructions that can be folded as
952   /// memory operands in other instructions. The most common use for this
953   /// is instructions that are simple loads from memory that don't modify
954   /// the loaded value in any way, but it can also be used for instructions
955   /// that can be expressed as constant-pool loads, such as V_SETALLONES
956   /// on x86, to allow them to be folded when it is beneficial.
957   /// This should only be set on instructions that return a value in their
958   /// only virtual register definition.
959   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
960     return hasProperty(MCID::FoldableAsLoad, Type);
961   }
962 
963   /// Return true if this instruction behaves
964   /// the same way as the generic REG_SEQUENCE instructions.
965   /// E.g., on ARM,
966   /// dX VMOVDRR rY, rZ
967   /// is equivalent to
968   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
969   ///
970   /// Note that for the optimizers to be able to take advantage of
971   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
972   /// override accordingly.
973   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
974     return hasProperty(MCID::RegSequence, Type);
975   }
976 
977   /// Return true if this instruction behaves
978   /// the same way as the generic EXTRACT_SUBREG instructions.
979   /// E.g., on ARM,
980   /// rX, rY VMOVRRD dZ
981   /// is equivalent to two EXTRACT_SUBREG:
982   /// rX = EXTRACT_SUBREG dZ, ssub_0
983   /// rY = EXTRACT_SUBREG dZ, ssub_1
984   ///
985   /// Note that for the optimizers to be able to take advantage of
986   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
987   /// override accordingly.
988   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
989     return hasProperty(MCID::ExtractSubreg, Type);
990   }
991 
992   /// Return true if this instruction behaves
993   /// the same way as the generic INSERT_SUBREG instructions.
994   /// E.g., on ARM,
995   /// dX = VSETLNi32 dY, rZ, Imm
996   /// is equivalent to a INSERT_SUBREG:
997   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
998   ///
999   /// Note that for the optimizers to be able to take advantage of
1000   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
1001   /// override accordingly.
1002   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
1003     return hasProperty(MCID::InsertSubreg, Type);
1004   }
1005 
1006   //===--------------------------------------------------------------------===//
1007   // Side Effect Analysis
1008   //===--------------------------------------------------------------------===//
1009 
1010   /// Return true if this instruction could possibly read memory.
1011   /// Instructions with this flag set are not necessarily simple load
1012   /// instructions, they may load a value and modify it, for example.
1013   bool mayLoad(QueryType Type = AnyInBundle) const {
1014     if (isInlineAsm()) {
1015       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1016       if (ExtraInfo & InlineAsm::Extra_MayLoad)
1017         return true;
1018     }
1019     return hasProperty(MCID::MayLoad, Type);
1020   }
1021 
1022   /// Return true if this instruction could possibly modify memory.
1023   /// Instructions with this flag set are not necessarily simple store
1024   /// instructions, they may store a modified value based on their operands, or
1025   /// may not actually modify anything, for example.
1026   bool mayStore(QueryType Type = AnyInBundle) const {
1027     if (isInlineAsm()) {
1028       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1029       if (ExtraInfo & InlineAsm::Extra_MayStore)
1030         return true;
1031     }
1032     return hasProperty(MCID::MayStore, Type);
1033   }
1034 
1035   /// Return true if this instruction could possibly read or modify memory.
1036   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
1037     return mayLoad(Type) || mayStore(Type);
1038   }
1039 
1040   /// Return true if this instruction could possibly raise a floating-point
1041   /// exception.  This is the case if the instruction is a floating-point
1042   /// instruction that can in principle raise an exception, as indicated
1043   /// by the MCID::MayRaiseFPException property, *and* at the same time,
1044   /// the instruction is used in a context where we expect floating-point
1045   /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
1046   bool mayRaiseFPException() const {
1047     return hasProperty(MCID::MayRaiseFPException) &&
1048            !getFlag(MachineInstr::MIFlag::NoFPExcept);
1049   }
1050 
1051   //===--------------------------------------------------------------------===//
1052   // Flags that indicate whether an instruction can be modified by a method.
1053   //===--------------------------------------------------------------------===//
1054 
1055   /// Return true if this may be a 2- or 3-address
1056   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1057   /// result if Y and Z are exchanged.  If this flag is set, then the
1058   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1059   /// instruction.
1060   ///
1061   /// Note that this flag may be set on instructions that are only commutable
1062   /// sometimes.  In these cases, the call to commuteInstruction will fail.
1063   /// Also note that some instructions require non-trivial modification to
1064   /// commute them.
1065   bool isCommutable(QueryType Type = IgnoreBundle) const {
1066     return hasProperty(MCID::Commutable, Type);
1067   }
1068 
1069   /// Return true if this is a 2-address instruction
1070   /// which can be changed into a 3-address instruction if needed.  Doing this
1071   /// transformation can be profitable in the register allocator, because it
1072   /// means that the instruction can use a 2-address form if possible, but
1073   /// degrade into a less efficient form if the source and dest register cannot
1074   /// be assigned to the same register.  For example, this allows the x86
1075   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1076   /// is the same speed as the shift but has bigger code size.
1077   ///
1078   /// If this returns true, then the target must implement the
1079   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1080   /// is allowed to fail if the transformation isn't valid for this specific
1081   /// instruction (e.g. shl reg, 4 on x86).
1082   ///
1083   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
1084     return hasProperty(MCID::ConvertibleTo3Addr, Type);
1085   }
1086 
1087   /// Return true if this instruction requires
1088   /// custom insertion support when the DAG scheduler is inserting it into a
1089   /// machine basic block.  If this is true for the instruction, it basically
1090   /// means that it is a pseudo instruction used at SelectionDAG time that is
1091   /// expanded out into magic code by the target when MachineInstrs are formed.
1092   ///
1093   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1094   /// is used to insert this into the MachineBasicBlock.
1095   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
1096     return hasProperty(MCID::UsesCustomInserter, Type);
1097   }
1098 
1099   /// Return true if this instruction requires *adjustment*
1100   /// after instruction selection by calling a target hook. For example, this
1101   /// can be used to fill in ARM 's' optional operand depending on whether
1102   /// the conditional flag register is used.
1103   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
1104     return hasProperty(MCID::HasPostISelHook, Type);
1105   }
1106 
1107   /// Returns true if this instruction is a candidate for remat.
1108   /// This flag is deprecated, please don't use it anymore.  If this
1109   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
1110   /// verify the instruction is really rematable.
1111   bool isRematerializable(QueryType Type = AllInBundle) const {
1112     // It's only possible to re-mat a bundle if all bundled instructions are
1113     // re-materializable.
1114     return hasProperty(MCID::Rematerializable, Type);
1115   }
1116 
1117   /// Returns true if this instruction has the same cost (or less) than a move
1118   /// instruction. This is useful during certain types of optimizations
1119   /// (e.g., remat during two-address conversion or machine licm)
1120   /// where we would like to remat or hoist the instruction, but not if it costs
1121   /// more than moving the instruction into the appropriate register. Note, we
1122   /// are not marking copies from and to the same register class with this flag.
1123   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
1124     // Only returns true for a bundle if all bundled instructions are cheap.
1125     return hasProperty(MCID::CheapAsAMove, Type);
1126   }
1127 
1128   /// Returns true if this instruction source operands
1129   /// have special register allocation requirements that are not captured by the
1130   /// operand register classes. e.g. ARM::STRD's two source registers must be an
1131   /// even / odd pair, ARM::STM registers have to be in ascending order.
1132   /// Post-register allocation passes should not attempt to change allocations
1133   /// for sources of instructions with this flag.
1134   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
1135     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
1136   }
1137 
1138   /// Returns true if this instruction def operands
1139   /// have special register allocation requirements that are not captured by the
1140   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1141   /// even / odd pair, ARM::LDM registers have to be in ascending order.
1142   /// Post-register allocation passes should not attempt to change allocations
1143   /// for definitions of instructions with this flag.
1144   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1145     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
1146   }
1147 
1148   enum MICheckType {
1149     CheckDefs,      // Check all operands for equality
1150     CheckKillDead,  // Check all operands including kill / dead markers
1151     IgnoreDefs,     // Ignore all definitions
1152     IgnoreVRegDefs  // Ignore virtual register definitions
1153   };
1154 
1155   /// Return true if this instruction is identical to \p Other.
1156   /// Two instructions are identical if they have the same opcode and all their
1157   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1158   /// Note that this means liveness related flags (dead, undef, kill) do not
1159   /// affect the notion of identical.
1160   bool isIdenticalTo(const MachineInstr &Other,
1161                      MICheckType Check = CheckDefs) const;
1162 
1163   /// Unlink 'this' from the containing basic block, and return it without
1164   /// deleting it.
1165   ///
1166   /// This function can not be used on bundled instructions, use
1167   /// removeFromBundle() to remove individual instructions from a bundle.
1168   MachineInstr *removeFromParent();
1169 
1170   /// Unlink this instruction from its basic block and return it without
1171   /// deleting it.
1172   ///
1173   /// If the instruction is part of a bundle, the other instructions in the
1174   /// bundle remain bundled.
1175   MachineInstr *removeFromBundle();
1176 
1177   /// Unlink 'this' from the containing basic block and delete it.
1178   ///
1179   /// If this instruction is the header of a bundle, the whole bundle is erased.
1180   /// This function can not be used for instructions inside a bundle, use
1181   /// eraseFromBundle() to erase individual bundled instructions.
1182   void eraseFromParent();
1183 
1184   /// Unlink 'this' form its basic block and delete it.
1185   ///
1186   /// If the instruction is part of a bundle, the other instructions in the
1187   /// bundle remain bundled.
1188   void eraseFromBundle();
1189 
1190   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1191   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1192   bool isAnnotationLabel() const {
1193     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1194   }
1195 
1196   /// Returns true if the MachineInstr represents a label.
1197   bool isLabel() const {
1198     return isEHLabel() || isGCLabel() || isAnnotationLabel();
1199   }
1200 
1201   bool isCFIInstruction() const {
1202     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1203   }
1204 
1205   bool isPseudoProbe() const {
1206     return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1207   }
1208 
1209   // True if the instruction represents a position in the function.
1210   bool isPosition() const { return isLabel() || isCFIInstruction(); }
1211 
1212   bool isNonListDebugValue() const {
1213     return getOpcode() == TargetOpcode::DBG_VALUE;
1214   }
1215   bool isDebugValueList() const {
1216     return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
1217   }
1218   bool isDebugValue() const {
1219     return isNonListDebugValue() || isDebugValueList();
1220   }
1221   bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1222   bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1223   bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
1224   bool isDebugInstr() const {
1225     return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
1226   }
1227   bool isDebugOrPseudoInstr() const {
1228     return isDebugInstr() || isPseudoProbe();
1229   }
1230 
1231   bool isDebugOffsetImm() const {
1232     return isNonListDebugValue() && getDebugOffset().isImm();
1233   }
1234 
1235   /// A DBG_VALUE is indirect iff the location operand is a register and
1236   /// the offset operand is an immediate.
1237   bool isIndirectDebugValue() const {
1238     return isDebugOffsetImm() && getDebugOperand(0).isReg();
1239   }
1240 
1241   /// A DBG_VALUE is an entry value iff its debug expression contains the
1242   /// DW_OP_LLVM_entry_value operation.
1243   bool isDebugEntryValue() const;
1244 
1245   /// Return true if the instruction is a debug value which describes a part of
1246   /// a variable as unavailable.
1247   bool isUndefDebugValue() const {
1248     if (!isDebugValue())
1249       return false;
1250     // If any $noreg locations are given, this DV is undef.
1251     for (const MachineOperand &Op : debug_operands())
1252       if (Op.isReg() && !Op.getReg().isValid())
1253         return true;
1254     return false;
1255   }
1256 
1257   bool isPHI() const {
1258     return getOpcode() == TargetOpcode::PHI ||
1259            getOpcode() == TargetOpcode::G_PHI;
1260   }
1261   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1262   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1263   bool isInlineAsm() const {
1264     return getOpcode() == TargetOpcode::INLINEASM ||
1265            getOpcode() == TargetOpcode::INLINEASM_BR;
1266   }
1267 
1268   /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1269   /// specific, be attached to a generic MachineInstr.
1270   bool isMSInlineAsm() const {
1271     return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1272   }
1273 
1274   bool isStackAligningInlineAsm() const;
1275   InlineAsm::AsmDialect getInlineAsmDialect() const;
1276 
1277   bool isInsertSubreg() const {
1278     return getOpcode() == TargetOpcode::INSERT_SUBREG;
1279   }
1280 
1281   bool isSubregToReg() const {
1282     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1283   }
1284 
1285   bool isRegSequence() const {
1286     return getOpcode() == TargetOpcode::REG_SEQUENCE;
1287   }
1288 
1289   bool isBundle() const {
1290     return getOpcode() == TargetOpcode::BUNDLE;
1291   }
1292 
1293   bool isCopy() const {
1294     return getOpcode() == TargetOpcode::COPY;
1295   }
1296 
1297   bool isFullCopy() const {
1298     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1299   }
1300 
1301   bool isExtractSubreg() const {
1302     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1303   }
1304 
1305   /// Return true if the instruction behaves like a copy.
1306   /// This does not include native copy instructions.
1307   bool isCopyLike() const {
1308     return isCopy() || isSubregToReg();
1309   }
1310 
1311   /// Return true is the instruction is an identity copy.
1312   bool isIdentityCopy() const {
1313     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1314       getOperand(0).getSubReg() == getOperand(1).getSubReg();
1315   }
1316 
1317   /// Return true if this is a transient instruction that is either very likely
1318   /// to be eliminated during register allocation (such as copy-like
1319   /// instructions), or if this instruction doesn't have an execution-time cost.
1320   bool isTransient() const {
1321     switch (getOpcode()) {
1322     default:
1323       return isMetaInstruction();
1324     // Copy-like instructions are usually eliminated during register allocation.
1325     case TargetOpcode::PHI:
1326     case TargetOpcode::G_PHI:
1327     case TargetOpcode::COPY:
1328     case TargetOpcode::INSERT_SUBREG:
1329     case TargetOpcode::SUBREG_TO_REG:
1330     case TargetOpcode::REG_SEQUENCE:
1331       return true;
1332     }
1333   }
1334 
1335   /// Return the number of instructions inside the MI bundle, excluding the
1336   /// bundle header.
1337   ///
1338   /// This is the number of instructions that MachineBasicBlock::iterator
1339   /// skips, 0 for unbundled instructions.
1340   unsigned getBundleSize() const;
1341 
1342   /// Return true if the MachineInstr reads the specified register.
1343   /// If TargetRegisterInfo is passed, then it also checks if there
1344   /// is a read of a super-register.
1345   /// This does not count partial redefines of virtual registers as reads:
1346   ///   %reg1024:6 = OP.
1347   bool readsRegister(Register Reg,
1348                      const TargetRegisterInfo *TRI = nullptr) const {
1349     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1350   }
1351 
1352   /// Return true if the MachineInstr reads the specified virtual register.
1353   /// Take into account that a partial define is a
1354   /// read-modify-write operation.
1355   bool readsVirtualRegister(Register Reg) const {
1356     return readsWritesVirtualRegister(Reg).first;
1357   }
1358 
1359   /// Return a pair of bools (reads, writes) indicating if this instruction
1360   /// reads or writes Reg. This also considers partial defines.
1361   /// If Ops is not null, all operand indices for Reg are added.
1362   std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1363                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1364 
1365   /// Return true if the MachineInstr kills the specified register.
1366   /// If TargetRegisterInfo is passed, then it also checks if there is
1367   /// a kill of a super-register.
1368   bool killsRegister(Register Reg,
1369                      const TargetRegisterInfo *TRI = nullptr) const {
1370     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1371   }
1372 
1373   /// Return true if the MachineInstr fully defines the specified register.
1374   /// If TargetRegisterInfo is passed, then it also checks
1375   /// if there is a def of a super-register.
1376   /// NOTE: It's ignoring subreg indices on virtual registers.
1377   bool definesRegister(Register Reg,
1378                        const TargetRegisterInfo *TRI = nullptr) const {
1379     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1380   }
1381 
1382   /// Return true if the MachineInstr modifies (fully define or partially
1383   /// define) the specified register.
1384   /// NOTE: It's ignoring subreg indices on virtual registers.
1385   bool modifiesRegister(Register Reg,
1386                         const TargetRegisterInfo *TRI = nullptr) const {
1387     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1388   }
1389 
1390   /// Returns true if the register is dead in this machine instruction.
1391   /// If TargetRegisterInfo is passed, then it also checks
1392   /// if there is a dead def of a super-register.
1393   bool registerDefIsDead(Register Reg,
1394                          const TargetRegisterInfo *TRI = nullptr) const {
1395     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1396   }
1397 
1398   /// Returns true if the MachineInstr has an implicit-use operand of exactly
1399   /// the given register (not considering sub/super-registers).
1400   bool hasRegisterImplicitUseOperand(Register Reg) const;
1401 
1402   /// Returns the operand index that is a use of the specific register or -1
1403   /// if it is not found. It further tightens the search criteria to a use
1404   /// that kills the register if isKill is true.
1405   int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1406                                 const TargetRegisterInfo *TRI = nullptr) const;
1407 
1408   /// Wrapper for findRegisterUseOperandIdx, it returns
1409   /// a pointer to the MachineOperand rather than an index.
1410   MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1411                                       const TargetRegisterInfo *TRI = nullptr) {
1412     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1413     return (Idx == -1) ? nullptr : &getOperand(Idx);
1414   }
1415 
1416   const MachineOperand *findRegisterUseOperand(
1417     Register Reg, bool isKill = false,
1418     const TargetRegisterInfo *TRI = nullptr) const {
1419     return const_cast<MachineInstr *>(this)->
1420       findRegisterUseOperand(Reg, isKill, TRI);
1421   }
1422 
1423   /// Returns the operand index that is a def of the specified register or
1424   /// -1 if it is not found. If isDead is true, defs that are not dead are
1425   /// skipped. If Overlap is true, then it also looks for defs that merely
1426   /// overlap the specified register. If TargetRegisterInfo is non-null,
1427   /// then it also checks if there is a def of a super-register.
1428   /// This may also return a register mask operand when Overlap is true.
1429   int findRegisterDefOperandIdx(Register Reg,
1430                                 bool isDead = false, bool Overlap = false,
1431                                 const TargetRegisterInfo *TRI = nullptr) const;
1432 
1433   /// Wrapper for findRegisterDefOperandIdx, it returns
1434   /// a pointer to the MachineOperand rather than an index.
1435   MachineOperand *
1436   findRegisterDefOperand(Register Reg, bool isDead = false,
1437                          bool Overlap = false,
1438                          const TargetRegisterInfo *TRI = nullptr) {
1439     int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1440     return (Idx == -1) ? nullptr : &getOperand(Idx);
1441   }
1442 
1443   const MachineOperand *
1444   findRegisterDefOperand(Register Reg, bool isDead = false,
1445                          bool Overlap = false,
1446                          const TargetRegisterInfo *TRI = nullptr) const {
1447     return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1448         Reg, isDead, Overlap, TRI);
1449   }
1450 
1451   /// Find the index of the first operand in the
1452   /// operand list that is used to represent the predicate. It returns -1 if
1453   /// none is found.
1454   int findFirstPredOperandIdx() const;
1455 
1456   /// Find the index of the flag word operand that
1457   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
1458   /// getOperand(OpIdx) does not belong to an inline asm operand group.
1459   ///
1460   /// If GroupNo is not NULL, it will receive the number of the operand group
1461   /// containing OpIdx.
1462   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1463 
1464   /// Compute the static register class constraint for operand OpIdx.
1465   /// For normal instructions, this is derived from the MCInstrDesc.
1466   /// For inline assembly it is derived from the flag words.
1467   ///
1468   /// Returns NULL if the static register class constraint cannot be
1469   /// determined.
1470   const TargetRegisterClass*
1471   getRegClassConstraint(unsigned OpIdx,
1472                         const TargetInstrInfo *TII,
1473                         const TargetRegisterInfo *TRI) const;
1474 
1475   /// Applies the constraints (def/use) implied by this MI on \p Reg to
1476   /// the given \p CurRC.
1477   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1478   /// instructions inside the bundle will be taken into account. In other words,
1479   /// this method accumulates all the constraints of the operand of this MI and
1480   /// the related bundle if MI is a bundle or inside a bundle.
1481   ///
1482   /// Returns the register class that satisfies both \p CurRC and the
1483   /// constraints set by MI. Returns NULL if such a register class does not
1484   /// exist.
1485   ///
1486   /// \pre CurRC must not be NULL.
1487   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1488       Register Reg, const TargetRegisterClass *CurRC,
1489       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1490       bool ExploreBundle = false) const;
1491 
1492   /// Applies the constraints (def/use) implied by the \p OpIdx operand
1493   /// to the given \p CurRC.
1494   ///
1495   /// Returns the register class that satisfies both \p CurRC and the
1496   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1497   /// does not exist.
1498   ///
1499   /// \pre CurRC must not be NULL.
1500   /// \pre The operand at \p OpIdx must be a register.
1501   const TargetRegisterClass *
1502   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1503                               const TargetInstrInfo *TII,
1504                               const TargetRegisterInfo *TRI) const;
1505 
1506   /// Add a tie between the register operands at DefIdx and UseIdx.
1507   /// The tie will cause the register allocator to ensure that the two
1508   /// operands are assigned the same physical register.
1509   ///
1510   /// Tied operands are managed automatically for explicit operands in the
1511   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1512   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1513 
1514   /// Given the index of a tied register operand, find the
1515   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1516   /// index of the tied operand which must exist.
1517   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1518 
1519   /// Given the index of a register def operand,
1520   /// check if the register def is tied to a source operand, due to either
1521   /// two-address elimination or inline assembly constraints. Returns the
1522   /// first tied use operand index by reference if UseOpIdx is not null.
1523   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1524                              unsigned *UseOpIdx = nullptr) const {
1525     const MachineOperand &MO = getOperand(DefOpIdx);
1526     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1527       return false;
1528     if (UseOpIdx)
1529       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1530     return true;
1531   }
1532 
1533   /// Return true if the use operand of the specified index is tied to a def
1534   /// operand. It also returns the def operand index by reference if DefOpIdx
1535   /// is not null.
1536   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1537                              unsigned *DefOpIdx = nullptr) const {
1538     const MachineOperand &MO = getOperand(UseOpIdx);
1539     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1540       return false;
1541     if (DefOpIdx)
1542       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1543     return true;
1544   }
1545 
1546   /// Clears kill flags on all operands.
1547   void clearKillInfo();
1548 
1549   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1550   /// properly composing subreg indices where necessary.
1551   void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1552                           const TargetRegisterInfo &RegInfo);
1553 
1554   /// We have determined MI kills a register. Look for the
1555   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1556   /// add a implicit operand if it's not found. Returns true if the operand
1557   /// exists / is added.
1558   bool addRegisterKilled(Register IncomingReg,
1559                          const TargetRegisterInfo *RegInfo,
1560                          bool AddIfNotFound = false);
1561 
1562   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1563   /// all aliasing registers.
1564   void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1565 
1566   /// We have determined MI defined a register without a use.
1567   /// Look for the operand that defines it and mark it as IsDead. If
1568   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1569   /// true if the operand exists / is added.
1570   bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1571                        bool AddIfNotFound = false);
1572 
1573   /// Clear all dead flags on operands defining register @p Reg.
1574   void clearRegisterDeads(Register Reg);
1575 
1576   /// Mark all subregister defs of register @p Reg with the undef flag.
1577   /// This function is used when we determined to have a subregister def in an
1578   /// otherwise undefined super register.
1579   void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1580 
1581   /// We have determined MI defines a register. Make sure there is an operand
1582   /// defining Reg.
1583   void addRegisterDefined(Register Reg,
1584                           const TargetRegisterInfo *RegInfo = nullptr);
1585 
1586   /// Mark every physreg used by this instruction as
1587   /// dead except those in the UsedRegs list.
1588   ///
1589   /// On instructions with register mask operands, also add implicit-def
1590   /// operands for all registers in UsedRegs.
1591   void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1592                              const TargetRegisterInfo &TRI);
1593 
1594   /// Return true if it is safe to move this instruction. If
1595   /// SawStore is set to true, it means that there is a store (or call) between
1596   /// the instruction's location and its intended destination.
1597   bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1598 
1599   /// Returns true if this instruction's memory access aliases the memory
1600   /// access of Other.
1601   //
1602   /// Assumes any physical registers used to compute addresses
1603   /// have the same value for both instructions.  Returns false if neither
1604   /// instruction writes to memory.
1605   ///
1606   /// @param AA Optional alias analysis, used to compare memory operands.
1607   /// @param Other MachineInstr to check aliasing against.
1608   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1609   bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1610 
1611   /// Return true if this instruction may have an ordered
1612   /// or volatile memory reference, or if the information describing the memory
1613   /// reference is not available. Return false if it is known to have no
1614   /// ordered or volatile memory references.
1615   bool hasOrderedMemoryRef() const;
1616 
1617   /// Return true if this load instruction never traps and points to a memory
1618   /// location whose value doesn't change during the execution of this function.
1619   ///
1620   /// Examples include loading a value from the constant pool or from the
1621   /// argument area of a function (if it does not change).  If the instruction
1622   /// does multiple loads, this returns true only if all of the loads are
1623   /// dereferenceable and invariant.
1624   bool isDereferenceableInvariantLoad(AAResults *AA) const;
1625 
1626   /// If the specified instruction is a PHI that always merges together the
1627   /// same virtual register, return the register, otherwise return 0.
1628   unsigned isConstantValuePHI() const;
1629 
1630   /// Return true if this instruction has side effects that are not modeled
1631   /// by mayLoad / mayStore, etc.
1632   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1633   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1634   /// INLINEASM instruction, in which case the side effect property is encoded
1635   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1636   ///
1637   bool hasUnmodeledSideEffects() const;
1638 
1639   /// Returns true if it is illegal to fold a load across this instruction.
1640   bool isLoadFoldBarrier() const;
1641 
1642   /// Return true if all the defs of this instruction are dead.
1643   bool allDefsAreDead() const;
1644 
1645   /// Return a valid size if the instruction is a spill instruction.
1646   Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1647 
1648   /// Return a valid size if the instruction is a folded spill instruction.
1649   Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1650 
1651   /// Return a valid size if the instruction is a restore instruction.
1652   Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1653 
1654   /// Return a valid size if the instruction is a folded restore instruction.
1655   Optional<unsigned>
1656   getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1657 
1658   /// Copy implicit register operands from specified
1659   /// instruction to this instruction.
1660   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1661 
1662   /// Debugging support
1663   /// @{
1664   /// Determine the generic type to be printed (if needed) on uses and defs.
1665   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1666                      const MachineRegisterInfo &MRI) const;
1667 
1668   /// Return true when an instruction has tied register that can't be determined
1669   /// by the instruction's descriptor. This is useful for MIR printing, to
1670   /// determine whether we need to print the ties or not.
1671   bool hasComplexRegisterTies() const;
1672 
1673   /// Print this MI to \p OS.
1674   /// Don't print information that can be inferred from other instructions if
1675   /// \p IsStandalone is false. It is usually true when only a fragment of the
1676   /// function is printed.
1677   /// Only print the defs and the opcode if \p SkipOpers is true.
1678   /// Otherwise, also print operands if \p SkipDebugLoc is true.
1679   /// Otherwise, also print the debug loc, with a terminating newline.
1680   /// \p TII is used to print the opcode name.  If it's not present, but the
1681   /// MI is in a function, the opcode will be printed using the function's TII.
1682   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1683              bool SkipDebugLoc = false, bool AddNewLine = true,
1684              const TargetInstrInfo *TII = nullptr) const;
1685   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1686              bool SkipOpers = false, bool SkipDebugLoc = false,
1687              bool AddNewLine = true,
1688              const TargetInstrInfo *TII = nullptr) const;
1689   void dump() const;
1690   /// Print on dbgs() the current instruction and the instructions defining its
1691   /// operands and so on until we reach \p MaxDepth.
1692   void dumpr(const MachineRegisterInfo &MRI,
1693              unsigned MaxDepth = UINT_MAX) const;
1694   /// @}
1695 
1696   //===--------------------------------------------------------------------===//
1697   // Accessors used to build up machine instructions.
1698 
1699   /// Add the specified operand to the instruction.  If it is an implicit
1700   /// operand, it is added to the end of the operand list.  If it is an
1701   /// explicit operand it is added at the end of the explicit operand list
1702   /// (before the first implicit operand).
1703   ///
1704   /// MF must be the machine function that was used to allocate this
1705   /// instruction.
1706   ///
1707   /// MachineInstrBuilder provides a more convenient interface for creating
1708   /// instructions and adding operands.
1709   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1710 
1711   /// Add an operand without providing an MF reference. This only works for
1712   /// instructions that are inserted in a basic block.
1713   ///
1714   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1715   /// preferred.
1716   void addOperand(const MachineOperand &Op);
1717 
1718   /// Replace the instruction descriptor (thus opcode) of
1719   /// the current instruction with a new one.
1720   void setDesc(const MCInstrDesc &TID) { MCID = &TID; }
1721 
1722   /// Replace current source information with new such.
1723   /// Avoid using this, the constructor argument is preferable.
1724   void setDebugLoc(DebugLoc DL) {
1725     DbgLoc = std::move(DL);
1726     assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
1727   }
1728 
1729   /// Erase an operand from an instruction, leaving it with one
1730   /// fewer operand than it started with.
1731   void removeOperand(unsigned OpNo);
1732 
1733   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1734   /// the memrefs to their most conservative state.  This should be used only
1735   /// as a last resort since it greatly pessimizes our knowledge of the memory
1736   /// access performed by the instruction.
1737   void dropMemRefs(MachineFunction &MF);
1738 
1739   /// Assign this MachineInstr's memory reference descriptor list.
1740   ///
1741   /// Unlike other methods, this *will* allocate them into a new array
1742   /// associated with the provided `MachineFunction`.
1743   void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1744 
1745   /// Add a MachineMemOperand to the machine instruction.
1746   /// This function should be used only occasionally. The setMemRefs function
1747   /// is the primary method for setting up a MachineInstr's MemRefs list.
1748   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1749 
1750   /// Clone another MachineInstr's memory reference descriptor list and replace
1751   /// ours with it.
1752   ///
1753   /// Note that `*this` may be the incoming MI!
1754   ///
1755   /// Prefer this API whenever possible as it can avoid allocations in common
1756   /// cases.
1757   void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1758 
1759   /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1760   /// list and replace ours with it.
1761   ///
1762   /// Note that `*this` may be one of the incoming MIs!
1763   ///
1764   /// Prefer this API whenever possible as it can avoid allocations in common
1765   /// cases.
1766   void cloneMergedMemRefs(MachineFunction &MF,
1767                           ArrayRef<const MachineInstr *> MIs);
1768 
1769   /// Set a symbol that will be emitted just prior to the instruction itself.
1770   ///
1771   /// Setting this to a null pointer will remove any such symbol.
1772   ///
1773   /// FIXME: This is not fully implemented yet.
1774   void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1775 
1776   /// Set a symbol that will be emitted just after the instruction itself.
1777   ///
1778   /// Setting this to a null pointer will remove any such symbol.
1779   ///
1780   /// FIXME: This is not fully implemented yet.
1781   void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1782 
1783   /// Clone another MachineInstr's pre- and post- instruction symbols and
1784   /// replace ours with it.
1785   void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1786 
1787   /// Set a marker on instructions that denotes where we should create and emit
1788   /// heap alloc site labels. This waits until after instruction selection and
1789   /// optimizations to create the label, so it should still work if the
1790   /// instruction is removed or duplicated.
1791   void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1792 
1793   /// Return the MIFlags which represent both MachineInstrs. This
1794   /// should be used when merging two MachineInstrs into one. This routine does
1795   /// not modify the MIFlags of this MachineInstr.
1796   uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1797 
1798   static uint16_t copyFlagsFromInstruction(const Instruction &I);
1799 
1800   /// Copy all flags to MachineInst MIFlags
1801   void copyIRFlags(const Instruction &I);
1802 
1803   /// Break any tie involving OpIdx.
1804   void untieRegOperand(unsigned OpIdx) {
1805     MachineOperand &MO = getOperand(OpIdx);
1806     if (MO.isReg() && MO.isTied()) {
1807       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1808       MO.TiedTo = 0;
1809     }
1810   }
1811 
1812   /// Add all implicit def and use operands to this instruction.
1813   void addImplicitDefUseOperands(MachineFunction &MF);
1814 
1815   /// Scan instructions immediately following MI and collect any matching
1816   /// DBG_VALUEs.
1817   void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1818 
1819   /// Find all DBG_VALUEs that point to the register def in this instruction
1820   /// and point them to \p Reg instead.
1821   void changeDebugValuesDefReg(Register Reg);
1822 
1823   /// Returns the Intrinsic::ID for this instruction.
1824   /// \pre Must have an intrinsic ID operand.
1825   unsigned getIntrinsicID() const {
1826     return getOperand(getNumExplicitDefs()).getIntrinsicID();
1827   }
1828 
1829   /// Sets all register debug operands in this debug value instruction to be
1830   /// undef.
1831   void setDebugValueUndef() {
1832     assert(isDebugValue() && "Must be a debug value instruction.");
1833     for (MachineOperand &MO : debug_operands()) {
1834       if (MO.isReg()) {
1835         MO.setReg(0);
1836         MO.setSubReg(0);
1837       }
1838     }
1839   }
1840 
1841 private:
1842   /// If this instruction is embedded into a MachineFunction, return the
1843   /// MachineRegisterInfo object for the current function, otherwise
1844   /// return null.
1845   MachineRegisterInfo *getRegInfo();
1846 
1847   /// Unlink all of the register operands in this instruction from their
1848   /// respective use lists.  This requires that the operands already be on their
1849   /// use lists.
1850   void removeRegOperandsFromUseLists(MachineRegisterInfo&);
1851 
1852   /// Add all of the register operands in this instruction from their
1853   /// respective use lists.  This requires that the operands not be on their
1854   /// use lists yet.
1855   void addRegOperandsToUseLists(MachineRegisterInfo&);
1856 
1857   /// Slow path for hasProperty when we're dealing with a bundle.
1858   bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1859 
1860   /// Implements the logic of getRegClassConstraintEffectForVReg for the
1861   /// this MI and the given operand index \p OpIdx.
1862   /// If the related operand does not constrained Reg, this returns CurRC.
1863   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1864       unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1865       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1866 
1867   /// Stores extra instruction information inline or allocates as ExtraInfo
1868   /// based on the number of pointers.
1869   void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
1870                     MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
1871                     MDNode *HeapAllocMarker);
1872 };
1873 
1874 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1875 /// instruction rather than by pointer value.
1876 /// The hashing and equality testing functions ignore definitions so this is
1877 /// useful for CSE, etc.
1878 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1879   static inline MachineInstr *getEmptyKey() {
1880     return nullptr;
1881   }
1882 
1883   static inline MachineInstr *getTombstoneKey() {
1884     return reinterpret_cast<MachineInstr*>(-1);
1885   }
1886 
1887   static unsigned getHashValue(const MachineInstr* const &MI);
1888 
1889   static bool isEqual(const MachineInstr* const &LHS,
1890                       const MachineInstr* const &RHS) {
1891     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1892         LHS == getEmptyKey() || LHS == getTombstoneKey())
1893       return LHS == RHS;
1894     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1895   }
1896 };
1897 
1898 //===----------------------------------------------------------------------===//
1899 // Debugging Support
1900 
1901 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1902   MI.print(OS);
1903   return OS;
1904 }
1905 
1906 } // end namespace llvm
1907 
1908 #endif // LLVM_CODEGEN_MACHINEINSTR_H
1909