1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the declaration of the MachineInstr class, which is the 10 // basic representation for all target dependent machine instructions used by 11 // the back end. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 16 #define LLVM_CODEGEN_MACHINEINSTR_H 17 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/PointerSumType.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/ilist.h" 22 #include "llvm/ADT/ilist_node.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/PseudoProbe.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/ArrayRecycler.h" 33 #include "llvm/Support/TrailingObjects.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <utility> 38 39 namespace llvm { 40 41 class AAResults; 42 template <typename T> class ArrayRef; 43 class DIExpression; 44 class DILocalVariable; 45 class MachineBasicBlock; 46 class MachineFunction; 47 class MachineRegisterInfo; 48 class ModuleSlotTracker; 49 class raw_ostream; 50 template <typename T> class SmallVectorImpl; 51 class SmallBitVector; 52 class StringRef; 53 class TargetInstrInfo; 54 class TargetRegisterClass; 55 class TargetRegisterInfo; 56 57 //===----------------------------------------------------------------------===// 58 /// Representation of each machine instruction. 59 /// 60 /// This class isn't a POD type, but it must have a trivial destructor. When a 61 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 62 /// without having their destructor called. 63 /// 64 class MachineInstr 65 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, 66 ilist_sentinel_tracking<true>> { 67 public: 68 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; 69 70 /// Flags to specify different kinds of comments to output in 71 /// assembly code. These flags carry semantic information not 72 /// otherwise easily derivable from the IR text. 73 /// 74 enum CommentFlag { 75 ReloadReuse = 0x1, // higher bits are reserved for target dep comments. 76 NoSchedComment = 0x2, 77 TAsmComments = 0x4 // Target Asm comments should start from this value. 78 }; 79 80 enum MIFlag { 81 NoFlags = 0, 82 FrameSetup = 1 << 0, // Instruction is used as a part of 83 // function frame setup code. 84 FrameDestroy = 1 << 1, // Instruction is used as a part of 85 // function frame destruction code. 86 BundledPred = 1 << 2, // Instruction has bundled predecessors. 87 BundledSucc = 1 << 3, // Instruction has bundled successors. 88 FmNoNans = 1 << 4, // Instruction does not support Fast 89 // math nan values. 90 FmNoInfs = 1 << 5, // Instruction does not support Fast 91 // math infinity values. 92 FmNsz = 1 << 6, // Instruction is not required to retain 93 // signed zero values. 94 FmArcp = 1 << 7, // Instruction supports Fast math 95 // reciprocal approximations. 96 FmContract = 1 << 8, // Instruction supports Fast math 97 // contraction operations like fma. 98 FmAfn = 1 << 9, // Instruction may map to Fast math 99 // instrinsic approximation. 100 FmReassoc = 1 << 10, // Instruction supports Fast math 101 // reassociation of operand order. 102 NoUWrap = 1 << 11, // Instruction supports binary operator 103 // no unsigned wrap. 104 NoSWrap = 1 << 12, // Instruction supports binary operator 105 // no signed wrap. 106 IsExact = 1 << 13, // Instruction supports division is 107 // known to be exact. 108 NoFPExcept = 1 << 14, // Instruction does not raise 109 // floatint-point exceptions. 110 NoMerge = 1 << 15, // Passes that drop source location info 111 // (e.g. branch folding) should skip 112 // this instruction. 113 }; 114 115 private: 116 const MCInstrDesc *MCID; // Instruction descriptor. 117 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. 118 119 // Operands are allocated by an ArrayRecycler. 120 MachineOperand *Operands = nullptr; // Pointer to the first operand. 121 unsigned NumOperands = 0; // Number of operands on instruction. 122 123 uint16_t Flags = 0; // Various bits of additional 124 // information about machine 125 // instruction. 126 127 uint8_t AsmPrinterFlags = 0; // Various bits of information used by 128 // the AsmPrinter to emit helpful 129 // comments. This is *not* semantic 130 // information. Do not use this for 131 // anything other than to convey comment 132 // information to AsmPrinter. 133 134 // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags 135 // to properly pack. 136 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 137 OperandCapacity CapOperands; // Capacity of the Operands array. 138 139 /// Internal implementation detail class that provides out-of-line storage for 140 /// extra info used by the machine instruction when this info cannot be stored 141 /// in-line within the instruction itself. 142 /// 143 /// This has to be defined eagerly due to the implementation constraints of 144 /// `PointerSumType` where it is used. 145 class ExtraInfo final 146 : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> { 147 public: 148 static ExtraInfo *create(BumpPtrAllocator &Allocator, 149 ArrayRef<MachineMemOperand *> MMOs, 150 MCSymbol *PreInstrSymbol = nullptr, 151 MCSymbol *PostInstrSymbol = nullptr, 152 MDNode *HeapAllocMarker = nullptr) { 153 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 154 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 155 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 156 auto *Result = new (Allocator.Allocate( 157 totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>( 158 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, 159 HasHeapAllocMarker), 160 alignof(ExtraInfo))) 161 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, 162 HasHeapAllocMarker); 163 164 // Copy the actual data into the trailing objects. 165 std::copy(MMOs.begin(), MMOs.end(), 166 Result->getTrailingObjects<MachineMemOperand *>()); 167 168 if (HasPreInstrSymbol) 169 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; 170 if (HasPostInstrSymbol) 171 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = 172 PostInstrSymbol; 173 if (HasHeapAllocMarker) 174 Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker; 175 176 return Result; 177 } 178 179 ArrayRef<MachineMemOperand *> getMMOs() const { 180 return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); 181 } 182 183 MCSymbol *getPreInstrSymbol() const { 184 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; 185 } 186 187 MCSymbol *getPostInstrSymbol() const { 188 return HasPostInstrSymbol 189 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] 190 : nullptr; 191 } 192 193 MDNode *getHeapAllocMarker() const { 194 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr; 195 } 196 197 private: 198 friend TrailingObjects; 199 200 // Description of the extra info, used to interpret the actual optional 201 // data appended. 202 // 203 // Note that this is not terribly space optimized. This leaves a great deal 204 // of flexibility to fit more in here later. 205 const int NumMMOs; 206 const bool HasPreInstrSymbol; 207 const bool HasPostInstrSymbol; 208 const bool HasHeapAllocMarker; 209 210 // Implement the `TrailingObjects` internal API. 211 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { 212 return NumMMOs; 213 } 214 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { 215 return HasPreInstrSymbol + HasPostInstrSymbol; 216 } 217 size_t numTrailingObjects(OverloadToken<MDNode *>) const { 218 return HasHeapAllocMarker; 219 } 220 221 // Just a boring constructor to allow us to initialize the sizes. Always use 222 // the `create` routine above. 223 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, 224 bool HasHeapAllocMarker) 225 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), 226 HasPostInstrSymbol(HasPostInstrSymbol), 227 HasHeapAllocMarker(HasHeapAllocMarker) {} 228 }; 229 230 /// Enumeration of the kinds of inline extra info available. It is important 231 /// that the `MachineMemOperand` inline kind has a tag value of zero to make 232 /// it accessible as an `ArrayRef`. 233 enum ExtraInfoInlineKinds { 234 EIIK_MMO = 0, 235 EIIK_PreInstrSymbol, 236 EIIK_PostInstrSymbol, 237 EIIK_OutOfLine 238 }; 239 240 // We store extra information about the instruction here. The common case is 241 // expected to be nothing or a single pointer (typically a MMO or a symbol). 242 // We work to optimize this common case by storing it inline here rather than 243 // requiring a separate allocation, but we fall back to an allocation when 244 // multiple pointers are needed. 245 PointerSumType<ExtraInfoInlineKinds, 246 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, 247 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, 248 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, 249 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> 250 Info; 251 252 DebugLoc DbgLoc; // Source line information. 253 254 /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values 255 /// defined by this instruction. 256 unsigned DebugInstrNum; 257 258 // Intrusive list support 259 friend struct ilist_traits<MachineInstr>; 260 friend struct ilist_callback_traits<MachineBasicBlock>; 261 void setParent(MachineBasicBlock *P) { Parent = P; } 262 263 /// This constructor creates a copy of the given 264 /// MachineInstr in the given MachineFunction. 265 MachineInstr(MachineFunction &, const MachineInstr &); 266 267 /// This constructor create a MachineInstr and add the implicit operands. 268 /// It reserves space for number of operands specified by 269 /// MCInstrDesc. An explicit DebugLoc is supplied. 270 MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL, 271 bool NoImp = false); 272 273 // MachineInstrs are pool-allocated and owned by MachineFunction. 274 friend class MachineFunction; 275 276 void 277 dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 278 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const; 279 280 public: 281 MachineInstr(const MachineInstr &) = delete; 282 MachineInstr &operator=(const MachineInstr &) = delete; 283 // Use MachineFunction::DeleteMachineInstr() instead. 284 ~MachineInstr() = delete; 285 286 const MachineBasicBlock* getParent() const { return Parent; } 287 MachineBasicBlock* getParent() { return Parent; } 288 289 /// Move the instruction before \p MovePos. 290 void moveBefore(MachineInstr *MovePos); 291 292 /// Return the function that contains the basic block that this instruction 293 /// belongs to. 294 /// 295 /// Note: this is undefined behaviour if the instruction does not have a 296 /// parent. 297 const MachineFunction *getMF() const; 298 MachineFunction *getMF() { 299 return const_cast<MachineFunction *>( 300 static_cast<const MachineInstr *>(this)->getMF()); 301 } 302 303 /// Return the asm printer flags bitvector. 304 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 305 306 /// Clear the AsmPrinter bitvector. 307 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 308 309 /// Return whether an AsmPrinter flag is set. 310 bool getAsmPrinterFlag(CommentFlag Flag) const { 311 return AsmPrinterFlags & Flag; 312 } 313 314 /// Set a flag for the AsmPrinter. 315 void setAsmPrinterFlag(uint8_t Flag) { 316 AsmPrinterFlags |= Flag; 317 } 318 319 /// Clear specific AsmPrinter flags. 320 void clearAsmPrinterFlag(CommentFlag Flag) { 321 AsmPrinterFlags &= ~Flag; 322 } 323 324 /// Return the MI flags bitvector. 325 uint16_t getFlags() const { 326 return Flags; 327 } 328 329 /// Return whether an MI flag is set. 330 bool getFlag(MIFlag Flag) const { 331 return Flags & Flag; 332 } 333 334 /// Set a MI flag. 335 void setFlag(MIFlag Flag) { 336 Flags |= (uint16_t)Flag; 337 } 338 339 void setFlags(unsigned flags) { 340 // Filter out the automatically maintained flags. 341 unsigned Mask = BundledPred | BundledSucc; 342 Flags = (Flags & Mask) | (flags & ~Mask); 343 } 344 345 /// clearFlag - Clear a MI flag. 346 void clearFlag(MIFlag Flag) { 347 Flags &= ~((uint16_t)Flag); 348 } 349 350 /// Return true if MI is in a bundle (but not the first MI in a bundle). 351 /// 352 /// A bundle looks like this before it's finalized: 353 /// ---------------- 354 /// | MI | 355 /// ---------------- 356 /// | 357 /// ---------------- 358 /// | MI * | 359 /// ---------------- 360 /// | 361 /// ---------------- 362 /// | MI * | 363 /// ---------------- 364 /// In this case, the first MI starts a bundle but is not inside a bundle, the 365 /// next 2 MIs are considered "inside" the bundle. 366 /// 367 /// After a bundle is finalized, it looks like this: 368 /// ---------------- 369 /// | Bundle | 370 /// ---------------- 371 /// | 372 /// ---------------- 373 /// | MI * | 374 /// ---------------- 375 /// | 376 /// ---------------- 377 /// | MI * | 378 /// ---------------- 379 /// | 380 /// ---------------- 381 /// | MI * | 382 /// ---------------- 383 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 384 /// a bundle, but the next three MIs are. 385 bool isInsideBundle() const { 386 return getFlag(BundledPred); 387 } 388 389 /// Return true if this instruction part of a bundle. This is true 390 /// if either itself or its following instruction is marked "InsideBundle". 391 bool isBundled() const { 392 return isBundledWithPred() || isBundledWithSucc(); 393 } 394 395 /// Return true if this instruction is part of a bundle, and it is not the 396 /// first instruction in the bundle. 397 bool isBundledWithPred() const { return getFlag(BundledPred); } 398 399 /// Return true if this instruction is part of a bundle, and it is not the 400 /// last instruction in the bundle. 401 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 402 403 /// Bundle this instruction with its predecessor. This can be an unbundled 404 /// instruction, or it can be the first instruction in a bundle. 405 void bundleWithPred(); 406 407 /// Bundle this instruction with its successor. This can be an unbundled 408 /// instruction, or it can be the last instruction in a bundle. 409 void bundleWithSucc(); 410 411 /// Break bundle above this instruction. 412 void unbundleFromPred(); 413 414 /// Break bundle below this instruction. 415 void unbundleFromSucc(); 416 417 /// Returns the debug location id of this MachineInstr. 418 const DebugLoc &getDebugLoc() const { return DbgLoc; } 419 420 /// Return the operand containing the offset to be used if this DBG_VALUE 421 /// instruction is indirect; will be an invalid register if this value is 422 /// not indirect, and an immediate with value 0 otherwise. 423 const MachineOperand &getDebugOffset() const { 424 assert(isNonListDebugValue() && "not a DBG_VALUE"); 425 return getOperand(1); 426 } 427 MachineOperand &getDebugOffset() { 428 assert(isNonListDebugValue() && "not a DBG_VALUE"); 429 return getOperand(1); 430 } 431 432 /// Return the operand for the debug variable referenced by 433 /// this DBG_VALUE instruction. 434 const MachineOperand &getDebugVariableOp() const; 435 MachineOperand &getDebugVariableOp(); 436 437 /// Return the debug variable referenced by 438 /// this DBG_VALUE instruction. 439 const DILocalVariable *getDebugVariable() const; 440 441 /// Return the operand for the complex address expression referenced by 442 /// this DBG_VALUE instruction. 443 const MachineOperand &getDebugExpressionOp() const; 444 MachineOperand &getDebugExpressionOp(); 445 446 /// Return the complex address expression referenced by 447 /// this DBG_VALUE instruction. 448 const DIExpression *getDebugExpression() const; 449 450 /// Return the debug label referenced by 451 /// this DBG_LABEL instruction. 452 const DILabel *getDebugLabel() const; 453 454 /// Fetch the instruction number of this MachineInstr. If it does not have 455 /// one already, a new and unique number will be assigned. 456 unsigned getDebugInstrNum(); 457 458 /// Fetch instruction number of this MachineInstr -- but before it's inserted 459 /// into \p MF. Needed for transformations that create an instruction but 460 /// don't immediately insert them. 461 unsigned getDebugInstrNum(MachineFunction &MF); 462 463 /// Examine the instruction number of this MachineInstr. May be zero if 464 /// it hasn't been assigned a number yet. 465 unsigned peekDebugInstrNum() const { return DebugInstrNum; } 466 467 /// Set instruction number of this MachineInstr. Avoid using unless you're 468 /// deserializing this information. 469 void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; } 470 471 /// Drop any variable location debugging information associated with this 472 /// instruction. Use when an instruction is modified in such a way that it no 473 /// longer defines the value it used to. Variable locations using that value 474 /// will be dropped. 475 void dropDebugNumber() { DebugInstrNum = 0; } 476 477 /// Emit an error referring to the source location of this instruction. 478 /// This should only be used for inline assembly that is somehow 479 /// impossible to compile. Other errors should have been handled much 480 /// earlier. 481 /// 482 /// If this method returns, the caller should try to recover from the error. 483 void emitError(StringRef Msg) const; 484 485 /// Returns the target instruction descriptor of this MachineInstr. 486 const MCInstrDesc &getDesc() const { return *MCID; } 487 488 /// Returns the opcode of this MachineInstr. 489 unsigned getOpcode() const { return MCID->Opcode; } 490 491 /// Retuns the total number of operands. 492 unsigned getNumOperands() const { return NumOperands; } 493 494 /// Returns the total number of operands which are debug locations. 495 unsigned getNumDebugOperands() const { 496 return std::distance(debug_operands().begin(), debug_operands().end()); 497 } 498 499 const MachineOperand& getOperand(unsigned i) const { 500 assert(i < getNumOperands() && "getOperand() out of range!"); 501 return Operands[i]; 502 } 503 MachineOperand& getOperand(unsigned i) { 504 assert(i < getNumOperands() && "getOperand() out of range!"); 505 return Operands[i]; 506 } 507 508 MachineOperand &getDebugOperand(unsigned Index) { 509 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 510 return *(debug_operands().begin() + Index); 511 } 512 const MachineOperand &getDebugOperand(unsigned Index) const { 513 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 514 return *(debug_operands().begin() + Index); 515 } 516 517 SmallSet<Register, 4> getUsedDebugRegs() const { 518 assert(isDebugValue() && "not a DBG_VALUE*"); 519 SmallSet<Register, 4> UsedRegs; 520 for (const auto &MO : debug_operands()) 521 if (MO.isReg() && MO.getReg()) 522 UsedRegs.insert(MO.getReg()); 523 return UsedRegs; 524 } 525 526 /// Returns whether this debug value has at least one debug operand with the 527 /// register \p Reg. 528 bool hasDebugOperandForReg(Register Reg) const { 529 return any_of(debug_operands(), [Reg](const MachineOperand &Op) { 530 return Op.isReg() && Op.getReg() == Reg; 531 }); 532 } 533 534 /// Returns a range of all of the operands that correspond to a debug use of 535 /// \p Reg. 536 template <typename Operand, typename Instruction> 537 static iterator_range< 538 filter_iterator<Operand *, std::function<bool(Operand &Op)>>> 539 getDebugOperandsForReg(Instruction *MI, Register Reg) { 540 std::function<bool(Operand & Op)> OpUsesReg( 541 [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; }); 542 return make_filter_range(MI->debug_operands(), OpUsesReg); 543 } 544 iterator_range<filter_iterator<const MachineOperand *, 545 std::function<bool(const MachineOperand &Op)>>> 546 getDebugOperandsForReg(Register Reg) const { 547 return MachineInstr::getDebugOperandsForReg<const MachineOperand, 548 const MachineInstr>(this, Reg); 549 } 550 iterator_range<filter_iterator<MachineOperand *, 551 std::function<bool(MachineOperand &Op)>>> 552 getDebugOperandsForReg(Register Reg) { 553 return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>( 554 this, Reg); 555 } 556 557 bool isDebugOperand(const MachineOperand *Op) const { 558 return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands()); 559 } 560 561 unsigned getDebugOperandIndex(const MachineOperand *Op) const { 562 assert(isDebugOperand(Op) && "Expected a debug operand."); 563 return std::distance(adl_begin(debug_operands()), Op); 564 } 565 566 /// Returns the total number of definitions. 567 unsigned getNumDefs() const { 568 return getNumExplicitDefs() + MCID->getNumImplicitDefs(); 569 } 570 571 /// Returns true if the instruction has implicit definition. 572 bool hasImplicitDef() const { 573 for (unsigned I = getNumExplicitOperands(), E = getNumOperands(); 574 I != E; ++I) { 575 const MachineOperand &MO = getOperand(I); 576 if (MO.isDef() && MO.isImplicit()) 577 return true; 578 } 579 return false; 580 } 581 582 /// Returns the implicit operands number. 583 unsigned getNumImplicitOperands() const { 584 return getNumOperands() - getNumExplicitOperands(); 585 } 586 587 /// Return true if operand \p OpIdx is a subregister index. 588 bool isOperandSubregIdx(unsigned OpIdx) const { 589 assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && 590 "Expected MO_Immediate operand type."); 591 if (isExtractSubreg() && OpIdx == 2) 592 return true; 593 if (isInsertSubreg() && OpIdx == 3) 594 return true; 595 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) 596 return true; 597 if (isSubregToReg() && OpIdx == 3) 598 return true; 599 return false; 600 } 601 602 /// Returns the number of non-implicit operands. 603 unsigned getNumExplicitOperands() const; 604 605 /// Returns the number of non-implicit definitions. 606 unsigned getNumExplicitDefs() const; 607 608 /// iterator/begin/end - Iterate over all operands of a machine instruction. 609 using mop_iterator = MachineOperand *; 610 using const_mop_iterator = const MachineOperand *; 611 612 mop_iterator operands_begin() { return Operands; } 613 mop_iterator operands_end() { return Operands + NumOperands; } 614 615 const_mop_iterator operands_begin() const { return Operands; } 616 const_mop_iterator operands_end() const { return Operands + NumOperands; } 617 618 iterator_range<mop_iterator> operands() { 619 return make_range(operands_begin(), operands_end()); 620 } 621 iterator_range<const_mop_iterator> operands() const { 622 return make_range(operands_begin(), operands_end()); 623 } 624 iterator_range<mop_iterator> explicit_operands() { 625 return make_range(operands_begin(), 626 operands_begin() + getNumExplicitOperands()); 627 } 628 iterator_range<const_mop_iterator> explicit_operands() const { 629 return make_range(operands_begin(), 630 operands_begin() + getNumExplicitOperands()); 631 } 632 iterator_range<mop_iterator> implicit_operands() { 633 return make_range(explicit_operands().end(), operands_end()); 634 } 635 iterator_range<const_mop_iterator> implicit_operands() const { 636 return make_range(explicit_operands().end(), operands_end()); 637 } 638 /// Returns a range over all operands that are used to determine the variable 639 /// location for this DBG_VALUE instruction. 640 iterator_range<mop_iterator> debug_operands() { 641 assert(isDebugValue() && "Must be a debug value instruction."); 642 return isDebugValueList() 643 ? make_range(operands_begin() + 2, operands_end()) 644 : make_range(operands_begin(), operands_begin() + 1); 645 } 646 /// \copydoc debug_operands() 647 iterator_range<const_mop_iterator> debug_operands() const { 648 assert(isDebugValue() && "Must be a debug value instruction."); 649 return isDebugValueList() 650 ? make_range(operands_begin() + 2, operands_end()) 651 : make_range(operands_begin(), operands_begin() + 1); 652 } 653 /// Returns a range over all explicit operands that are register definitions. 654 /// Implicit definition are not included! 655 iterator_range<mop_iterator> defs() { 656 return make_range(operands_begin(), 657 operands_begin() + getNumExplicitDefs()); 658 } 659 /// \copydoc defs() 660 iterator_range<const_mop_iterator> defs() const { 661 return make_range(operands_begin(), 662 operands_begin() + getNumExplicitDefs()); 663 } 664 /// Returns a range that includes all operands that are register uses. 665 /// This may include unrelated operands which are not register uses. 666 iterator_range<mop_iterator> uses() { 667 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 668 } 669 /// \copydoc uses() 670 iterator_range<const_mop_iterator> uses() const { 671 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 672 } 673 iterator_range<mop_iterator> explicit_uses() { 674 return make_range(operands_begin() + getNumExplicitDefs(), 675 operands_begin() + getNumExplicitOperands()); 676 } 677 iterator_range<const_mop_iterator> explicit_uses() const { 678 return make_range(operands_begin() + getNumExplicitDefs(), 679 operands_begin() + getNumExplicitOperands()); 680 } 681 682 /// Returns the number of the operand iterator \p I points to. 683 unsigned getOperandNo(const_mop_iterator I) const { 684 return I - operands_begin(); 685 } 686 687 /// Access to memory operands of the instruction. If there are none, that does 688 /// not imply anything about whether the function accesses memory. Instead, 689 /// the caller must behave conservatively. 690 ArrayRef<MachineMemOperand *> memoperands() const { 691 if (!Info) 692 return {}; 693 694 if (Info.is<EIIK_MMO>()) 695 return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1); 696 697 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 698 return EI->getMMOs(); 699 700 return {}; 701 } 702 703 /// Access to memory operands of the instruction. 704 /// 705 /// If `memoperands_begin() == memoperands_end()`, that does not imply 706 /// anything about whether the function accesses memory. Instead, the caller 707 /// must behave conservatively. 708 mmo_iterator memoperands_begin() const { return memoperands().begin(); } 709 710 /// Access to memory operands of the instruction. 711 /// 712 /// If `memoperands_begin() == memoperands_end()`, that does not imply 713 /// anything about whether the function accesses memory. Instead, the caller 714 /// must behave conservatively. 715 mmo_iterator memoperands_end() const { return memoperands().end(); } 716 717 /// Return true if we don't have any memory operands which described the 718 /// memory access done by this instruction. If this is true, calling code 719 /// must be conservative. 720 bool memoperands_empty() const { return memoperands().empty(); } 721 722 /// Return true if this instruction has exactly one MachineMemOperand. 723 bool hasOneMemOperand() const { return memoperands().size() == 1; } 724 725 /// Return the number of memory operands. 726 unsigned getNumMemOperands() const { return memoperands().size(); } 727 728 /// Helper to extract a pre-instruction symbol if one has been added. 729 MCSymbol *getPreInstrSymbol() const { 730 if (!Info) 731 return nullptr; 732 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) 733 return S; 734 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 735 return EI->getPreInstrSymbol(); 736 737 return nullptr; 738 } 739 740 /// Helper to extract a post-instruction symbol if one has been added. 741 MCSymbol *getPostInstrSymbol() const { 742 if (!Info) 743 return nullptr; 744 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) 745 return S; 746 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 747 return EI->getPostInstrSymbol(); 748 749 return nullptr; 750 } 751 752 /// Helper to extract a heap alloc marker if one has been added. 753 MDNode *getHeapAllocMarker() const { 754 if (!Info) 755 return nullptr; 756 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 757 return EI->getHeapAllocMarker(); 758 759 return nullptr; 760 } 761 762 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 763 /// queries but they are bundle aware. 764 765 enum QueryType { 766 IgnoreBundle, // Ignore bundles 767 AnyInBundle, // Return true if any instruction in bundle has property 768 AllInBundle // Return true if all instructions in bundle have property 769 }; 770 771 /// Return true if the instruction (or in the case of a bundle, 772 /// the instructions inside the bundle) has the specified property. 773 /// The first argument is the property being queried. 774 /// The second argument indicates whether the query should look inside 775 /// instruction bundles. 776 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 777 assert(MCFlag < 64 && 778 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); 779 // Inline the fast path for unbundled or bundle-internal instructions. 780 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 781 return getDesc().getFlags() & (1ULL << MCFlag); 782 783 // If this is the first instruction in a bundle, take the slow path. 784 return hasPropertyInBundle(1ULL << MCFlag, Type); 785 } 786 787 /// Return true if this is an instruction that should go through the usual 788 /// legalization steps. 789 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { 790 return hasProperty(MCID::PreISelOpcode, Type); 791 } 792 793 /// Return true if this instruction can have a variable number of operands. 794 /// In this case, the variable operands will be after the normal 795 /// operands but before the implicit definitions and uses (if any are 796 /// present). 797 bool isVariadic(QueryType Type = IgnoreBundle) const { 798 return hasProperty(MCID::Variadic, Type); 799 } 800 801 /// Set if this instruction has an optional definition, e.g. 802 /// ARM instructions which can set condition code if 's' bit is set. 803 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 804 return hasProperty(MCID::HasOptionalDef, Type); 805 } 806 807 /// Return true if this is a pseudo instruction that doesn't 808 /// correspond to a real machine instruction. 809 bool isPseudo(QueryType Type = IgnoreBundle) const { 810 return hasProperty(MCID::Pseudo, Type); 811 } 812 813 bool isReturn(QueryType Type = AnyInBundle) const { 814 return hasProperty(MCID::Return, Type); 815 } 816 817 /// Return true if this is an instruction that marks the end of an EH scope, 818 /// i.e., a catchpad or a cleanuppad instruction. 819 bool isEHScopeReturn(QueryType Type = AnyInBundle) const { 820 return hasProperty(MCID::EHScopeReturn, Type); 821 } 822 823 bool isCall(QueryType Type = AnyInBundle) const { 824 return hasProperty(MCID::Call, Type); 825 } 826 827 /// Return true if this is a call instruction that may have an associated 828 /// call site entry in the debug info. 829 bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const; 830 /// Return true if copying, moving, or erasing this instruction requires 831 /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo, 832 /// \ref eraseCallSiteInfo). 833 bool shouldUpdateCallSiteInfo() const; 834 835 /// Returns true if the specified instruction stops control flow 836 /// from executing the instruction immediately following it. Examples include 837 /// unconditional branches and return instructions. 838 bool isBarrier(QueryType Type = AnyInBundle) const { 839 return hasProperty(MCID::Barrier, Type); 840 } 841 842 /// Returns true if this instruction part of the terminator for a basic block. 843 /// Typically this is things like return and branch instructions. 844 /// 845 /// Various passes use this to insert code into the bottom of a basic block, 846 /// but before control flow occurs. 847 bool isTerminator(QueryType Type = AnyInBundle) const { 848 return hasProperty(MCID::Terminator, Type); 849 } 850 851 /// Returns true if this is a conditional, unconditional, or indirect branch. 852 /// Predicates below can be used to discriminate between 853 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to 854 /// get more information. 855 bool isBranch(QueryType Type = AnyInBundle) const { 856 return hasProperty(MCID::Branch, Type); 857 } 858 859 /// Return true if this is an indirect branch, such as a 860 /// branch through a register. 861 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 862 return hasProperty(MCID::IndirectBranch, Type); 863 } 864 865 /// Return true if this is a branch which may fall 866 /// through to the next instruction or may transfer control flow to some other 867 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more 868 /// information about this branch. 869 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 870 return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); 871 } 872 873 /// Return true if this is a branch which always 874 /// transfers control flow to some other block. The 875 /// TargetInstrInfo::analyzeBranch method can be used to get more information 876 /// about this branch. 877 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 878 return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); 879 } 880 881 /// Return true if this instruction has a predicate operand that 882 /// controls execution. It may be set to 'always', or may be set to other 883 /// values. There are various methods in TargetInstrInfo that can be used to 884 /// control and modify the predicate in this instruction. 885 bool isPredicable(QueryType Type = AllInBundle) const { 886 // If it's a bundle than all bundled instructions must be predicable for this 887 // to return true. 888 return hasProperty(MCID::Predicable, Type); 889 } 890 891 /// Return true if this instruction is a comparison. 892 bool isCompare(QueryType Type = IgnoreBundle) const { 893 return hasProperty(MCID::Compare, Type); 894 } 895 896 /// Return true if this instruction is a move immediate 897 /// (including conditional moves) instruction. 898 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 899 return hasProperty(MCID::MoveImm, Type); 900 } 901 902 /// Return true if this instruction is a register move. 903 /// (including moving values from subreg to reg) 904 bool isMoveReg(QueryType Type = IgnoreBundle) const { 905 return hasProperty(MCID::MoveReg, Type); 906 } 907 908 /// Return true if this instruction is a bitcast instruction. 909 bool isBitcast(QueryType Type = IgnoreBundle) const { 910 return hasProperty(MCID::Bitcast, Type); 911 } 912 913 /// Return true if this instruction is a select instruction. 914 bool isSelect(QueryType Type = IgnoreBundle) const { 915 return hasProperty(MCID::Select, Type); 916 } 917 918 /// Return true if this instruction cannot be safely duplicated. 919 /// For example, if the instruction has a unique labels attached 920 /// to it, duplicating it would cause multiple definition errors. 921 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 922 return hasProperty(MCID::NotDuplicable, Type); 923 } 924 925 /// Return true if this instruction is convergent. 926 /// Convergent instructions can not be made control-dependent on any 927 /// additional values. 928 bool isConvergent(QueryType Type = AnyInBundle) const { 929 if (isInlineAsm()) { 930 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 931 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 932 return true; 933 } 934 return hasProperty(MCID::Convergent, Type); 935 } 936 937 /// Returns true if the specified instruction has a delay slot 938 /// which must be filled by the code generator. 939 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 940 return hasProperty(MCID::DelaySlot, Type); 941 } 942 943 /// Return true for instructions that can be folded as 944 /// memory operands in other instructions. The most common use for this 945 /// is instructions that are simple loads from memory that don't modify 946 /// the loaded value in any way, but it can also be used for instructions 947 /// that can be expressed as constant-pool loads, such as V_SETALLONES 948 /// on x86, to allow them to be folded when it is beneficial. 949 /// This should only be set on instructions that return a value in their 950 /// only virtual register definition. 951 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 952 return hasProperty(MCID::FoldableAsLoad, Type); 953 } 954 955 /// Return true if this instruction behaves 956 /// the same way as the generic REG_SEQUENCE instructions. 957 /// E.g., on ARM, 958 /// dX VMOVDRR rY, rZ 959 /// is equivalent to 960 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 961 /// 962 /// Note that for the optimizers to be able to take advantage of 963 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 964 /// override accordingly. 965 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 966 return hasProperty(MCID::RegSequence, Type); 967 } 968 969 /// Return true if this instruction behaves 970 /// the same way as the generic EXTRACT_SUBREG instructions. 971 /// E.g., on ARM, 972 /// rX, rY VMOVRRD dZ 973 /// is equivalent to two EXTRACT_SUBREG: 974 /// rX = EXTRACT_SUBREG dZ, ssub_0 975 /// rY = EXTRACT_SUBREG dZ, ssub_1 976 /// 977 /// Note that for the optimizers to be able to take advantage of 978 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 979 /// override accordingly. 980 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 981 return hasProperty(MCID::ExtractSubreg, Type); 982 } 983 984 /// Return true if this instruction behaves 985 /// the same way as the generic INSERT_SUBREG instructions. 986 /// E.g., on ARM, 987 /// dX = VSETLNi32 dY, rZ, Imm 988 /// is equivalent to a INSERT_SUBREG: 989 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 990 /// 991 /// Note that for the optimizers to be able to take advantage of 992 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 993 /// override accordingly. 994 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 995 return hasProperty(MCID::InsertSubreg, Type); 996 } 997 998 //===--------------------------------------------------------------------===// 999 // Side Effect Analysis 1000 //===--------------------------------------------------------------------===// 1001 1002 /// Return true if this instruction could possibly read memory. 1003 /// Instructions with this flag set are not necessarily simple load 1004 /// instructions, they may load a value and modify it, for example. 1005 bool mayLoad(QueryType Type = AnyInBundle) const { 1006 if (isInlineAsm()) { 1007 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1008 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1009 return true; 1010 } 1011 return hasProperty(MCID::MayLoad, Type); 1012 } 1013 1014 /// Return true if this instruction could possibly modify memory. 1015 /// Instructions with this flag set are not necessarily simple store 1016 /// instructions, they may store a modified value based on their operands, or 1017 /// may not actually modify anything, for example. 1018 bool mayStore(QueryType Type = AnyInBundle) const { 1019 if (isInlineAsm()) { 1020 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1021 if (ExtraInfo & InlineAsm::Extra_MayStore) 1022 return true; 1023 } 1024 return hasProperty(MCID::MayStore, Type); 1025 } 1026 1027 /// Return true if this instruction could possibly read or modify memory. 1028 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 1029 return mayLoad(Type) || mayStore(Type); 1030 } 1031 1032 /// Return true if this instruction could possibly raise a floating-point 1033 /// exception. This is the case if the instruction is a floating-point 1034 /// instruction that can in principle raise an exception, as indicated 1035 /// by the MCID::MayRaiseFPException property, *and* at the same time, 1036 /// the instruction is used in a context where we expect floating-point 1037 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. 1038 bool mayRaiseFPException() const { 1039 return hasProperty(MCID::MayRaiseFPException) && 1040 !getFlag(MachineInstr::MIFlag::NoFPExcept); 1041 } 1042 1043 //===--------------------------------------------------------------------===// 1044 // Flags that indicate whether an instruction can be modified by a method. 1045 //===--------------------------------------------------------------------===// 1046 1047 /// Return true if this may be a 2- or 3-address 1048 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 1049 /// result if Y and Z are exchanged. If this flag is set, then the 1050 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 1051 /// instruction. 1052 /// 1053 /// Note that this flag may be set on instructions that are only commutable 1054 /// sometimes. In these cases, the call to commuteInstruction will fail. 1055 /// Also note that some instructions require non-trivial modification to 1056 /// commute them. 1057 bool isCommutable(QueryType Type = IgnoreBundle) const { 1058 return hasProperty(MCID::Commutable, Type); 1059 } 1060 1061 /// Return true if this is a 2-address instruction 1062 /// which can be changed into a 3-address instruction if needed. Doing this 1063 /// transformation can be profitable in the register allocator, because it 1064 /// means that the instruction can use a 2-address form if possible, but 1065 /// degrade into a less efficient form if the source and dest register cannot 1066 /// be assigned to the same register. For example, this allows the x86 1067 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 1068 /// is the same speed as the shift but has bigger code size. 1069 /// 1070 /// If this returns true, then the target must implement the 1071 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 1072 /// is allowed to fail if the transformation isn't valid for this specific 1073 /// instruction (e.g. shl reg, 4 on x86). 1074 /// 1075 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 1076 return hasProperty(MCID::ConvertibleTo3Addr, Type); 1077 } 1078 1079 /// Return true if this instruction requires 1080 /// custom insertion support when the DAG scheduler is inserting it into a 1081 /// machine basic block. If this is true for the instruction, it basically 1082 /// means that it is a pseudo instruction used at SelectionDAG time that is 1083 /// expanded out into magic code by the target when MachineInstrs are formed. 1084 /// 1085 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 1086 /// is used to insert this into the MachineBasicBlock. 1087 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 1088 return hasProperty(MCID::UsesCustomInserter, Type); 1089 } 1090 1091 /// Return true if this instruction requires *adjustment* 1092 /// after instruction selection by calling a target hook. For example, this 1093 /// can be used to fill in ARM 's' optional operand depending on whether 1094 /// the conditional flag register is used. 1095 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 1096 return hasProperty(MCID::HasPostISelHook, Type); 1097 } 1098 1099 /// Returns true if this instruction is a candidate for remat. 1100 /// This flag is deprecated, please don't use it anymore. If this 1101 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 1102 /// verify the instruction is really rematable. 1103 bool isRematerializable(QueryType Type = AllInBundle) const { 1104 // It's only possible to re-mat a bundle if all bundled instructions are 1105 // re-materializable. 1106 return hasProperty(MCID::Rematerializable, Type); 1107 } 1108 1109 /// Returns true if this instruction has the same cost (or less) than a move 1110 /// instruction. This is useful during certain types of optimizations 1111 /// (e.g., remat during two-address conversion or machine licm) 1112 /// where we would like to remat or hoist the instruction, but not if it costs 1113 /// more than moving the instruction into the appropriate register. Note, we 1114 /// are not marking copies from and to the same register class with this flag. 1115 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 1116 // Only returns true for a bundle if all bundled instructions are cheap. 1117 return hasProperty(MCID::CheapAsAMove, Type); 1118 } 1119 1120 /// Returns true if this instruction source operands 1121 /// have special register allocation requirements that are not captured by the 1122 /// operand register classes. e.g. ARM::STRD's two source registers must be an 1123 /// even / odd pair, ARM::STM registers have to be in ascending order. 1124 /// Post-register allocation passes should not attempt to change allocations 1125 /// for sources of instructions with this flag. 1126 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 1127 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 1128 } 1129 1130 /// Returns true if this instruction def operands 1131 /// have special register allocation requirements that are not captured by the 1132 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 1133 /// even / odd pair, ARM::LDM registers have to be in ascending order. 1134 /// Post-register allocation passes should not attempt to change allocations 1135 /// for definitions of instructions with this flag. 1136 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 1137 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 1138 } 1139 1140 enum MICheckType { 1141 CheckDefs, // Check all operands for equality 1142 CheckKillDead, // Check all operands including kill / dead markers 1143 IgnoreDefs, // Ignore all definitions 1144 IgnoreVRegDefs // Ignore virtual register definitions 1145 }; 1146 1147 /// Return true if this instruction is identical to \p Other. 1148 /// Two instructions are identical if they have the same opcode and all their 1149 /// operands are identical (with respect to MachineOperand::isIdenticalTo()). 1150 /// Note that this means liveness related flags (dead, undef, kill) do not 1151 /// affect the notion of identical. 1152 bool isIdenticalTo(const MachineInstr &Other, 1153 MICheckType Check = CheckDefs) const; 1154 1155 /// Unlink 'this' from the containing basic block, and return it without 1156 /// deleting it. 1157 /// 1158 /// This function can not be used on bundled instructions, use 1159 /// removeFromBundle() to remove individual instructions from a bundle. 1160 MachineInstr *removeFromParent(); 1161 1162 /// Unlink this instruction from its basic block and return it without 1163 /// deleting it. 1164 /// 1165 /// If the instruction is part of a bundle, the other instructions in the 1166 /// bundle remain bundled. 1167 MachineInstr *removeFromBundle(); 1168 1169 /// Unlink 'this' from the containing basic block and delete it. 1170 /// 1171 /// If this instruction is the header of a bundle, the whole bundle is erased. 1172 /// This function can not be used for instructions inside a bundle, use 1173 /// eraseFromBundle() to erase individual bundled instructions. 1174 void eraseFromParent(); 1175 1176 /// Unlink 'this' form its basic block and delete it. 1177 /// 1178 /// If the instruction is part of a bundle, the other instructions in the 1179 /// bundle remain bundled. 1180 void eraseFromBundle(); 1181 1182 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 1183 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 1184 bool isAnnotationLabel() const { 1185 return getOpcode() == TargetOpcode::ANNOTATION_LABEL; 1186 } 1187 1188 /// Returns true if the MachineInstr represents a label. 1189 bool isLabel() const { 1190 return isEHLabel() || isGCLabel() || isAnnotationLabel(); 1191 } 1192 1193 bool isCFIInstruction() const { 1194 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 1195 } 1196 1197 bool isPseudoProbe() const { 1198 return getOpcode() == TargetOpcode::PSEUDO_PROBE; 1199 } 1200 1201 // True if the instruction represents a position in the function. 1202 bool isPosition() const { return isLabel() || isCFIInstruction(); } 1203 1204 bool isNonListDebugValue() const { 1205 return getOpcode() == TargetOpcode::DBG_VALUE; 1206 } 1207 bool isDebugValueList() const { 1208 return getOpcode() == TargetOpcode::DBG_VALUE_LIST; 1209 } 1210 bool isDebugValue() const { 1211 return isNonListDebugValue() || isDebugValueList(); 1212 } 1213 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } 1214 bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; } 1215 bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; } 1216 bool isDebugInstr() const { 1217 return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI(); 1218 } 1219 bool isDebugOrPseudoInstr() const { 1220 return isDebugInstr() || isPseudoProbe(); 1221 } 1222 1223 bool isDebugOffsetImm() const { 1224 return isNonListDebugValue() && getDebugOffset().isImm(); 1225 } 1226 1227 /// A DBG_VALUE is indirect iff the location operand is a register and 1228 /// the offset operand is an immediate. 1229 bool isIndirectDebugValue() const { 1230 return isDebugOffsetImm() && getDebugOperand(0).isReg(); 1231 } 1232 1233 /// A DBG_VALUE is an entry value iff its debug expression contains the 1234 /// DW_OP_LLVM_entry_value operation. 1235 bool isDebugEntryValue() const; 1236 1237 /// Return true if the instruction is a debug value which describes a part of 1238 /// a variable as unavailable. 1239 bool isUndefDebugValue() const { 1240 if (!isDebugValue()) 1241 return false; 1242 // If any $noreg locations are given, this DV is undef. 1243 for (const MachineOperand &Op : debug_operands()) 1244 if (Op.isReg() && !Op.getReg().isValid()) 1245 return true; 1246 return false; 1247 } 1248 1249 bool isPHI() const { 1250 return getOpcode() == TargetOpcode::PHI || 1251 getOpcode() == TargetOpcode::G_PHI; 1252 } 1253 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 1254 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 1255 bool isInlineAsm() const { 1256 return getOpcode() == TargetOpcode::INLINEASM || 1257 getOpcode() == TargetOpcode::INLINEASM_BR; 1258 } 1259 1260 /// FIXME: Seems like a layering violation that the AsmDialect, which is X86 1261 /// specific, be attached to a generic MachineInstr. 1262 bool isMSInlineAsm() const { 1263 return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel; 1264 } 1265 1266 bool isStackAligningInlineAsm() const; 1267 InlineAsm::AsmDialect getInlineAsmDialect() const; 1268 1269 bool isInsertSubreg() const { 1270 return getOpcode() == TargetOpcode::INSERT_SUBREG; 1271 } 1272 1273 bool isSubregToReg() const { 1274 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 1275 } 1276 1277 bool isRegSequence() const { 1278 return getOpcode() == TargetOpcode::REG_SEQUENCE; 1279 } 1280 1281 bool isBundle() const { 1282 return getOpcode() == TargetOpcode::BUNDLE; 1283 } 1284 1285 bool isCopy() const { 1286 return getOpcode() == TargetOpcode::COPY; 1287 } 1288 1289 bool isFullCopy() const { 1290 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 1291 } 1292 1293 bool isExtractSubreg() const { 1294 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 1295 } 1296 1297 /// Return true if the instruction behaves like a copy. 1298 /// This does not include native copy instructions. 1299 bool isCopyLike() const { 1300 return isCopy() || isSubregToReg(); 1301 } 1302 1303 /// Return true is the instruction is an identity copy. 1304 bool isIdentityCopy() const { 1305 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 1306 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 1307 } 1308 1309 /// Return true if this instruction doesn't produce any output in the form of 1310 /// executable instructions. 1311 bool isMetaInstruction() const { 1312 switch (getOpcode()) { 1313 default: 1314 return false; 1315 case TargetOpcode::IMPLICIT_DEF: 1316 case TargetOpcode::KILL: 1317 case TargetOpcode::CFI_INSTRUCTION: 1318 case TargetOpcode::EH_LABEL: 1319 case TargetOpcode::GC_LABEL: 1320 case TargetOpcode::DBG_VALUE: 1321 case TargetOpcode::DBG_VALUE_LIST: 1322 case TargetOpcode::DBG_INSTR_REF: 1323 case TargetOpcode::DBG_PHI: 1324 case TargetOpcode::DBG_LABEL: 1325 case TargetOpcode::LIFETIME_START: 1326 case TargetOpcode::LIFETIME_END: 1327 case TargetOpcode::PSEUDO_PROBE: 1328 case TargetOpcode::ARITH_FENCE: 1329 return true; 1330 } 1331 } 1332 1333 /// Return true if this is a transient instruction that is either very likely 1334 /// to be eliminated during register allocation (such as copy-like 1335 /// instructions), or if this instruction doesn't have an execution-time cost. 1336 bool isTransient() const { 1337 switch (getOpcode()) { 1338 default: 1339 return isMetaInstruction(); 1340 // Copy-like instructions are usually eliminated during register allocation. 1341 case TargetOpcode::PHI: 1342 case TargetOpcode::G_PHI: 1343 case TargetOpcode::COPY: 1344 case TargetOpcode::INSERT_SUBREG: 1345 case TargetOpcode::SUBREG_TO_REG: 1346 case TargetOpcode::REG_SEQUENCE: 1347 return true; 1348 } 1349 } 1350 1351 /// Return the number of instructions inside the MI bundle, excluding the 1352 /// bundle header. 1353 /// 1354 /// This is the number of instructions that MachineBasicBlock::iterator 1355 /// skips, 0 for unbundled instructions. 1356 unsigned getBundleSize() const; 1357 1358 /// Return true if the MachineInstr reads the specified register. 1359 /// If TargetRegisterInfo is passed, then it also checks if there 1360 /// is a read of a super-register. 1361 /// This does not count partial redefines of virtual registers as reads: 1362 /// %reg1024:6 = OP. 1363 bool readsRegister(Register Reg, 1364 const TargetRegisterInfo *TRI = nullptr) const { 1365 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 1366 } 1367 1368 /// Return true if the MachineInstr reads the specified virtual register. 1369 /// Take into account that a partial define is a 1370 /// read-modify-write operation. 1371 bool readsVirtualRegister(Register Reg) const { 1372 return readsWritesVirtualRegister(Reg).first; 1373 } 1374 1375 /// Return a pair of bools (reads, writes) indicating if this instruction 1376 /// reads or writes Reg. This also considers partial defines. 1377 /// If Ops is not null, all operand indices for Reg are added. 1378 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, 1379 SmallVectorImpl<unsigned> *Ops = nullptr) const; 1380 1381 /// Return true if the MachineInstr kills the specified register. 1382 /// If TargetRegisterInfo is passed, then it also checks if there is 1383 /// a kill of a super-register. 1384 bool killsRegister(Register Reg, 1385 const TargetRegisterInfo *TRI = nullptr) const { 1386 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 1387 } 1388 1389 /// Return true if the MachineInstr fully defines the specified register. 1390 /// If TargetRegisterInfo is passed, then it also checks 1391 /// if there is a def of a super-register. 1392 /// NOTE: It's ignoring subreg indices on virtual registers. 1393 bool definesRegister(Register Reg, 1394 const TargetRegisterInfo *TRI = nullptr) const { 1395 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 1396 } 1397 1398 /// Return true if the MachineInstr modifies (fully define or partially 1399 /// define) the specified register. 1400 /// NOTE: It's ignoring subreg indices on virtual registers. 1401 bool modifiesRegister(Register Reg, 1402 const TargetRegisterInfo *TRI = nullptr) const { 1403 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 1404 } 1405 1406 /// Returns true if the register is dead in this machine instruction. 1407 /// If TargetRegisterInfo is passed, then it also checks 1408 /// if there is a dead def of a super-register. 1409 bool registerDefIsDead(Register Reg, 1410 const TargetRegisterInfo *TRI = nullptr) const { 1411 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 1412 } 1413 1414 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1415 /// the given register (not considering sub/super-registers). 1416 bool hasRegisterImplicitUseOperand(Register Reg) const; 1417 1418 /// Returns the operand index that is a use of the specific register or -1 1419 /// if it is not found. It further tightens the search criteria to a use 1420 /// that kills the register if isKill is true. 1421 int findRegisterUseOperandIdx(Register Reg, bool isKill = false, 1422 const TargetRegisterInfo *TRI = nullptr) const; 1423 1424 /// Wrapper for findRegisterUseOperandIdx, it returns 1425 /// a pointer to the MachineOperand rather than an index. 1426 MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false, 1427 const TargetRegisterInfo *TRI = nullptr) { 1428 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 1429 return (Idx == -1) ? nullptr : &getOperand(Idx); 1430 } 1431 1432 const MachineOperand *findRegisterUseOperand( 1433 Register Reg, bool isKill = false, 1434 const TargetRegisterInfo *TRI = nullptr) const { 1435 return const_cast<MachineInstr *>(this)-> 1436 findRegisterUseOperand(Reg, isKill, TRI); 1437 } 1438 1439 /// Returns the operand index that is a def of the specified register or 1440 /// -1 if it is not found. If isDead is true, defs that are not dead are 1441 /// skipped. If Overlap is true, then it also looks for defs that merely 1442 /// overlap the specified register. If TargetRegisterInfo is non-null, 1443 /// then it also checks if there is a def of a super-register. 1444 /// This may also return a register mask operand when Overlap is true. 1445 int findRegisterDefOperandIdx(Register Reg, 1446 bool isDead = false, bool Overlap = false, 1447 const TargetRegisterInfo *TRI = nullptr) const; 1448 1449 /// Wrapper for findRegisterDefOperandIdx, it returns 1450 /// a pointer to the MachineOperand rather than an index. 1451 MachineOperand * 1452 findRegisterDefOperand(Register Reg, bool isDead = false, 1453 bool Overlap = false, 1454 const TargetRegisterInfo *TRI = nullptr) { 1455 int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI); 1456 return (Idx == -1) ? nullptr : &getOperand(Idx); 1457 } 1458 1459 const MachineOperand * 1460 findRegisterDefOperand(Register Reg, bool isDead = false, 1461 bool Overlap = false, 1462 const TargetRegisterInfo *TRI = nullptr) const { 1463 return const_cast<MachineInstr *>(this)->findRegisterDefOperand( 1464 Reg, isDead, Overlap, TRI); 1465 } 1466 1467 /// Find the index of the first operand in the 1468 /// operand list that is used to represent the predicate. It returns -1 if 1469 /// none is found. 1470 int findFirstPredOperandIdx() const; 1471 1472 /// Find the index of the flag word operand that 1473 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 1474 /// getOperand(OpIdx) does not belong to an inline asm operand group. 1475 /// 1476 /// If GroupNo is not NULL, it will receive the number of the operand group 1477 /// containing OpIdx. 1478 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 1479 1480 /// Compute the static register class constraint for operand OpIdx. 1481 /// For normal instructions, this is derived from the MCInstrDesc. 1482 /// For inline assembly it is derived from the flag words. 1483 /// 1484 /// Returns NULL if the static register class constraint cannot be 1485 /// determined. 1486 const TargetRegisterClass* 1487 getRegClassConstraint(unsigned OpIdx, 1488 const TargetInstrInfo *TII, 1489 const TargetRegisterInfo *TRI) const; 1490 1491 /// Applies the constraints (def/use) implied by this MI on \p Reg to 1492 /// the given \p CurRC. 1493 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1494 /// instructions inside the bundle will be taken into account. In other words, 1495 /// this method accumulates all the constraints of the operand of this MI and 1496 /// the related bundle if MI is a bundle or inside a bundle. 1497 /// 1498 /// Returns the register class that satisfies both \p CurRC and the 1499 /// constraints set by MI. Returns NULL if such a register class does not 1500 /// exist. 1501 /// 1502 /// \pre CurRC must not be NULL. 1503 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1504 Register Reg, const TargetRegisterClass *CurRC, 1505 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1506 bool ExploreBundle = false) const; 1507 1508 /// Applies the constraints (def/use) implied by the \p OpIdx operand 1509 /// to the given \p CurRC. 1510 /// 1511 /// Returns the register class that satisfies both \p CurRC and the 1512 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1513 /// does not exist. 1514 /// 1515 /// \pre CurRC must not be NULL. 1516 /// \pre The operand at \p OpIdx must be a register. 1517 const TargetRegisterClass * 1518 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1519 const TargetInstrInfo *TII, 1520 const TargetRegisterInfo *TRI) const; 1521 1522 /// Add a tie between the register operands at DefIdx and UseIdx. 1523 /// The tie will cause the register allocator to ensure that the two 1524 /// operands are assigned the same physical register. 1525 /// 1526 /// Tied operands are managed automatically for explicit operands in the 1527 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1528 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1529 1530 /// Given the index of a tied register operand, find the 1531 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1532 /// index of the tied operand which must exist. 1533 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1534 1535 /// Given the index of a register def operand, 1536 /// check if the register def is tied to a source operand, due to either 1537 /// two-address elimination or inline assembly constraints. Returns the 1538 /// first tied use operand index by reference if UseOpIdx is not null. 1539 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1540 unsigned *UseOpIdx = nullptr) const { 1541 const MachineOperand &MO = getOperand(DefOpIdx); 1542 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1543 return false; 1544 if (UseOpIdx) 1545 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1546 return true; 1547 } 1548 1549 /// Return true if the use operand of the specified index is tied to a def 1550 /// operand. It also returns the def operand index by reference if DefOpIdx 1551 /// is not null. 1552 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1553 unsigned *DefOpIdx = nullptr) const { 1554 const MachineOperand &MO = getOperand(UseOpIdx); 1555 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1556 return false; 1557 if (DefOpIdx) 1558 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1559 return true; 1560 } 1561 1562 /// Clears kill flags on all operands. 1563 void clearKillInfo(); 1564 1565 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1566 /// properly composing subreg indices where necessary. 1567 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, 1568 const TargetRegisterInfo &RegInfo); 1569 1570 /// We have determined MI kills a register. Look for the 1571 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1572 /// add a implicit operand if it's not found. Returns true if the operand 1573 /// exists / is added. 1574 bool addRegisterKilled(Register IncomingReg, 1575 const TargetRegisterInfo *RegInfo, 1576 bool AddIfNotFound = false); 1577 1578 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1579 /// all aliasing registers. 1580 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); 1581 1582 /// We have determined MI defined a register without a use. 1583 /// Look for the operand that defines it and mark it as IsDead. If 1584 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1585 /// true if the operand exists / is added. 1586 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, 1587 bool AddIfNotFound = false); 1588 1589 /// Clear all dead flags on operands defining register @p Reg. 1590 void clearRegisterDeads(Register Reg); 1591 1592 /// Mark all subregister defs of register @p Reg with the undef flag. 1593 /// This function is used when we determined to have a subregister def in an 1594 /// otherwise undefined super register. 1595 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); 1596 1597 /// We have determined MI defines a register. Make sure there is an operand 1598 /// defining Reg. 1599 void addRegisterDefined(Register Reg, 1600 const TargetRegisterInfo *RegInfo = nullptr); 1601 1602 /// Mark every physreg used by this instruction as 1603 /// dead except those in the UsedRegs list. 1604 /// 1605 /// On instructions with register mask operands, also add implicit-def 1606 /// operands for all registers in UsedRegs. 1607 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1608 const TargetRegisterInfo &TRI); 1609 1610 /// Return true if it is safe to move this instruction. If 1611 /// SawStore is set to true, it means that there is a store (or call) between 1612 /// the instruction's location and its intended destination. 1613 bool isSafeToMove(AAResults *AA, bool &SawStore) const; 1614 1615 /// Returns true if this instruction's memory access aliases the memory 1616 /// access of Other. 1617 // 1618 /// Assumes any physical registers used to compute addresses 1619 /// have the same value for both instructions. Returns false if neither 1620 /// instruction writes to memory. 1621 /// 1622 /// @param AA Optional alias analysis, used to compare memory operands. 1623 /// @param Other MachineInstr to check aliasing against. 1624 /// @param UseTBAA Whether to pass TBAA information to alias analysis. 1625 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; 1626 1627 /// Return true if this instruction may have an ordered 1628 /// or volatile memory reference, or if the information describing the memory 1629 /// reference is not available. Return false if it is known to have no 1630 /// ordered or volatile memory references. 1631 bool hasOrderedMemoryRef() const; 1632 1633 /// Return true if this load instruction never traps and points to a memory 1634 /// location whose value doesn't change during the execution of this function. 1635 /// 1636 /// Examples include loading a value from the constant pool or from the 1637 /// argument area of a function (if it does not change). If the instruction 1638 /// does multiple loads, this returns true only if all of the loads are 1639 /// dereferenceable and invariant. 1640 bool isDereferenceableInvariantLoad(AAResults *AA) const; 1641 1642 /// If the specified instruction is a PHI that always merges together the 1643 /// same virtual register, return the register, otherwise return 0. 1644 unsigned isConstantValuePHI() const; 1645 1646 /// Return true if this instruction has side effects that are not modeled 1647 /// by mayLoad / mayStore, etc. 1648 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1649 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1650 /// INLINEASM instruction, in which case the side effect property is encoded 1651 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1652 /// 1653 bool hasUnmodeledSideEffects() const; 1654 1655 /// Returns true if it is illegal to fold a load across this instruction. 1656 bool isLoadFoldBarrier() const; 1657 1658 /// Return true if all the defs of this instruction are dead. 1659 bool allDefsAreDead() const; 1660 1661 /// Return a valid size if the instruction is a spill instruction. 1662 Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const; 1663 1664 /// Return a valid size if the instruction is a folded spill instruction. 1665 Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const; 1666 1667 /// Return a valid size if the instruction is a restore instruction. 1668 Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const; 1669 1670 /// Return a valid size if the instruction is a folded restore instruction. 1671 Optional<unsigned> 1672 getFoldedRestoreSize(const TargetInstrInfo *TII) const; 1673 1674 /// Copy implicit register operands from specified 1675 /// instruction to this instruction. 1676 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1677 1678 /// Debugging support 1679 /// @{ 1680 /// Determine the generic type to be printed (if needed) on uses and defs. 1681 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1682 const MachineRegisterInfo &MRI) const; 1683 1684 /// Return true when an instruction has tied register that can't be determined 1685 /// by the instruction's descriptor. This is useful for MIR printing, to 1686 /// determine whether we need to print the ties or not. 1687 bool hasComplexRegisterTies() const; 1688 1689 /// Print this MI to \p OS. 1690 /// Don't print information that can be inferred from other instructions if 1691 /// \p IsStandalone is false. It is usually true when only a fragment of the 1692 /// function is printed. 1693 /// Only print the defs and the opcode if \p SkipOpers is true. 1694 /// Otherwise, also print operands if \p SkipDebugLoc is true. 1695 /// Otherwise, also print the debug loc, with a terminating newline. 1696 /// \p TII is used to print the opcode name. If it's not present, but the 1697 /// MI is in a function, the opcode will be printed using the function's TII. 1698 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, 1699 bool SkipDebugLoc = false, bool AddNewLine = true, 1700 const TargetInstrInfo *TII = nullptr) const; 1701 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, 1702 bool SkipOpers = false, bool SkipDebugLoc = false, 1703 bool AddNewLine = true, 1704 const TargetInstrInfo *TII = nullptr) const; 1705 void dump() const; 1706 /// Print on dbgs() the current instruction and the instructions defining its 1707 /// operands and so on until we reach \p MaxDepth. 1708 void dumpr(const MachineRegisterInfo &MRI, 1709 unsigned MaxDepth = UINT_MAX) const; 1710 /// @} 1711 1712 //===--------------------------------------------------------------------===// 1713 // Accessors used to build up machine instructions. 1714 1715 /// Add the specified operand to the instruction. If it is an implicit 1716 /// operand, it is added to the end of the operand list. If it is an 1717 /// explicit operand it is added at the end of the explicit operand list 1718 /// (before the first implicit operand). 1719 /// 1720 /// MF must be the machine function that was used to allocate this 1721 /// instruction. 1722 /// 1723 /// MachineInstrBuilder provides a more convenient interface for creating 1724 /// instructions and adding operands. 1725 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1726 1727 /// Add an operand without providing an MF reference. This only works for 1728 /// instructions that are inserted in a basic block. 1729 /// 1730 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1731 /// preferred. 1732 void addOperand(const MachineOperand &Op); 1733 1734 /// Replace the instruction descriptor (thus opcode) of 1735 /// the current instruction with a new one. 1736 void setDesc(const MCInstrDesc &TID) { MCID = &TID; } 1737 1738 /// Replace current source information with new such. 1739 /// Avoid using this, the constructor argument is preferable. 1740 void setDebugLoc(DebugLoc DL) { 1741 DbgLoc = std::move(DL); 1742 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1743 } 1744 1745 /// Erase an operand from an instruction, leaving it with one 1746 /// fewer operand than it started with. 1747 void RemoveOperand(unsigned OpNo); 1748 1749 /// Clear this MachineInstr's memory reference descriptor list. This resets 1750 /// the memrefs to their most conservative state. This should be used only 1751 /// as a last resort since it greatly pessimizes our knowledge of the memory 1752 /// access performed by the instruction. 1753 void dropMemRefs(MachineFunction &MF); 1754 1755 /// Assign this MachineInstr's memory reference descriptor list. 1756 /// 1757 /// Unlike other methods, this *will* allocate them into a new array 1758 /// associated with the provided `MachineFunction`. 1759 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); 1760 1761 /// Add a MachineMemOperand to the machine instruction. 1762 /// This function should be used only occasionally. The setMemRefs function 1763 /// is the primary method for setting up a MachineInstr's MemRefs list. 1764 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1765 1766 /// Clone another MachineInstr's memory reference descriptor list and replace 1767 /// ours with it. 1768 /// 1769 /// Note that `*this` may be the incoming MI! 1770 /// 1771 /// Prefer this API whenever possible as it can avoid allocations in common 1772 /// cases. 1773 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); 1774 1775 /// Clone the merge of multiple MachineInstrs' memory reference descriptors 1776 /// list and replace ours with it. 1777 /// 1778 /// Note that `*this` may be one of the incoming MIs! 1779 /// 1780 /// Prefer this API whenever possible as it can avoid allocations in common 1781 /// cases. 1782 void cloneMergedMemRefs(MachineFunction &MF, 1783 ArrayRef<const MachineInstr *> MIs); 1784 1785 /// Set a symbol that will be emitted just prior to the instruction itself. 1786 /// 1787 /// Setting this to a null pointer will remove any such symbol. 1788 /// 1789 /// FIXME: This is not fully implemented yet. 1790 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1791 1792 /// Set a symbol that will be emitted just after the instruction itself. 1793 /// 1794 /// Setting this to a null pointer will remove any such symbol. 1795 /// 1796 /// FIXME: This is not fully implemented yet. 1797 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1798 1799 /// Clone another MachineInstr's pre- and post- instruction symbols and 1800 /// replace ours with it. 1801 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); 1802 1803 /// Set a marker on instructions that denotes where we should create and emit 1804 /// heap alloc site labels. This waits until after instruction selection and 1805 /// optimizations to create the label, so it should still work if the 1806 /// instruction is removed or duplicated. 1807 void setHeapAllocMarker(MachineFunction &MF, MDNode *MD); 1808 1809 /// Return the MIFlags which represent both MachineInstrs. This 1810 /// should be used when merging two MachineInstrs into one. This routine does 1811 /// not modify the MIFlags of this MachineInstr. 1812 uint16_t mergeFlagsWith(const MachineInstr& Other) const; 1813 1814 static uint16_t copyFlagsFromInstruction(const Instruction &I); 1815 1816 /// Copy all flags to MachineInst MIFlags 1817 void copyIRFlags(const Instruction &I); 1818 1819 /// Break any tie involving OpIdx. 1820 void untieRegOperand(unsigned OpIdx) { 1821 MachineOperand &MO = getOperand(OpIdx); 1822 if (MO.isReg() && MO.isTied()) { 1823 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1824 MO.TiedTo = 0; 1825 } 1826 } 1827 1828 /// Add all implicit def and use operands to this instruction. 1829 void addImplicitDefUseOperands(MachineFunction &MF); 1830 1831 /// Scan instructions immediately following MI and collect any matching 1832 /// DBG_VALUEs. 1833 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); 1834 1835 /// Find all DBG_VALUEs that point to the register def in this instruction 1836 /// and point them to \p Reg instead. 1837 void changeDebugValuesDefReg(Register Reg); 1838 1839 /// Returns the Intrinsic::ID for this instruction. 1840 /// \pre Must have an intrinsic ID operand. 1841 unsigned getIntrinsicID() const { 1842 return getOperand(getNumExplicitDefs()).getIntrinsicID(); 1843 } 1844 1845 /// Sets all register debug operands in this debug value instruction to be 1846 /// undef. 1847 void setDebugValueUndef() { 1848 assert(isDebugValue() && "Must be a debug value instruction."); 1849 for (MachineOperand &MO : debug_operands()) { 1850 if (MO.isReg()) { 1851 MO.setReg(0); 1852 MO.setSubReg(0); 1853 } 1854 } 1855 } 1856 1857 private: 1858 /// If this instruction is embedded into a MachineFunction, return the 1859 /// MachineRegisterInfo object for the current function, otherwise 1860 /// return null. 1861 MachineRegisterInfo *getRegInfo(); 1862 1863 /// Unlink all of the register operands in this instruction from their 1864 /// respective use lists. This requires that the operands already be on their 1865 /// use lists. 1866 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 1867 1868 /// Add all of the register operands in this instruction from their 1869 /// respective use lists. This requires that the operands not be on their 1870 /// use lists yet. 1871 void AddRegOperandsToUseLists(MachineRegisterInfo&); 1872 1873 /// Slow path for hasProperty when we're dealing with a bundle. 1874 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; 1875 1876 /// Implements the logic of getRegClassConstraintEffectForVReg for the 1877 /// this MI and the given operand index \p OpIdx. 1878 /// If the related operand does not constrained Reg, this returns CurRC. 1879 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 1880 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 1881 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 1882 1883 /// Stores extra instruction information inline or allocates as ExtraInfo 1884 /// based on the number of pointers. 1885 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs, 1886 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, 1887 MDNode *HeapAllocMarker); 1888 }; 1889 1890 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 1891 /// instruction rather than by pointer value. 1892 /// The hashing and equality testing functions ignore definitions so this is 1893 /// useful for CSE, etc. 1894 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1895 static inline MachineInstr *getEmptyKey() { 1896 return nullptr; 1897 } 1898 1899 static inline MachineInstr *getTombstoneKey() { 1900 return reinterpret_cast<MachineInstr*>(-1); 1901 } 1902 1903 static unsigned getHashValue(const MachineInstr* const &MI); 1904 1905 static bool isEqual(const MachineInstr* const &LHS, 1906 const MachineInstr* const &RHS) { 1907 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1908 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1909 return LHS == RHS; 1910 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 1911 } 1912 }; 1913 1914 //===----------------------------------------------------------------------===// 1915 // Debugging Support 1916 1917 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1918 MI.print(OS); 1919 return OS; 1920 } 1921 1922 } // end namespace llvm 1923 1924 #endif // LLVM_CODEGEN_MACHINEINSTR_H 1925