1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the declaration of the MachineInstr class, which is the 10 // basic representation for all target dependent machine instructions used by 11 // the back end. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 16 #define LLVM_CODEGEN_MACHINEINSTR_H 17 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/PointerSumType.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/ilist.h" 22 #include "llvm/ADT/ilist_node.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/PseudoProbe.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/ArrayRecycler.h" 33 #include "llvm/Support/TrailingObjects.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <utility> 38 39 namespace llvm { 40 41 class AAResults; 42 template <typename T> class ArrayRef; 43 class DIExpression; 44 class DILocalVariable; 45 class MachineBasicBlock; 46 class MachineFunction; 47 class MachineRegisterInfo; 48 class ModuleSlotTracker; 49 class raw_ostream; 50 template <typename T> class SmallVectorImpl; 51 class SmallBitVector; 52 class StringRef; 53 class TargetInstrInfo; 54 class TargetRegisterClass; 55 class TargetRegisterInfo; 56 57 //===----------------------------------------------------------------------===// 58 /// Representation of each machine instruction. 59 /// 60 /// This class isn't a POD type, but it must have a trivial destructor. When a 61 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 62 /// without having their destructor called. 63 /// 64 class MachineInstr 65 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, 66 ilist_sentinel_tracking<true>> { 67 public: 68 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; 69 70 /// Flags to specify different kinds of comments to output in 71 /// assembly code. These flags carry semantic information not 72 /// otherwise easily derivable from the IR text. 73 /// 74 enum CommentFlag { 75 ReloadReuse = 0x1, // higher bits are reserved for target dep comments. 76 NoSchedComment = 0x2, 77 TAsmComments = 0x4 // Target Asm comments should start from this value. 78 }; 79 80 enum MIFlag { 81 NoFlags = 0, 82 FrameSetup = 1 << 0, // Instruction is used as a part of 83 // function frame setup code. 84 FrameDestroy = 1 << 1, // Instruction is used as a part of 85 // function frame destruction code. 86 BundledPred = 1 << 2, // Instruction has bundled predecessors. 87 BundledSucc = 1 << 3, // Instruction has bundled successors. 88 FmNoNans = 1 << 4, // Instruction does not support Fast 89 // math nan values. 90 FmNoInfs = 1 << 5, // Instruction does not support Fast 91 // math infinity values. 92 FmNsz = 1 << 6, // Instruction is not required to retain 93 // signed zero values. 94 FmArcp = 1 << 7, // Instruction supports Fast math 95 // reciprocal approximations. 96 FmContract = 1 << 8, // Instruction supports Fast math 97 // contraction operations like fma. 98 FmAfn = 1 << 9, // Instruction may map to Fast math 99 // instrinsic approximation. 100 FmReassoc = 1 << 10, // Instruction supports Fast math 101 // reassociation of operand order. 102 NoUWrap = 1 << 11, // Instruction supports binary operator 103 // no unsigned wrap. 104 NoSWrap = 1 << 12, // Instruction supports binary operator 105 // no signed wrap. 106 IsExact = 1 << 13, // Instruction supports division is 107 // known to be exact. 108 NoFPExcept = 1 << 14, // Instruction does not raise 109 // floatint-point exceptions. 110 NoMerge = 1 << 15, // Passes that drop source location info 111 // (e.g. branch folding) should skip 112 // this instruction. 113 }; 114 115 private: 116 const MCInstrDesc *MCID; // Instruction descriptor. 117 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. 118 119 // Operands are allocated by an ArrayRecycler. 120 MachineOperand *Operands = nullptr; // Pointer to the first operand. 121 unsigned NumOperands = 0; // Number of operands on instruction. 122 123 uint16_t Flags = 0; // Various bits of additional 124 // information about machine 125 // instruction. 126 127 uint8_t AsmPrinterFlags = 0; // Various bits of information used by 128 // the AsmPrinter to emit helpful 129 // comments. This is *not* semantic 130 // information. Do not use this for 131 // anything other than to convey comment 132 // information to AsmPrinter. 133 134 // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags 135 // to properly pack. 136 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 137 OperandCapacity CapOperands; // Capacity of the Operands array. 138 139 /// Internal implementation detail class that provides out-of-line storage for 140 /// extra info used by the machine instruction when this info cannot be stored 141 /// in-line within the instruction itself. 142 /// 143 /// This has to be defined eagerly due to the implementation constraints of 144 /// `PointerSumType` where it is used. 145 class ExtraInfo final 146 : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> { 147 public: 148 static ExtraInfo *create(BumpPtrAllocator &Allocator, 149 ArrayRef<MachineMemOperand *> MMOs, 150 MCSymbol *PreInstrSymbol = nullptr, 151 MCSymbol *PostInstrSymbol = nullptr, 152 MDNode *HeapAllocMarker = nullptr) { 153 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 154 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 155 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 156 auto *Result = new (Allocator.Allocate( 157 totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>( 158 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, 159 HasHeapAllocMarker), 160 alignof(ExtraInfo))) 161 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, 162 HasHeapAllocMarker); 163 164 // Copy the actual data into the trailing objects. 165 std::copy(MMOs.begin(), MMOs.end(), 166 Result->getTrailingObjects<MachineMemOperand *>()); 167 168 if (HasPreInstrSymbol) 169 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; 170 if (HasPostInstrSymbol) 171 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = 172 PostInstrSymbol; 173 if (HasHeapAllocMarker) 174 Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker; 175 176 return Result; 177 } 178 179 ArrayRef<MachineMemOperand *> getMMOs() const { 180 return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); 181 } 182 183 MCSymbol *getPreInstrSymbol() const { 184 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; 185 } 186 187 MCSymbol *getPostInstrSymbol() const { 188 return HasPostInstrSymbol 189 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] 190 : nullptr; 191 } 192 193 MDNode *getHeapAllocMarker() const { 194 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr; 195 } 196 197 private: 198 friend TrailingObjects; 199 200 // Description of the extra info, used to interpret the actual optional 201 // data appended. 202 // 203 // Note that this is not terribly space optimized. This leaves a great deal 204 // of flexibility to fit more in here later. 205 const int NumMMOs; 206 const bool HasPreInstrSymbol; 207 const bool HasPostInstrSymbol; 208 const bool HasHeapAllocMarker; 209 210 // Implement the `TrailingObjects` internal API. 211 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { 212 return NumMMOs; 213 } 214 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { 215 return HasPreInstrSymbol + HasPostInstrSymbol; 216 } 217 size_t numTrailingObjects(OverloadToken<MDNode *>) const { 218 return HasHeapAllocMarker; 219 } 220 221 // Just a boring constructor to allow us to initialize the sizes. Always use 222 // the `create` routine above. 223 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, 224 bool HasHeapAllocMarker) 225 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), 226 HasPostInstrSymbol(HasPostInstrSymbol), 227 HasHeapAllocMarker(HasHeapAllocMarker) {} 228 }; 229 230 /// Enumeration of the kinds of inline extra info available. It is important 231 /// that the `MachineMemOperand` inline kind has a tag value of zero to make 232 /// it accessible as an `ArrayRef`. 233 enum ExtraInfoInlineKinds { 234 EIIK_MMO = 0, 235 EIIK_PreInstrSymbol, 236 EIIK_PostInstrSymbol, 237 EIIK_OutOfLine 238 }; 239 240 // We store extra information about the instruction here. The common case is 241 // expected to be nothing or a single pointer (typically a MMO or a symbol). 242 // We work to optimize this common case by storing it inline here rather than 243 // requiring a separate allocation, but we fall back to an allocation when 244 // multiple pointers are needed. 245 PointerSumType<ExtraInfoInlineKinds, 246 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, 247 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, 248 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, 249 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> 250 Info; 251 252 DebugLoc debugLoc; // Source line information. 253 254 /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values 255 /// defined by this instruction. 256 unsigned DebugInstrNum; 257 258 // Intrusive list support 259 friend struct ilist_traits<MachineInstr>; 260 friend struct ilist_callback_traits<MachineBasicBlock>; 261 void setParent(MachineBasicBlock *P) { Parent = P; } 262 263 /// This constructor creates a copy of the given 264 /// MachineInstr in the given MachineFunction. 265 MachineInstr(MachineFunction &, const MachineInstr &); 266 267 /// This constructor create a MachineInstr and add the implicit operands. 268 /// It reserves space for number of operands specified by 269 /// MCInstrDesc. An explicit DebugLoc is supplied. 270 MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl, 271 bool NoImp = false); 272 273 // MachineInstrs are pool-allocated and owned by MachineFunction. 274 friend class MachineFunction; 275 276 void 277 dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 278 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const; 279 280 public: 281 MachineInstr(const MachineInstr &) = delete; 282 MachineInstr &operator=(const MachineInstr &) = delete; 283 // Use MachineFunction::DeleteMachineInstr() instead. 284 ~MachineInstr() = delete; 285 286 const MachineBasicBlock* getParent() const { return Parent; } 287 MachineBasicBlock* getParent() { return Parent; } 288 289 /// Move the instruction before \p MovePos. 290 void moveBefore(MachineInstr *MovePos); 291 292 /// Return the function that contains the basic block that this instruction 293 /// belongs to. 294 /// 295 /// Note: this is undefined behaviour if the instruction does not have a 296 /// parent. 297 const MachineFunction *getMF() const; 298 MachineFunction *getMF() { 299 return const_cast<MachineFunction *>( 300 static_cast<const MachineInstr *>(this)->getMF()); 301 } 302 303 /// Return the asm printer flags bitvector. 304 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 305 306 /// Clear the AsmPrinter bitvector. 307 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 308 309 /// Return whether an AsmPrinter flag is set. 310 bool getAsmPrinterFlag(CommentFlag Flag) const { 311 return AsmPrinterFlags & Flag; 312 } 313 314 /// Set a flag for the AsmPrinter. 315 void setAsmPrinterFlag(uint8_t Flag) { 316 AsmPrinterFlags |= Flag; 317 } 318 319 /// Clear specific AsmPrinter flags. 320 void clearAsmPrinterFlag(CommentFlag Flag) { 321 AsmPrinterFlags &= ~Flag; 322 } 323 324 /// Return the MI flags bitvector. 325 uint16_t getFlags() const { 326 return Flags; 327 } 328 329 /// Return whether an MI flag is set. 330 bool getFlag(MIFlag Flag) const { 331 return Flags & Flag; 332 } 333 334 /// Set a MI flag. 335 void setFlag(MIFlag Flag) { 336 Flags |= (uint16_t)Flag; 337 } 338 339 void setFlags(unsigned flags) { 340 // Filter out the automatically maintained flags. 341 unsigned Mask = BundledPred | BundledSucc; 342 Flags = (Flags & Mask) | (flags & ~Mask); 343 } 344 345 /// clearFlag - Clear a MI flag. 346 void clearFlag(MIFlag Flag) { 347 Flags &= ~((uint16_t)Flag); 348 } 349 350 /// Return true if MI is in a bundle (but not the first MI in a bundle). 351 /// 352 /// A bundle looks like this before it's finalized: 353 /// ---------------- 354 /// | MI | 355 /// ---------------- 356 /// | 357 /// ---------------- 358 /// | MI * | 359 /// ---------------- 360 /// | 361 /// ---------------- 362 /// | MI * | 363 /// ---------------- 364 /// In this case, the first MI starts a bundle but is not inside a bundle, the 365 /// next 2 MIs are considered "inside" the bundle. 366 /// 367 /// After a bundle is finalized, it looks like this: 368 /// ---------------- 369 /// | Bundle | 370 /// ---------------- 371 /// | 372 /// ---------------- 373 /// | MI * | 374 /// ---------------- 375 /// | 376 /// ---------------- 377 /// | MI * | 378 /// ---------------- 379 /// | 380 /// ---------------- 381 /// | MI * | 382 /// ---------------- 383 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 384 /// a bundle, but the next three MIs are. 385 bool isInsideBundle() const { 386 return getFlag(BundledPred); 387 } 388 389 /// Return true if this instruction part of a bundle. This is true 390 /// if either itself or its following instruction is marked "InsideBundle". 391 bool isBundled() const { 392 return isBundledWithPred() || isBundledWithSucc(); 393 } 394 395 /// Return true if this instruction is part of a bundle, and it is not the 396 /// first instruction in the bundle. 397 bool isBundledWithPred() const { return getFlag(BundledPred); } 398 399 /// Return true if this instruction is part of a bundle, and it is not the 400 /// last instruction in the bundle. 401 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 402 403 /// Bundle this instruction with its predecessor. This can be an unbundled 404 /// instruction, or it can be the first instruction in a bundle. 405 void bundleWithPred(); 406 407 /// Bundle this instruction with its successor. This can be an unbundled 408 /// instruction, or it can be the last instruction in a bundle. 409 void bundleWithSucc(); 410 411 /// Break bundle above this instruction. 412 void unbundleFromPred(); 413 414 /// Break bundle below this instruction. 415 void unbundleFromSucc(); 416 417 /// Returns the debug location id of this MachineInstr. 418 const DebugLoc &getDebugLoc() const { return debugLoc; } 419 420 /// Return the operand containing the offset to be used if this DBG_VALUE 421 /// instruction is indirect; will be an invalid register if this value is 422 /// not indirect, and an immediate with value 0 otherwise. 423 const MachineOperand &getDebugOffset() const { 424 assert(isNonListDebugValue() && "not a DBG_VALUE"); 425 return getOperand(1); 426 } 427 MachineOperand &getDebugOffset() { 428 assert(isNonListDebugValue() && "not a DBG_VALUE"); 429 return getOperand(1); 430 } 431 432 /// Return the operand for the debug variable referenced by 433 /// this DBG_VALUE instruction. 434 const MachineOperand &getDebugVariableOp() const; 435 MachineOperand &getDebugVariableOp(); 436 437 /// Return the debug variable referenced by 438 /// this DBG_VALUE instruction. 439 const DILocalVariable *getDebugVariable() const; 440 441 /// Return the operand for the complex address expression referenced by 442 /// this DBG_VALUE instruction. 443 const MachineOperand &getDebugExpressionOp() const; 444 MachineOperand &getDebugExpressionOp(); 445 446 /// Return the complex address expression referenced by 447 /// this DBG_VALUE instruction. 448 const DIExpression *getDebugExpression() const; 449 450 /// Return the debug label referenced by 451 /// this DBG_LABEL instruction. 452 const DILabel *getDebugLabel() const; 453 454 /// Fetch the instruction number of this MachineInstr. If it does not have 455 /// one already, a new and unique number will be assigned. 456 unsigned getDebugInstrNum(); 457 458 /// Examine the instruction number of this MachineInstr. May be zero if 459 /// it hasn't been assigned a number yet. 460 unsigned peekDebugInstrNum() const { return DebugInstrNum; } 461 462 /// Set instruction number of this MachineInstr. Avoid using unless you're 463 /// deserializing this information. 464 void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; } 465 466 /// Emit an error referring to the source location of this instruction. 467 /// This should only be used for inline assembly that is somehow 468 /// impossible to compile. Other errors should have been handled much 469 /// earlier. 470 /// 471 /// If this method returns, the caller should try to recover from the error. 472 void emitError(StringRef Msg) const; 473 474 /// Returns the target instruction descriptor of this MachineInstr. 475 const MCInstrDesc &getDesc() const { return *MCID; } 476 477 /// Returns the opcode of this MachineInstr. 478 unsigned getOpcode() const { return MCID->Opcode; } 479 480 /// Retuns the total number of operands. 481 unsigned getNumOperands() const { return NumOperands; } 482 483 /// Returns the total number of operands which are debug locations. 484 unsigned getNumDebugOperands() const { 485 return std::distance(debug_operands().begin(), debug_operands().end()); 486 } 487 488 const MachineOperand& getOperand(unsigned i) const { 489 assert(i < getNumOperands() && "getOperand() out of range!"); 490 return Operands[i]; 491 } 492 MachineOperand& getOperand(unsigned i) { 493 assert(i < getNumOperands() && "getOperand() out of range!"); 494 return Operands[i]; 495 } 496 497 MachineOperand &getDebugOperand(unsigned Index) { 498 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 499 return *(debug_operands().begin() + Index); 500 } 501 const MachineOperand &getDebugOperand(unsigned Index) const { 502 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 503 return *(debug_operands().begin() + Index); 504 } 505 506 SmallSet<Register, 4> getUsedDebugRegs() const { 507 assert(isDebugValue() && "not a DBG_VALUE*"); 508 SmallSet<Register, 4> UsedRegs; 509 for (auto MO : debug_operands()) 510 if (MO.isReg() && MO.getReg()) 511 UsedRegs.insert(MO.getReg()); 512 return UsedRegs; 513 } 514 515 /// Returns whether this debug value has at least one debug operand with the 516 /// register \p Reg. 517 bool hasDebugOperandForReg(Register Reg) const { 518 return any_of(debug_operands(), [Reg](const MachineOperand &Op) { 519 return Op.isReg() && Op.getReg() == Reg; 520 }); 521 } 522 523 /// Returns a range of all of the operands that correspond to a debug use of 524 /// \p Reg. 525 template <typename Operand, typename Instruction> 526 static iterator_range< 527 filter_iterator<Operand *, std::function<bool(Operand &Op)>>> 528 getDebugOperandsForReg(Instruction *MI, Register Reg) { 529 std::function<bool(Operand & Op)> OpUsesReg( 530 [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; }); 531 return make_filter_range(MI->debug_operands(), OpUsesReg); 532 } 533 iterator_range<filter_iterator<const MachineOperand *, 534 std::function<bool(const MachineOperand &Op)>>> 535 getDebugOperandsForReg(Register Reg) const { 536 return MachineInstr::getDebugOperandsForReg<const MachineOperand, 537 const MachineInstr>(this, Reg); 538 } 539 iterator_range<filter_iterator<MachineOperand *, 540 std::function<bool(MachineOperand &Op)>>> 541 getDebugOperandsForReg(Register Reg) { 542 return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>( 543 this, Reg); 544 } 545 546 bool isDebugOperand(const MachineOperand *Op) const { 547 return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands()); 548 } 549 550 unsigned getDebugOperandIndex(const MachineOperand *Op) const { 551 assert(isDebugOperand(Op) && "Expected a debug operand."); 552 return std::distance(adl_begin(debug_operands()), Op); 553 } 554 555 /// Returns the total number of definitions. 556 unsigned getNumDefs() const { 557 return getNumExplicitDefs() + MCID->getNumImplicitDefs(); 558 } 559 560 /// Returns true if the instruction has implicit definition. 561 bool hasImplicitDef() const { 562 for (unsigned I = getNumExplicitOperands(), E = getNumOperands(); 563 I != E; ++I) { 564 const MachineOperand &MO = getOperand(I); 565 if (MO.isDef() && MO.isImplicit()) 566 return true; 567 } 568 return false; 569 } 570 571 /// Returns the implicit operands number. 572 unsigned getNumImplicitOperands() const { 573 return getNumOperands() - getNumExplicitOperands(); 574 } 575 576 /// Return true if operand \p OpIdx is a subregister index. 577 bool isOperandSubregIdx(unsigned OpIdx) const { 578 assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && 579 "Expected MO_Immediate operand type."); 580 if (isExtractSubreg() && OpIdx == 2) 581 return true; 582 if (isInsertSubreg() && OpIdx == 3) 583 return true; 584 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) 585 return true; 586 if (isSubregToReg() && OpIdx == 3) 587 return true; 588 return false; 589 } 590 591 /// Returns the number of non-implicit operands. 592 unsigned getNumExplicitOperands() const; 593 594 /// Returns the number of non-implicit definitions. 595 unsigned getNumExplicitDefs() const; 596 597 /// iterator/begin/end - Iterate over all operands of a machine instruction. 598 using mop_iterator = MachineOperand *; 599 using const_mop_iterator = const MachineOperand *; 600 601 mop_iterator operands_begin() { return Operands; } 602 mop_iterator operands_end() { return Operands + NumOperands; } 603 604 const_mop_iterator operands_begin() const { return Operands; } 605 const_mop_iterator operands_end() const { return Operands + NumOperands; } 606 607 iterator_range<mop_iterator> operands() { 608 return make_range(operands_begin(), operands_end()); 609 } 610 iterator_range<const_mop_iterator> operands() const { 611 return make_range(operands_begin(), operands_end()); 612 } 613 iterator_range<mop_iterator> explicit_operands() { 614 return make_range(operands_begin(), 615 operands_begin() + getNumExplicitOperands()); 616 } 617 iterator_range<const_mop_iterator> explicit_operands() const { 618 return make_range(operands_begin(), 619 operands_begin() + getNumExplicitOperands()); 620 } 621 iterator_range<mop_iterator> implicit_operands() { 622 return make_range(explicit_operands().end(), operands_end()); 623 } 624 iterator_range<const_mop_iterator> implicit_operands() const { 625 return make_range(explicit_operands().end(), operands_end()); 626 } 627 /// Returns a range over all operands that are used to determine the variable 628 /// location for this DBG_VALUE instruction. 629 iterator_range<mop_iterator> debug_operands() { 630 assert(isDebugValue() && "Must be a debug value instruction."); 631 return isDebugValueList() 632 ? make_range(operands_begin() + 2, operands_end()) 633 : make_range(operands_begin(), operands_begin() + 1); 634 } 635 /// \copydoc debug_operands() 636 iterator_range<const_mop_iterator> debug_operands() const { 637 assert(isDebugValue() && "Must be a debug value instruction."); 638 return isDebugValueList() 639 ? make_range(operands_begin() + 2, operands_end()) 640 : make_range(operands_begin(), operands_begin() + 1); 641 } 642 /// Returns a range over all explicit operands that are register definitions. 643 /// Implicit definition are not included! 644 iterator_range<mop_iterator> defs() { 645 return make_range(operands_begin(), 646 operands_begin() + getNumExplicitDefs()); 647 } 648 /// \copydoc defs() 649 iterator_range<const_mop_iterator> defs() const { 650 return make_range(operands_begin(), 651 operands_begin() + getNumExplicitDefs()); 652 } 653 /// Returns a range that includes all operands that are register uses. 654 /// This may include unrelated operands which are not register uses. 655 iterator_range<mop_iterator> uses() { 656 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 657 } 658 /// \copydoc uses() 659 iterator_range<const_mop_iterator> uses() const { 660 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 661 } 662 iterator_range<mop_iterator> explicit_uses() { 663 return make_range(operands_begin() + getNumExplicitDefs(), 664 operands_begin() + getNumExplicitOperands()); 665 } 666 iterator_range<const_mop_iterator> explicit_uses() const { 667 return make_range(operands_begin() + getNumExplicitDefs(), 668 operands_begin() + getNumExplicitOperands()); 669 } 670 671 /// Returns the number of the operand iterator \p I points to. 672 unsigned getOperandNo(const_mop_iterator I) const { 673 return I - operands_begin(); 674 } 675 676 /// Access to memory operands of the instruction. If there are none, that does 677 /// not imply anything about whether the function accesses memory. Instead, 678 /// the caller must behave conservatively. 679 ArrayRef<MachineMemOperand *> memoperands() const { 680 if (!Info) 681 return {}; 682 683 if (Info.is<EIIK_MMO>()) 684 return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1); 685 686 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 687 return EI->getMMOs(); 688 689 return {}; 690 } 691 692 /// Access to memory operands of the instruction. 693 /// 694 /// If `memoperands_begin() == memoperands_end()`, that does not imply 695 /// anything about whether the function accesses memory. Instead, the caller 696 /// must behave conservatively. 697 mmo_iterator memoperands_begin() const { return memoperands().begin(); } 698 699 /// Access to memory operands of the instruction. 700 /// 701 /// If `memoperands_begin() == memoperands_end()`, that does not imply 702 /// anything about whether the function accesses memory. Instead, the caller 703 /// must behave conservatively. 704 mmo_iterator memoperands_end() const { return memoperands().end(); } 705 706 /// Return true if we don't have any memory operands which described the 707 /// memory access done by this instruction. If this is true, calling code 708 /// must be conservative. 709 bool memoperands_empty() const { return memoperands().empty(); } 710 711 /// Return true if this instruction has exactly one MachineMemOperand. 712 bool hasOneMemOperand() const { return memoperands().size() == 1; } 713 714 /// Return the number of memory operands. 715 unsigned getNumMemOperands() const { return memoperands().size(); } 716 717 /// Helper to extract a pre-instruction symbol if one has been added. 718 MCSymbol *getPreInstrSymbol() const { 719 if (!Info) 720 return nullptr; 721 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) 722 return S; 723 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 724 return EI->getPreInstrSymbol(); 725 726 return nullptr; 727 } 728 729 /// Helper to extract a post-instruction symbol if one has been added. 730 MCSymbol *getPostInstrSymbol() const { 731 if (!Info) 732 return nullptr; 733 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) 734 return S; 735 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 736 return EI->getPostInstrSymbol(); 737 738 return nullptr; 739 } 740 741 /// Helper to extract a heap alloc marker if one has been added. 742 MDNode *getHeapAllocMarker() const { 743 if (!Info) 744 return nullptr; 745 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 746 return EI->getHeapAllocMarker(); 747 748 return nullptr; 749 } 750 751 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 752 /// queries but they are bundle aware. 753 754 enum QueryType { 755 IgnoreBundle, // Ignore bundles 756 AnyInBundle, // Return true if any instruction in bundle has property 757 AllInBundle // Return true if all instructions in bundle have property 758 }; 759 760 /// Return true if the instruction (or in the case of a bundle, 761 /// the instructions inside the bundle) has the specified property. 762 /// The first argument is the property being queried. 763 /// The second argument indicates whether the query should look inside 764 /// instruction bundles. 765 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 766 assert(MCFlag < 64 && 767 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); 768 // Inline the fast path for unbundled or bundle-internal instructions. 769 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 770 return getDesc().getFlags() & (1ULL << MCFlag); 771 772 // If this is the first instruction in a bundle, take the slow path. 773 return hasPropertyInBundle(1ULL << MCFlag, Type); 774 } 775 776 /// Return true if this is an instruction that should go through the usual 777 /// legalization steps. 778 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { 779 return hasProperty(MCID::PreISelOpcode, Type); 780 } 781 782 /// Return true if this instruction can have a variable number of operands. 783 /// In this case, the variable operands will be after the normal 784 /// operands but before the implicit definitions and uses (if any are 785 /// present). 786 bool isVariadic(QueryType Type = IgnoreBundle) const { 787 return hasProperty(MCID::Variadic, Type); 788 } 789 790 /// Set if this instruction has an optional definition, e.g. 791 /// ARM instructions which can set condition code if 's' bit is set. 792 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 793 return hasProperty(MCID::HasOptionalDef, Type); 794 } 795 796 /// Return true if this is a pseudo instruction that doesn't 797 /// correspond to a real machine instruction. 798 bool isPseudo(QueryType Type = IgnoreBundle) const { 799 return hasProperty(MCID::Pseudo, Type); 800 } 801 802 bool isReturn(QueryType Type = AnyInBundle) const { 803 return hasProperty(MCID::Return, Type); 804 } 805 806 /// Return true if this is an instruction that marks the end of an EH scope, 807 /// i.e., a catchpad or a cleanuppad instruction. 808 bool isEHScopeReturn(QueryType Type = AnyInBundle) const { 809 return hasProperty(MCID::EHScopeReturn, Type); 810 } 811 812 bool isCall(QueryType Type = AnyInBundle) const { 813 return hasProperty(MCID::Call, Type); 814 } 815 816 /// Return true if this is a call instruction that may have an associated 817 /// call site entry in the debug info. 818 bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const; 819 /// Return true if copying, moving, or erasing this instruction requires 820 /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo, 821 /// \ref eraseCallSiteInfo). 822 bool shouldUpdateCallSiteInfo() const; 823 824 /// Returns true if the specified instruction stops control flow 825 /// from executing the instruction immediately following it. Examples include 826 /// unconditional branches and return instructions. 827 bool isBarrier(QueryType Type = AnyInBundle) const { 828 return hasProperty(MCID::Barrier, Type); 829 } 830 831 /// Returns true if this instruction part of the terminator for a basic block. 832 /// Typically this is things like return and branch instructions. 833 /// 834 /// Various passes use this to insert code into the bottom of a basic block, 835 /// but before control flow occurs. 836 bool isTerminator(QueryType Type = AnyInBundle) const { 837 return hasProperty(MCID::Terminator, Type); 838 } 839 840 /// Returns true if this is a conditional, unconditional, or indirect branch. 841 /// Predicates below can be used to discriminate between 842 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to 843 /// get more information. 844 bool isBranch(QueryType Type = AnyInBundle) const { 845 return hasProperty(MCID::Branch, Type); 846 } 847 848 /// Return true if this is an indirect branch, such as a 849 /// branch through a register. 850 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 851 return hasProperty(MCID::IndirectBranch, Type); 852 } 853 854 /// Return true if this is a branch which may fall 855 /// through to the next instruction or may transfer control flow to some other 856 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more 857 /// information about this branch. 858 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 859 return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); 860 } 861 862 /// Return true if this is a branch which always 863 /// transfers control flow to some other block. The 864 /// TargetInstrInfo::analyzeBranch method can be used to get more information 865 /// about this branch. 866 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 867 return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); 868 } 869 870 /// Return true if this instruction has a predicate operand that 871 /// controls execution. It may be set to 'always', or may be set to other 872 /// values. There are various methods in TargetInstrInfo that can be used to 873 /// control and modify the predicate in this instruction. 874 bool isPredicable(QueryType Type = AllInBundle) const { 875 // If it's a bundle than all bundled instructions must be predicable for this 876 // to return true. 877 return hasProperty(MCID::Predicable, Type); 878 } 879 880 /// Return true if this instruction is a comparison. 881 bool isCompare(QueryType Type = IgnoreBundle) const { 882 return hasProperty(MCID::Compare, Type); 883 } 884 885 /// Return true if this instruction is a move immediate 886 /// (including conditional moves) instruction. 887 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 888 return hasProperty(MCID::MoveImm, Type); 889 } 890 891 /// Return true if this instruction is a register move. 892 /// (including moving values from subreg to reg) 893 bool isMoveReg(QueryType Type = IgnoreBundle) const { 894 return hasProperty(MCID::MoveReg, Type); 895 } 896 897 /// Return true if this instruction is a bitcast instruction. 898 bool isBitcast(QueryType Type = IgnoreBundle) const { 899 return hasProperty(MCID::Bitcast, Type); 900 } 901 902 /// Return true if this instruction is a select instruction. 903 bool isSelect(QueryType Type = IgnoreBundle) const { 904 return hasProperty(MCID::Select, Type); 905 } 906 907 /// Return true if this instruction cannot be safely duplicated. 908 /// For example, if the instruction has a unique labels attached 909 /// to it, duplicating it would cause multiple definition errors. 910 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 911 return hasProperty(MCID::NotDuplicable, Type); 912 } 913 914 /// Return true if this instruction is convergent. 915 /// Convergent instructions can not be made control-dependent on any 916 /// additional values. 917 bool isConvergent(QueryType Type = AnyInBundle) const { 918 if (isInlineAsm()) { 919 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 920 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 921 return true; 922 } 923 return hasProperty(MCID::Convergent, Type); 924 } 925 926 /// Returns true if the specified instruction has a delay slot 927 /// which must be filled by the code generator. 928 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 929 return hasProperty(MCID::DelaySlot, Type); 930 } 931 932 /// Return true for instructions that can be folded as 933 /// memory operands in other instructions. The most common use for this 934 /// is instructions that are simple loads from memory that don't modify 935 /// the loaded value in any way, but it can also be used for instructions 936 /// that can be expressed as constant-pool loads, such as V_SETALLONES 937 /// on x86, to allow them to be folded when it is beneficial. 938 /// This should only be set on instructions that return a value in their 939 /// only virtual register definition. 940 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 941 return hasProperty(MCID::FoldableAsLoad, Type); 942 } 943 944 /// Return true if this instruction behaves 945 /// the same way as the generic REG_SEQUENCE instructions. 946 /// E.g., on ARM, 947 /// dX VMOVDRR rY, rZ 948 /// is equivalent to 949 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 950 /// 951 /// Note that for the optimizers to be able to take advantage of 952 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 953 /// override accordingly. 954 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 955 return hasProperty(MCID::RegSequence, Type); 956 } 957 958 /// Return true if this instruction behaves 959 /// the same way as the generic EXTRACT_SUBREG instructions. 960 /// E.g., on ARM, 961 /// rX, rY VMOVRRD dZ 962 /// is equivalent to two EXTRACT_SUBREG: 963 /// rX = EXTRACT_SUBREG dZ, ssub_0 964 /// rY = EXTRACT_SUBREG dZ, ssub_1 965 /// 966 /// Note that for the optimizers to be able to take advantage of 967 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 968 /// override accordingly. 969 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 970 return hasProperty(MCID::ExtractSubreg, Type); 971 } 972 973 /// Return true if this instruction behaves 974 /// the same way as the generic INSERT_SUBREG instructions. 975 /// E.g., on ARM, 976 /// dX = VSETLNi32 dY, rZ, Imm 977 /// is equivalent to a INSERT_SUBREG: 978 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 979 /// 980 /// Note that for the optimizers to be able to take advantage of 981 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 982 /// override accordingly. 983 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 984 return hasProperty(MCID::InsertSubreg, Type); 985 } 986 987 //===--------------------------------------------------------------------===// 988 // Side Effect Analysis 989 //===--------------------------------------------------------------------===// 990 991 /// Return true if this instruction could possibly read memory. 992 /// Instructions with this flag set are not necessarily simple load 993 /// instructions, they may load a value and modify it, for example. 994 bool mayLoad(QueryType Type = AnyInBundle) const { 995 if (isInlineAsm()) { 996 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 997 if (ExtraInfo & InlineAsm::Extra_MayLoad) 998 return true; 999 } 1000 return hasProperty(MCID::MayLoad, Type); 1001 } 1002 1003 /// Return true if this instruction could possibly modify memory. 1004 /// Instructions with this flag set are not necessarily simple store 1005 /// instructions, they may store a modified value based on their operands, or 1006 /// may not actually modify anything, for example. 1007 bool mayStore(QueryType Type = AnyInBundle) const { 1008 if (isInlineAsm()) { 1009 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1010 if (ExtraInfo & InlineAsm::Extra_MayStore) 1011 return true; 1012 } 1013 return hasProperty(MCID::MayStore, Type); 1014 } 1015 1016 /// Return true if this instruction could possibly read or modify memory. 1017 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 1018 return mayLoad(Type) || mayStore(Type); 1019 } 1020 1021 /// Return true if this instruction could possibly raise a floating-point 1022 /// exception. This is the case if the instruction is a floating-point 1023 /// instruction that can in principle raise an exception, as indicated 1024 /// by the MCID::MayRaiseFPException property, *and* at the same time, 1025 /// the instruction is used in a context where we expect floating-point 1026 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. 1027 bool mayRaiseFPException() const { 1028 return hasProperty(MCID::MayRaiseFPException) && 1029 !getFlag(MachineInstr::MIFlag::NoFPExcept); 1030 } 1031 1032 //===--------------------------------------------------------------------===// 1033 // Flags that indicate whether an instruction can be modified by a method. 1034 //===--------------------------------------------------------------------===// 1035 1036 /// Return true if this may be a 2- or 3-address 1037 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 1038 /// result if Y and Z are exchanged. If this flag is set, then the 1039 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 1040 /// instruction. 1041 /// 1042 /// Note that this flag may be set on instructions that are only commutable 1043 /// sometimes. In these cases, the call to commuteInstruction will fail. 1044 /// Also note that some instructions require non-trivial modification to 1045 /// commute them. 1046 bool isCommutable(QueryType Type = IgnoreBundle) const { 1047 return hasProperty(MCID::Commutable, Type); 1048 } 1049 1050 /// Return true if this is a 2-address instruction 1051 /// which can be changed into a 3-address instruction if needed. Doing this 1052 /// transformation can be profitable in the register allocator, because it 1053 /// means that the instruction can use a 2-address form if possible, but 1054 /// degrade into a less efficient form if the source and dest register cannot 1055 /// be assigned to the same register. For example, this allows the x86 1056 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 1057 /// is the same speed as the shift but has bigger code size. 1058 /// 1059 /// If this returns true, then the target must implement the 1060 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 1061 /// is allowed to fail if the transformation isn't valid for this specific 1062 /// instruction (e.g. shl reg, 4 on x86). 1063 /// 1064 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 1065 return hasProperty(MCID::ConvertibleTo3Addr, Type); 1066 } 1067 1068 /// Return true if this instruction requires 1069 /// custom insertion support when the DAG scheduler is inserting it into a 1070 /// machine basic block. If this is true for the instruction, it basically 1071 /// means that it is a pseudo instruction used at SelectionDAG time that is 1072 /// expanded out into magic code by the target when MachineInstrs are formed. 1073 /// 1074 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 1075 /// is used to insert this into the MachineBasicBlock. 1076 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 1077 return hasProperty(MCID::UsesCustomInserter, Type); 1078 } 1079 1080 /// Return true if this instruction requires *adjustment* 1081 /// after instruction selection by calling a target hook. For example, this 1082 /// can be used to fill in ARM 's' optional operand depending on whether 1083 /// the conditional flag register is used. 1084 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 1085 return hasProperty(MCID::HasPostISelHook, Type); 1086 } 1087 1088 /// Returns true if this instruction is a candidate for remat. 1089 /// This flag is deprecated, please don't use it anymore. If this 1090 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 1091 /// verify the instruction is really rematable. 1092 bool isRematerializable(QueryType Type = AllInBundle) const { 1093 // It's only possible to re-mat a bundle if all bundled instructions are 1094 // re-materializable. 1095 return hasProperty(MCID::Rematerializable, Type); 1096 } 1097 1098 /// Returns true if this instruction has the same cost (or less) than a move 1099 /// instruction. This is useful during certain types of optimizations 1100 /// (e.g., remat during two-address conversion or machine licm) 1101 /// where we would like to remat or hoist the instruction, but not if it costs 1102 /// more than moving the instruction into the appropriate register. Note, we 1103 /// are not marking copies from and to the same register class with this flag. 1104 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 1105 // Only returns true for a bundle if all bundled instructions are cheap. 1106 return hasProperty(MCID::CheapAsAMove, Type); 1107 } 1108 1109 /// Returns true if this instruction source operands 1110 /// have special register allocation requirements that are not captured by the 1111 /// operand register classes. e.g. ARM::STRD's two source registers must be an 1112 /// even / odd pair, ARM::STM registers have to be in ascending order. 1113 /// Post-register allocation passes should not attempt to change allocations 1114 /// for sources of instructions with this flag. 1115 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 1116 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 1117 } 1118 1119 /// Returns true if this instruction def operands 1120 /// have special register allocation requirements that are not captured by the 1121 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 1122 /// even / odd pair, ARM::LDM registers have to be in ascending order. 1123 /// Post-register allocation passes should not attempt to change allocations 1124 /// for definitions of instructions with this flag. 1125 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 1126 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 1127 } 1128 1129 enum MICheckType { 1130 CheckDefs, // Check all operands for equality 1131 CheckKillDead, // Check all operands including kill / dead markers 1132 IgnoreDefs, // Ignore all definitions 1133 IgnoreVRegDefs // Ignore virtual register definitions 1134 }; 1135 1136 /// Return true if this instruction is identical to \p Other. 1137 /// Two instructions are identical if they have the same opcode and all their 1138 /// operands are identical (with respect to MachineOperand::isIdenticalTo()). 1139 /// Note that this means liveness related flags (dead, undef, kill) do not 1140 /// affect the notion of identical. 1141 bool isIdenticalTo(const MachineInstr &Other, 1142 MICheckType Check = CheckDefs) const; 1143 1144 /// Unlink 'this' from the containing basic block, and return it without 1145 /// deleting it. 1146 /// 1147 /// This function can not be used on bundled instructions, use 1148 /// removeFromBundle() to remove individual instructions from a bundle. 1149 MachineInstr *removeFromParent(); 1150 1151 /// Unlink this instruction from its basic block and return it without 1152 /// deleting it. 1153 /// 1154 /// If the instruction is part of a bundle, the other instructions in the 1155 /// bundle remain bundled. 1156 MachineInstr *removeFromBundle(); 1157 1158 /// Unlink 'this' from the containing basic block and delete it. 1159 /// 1160 /// If this instruction is the header of a bundle, the whole bundle is erased. 1161 /// This function can not be used for instructions inside a bundle, use 1162 /// eraseFromBundle() to erase individual bundled instructions. 1163 void eraseFromParent(); 1164 1165 /// Unlink 'this' from the containing basic block and delete it. 1166 /// 1167 /// For all definitions mark their uses in DBG_VALUE nodes 1168 /// as undefined. Otherwise like eraseFromParent(). 1169 void eraseFromParentAndMarkDBGValuesForRemoval(); 1170 1171 /// Unlink 'this' form its basic block and delete it. 1172 /// 1173 /// If the instruction is part of a bundle, the other instructions in the 1174 /// bundle remain bundled. 1175 void eraseFromBundle(); 1176 1177 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 1178 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 1179 bool isAnnotationLabel() const { 1180 return getOpcode() == TargetOpcode::ANNOTATION_LABEL; 1181 } 1182 1183 /// Returns true if the MachineInstr represents a label. 1184 bool isLabel() const { 1185 return isEHLabel() || isGCLabel() || isAnnotationLabel(); 1186 } 1187 1188 bool isCFIInstruction() const { 1189 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 1190 } 1191 1192 bool isPseudoProbe() const { 1193 return getOpcode() == TargetOpcode::PSEUDO_PROBE; 1194 } 1195 1196 // True if the instruction represents a position in the function. 1197 bool isPosition() const { return isLabel() || isCFIInstruction(); } 1198 1199 bool isNonListDebugValue() const { 1200 return getOpcode() == TargetOpcode::DBG_VALUE; 1201 } 1202 bool isDebugValueList() const { 1203 return getOpcode() == TargetOpcode::DBG_VALUE_LIST; 1204 } 1205 bool isDebugValue() const { 1206 return isNonListDebugValue() || isDebugValueList(); 1207 } 1208 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } 1209 bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; } 1210 bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; } 1211 bool isDebugInstr() const { 1212 return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI(); 1213 } 1214 bool isDebugOrPseudoInstr() const { 1215 return isDebugInstr() || isPseudoProbe(); 1216 } 1217 1218 bool isDebugOffsetImm() const { 1219 return isNonListDebugValue() && getDebugOffset().isImm(); 1220 } 1221 1222 /// A DBG_VALUE is indirect iff the location operand is a register and 1223 /// the offset operand is an immediate. 1224 bool isIndirectDebugValue() const { 1225 return isDebugOffsetImm() && getDebugOperand(0).isReg(); 1226 } 1227 1228 /// A DBG_VALUE is an entry value iff its debug expression contains the 1229 /// DW_OP_LLVM_entry_value operation. 1230 bool isDebugEntryValue() const; 1231 1232 /// Return true if the instruction is a debug value which describes a part of 1233 /// a variable as unavailable. 1234 bool isUndefDebugValue() const { 1235 if (!isDebugValue()) 1236 return false; 1237 // If any $noreg locations are given, this DV is undef. 1238 for (const MachineOperand &Op : debug_operands()) 1239 if (Op.isReg() && !Op.getReg().isValid()) 1240 return true; 1241 return false; 1242 } 1243 1244 bool isPHI() const { 1245 return getOpcode() == TargetOpcode::PHI || 1246 getOpcode() == TargetOpcode::G_PHI; 1247 } 1248 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 1249 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 1250 bool isInlineAsm() const { 1251 return getOpcode() == TargetOpcode::INLINEASM || 1252 getOpcode() == TargetOpcode::INLINEASM_BR; 1253 } 1254 1255 /// FIXME: Seems like a layering violation that the AsmDialect, which is X86 1256 /// specific, be attached to a generic MachineInstr. 1257 bool isMSInlineAsm() const { 1258 return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel; 1259 } 1260 1261 bool isStackAligningInlineAsm() const; 1262 InlineAsm::AsmDialect getInlineAsmDialect() const; 1263 1264 bool isInsertSubreg() const { 1265 return getOpcode() == TargetOpcode::INSERT_SUBREG; 1266 } 1267 1268 bool isSubregToReg() const { 1269 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 1270 } 1271 1272 bool isRegSequence() const { 1273 return getOpcode() == TargetOpcode::REG_SEQUENCE; 1274 } 1275 1276 bool isBundle() const { 1277 return getOpcode() == TargetOpcode::BUNDLE; 1278 } 1279 1280 bool isCopy() const { 1281 return getOpcode() == TargetOpcode::COPY; 1282 } 1283 1284 bool isFullCopy() const { 1285 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 1286 } 1287 1288 bool isExtractSubreg() const { 1289 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 1290 } 1291 1292 /// Return true if the instruction behaves like a copy. 1293 /// This does not include native copy instructions. 1294 bool isCopyLike() const { 1295 return isCopy() || isSubregToReg(); 1296 } 1297 1298 /// Return true is the instruction is an identity copy. 1299 bool isIdentityCopy() const { 1300 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 1301 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 1302 } 1303 1304 /// Return true if this instruction doesn't produce any output in the form of 1305 /// executable instructions. 1306 bool isMetaInstruction() const { 1307 switch (getOpcode()) { 1308 default: 1309 return false; 1310 case TargetOpcode::IMPLICIT_DEF: 1311 case TargetOpcode::KILL: 1312 case TargetOpcode::CFI_INSTRUCTION: 1313 case TargetOpcode::EH_LABEL: 1314 case TargetOpcode::GC_LABEL: 1315 case TargetOpcode::DBG_VALUE: 1316 case TargetOpcode::DBG_VALUE_LIST: 1317 case TargetOpcode::DBG_INSTR_REF: 1318 case TargetOpcode::DBG_PHI: 1319 case TargetOpcode::DBG_LABEL: 1320 case TargetOpcode::LIFETIME_START: 1321 case TargetOpcode::LIFETIME_END: 1322 case TargetOpcode::PSEUDO_PROBE: 1323 return true; 1324 } 1325 } 1326 1327 /// Return true if this is a transient instruction that is either very likely 1328 /// to be eliminated during register allocation (such as copy-like 1329 /// instructions), or if this instruction doesn't have an execution-time cost. 1330 bool isTransient() const { 1331 switch (getOpcode()) { 1332 default: 1333 return isMetaInstruction(); 1334 // Copy-like instructions are usually eliminated during register allocation. 1335 case TargetOpcode::PHI: 1336 case TargetOpcode::G_PHI: 1337 case TargetOpcode::COPY: 1338 case TargetOpcode::INSERT_SUBREG: 1339 case TargetOpcode::SUBREG_TO_REG: 1340 case TargetOpcode::REG_SEQUENCE: 1341 return true; 1342 } 1343 } 1344 1345 /// Return the number of instructions inside the MI bundle, excluding the 1346 /// bundle header. 1347 /// 1348 /// This is the number of instructions that MachineBasicBlock::iterator 1349 /// skips, 0 for unbundled instructions. 1350 unsigned getBundleSize() const; 1351 1352 /// Return true if the MachineInstr reads the specified register. 1353 /// If TargetRegisterInfo is passed, then it also checks if there 1354 /// is a read of a super-register. 1355 /// This does not count partial redefines of virtual registers as reads: 1356 /// %reg1024:6 = OP. 1357 bool readsRegister(Register Reg, 1358 const TargetRegisterInfo *TRI = nullptr) const { 1359 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 1360 } 1361 1362 /// Return true if the MachineInstr reads the specified virtual register. 1363 /// Take into account that a partial define is a 1364 /// read-modify-write operation. 1365 bool readsVirtualRegister(Register Reg) const { 1366 return readsWritesVirtualRegister(Reg).first; 1367 } 1368 1369 /// Return a pair of bools (reads, writes) indicating if this instruction 1370 /// reads or writes Reg. This also considers partial defines. 1371 /// If Ops is not null, all operand indices for Reg are added. 1372 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, 1373 SmallVectorImpl<unsigned> *Ops = nullptr) const; 1374 1375 /// Return true if the MachineInstr kills the specified register. 1376 /// If TargetRegisterInfo is passed, then it also checks if there is 1377 /// a kill of a super-register. 1378 bool killsRegister(Register Reg, 1379 const TargetRegisterInfo *TRI = nullptr) const { 1380 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 1381 } 1382 1383 /// Return true if the MachineInstr fully defines the specified register. 1384 /// If TargetRegisterInfo is passed, then it also checks 1385 /// if there is a def of a super-register. 1386 /// NOTE: It's ignoring subreg indices on virtual registers. 1387 bool definesRegister(Register Reg, 1388 const TargetRegisterInfo *TRI = nullptr) const { 1389 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 1390 } 1391 1392 /// Return true if the MachineInstr modifies (fully define or partially 1393 /// define) the specified register. 1394 /// NOTE: It's ignoring subreg indices on virtual registers. 1395 bool modifiesRegister(Register Reg, 1396 const TargetRegisterInfo *TRI = nullptr) const { 1397 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 1398 } 1399 1400 /// Returns true if the register is dead in this machine instruction. 1401 /// If TargetRegisterInfo is passed, then it also checks 1402 /// if there is a dead def of a super-register. 1403 bool registerDefIsDead(Register Reg, 1404 const TargetRegisterInfo *TRI = nullptr) const { 1405 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 1406 } 1407 1408 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1409 /// the given register (not considering sub/super-registers). 1410 bool hasRegisterImplicitUseOperand(Register Reg) const; 1411 1412 /// Returns the operand index that is a use of the specific register or -1 1413 /// if it is not found. It further tightens the search criteria to a use 1414 /// that kills the register if isKill is true. 1415 int findRegisterUseOperandIdx(Register Reg, bool isKill = false, 1416 const TargetRegisterInfo *TRI = nullptr) const; 1417 1418 /// Wrapper for findRegisterUseOperandIdx, it returns 1419 /// a pointer to the MachineOperand rather than an index. 1420 MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false, 1421 const TargetRegisterInfo *TRI = nullptr) { 1422 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 1423 return (Idx == -1) ? nullptr : &getOperand(Idx); 1424 } 1425 1426 const MachineOperand *findRegisterUseOperand( 1427 Register Reg, bool isKill = false, 1428 const TargetRegisterInfo *TRI = nullptr) const { 1429 return const_cast<MachineInstr *>(this)-> 1430 findRegisterUseOperand(Reg, isKill, TRI); 1431 } 1432 1433 /// Returns the operand index that is a def of the specified register or 1434 /// -1 if it is not found. If isDead is true, defs that are not dead are 1435 /// skipped. If Overlap is true, then it also looks for defs that merely 1436 /// overlap the specified register. If TargetRegisterInfo is non-null, 1437 /// then it also checks if there is a def of a super-register. 1438 /// This may also return a register mask operand when Overlap is true. 1439 int findRegisterDefOperandIdx(Register Reg, 1440 bool isDead = false, bool Overlap = false, 1441 const TargetRegisterInfo *TRI = nullptr) const; 1442 1443 /// Wrapper for findRegisterDefOperandIdx, it returns 1444 /// a pointer to the MachineOperand rather than an index. 1445 MachineOperand * 1446 findRegisterDefOperand(Register Reg, bool isDead = false, 1447 bool Overlap = false, 1448 const TargetRegisterInfo *TRI = nullptr) { 1449 int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI); 1450 return (Idx == -1) ? nullptr : &getOperand(Idx); 1451 } 1452 1453 const MachineOperand * 1454 findRegisterDefOperand(Register Reg, bool isDead = false, 1455 bool Overlap = false, 1456 const TargetRegisterInfo *TRI = nullptr) const { 1457 return const_cast<MachineInstr *>(this)->findRegisterDefOperand( 1458 Reg, isDead, Overlap, TRI); 1459 } 1460 1461 /// Find the index of the first operand in the 1462 /// operand list that is used to represent the predicate. It returns -1 if 1463 /// none is found. 1464 int findFirstPredOperandIdx() const; 1465 1466 /// Find the index of the flag word operand that 1467 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 1468 /// getOperand(OpIdx) does not belong to an inline asm operand group. 1469 /// 1470 /// If GroupNo is not NULL, it will receive the number of the operand group 1471 /// containing OpIdx. 1472 /// 1473 /// The flag operand is an immediate that can be decoded with methods like 1474 /// InlineAsm::hasRegClassConstraint(). 1475 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 1476 1477 /// Compute the static register class constraint for operand OpIdx. 1478 /// For normal instructions, this is derived from the MCInstrDesc. 1479 /// For inline assembly it is derived from the flag words. 1480 /// 1481 /// Returns NULL if the static register class constraint cannot be 1482 /// determined. 1483 const TargetRegisterClass* 1484 getRegClassConstraint(unsigned OpIdx, 1485 const TargetInstrInfo *TII, 1486 const TargetRegisterInfo *TRI) const; 1487 1488 /// Applies the constraints (def/use) implied by this MI on \p Reg to 1489 /// the given \p CurRC. 1490 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1491 /// instructions inside the bundle will be taken into account. In other words, 1492 /// this method accumulates all the constraints of the operand of this MI and 1493 /// the related bundle if MI is a bundle or inside a bundle. 1494 /// 1495 /// Returns the register class that satisfies both \p CurRC and the 1496 /// constraints set by MI. Returns NULL if such a register class does not 1497 /// exist. 1498 /// 1499 /// \pre CurRC must not be NULL. 1500 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1501 Register Reg, const TargetRegisterClass *CurRC, 1502 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1503 bool ExploreBundle = false) const; 1504 1505 /// Applies the constraints (def/use) implied by the \p OpIdx operand 1506 /// to the given \p CurRC. 1507 /// 1508 /// Returns the register class that satisfies both \p CurRC and the 1509 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1510 /// does not exist. 1511 /// 1512 /// \pre CurRC must not be NULL. 1513 /// \pre The operand at \p OpIdx must be a register. 1514 const TargetRegisterClass * 1515 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1516 const TargetInstrInfo *TII, 1517 const TargetRegisterInfo *TRI) const; 1518 1519 /// Add a tie between the register operands at DefIdx and UseIdx. 1520 /// The tie will cause the register allocator to ensure that the two 1521 /// operands are assigned the same physical register. 1522 /// 1523 /// Tied operands are managed automatically for explicit operands in the 1524 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1525 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1526 1527 /// Given the index of a tied register operand, find the 1528 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1529 /// index of the tied operand which must exist. 1530 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1531 1532 /// Given the index of a register def operand, 1533 /// check if the register def is tied to a source operand, due to either 1534 /// two-address elimination or inline assembly constraints. Returns the 1535 /// first tied use operand index by reference if UseOpIdx is not null. 1536 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1537 unsigned *UseOpIdx = nullptr) const { 1538 const MachineOperand &MO = getOperand(DefOpIdx); 1539 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1540 return false; 1541 if (UseOpIdx) 1542 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1543 return true; 1544 } 1545 1546 /// Return true if the use operand of the specified index is tied to a def 1547 /// operand. It also returns the def operand index by reference if DefOpIdx 1548 /// is not null. 1549 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1550 unsigned *DefOpIdx = nullptr) const { 1551 const MachineOperand &MO = getOperand(UseOpIdx); 1552 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1553 return false; 1554 if (DefOpIdx) 1555 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1556 return true; 1557 } 1558 1559 /// Clears kill flags on all operands. 1560 void clearKillInfo(); 1561 1562 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1563 /// properly composing subreg indices where necessary. 1564 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, 1565 const TargetRegisterInfo &RegInfo); 1566 1567 /// We have determined MI kills a register. Look for the 1568 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1569 /// add a implicit operand if it's not found. Returns true if the operand 1570 /// exists / is added. 1571 bool addRegisterKilled(Register IncomingReg, 1572 const TargetRegisterInfo *RegInfo, 1573 bool AddIfNotFound = false); 1574 1575 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1576 /// all aliasing registers. 1577 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); 1578 1579 /// We have determined MI defined a register without a use. 1580 /// Look for the operand that defines it and mark it as IsDead. If 1581 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1582 /// true if the operand exists / is added. 1583 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, 1584 bool AddIfNotFound = false); 1585 1586 /// Clear all dead flags on operands defining register @p Reg. 1587 void clearRegisterDeads(Register Reg); 1588 1589 /// Mark all subregister defs of register @p Reg with the undef flag. 1590 /// This function is used when we determined to have a subregister def in an 1591 /// otherwise undefined super register. 1592 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); 1593 1594 /// We have determined MI defines a register. Make sure there is an operand 1595 /// defining Reg. 1596 void addRegisterDefined(Register Reg, 1597 const TargetRegisterInfo *RegInfo = nullptr); 1598 1599 /// Mark every physreg used by this instruction as 1600 /// dead except those in the UsedRegs list. 1601 /// 1602 /// On instructions with register mask operands, also add implicit-def 1603 /// operands for all registers in UsedRegs. 1604 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1605 const TargetRegisterInfo &TRI); 1606 1607 /// Return true if it is safe to move this instruction. If 1608 /// SawStore is set to true, it means that there is a store (or call) between 1609 /// the instruction's location and its intended destination. 1610 bool isSafeToMove(AAResults *AA, bool &SawStore) const; 1611 1612 /// Returns true if this instruction's memory access aliases the memory 1613 /// access of Other. 1614 // 1615 /// Assumes any physical registers used to compute addresses 1616 /// have the same value for both instructions. Returns false if neither 1617 /// instruction writes to memory. 1618 /// 1619 /// @param AA Optional alias analysis, used to compare memory operands. 1620 /// @param Other MachineInstr to check aliasing against. 1621 /// @param UseTBAA Whether to pass TBAA information to alias analysis. 1622 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; 1623 1624 /// Return true if this instruction may have an ordered 1625 /// or volatile memory reference, or if the information describing the memory 1626 /// reference is not available. Return false if it is known to have no 1627 /// ordered or volatile memory references. 1628 bool hasOrderedMemoryRef() const; 1629 1630 /// Return true if this load instruction never traps and points to a memory 1631 /// location whose value doesn't change during the execution of this function. 1632 /// 1633 /// Examples include loading a value from the constant pool or from the 1634 /// argument area of a function (if it does not change). If the instruction 1635 /// does multiple loads, this returns true only if all of the loads are 1636 /// dereferenceable and invariant. 1637 bool isDereferenceableInvariantLoad(AAResults *AA) const; 1638 1639 /// If the specified instruction is a PHI that always merges together the 1640 /// same virtual register, return the register, otherwise return 0. 1641 unsigned isConstantValuePHI() const; 1642 1643 /// Return true if this instruction has side effects that are not modeled 1644 /// by mayLoad / mayStore, etc. 1645 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1646 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1647 /// INLINEASM instruction, in which case the side effect property is encoded 1648 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1649 /// 1650 bool hasUnmodeledSideEffects() const; 1651 1652 /// Returns true if it is illegal to fold a load across this instruction. 1653 bool isLoadFoldBarrier() const; 1654 1655 /// Return true if all the defs of this instruction are dead. 1656 bool allDefsAreDead() const; 1657 1658 /// Return a valid size if the instruction is a spill instruction. 1659 Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const; 1660 1661 /// Return a valid size if the instruction is a folded spill instruction. 1662 Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const; 1663 1664 /// Return a valid size if the instruction is a restore instruction. 1665 Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const; 1666 1667 /// Return a valid size if the instruction is a folded restore instruction. 1668 Optional<unsigned> 1669 getFoldedRestoreSize(const TargetInstrInfo *TII) const; 1670 1671 /// Copy implicit register operands from specified 1672 /// instruction to this instruction. 1673 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1674 1675 /// Debugging support 1676 /// @{ 1677 /// Determine the generic type to be printed (if needed) on uses and defs. 1678 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1679 const MachineRegisterInfo &MRI) const; 1680 1681 /// Return true when an instruction has tied register that can't be determined 1682 /// by the instruction's descriptor. This is useful for MIR printing, to 1683 /// determine whether we need to print the ties or not. 1684 bool hasComplexRegisterTies() const; 1685 1686 /// Print this MI to \p OS. 1687 /// Don't print information that can be inferred from other instructions if 1688 /// \p IsStandalone is false. It is usually true when only a fragment of the 1689 /// function is printed. 1690 /// Only print the defs and the opcode if \p SkipOpers is true. 1691 /// Otherwise, also print operands if \p SkipDebugLoc is true. 1692 /// Otherwise, also print the debug loc, with a terminating newline. 1693 /// \p TII is used to print the opcode name. If it's not present, but the 1694 /// MI is in a function, the opcode will be printed using the function's TII. 1695 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, 1696 bool SkipDebugLoc = false, bool AddNewLine = true, 1697 const TargetInstrInfo *TII = nullptr) const; 1698 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, 1699 bool SkipOpers = false, bool SkipDebugLoc = false, 1700 bool AddNewLine = true, 1701 const TargetInstrInfo *TII = nullptr) const; 1702 void dump() const; 1703 /// Print on dbgs() the current instruction and the instructions defining its 1704 /// operands and so on until we reach \p MaxDepth. 1705 void dumpr(const MachineRegisterInfo &MRI, 1706 unsigned MaxDepth = UINT_MAX) const; 1707 /// @} 1708 1709 //===--------------------------------------------------------------------===// 1710 // Accessors used to build up machine instructions. 1711 1712 /// Add the specified operand to the instruction. If it is an implicit 1713 /// operand, it is added to the end of the operand list. If it is an 1714 /// explicit operand it is added at the end of the explicit operand list 1715 /// (before the first implicit operand). 1716 /// 1717 /// MF must be the machine function that was used to allocate this 1718 /// instruction. 1719 /// 1720 /// MachineInstrBuilder provides a more convenient interface for creating 1721 /// instructions and adding operands. 1722 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1723 1724 /// Add an operand without providing an MF reference. This only works for 1725 /// instructions that are inserted in a basic block. 1726 /// 1727 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1728 /// preferred. 1729 void addOperand(const MachineOperand &Op); 1730 1731 /// Replace the instruction descriptor (thus opcode) of 1732 /// the current instruction with a new one. 1733 void setDesc(const MCInstrDesc &tid) { MCID = &tid; } 1734 1735 /// Replace current source information with new such. 1736 /// Avoid using this, the constructor argument is preferable. 1737 void setDebugLoc(DebugLoc dl) { 1738 debugLoc = std::move(dl); 1739 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1740 } 1741 1742 /// Erase an operand from an instruction, leaving it with one 1743 /// fewer operand than it started with. 1744 void RemoveOperand(unsigned OpNo); 1745 1746 /// Clear this MachineInstr's memory reference descriptor list. This resets 1747 /// the memrefs to their most conservative state. This should be used only 1748 /// as a last resort since it greatly pessimizes our knowledge of the memory 1749 /// access performed by the instruction. 1750 void dropMemRefs(MachineFunction &MF); 1751 1752 /// Assign this MachineInstr's memory reference descriptor list. 1753 /// 1754 /// Unlike other methods, this *will* allocate them into a new array 1755 /// associated with the provided `MachineFunction`. 1756 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); 1757 1758 /// Add a MachineMemOperand to the machine instruction. 1759 /// This function should be used only occasionally. The setMemRefs function 1760 /// is the primary method for setting up a MachineInstr's MemRefs list. 1761 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1762 1763 /// Clone another MachineInstr's memory reference descriptor list and replace 1764 /// ours with it. 1765 /// 1766 /// Note that `*this` may be the incoming MI! 1767 /// 1768 /// Prefer this API whenever possible as it can avoid allocations in common 1769 /// cases. 1770 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); 1771 1772 /// Clone the merge of multiple MachineInstrs' memory reference descriptors 1773 /// list and replace ours with it. 1774 /// 1775 /// Note that `*this` may be one of the incoming MIs! 1776 /// 1777 /// Prefer this API whenever possible as it can avoid allocations in common 1778 /// cases. 1779 void cloneMergedMemRefs(MachineFunction &MF, 1780 ArrayRef<const MachineInstr *> MIs); 1781 1782 /// Set a symbol that will be emitted just prior to the instruction itself. 1783 /// 1784 /// Setting this to a null pointer will remove any such symbol. 1785 /// 1786 /// FIXME: This is not fully implemented yet. 1787 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1788 1789 /// Set a symbol that will be emitted just after the instruction itself. 1790 /// 1791 /// Setting this to a null pointer will remove any such symbol. 1792 /// 1793 /// FIXME: This is not fully implemented yet. 1794 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1795 1796 /// Clone another MachineInstr's pre- and post- instruction symbols and 1797 /// replace ours with it. 1798 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); 1799 1800 /// Set a marker on instructions that denotes where we should create and emit 1801 /// heap alloc site labels. This waits until after instruction selection and 1802 /// optimizations to create the label, so it should still work if the 1803 /// instruction is removed or duplicated. 1804 void setHeapAllocMarker(MachineFunction &MF, MDNode *MD); 1805 1806 /// Return the MIFlags which represent both MachineInstrs. This 1807 /// should be used when merging two MachineInstrs into one. This routine does 1808 /// not modify the MIFlags of this MachineInstr. 1809 uint16_t mergeFlagsWith(const MachineInstr& Other) const; 1810 1811 static uint16_t copyFlagsFromInstruction(const Instruction &I); 1812 1813 /// Copy all flags to MachineInst MIFlags 1814 void copyIRFlags(const Instruction &I); 1815 1816 /// Break any tie involving OpIdx. 1817 void untieRegOperand(unsigned OpIdx) { 1818 MachineOperand &MO = getOperand(OpIdx); 1819 if (MO.isReg() && MO.isTied()) { 1820 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1821 MO.TiedTo = 0; 1822 } 1823 } 1824 1825 /// Add all implicit def and use operands to this instruction. 1826 void addImplicitDefUseOperands(MachineFunction &MF); 1827 1828 /// Scan instructions immediately following MI and collect any matching 1829 /// DBG_VALUEs. 1830 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); 1831 1832 /// Find all DBG_VALUEs that point to the register def in this instruction 1833 /// and point them to \p Reg instead. 1834 void changeDebugValuesDefReg(Register Reg); 1835 1836 /// Returns the Intrinsic::ID for this instruction. 1837 /// \pre Must have an intrinsic ID operand. 1838 unsigned getIntrinsicID() const { 1839 return getOperand(getNumExplicitDefs()).getIntrinsicID(); 1840 } 1841 1842 /// Sets all register debug operands in this debug value instruction to be 1843 /// undef. 1844 void setDebugValueUndef() { 1845 assert(isDebugValue() && "Must be a debug value instruction."); 1846 for (MachineOperand &MO : debug_operands()) { 1847 if (MO.isReg()) { 1848 MO.setReg(0); 1849 MO.setSubReg(0); 1850 } 1851 } 1852 } 1853 1854 PseudoProbeAttributes getPseudoProbeAttribute() const { 1855 assert(isPseudoProbe() && "Must be a pseudo probe instruction"); 1856 return (PseudoProbeAttributes)getOperand(3).getImm(); 1857 } 1858 1859 void addPseudoProbeAttribute(PseudoProbeAttributes Attr) { 1860 assert(isPseudoProbe() && "Must be a pseudo probe instruction"); 1861 MachineOperand &AttrOperand = getOperand(3); 1862 AttrOperand.setImm(AttrOperand.getImm() | (uint32_t)Attr); 1863 } 1864 1865 private: 1866 /// If this instruction is embedded into a MachineFunction, return the 1867 /// MachineRegisterInfo object for the current function, otherwise 1868 /// return null. 1869 MachineRegisterInfo *getRegInfo(); 1870 1871 /// Unlink all of the register operands in this instruction from their 1872 /// respective use lists. This requires that the operands already be on their 1873 /// use lists. 1874 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 1875 1876 /// Add all of the register operands in this instruction from their 1877 /// respective use lists. This requires that the operands not be on their 1878 /// use lists yet. 1879 void AddRegOperandsToUseLists(MachineRegisterInfo&); 1880 1881 /// Slow path for hasProperty when we're dealing with a bundle. 1882 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; 1883 1884 /// Implements the logic of getRegClassConstraintEffectForVReg for the 1885 /// this MI and the given operand index \p OpIdx. 1886 /// If the related operand does not constrained Reg, this returns CurRC. 1887 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 1888 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 1889 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 1890 1891 /// Stores extra instruction information inline or allocates as ExtraInfo 1892 /// based on the number of pointers. 1893 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs, 1894 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, 1895 MDNode *HeapAllocMarker); 1896 }; 1897 1898 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 1899 /// instruction rather than by pointer value. 1900 /// The hashing and equality testing functions ignore definitions so this is 1901 /// useful for CSE, etc. 1902 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1903 static inline MachineInstr *getEmptyKey() { 1904 return nullptr; 1905 } 1906 1907 static inline MachineInstr *getTombstoneKey() { 1908 return reinterpret_cast<MachineInstr*>(-1); 1909 } 1910 1911 static unsigned getHashValue(const MachineInstr* const &MI); 1912 1913 static bool isEqual(const MachineInstr* const &LHS, 1914 const MachineInstr* const &RHS) { 1915 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1916 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1917 return LHS == RHS; 1918 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 1919 } 1920 }; 1921 1922 //===----------------------------------------------------------------------===// 1923 // Debugging Support 1924 1925 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1926 MI.print(OS); 1927 return OS; 1928 } 1929 1930 } // end namespace llvm 1931 1932 #endif // LLVM_CODEGEN_MACHINEINSTR_H 1933