1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
17 
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/ilist.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/IR/DebugLoc.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/ArrayRecycler.h"
31 #include "llvm/Support/TrailingObjects.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <utility>
36 
37 namespace llvm {
38 
39 class AAResults;
40 template <typename T> class ArrayRef;
41 class DIExpression;
42 class DILocalVariable;
43 class MachineBasicBlock;
44 class MachineFunction;
45 class MachineMemOperand;
46 class MachineRegisterInfo;
47 class ModuleSlotTracker;
48 class raw_ostream;
49 template <typename T> class SmallVectorImpl;
50 class SmallBitVector;
51 class StringRef;
52 class TargetInstrInfo;
53 class TargetRegisterClass;
54 class TargetRegisterInfo;
55 
56 //===----------------------------------------------------------------------===//
57 /// Representation of each machine instruction.
58 ///
59 /// This class isn't a POD type, but it must have a trivial destructor. When a
60 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
61 /// without having their destructor called.
62 ///
63 class MachineInstr
64     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
65                                     ilist_sentinel_tracking<true>> {
66 public:
67   using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
68 
69   /// Flags to specify different kinds of comments to output in
70   /// assembly code.  These flags carry semantic information not
71   /// otherwise easily derivable from the IR text.
72   ///
73   enum CommentFlag {
74     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
75     NoSchedComment = 0x2,
76     TAsmComments = 0x4    // Target Asm comments should start from this value.
77   };
78 
79   enum MIFlag {
80     NoFlags      = 0,
81     FrameSetup   = 1 << 0,              // Instruction is used as a part of
82                                         // function frame setup code.
83     FrameDestroy = 1 << 1,              // Instruction is used as a part of
84                                         // function frame destruction code.
85     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
86     BundledSucc  = 1 << 3,              // Instruction has bundled successors.
87     FmNoNans     = 1 << 4,              // Instruction does not support Fast
88                                         // math nan values.
89     FmNoInfs     = 1 << 5,              // Instruction does not support Fast
90                                         // math infinity values.
91     FmNsz        = 1 << 6,              // Instruction is not required to retain
92                                         // signed zero values.
93     FmArcp       = 1 << 7,              // Instruction supports Fast math
94                                         // reciprocal approximations.
95     FmContract   = 1 << 8,              // Instruction supports Fast math
96                                         // contraction operations like fma.
97     FmAfn        = 1 << 9,              // Instruction may map to Fast math
98                                         // instrinsic approximation.
99     FmReassoc    = 1 << 10,             // Instruction supports Fast math
100                                         // reassociation of operand order.
101     NoUWrap      = 1 << 11,             // Instruction supports binary operator
102                                         // no unsigned wrap.
103     NoSWrap      = 1 << 12,             // Instruction supports binary operator
104                                         // no signed wrap.
105     IsExact      = 1 << 13,             // Instruction supports division is
106                                         // known to be exact.
107     NoFPExcept   = 1 << 14,             // Instruction does not raise
108                                         // floatint-point exceptions.
109   };
110 
111 private:
112   const MCInstrDesc *MCID;              // Instruction descriptor.
113   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
114 
115   // Operands are allocated by an ArrayRecycler.
116   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
117   unsigned NumOperands = 0;             // Number of operands on instruction.
118 
119   uint16_t Flags = 0;                   // Various bits of additional
120                                         // information about machine
121                                         // instruction.
122 
123   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
124                                         // the AsmPrinter to emit helpful
125                                         // comments.  This is *not* semantic
126                                         // information.  Do not use this for
127                                         // anything other than to convey comment
128                                         // information to AsmPrinter.
129 
130   // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
131   // to properly pack.
132   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
133   OperandCapacity CapOperands;          // Capacity of the Operands array.
134 
135   /// Internal implementation detail class that provides out-of-line storage for
136   /// extra info used by the machine instruction when this info cannot be stored
137   /// in-line within the instruction itself.
138   ///
139   /// This has to be defined eagerly due to the implementation constraints of
140   /// `PointerSumType` where it is used.
141   class ExtraInfo final
142       : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> {
143   public:
144     static ExtraInfo *create(BumpPtrAllocator &Allocator,
145                              ArrayRef<MachineMemOperand *> MMOs,
146                              MCSymbol *PreInstrSymbol = nullptr,
147                              MCSymbol *PostInstrSymbol = nullptr,
148                              MDNode *HeapAllocMarker = nullptr) {
149       bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
150       bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
151       bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
152       auto *Result = new (Allocator.Allocate(
153           totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>(
154               MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
155               HasHeapAllocMarker),
156           alignof(ExtraInfo)))
157           ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
158                     HasHeapAllocMarker);
159 
160       // Copy the actual data into the trailing objects.
161       std::copy(MMOs.begin(), MMOs.end(),
162                 Result->getTrailingObjects<MachineMemOperand *>());
163 
164       if (HasPreInstrSymbol)
165         Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
166       if (HasPostInstrSymbol)
167         Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
168             PostInstrSymbol;
169       if (HasHeapAllocMarker)
170         Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
171 
172       return Result;
173     }
174 
175     ArrayRef<MachineMemOperand *> getMMOs() const {
176       return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
177     }
178 
179     MCSymbol *getPreInstrSymbol() const {
180       return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
181     }
182 
183     MCSymbol *getPostInstrSymbol() const {
184       return HasPostInstrSymbol
185                  ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
186                  : nullptr;
187     }
188 
189     MDNode *getHeapAllocMarker() const {
190       return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
191     }
192 
193   private:
194     friend TrailingObjects;
195 
196     // Description of the extra info, used to interpret the actual optional
197     // data appended.
198     //
199     // Note that this is not terribly space optimized. This leaves a great deal
200     // of flexibility to fit more in here later.
201     const int NumMMOs;
202     const bool HasPreInstrSymbol;
203     const bool HasPostInstrSymbol;
204     const bool HasHeapAllocMarker;
205 
206     // Implement the `TrailingObjects` internal API.
207     size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
208       return NumMMOs;
209     }
210     size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
211       return HasPreInstrSymbol + HasPostInstrSymbol;
212     }
213     size_t numTrailingObjects(OverloadToken<MDNode *>) const {
214       return HasHeapAllocMarker;
215     }
216 
217     // Just a boring constructor to allow us to initialize the sizes. Always use
218     // the `create` routine above.
219     ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
220               bool HasHeapAllocMarker)
221         : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
222           HasPostInstrSymbol(HasPostInstrSymbol),
223           HasHeapAllocMarker(HasHeapAllocMarker) {}
224   };
225 
226   /// Enumeration of the kinds of inline extra info available. It is important
227   /// that the `MachineMemOperand` inline kind has a tag value of zero to make
228   /// it accessible as an `ArrayRef`.
229   enum ExtraInfoInlineKinds {
230     EIIK_MMO = 0,
231     EIIK_PreInstrSymbol,
232     EIIK_PostInstrSymbol,
233     EIIK_OutOfLine
234   };
235 
236   // We store extra information about the instruction here. The common case is
237   // expected to be nothing or a single pointer (typically a MMO or a symbol).
238   // We work to optimize this common case by storing it inline here rather than
239   // requiring a separate allocation, but we fall back to an allocation when
240   // multiple pointers are needed.
241   PointerSumType<ExtraInfoInlineKinds,
242                  PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
243                  PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
244                  PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
245                  PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
246       Info;
247 
248   DebugLoc debugLoc;                    // Source line information.
249 
250   // Intrusive list support
251   friend struct ilist_traits<MachineInstr>;
252   friend struct ilist_callback_traits<MachineBasicBlock>;
253   void setParent(MachineBasicBlock *P) { Parent = P; }
254 
255   /// This constructor creates a copy of the given
256   /// MachineInstr in the given MachineFunction.
257   MachineInstr(MachineFunction &, const MachineInstr &);
258 
259   /// This constructor create a MachineInstr and add the implicit operands.
260   /// It reserves space for number of operands specified by
261   /// MCInstrDesc.  An explicit DebugLoc is supplied.
262   MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
263                bool NoImp = false);
264 
265   // MachineInstrs are pool-allocated and owned by MachineFunction.
266   friend class MachineFunction;
267 
268   void
269   dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
270             SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
271 
272 public:
273   MachineInstr(const MachineInstr &) = delete;
274   MachineInstr &operator=(const MachineInstr &) = delete;
275   // Use MachineFunction::DeleteMachineInstr() instead.
276   ~MachineInstr() = delete;
277 
278   const MachineBasicBlock* getParent() const { return Parent; }
279   MachineBasicBlock* getParent() { return Parent; }
280 
281   /// Return the function that contains the basic block that this instruction
282   /// belongs to.
283   ///
284   /// Note: this is undefined behaviour if the instruction does not have a
285   /// parent.
286   const MachineFunction *getMF() const;
287   MachineFunction *getMF() {
288     return const_cast<MachineFunction *>(
289         static_cast<const MachineInstr *>(this)->getMF());
290   }
291 
292   /// Return the asm printer flags bitvector.
293   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
294 
295   /// Clear the AsmPrinter bitvector.
296   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
297 
298   /// Return whether an AsmPrinter flag is set.
299   bool getAsmPrinterFlag(CommentFlag Flag) const {
300     return AsmPrinterFlags & Flag;
301   }
302 
303   /// Set a flag for the AsmPrinter.
304   void setAsmPrinterFlag(uint8_t Flag) {
305     AsmPrinterFlags |= Flag;
306   }
307 
308   /// Clear specific AsmPrinter flags.
309   void clearAsmPrinterFlag(CommentFlag Flag) {
310     AsmPrinterFlags &= ~Flag;
311   }
312 
313   /// Return the MI flags bitvector.
314   uint16_t getFlags() const {
315     return Flags;
316   }
317 
318   /// Return whether an MI flag is set.
319   bool getFlag(MIFlag Flag) const {
320     return Flags & Flag;
321   }
322 
323   /// Set a MI flag.
324   void setFlag(MIFlag Flag) {
325     Flags |= (uint16_t)Flag;
326   }
327 
328   void setFlags(unsigned flags) {
329     // Filter out the automatically maintained flags.
330     unsigned Mask = BundledPred | BundledSucc;
331     Flags = (Flags & Mask) | (flags & ~Mask);
332   }
333 
334   /// clearFlag - Clear a MI flag.
335   void clearFlag(MIFlag Flag) {
336     Flags &= ~((uint16_t)Flag);
337   }
338 
339   /// Return true if MI is in a bundle (but not the first MI in a bundle).
340   ///
341   /// A bundle looks like this before it's finalized:
342   ///   ----------------
343   ///   |      MI      |
344   ///   ----------------
345   ///          |
346   ///   ----------------
347   ///   |      MI    * |
348   ///   ----------------
349   ///          |
350   ///   ----------------
351   ///   |      MI    * |
352   ///   ----------------
353   /// In this case, the first MI starts a bundle but is not inside a bundle, the
354   /// next 2 MIs are considered "inside" the bundle.
355   ///
356   /// After a bundle is finalized, it looks like this:
357   ///   ----------------
358   ///   |    Bundle    |
359   ///   ----------------
360   ///          |
361   ///   ----------------
362   ///   |      MI    * |
363   ///   ----------------
364   ///          |
365   ///   ----------------
366   ///   |      MI    * |
367   ///   ----------------
368   ///          |
369   ///   ----------------
370   ///   |      MI    * |
371   ///   ----------------
372   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
373   /// a bundle, but the next three MIs are.
374   bool isInsideBundle() const {
375     return getFlag(BundledPred);
376   }
377 
378   /// Return true if this instruction part of a bundle. This is true
379   /// if either itself or its following instruction is marked "InsideBundle".
380   bool isBundled() const {
381     return isBundledWithPred() || isBundledWithSucc();
382   }
383 
384   /// Return true if this instruction is part of a bundle, and it is not the
385   /// first instruction in the bundle.
386   bool isBundledWithPred() const { return getFlag(BundledPred); }
387 
388   /// Return true if this instruction is part of a bundle, and it is not the
389   /// last instruction in the bundle.
390   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
391 
392   /// Bundle this instruction with its predecessor. This can be an unbundled
393   /// instruction, or it can be the first instruction in a bundle.
394   void bundleWithPred();
395 
396   /// Bundle this instruction with its successor. This can be an unbundled
397   /// instruction, or it can be the last instruction in a bundle.
398   void bundleWithSucc();
399 
400   /// Break bundle above this instruction.
401   void unbundleFromPred();
402 
403   /// Break bundle below this instruction.
404   void unbundleFromSucc();
405 
406   /// Returns the debug location id of this MachineInstr.
407   const DebugLoc &getDebugLoc() const { return debugLoc; }
408 
409   /// Return the debug variable referenced by
410   /// this DBG_VALUE instruction.
411   const DILocalVariable *getDebugVariable() const;
412 
413   /// Return the complex address expression referenced by
414   /// this DBG_VALUE instruction.
415   const DIExpression *getDebugExpression() const;
416 
417   /// Return the debug label referenced by
418   /// this DBG_LABEL instruction.
419   const DILabel *getDebugLabel() const;
420 
421   /// Emit an error referring to the source location of this instruction.
422   /// This should only be used for inline assembly that is somehow
423   /// impossible to compile. Other errors should have been handled much
424   /// earlier.
425   ///
426   /// If this method returns, the caller should try to recover from the error.
427   void emitError(StringRef Msg) const;
428 
429   /// Returns the target instruction descriptor of this MachineInstr.
430   const MCInstrDesc &getDesc() const { return *MCID; }
431 
432   /// Returns the opcode of this MachineInstr.
433   unsigned getOpcode() const { return MCID->Opcode; }
434 
435   /// Retuns the total number of operands.
436   unsigned getNumOperands() const { return NumOperands; }
437 
438   const MachineOperand& getOperand(unsigned i) const {
439     assert(i < getNumOperands() && "getOperand() out of range!");
440     return Operands[i];
441   }
442   MachineOperand& getOperand(unsigned i) {
443     assert(i < getNumOperands() && "getOperand() out of range!");
444     return Operands[i];
445   }
446 
447   /// Returns the total number of definitions.
448   unsigned getNumDefs() const {
449     return getNumExplicitDefs() + MCID->getNumImplicitDefs();
450   }
451 
452   /// Returns true if the instruction has implicit definition.
453   bool hasImplicitDef() const {
454     for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
455       I != E; ++I) {
456       const MachineOperand &MO = getOperand(I);
457       if (MO.isDef() && MO.isImplicit())
458         return true;
459     }
460     return false;
461   }
462 
463   /// Returns the implicit operands number.
464   unsigned getNumImplicitOperands() const {
465     return getNumOperands() - getNumExplicitOperands();
466   }
467 
468   /// Return true if operand \p OpIdx is a subregister index.
469   bool isOperandSubregIdx(unsigned OpIdx) const {
470     assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
471            "Expected MO_Immediate operand type.");
472     if (isExtractSubreg() && OpIdx == 2)
473       return true;
474     if (isInsertSubreg() && OpIdx == 3)
475       return true;
476     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
477       return true;
478     if (isSubregToReg() && OpIdx == 3)
479       return true;
480     return false;
481   }
482 
483   /// Returns the number of non-implicit operands.
484   unsigned getNumExplicitOperands() const;
485 
486   /// Returns the number of non-implicit definitions.
487   unsigned getNumExplicitDefs() const;
488 
489   /// iterator/begin/end - Iterate over all operands of a machine instruction.
490   using mop_iterator = MachineOperand *;
491   using const_mop_iterator = const MachineOperand *;
492 
493   mop_iterator operands_begin() { return Operands; }
494   mop_iterator operands_end() { return Operands + NumOperands; }
495 
496   const_mop_iterator operands_begin() const { return Operands; }
497   const_mop_iterator operands_end() const { return Operands + NumOperands; }
498 
499   iterator_range<mop_iterator> operands() {
500     return make_range(operands_begin(), operands_end());
501   }
502   iterator_range<const_mop_iterator> operands() const {
503     return make_range(operands_begin(), operands_end());
504   }
505   iterator_range<mop_iterator> explicit_operands() {
506     return make_range(operands_begin(),
507                       operands_begin() + getNumExplicitOperands());
508   }
509   iterator_range<const_mop_iterator> explicit_operands() const {
510     return make_range(operands_begin(),
511                       operands_begin() + getNumExplicitOperands());
512   }
513   iterator_range<mop_iterator> implicit_operands() {
514     return make_range(explicit_operands().end(), operands_end());
515   }
516   iterator_range<const_mop_iterator> implicit_operands() const {
517     return make_range(explicit_operands().end(), operands_end());
518   }
519   /// Returns a range over all explicit operands that are register definitions.
520   /// Implicit definition are not included!
521   iterator_range<mop_iterator> defs() {
522     return make_range(operands_begin(),
523                       operands_begin() + getNumExplicitDefs());
524   }
525   /// \copydoc defs()
526   iterator_range<const_mop_iterator> defs() const {
527     return make_range(operands_begin(),
528                       operands_begin() + getNumExplicitDefs());
529   }
530   /// Returns a range that includes all operands that are register uses.
531   /// This may include unrelated operands which are not register uses.
532   iterator_range<mop_iterator> uses() {
533     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
534   }
535   /// \copydoc uses()
536   iterator_range<const_mop_iterator> uses() const {
537     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
538   }
539   iterator_range<mop_iterator> explicit_uses() {
540     return make_range(operands_begin() + getNumExplicitDefs(),
541                       operands_begin() + getNumExplicitOperands());
542   }
543   iterator_range<const_mop_iterator> explicit_uses() const {
544     return make_range(operands_begin() + getNumExplicitDefs(),
545                       operands_begin() + getNumExplicitOperands());
546   }
547 
548   /// Returns the number of the operand iterator \p I points to.
549   unsigned getOperandNo(const_mop_iterator I) const {
550     return I - operands_begin();
551   }
552 
553   /// Access to memory operands of the instruction. If there are none, that does
554   /// not imply anything about whether the function accesses memory. Instead,
555   /// the caller must behave conservatively.
556   ArrayRef<MachineMemOperand *> memoperands() const {
557     if (!Info)
558       return {};
559 
560     if (Info.is<EIIK_MMO>())
561       return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
562 
563     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
564       return EI->getMMOs();
565 
566     return {};
567   }
568 
569   /// Access to memory operands of the instruction.
570   ///
571   /// If `memoperands_begin() == memoperands_end()`, that does not imply
572   /// anything about whether the function accesses memory. Instead, the caller
573   /// must behave conservatively.
574   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
575 
576   /// Access to memory operands of the instruction.
577   ///
578   /// If `memoperands_begin() == memoperands_end()`, that does not imply
579   /// anything about whether the function accesses memory. Instead, the caller
580   /// must behave conservatively.
581   mmo_iterator memoperands_end() const { return memoperands().end(); }
582 
583   /// Return true if we don't have any memory operands which described the
584   /// memory access done by this instruction.  If this is true, calling code
585   /// must be conservative.
586   bool memoperands_empty() const { return memoperands().empty(); }
587 
588   /// Return true if this instruction has exactly one MachineMemOperand.
589   bool hasOneMemOperand() const { return memoperands().size() == 1; }
590 
591   /// Return the number of memory operands.
592   unsigned getNumMemOperands() const { return memoperands().size(); }
593 
594   /// Helper to extract a pre-instruction symbol if one has been added.
595   MCSymbol *getPreInstrSymbol() const {
596     if (!Info)
597       return nullptr;
598     if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
599       return S;
600     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
601       return EI->getPreInstrSymbol();
602 
603     return nullptr;
604   }
605 
606   /// Helper to extract a post-instruction symbol if one has been added.
607   MCSymbol *getPostInstrSymbol() const {
608     if (!Info)
609       return nullptr;
610     if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
611       return S;
612     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
613       return EI->getPostInstrSymbol();
614 
615     return nullptr;
616   }
617 
618   /// Helper to extract a heap alloc marker if one has been added.
619   MDNode *getHeapAllocMarker() const {
620     if (!Info)
621       return nullptr;
622     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
623       return EI->getHeapAllocMarker();
624 
625     return nullptr;
626   }
627 
628   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
629   /// queries but they are bundle aware.
630 
631   enum QueryType {
632     IgnoreBundle,    // Ignore bundles
633     AnyInBundle,     // Return true if any instruction in bundle has property
634     AllInBundle      // Return true if all instructions in bundle have property
635   };
636 
637   /// Return true if the instruction (or in the case of a bundle,
638   /// the instructions inside the bundle) has the specified property.
639   /// The first argument is the property being queried.
640   /// The second argument indicates whether the query should look inside
641   /// instruction bundles.
642   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
643     assert(MCFlag < 64 &&
644            "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
645     // Inline the fast path for unbundled or bundle-internal instructions.
646     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
647       return getDesc().getFlags() & (1ULL << MCFlag);
648 
649     // If this is the first instruction in a bundle, take the slow path.
650     return hasPropertyInBundle(1ULL << MCFlag, Type);
651   }
652 
653   /// Return true if this is an instruction that should go through the usual
654   /// legalization steps.
655   bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
656     return hasProperty(MCID::PreISelOpcode, Type);
657   }
658 
659   /// Return true if this instruction can have a variable number of operands.
660   /// In this case, the variable operands will be after the normal
661   /// operands but before the implicit definitions and uses (if any are
662   /// present).
663   bool isVariadic(QueryType Type = IgnoreBundle) const {
664     return hasProperty(MCID::Variadic, Type);
665   }
666 
667   /// Set if this instruction has an optional definition, e.g.
668   /// ARM instructions which can set condition code if 's' bit is set.
669   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
670     return hasProperty(MCID::HasOptionalDef, Type);
671   }
672 
673   /// Return true if this is a pseudo instruction that doesn't
674   /// correspond to a real machine instruction.
675   bool isPseudo(QueryType Type = IgnoreBundle) const {
676     return hasProperty(MCID::Pseudo, Type);
677   }
678 
679   bool isReturn(QueryType Type = AnyInBundle) const {
680     return hasProperty(MCID::Return, Type);
681   }
682 
683   /// Return true if this is an instruction that marks the end of an EH scope,
684   /// i.e., a catchpad or a cleanuppad instruction.
685   bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
686     return hasProperty(MCID::EHScopeReturn, Type);
687   }
688 
689   bool isCall(QueryType Type = AnyInBundle) const {
690     return hasProperty(MCID::Call, Type);
691   }
692 
693   /// Return true if this is a call instruction that may have an associated
694   /// call site entry in the debug info.
695   bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
696   /// Return true if copying, moving, or erasing this instruction requires
697   /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
698   /// \ref eraseCallSiteInfo).
699   bool shouldUpdateCallSiteInfo() const;
700 
701   /// Returns true if the specified instruction stops control flow
702   /// from executing the instruction immediately following it.  Examples include
703   /// unconditional branches and return instructions.
704   bool isBarrier(QueryType Type = AnyInBundle) const {
705     return hasProperty(MCID::Barrier, Type);
706   }
707 
708   /// Returns true if this instruction part of the terminator for a basic block.
709   /// Typically this is things like return and branch instructions.
710   ///
711   /// Various passes use this to insert code into the bottom of a basic block,
712   /// but before control flow occurs.
713   bool isTerminator(QueryType Type = AnyInBundle) const {
714     return hasProperty(MCID::Terminator, Type);
715   }
716 
717   /// Returns true if this is a conditional, unconditional, or indirect branch.
718   /// Predicates below can be used to discriminate between
719   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
720   /// get more information.
721   bool isBranch(QueryType Type = AnyInBundle) const {
722     return hasProperty(MCID::Branch, Type);
723   }
724 
725   /// Return true if this is an indirect branch, such as a
726   /// branch through a register.
727   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
728     return hasProperty(MCID::IndirectBranch, Type);
729   }
730 
731   /// Return true if this is a branch which may fall
732   /// through to the next instruction or may transfer control flow to some other
733   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
734   /// information about this branch.
735   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
736     return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
737   }
738 
739   /// Return true if this is a branch which always
740   /// transfers control flow to some other block.  The
741   /// TargetInstrInfo::analyzeBranch method can be used to get more information
742   /// about this branch.
743   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
744     return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
745   }
746 
747   /// Return true if this instruction has a predicate operand that
748   /// controls execution.  It may be set to 'always', or may be set to other
749   /// values.   There are various methods in TargetInstrInfo that can be used to
750   /// control and modify the predicate in this instruction.
751   bool isPredicable(QueryType Type = AllInBundle) const {
752     // If it's a bundle than all bundled instructions must be predicable for this
753     // to return true.
754     return hasProperty(MCID::Predicable, Type);
755   }
756 
757   /// Return true if this instruction is a comparison.
758   bool isCompare(QueryType Type = IgnoreBundle) const {
759     return hasProperty(MCID::Compare, Type);
760   }
761 
762   /// Return true if this instruction is a move immediate
763   /// (including conditional moves) instruction.
764   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
765     return hasProperty(MCID::MoveImm, Type);
766   }
767 
768   /// Return true if this instruction is a register move.
769   /// (including moving values from subreg to reg)
770   bool isMoveReg(QueryType Type = IgnoreBundle) const {
771     return hasProperty(MCID::MoveReg, Type);
772   }
773 
774   /// Return true if this instruction is a bitcast instruction.
775   bool isBitcast(QueryType Type = IgnoreBundle) const {
776     return hasProperty(MCID::Bitcast, Type);
777   }
778 
779   /// Return true if this instruction is a select instruction.
780   bool isSelect(QueryType Type = IgnoreBundle) const {
781     return hasProperty(MCID::Select, Type);
782   }
783 
784   /// Return true if this instruction cannot be safely duplicated.
785   /// For example, if the instruction has a unique labels attached
786   /// to it, duplicating it would cause multiple definition errors.
787   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
788     return hasProperty(MCID::NotDuplicable, Type);
789   }
790 
791   /// Return true if this instruction is convergent.
792   /// Convergent instructions can not be made control-dependent on any
793   /// additional values.
794   bool isConvergent(QueryType Type = AnyInBundle) const {
795     if (isInlineAsm()) {
796       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
797       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
798         return true;
799     }
800     return hasProperty(MCID::Convergent, Type);
801   }
802 
803   /// Returns true if the specified instruction has a delay slot
804   /// which must be filled by the code generator.
805   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
806     return hasProperty(MCID::DelaySlot, Type);
807   }
808 
809   /// Return true for instructions that can be folded as
810   /// memory operands in other instructions. The most common use for this
811   /// is instructions that are simple loads from memory that don't modify
812   /// the loaded value in any way, but it can also be used for instructions
813   /// that can be expressed as constant-pool loads, such as V_SETALLONES
814   /// on x86, to allow them to be folded when it is beneficial.
815   /// This should only be set on instructions that return a value in their
816   /// only virtual register definition.
817   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
818     return hasProperty(MCID::FoldableAsLoad, Type);
819   }
820 
821   /// Return true if this instruction behaves
822   /// the same way as the generic REG_SEQUENCE instructions.
823   /// E.g., on ARM,
824   /// dX VMOVDRR rY, rZ
825   /// is equivalent to
826   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
827   ///
828   /// Note that for the optimizers to be able to take advantage of
829   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
830   /// override accordingly.
831   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
832     return hasProperty(MCID::RegSequence, Type);
833   }
834 
835   /// Return true if this instruction behaves
836   /// the same way as the generic EXTRACT_SUBREG instructions.
837   /// E.g., on ARM,
838   /// rX, rY VMOVRRD dZ
839   /// is equivalent to two EXTRACT_SUBREG:
840   /// rX = EXTRACT_SUBREG dZ, ssub_0
841   /// rY = EXTRACT_SUBREG dZ, ssub_1
842   ///
843   /// Note that for the optimizers to be able to take advantage of
844   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
845   /// override accordingly.
846   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
847     return hasProperty(MCID::ExtractSubreg, Type);
848   }
849 
850   /// Return true if this instruction behaves
851   /// the same way as the generic INSERT_SUBREG instructions.
852   /// E.g., on ARM,
853   /// dX = VSETLNi32 dY, rZ, Imm
854   /// is equivalent to a INSERT_SUBREG:
855   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
856   ///
857   /// Note that for the optimizers to be able to take advantage of
858   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
859   /// override accordingly.
860   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
861     return hasProperty(MCID::InsertSubreg, Type);
862   }
863 
864   //===--------------------------------------------------------------------===//
865   // Side Effect Analysis
866   //===--------------------------------------------------------------------===//
867 
868   /// Return true if this instruction could possibly read memory.
869   /// Instructions with this flag set are not necessarily simple load
870   /// instructions, they may load a value and modify it, for example.
871   bool mayLoad(QueryType Type = AnyInBundle) const {
872     if (isInlineAsm()) {
873       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
874       if (ExtraInfo & InlineAsm::Extra_MayLoad)
875         return true;
876     }
877     return hasProperty(MCID::MayLoad, Type);
878   }
879 
880   /// Return true if this instruction could possibly modify memory.
881   /// Instructions with this flag set are not necessarily simple store
882   /// instructions, they may store a modified value based on their operands, or
883   /// may not actually modify anything, for example.
884   bool mayStore(QueryType Type = AnyInBundle) const {
885     if (isInlineAsm()) {
886       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
887       if (ExtraInfo & InlineAsm::Extra_MayStore)
888         return true;
889     }
890     return hasProperty(MCID::MayStore, Type);
891   }
892 
893   /// Return true if this instruction could possibly read or modify memory.
894   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
895     return mayLoad(Type) || mayStore(Type);
896   }
897 
898   /// Return true if this instruction could possibly raise a floating-point
899   /// exception.  This is the case if the instruction is a floating-point
900   /// instruction that can in principle raise an exception, as indicated
901   /// by the MCID::MayRaiseFPException property, *and* at the same time,
902   /// the instruction is used in a context where we expect floating-point
903   /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
904   bool mayRaiseFPException() const {
905     return hasProperty(MCID::MayRaiseFPException) &&
906            !getFlag(MachineInstr::MIFlag::NoFPExcept);
907   }
908 
909   //===--------------------------------------------------------------------===//
910   // Flags that indicate whether an instruction can be modified by a method.
911   //===--------------------------------------------------------------------===//
912 
913   /// Return true if this may be a 2- or 3-address
914   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
915   /// result if Y and Z are exchanged.  If this flag is set, then the
916   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
917   /// instruction.
918   ///
919   /// Note that this flag may be set on instructions that are only commutable
920   /// sometimes.  In these cases, the call to commuteInstruction will fail.
921   /// Also note that some instructions require non-trivial modification to
922   /// commute them.
923   bool isCommutable(QueryType Type = IgnoreBundle) const {
924     return hasProperty(MCID::Commutable, Type);
925   }
926 
927   /// Return true if this is a 2-address instruction
928   /// which can be changed into a 3-address instruction if needed.  Doing this
929   /// transformation can be profitable in the register allocator, because it
930   /// means that the instruction can use a 2-address form if possible, but
931   /// degrade into a less efficient form if the source and dest register cannot
932   /// be assigned to the same register.  For example, this allows the x86
933   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
934   /// is the same speed as the shift but has bigger code size.
935   ///
936   /// If this returns true, then the target must implement the
937   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
938   /// is allowed to fail if the transformation isn't valid for this specific
939   /// instruction (e.g. shl reg, 4 on x86).
940   ///
941   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
942     return hasProperty(MCID::ConvertibleTo3Addr, Type);
943   }
944 
945   /// Return true if this instruction requires
946   /// custom insertion support when the DAG scheduler is inserting it into a
947   /// machine basic block.  If this is true for the instruction, it basically
948   /// means that it is a pseudo instruction used at SelectionDAG time that is
949   /// expanded out into magic code by the target when MachineInstrs are formed.
950   ///
951   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
952   /// is used to insert this into the MachineBasicBlock.
953   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
954     return hasProperty(MCID::UsesCustomInserter, Type);
955   }
956 
957   /// Return true if this instruction requires *adjustment*
958   /// after instruction selection by calling a target hook. For example, this
959   /// can be used to fill in ARM 's' optional operand depending on whether
960   /// the conditional flag register is used.
961   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
962     return hasProperty(MCID::HasPostISelHook, Type);
963   }
964 
965   /// Returns true if this instruction is a candidate for remat.
966   /// This flag is deprecated, please don't use it anymore.  If this
967   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
968   /// verify the instruction is really rematable.
969   bool isRematerializable(QueryType Type = AllInBundle) const {
970     // It's only possible to re-mat a bundle if all bundled instructions are
971     // re-materializable.
972     return hasProperty(MCID::Rematerializable, Type);
973   }
974 
975   /// Returns true if this instruction has the same cost (or less) than a move
976   /// instruction. This is useful during certain types of optimizations
977   /// (e.g., remat during two-address conversion or machine licm)
978   /// where we would like to remat or hoist the instruction, but not if it costs
979   /// more than moving the instruction into the appropriate register. Note, we
980   /// are not marking copies from and to the same register class with this flag.
981   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
982     // Only returns true for a bundle if all bundled instructions are cheap.
983     return hasProperty(MCID::CheapAsAMove, Type);
984   }
985 
986   /// Returns true if this instruction source operands
987   /// have special register allocation requirements that are not captured by the
988   /// operand register classes. e.g. ARM::STRD's two source registers must be an
989   /// even / odd pair, ARM::STM registers have to be in ascending order.
990   /// Post-register allocation passes should not attempt to change allocations
991   /// for sources of instructions with this flag.
992   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
993     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
994   }
995 
996   /// Returns true if this instruction def operands
997   /// have special register allocation requirements that are not captured by the
998   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
999   /// even / odd pair, ARM::LDM registers have to be in ascending order.
1000   /// Post-register allocation passes should not attempt to change allocations
1001   /// for definitions of instructions with this flag.
1002   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1003     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
1004   }
1005 
1006   enum MICheckType {
1007     CheckDefs,      // Check all operands for equality
1008     CheckKillDead,  // Check all operands including kill / dead markers
1009     IgnoreDefs,     // Ignore all definitions
1010     IgnoreVRegDefs  // Ignore virtual register definitions
1011   };
1012 
1013   /// Return true if this instruction is identical to \p Other.
1014   /// Two instructions are identical if they have the same opcode and all their
1015   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1016   /// Note that this means liveness related flags (dead, undef, kill) do not
1017   /// affect the notion of identical.
1018   bool isIdenticalTo(const MachineInstr &Other,
1019                      MICheckType Check = CheckDefs) const;
1020 
1021   /// Unlink 'this' from the containing basic block, and return it without
1022   /// deleting it.
1023   ///
1024   /// This function can not be used on bundled instructions, use
1025   /// removeFromBundle() to remove individual instructions from a bundle.
1026   MachineInstr *removeFromParent();
1027 
1028   /// Unlink this instruction from its basic block and return it without
1029   /// deleting it.
1030   ///
1031   /// If the instruction is part of a bundle, the other instructions in the
1032   /// bundle remain bundled.
1033   MachineInstr *removeFromBundle();
1034 
1035   /// Unlink 'this' from the containing basic block and delete it.
1036   ///
1037   /// If this instruction is the header of a bundle, the whole bundle is erased.
1038   /// This function can not be used for instructions inside a bundle, use
1039   /// eraseFromBundle() to erase individual bundled instructions.
1040   void eraseFromParent();
1041 
1042   /// Unlink 'this' from the containing basic block and delete it.
1043   ///
1044   /// For all definitions mark their uses in DBG_VALUE nodes
1045   /// as undefined. Otherwise like eraseFromParent().
1046   void eraseFromParentAndMarkDBGValuesForRemoval();
1047 
1048   /// Unlink 'this' form its basic block and delete it.
1049   ///
1050   /// If the instruction is part of a bundle, the other instructions in the
1051   /// bundle remain bundled.
1052   void eraseFromBundle();
1053 
1054   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1055   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1056   bool isAnnotationLabel() const {
1057     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1058   }
1059 
1060   /// Returns true if the MachineInstr represents a label.
1061   bool isLabel() const {
1062     return isEHLabel() || isGCLabel() || isAnnotationLabel();
1063   }
1064 
1065   bool isCFIInstruction() const {
1066     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1067   }
1068 
1069   // True if the instruction represents a position in the function.
1070   bool isPosition() const { return isLabel() || isCFIInstruction(); }
1071 
1072   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
1073   bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1074   bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); }
1075 
1076   /// A DBG_VALUE is indirect iff the first operand is a register and
1077   /// the second operand is an immediate.
1078   bool isIndirectDebugValue() const {
1079     return isDebugValue()
1080       && getOperand(0).isReg()
1081       && getOperand(1).isImm();
1082   }
1083 
1084   /// A DBG_VALUE is an entry value iff its debug expression contains the
1085   /// DW_OP_LLVM_entry_value operation.
1086   bool isDebugEntryValue() const;
1087 
1088   /// Return true if the instruction is a debug value which describes a part of
1089   /// a variable as unavailable.
1090   bool isUndefDebugValue() const {
1091     return isDebugValue() && getOperand(0).isReg() && !getOperand(0).getReg().isValid();
1092   }
1093 
1094   bool isPHI() const {
1095     return getOpcode() == TargetOpcode::PHI ||
1096            getOpcode() == TargetOpcode::G_PHI;
1097   }
1098   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1099   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1100   bool isInlineAsm() const {
1101     return getOpcode() == TargetOpcode::INLINEASM ||
1102            getOpcode() == TargetOpcode::INLINEASM_BR;
1103   }
1104 
1105   /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1106   /// specific, be attached to a generic MachineInstr.
1107   bool isMSInlineAsm() const {
1108     return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1109   }
1110 
1111   bool isStackAligningInlineAsm() const;
1112   InlineAsm::AsmDialect getInlineAsmDialect() const;
1113 
1114   bool isInsertSubreg() const {
1115     return getOpcode() == TargetOpcode::INSERT_SUBREG;
1116   }
1117 
1118   bool isSubregToReg() const {
1119     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1120   }
1121 
1122   bool isRegSequence() const {
1123     return getOpcode() == TargetOpcode::REG_SEQUENCE;
1124   }
1125 
1126   bool isBundle() const {
1127     return getOpcode() == TargetOpcode::BUNDLE;
1128   }
1129 
1130   bool isCopy() const {
1131     return getOpcode() == TargetOpcode::COPY;
1132   }
1133 
1134   bool isFullCopy() const {
1135     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1136   }
1137 
1138   bool isExtractSubreg() const {
1139     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1140   }
1141 
1142   /// Return true if the instruction behaves like a copy.
1143   /// This does not include native copy instructions.
1144   bool isCopyLike() const {
1145     return isCopy() || isSubregToReg();
1146   }
1147 
1148   /// Return true is the instruction is an identity copy.
1149   bool isIdentityCopy() const {
1150     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1151       getOperand(0).getSubReg() == getOperand(1).getSubReg();
1152   }
1153 
1154   /// Return true if this instruction doesn't produce any output in the form of
1155   /// executable instructions.
1156   bool isMetaInstruction() const {
1157     switch (getOpcode()) {
1158     default:
1159       return false;
1160     case TargetOpcode::IMPLICIT_DEF:
1161     case TargetOpcode::KILL:
1162     case TargetOpcode::CFI_INSTRUCTION:
1163     case TargetOpcode::EH_LABEL:
1164     case TargetOpcode::GC_LABEL:
1165     case TargetOpcode::DBG_VALUE:
1166     case TargetOpcode::DBG_LABEL:
1167     case TargetOpcode::LIFETIME_START:
1168     case TargetOpcode::LIFETIME_END:
1169       return true;
1170     }
1171   }
1172 
1173   /// Return true if this is a transient instruction that is either very likely
1174   /// to be eliminated during register allocation (such as copy-like
1175   /// instructions), or if this instruction doesn't have an execution-time cost.
1176   bool isTransient() const {
1177     switch (getOpcode()) {
1178     default:
1179       return isMetaInstruction();
1180     // Copy-like instructions are usually eliminated during register allocation.
1181     case TargetOpcode::PHI:
1182     case TargetOpcode::G_PHI:
1183     case TargetOpcode::COPY:
1184     case TargetOpcode::INSERT_SUBREG:
1185     case TargetOpcode::SUBREG_TO_REG:
1186     case TargetOpcode::REG_SEQUENCE:
1187       return true;
1188     }
1189   }
1190 
1191   /// Return the number of instructions inside the MI bundle, excluding the
1192   /// bundle header.
1193   ///
1194   /// This is the number of instructions that MachineBasicBlock::iterator
1195   /// skips, 0 for unbundled instructions.
1196   unsigned getBundleSize() const;
1197 
1198   /// Return true if the MachineInstr reads the specified register.
1199   /// If TargetRegisterInfo is passed, then it also checks if there
1200   /// is a read of a super-register.
1201   /// This does not count partial redefines of virtual registers as reads:
1202   ///   %reg1024:6 = OP.
1203   bool readsRegister(Register Reg,
1204                      const TargetRegisterInfo *TRI = nullptr) const {
1205     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1206   }
1207 
1208   /// Return true if the MachineInstr reads the specified virtual register.
1209   /// Take into account that a partial define is a
1210   /// read-modify-write operation.
1211   bool readsVirtualRegister(Register Reg) const {
1212     return readsWritesVirtualRegister(Reg).first;
1213   }
1214 
1215   /// Return a pair of bools (reads, writes) indicating if this instruction
1216   /// reads or writes Reg. This also considers partial defines.
1217   /// If Ops is not null, all operand indices for Reg are added.
1218   std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1219                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1220 
1221   /// Return true if the MachineInstr kills the specified register.
1222   /// If TargetRegisterInfo is passed, then it also checks if there is
1223   /// a kill of a super-register.
1224   bool killsRegister(Register Reg,
1225                      const TargetRegisterInfo *TRI = nullptr) const {
1226     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1227   }
1228 
1229   /// Return true if the MachineInstr fully defines the specified register.
1230   /// If TargetRegisterInfo is passed, then it also checks
1231   /// if there is a def of a super-register.
1232   /// NOTE: It's ignoring subreg indices on virtual registers.
1233   bool definesRegister(Register Reg,
1234                        const TargetRegisterInfo *TRI = nullptr) const {
1235     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1236   }
1237 
1238   /// Return true if the MachineInstr modifies (fully define or partially
1239   /// define) the specified register.
1240   /// NOTE: It's ignoring subreg indices on virtual registers.
1241   bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const {
1242     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1243   }
1244 
1245   /// Returns true if the register is dead in this machine instruction.
1246   /// If TargetRegisterInfo is passed, then it also checks
1247   /// if there is a dead def of a super-register.
1248   bool registerDefIsDead(Register Reg,
1249                          const TargetRegisterInfo *TRI = nullptr) const {
1250     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1251   }
1252 
1253   /// Returns true if the MachineInstr has an implicit-use operand of exactly
1254   /// the given register (not considering sub/super-registers).
1255   bool hasRegisterImplicitUseOperand(Register Reg) const;
1256 
1257   /// Returns the operand index that is a use of the specific register or -1
1258   /// if it is not found. It further tightens the search criteria to a use
1259   /// that kills the register if isKill is true.
1260   int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1261                                 const TargetRegisterInfo *TRI = nullptr) const;
1262 
1263   /// Wrapper for findRegisterUseOperandIdx, it returns
1264   /// a pointer to the MachineOperand rather than an index.
1265   MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1266                                       const TargetRegisterInfo *TRI = nullptr) {
1267     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1268     return (Idx == -1) ? nullptr : &getOperand(Idx);
1269   }
1270 
1271   const MachineOperand *findRegisterUseOperand(
1272     Register Reg, bool isKill = false,
1273     const TargetRegisterInfo *TRI = nullptr) const {
1274     return const_cast<MachineInstr *>(this)->
1275       findRegisterUseOperand(Reg, isKill, TRI);
1276   }
1277 
1278   /// Returns the operand index that is a def of the specified register or
1279   /// -1 if it is not found. If isDead is true, defs that are not dead are
1280   /// skipped. If Overlap is true, then it also looks for defs that merely
1281   /// overlap the specified register. If TargetRegisterInfo is non-null,
1282   /// then it also checks if there is a def of a super-register.
1283   /// This may also return a register mask operand when Overlap is true.
1284   int findRegisterDefOperandIdx(Register Reg,
1285                                 bool isDead = false, bool Overlap = false,
1286                                 const TargetRegisterInfo *TRI = nullptr) const;
1287 
1288   /// Wrapper for findRegisterDefOperandIdx, it returns
1289   /// a pointer to the MachineOperand rather than an index.
1290   MachineOperand *
1291   findRegisterDefOperand(Register Reg, bool isDead = false,
1292                          bool Overlap = false,
1293                          const TargetRegisterInfo *TRI = nullptr) {
1294     int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1295     return (Idx == -1) ? nullptr : &getOperand(Idx);
1296   }
1297 
1298   const MachineOperand *
1299   findRegisterDefOperand(Register Reg, bool isDead = false,
1300                          bool Overlap = false,
1301                          const TargetRegisterInfo *TRI = nullptr) const {
1302     return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1303         Reg, isDead, Overlap, TRI);
1304   }
1305 
1306   /// Find the index of the first operand in the
1307   /// operand list that is used to represent the predicate. It returns -1 if
1308   /// none is found.
1309   int findFirstPredOperandIdx() const;
1310 
1311   /// Find the index of the flag word operand that
1312   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
1313   /// getOperand(OpIdx) does not belong to an inline asm operand group.
1314   ///
1315   /// If GroupNo is not NULL, it will receive the number of the operand group
1316   /// containing OpIdx.
1317   ///
1318   /// The flag operand is an immediate that can be decoded with methods like
1319   /// InlineAsm::hasRegClassConstraint().
1320   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1321 
1322   /// Compute the static register class constraint for operand OpIdx.
1323   /// For normal instructions, this is derived from the MCInstrDesc.
1324   /// For inline assembly it is derived from the flag words.
1325   ///
1326   /// Returns NULL if the static register class constraint cannot be
1327   /// determined.
1328   const TargetRegisterClass*
1329   getRegClassConstraint(unsigned OpIdx,
1330                         const TargetInstrInfo *TII,
1331                         const TargetRegisterInfo *TRI) const;
1332 
1333   /// Applies the constraints (def/use) implied by this MI on \p Reg to
1334   /// the given \p CurRC.
1335   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1336   /// instructions inside the bundle will be taken into account. In other words,
1337   /// this method accumulates all the constraints of the operand of this MI and
1338   /// the related bundle if MI is a bundle or inside a bundle.
1339   ///
1340   /// Returns the register class that satisfies both \p CurRC and the
1341   /// constraints set by MI. Returns NULL if such a register class does not
1342   /// exist.
1343   ///
1344   /// \pre CurRC must not be NULL.
1345   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1346       Register Reg, const TargetRegisterClass *CurRC,
1347       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1348       bool ExploreBundle = false) const;
1349 
1350   /// Applies the constraints (def/use) implied by the \p OpIdx operand
1351   /// to the given \p CurRC.
1352   ///
1353   /// Returns the register class that satisfies both \p CurRC and the
1354   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1355   /// does not exist.
1356   ///
1357   /// \pre CurRC must not be NULL.
1358   /// \pre The operand at \p OpIdx must be a register.
1359   const TargetRegisterClass *
1360   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1361                               const TargetInstrInfo *TII,
1362                               const TargetRegisterInfo *TRI) const;
1363 
1364   /// Add a tie between the register operands at DefIdx and UseIdx.
1365   /// The tie will cause the register allocator to ensure that the two
1366   /// operands are assigned the same physical register.
1367   ///
1368   /// Tied operands are managed automatically for explicit operands in the
1369   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1370   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1371 
1372   /// Given the index of a tied register operand, find the
1373   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1374   /// index of the tied operand which must exist.
1375   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1376 
1377   /// Given the index of a register def operand,
1378   /// check if the register def is tied to a source operand, due to either
1379   /// two-address elimination or inline assembly constraints. Returns the
1380   /// first tied use operand index by reference if UseOpIdx is not null.
1381   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1382                              unsigned *UseOpIdx = nullptr) const {
1383     const MachineOperand &MO = getOperand(DefOpIdx);
1384     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1385       return false;
1386     if (UseOpIdx)
1387       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1388     return true;
1389   }
1390 
1391   /// Return true if the use operand of the specified index is tied to a def
1392   /// operand. It also returns the def operand index by reference if DefOpIdx
1393   /// is not null.
1394   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1395                              unsigned *DefOpIdx = nullptr) const {
1396     const MachineOperand &MO = getOperand(UseOpIdx);
1397     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1398       return false;
1399     if (DefOpIdx)
1400       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1401     return true;
1402   }
1403 
1404   /// Clears kill flags on all operands.
1405   void clearKillInfo();
1406 
1407   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1408   /// properly composing subreg indices where necessary.
1409   void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1410                           const TargetRegisterInfo &RegInfo);
1411 
1412   /// We have determined MI kills a register. Look for the
1413   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1414   /// add a implicit operand if it's not found. Returns true if the operand
1415   /// exists / is added.
1416   bool addRegisterKilled(Register IncomingReg,
1417                          const TargetRegisterInfo *RegInfo,
1418                          bool AddIfNotFound = false);
1419 
1420   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1421   /// all aliasing registers.
1422   void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1423 
1424   /// We have determined MI defined a register without a use.
1425   /// Look for the operand that defines it and mark it as IsDead. If
1426   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1427   /// true if the operand exists / is added.
1428   bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1429                        bool AddIfNotFound = false);
1430 
1431   /// Clear all dead flags on operands defining register @p Reg.
1432   void clearRegisterDeads(Register Reg);
1433 
1434   /// Mark all subregister defs of register @p Reg with the undef flag.
1435   /// This function is used when we determined to have a subregister def in an
1436   /// otherwise undefined super register.
1437   void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1438 
1439   /// We have determined MI defines a register. Make sure there is an operand
1440   /// defining Reg.
1441   void addRegisterDefined(Register Reg,
1442                           const TargetRegisterInfo *RegInfo = nullptr);
1443 
1444   /// Mark every physreg used by this instruction as
1445   /// dead except those in the UsedRegs list.
1446   ///
1447   /// On instructions with register mask operands, also add implicit-def
1448   /// operands for all registers in UsedRegs.
1449   void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1450                              const TargetRegisterInfo &TRI);
1451 
1452   /// Return true if it is safe to move this instruction. If
1453   /// SawStore is set to true, it means that there is a store (or call) between
1454   /// the instruction's location and its intended destination.
1455   bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1456 
1457   /// Returns true if this instruction's memory access aliases the memory
1458   /// access of Other.
1459   //
1460   /// Assumes any physical registers used to compute addresses
1461   /// have the same value for both instructions.  Returns false if neither
1462   /// instruction writes to memory.
1463   ///
1464   /// @param AA Optional alias analysis, used to compare memory operands.
1465   /// @param Other MachineInstr to check aliasing against.
1466   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1467   bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1468 
1469   /// Return true if this instruction may have an ordered
1470   /// or volatile memory reference, or if the information describing the memory
1471   /// reference is not available. Return false if it is known to have no
1472   /// ordered or volatile memory references.
1473   bool hasOrderedMemoryRef() const;
1474 
1475   /// Return true if this load instruction never traps and points to a memory
1476   /// location whose value doesn't change during the execution of this function.
1477   ///
1478   /// Examples include loading a value from the constant pool or from the
1479   /// argument area of a function (if it does not change).  If the instruction
1480   /// does multiple loads, this returns true only if all of the loads are
1481   /// dereferenceable and invariant.
1482   bool isDereferenceableInvariantLoad(AAResults *AA) const;
1483 
1484   /// If the specified instruction is a PHI that always merges together the
1485   /// same virtual register, return the register, otherwise return 0.
1486   unsigned isConstantValuePHI() const;
1487 
1488   /// Return true if this instruction has side effects that are not modeled
1489   /// by mayLoad / mayStore, etc.
1490   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1491   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1492   /// INLINEASM instruction, in which case the side effect property is encoded
1493   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1494   ///
1495   bool hasUnmodeledSideEffects() const;
1496 
1497   /// Returns true if it is illegal to fold a load across this instruction.
1498   bool isLoadFoldBarrier() const;
1499 
1500   /// Return true if all the defs of this instruction are dead.
1501   bool allDefsAreDead() const;
1502 
1503   /// Return a valid size if the instruction is a spill instruction.
1504   Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1505 
1506   /// Return a valid size if the instruction is a folded spill instruction.
1507   Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1508 
1509   /// Return a valid size if the instruction is a restore instruction.
1510   Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1511 
1512   /// Return a valid size if the instruction is a folded restore instruction.
1513   Optional<unsigned>
1514   getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1515 
1516   /// Copy implicit register operands from specified
1517   /// instruction to this instruction.
1518   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1519 
1520   /// Debugging support
1521   /// @{
1522   /// Determine the generic type to be printed (if needed) on uses and defs.
1523   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1524                      const MachineRegisterInfo &MRI) const;
1525 
1526   /// Return true when an instruction has tied register that can't be determined
1527   /// by the instruction's descriptor. This is useful for MIR printing, to
1528   /// determine whether we need to print the ties or not.
1529   bool hasComplexRegisterTies() const;
1530 
1531   /// Print this MI to \p OS.
1532   /// Don't print information that can be inferred from other instructions if
1533   /// \p IsStandalone is false. It is usually true when only a fragment of the
1534   /// function is printed.
1535   /// Only print the defs and the opcode if \p SkipOpers is true.
1536   /// Otherwise, also print operands if \p SkipDebugLoc is true.
1537   /// Otherwise, also print the debug loc, with a terminating newline.
1538   /// \p TII is used to print the opcode name.  If it's not present, but the
1539   /// MI is in a function, the opcode will be printed using the function's TII.
1540   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1541              bool SkipDebugLoc = false, bool AddNewLine = true,
1542              const TargetInstrInfo *TII = nullptr) const;
1543   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1544              bool SkipOpers = false, bool SkipDebugLoc = false,
1545              bool AddNewLine = true,
1546              const TargetInstrInfo *TII = nullptr) const;
1547   void dump() const;
1548   /// Print on dbgs() the current instruction and the instructions defining its
1549   /// operands and so on until we reach \p MaxDepth.
1550   void dumpr(const MachineRegisterInfo &MRI,
1551              unsigned MaxDepth = UINT_MAX) const;
1552   /// @}
1553 
1554   //===--------------------------------------------------------------------===//
1555   // Accessors used to build up machine instructions.
1556 
1557   /// Add the specified operand to the instruction.  If it is an implicit
1558   /// operand, it is added to the end of the operand list.  If it is an
1559   /// explicit operand it is added at the end of the explicit operand list
1560   /// (before the first implicit operand).
1561   ///
1562   /// MF must be the machine function that was used to allocate this
1563   /// instruction.
1564   ///
1565   /// MachineInstrBuilder provides a more convenient interface for creating
1566   /// instructions and adding operands.
1567   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1568 
1569   /// Add an operand without providing an MF reference. This only works for
1570   /// instructions that are inserted in a basic block.
1571   ///
1572   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1573   /// preferred.
1574   void addOperand(const MachineOperand &Op);
1575 
1576   /// Replace the instruction descriptor (thus opcode) of
1577   /// the current instruction with a new one.
1578   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1579 
1580   /// Replace current source information with new such.
1581   /// Avoid using this, the constructor argument is preferable.
1582   void setDebugLoc(DebugLoc dl) {
1583     debugLoc = std::move(dl);
1584     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1585   }
1586 
1587   /// Erase an operand from an instruction, leaving it with one
1588   /// fewer operand than it started with.
1589   void RemoveOperand(unsigned OpNo);
1590 
1591   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1592   /// the memrefs to their most conservative state.  This should be used only
1593   /// as a last resort since it greatly pessimizes our knowledge of the memory
1594   /// access performed by the instruction.
1595   void dropMemRefs(MachineFunction &MF);
1596 
1597   /// Assign this MachineInstr's memory reference descriptor list.
1598   ///
1599   /// Unlike other methods, this *will* allocate them into a new array
1600   /// associated with the provided `MachineFunction`.
1601   void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1602 
1603   /// Add a MachineMemOperand to the machine instruction.
1604   /// This function should be used only occasionally. The setMemRefs function
1605   /// is the primary method for setting up a MachineInstr's MemRefs list.
1606   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1607 
1608   /// Clone another MachineInstr's memory reference descriptor list and replace
1609   /// ours with it.
1610   ///
1611   /// Note that `*this` may be the incoming MI!
1612   ///
1613   /// Prefer this API whenever possible as it can avoid allocations in common
1614   /// cases.
1615   void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1616 
1617   /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1618   /// list and replace ours with it.
1619   ///
1620   /// Note that `*this` may be one of the incoming MIs!
1621   ///
1622   /// Prefer this API whenever possible as it can avoid allocations in common
1623   /// cases.
1624   void cloneMergedMemRefs(MachineFunction &MF,
1625                           ArrayRef<const MachineInstr *> MIs);
1626 
1627   /// Set a symbol that will be emitted just prior to the instruction itself.
1628   ///
1629   /// Setting this to a null pointer will remove any such symbol.
1630   ///
1631   /// FIXME: This is not fully implemented yet.
1632   void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1633 
1634   /// Set a symbol that will be emitted just after the instruction itself.
1635   ///
1636   /// Setting this to a null pointer will remove any such symbol.
1637   ///
1638   /// FIXME: This is not fully implemented yet.
1639   void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1640 
1641   /// Clone another MachineInstr's pre- and post- instruction symbols and
1642   /// replace ours with it.
1643   void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1644 
1645   /// Set a marker on instructions that denotes where we should create and emit
1646   /// heap alloc site labels. This waits until after instruction selection and
1647   /// optimizations to create the label, so it should still work if the
1648   /// instruction is removed or duplicated.
1649   void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1650 
1651   /// Return the MIFlags which represent both MachineInstrs. This
1652   /// should be used when merging two MachineInstrs into one. This routine does
1653   /// not modify the MIFlags of this MachineInstr.
1654   uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1655 
1656   static uint16_t copyFlagsFromInstruction(const Instruction &I);
1657 
1658   /// Copy all flags to MachineInst MIFlags
1659   void copyIRFlags(const Instruction &I);
1660 
1661   /// Break any tie involving OpIdx.
1662   void untieRegOperand(unsigned OpIdx) {
1663     MachineOperand &MO = getOperand(OpIdx);
1664     if (MO.isReg() && MO.isTied()) {
1665       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1666       MO.TiedTo = 0;
1667     }
1668   }
1669 
1670   /// Add all implicit def and use operands to this instruction.
1671   void addImplicitDefUseOperands(MachineFunction &MF);
1672 
1673   /// Scan instructions immediately following MI and collect any matching
1674   /// DBG_VALUEs.
1675   void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1676 
1677   /// Find all DBG_VALUEs that point to the register def in this instruction
1678   /// and point them to \p Reg instead.
1679   void changeDebugValuesDefReg(Register Reg);
1680 
1681   /// Returns the Intrinsic::ID for this instruction.
1682   /// \pre Must have an intrinsic ID operand.
1683   unsigned getIntrinsicID() const {
1684     return getOperand(getNumExplicitDefs()).getIntrinsicID();
1685   }
1686 
1687 private:
1688   /// If this instruction is embedded into a MachineFunction, return the
1689   /// MachineRegisterInfo object for the current function, otherwise
1690   /// return null.
1691   MachineRegisterInfo *getRegInfo();
1692 
1693   /// Unlink all of the register operands in this instruction from their
1694   /// respective use lists.  This requires that the operands already be on their
1695   /// use lists.
1696   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1697 
1698   /// Add all of the register operands in this instruction from their
1699   /// respective use lists.  This requires that the operands not be on their
1700   /// use lists yet.
1701   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1702 
1703   /// Slow path for hasProperty when we're dealing with a bundle.
1704   bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1705 
1706   /// Implements the logic of getRegClassConstraintEffectForVReg for the
1707   /// this MI and the given operand index \p OpIdx.
1708   /// If the related operand does not constrained Reg, this returns CurRC.
1709   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1710       unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1711       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1712 
1713   /// Stores extra instruction information inline or allocates as ExtraInfo
1714   /// based on the number of pointers.
1715   void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
1716                     MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
1717                     MDNode *HeapAllocMarker);
1718 };
1719 
1720 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1721 /// instruction rather than by pointer value.
1722 /// The hashing and equality testing functions ignore definitions so this is
1723 /// useful for CSE, etc.
1724 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1725   static inline MachineInstr *getEmptyKey() {
1726     return nullptr;
1727   }
1728 
1729   static inline MachineInstr *getTombstoneKey() {
1730     return reinterpret_cast<MachineInstr*>(-1);
1731   }
1732 
1733   static unsigned getHashValue(const MachineInstr* const &MI);
1734 
1735   static bool isEqual(const MachineInstr* const &LHS,
1736                       const MachineInstr* const &RHS) {
1737     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1738         LHS == getEmptyKey() || LHS == getTombstoneKey())
1739       return LHS == RHS;
1740     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1741   }
1742 };
1743 
1744 //===----------------------------------------------------------------------===//
1745 // Debugging Support
1746 
1747 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1748   MI.print(OS);
1749   return OS;
1750 }
1751 
1752 } // end namespace llvm
1753 
1754 #endif // LLVM_CODEGEN_MACHINEINSTR_H
1755