1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the MachineInstr class, which is the
11 // basic representation for all target dependent machine instructions used by
12 // the back end.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
17 #define LLVM_CODEGEN_MACHINEINSTR_H
18 
19 #include "llvm/ADT/DenseMapInfo.h"
20 #include "llvm/ADT/ilist.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/IR/DebugLoc.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/Support/ArrayRecycler.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <utility>
34 
35 namespace llvm {
36 
37 template <typename T> class ArrayRef;
38 class DIExpression;
39 class DILocalVariable;
40 class MachineBasicBlock;
41 class MachineFunction;
42 class MachineMemOperand;
43 class MachineRegisterInfo;
44 class ModuleSlotTracker;
45 class raw_ostream;
46 template <typename T> class SmallVectorImpl;
47 class SmallBitVector;
48 class StringRef;
49 class TargetInstrInfo;
50 class TargetRegisterClass;
51 class TargetRegisterInfo;
52 
53 //===----------------------------------------------------------------------===//
54 /// Representation of each machine instruction.
55 ///
56 /// This class isn't a POD type, but it must have a trivial destructor. When a
57 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
58 /// without having their destructor called.
59 ///
60 class MachineInstr
61     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
62                                     ilist_sentinel_tracking<true>> {
63 public:
64   using mmo_iterator = MachineMemOperand **;
65 
66   /// Flags to specify different kinds of comments to output in
67   /// assembly code.  These flags carry semantic information not
68   /// otherwise easily derivable from the IR text.
69   ///
70   enum CommentFlag {
71     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
72     NoSchedComment = 0x2,
73     TAsmComments = 0x4    // Target Asm comments should start from this value.
74   };
75 
76   enum MIFlag {
77     NoFlags      = 0,
78     FrameSetup   = 1 << 0,              // Instruction is used as a part of
79                                         // function frame setup code.
80     FrameDestroy = 1 << 1,              // Instruction is used as a part of
81                                         // function frame destruction code.
82     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
83     BundledSucc  = 1 << 3               // Instruction has bundled successors.
84   };
85 
86 private:
87   const MCInstrDesc *MCID;              // Instruction descriptor.
88   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
89 
90   // Operands are allocated by an ArrayRecycler.
91   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
92   unsigned NumOperands = 0;             // Number of operands on instruction.
93   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
94   OperandCapacity CapOperands;          // Capacity of the Operands array.
95 
96   uint8_t Flags = 0;                    // Various bits of additional
97                                         // information about machine
98                                         // instruction.
99 
100   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
101                                         // the AsmPrinter to emit helpful
102                                         // comments.  This is *not* semantic
103                                         // information.  Do not use this for
104                                         // anything other than to convey comment
105                                         // information to AsmPrinter.
106 
107   uint8_t NumMemRefs = 0;               // Information on memory references.
108   // Note that MemRefs == nullptr,  means 'don't know', not 'no memory access'.
109   // Calling code must treat missing information conservatively.  If the number
110   // of memory operands required to be precise exceeds the maximum value of
111   // NumMemRefs - currently 256 - we remove the operands entirely. Note also
112   // that this is a non-owning reference to a shared copy on write buffer owned
113   // by the MachineFunction and created via MF.allocateMemRefsArray.
114   mmo_iterator MemRefs = nullptr;
115 
116   DebugLoc debugLoc;                    // Source line information.
117 
118   // Intrusive list support
119   friend struct ilist_traits<MachineInstr>;
120   friend struct ilist_callback_traits<MachineBasicBlock>;
121   void setParent(MachineBasicBlock *P) { Parent = P; }
122 
123   /// This constructor creates a copy of the given
124   /// MachineInstr in the given MachineFunction.
125   MachineInstr(MachineFunction &, const MachineInstr &);
126 
127   /// This constructor create a MachineInstr and add the implicit operands.
128   /// It reserves space for number of operands specified by
129   /// MCInstrDesc.  An explicit DebugLoc is supplied.
130   MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
131                bool NoImp = false);
132 
133   // MachineInstrs are pool-allocated and owned by MachineFunction.
134   friend class MachineFunction;
135 
136 public:
137   MachineInstr(const MachineInstr &) = delete;
138   MachineInstr &operator=(const MachineInstr &) = delete;
139   // Use MachineFunction::DeleteMachineInstr() instead.
140   ~MachineInstr() = delete;
141 
142   const MachineBasicBlock* getParent() const { return Parent; }
143   MachineBasicBlock* getParent() { return Parent; }
144 
145   /// Return the function that contains the basic block that this instruction
146   /// belongs to.
147   ///
148   /// Note: this is undefined behaviour if the instruction does not have a
149   /// parent.
150   const MachineFunction *getMF() const;
151   MachineFunction *getMF() {
152     return const_cast<MachineFunction *>(
153         static_cast<const MachineInstr *>(this)->getMF());
154   }
155 
156   /// Return the asm printer flags bitvector.
157   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
158 
159   /// Clear the AsmPrinter bitvector.
160   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
161 
162   /// Return whether an AsmPrinter flag is set.
163   bool getAsmPrinterFlag(CommentFlag Flag) const {
164     return AsmPrinterFlags & Flag;
165   }
166 
167   /// Set a flag for the AsmPrinter.
168   void setAsmPrinterFlag(uint8_t Flag) {
169     AsmPrinterFlags |= Flag;
170   }
171 
172   /// Clear specific AsmPrinter flags.
173   void clearAsmPrinterFlag(CommentFlag Flag) {
174     AsmPrinterFlags &= ~Flag;
175   }
176 
177   /// Return the MI flags bitvector.
178   uint8_t getFlags() const {
179     return Flags;
180   }
181 
182   /// Return whether an MI flag is set.
183   bool getFlag(MIFlag Flag) const {
184     return Flags & Flag;
185   }
186 
187   /// Set a MI flag.
188   void setFlag(MIFlag Flag) {
189     Flags |= (uint8_t)Flag;
190   }
191 
192   void setFlags(unsigned flags) {
193     // Filter out the automatically maintained flags.
194     unsigned Mask = BundledPred | BundledSucc;
195     Flags = (Flags & Mask) | (flags & ~Mask);
196   }
197 
198   /// clearFlag - Clear a MI flag.
199   void clearFlag(MIFlag Flag) {
200     Flags &= ~((uint8_t)Flag);
201   }
202 
203   /// Return true if MI is in a bundle (but not the first MI in a bundle).
204   ///
205   /// A bundle looks like this before it's finalized:
206   ///   ----------------
207   ///   |      MI      |
208   ///   ----------------
209   ///          |
210   ///   ----------------
211   ///   |      MI    * |
212   ///   ----------------
213   ///          |
214   ///   ----------------
215   ///   |      MI    * |
216   ///   ----------------
217   /// In this case, the first MI starts a bundle but is not inside a bundle, the
218   /// next 2 MIs are considered "inside" the bundle.
219   ///
220   /// After a bundle is finalized, it looks like this:
221   ///   ----------------
222   ///   |    Bundle    |
223   ///   ----------------
224   ///          |
225   ///   ----------------
226   ///   |      MI    * |
227   ///   ----------------
228   ///          |
229   ///   ----------------
230   ///   |      MI    * |
231   ///   ----------------
232   ///          |
233   ///   ----------------
234   ///   |      MI    * |
235   ///   ----------------
236   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
237   /// a bundle, but the next three MIs are.
238   bool isInsideBundle() const {
239     return getFlag(BundledPred);
240   }
241 
242   /// Return true if this instruction part of a bundle. This is true
243   /// if either itself or its following instruction is marked "InsideBundle".
244   bool isBundled() const {
245     return isBundledWithPred() || isBundledWithSucc();
246   }
247 
248   /// Return true if this instruction is part of a bundle, and it is not the
249   /// first instruction in the bundle.
250   bool isBundledWithPred() const { return getFlag(BundledPred); }
251 
252   /// Return true if this instruction is part of a bundle, and it is not the
253   /// last instruction in the bundle.
254   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
255 
256   /// Bundle this instruction with its predecessor. This can be an unbundled
257   /// instruction, or it can be the first instruction in a bundle.
258   void bundleWithPred();
259 
260   /// Bundle this instruction with its successor. This can be an unbundled
261   /// instruction, or it can be the last instruction in a bundle.
262   void bundleWithSucc();
263 
264   /// Break bundle above this instruction.
265   void unbundleFromPred();
266 
267   /// Break bundle below this instruction.
268   void unbundleFromSucc();
269 
270   /// Returns the debug location id of this MachineInstr.
271   const DebugLoc &getDebugLoc() const { return debugLoc; }
272 
273   /// Return the debug variable referenced by
274   /// this DBG_VALUE instruction.
275   const DILocalVariable *getDebugVariable() const;
276 
277   /// Return the complex address expression referenced by
278   /// this DBG_VALUE instruction.
279   const DIExpression *getDebugExpression() const;
280 
281   /// Emit an error referring to the source location of this instruction.
282   /// This should only be used for inline assembly that is somehow
283   /// impossible to compile. Other errors should have been handled much
284   /// earlier.
285   ///
286   /// If this method returns, the caller should try to recover from the error.
287   void emitError(StringRef Msg) const;
288 
289   /// Returns the target instruction descriptor of this MachineInstr.
290   const MCInstrDesc &getDesc() const { return *MCID; }
291 
292   /// Returns the opcode of this MachineInstr.
293   unsigned getOpcode() const { return MCID->Opcode; }
294 
295   /// Access to explicit operands of the instruction.
296   unsigned getNumOperands() const { return NumOperands; }
297 
298   const MachineOperand& getOperand(unsigned i) const {
299     assert(i < getNumOperands() && "getOperand() out of range!");
300     return Operands[i];
301   }
302   MachineOperand& getOperand(unsigned i) {
303     assert(i < getNumOperands() && "getOperand() out of range!");
304     return Operands[i];
305   }
306 
307   /// Return true if operand \p OpIdx is a subregister index.
308   bool isOperandSubregIdx(unsigned OpIdx) const {
309     assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
310            "Expected MO_Immediate operand type.");
311     if (isExtractSubreg() && OpIdx == 2)
312       return true;
313     if (isInsertSubreg() && OpIdx == 3)
314       return true;
315     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
316       return true;
317     if (isSubregToReg() && OpIdx == 3)
318       return true;
319     return false;
320   }
321 
322   /// Returns the number of non-implicit operands.
323   unsigned getNumExplicitOperands() const;
324 
325   /// iterator/begin/end - Iterate over all operands of a machine instruction.
326   using mop_iterator = MachineOperand *;
327   using const_mop_iterator = const MachineOperand *;
328 
329   mop_iterator operands_begin() { return Operands; }
330   mop_iterator operands_end() { return Operands + NumOperands; }
331 
332   const_mop_iterator operands_begin() const { return Operands; }
333   const_mop_iterator operands_end() const { return Operands + NumOperands; }
334 
335   iterator_range<mop_iterator> operands() {
336     return make_range(operands_begin(), operands_end());
337   }
338   iterator_range<const_mop_iterator> operands() const {
339     return make_range(operands_begin(), operands_end());
340   }
341   iterator_range<mop_iterator> explicit_operands() {
342     return make_range(operands_begin(),
343                       operands_begin() + getNumExplicitOperands());
344   }
345   iterator_range<const_mop_iterator> explicit_operands() const {
346     return make_range(operands_begin(),
347                       operands_begin() + getNumExplicitOperands());
348   }
349   iterator_range<mop_iterator> implicit_operands() {
350     return make_range(explicit_operands().end(), operands_end());
351   }
352   iterator_range<const_mop_iterator> implicit_operands() const {
353     return make_range(explicit_operands().end(), operands_end());
354   }
355   /// Returns a range over all explicit operands that are register definitions.
356   /// Implicit definition are not included!
357   iterator_range<mop_iterator> defs() {
358     return make_range(operands_begin(),
359                       operands_begin() + getDesc().getNumDefs());
360   }
361   /// \copydoc defs()
362   iterator_range<const_mop_iterator> defs() const {
363     return make_range(operands_begin(),
364                       operands_begin() + getDesc().getNumDefs());
365   }
366   /// Returns a range that includes all operands that are register uses.
367   /// This may include unrelated operands which are not register uses.
368   iterator_range<mop_iterator> uses() {
369     return make_range(operands_begin() + getDesc().getNumDefs(),
370                       operands_end());
371   }
372   /// \copydoc uses()
373   iterator_range<const_mop_iterator> uses() const {
374     return make_range(operands_begin() + getDesc().getNumDefs(),
375                       operands_end());
376   }
377   iterator_range<mop_iterator> explicit_uses() {
378     return make_range(operands_begin() + getDesc().getNumDefs(),
379                       operands_begin() + getNumExplicitOperands() );
380   }
381   iterator_range<const_mop_iterator> explicit_uses() const {
382     return make_range(operands_begin() + getDesc().getNumDefs(),
383                       operands_begin() + getNumExplicitOperands() );
384   }
385 
386   /// Returns the number of the operand iterator \p I points to.
387   unsigned getOperandNo(const_mop_iterator I) const {
388     return I - operands_begin();
389   }
390 
391   /// Access to memory operands of the instruction
392   mmo_iterator memoperands_begin() const { return MemRefs; }
393   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
394   /// Return true if we don't have any memory operands which described the
395   /// memory access done by this instruction.  If this is true, calling code
396   /// must be conservative.
397   bool memoperands_empty() const { return NumMemRefs == 0; }
398 
399   iterator_range<mmo_iterator>  memoperands() {
400     return make_range(memoperands_begin(), memoperands_end());
401   }
402   iterator_range<mmo_iterator> memoperands() const {
403     return make_range(memoperands_begin(), memoperands_end());
404   }
405 
406   /// Return true if this instruction has exactly one MachineMemOperand.
407   bool hasOneMemOperand() const {
408     return NumMemRefs == 1;
409   }
410 
411   /// Return the number of memory operands.
412   unsigned getNumMemOperands() const { return NumMemRefs; }
413 
414   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
415   /// queries but they are bundle aware.
416 
417   enum QueryType {
418     IgnoreBundle,    // Ignore bundles
419     AnyInBundle,     // Return true if any instruction in bundle has property
420     AllInBundle      // Return true if all instructions in bundle have property
421   };
422 
423   /// Return true if the instruction (or in the case of a bundle,
424   /// the instructions inside the bundle) has the specified property.
425   /// The first argument is the property being queried.
426   /// The second argument indicates whether the query should look inside
427   /// instruction bundles.
428   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
429     // Inline the fast path for unbundled or bundle-internal instructions.
430     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
431       return getDesc().getFlags() & (1ULL << MCFlag);
432 
433     // If this is the first instruction in a bundle, take the slow path.
434     return hasPropertyInBundle(1ULL << MCFlag, Type);
435   }
436 
437   /// Return true if this instruction can have a variable number of operands.
438   /// In this case, the variable operands will be after the normal
439   /// operands but before the implicit definitions and uses (if any are
440   /// present).
441   bool isVariadic(QueryType Type = IgnoreBundle) const {
442     return hasProperty(MCID::Variadic, Type);
443   }
444 
445   /// Set if this instruction has an optional definition, e.g.
446   /// ARM instructions which can set condition code if 's' bit is set.
447   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
448     return hasProperty(MCID::HasOptionalDef, Type);
449   }
450 
451   /// Return true if this is a pseudo instruction that doesn't
452   /// correspond to a real machine instruction.
453   bool isPseudo(QueryType Type = IgnoreBundle) const {
454     return hasProperty(MCID::Pseudo, Type);
455   }
456 
457   bool isReturn(QueryType Type = AnyInBundle) const {
458     return hasProperty(MCID::Return, Type);
459   }
460 
461   bool isCall(QueryType Type = AnyInBundle) const {
462     return hasProperty(MCID::Call, Type);
463   }
464 
465   /// Returns true if the specified instruction stops control flow
466   /// from executing the instruction immediately following it.  Examples include
467   /// unconditional branches and return instructions.
468   bool isBarrier(QueryType Type = AnyInBundle) const {
469     return hasProperty(MCID::Barrier, Type);
470   }
471 
472   /// Returns true if this instruction part of the terminator for a basic block.
473   /// Typically this is things like return and branch instructions.
474   ///
475   /// Various passes use this to insert code into the bottom of a basic block,
476   /// but before control flow occurs.
477   bool isTerminator(QueryType Type = AnyInBundle) const {
478     return hasProperty(MCID::Terminator, Type);
479   }
480 
481   /// Returns true if this is a conditional, unconditional, or indirect branch.
482   /// Predicates below can be used to discriminate between
483   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
484   /// get more information.
485   bool isBranch(QueryType Type = AnyInBundle) const {
486     return hasProperty(MCID::Branch, Type);
487   }
488 
489   /// Return true if this is an indirect branch, such as a
490   /// branch through a register.
491   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
492     return hasProperty(MCID::IndirectBranch, Type);
493   }
494 
495   /// Return true if this is a branch which may fall
496   /// through to the next instruction or may transfer control flow to some other
497   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
498   /// information about this branch.
499   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
500     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
501   }
502 
503   /// Return true if this is a branch which always
504   /// transfers control flow to some other block.  The
505   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
506   /// about this branch.
507   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
508     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
509   }
510 
511   /// Return true if this instruction has a predicate operand that
512   /// controls execution.  It may be set to 'always', or may be set to other
513   /// values.   There are various methods in TargetInstrInfo that can be used to
514   /// control and modify the predicate in this instruction.
515   bool isPredicable(QueryType Type = AllInBundle) const {
516     // If it's a bundle than all bundled instructions must be predicable for this
517     // to return true.
518     return hasProperty(MCID::Predicable, Type);
519   }
520 
521   /// Return true if this instruction is a comparison.
522   bool isCompare(QueryType Type = IgnoreBundle) const {
523     return hasProperty(MCID::Compare, Type);
524   }
525 
526   /// Return true if this instruction is a move immediate
527   /// (including conditional moves) instruction.
528   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
529     return hasProperty(MCID::MoveImm, Type);
530   }
531 
532   /// Return true if this instruction is a bitcast instruction.
533   bool isBitcast(QueryType Type = IgnoreBundle) const {
534     return hasProperty(MCID::Bitcast, Type);
535   }
536 
537   /// Return true if this instruction is a select instruction.
538   bool isSelect(QueryType Type = IgnoreBundle) const {
539     return hasProperty(MCID::Select, Type);
540   }
541 
542   /// Return true if this instruction cannot be safely duplicated.
543   /// For example, if the instruction has a unique labels attached
544   /// to it, duplicating it would cause multiple definition errors.
545   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
546     return hasProperty(MCID::NotDuplicable, Type);
547   }
548 
549   /// Return true if this instruction is convergent.
550   /// Convergent instructions can not be made control-dependent on any
551   /// additional values.
552   bool isConvergent(QueryType Type = AnyInBundle) const {
553     if (isInlineAsm()) {
554       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
555       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
556         return true;
557     }
558     return hasProperty(MCID::Convergent, Type);
559   }
560 
561   /// Returns true if the specified instruction has a delay slot
562   /// which must be filled by the code generator.
563   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
564     return hasProperty(MCID::DelaySlot, Type);
565   }
566 
567   /// Return true for instructions that can be folded as
568   /// memory operands in other instructions. The most common use for this
569   /// is instructions that are simple loads from memory that don't modify
570   /// the loaded value in any way, but it can also be used for instructions
571   /// that can be expressed as constant-pool loads, such as V_SETALLONES
572   /// on x86, to allow them to be folded when it is beneficial.
573   /// This should only be set on instructions that return a value in their
574   /// only virtual register definition.
575   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
576     return hasProperty(MCID::FoldableAsLoad, Type);
577   }
578 
579   /// \brief Return true if this instruction behaves
580   /// the same way as the generic REG_SEQUENCE instructions.
581   /// E.g., on ARM,
582   /// dX VMOVDRR rY, rZ
583   /// is equivalent to
584   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
585   ///
586   /// Note that for the optimizers to be able to take advantage of
587   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
588   /// override accordingly.
589   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
590     return hasProperty(MCID::RegSequence, Type);
591   }
592 
593   /// \brief Return true if this instruction behaves
594   /// the same way as the generic EXTRACT_SUBREG instructions.
595   /// E.g., on ARM,
596   /// rX, rY VMOVRRD dZ
597   /// is equivalent to two EXTRACT_SUBREG:
598   /// rX = EXTRACT_SUBREG dZ, ssub_0
599   /// rY = EXTRACT_SUBREG dZ, ssub_1
600   ///
601   /// Note that for the optimizers to be able to take advantage of
602   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
603   /// override accordingly.
604   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
605     return hasProperty(MCID::ExtractSubreg, Type);
606   }
607 
608   /// \brief Return true if this instruction behaves
609   /// the same way as the generic INSERT_SUBREG instructions.
610   /// E.g., on ARM,
611   /// dX = VSETLNi32 dY, rZ, Imm
612   /// is equivalent to a INSERT_SUBREG:
613   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
614   ///
615   /// Note that for the optimizers to be able to take advantage of
616   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
617   /// override accordingly.
618   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
619     return hasProperty(MCID::InsertSubreg, Type);
620   }
621 
622   //===--------------------------------------------------------------------===//
623   // Side Effect Analysis
624   //===--------------------------------------------------------------------===//
625 
626   /// Return true if this instruction could possibly read memory.
627   /// Instructions with this flag set are not necessarily simple load
628   /// instructions, they may load a value and modify it, for example.
629   bool mayLoad(QueryType Type = AnyInBundle) const {
630     if (isInlineAsm()) {
631       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
632       if (ExtraInfo & InlineAsm::Extra_MayLoad)
633         return true;
634     }
635     return hasProperty(MCID::MayLoad, Type);
636   }
637 
638   /// Return true if this instruction could possibly modify memory.
639   /// Instructions with this flag set are not necessarily simple store
640   /// instructions, they may store a modified value based on their operands, or
641   /// may not actually modify anything, for example.
642   bool mayStore(QueryType Type = AnyInBundle) const {
643     if (isInlineAsm()) {
644       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
645       if (ExtraInfo & InlineAsm::Extra_MayStore)
646         return true;
647     }
648     return hasProperty(MCID::MayStore, Type);
649   }
650 
651   /// Return true if this instruction could possibly read or modify memory.
652   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
653     return mayLoad(Type) || mayStore(Type);
654   }
655 
656   //===--------------------------------------------------------------------===//
657   // Flags that indicate whether an instruction can be modified by a method.
658   //===--------------------------------------------------------------------===//
659 
660   /// Return true if this may be a 2- or 3-address
661   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
662   /// result if Y and Z are exchanged.  If this flag is set, then the
663   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
664   /// instruction.
665   ///
666   /// Note that this flag may be set on instructions that are only commutable
667   /// sometimes.  In these cases, the call to commuteInstruction will fail.
668   /// Also note that some instructions require non-trivial modification to
669   /// commute them.
670   bool isCommutable(QueryType Type = IgnoreBundle) const {
671     return hasProperty(MCID::Commutable, Type);
672   }
673 
674   /// Return true if this is a 2-address instruction
675   /// which can be changed into a 3-address instruction if needed.  Doing this
676   /// transformation can be profitable in the register allocator, because it
677   /// means that the instruction can use a 2-address form if possible, but
678   /// degrade into a less efficient form if the source and dest register cannot
679   /// be assigned to the same register.  For example, this allows the x86
680   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
681   /// is the same speed as the shift but has bigger code size.
682   ///
683   /// If this returns true, then the target must implement the
684   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
685   /// is allowed to fail if the transformation isn't valid for this specific
686   /// instruction (e.g. shl reg, 4 on x86).
687   ///
688   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
689     return hasProperty(MCID::ConvertibleTo3Addr, Type);
690   }
691 
692   /// Return true if this instruction requires
693   /// custom insertion support when the DAG scheduler is inserting it into a
694   /// machine basic block.  If this is true for the instruction, it basically
695   /// means that it is a pseudo instruction used at SelectionDAG time that is
696   /// expanded out into magic code by the target when MachineInstrs are formed.
697   ///
698   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
699   /// is used to insert this into the MachineBasicBlock.
700   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
701     return hasProperty(MCID::UsesCustomInserter, Type);
702   }
703 
704   /// Return true if this instruction requires *adjustment*
705   /// after instruction selection by calling a target hook. For example, this
706   /// can be used to fill in ARM 's' optional operand depending on whether
707   /// the conditional flag register is used.
708   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
709     return hasProperty(MCID::HasPostISelHook, Type);
710   }
711 
712   /// Returns true if this instruction is a candidate for remat.
713   /// This flag is deprecated, please don't use it anymore.  If this
714   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
715   /// verify the instruction is really rematable.
716   bool isRematerializable(QueryType Type = AllInBundle) const {
717     // It's only possible to re-mat a bundle if all bundled instructions are
718     // re-materializable.
719     return hasProperty(MCID::Rematerializable, Type);
720   }
721 
722   /// Returns true if this instruction has the same cost (or less) than a move
723   /// instruction. This is useful during certain types of optimizations
724   /// (e.g., remat during two-address conversion or machine licm)
725   /// where we would like to remat or hoist the instruction, but not if it costs
726   /// more than moving the instruction into the appropriate register. Note, we
727   /// are not marking copies from and to the same register class with this flag.
728   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
729     // Only returns true for a bundle if all bundled instructions are cheap.
730     return hasProperty(MCID::CheapAsAMove, Type);
731   }
732 
733   /// Returns true if this instruction source operands
734   /// have special register allocation requirements that are not captured by the
735   /// operand register classes. e.g. ARM::STRD's two source registers must be an
736   /// even / odd pair, ARM::STM registers have to be in ascending order.
737   /// Post-register allocation passes should not attempt to change allocations
738   /// for sources of instructions with this flag.
739   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
740     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
741   }
742 
743   /// Returns true if this instruction def operands
744   /// have special register allocation requirements that are not captured by the
745   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
746   /// even / odd pair, ARM::LDM registers have to be in ascending order.
747   /// Post-register allocation passes should not attempt to change allocations
748   /// for definitions of instructions with this flag.
749   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
750     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
751   }
752 
753   enum MICheckType {
754     CheckDefs,      // Check all operands for equality
755     CheckKillDead,  // Check all operands including kill / dead markers
756     IgnoreDefs,     // Ignore all definitions
757     IgnoreVRegDefs  // Ignore virtual register definitions
758   };
759 
760   /// Return true if this instruction is identical to \p Other.
761   /// Two instructions are identical if they have the same opcode and all their
762   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
763   /// Note that this means liveness related flags (dead, undef, kill) do not
764   /// affect the notion of identical.
765   bool isIdenticalTo(const MachineInstr &Other,
766                      MICheckType Check = CheckDefs) const;
767 
768   /// Unlink 'this' from the containing basic block, and return it without
769   /// deleting it.
770   ///
771   /// This function can not be used on bundled instructions, use
772   /// removeFromBundle() to remove individual instructions from a bundle.
773   MachineInstr *removeFromParent();
774 
775   /// Unlink this instruction from its basic block and return it without
776   /// deleting it.
777   ///
778   /// If the instruction is part of a bundle, the other instructions in the
779   /// bundle remain bundled.
780   MachineInstr *removeFromBundle();
781 
782   /// Unlink 'this' from the containing basic block and delete it.
783   ///
784   /// If this instruction is the header of a bundle, the whole bundle is erased.
785   /// This function can not be used for instructions inside a bundle, use
786   /// eraseFromBundle() to erase individual bundled instructions.
787   void eraseFromParent();
788 
789   /// Unlink 'this' from the containing basic block and delete it.
790   ///
791   /// For all definitions mark their uses in DBG_VALUE nodes
792   /// as undefined. Otherwise like eraseFromParent().
793   void eraseFromParentAndMarkDBGValuesForRemoval();
794 
795   /// Unlink 'this' form its basic block and delete it.
796   ///
797   /// If the instruction is part of a bundle, the other instructions in the
798   /// bundle remain bundled.
799   void eraseFromBundle();
800 
801   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
802   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
803   bool isAnnotationLabel() const {
804     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
805   }
806 
807   /// Returns true if the MachineInstr represents a label.
808   bool isLabel() const {
809     return isEHLabel() || isGCLabel() || isAnnotationLabel();
810   }
811 
812   bool isCFIInstruction() const {
813     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
814   }
815 
816   // True if the instruction represents a position in the function.
817   bool isPosition() const { return isLabel() || isCFIInstruction(); }
818 
819   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
820 
821   /// A DBG_VALUE is indirect iff the first operand is a register and
822   /// the second operand is an immediate.
823   bool isIndirectDebugValue() const {
824     return isDebugValue()
825       && getOperand(0).isReg()
826       && getOperand(1).isImm();
827   }
828 
829   bool isPHI() const {
830     return getOpcode() == TargetOpcode::PHI ||
831            getOpcode() == TargetOpcode::G_PHI;
832   }
833   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
834   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
835   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
836 
837   bool isMSInlineAsm() const {
838     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
839   }
840 
841   bool isStackAligningInlineAsm() const;
842   InlineAsm::AsmDialect getInlineAsmDialect() const;
843 
844   bool isInsertSubreg() const {
845     return getOpcode() == TargetOpcode::INSERT_SUBREG;
846   }
847 
848   bool isSubregToReg() const {
849     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
850   }
851 
852   bool isRegSequence() const {
853     return getOpcode() == TargetOpcode::REG_SEQUENCE;
854   }
855 
856   bool isBundle() const {
857     return getOpcode() == TargetOpcode::BUNDLE;
858   }
859 
860   bool isCopy() const {
861     return getOpcode() == TargetOpcode::COPY;
862   }
863 
864   bool isFullCopy() const {
865     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
866   }
867 
868   bool isExtractSubreg() const {
869     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
870   }
871 
872   /// Return true if the instruction behaves like a copy.
873   /// This does not include native copy instructions.
874   bool isCopyLike() const {
875     return isCopy() || isSubregToReg();
876   }
877 
878   /// Return true is the instruction is an identity copy.
879   bool isIdentityCopy() const {
880     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
881       getOperand(0).getSubReg() == getOperand(1).getSubReg();
882   }
883 
884   /// Return true if this instruction doesn't produce any output in the form of
885   /// executable instructions.
886   bool isMetaInstruction() const {
887     switch (getOpcode()) {
888     default:
889       return false;
890     case TargetOpcode::IMPLICIT_DEF:
891     case TargetOpcode::KILL:
892     case TargetOpcode::CFI_INSTRUCTION:
893     case TargetOpcode::EH_LABEL:
894     case TargetOpcode::GC_LABEL:
895     case TargetOpcode::DBG_VALUE:
896     case TargetOpcode::LIFETIME_START:
897     case TargetOpcode::LIFETIME_END:
898       return true;
899     }
900   }
901 
902   /// Return true if this is a transient instruction that is either very likely
903   /// to be eliminated during register allocation (such as copy-like
904   /// instructions), or if this instruction doesn't have an execution-time cost.
905   bool isTransient() const {
906     switch (getOpcode()) {
907     default:
908       return isMetaInstruction();
909     // Copy-like instructions are usually eliminated during register allocation.
910     case TargetOpcode::PHI:
911     case TargetOpcode::G_PHI:
912     case TargetOpcode::COPY:
913     case TargetOpcode::INSERT_SUBREG:
914     case TargetOpcode::SUBREG_TO_REG:
915     case TargetOpcode::REG_SEQUENCE:
916       return true;
917     }
918   }
919 
920   /// Return the number of instructions inside the MI bundle, excluding the
921   /// bundle header.
922   ///
923   /// This is the number of instructions that MachineBasicBlock::iterator
924   /// skips, 0 for unbundled instructions.
925   unsigned getBundleSize() const;
926 
927   /// Return true if the MachineInstr reads the specified register.
928   /// If TargetRegisterInfo is passed, then it also checks if there
929   /// is a read of a super-register.
930   /// This does not count partial redefines of virtual registers as reads:
931   ///   %reg1024:6 = OP.
932   bool readsRegister(unsigned Reg,
933                      const TargetRegisterInfo *TRI = nullptr) const {
934     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
935   }
936 
937   /// Return true if the MachineInstr reads the specified virtual register.
938   /// Take into account that a partial define is a
939   /// read-modify-write operation.
940   bool readsVirtualRegister(unsigned Reg) const {
941     return readsWritesVirtualRegister(Reg).first;
942   }
943 
944   /// Return a pair of bools (reads, writes) indicating if this instruction
945   /// reads or writes Reg. This also considers partial defines.
946   /// If Ops is not null, all operand indices for Reg are added.
947   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
948                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
949 
950   /// Return true if the MachineInstr kills the specified register.
951   /// If TargetRegisterInfo is passed, then it also checks if there is
952   /// a kill of a super-register.
953   bool killsRegister(unsigned Reg,
954                      const TargetRegisterInfo *TRI = nullptr) const {
955     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
956   }
957 
958   /// Return true if the MachineInstr fully defines the specified register.
959   /// If TargetRegisterInfo is passed, then it also checks
960   /// if there is a def of a super-register.
961   /// NOTE: It's ignoring subreg indices on virtual registers.
962   bool definesRegister(unsigned Reg,
963                        const TargetRegisterInfo *TRI = nullptr) const {
964     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
965   }
966 
967   /// Return true if the MachineInstr modifies (fully define or partially
968   /// define) the specified register.
969   /// NOTE: It's ignoring subreg indices on virtual registers.
970   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
971     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
972   }
973 
974   /// Returns true if the register is dead in this machine instruction.
975   /// If TargetRegisterInfo is passed, then it also checks
976   /// if there is a dead def of a super-register.
977   bool registerDefIsDead(unsigned Reg,
978                          const TargetRegisterInfo *TRI = nullptr) const {
979     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
980   }
981 
982   /// Returns true if the MachineInstr has an implicit-use operand of exactly
983   /// the given register (not considering sub/super-registers).
984   bool hasRegisterImplicitUseOperand(unsigned Reg) const;
985 
986   /// Returns the operand index that is a use of the specific register or -1
987   /// if it is not found. It further tightens the search criteria to a use
988   /// that kills the register if isKill is true.
989   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
990                                 const TargetRegisterInfo *TRI = nullptr) const;
991 
992   /// Wrapper for findRegisterUseOperandIdx, it returns
993   /// a pointer to the MachineOperand rather than an index.
994   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
995                                       const TargetRegisterInfo *TRI = nullptr) {
996     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
997     return (Idx == -1) ? nullptr : &getOperand(Idx);
998   }
999 
1000   const MachineOperand *findRegisterUseOperand(
1001     unsigned Reg, bool isKill = false,
1002     const TargetRegisterInfo *TRI = nullptr) const {
1003     return const_cast<MachineInstr *>(this)->
1004       findRegisterUseOperand(Reg, isKill, TRI);
1005   }
1006 
1007   /// Returns the operand index that is a def of the specified register or
1008   /// -1 if it is not found. If isDead is true, defs that are not dead are
1009   /// skipped. If Overlap is true, then it also looks for defs that merely
1010   /// overlap the specified register. If TargetRegisterInfo is non-null,
1011   /// then it also checks if there is a def of a super-register.
1012   /// This may also return a register mask operand when Overlap is true.
1013   int findRegisterDefOperandIdx(unsigned Reg,
1014                                 bool isDead = false, bool Overlap = false,
1015                                 const TargetRegisterInfo *TRI = nullptr) const;
1016 
1017   /// Wrapper for findRegisterDefOperandIdx, it returns
1018   /// a pointer to the MachineOperand rather than an index.
1019   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
1020                                       const TargetRegisterInfo *TRI = nullptr) {
1021     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
1022     return (Idx == -1) ? nullptr : &getOperand(Idx);
1023   }
1024 
1025   /// Find the index of the first operand in the
1026   /// operand list that is used to represent the predicate. It returns -1 if
1027   /// none is found.
1028   int findFirstPredOperandIdx() const;
1029 
1030   /// Find the index of the flag word operand that
1031   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
1032   /// getOperand(OpIdx) does not belong to an inline asm operand group.
1033   ///
1034   /// If GroupNo is not NULL, it will receive the number of the operand group
1035   /// containing OpIdx.
1036   ///
1037   /// The flag operand is an immediate that can be decoded with methods like
1038   /// InlineAsm::hasRegClassConstraint().
1039   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1040 
1041   /// Compute the static register class constraint for operand OpIdx.
1042   /// For normal instructions, this is derived from the MCInstrDesc.
1043   /// For inline assembly it is derived from the flag words.
1044   ///
1045   /// Returns NULL if the static register class constraint cannot be
1046   /// determined.
1047   const TargetRegisterClass*
1048   getRegClassConstraint(unsigned OpIdx,
1049                         const TargetInstrInfo *TII,
1050                         const TargetRegisterInfo *TRI) const;
1051 
1052   /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
1053   /// the given \p CurRC.
1054   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1055   /// instructions inside the bundle will be taken into account. In other words,
1056   /// this method accumulates all the constraints of the operand of this MI and
1057   /// the related bundle if MI is a bundle or inside a bundle.
1058   ///
1059   /// Returns the register class that satisfies both \p CurRC and the
1060   /// constraints set by MI. Returns NULL if such a register class does not
1061   /// exist.
1062   ///
1063   /// \pre CurRC must not be NULL.
1064   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1065       unsigned Reg, const TargetRegisterClass *CurRC,
1066       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1067       bool ExploreBundle = false) const;
1068 
1069   /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
1070   /// to the given \p CurRC.
1071   ///
1072   /// Returns the register class that satisfies both \p CurRC and the
1073   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1074   /// does not exist.
1075   ///
1076   /// \pre CurRC must not be NULL.
1077   /// \pre The operand at \p OpIdx must be a register.
1078   const TargetRegisterClass *
1079   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1080                               const TargetInstrInfo *TII,
1081                               const TargetRegisterInfo *TRI) const;
1082 
1083   /// Add a tie between the register operands at DefIdx and UseIdx.
1084   /// The tie will cause the register allocator to ensure that the two
1085   /// operands are assigned the same physical register.
1086   ///
1087   /// Tied operands are managed automatically for explicit operands in the
1088   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1089   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1090 
1091   /// Given the index of a tied register operand, find the
1092   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1093   /// index of the tied operand which must exist.
1094   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1095 
1096   /// Given the index of a register def operand,
1097   /// check if the register def is tied to a source operand, due to either
1098   /// two-address elimination or inline assembly constraints. Returns the
1099   /// first tied use operand index by reference if UseOpIdx is not null.
1100   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1101                              unsigned *UseOpIdx = nullptr) const {
1102     const MachineOperand &MO = getOperand(DefOpIdx);
1103     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1104       return false;
1105     if (UseOpIdx)
1106       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1107     return true;
1108   }
1109 
1110   /// Return true if the use operand of the specified index is tied to a def
1111   /// operand. It also returns the def operand index by reference if DefOpIdx
1112   /// is not null.
1113   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1114                              unsigned *DefOpIdx = nullptr) const {
1115     const MachineOperand &MO = getOperand(UseOpIdx);
1116     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1117       return false;
1118     if (DefOpIdx)
1119       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1120     return true;
1121   }
1122 
1123   /// Clears kill flags on all operands.
1124   void clearKillInfo();
1125 
1126   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1127   /// properly composing subreg indices where necessary.
1128   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
1129                           const TargetRegisterInfo &RegInfo);
1130 
1131   /// We have determined MI kills a register. Look for the
1132   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1133   /// add a implicit operand if it's not found. Returns true if the operand
1134   /// exists / is added.
1135   bool addRegisterKilled(unsigned IncomingReg,
1136                          const TargetRegisterInfo *RegInfo,
1137                          bool AddIfNotFound = false);
1138 
1139   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1140   /// all aliasing registers.
1141   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
1142 
1143   /// We have determined MI defined a register without a use.
1144   /// Look for the operand that defines it and mark it as IsDead. If
1145   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1146   /// true if the operand exists / is added.
1147   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
1148                        bool AddIfNotFound = false);
1149 
1150   /// Clear all dead flags on operands defining register @p Reg.
1151   void clearRegisterDeads(unsigned Reg);
1152 
1153   /// Mark all subregister defs of register @p Reg with the undef flag.
1154   /// This function is used when we determined to have a subregister def in an
1155   /// otherwise undefined super register.
1156   void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
1157 
1158   /// We have determined MI defines a register. Make sure there is an operand
1159   /// defining Reg.
1160   void addRegisterDefined(unsigned Reg,
1161                           const TargetRegisterInfo *RegInfo = nullptr);
1162 
1163   /// Mark every physreg used by this instruction as
1164   /// dead except those in the UsedRegs list.
1165   ///
1166   /// On instructions with register mask operands, also add implicit-def
1167   /// operands for all registers in UsedRegs.
1168   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1169                              const TargetRegisterInfo &TRI);
1170 
1171   /// Return true if it is safe to move this instruction. If
1172   /// SawStore is set to true, it means that there is a store (or call) between
1173   /// the instruction's location and its intended destination.
1174   bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
1175 
1176   /// Returns true if this instruction's memory access aliases the memory
1177   /// access of Other.
1178   //
1179   /// Assumes any physical registers used to compute addresses
1180   /// have the same value for both instructions.  Returns false if neither
1181   /// instruction writes to memory.
1182   ///
1183   /// @param AA Optional alias analysis, used to compare memory operands.
1184   /// @param Other MachineInstr to check aliasing against.
1185   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1186   bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
1187 
1188   /// Return true if this instruction may have an ordered
1189   /// or volatile memory reference, or if the information describing the memory
1190   /// reference is not available. Return false if it is known to have no
1191   /// ordered or volatile memory references.
1192   bool hasOrderedMemoryRef() const;
1193 
1194   /// Return true if this load instruction never traps and points to a memory
1195   /// location whose value doesn't change during the execution of this function.
1196   ///
1197   /// Examples include loading a value from the constant pool or from the
1198   /// argument area of a function (if it does not change).  If the instruction
1199   /// does multiple loads, this returns true only if all of the loads are
1200   /// dereferenceable and invariant.
1201   bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
1202 
1203   /// If the specified instruction is a PHI that always merges together the
1204   /// same virtual register, return the register, otherwise return 0.
1205   unsigned isConstantValuePHI() const;
1206 
1207   /// Return true if this instruction has side effects that are not modeled
1208   /// by mayLoad / mayStore, etc.
1209   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1210   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1211   /// INLINEASM instruction, in which case the side effect property is encoded
1212   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1213   ///
1214   bool hasUnmodeledSideEffects() const;
1215 
1216   /// Returns true if it is illegal to fold a load across this instruction.
1217   bool isLoadFoldBarrier() const;
1218 
1219   /// Return true if all the defs of this instruction are dead.
1220   bool allDefsAreDead() const;
1221 
1222   /// Copy implicit register operands from specified
1223   /// instruction to this instruction.
1224   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1225 
1226   /// Debugging support
1227   /// @{
1228   /// Determine the generic type to be printed (if needed) on uses and defs.
1229   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1230                      const MachineRegisterInfo &MRI) const;
1231 
1232   /// Return true when an instruction has tied register that can't be determined
1233   /// by the instruction's descriptor. This is useful for MIR printing, to
1234   /// determine whether we need to print the ties or not.
1235   bool hasComplexRegisterTies() const;
1236 
1237   /// Print this MI to \p OS.
1238   /// Don't print information that can be inferred from other instructions if
1239   /// \p IsStandalone is false. It is usually true when only a fragment of the
1240   /// function is printed.
1241   /// Only print the defs and the opcode if \p SkipOpers is true.
1242   /// Otherwise, also print operands if \p SkipDebugLoc is true.
1243   /// Otherwise, also print the debug loc, with a terminating newline.
1244   /// \p TII is used to print the opcode name.  If it's not present, but the
1245   /// MI is in a function, the opcode will be printed using the function's TII.
1246   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1247              bool SkipDebugLoc = false, bool AddNewLine = true,
1248              const TargetInstrInfo *TII = nullptr) const;
1249   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1250              bool SkipOpers = false, bool SkipDebugLoc = false,
1251              bool AddNewLine = true,
1252              const TargetInstrInfo *TII = nullptr) const;
1253   void dump() const;
1254   /// @}
1255 
1256   //===--------------------------------------------------------------------===//
1257   // Accessors used to build up machine instructions.
1258 
1259   /// Add the specified operand to the instruction.  If it is an implicit
1260   /// operand, it is added to the end of the operand list.  If it is an
1261   /// explicit operand it is added at the end of the explicit operand list
1262   /// (before the first implicit operand).
1263   ///
1264   /// MF must be the machine function that was used to allocate this
1265   /// instruction.
1266   ///
1267   /// MachineInstrBuilder provides a more convenient interface for creating
1268   /// instructions and adding operands.
1269   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1270 
1271   /// Add an operand without providing an MF reference. This only works for
1272   /// instructions that are inserted in a basic block.
1273   ///
1274   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1275   /// preferred.
1276   void addOperand(const MachineOperand &Op);
1277 
1278   /// Replace the instruction descriptor (thus opcode) of
1279   /// the current instruction with a new one.
1280   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1281 
1282   /// Replace current source information with new such.
1283   /// Avoid using this, the constructor argument is preferable.
1284   void setDebugLoc(DebugLoc dl) {
1285     debugLoc = std::move(dl);
1286     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1287   }
1288 
1289   /// Erase an operand from an instruction, leaving it with one
1290   /// fewer operand than it started with.
1291   void RemoveOperand(unsigned i);
1292 
1293   /// Add a MachineMemOperand to the machine instruction.
1294   /// This function should be used only occasionally. The setMemRefs function
1295   /// is the primary method for setting up a MachineInstr's MemRefs list.
1296   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1297 
1298   /// Assign this MachineInstr's memory reference descriptor list.
1299   /// This does not transfer ownership.
1300   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
1301     setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
1302   }
1303 
1304   /// Assign this MachineInstr's memory reference descriptor list.  First
1305   /// element in the pair is the begin iterator/pointer to the array; the
1306   /// second is the number of MemoryOperands.  This does not transfer ownership
1307   /// of the underlying memory.
1308   void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
1309     MemRefs = NewMemRefs.first;
1310     NumMemRefs = uint8_t(NewMemRefs.second);
1311     assert(NumMemRefs == NewMemRefs.second &&
1312            "Too many memrefs - must drop memory operands");
1313   }
1314 
1315   /// Return a set of memrefs (begin iterator, size) which conservatively
1316   /// describe the memory behavior of both MachineInstrs.  This is appropriate
1317   /// for use when merging two MachineInstrs into one. This routine does not
1318   /// modify the memrefs of the this MachineInstr.
1319   std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
1320 
1321   /// Return the MIFlags which represent both MachineInstrs. This
1322   /// should be used when merging two MachineInstrs into one. This routine does
1323   /// not modify the MIFlags of this MachineInstr.
1324   uint8_t mergeFlagsWith(const MachineInstr& Other) const;
1325 
1326   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1327   /// the memrefs to their most conservative state.  This should be used only
1328   /// as a last resort since it greatly pessimizes our knowledge of the memory
1329   /// access performed by the instruction.
1330   void dropMemRefs() {
1331     MemRefs = nullptr;
1332     NumMemRefs = 0;
1333   }
1334 
1335   /// Break any tie involving OpIdx.
1336   void untieRegOperand(unsigned OpIdx) {
1337     MachineOperand &MO = getOperand(OpIdx);
1338     if (MO.isReg() && MO.isTied()) {
1339       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1340       MO.TiedTo = 0;
1341     }
1342   }
1343 
1344   /// Add all implicit def and use operands to this instruction.
1345   void addImplicitDefUseOperands(MachineFunction &MF);
1346 
1347 private:
1348   /// If this instruction is embedded into a MachineFunction, return the
1349   /// MachineRegisterInfo object for the current function, otherwise
1350   /// return null.
1351   MachineRegisterInfo *getRegInfo();
1352 
1353   /// Unlink all of the register operands in this instruction from their
1354   /// respective use lists.  This requires that the operands already be on their
1355   /// use lists.
1356   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1357 
1358   /// Add all of the register operands in this instruction from their
1359   /// respective use lists.  This requires that the operands not be on their
1360   /// use lists yet.
1361   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1362 
1363   /// Slow path for hasProperty when we're dealing with a bundle.
1364   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
1365 
1366   /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
1367   /// this MI and the given operand index \p OpIdx.
1368   /// If the related operand does not constrained Reg, this returns CurRC.
1369   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1370       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1371       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1372 };
1373 
1374 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1375 /// instruction rather than by pointer value.
1376 /// The hashing and equality testing functions ignore definitions so this is
1377 /// useful for CSE, etc.
1378 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1379   static inline MachineInstr *getEmptyKey() {
1380     return nullptr;
1381   }
1382 
1383   static inline MachineInstr *getTombstoneKey() {
1384     return reinterpret_cast<MachineInstr*>(-1);
1385   }
1386 
1387   static unsigned getHashValue(const MachineInstr* const &MI);
1388 
1389   static bool isEqual(const MachineInstr* const &LHS,
1390                       const MachineInstr* const &RHS) {
1391     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1392         LHS == getEmptyKey() || LHS == getTombstoneKey())
1393       return LHS == RHS;
1394     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1395   }
1396 };
1397 
1398 //===----------------------------------------------------------------------===//
1399 // Debugging Support
1400 
1401 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1402   MI.print(OS);
1403   return OS;
1404 }
1405 
1406 } // end namespace llvm
1407 
1408 #endif // LLVM_CODEGEN_MACHINEINSTR_H
1409