1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declaration of the MachineInstr class, which is the 11 // basic representation for all target dependent machine instructions used by 12 // the back end. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 17 #define LLVM_CODEGEN_MACHINEINSTR_H 18 19 #include "llvm/ADT/DenseMapInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/ilist.h" 22 #include "llvm/ADT/ilist_node.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/MC/MCInstrDesc.h" 30 #include "llvm/Support/ArrayRecycler.h" 31 #include "llvm/Target/TargetOpcodes.h" 32 33 namespace llvm { 34 35 class StringRef; 36 template <typename T> class ArrayRef; 37 template <typename T> class SmallVectorImpl; 38 class DILocalVariable; 39 class DIExpression; 40 class TargetInstrInfo; 41 class TargetRegisterClass; 42 class TargetRegisterInfo; 43 class MachineFunction; 44 class MachineMemOperand; 45 46 //===----------------------------------------------------------------------===// 47 /// Representation of each machine instruction. 48 /// 49 /// This class isn't a POD type, but it must have a trivial destructor. When a 50 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 51 /// without having their destructor called. 52 /// 53 class MachineInstr 54 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock> { 55 public: 56 typedef MachineMemOperand **mmo_iterator; 57 58 /// Flags to specify different kinds of comments to output in 59 /// assembly code. These flags carry semantic information not 60 /// otherwise easily derivable from the IR text. 61 /// 62 enum CommentFlag { 63 ReloadReuse = 0x1 64 }; 65 66 enum MIFlag { 67 NoFlags = 0, 68 FrameSetup = 1 << 0, // Instruction is used as a part of 69 // function frame setup code. 70 FrameDestroy = 1 << 1, // Instruction is used as a part of 71 // function frame destruction code. 72 BundledPred = 1 << 2, // Instruction has bundled predecessors. 73 BundledSucc = 1 << 3 // Instruction has bundled successors. 74 }; 75 private: 76 const MCInstrDesc *MCID; // Instruction descriptor. 77 MachineBasicBlock *Parent; // Pointer to the owning basic block. 78 79 // Operands are allocated by an ArrayRecycler. 80 MachineOperand *Operands; // Pointer to the first operand. 81 unsigned NumOperands; // Number of operands on instruction. 82 typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity; 83 OperandCapacity CapOperands; // Capacity of the Operands array. 84 85 uint8_t Flags; // Various bits of additional 86 // information about machine 87 // instruction. 88 89 uint8_t AsmPrinterFlags; // Various bits of information used by 90 // the AsmPrinter to emit helpful 91 // comments. This is *not* semantic 92 // information. Do not use this for 93 // anything other than to convey comment 94 // information to AsmPrinter. 95 96 uint8_t NumMemRefs; // Information on memory references. 97 // Note that MemRefs == nullptr, means 'don't know', not 'no memory access'. 98 // Calling code must treat missing information conservatively. If the number 99 // of memory operands required to be precise exceeds the maximum value of 100 // NumMemRefs - currently 256 - we remove the operands entirely. Note also 101 // that this is a non-owning reference to a shared copy on write buffer owned 102 // by the MachineFunction and created via MF.allocateMemRefsArray. 103 mmo_iterator MemRefs; 104 105 DebugLoc debugLoc; // Source line information. 106 107 #ifdef LLVM_BUILD_GLOBAL_ISEL 108 /// Type of the instruction in case of a generic opcode. 109 /// \invariant This must be LLT{} if getOpcode() is not 110 /// in the range of generic opcodes. 111 SmallVector<LLT, 1> Tys; 112 #endif 113 114 MachineInstr(const MachineInstr&) = delete; 115 void operator=(const MachineInstr&) = delete; 116 // Use MachineFunction::DeleteMachineInstr() instead. 117 ~MachineInstr() = delete; 118 119 // Intrusive list support 120 friend struct ilist_traits<MachineInstr>; 121 friend struct ilist_traits<MachineBasicBlock>; 122 void setParent(MachineBasicBlock *P) { Parent = P; } 123 124 /// This constructor creates a copy of the given 125 /// MachineInstr in the given MachineFunction. 126 MachineInstr(MachineFunction &, const MachineInstr &); 127 128 /// This constructor create a MachineInstr and add the implicit operands. 129 /// It reserves space for number of operands specified by 130 /// MCInstrDesc. An explicit DebugLoc is supplied. 131 MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl, 132 bool NoImp = false); 133 134 // MachineInstrs are pool-allocated and owned by MachineFunction. 135 friend class MachineFunction; 136 137 public: 138 const MachineBasicBlock* getParent() const { return Parent; } 139 MachineBasicBlock* getParent() { return Parent; } 140 141 /// Return the asm printer flags bitvector. 142 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 143 144 /// Clear the AsmPrinter bitvector. 145 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 146 147 /// Return whether an AsmPrinter flag is set. 148 bool getAsmPrinterFlag(CommentFlag Flag) const { 149 return AsmPrinterFlags & Flag; 150 } 151 152 /// Set a flag for the AsmPrinter. 153 void setAsmPrinterFlag(CommentFlag Flag) { 154 AsmPrinterFlags |= (uint8_t)Flag; 155 } 156 157 /// Clear specific AsmPrinter flags. 158 void clearAsmPrinterFlag(CommentFlag Flag) { 159 AsmPrinterFlags &= ~Flag; 160 } 161 162 /// Return the MI flags bitvector. 163 uint8_t getFlags() const { 164 return Flags; 165 } 166 167 /// Return whether an MI flag is set. 168 bool getFlag(MIFlag Flag) const { 169 return Flags & Flag; 170 } 171 172 /// Set a MI flag. 173 void setFlag(MIFlag Flag) { 174 Flags |= (uint8_t)Flag; 175 } 176 177 void setFlags(unsigned flags) { 178 // Filter out the automatically maintained flags. 179 unsigned Mask = BundledPred | BundledSucc; 180 Flags = (Flags & Mask) | (flags & ~Mask); 181 } 182 183 /// clearFlag - Clear a MI flag. 184 void clearFlag(MIFlag Flag) { 185 Flags &= ~((uint8_t)Flag); 186 } 187 188 /// Set the type of the instruction. 189 /// \pre getOpcode() is in the range of the generic opcodes. 190 void setType(LLT Ty, unsigned Idx = 0); 191 LLT getType(int unsigned = 0) const; 192 unsigned getNumTypes() const; 193 194 /// Return true if MI is in a bundle (but not the first MI in a bundle). 195 /// 196 /// A bundle looks like this before it's finalized: 197 /// ---------------- 198 /// | MI | 199 /// ---------------- 200 /// | 201 /// ---------------- 202 /// | MI * | 203 /// ---------------- 204 /// | 205 /// ---------------- 206 /// | MI * | 207 /// ---------------- 208 /// In this case, the first MI starts a bundle but is not inside a bundle, the 209 /// next 2 MIs are considered "inside" the bundle. 210 /// 211 /// After a bundle is finalized, it looks like this: 212 /// ---------------- 213 /// | Bundle | 214 /// ---------------- 215 /// | 216 /// ---------------- 217 /// | MI * | 218 /// ---------------- 219 /// | 220 /// ---------------- 221 /// | MI * | 222 /// ---------------- 223 /// | 224 /// ---------------- 225 /// | MI * | 226 /// ---------------- 227 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 228 /// a bundle, but the next three MIs are. 229 bool isInsideBundle() const { 230 return getFlag(BundledPred); 231 } 232 233 /// Return true if this instruction part of a bundle. This is true 234 /// if either itself or its following instruction is marked "InsideBundle". 235 bool isBundled() const { 236 return isBundledWithPred() || isBundledWithSucc(); 237 } 238 239 /// Return true if this instruction is part of a bundle, and it is not the 240 /// first instruction in the bundle. 241 bool isBundledWithPred() const { return getFlag(BundledPred); } 242 243 /// Return true if this instruction is part of a bundle, and it is not the 244 /// last instruction in the bundle. 245 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 246 247 /// Bundle this instruction with its predecessor. This can be an unbundled 248 /// instruction, or it can be the first instruction in a bundle. 249 void bundleWithPred(); 250 251 /// Bundle this instruction with its successor. This can be an unbundled 252 /// instruction, or it can be the last instruction in a bundle. 253 void bundleWithSucc(); 254 255 /// Break bundle above this instruction. 256 void unbundleFromPred(); 257 258 /// Break bundle below this instruction. 259 void unbundleFromSucc(); 260 261 /// Returns the debug location id of this MachineInstr. 262 const DebugLoc &getDebugLoc() const { return debugLoc; } 263 264 /// Return the debug variable referenced by 265 /// this DBG_VALUE instruction. 266 const DILocalVariable *getDebugVariable() const; 267 268 /// Return the complex address expression referenced by 269 /// this DBG_VALUE instruction. 270 const DIExpression *getDebugExpression() const; 271 272 /// Emit an error referring to the source location of this instruction. 273 /// This should only be used for inline assembly that is somehow 274 /// impossible to compile. Other errors should have been handled much 275 /// earlier. 276 /// 277 /// If this method returns, the caller should try to recover from the error. 278 /// 279 void emitError(StringRef Msg) const; 280 281 /// Returns the target instruction descriptor of this MachineInstr. 282 const MCInstrDesc &getDesc() const { return *MCID; } 283 284 /// Returns the opcode of this MachineInstr. 285 unsigned getOpcode() const { return MCID->Opcode; } 286 287 /// Access to explicit operands of the instruction. 288 /// 289 unsigned getNumOperands() const { return NumOperands; } 290 291 const MachineOperand& getOperand(unsigned i) const { 292 assert(i < getNumOperands() && "getOperand() out of range!"); 293 return Operands[i]; 294 } 295 MachineOperand& getOperand(unsigned i) { 296 assert(i < getNumOperands() && "getOperand() out of range!"); 297 return Operands[i]; 298 } 299 300 /// Returns the number of non-implicit operands. 301 unsigned getNumExplicitOperands() const; 302 303 /// iterator/begin/end - Iterate over all operands of a machine instruction. 304 typedef MachineOperand *mop_iterator; 305 typedef const MachineOperand *const_mop_iterator; 306 307 mop_iterator operands_begin() { return Operands; } 308 mop_iterator operands_end() { return Operands + NumOperands; } 309 310 const_mop_iterator operands_begin() const { return Operands; } 311 const_mop_iterator operands_end() const { return Operands + NumOperands; } 312 313 iterator_range<mop_iterator> operands() { 314 return make_range(operands_begin(), operands_end()); 315 } 316 iterator_range<const_mop_iterator> operands() const { 317 return make_range(operands_begin(), operands_end()); 318 } 319 iterator_range<mop_iterator> explicit_operands() { 320 return make_range(operands_begin(), 321 operands_begin() + getNumExplicitOperands()); 322 } 323 iterator_range<const_mop_iterator> explicit_operands() const { 324 return make_range(operands_begin(), 325 operands_begin() + getNumExplicitOperands()); 326 } 327 iterator_range<mop_iterator> implicit_operands() { 328 return make_range(explicit_operands().end(), operands_end()); 329 } 330 iterator_range<const_mop_iterator> implicit_operands() const { 331 return make_range(explicit_operands().end(), operands_end()); 332 } 333 /// Returns a range over all explicit operands that are register definitions. 334 /// Implicit definition are not included! 335 iterator_range<mop_iterator> defs() { 336 return make_range(operands_begin(), 337 operands_begin() + getDesc().getNumDefs()); 338 } 339 /// \copydoc defs() 340 iterator_range<const_mop_iterator> defs() const { 341 return make_range(operands_begin(), 342 operands_begin() + getDesc().getNumDefs()); 343 } 344 /// Returns a range that includes all operands that are register uses. 345 /// This may include unrelated operands which are not register uses. 346 iterator_range<mop_iterator> uses() { 347 return make_range(operands_begin() + getDesc().getNumDefs(), 348 operands_end()); 349 } 350 /// \copydoc uses() 351 iterator_range<const_mop_iterator> uses() const { 352 return make_range(operands_begin() + getDesc().getNumDefs(), 353 operands_end()); 354 } 355 iterator_range<mop_iterator> explicit_uses() { 356 return make_range(operands_begin() + getDesc().getNumDefs(), 357 operands_begin() + getNumExplicitOperands() ); 358 } 359 iterator_range<const_mop_iterator> explicit_uses() const { 360 return make_range(operands_begin() + getDesc().getNumDefs(), 361 operands_begin() + getNumExplicitOperands() ); 362 } 363 364 /// Returns the number of the operand iterator \p I points to. 365 unsigned getOperandNo(const_mop_iterator I) const { 366 return I - operands_begin(); 367 } 368 369 /// Access to memory operands of the instruction 370 mmo_iterator memoperands_begin() const { return MemRefs; } 371 mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; } 372 /// Return true if we don't have any memory operands which described the the 373 /// memory access done by this instruction. If this is true, calling code 374 /// must be conservative. 375 bool memoperands_empty() const { return NumMemRefs == 0; } 376 377 iterator_range<mmo_iterator> memoperands() { 378 return make_range(memoperands_begin(), memoperands_end()); 379 } 380 iterator_range<mmo_iterator> memoperands() const { 381 return make_range(memoperands_begin(), memoperands_end()); 382 } 383 384 /// Return true if this instruction has exactly one MachineMemOperand. 385 bool hasOneMemOperand() const { 386 return NumMemRefs == 1; 387 } 388 389 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 390 /// queries but they are bundle aware. 391 392 enum QueryType { 393 IgnoreBundle, // Ignore bundles 394 AnyInBundle, // Return true if any instruction in bundle has property 395 AllInBundle // Return true if all instructions in bundle have property 396 }; 397 398 /// Return true if the instruction (or in the case of a bundle, 399 /// the instructions inside the bundle) has the specified property. 400 /// The first argument is the property being queried. 401 /// The second argument indicates whether the query should look inside 402 /// instruction bundles. 403 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 404 // Inline the fast path for unbundled or bundle-internal instructions. 405 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 406 return getDesc().getFlags() & (1 << MCFlag); 407 408 // If this is the first instruction in a bundle, take the slow path. 409 return hasPropertyInBundle(1 << MCFlag, Type); 410 } 411 412 /// Return true if this instruction can have a variable number of operands. 413 /// In this case, the variable operands will be after the normal 414 /// operands but before the implicit definitions and uses (if any are 415 /// present). 416 bool isVariadic(QueryType Type = IgnoreBundle) const { 417 return hasProperty(MCID::Variadic, Type); 418 } 419 420 /// Set if this instruction has an optional definition, e.g. 421 /// ARM instructions which can set condition code if 's' bit is set. 422 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 423 return hasProperty(MCID::HasOptionalDef, Type); 424 } 425 426 /// Return true if this is a pseudo instruction that doesn't 427 /// correspond to a real machine instruction. 428 bool isPseudo(QueryType Type = IgnoreBundle) const { 429 return hasProperty(MCID::Pseudo, Type); 430 } 431 432 bool isReturn(QueryType Type = AnyInBundle) const { 433 return hasProperty(MCID::Return, Type); 434 } 435 436 bool isCall(QueryType Type = AnyInBundle) const { 437 return hasProperty(MCID::Call, Type); 438 } 439 440 /// Returns true if the specified instruction stops control flow 441 /// from executing the instruction immediately following it. Examples include 442 /// unconditional branches and return instructions. 443 bool isBarrier(QueryType Type = AnyInBundle) const { 444 return hasProperty(MCID::Barrier, Type); 445 } 446 447 /// Returns true if this instruction part of the terminator for a basic block. 448 /// Typically this is things like return and branch instructions. 449 /// 450 /// Various passes use this to insert code into the bottom of a basic block, 451 /// but before control flow occurs. 452 bool isTerminator(QueryType Type = AnyInBundle) const { 453 return hasProperty(MCID::Terminator, Type); 454 } 455 456 /// Returns true if this is a conditional, unconditional, or indirect branch. 457 /// Predicates below can be used to discriminate between 458 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 459 /// get more information. 460 bool isBranch(QueryType Type = AnyInBundle) const { 461 return hasProperty(MCID::Branch, Type); 462 } 463 464 /// Return true if this is an indirect branch, such as a 465 /// branch through a register. 466 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 467 return hasProperty(MCID::IndirectBranch, Type); 468 } 469 470 /// Return true if this is a branch which may fall 471 /// through to the next instruction or may transfer control flow to some other 472 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 473 /// information about this branch. 474 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 475 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); 476 } 477 478 /// Return true if this is a branch which always 479 /// transfers control flow to some other block. The 480 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 481 /// about this branch. 482 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 483 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); 484 } 485 486 /// Return true if this instruction has a predicate operand that 487 /// controls execution. It may be set to 'always', or may be set to other 488 /// values. There are various methods in TargetInstrInfo that can be used to 489 /// control and modify the predicate in this instruction. 490 bool isPredicable(QueryType Type = AllInBundle) const { 491 // If it's a bundle than all bundled instructions must be predicable for this 492 // to return true. 493 return hasProperty(MCID::Predicable, Type); 494 } 495 496 /// Return true if this instruction is a comparison. 497 bool isCompare(QueryType Type = IgnoreBundle) const { 498 return hasProperty(MCID::Compare, Type); 499 } 500 501 /// Return true if this instruction is a move immediate 502 /// (including conditional moves) instruction. 503 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 504 return hasProperty(MCID::MoveImm, Type); 505 } 506 507 /// Return true if this instruction is a bitcast instruction. 508 bool isBitcast(QueryType Type = IgnoreBundle) const { 509 return hasProperty(MCID::Bitcast, Type); 510 } 511 512 /// Return true if this instruction is a select instruction. 513 bool isSelect(QueryType Type = IgnoreBundle) const { 514 return hasProperty(MCID::Select, Type); 515 } 516 517 /// Return true if this instruction cannot be safely duplicated. 518 /// For example, if the instruction has a unique labels attached 519 /// to it, duplicating it would cause multiple definition errors. 520 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 521 return hasProperty(MCID::NotDuplicable, Type); 522 } 523 524 /// Return true if this instruction is convergent. 525 /// Convergent instructions can not be made control-dependent on any 526 /// additional values. 527 bool isConvergent(QueryType Type = AnyInBundle) const { 528 if (isInlineAsm()) { 529 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 530 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 531 return true; 532 } 533 return hasProperty(MCID::Convergent, Type); 534 } 535 536 /// Returns true if the specified instruction has a delay slot 537 /// which must be filled by the code generator. 538 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 539 return hasProperty(MCID::DelaySlot, Type); 540 } 541 542 /// Return true for instructions that can be folded as 543 /// memory operands in other instructions. The most common use for this 544 /// is instructions that are simple loads from memory that don't modify 545 /// the loaded value in any way, but it can also be used for instructions 546 /// that can be expressed as constant-pool loads, such as V_SETALLONES 547 /// on x86, to allow them to be folded when it is beneficial. 548 /// This should only be set on instructions that return a value in their 549 /// only virtual register definition. 550 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 551 return hasProperty(MCID::FoldableAsLoad, Type); 552 } 553 554 /// \brief Return true if this instruction behaves 555 /// the same way as the generic REG_SEQUENCE instructions. 556 /// E.g., on ARM, 557 /// dX VMOVDRR rY, rZ 558 /// is equivalent to 559 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 560 /// 561 /// Note that for the optimizers to be able to take advantage of 562 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 563 /// override accordingly. 564 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 565 return hasProperty(MCID::RegSequence, Type); 566 } 567 568 /// \brief Return true if this instruction behaves 569 /// the same way as the generic EXTRACT_SUBREG instructions. 570 /// E.g., on ARM, 571 /// rX, rY VMOVRRD dZ 572 /// is equivalent to two EXTRACT_SUBREG: 573 /// rX = EXTRACT_SUBREG dZ, ssub_0 574 /// rY = EXTRACT_SUBREG dZ, ssub_1 575 /// 576 /// Note that for the optimizers to be able to take advantage of 577 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 578 /// override accordingly. 579 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 580 return hasProperty(MCID::ExtractSubreg, Type); 581 } 582 583 /// \brief Return true if this instruction behaves 584 /// the same way as the generic INSERT_SUBREG instructions. 585 /// E.g., on ARM, 586 /// dX = VSETLNi32 dY, rZ, Imm 587 /// is equivalent to a INSERT_SUBREG: 588 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 589 /// 590 /// Note that for the optimizers to be able to take advantage of 591 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 592 /// override accordingly. 593 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 594 return hasProperty(MCID::InsertSubreg, Type); 595 } 596 597 //===--------------------------------------------------------------------===// 598 // Side Effect Analysis 599 //===--------------------------------------------------------------------===// 600 601 /// Return true if this instruction could possibly read memory. 602 /// Instructions with this flag set are not necessarily simple load 603 /// instructions, they may load a value and modify it, for example. 604 bool mayLoad(QueryType Type = AnyInBundle) const { 605 if (isInlineAsm()) { 606 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 607 if (ExtraInfo & InlineAsm::Extra_MayLoad) 608 return true; 609 } 610 return hasProperty(MCID::MayLoad, Type); 611 } 612 613 /// Return true if this instruction could possibly modify memory. 614 /// Instructions with this flag set are not necessarily simple store 615 /// instructions, they may store a modified value based on their operands, or 616 /// may not actually modify anything, for example. 617 bool mayStore(QueryType Type = AnyInBundle) const { 618 if (isInlineAsm()) { 619 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 620 if (ExtraInfo & InlineAsm::Extra_MayStore) 621 return true; 622 } 623 return hasProperty(MCID::MayStore, Type); 624 } 625 626 /// Return true if this instruction could possibly read or modify memory. 627 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 628 return mayLoad(Type) || mayStore(Type); 629 } 630 631 //===--------------------------------------------------------------------===// 632 // Flags that indicate whether an instruction can be modified by a method. 633 //===--------------------------------------------------------------------===// 634 635 /// Return true if this may be a 2- or 3-address 636 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 637 /// result if Y and Z are exchanged. If this flag is set, then the 638 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 639 /// instruction. 640 /// 641 /// Note that this flag may be set on instructions that are only commutable 642 /// sometimes. In these cases, the call to commuteInstruction will fail. 643 /// Also note that some instructions require non-trivial modification to 644 /// commute them. 645 bool isCommutable(QueryType Type = IgnoreBundle) const { 646 return hasProperty(MCID::Commutable, Type); 647 } 648 649 /// Return true if this is a 2-address instruction 650 /// which can be changed into a 3-address instruction if needed. Doing this 651 /// transformation can be profitable in the register allocator, because it 652 /// means that the instruction can use a 2-address form if possible, but 653 /// degrade into a less efficient form if the source and dest register cannot 654 /// be assigned to the same register. For example, this allows the x86 655 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 656 /// is the same speed as the shift but has bigger code size. 657 /// 658 /// If this returns true, then the target must implement the 659 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 660 /// is allowed to fail if the transformation isn't valid for this specific 661 /// instruction (e.g. shl reg, 4 on x86). 662 /// 663 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 664 return hasProperty(MCID::ConvertibleTo3Addr, Type); 665 } 666 667 /// Return true if this instruction requires 668 /// custom insertion support when the DAG scheduler is inserting it into a 669 /// machine basic block. If this is true for the instruction, it basically 670 /// means that it is a pseudo instruction used at SelectionDAG time that is 671 /// expanded out into magic code by the target when MachineInstrs are formed. 672 /// 673 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 674 /// is used to insert this into the MachineBasicBlock. 675 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 676 return hasProperty(MCID::UsesCustomInserter, Type); 677 } 678 679 /// Return true if this instruction requires *adjustment* 680 /// after instruction selection by calling a target hook. For example, this 681 /// can be used to fill in ARM 's' optional operand depending on whether 682 /// the conditional flag register is used. 683 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 684 return hasProperty(MCID::HasPostISelHook, Type); 685 } 686 687 /// Returns true if this instruction is a candidate for remat. 688 /// This flag is deprecated, please don't use it anymore. If this 689 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 690 /// verify the instruction is really rematable. 691 bool isRematerializable(QueryType Type = AllInBundle) const { 692 // It's only possible to re-mat a bundle if all bundled instructions are 693 // re-materializable. 694 return hasProperty(MCID::Rematerializable, Type); 695 } 696 697 /// Returns true if this instruction has the same cost (or less) than a move 698 /// instruction. This is useful during certain types of optimizations 699 /// (e.g., remat during two-address conversion or machine licm) 700 /// where we would like to remat or hoist the instruction, but not if it costs 701 /// more than moving the instruction into the appropriate register. Note, we 702 /// are not marking copies from and to the same register class with this flag. 703 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 704 // Only returns true for a bundle if all bundled instructions are cheap. 705 return hasProperty(MCID::CheapAsAMove, Type); 706 } 707 708 /// Returns true if this instruction source operands 709 /// have special register allocation requirements that are not captured by the 710 /// operand register classes. e.g. ARM::STRD's two source registers must be an 711 /// even / odd pair, ARM::STM registers have to be in ascending order. 712 /// Post-register allocation passes should not attempt to change allocations 713 /// for sources of instructions with this flag. 714 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 715 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 716 } 717 718 /// Returns true if this instruction def operands 719 /// have special register allocation requirements that are not captured by the 720 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 721 /// even / odd pair, ARM::LDM registers have to be in ascending order. 722 /// Post-register allocation passes should not attempt to change allocations 723 /// for definitions of instructions with this flag. 724 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 725 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 726 } 727 728 729 enum MICheckType { 730 CheckDefs, // Check all operands for equality 731 CheckKillDead, // Check all operands including kill / dead markers 732 IgnoreDefs, // Ignore all definitions 733 IgnoreVRegDefs // Ignore virtual register definitions 734 }; 735 736 /// Return true if this instruction is identical to (same 737 /// opcode and same operands as) the specified instruction. 738 bool isIdenticalTo(const MachineInstr &Other, 739 MICheckType Check = CheckDefs) const; 740 741 /// Unlink 'this' from the containing basic block, and return it without 742 /// deleting it. 743 /// 744 /// This function can not be used on bundled instructions, use 745 /// removeFromBundle() to remove individual instructions from a bundle. 746 MachineInstr *removeFromParent(); 747 748 /// Unlink this instruction from its basic block and return it without 749 /// deleting it. 750 /// 751 /// If the instruction is part of a bundle, the other instructions in the 752 /// bundle remain bundled. 753 MachineInstr *removeFromBundle(); 754 755 /// Unlink 'this' from the containing basic block and delete it. 756 /// 757 /// If this instruction is the header of a bundle, the whole bundle is erased. 758 /// This function can not be used for instructions inside a bundle, use 759 /// eraseFromBundle() to erase individual bundled instructions. 760 void eraseFromParent(); 761 762 /// Unlink 'this' from the containing basic block and delete it. 763 /// 764 /// For all definitions mark their uses in DBG_VALUE nodes 765 /// as undefined. Otherwise like eraseFromParent(). 766 void eraseFromParentAndMarkDBGValuesForRemoval(); 767 768 /// Unlink 'this' form its basic block and delete it. 769 /// 770 /// If the instruction is part of a bundle, the other instructions in the 771 /// bundle remain bundled. 772 void eraseFromBundle(); 773 774 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 775 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 776 777 /// Returns true if the MachineInstr represents a label. 778 bool isLabel() const { return isEHLabel() || isGCLabel(); } 779 bool isCFIInstruction() const { 780 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 781 } 782 783 // True if the instruction represents a position in the function. 784 bool isPosition() const { return isLabel() || isCFIInstruction(); } 785 786 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } 787 /// A DBG_VALUE is indirect iff the first operand is a register and 788 /// the second operand is an immediate. 789 bool isIndirectDebugValue() const { 790 return isDebugValue() 791 && getOperand(0).isReg() 792 && getOperand(1).isImm(); 793 } 794 795 bool isPHI() const { return getOpcode() == TargetOpcode::PHI; } 796 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 797 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 798 bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; } 799 bool isMSInlineAsm() const { 800 return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect(); 801 } 802 bool isStackAligningInlineAsm() const; 803 InlineAsm::AsmDialect getInlineAsmDialect() const; 804 bool isInsertSubreg() const { 805 return getOpcode() == TargetOpcode::INSERT_SUBREG; 806 } 807 bool isSubregToReg() const { 808 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 809 } 810 bool isRegSequence() const { 811 return getOpcode() == TargetOpcode::REG_SEQUENCE; 812 } 813 bool isBundle() const { 814 return getOpcode() == TargetOpcode::BUNDLE; 815 } 816 bool isCopy() const { 817 return getOpcode() == TargetOpcode::COPY; 818 } 819 bool isFullCopy() const { 820 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 821 } 822 bool isExtractSubreg() const { 823 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 824 } 825 826 /// Return true if the instruction behaves like a copy. 827 /// This does not include native copy instructions. 828 bool isCopyLike() const { 829 return isCopy() || isSubregToReg(); 830 } 831 832 /// Return true is the instruction is an identity copy. 833 bool isIdentityCopy() const { 834 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 835 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 836 } 837 838 /// Return true if this is a transient instruction that is 839 /// either very likely to be eliminated during register allocation (such as 840 /// copy-like instructions), or if this instruction doesn't have an 841 /// execution-time cost. 842 bool isTransient() const { 843 switch(getOpcode()) { 844 default: return false; 845 // Copy-like instructions are usually eliminated during register allocation. 846 case TargetOpcode::PHI: 847 case TargetOpcode::COPY: 848 case TargetOpcode::INSERT_SUBREG: 849 case TargetOpcode::SUBREG_TO_REG: 850 case TargetOpcode::REG_SEQUENCE: 851 // Pseudo-instructions that don't produce any real output. 852 case TargetOpcode::IMPLICIT_DEF: 853 case TargetOpcode::KILL: 854 case TargetOpcode::CFI_INSTRUCTION: 855 case TargetOpcode::EH_LABEL: 856 case TargetOpcode::GC_LABEL: 857 case TargetOpcode::DBG_VALUE: 858 return true; 859 } 860 } 861 862 /// Return the number of instructions inside the MI bundle, excluding the 863 /// bundle header. 864 /// 865 /// This is the number of instructions that MachineBasicBlock::iterator 866 /// skips, 0 for unbundled instructions. 867 unsigned getBundleSize() const; 868 869 /// Return true if the MachineInstr reads the specified register. 870 /// If TargetRegisterInfo is passed, then it also checks if there 871 /// is a read of a super-register. 872 /// This does not count partial redefines of virtual registers as reads: 873 /// %reg1024:6 = OP. 874 bool readsRegister(unsigned Reg, 875 const TargetRegisterInfo *TRI = nullptr) const { 876 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 877 } 878 879 /// Return true if the MachineInstr reads the specified virtual register. 880 /// Take into account that a partial define is a 881 /// read-modify-write operation. 882 bool readsVirtualRegister(unsigned Reg) const { 883 return readsWritesVirtualRegister(Reg).first; 884 } 885 886 /// Return a pair of bools (reads, writes) indicating if this instruction 887 /// reads or writes Reg. This also considers partial defines. 888 /// If Ops is not null, all operand indices for Reg are added. 889 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg, 890 SmallVectorImpl<unsigned> *Ops = nullptr) const; 891 892 /// Return true if the MachineInstr kills the specified register. 893 /// If TargetRegisterInfo is passed, then it also checks if there is 894 /// a kill of a super-register. 895 bool killsRegister(unsigned Reg, 896 const TargetRegisterInfo *TRI = nullptr) const { 897 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 898 } 899 900 /// Return true if the MachineInstr fully defines the specified register. 901 /// If TargetRegisterInfo is passed, then it also checks 902 /// if there is a def of a super-register. 903 /// NOTE: It's ignoring subreg indices on virtual registers. 904 bool definesRegister(unsigned Reg, 905 const TargetRegisterInfo *TRI = nullptr) const { 906 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 907 } 908 909 /// Return true if the MachineInstr modifies (fully define or partially 910 /// define) the specified register. 911 /// NOTE: It's ignoring subreg indices on virtual registers. 912 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const { 913 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 914 } 915 916 /// Returns true if the register is dead in this machine instruction. 917 /// If TargetRegisterInfo is passed, then it also checks 918 /// if there is a dead def of a super-register. 919 bool registerDefIsDead(unsigned Reg, 920 const TargetRegisterInfo *TRI = nullptr) const { 921 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 922 } 923 924 /// Returns true if the MachineInstr has an implicit-use operand of exactly 925 /// the given register (not considering sub/super-registers). 926 bool hasRegisterImplicitUseOperand(unsigned Reg) const; 927 928 /// Returns the operand index that is a use of the specific register or -1 929 /// if it is not found. It further tightens the search criteria to a use 930 /// that kills the register if isKill is true. 931 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false, 932 const TargetRegisterInfo *TRI = nullptr) const; 933 934 /// Wrapper for findRegisterUseOperandIdx, it returns 935 /// a pointer to the MachineOperand rather than an index. 936 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false, 937 const TargetRegisterInfo *TRI = nullptr) { 938 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 939 return (Idx == -1) ? nullptr : &getOperand(Idx); 940 } 941 942 const MachineOperand *findRegisterUseOperand( 943 unsigned Reg, bool isKill = false, 944 const TargetRegisterInfo *TRI = nullptr) const { 945 return const_cast<MachineInstr *>(this)-> 946 findRegisterUseOperand(Reg, isKill, TRI); 947 } 948 949 /// Returns the operand index that is a def of the specified register or 950 /// -1 if it is not found. If isDead is true, defs that are not dead are 951 /// skipped. If Overlap is true, then it also looks for defs that merely 952 /// overlap the specified register. If TargetRegisterInfo is non-null, 953 /// then it also checks if there is a def of a super-register. 954 /// This may also return a register mask operand when Overlap is true. 955 int findRegisterDefOperandIdx(unsigned Reg, 956 bool isDead = false, bool Overlap = false, 957 const TargetRegisterInfo *TRI = nullptr) const; 958 959 /// Wrapper for findRegisterDefOperandIdx, it returns 960 /// a pointer to the MachineOperand rather than an index. 961 MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false, 962 const TargetRegisterInfo *TRI = nullptr) { 963 int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI); 964 return (Idx == -1) ? nullptr : &getOperand(Idx); 965 } 966 967 /// Find the index of the first operand in the 968 /// operand list that is used to represent the predicate. It returns -1 if 969 /// none is found. 970 int findFirstPredOperandIdx() const; 971 972 /// Find the index of the flag word operand that 973 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 974 /// getOperand(OpIdx) does not belong to an inline asm operand group. 975 /// 976 /// If GroupNo is not NULL, it will receive the number of the operand group 977 /// containing OpIdx. 978 /// 979 /// The flag operand is an immediate that can be decoded with methods like 980 /// InlineAsm::hasRegClassConstraint(). 981 /// 982 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 983 984 /// Compute the static register class constraint for operand OpIdx. 985 /// For normal instructions, this is derived from the MCInstrDesc. 986 /// For inline assembly it is derived from the flag words. 987 /// 988 /// Returns NULL if the static register class constraint cannot be 989 /// determined. 990 /// 991 const TargetRegisterClass* 992 getRegClassConstraint(unsigned OpIdx, 993 const TargetInstrInfo *TII, 994 const TargetRegisterInfo *TRI) const; 995 996 /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to 997 /// the given \p CurRC. 998 /// If \p ExploreBundle is set and MI is part of a bundle, all the 999 /// instructions inside the bundle will be taken into account. In other words, 1000 /// this method accumulates all the constraints of the operand of this MI and 1001 /// the related bundle if MI is a bundle or inside a bundle. 1002 /// 1003 /// Returns the register class that satisfies both \p CurRC and the 1004 /// constraints set by MI. Returns NULL if such a register class does not 1005 /// exist. 1006 /// 1007 /// \pre CurRC must not be NULL. 1008 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1009 unsigned Reg, const TargetRegisterClass *CurRC, 1010 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1011 bool ExploreBundle = false) const; 1012 1013 /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand 1014 /// to the given \p CurRC. 1015 /// 1016 /// Returns the register class that satisfies both \p CurRC and the 1017 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1018 /// does not exist. 1019 /// 1020 /// \pre CurRC must not be NULL. 1021 /// \pre The operand at \p OpIdx must be a register. 1022 const TargetRegisterClass * 1023 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1024 const TargetInstrInfo *TII, 1025 const TargetRegisterInfo *TRI) const; 1026 1027 /// Add a tie between the register operands at DefIdx and UseIdx. 1028 /// The tie will cause the register allocator to ensure that the two 1029 /// operands are assigned the same physical register. 1030 /// 1031 /// Tied operands are managed automatically for explicit operands in the 1032 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1033 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1034 1035 /// Given the index of a tied register operand, find the 1036 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1037 /// index of the tied operand which must exist. 1038 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1039 1040 /// Given the index of a register def operand, 1041 /// check if the register def is tied to a source operand, due to either 1042 /// two-address elimination or inline assembly constraints. Returns the 1043 /// first tied use operand index by reference if UseOpIdx is not null. 1044 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1045 unsigned *UseOpIdx = nullptr) const { 1046 const MachineOperand &MO = getOperand(DefOpIdx); 1047 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1048 return false; 1049 if (UseOpIdx) 1050 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1051 return true; 1052 } 1053 1054 /// Return true if the use operand of the specified index is tied to a def 1055 /// operand. It also returns the def operand index by reference if DefOpIdx 1056 /// is not null. 1057 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1058 unsigned *DefOpIdx = nullptr) const { 1059 const MachineOperand &MO = getOperand(UseOpIdx); 1060 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1061 return false; 1062 if (DefOpIdx) 1063 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1064 return true; 1065 } 1066 1067 /// Clears kill flags on all operands. 1068 void clearKillInfo(); 1069 1070 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1071 /// properly composing subreg indices where necessary. 1072 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, 1073 const TargetRegisterInfo &RegInfo); 1074 1075 /// We have determined MI kills a register. Look for the 1076 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1077 /// add a implicit operand if it's not found. Returns true if the operand 1078 /// exists / is added. 1079 bool addRegisterKilled(unsigned IncomingReg, 1080 const TargetRegisterInfo *RegInfo, 1081 bool AddIfNotFound = false); 1082 1083 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1084 /// all aliasing registers. 1085 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo); 1086 1087 /// We have determined MI defined a register without a use. 1088 /// Look for the operand that defines it and mark it as IsDead. If 1089 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1090 /// true if the operand exists / is added. 1091 bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo, 1092 bool AddIfNotFound = false); 1093 1094 /// Clear all dead flags on operands defining register @p Reg. 1095 void clearRegisterDeads(unsigned Reg); 1096 1097 /// Mark all subregister defs of register @p Reg with the undef flag. 1098 /// This function is used when we determined to have a subregister def in an 1099 /// otherwise undefined super register. 1100 void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true); 1101 1102 /// We have determined MI defines a register. Make sure there is an operand 1103 /// defining Reg. 1104 void addRegisterDefined(unsigned Reg, 1105 const TargetRegisterInfo *RegInfo = nullptr); 1106 1107 /// Mark every physreg used by this instruction as 1108 /// dead except those in the UsedRegs list. 1109 /// 1110 /// On instructions with register mask operands, also add implicit-def 1111 /// operands for all registers in UsedRegs. 1112 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1113 const TargetRegisterInfo &TRI); 1114 1115 /// Return true if it is safe to move this instruction. If 1116 /// SawStore is set to true, it means that there is a store (or call) between 1117 /// the instruction's location and its intended destination. 1118 bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const; 1119 1120 /// Return true if this instruction may have an ordered 1121 /// or volatile memory reference, or if the information describing the memory 1122 /// reference is not available. Return false if it is known to have no 1123 /// ordered or volatile memory references. 1124 bool hasOrderedMemoryRef() const; 1125 1126 /// Return true if this instruction is loading from a 1127 /// location whose value is invariant across the function. For example, 1128 /// loading a value from the constant pool or from the argument area of 1129 /// a function if it does not change. This should only return true of *all* 1130 /// loads the instruction does are invariant (if it does multiple loads). 1131 bool isInvariantLoad(AliasAnalysis *AA) const; 1132 1133 /// If the specified instruction is a PHI that always merges together the 1134 /// same virtual register, return the register, otherwise return 0. 1135 unsigned isConstantValuePHI() const; 1136 1137 /// Return true if this instruction has side effects that are not modeled 1138 /// by mayLoad / mayStore, etc. 1139 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1140 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1141 /// INLINEASM instruction, in which case the side effect property is encoded 1142 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1143 /// 1144 bool hasUnmodeledSideEffects() const; 1145 1146 /// Returns true if it is illegal to fold a load across this instruction. 1147 bool isLoadFoldBarrier() const; 1148 1149 /// Return true if all the defs of this instruction are dead. 1150 bool allDefsAreDead() const; 1151 1152 /// Copy implicit register operands from specified 1153 /// instruction to this instruction. 1154 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1155 1156 // 1157 // Debugging support 1158 // 1159 void print(raw_ostream &OS, bool SkipOpers = false) const; 1160 void print(raw_ostream &OS, ModuleSlotTracker &MST, 1161 bool SkipOpers = false) const; 1162 void dump() const; 1163 1164 //===--------------------------------------------------------------------===// 1165 // Accessors used to build up machine instructions. 1166 1167 /// Add the specified operand to the instruction. If it is an implicit 1168 /// operand, it is added to the end of the operand list. If it is an 1169 /// explicit operand it is added at the end of the explicit operand list 1170 /// (before the first implicit operand). 1171 /// 1172 /// MF must be the machine function that was used to allocate this 1173 /// instruction. 1174 /// 1175 /// MachineInstrBuilder provides a more convenient interface for creating 1176 /// instructions and adding operands. 1177 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1178 1179 /// Add an operand without providing an MF reference. This only works for 1180 /// instructions that are inserted in a basic block. 1181 /// 1182 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1183 /// preferred. 1184 void addOperand(const MachineOperand &Op); 1185 1186 /// Replace the instruction descriptor (thus opcode) of 1187 /// the current instruction with a new one. 1188 void setDesc(const MCInstrDesc &tid) { MCID = &tid; } 1189 1190 /// Replace current source information with new such. 1191 /// Avoid using this, the constructor argument is preferable. 1192 void setDebugLoc(DebugLoc dl) { 1193 debugLoc = std::move(dl); 1194 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1195 } 1196 1197 /// Erase an operand from an instruction, leaving it with one 1198 /// fewer operand than it started with. 1199 void RemoveOperand(unsigned i); 1200 1201 /// Add a MachineMemOperand to the machine instruction. 1202 /// This function should be used only occasionally. The setMemRefs function 1203 /// is the primary method for setting up a MachineInstr's MemRefs list. 1204 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1205 1206 /// Assign this MachineInstr's memory reference descriptor list. 1207 /// This does not transfer ownership. 1208 void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) { 1209 setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs)); 1210 } 1211 1212 /// Assign this MachineInstr's memory reference descriptor list. First 1213 /// element in the pair is the begin iterator/pointer to the array; the 1214 /// second is the number of MemoryOperands. This does not transfer ownership 1215 /// of the underlying memory. 1216 void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) { 1217 MemRefs = NewMemRefs.first; 1218 NumMemRefs = uint8_t(NewMemRefs.second); 1219 assert(NumMemRefs == NewMemRefs.second && 1220 "Too many memrefs - must drop memory operands"); 1221 } 1222 1223 /// Return a set of memrefs (begin iterator, size) which conservatively 1224 /// describe the memory behavior of both MachineInstrs. This is appropriate 1225 /// for use when merging two MachineInstrs into one. This routine does not 1226 /// modify the memrefs of the this MachineInstr. 1227 std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other); 1228 1229 /// Clear this MachineInstr's memory reference descriptor list. This resets 1230 /// the memrefs to their most conservative state. This should be used only 1231 /// as a last resort since it greatly pessimizes our knowledge of the memory 1232 /// access performed by the instruction. 1233 void dropMemRefs() { 1234 MemRefs = nullptr; 1235 NumMemRefs = 0; 1236 } 1237 1238 /// Break any tie involving OpIdx. 1239 void untieRegOperand(unsigned OpIdx) { 1240 MachineOperand &MO = getOperand(OpIdx); 1241 if (MO.isReg() && MO.isTied()) { 1242 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1243 MO.TiedTo = 0; 1244 } 1245 } 1246 1247 /// Add all implicit def and use operands to this instruction. 1248 void addImplicitDefUseOperands(MachineFunction &MF); 1249 1250 private: 1251 /// If this instruction is embedded into a MachineFunction, return the 1252 /// MachineRegisterInfo object for the current function, otherwise 1253 /// return null. 1254 MachineRegisterInfo *getRegInfo(); 1255 1256 /// Unlink all of the register operands in this instruction from their 1257 /// respective use lists. This requires that the operands already be on their 1258 /// use lists. 1259 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 1260 1261 /// Add all of the register operands in this instruction from their 1262 /// respective use lists. This requires that the operands not be on their 1263 /// use lists yet. 1264 void AddRegOperandsToUseLists(MachineRegisterInfo&); 1265 1266 /// Slow path for hasProperty when we're dealing with a bundle. 1267 bool hasPropertyInBundle(unsigned Mask, QueryType Type) const; 1268 1269 /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the 1270 /// this MI and the given operand index \p OpIdx. 1271 /// If the related operand does not constrained Reg, this returns CurRC. 1272 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 1273 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1274 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 1275 }; 1276 1277 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 1278 /// instruction rather than by pointer value. 1279 /// The hashing and equality testing functions ignore definitions so this is 1280 /// useful for CSE, etc. 1281 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1282 static inline MachineInstr *getEmptyKey() { 1283 return nullptr; 1284 } 1285 1286 static inline MachineInstr *getTombstoneKey() { 1287 return reinterpret_cast<MachineInstr*>(-1); 1288 } 1289 1290 static unsigned getHashValue(const MachineInstr* const &MI); 1291 1292 static bool isEqual(const MachineInstr* const &LHS, 1293 const MachineInstr* const &RHS) { 1294 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1295 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1296 return LHS == RHS; 1297 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 1298 } 1299 }; 1300 1301 //===----------------------------------------------------------------------===// 1302 // Debugging Support 1303 1304 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1305 MI.print(OS); 1306 return OS; 1307 } 1308 1309 } // End llvm namespace 1310 1311 #endif 1312