1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
17 
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/ilist.h"
22 #include "llvm/ADT/ilist_node.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/PseudoProbe.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/ArrayRecycler.h"
33 #include "llvm/Support/TrailingObjects.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <utility>
38 
39 namespace llvm {
40 
41 class AAResults;
42 template <typename T> class ArrayRef;
43 class DIExpression;
44 class DILocalVariable;
45 class MachineBasicBlock;
46 class MachineFunction;
47 class MachineRegisterInfo;
48 class ModuleSlotTracker;
49 class raw_ostream;
50 template <typename T> class SmallVectorImpl;
51 class SmallBitVector;
52 class StringRef;
53 class TargetInstrInfo;
54 class TargetRegisterClass;
55 class TargetRegisterInfo;
56 
57 //===----------------------------------------------------------------------===//
58 /// Representation of each machine instruction.
59 ///
60 /// This class isn't a POD type, but it must have a trivial destructor. When a
61 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
62 /// without having their destructor called.
63 ///
64 class MachineInstr
65     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
66                                     ilist_sentinel_tracking<true>> {
67 public:
68   using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
69 
70   /// Flags to specify different kinds of comments to output in
71   /// assembly code.  These flags carry semantic information not
72   /// otherwise easily derivable from the IR text.
73   ///
74   enum CommentFlag {
75     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
76     NoSchedComment = 0x2,
77     TAsmComments = 0x4    // Target Asm comments should start from this value.
78   };
79 
80   enum MIFlag {
81     NoFlags      = 0,
82     FrameSetup   = 1 << 0,              // Instruction is used as a part of
83                                         // function frame setup code.
84     FrameDestroy = 1 << 1,              // Instruction is used as a part of
85                                         // function frame destruction code.
86     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
87     BundledSucc  = 1 << 3,              // Instruction has bundled successors.
88     FmNoNans     = 1 << 4,              // Instruction does not support Fast
89                                         // math nan values.
90     FmNoInfs     = 1 << 5,              // Instruction does not support Fast
91                                         // math infinity values.
92     FmNsz        = 1 << 6,              // Instruction is not required to retain
93                                         // signed zero values.
94     FmArcp       = 1 << 7,              // Instruction supports Fast math
95                                         // reciprocal approximations.
96     FmContract   = 1 << 8,              // Instruction supports Fast math
97                                         // contraction operations like fma.
98     FmAfn        = 1 << 9,              // Instruction may map to Fast math
99                                         // instrinsic approximation.
100     FmReassoc    = 1 << 10,             // Instruction supports Fast math
101                                         // reassociation of operand order.
102     NoUWrap      = 1 << 11,             // Instruction supports binary operator
103                                         // no unsigned wrap.
104     NoSWrap      = 1 << 12,             // Instruction supports binary operator
105                                         // no signed wrap.
106     IsExact      = 1 << 13,             // Instruction supports division is
107                                         // known to be exact.
108     NoFPExcept   = 1 << 14,             // Instruction does not raise
109                                         // floatint-point exceptions.
110     NoMerge      = 1 << 15,             // Passes that drop source location info
111                                         // (e.g. branch folding) should skip
112                                         // this instruction.
113   };
114 
115 private:
116   const MCInstrDesc *MCID;              // Instruction descriptor.
117   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
118 
119   // Operands are allocated by an ArrayRecycler.
120   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
121   unsigned NumOperands = 0;             // Number of operands on instruction.
122 
123   uint16_t Flags = 0;                   // Various bits of additional
124                                         // information about machine
125                                         // instruction.
126 
127   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
128                                         // the AsmPrinter to emit helpful
129                                         // comments.  This is *not* semantic
130                                         // information.  Do not use this for
131                                         // anything other than to convey comment
132                                         // information to AsmPrinter.
133 
134   // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
135   // to properly pack.
136   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
137   OperandCapacity CapOperands;          // Capacity of the Operands array.
138 
139   /// Internal implementation detail class that provides out-of-line storage for
140   /// extra info used by the machine instruction when this info cannot be stored
141   /// in-line within the instruction itself.
142   ///
143   /// This has to be defined eagerly due to the implementation constraints of
144   /// `PointerSumType` where it is used.
145   class ExtraInfo final
146       : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> {
147   public:
148     static ExtraInfo *create(BumpPtrAllocator &Allocator,
149                              ArrayRef<MachineMemOperand *> MMOs,
150                              MCSymbol *PreInstrSymbol = nullptr,
151                              MCSymbol *PostInstrSymbol = nullptr,
152                              MDNode *HeapAllocMarker = nullptr) {
153       bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
154       bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
155       bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
156       auto *Result = new (Allocator.Allocate(
157           totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>(
158               MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
159               HasHeapAllocMarker),
160           alignof(ExtraInfo)))
161           ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
162                     HasHeapAllocMarker);
163 
164       // Copy the actual data into the trailing objects.
165       std::copy(MMOs.begin(), MMOs.end(),
166                 Result->getTrailingObjects<MachineMemOperand *>());
167 
168       if (HasPreInstrSymbol)
169         Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
170       if (HasPostInstrSymbol)
171         Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
172             PostInstrSymbol;
173       if (HasHeapAllocMarker)
174         Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
175 
176       return Result;
177     }
178 
179     ArrayRef<MachineMemOperand *> getMMOs() const {
180       return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
181     }
182 
183     MCSymbol *getPreInstrSymbol() const {
184       return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
185     }
186 
187     MCSymbol *getPostInstrSymbol() const {
188       return HasPostInstrSymbol
189                  ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
190                  : nullptr;
191     }
192 
193     MDNode *getHeapAllocMarker() const {
194       return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
195     }
196 
197   private:
198     friend TrailingObjects;
199 
200     // Description of the extra info, used to interpret the actual optional
201     // data appended.
202     //
203     // Note that this is not terribly space optimized. This leaves a great deal
204     // of flexibility to fit more in here later.
205     const int NumMMOs;
206     const bool HasPreInstrSymbol;
207     const bool HasPostInstrSymbol;
208     const bool HasHeapAllocMarker;
209 
210     // Implement the `TrailingObjects` internal API.
211     size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
212       return NumMMOs;
213     }
214     size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
215       return HasPreInstrSymbol + HasPostInstrSymbol;
216     }
217     size_t numTrailingObjects(OverloadToken<MDNode *>) const {
218       return HasHeapAllocMarker;
219     }
220 
221     // Just a boring constructor to allow us to initialize the sizes. Always use
222     // the `create` routine above.
223     ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
224               bool HasHeapAllocMarker)
225         : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
226           HasPostInstrSymbol(HasPostInstrSymbol),
227           HasHeapAllocMarker(HasHeapAllocMarker) {}
228   };
229 
230   /// Enumeration of the kinds of inline extra info available. It is important
231   /// that the `MachineMemOperand` inline kind has a tag value of zero to make
232   /// it accessible as an `ArrayRef`.
233   enum ExtraInfoInlineKinds {
234     EIIK_MMO = 0,
235     EIIK_PreInstrSymbol,
236     EIIK_PostInstrSymbol,
237     EIIK_OutOfLine
238   };
239 
240   // We store extra information about the instruction here. The common case is
241   // expected to be nothing or a single pointer (typically a MMO or a symbol).
242   // We work to optimize this common case by storing it inline here rather than
243   // requiring a separate allocation, but we fall back to an allocation when
244   // multiple pointers are needed.
245   PointerSumType<ExtraInfoInlineKinds,
246                  PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
247                  PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
248                  PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
249                  PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
250       Info;
251 
252   DebugLoc debugLoc;                    // Source line information.
253 
254   /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
255   /// defined by this instruction.
256   unsigned DebugInstrNum;
257 
258   // Intrusive list support
259   friend struct ilist_traits<MachineInstr>;
260   friend struct ilist_callback_traits<MachineBasicBlock>;
261   void setParent(MachineBasicBlock *P) { Parent = P; }
262 
263   /// This constructor creates a copy of the given
264   /// MachineInstr in the given MachineFunction.
265   MachineInstr(MachineFunction &, const MachineInstr &);
266 
267   /// This constructor create a MachineInstr and add the implicit operands.
268   /// It reserves space for number of operands specified by
269   /// MCInstrDesc.  An explicit DebugLoc is supplied.
270   MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
271                bool NoImp = false);
272 
273   // MachineInstrs are pool-allocated and owned by MachineFunction.
274   friend class MachineFunction;
275 
276   void
277   dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
278             SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
279 
280 public:
281   MachineInstr(const MachineInstr &) = delete;
282   MachineInstr &operator=(const MachineInstr &) = delete;
283   // Use MachineFunction::DeleteMachineInstr() instead.
284   ~MachineInstr() = delete;
285 
286   const MachineBasicBlock* getParent() const { return Parent; }
287   MachineBasicBlock* getParent() { return Parent; }
288 
289   /// Move the instruction before \p MovePos.
290   void moveBefore(MachineInstr *MovePos);
291 
292   /// Return the function that contains the basic block that this instruction
293   /// belongs to.
294   ///
295   /// Note: this is undefined behaviour if the instruction does not have a
296   /// parent.
297   const MachineFunction *getMF() const;
298   MachineFunction *getMF() {
299     return const_cast<MachineFunction *>(
300         static_cast<const MachineInstr *>(this)->getMF());
301   }
302 
303   /// Return the asm printer flags bitvector.
304   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
305 
306   /// Clear the AsmPrinter bitvector.
307   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
308 
309   /// Return whether an AsmPrinter flag is set.
310   bool getAsmPrinterFlag(CommentFlag Flag) const {
311     return AsmPrinterFlags & Flag;
312   }
313 
314   /// Set a flag for the AsmPrinter.
315   void setAsmPrinterFlag(uint8_t Flag) {
316     AsmPrinterFlags |= Flag;
317   }
318 
319   /// Clear specific AsmPrinter flags.
320   void clearAsmPrinterFlag(CommentFlag Flag) {
321     AsmPrinterFlags &= ~Flag;
322   }
323 
324   /// Return the MI flags bitvector.
325   uint16_t getFlags() const {
326     return Flags;
327   }
328 
329   /// Return whether an MI flag is set.
330   bool getFlag(MIFlag Flag) const {
331     return Flags & Flag;
332   }
333 
334   /// Set a MI flag.
335   void setFlag(MIFlag Flag) {
336     Flags |= (uint16_t)Flag;
337   }
338 
339   void setFlags(unsigned flags) {
340     // Filter out the automatically maintained flags.
341     unsigned Mask = BundledPred | BundledSucc;
342     Flags = (Flags & Mask) | (flags & ~Mask);
343   }
344 
345   /// clearFlag - Clear a MI flag.
346   void clearFlag(MIFlag Flag) {
347     Flags &= ~((uint16_t)Flag);
348   }
349 
350   /// Return true if MI is in a bundle (but not the first MI in a bundle).
351   ///
352   /// A bundle looks like this before it's finalized:
353   ///   ----------------
354   ///   |      MI      |
355   ///   ----------------
356   ///          |
357   ///   ----------------
358   ///   |      MI    * |
359   ///   ----------------
360   ///          |
361   ///   ----------------
362   ///   |      MI    * |
363   ///   ----------------
364   /// In this case, the first MI starts a bundle but is not inside a bundle, the
365   /// next 2 MIs are considered "inside" the bundle.
366   ///
367   /// After a bundle is finalized, it looks like this:
368   ///   ----------------
369   ///   |    Bundle    |
370   ///   ----------------
371   ///          |
372   ///   ----------------
373   ///   |      MI    * |
374   ///   ----------------
375   ///          |
376   ///   ----------------
377   ///   |      MI    * |
378   ///   ----------------
379   ///          |
380   ///   ----------------
381   ///   |      MI    * |
382   ///   ----------------
383   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
384   /// a bundle, but the next three MIs are.
385   bool isInsideBundle() const {
386     return getFlag(BundledPred);
387   }
388 
389   /// Return true if this instruction part of a bundle. This is true
390   /// if either itself or its following instruction is marked "InsideBundle".
391   bool isBundled() const {
392     return isBundledWithPred() || isBundledWithSucc();
393   }
394 
395   /// Return true if this instruction is part of a bundle, and it is not the
396   /// first instruction in the bundle.
397   bool isBundledWithPred() const { return getFlag(BundledPred); }
398 
399   /// Return true if this instruction is part of a bundle, and it is not the
400   /// last instruction in the bundle.
401   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
402 
403   /// Bundle this instruction with its predecessor. This can be an unbundled
404   /// instruction, or it can be the first instruction in a bundle.
405   void bundleWithPred();
406 
407   /// Bundle this instruction with its successor. This can be an unbundled
408   /// instruction, or it can be the last instruction in a bundle.
409   void bundleWithSucc();
410 
411   /// Break bundle above this instruction.
412   void unbundleFromPred();
413 
414   /// Break bundle below this instruction.
415   void unbundleFromSucc();
416 
417   /// Returns the debug location id of this MachineInstr.
418   const DebugLoc &getDebugLoc() const { return debugLoc; }
419 
420   /// Return the operand containing the offset to be used if this DBG_VALUE
421   /// instruction is indirect; will be an invalid register if this value is
422   /// not indirect, and an immediate with value 0 otherwise.
423   const MachineOperand &getDebugOffset() const {
424     assert(isNonListDebugValue() && "not a DBG_VALUE");
425     return getOperand(1);
426   }
427   MachineOperand &getDebugOffset() {
428     assert(isNonListDebugValue() && "not a DBG_VALUE");
429     return getOperand(1);
430   }
431 
432   /// Return the operand for the debug variable referenced by
433   /// this DBG_VALUE instruction.
434   const MachineOperand &getDebugVariableOp() const;
435   MachineOperand &getDebugVariableOp();
436 
437   /// Return the debug variable referenced by
438   /// this DBG_VALUE instruction.
439   const DILocalVariable *getDebugVariable() const;
440 
441   /// Return the operand for the complex address expression referenced by
442   /// this DBG_VALUE instruction.
443   const MachineOperand &getDebugExpressionOp() const;
444   MachineOperand &getDebugExpressionOp();
445 
446   /// Return the complex address expression referenced by
447   /// this DBG_VALUE instruction.
448   const DIExpression *getDebugExpression() const;
449 
450   /// Return the debug label referenced by
451   /// this DBG_LABEL instruction.
452   const DILabel *getDebugLabel() const;
453 
454   /// Fetch the instruction number of this MachineInstr. If it does not have
455   /// one already, a new and unique number will be assigned.
456   unsigned getDebugInstrNum();
457 
458   /// Fetch instruction number of this MachineInstr -- but before it's inserted
459   /// into \p MF. Needed for transformations that create an instruction but
460   /// don't immediately insert them.
461   unsigned getDebugInstrNum(MachineFunction &MF);
462 
463   /// Examine the instruction number of this MachineInstr. May be zero if
464   /// it hasn't been assigned a number yet.
465   unsigned peekDebugInstrNum() const { return DebugInstrNum; }
466 
467   /// Set instruction number of this MachineInstr. Avoid using unless you're
468   /// deserializing this information.
469   void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
470 
471   /// Emit an error referring to the source location of this instruction.
472   /// This should only be used for inline assembly that is somehow
473   /// impossible to compile. Other errors should have been handled much
474   /// earlier.
475   ///
476   /// If this method returns, the caller should try to recover from the error.
477   void emitError(StringRef Msg) const;
478 
479   /// Returns the target instruction descriptor of this MachineInstr.
480   const MCInstrDesc &getDesc() const { return *MCID; }
481 
482   /// Returns the opcode of this MachineInstr.
483   unsigned getOpcode() const { return MCID->Opcode; }
484 
485   /// Retuns the total number of operands.
486   unsigned getNumOperands() const { return NumOperands; }
487 
488   /// Returns the total number of operands which are debug locations.
489   unsigned getNumDebugOperands() const {
490     return std::distance(debug_operands().begin(), debug_operands().end());
491   }
492 
493   const MachineOperand& getOperand(unsigned i) const {
494     assert(i < getNumOperands() && "getOperand() out of range!");
495     return Operands[i];
496   }
497   MachineOperand& getOperand(unsigned i) {
498     assert(i < getNumOperands() && "getOperand() out of range!");
499     return Operands[i];
500   }
501 
502   MachineOperand &getDebugOperand(unsigned Index) {
503     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
504     return *(debug_operands().begin() + Index);
505   }
506   const MachineOperand &getDebugOperand(unsigned Index) const {
507     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
508     return *(debug_operands().begin() + Index);
509   }
510 
511   SmallSet<Register, 4> getUsedDebugRegs() const {
512     assert(isDebugValue() && "not a DBG_VALUE*");
513     SmallSet<Register, 4> UsedRegs;
514     for (auto MO : debug_operands())
515       if (MO.isReg() && MO.getReg())
516         UsedRegs.insert(MO.getReg());
517     return UsedRegs;
518   }
519 
520   /// Returns whether this debug value has at least one debug operand with the
521   /// register \p Reg.
522   bool hasDebugOperandForReg(Register Reg) const {
523     return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
524       return Op.isReg() && Op.getReg() == Reg;
525     });
526   }
527 
528   /// Returns a range of all of the operands that correspond to a debug use of
529   /// \p Reg.
530   template <typename Operand, typename Instruction>
531   static iterator_range<
532       filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
533   getDebugOperandsForReg(Instruction *MI, Register Reg) {
534     std::function<bool(Operand & Op)> OpUsesReg(
535         [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
536     return make_filter_range(MI->debug_operands(), OpUsesReg);
537   }
538   iterator_range<filter_iterator<const MachineOperand *,
539                                  std::function<bool(const MachineOperand &Op)>>>
540   getDebugOperandsForReg(Register Reg) const {
541     return MachineInstr::getDebugOperandsForReg<const MachineOperand,
542                                                 const MachineInstr>(this, Reg);
543   }
544   iterator_range<filter_iterator<MachineOperand *,
545                                  std::function<bool(MachineOperand &Op)>>>
546   getDebugOperandsForReg(Register Reg) {
547     return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
548         this, Reg);
549   }
550 
551   bool isDebugOperand(const MachineOperand *Op) const {
552     return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
553   }
554 
555   unsigned getDebugOperandIndex(const MachineOperand *Op) const {
556     assert(isDebugOperand(Op) && "Expected a debug operand.");
557     return std::distance(adl_begin(debug_operands()), Op);
558   }
559 
560   /// Returns the total number of definitions.
561   unsigned getNumDefs() const {
562     return getNumExplicitDefs() + MCID->getNumImplicitDefs();
563   }
564 
565   /// Returns true if the instruction has implicit definition.
566   bool hasImplicitDef() const {
567     for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
568       I != E; ++I) {
569       const MachineOperand &MO = getOperand(I);
570       if (MO.isDef() && MO.isImplicit())
571         return true;
572     }
573     return false;
574   }
575 
576   /// Returns the implicit operands number.
577   unsigned getNumImplicitOperands() const {
578     return getNumOperands() - getNumExplicitOperands();
579   }
580 
581   /// Return true if operand \p OpIdx is a subregister index.
582   bool isOperandSubregIdx(unsigned OpIdx) const {
583     assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
584            "Expected MO_Immediate operand type.");
585     if (isExtractSubreg() && OpIdx == 2)
586       return true;
587     if (isInsertSubreg() && OpIdx == 3)
588       return true;
589     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
590       return true;
591     if (isSubregToReg() && OpIdx == 3)
592       return true;
593     return false;
594   }
595 
596   /// Returns the number of non-implicit operands.
597   unsigned getNumExplicitOperands() const;
598 
599   /// Returns the number of non-implicit definitions.
600   unsigned getNumExplicitDefs() const;
601 
602   /// iterator/begin/end - Iterate over all operands of a machine instruction.
603   using mop_iterator = MachineOperand *;
604   using const_mop_iterator = const MachineOperand *;
605 
606   mop_iterator operands_begin() { return Operands; }
607   mop_iterator operands_end() { return Operands + NumOperands; }
608 
609   const_mop_iterator operands_begin() const { return Operands; }
610   const_mop_iterator operands_end() const { return Operands + NumOperands; }
611 
612   iterator_range<mop_iterator> operands() {
613     return make_range(operands_begin(), operands_end());
614   }
615   iterator_range<const_mop_iterator> operands() const {
616     return make_range(operands_begin(), operands_end());
617   }
618   iterator_range<mop_iterator> explicit_operands() {
619     return make_range(operands_begin(),
620                       operands_begin() + getNumExplicitOperands());
621   }
622   iterator_range<const_mop_iterator> explicit_operands() const {
623     return make_range(operands_begin(),
624                       operands_begin() + getNumExplicitOperands());
625   }
626   iterator_range<mop_iterator> implicit_operands() {
627     return make_range(explicit_operands().end(), operands_end());
628   }
629   iterator_range<const_mop_iterator> implicit_operands() const {
630     return make_range(explicit_operands().end(), operands_end());
631   }
632   /// Returns a range over all operands that are used to determine the variable
633   /// location for this DBG_VALUE instruction.
634   iterator_range<mop_iterator> debug_operands() {
635     assert(isDebugValue() && "Must be a debug value instruction.");
636     return isDebugValueList()
637                ? make_range(operands_begin() + 2, operands_end())
638                : make_range(operands_begin(), operands_begin() + 1);
639   }
640   /// \copydoc debug_operands()
641   iterator_range<const_mop_iterator> debug_operands() const {
642     assert(isDebugValue() && "Must be a debug value instruction.");
643     return isDebugValueList()
644                ? make_range(operands_begin() + 2, operands_end())
645                : make_range(operands_begin(), operands_begin() + 1);
646   }
647   /// Returns a range over all explicit operands that are register definitions.
648   /// Implicit definition are not included!
649   iterator_range<mop_iterator> defs() {
650     return make_range(operands_begin(),
651                       operands_begin() + getNumExplicitDefs());
652   }
653   /// \copydoc defs()
654   iterator_range<const_mop_iterator> defs() const {
655     return make_range(operands_begin(),
656                       operands_begin() + getNumExplicitDefs());
657   }
658   /// Returns a range that includes all operands that are register uses.
659   /// This may include unrelated operands which are not register uses.
660   iterator_range<mop_iterator> uses() {
661     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
662   }
663   /// \copydoc uses()
664   iterator_range<const_mop_iterator> uses() const {
665     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
666   }
667   iterator_range<mop_iterator> explicit_uses() {
668     return make_range(operands_begin() + getNumExplicitDefs(),
669                       operands_begin() + getNumExplicitOperands());
670   }
671   iterator_range<const_mop_iterator> explicit_uses() const {
672     return make_range(operands_begin() + getNumExplicitDefs(),
673                       operands_begin() + getNumExplicitOperands());
674   }
675 
676   /// Returns the number of the operand iterator \p I points to.
677   unsigned getOperandNo(const_mop_iterator I) const {
678     return I - operands_begin();
679   }
680 
681   /// Access to memory operands of the instruction. If there are none, that does
682   /// not imply anything about whether the function accesses memory. Instead,
683   /// the caller must behave conservatively.
684   ArrayRef<MachineMemOperand *> memoperands() const {
685     if (!Info)
686       return {};
687 
688     if (Info.is<EIIK_MMO>())
689       return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
690 
691     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
692       return EI->getMMOs();
693 
694     return {};
695   }
696 
697   /// Access to memory operands of the instruction.
698   ///
699   /// If `memoperands_begin() == memoperands_end()`, that does not imply
700   /// anything about whether the function accesses memory. Instead, the caller
701   /// must behave conservatively.
702   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
703 
704   /// Access to memory operands of the instruction.
705   ///
706   /// If `memoperands_begin() == memoperands_end()`, that does not imply
707   /// anything about whether the function accesses memory. Instead, the caller
708   /// must behave conservatively.
709   mmo_iterator memoperands_end() const { return memoperands().end(); }
710 
711   /// Return true if we don't have any memory operands which described the
712   /// memory access done by this instruction.  If this is true, calling code
713   /// must be conservative.
714   bool memoperands_empty() const { return memoperands().empty(); }
715 
716   /// Return true if this instruction has exactly one MachineMemOperand.
717   bool hasOneMemOperand() const { return memoperands().size() == 1; }
718 
719   /// Return the number of memory operands.
720   unsigned getNumMemOperands() const { return memoperands().size(); }
721 
722   /// Helper to extract a pre-instruction symbol if one has been added.
723   MCSymbol *getPreInstrSymbol() const {
724     if (!Info)
725       return nullptr;
726     if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
727       return S;
728     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
729       return EI->getPreInstrSymbol();
730 
731     return nullptr;
732   }
733 
734   /// Helper to extract a post-instruction symbol if one has been added.
735   MCSymbol *getPostInstrSymbol() const {
736     if (!Info)
737       return nullptr;
738     if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
739       return S;
740     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
741       return EI->getPostInstrSymbol();
742 
743     return nullptr;
744   }
745 
746   /// Helper to extract a heap alloc marker if one has been added.
747   MDNode *getHeapAllocMarker() const {
748     if (!Info)
749       return nullptr;
750     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
751       return EI->getHeapAllocMarker();
752 
753     return nullptr;
754   }
755 
756   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
757   /// queries but they are bundle aware.
758 
759   enum QueryType {
760     IgnoreBundle,    // Ignore bundles
761     AnyInBundle,     // Return true if any instruction in bundle has property
762     AllInBundle      // Return true if all instructions in bundle have property
763   };
764 
765   /// Return true if the instruction (or in the case of a bundle,
766   /// the instructions inside the bundle) has the specified property.
767   /// The first argument is the property being queried.
768   /// The second argument indicates whether the query should look inside
769   /// instruction bundles.
770   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
771     assert(MCFlag < 64 &&
772            "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
773     // Inline the fast path for unbundled or bundle-internal instructions.
774     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
775       return getDesc().getFlags() & (1ULL << MCFlag);
776 
777     // If this is the first instruction in a bundle, take the slow path.
778     return hasPropertyInBundle(1ULL << MCFlag, Type);
779   }
780 
781   /// Return true if this is an instruction that should go through the usual
782   /// legalization steps.
783   bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
784     return hasProperty(MCID::PreISelOpcode, Type);
785   }
786 
787   /// Return true if this instruction can have a variable number of operands.
788   /// In this case, the variable operands will be after the normal
789   /// operands but before the implicit definitions and uses (if any are
790   /// present).
791   bool isVariadic(QueryType Type = IgnoreBundle) const {
792     return hasProperty(MCID::Variadic, Type);
793   }
794 
795   /// Set if this instruction has an optional definition, e.g.
796   /// ARM instructions which can set condition code if 's' bit is set.
797   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
798     return hasProperty(MCID::HasOptionalDef, Type);
799   }
800 
801   /// Return true if this is a pseudo instruction that doesn't
802   /// correspond to a real machine instruction.
803   bool isPseudo(QueryType Type = IgnoreBundle) const {
804     return hasProperty(MCID::Pseudo, Type);
805   }
806 
807   bool isReturn(QueryType Type = AnyInBundle) const {
808     return hasProperty(MCID::Return, Type);
809   }
810 
811   /// Return true if this is an instruction that marks the end of an EH scope,
812   /// i.e., a catchpad or a cleanuppad instruction.
813   bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
814     return hasProperty(MCID::EHScopeReturn, Type);
815   }
816 
817   bool isCall(QueryType Type = AnyInBundle) const {
818     return hasProperty(MCID::Call, Type);
819   }
820 
821   /// Return true if this is a call instruction that may have an associated
822   /// call site entry in the debug info.
823   bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
824   /// Return true if copying, moving, or erasing this instruction requires
825   /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
826   /// \ref eraseCallSiteInfo).
827   bool shouldUpdateCallSiteInfo() const;
828 
829   /// Returns true if the specified instruction stops control flow
830   /// from executing the instruction immediately following it.  Examples include
831   /// unconditional branches and return instructions.
832   bool isBarrier(QueryType Type = AnyInBundle) const {
833     return hasProperty(MCID::Barrier, Type);
834   }
835 
836   /// Returns true if this instruction part of the terminator for a basic block.
837   /// Typically this is things like return and branch instructions.
838   ///
839   /// Various passes use this to insert code into the bottom of a basic block,
840   /// but before control flow occurs.
841   bool isTerminator(QueryType Type = AnyInBundle) const {
842     return hasProperty(MCID::Terminator, Type);
843   }
844 
845   /// Returns true if this is a conditional, unconditional, or indirect branch.
846   /// Predicates below can be used to discriminate between
847   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
848   /// get more information.
849   bool isBranch(QueryType Type = AnyInBundle) const {
850     return hasProperty(MCID::Branch, Type);
851   }
852 
853   /// Return true if this is an indirect branch, such as a
854   /// branch through a register.
855   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
856     return hasProperty(MCID::IndirectBranch, Type);
857   }
858 
859   /// Return true if this is a branch which may fall
860   /// through to the next instruction or may transfer control flow to some other
861   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
862   /// information about this branch.
863   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
864     return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
865   }
866 
867   /// Return true if this is a branch which always
868   /// transfers control flow to some other block.  The
869   /// TargetInstrInfo::analyzeBranch method can be used to get more information
870   /// about this branch.
871   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
872     return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
873   }
874 
875   /// Return true if this instruction has a predicate operand that
876   /// controls execution.  It may be set to 'always', or may be set to other
877   /// values.   There are various methods in TargetInstrInfo that can be used to
878   /// control and modify the predicate in this instruction.
879   bool isPredicable(QueryType Type = AllInBundle) const {
880     // If it's a bundle than all bundled instructions must be predicable for this
881     // to return true.
882     return hasProperty(MCID::Predicable, Type);
883   }
884 
885   /// Return true if this instruction is a comparison.
886   bool isCompare(QueryType Type = IgnoreBundle) const {
887     return hasProperty(MCID::Compare, Type);
888   }
889 
890   /// Return true if this instruction is a move immediate
891   /// (including conditional moves) instruction.
892   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
893     return hasProperty(MCID::MoveImm, Type);
894   }
895 
896   /// Return true if this instruction is a register move.
897   /// (including moving values from subreg to reg)
898   bool isMoveReg(QueryType Type = IgnoreBundle) const {
899     return hasProperty(MCID::MoveReg, Type);
900   }
901 
902   /// Return true if this instruction is a bitcast instruction.
903   bool isBitcast(QueryType Type = IgnoreBundle) const {
904     return hasProperty(MCID::Bitcast, Type);
905   }
906 
907   /// Return true if this instruction is a select instruction.
908   bool isSelect(QueryType Type = IgnoreBundle) const {
909     return hasProperty(MCID::Select, Type);
910   }
911 
912   /// Return true if this instruction cannot be safely duplicated.
913   /// For example, if the instruction has a unique labels attached
914   /// to it, duplicating it would cause multiple definition errors.
915   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
916     return hasProperty(MCID::NotDuplicable, Type);
917   }
918 
919   /// Return true if this instruction is convergent.
920   /// Convergent instructions can not be made control-dependent on any
921   /// additional values.
922   bool isConvergent(QueryType Type = AnyInBundle) const {
923     if (isInlineAsm()) {
924       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
925       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
926         return true;
927     }
928     return hasProperty(MCID::Convergent, Type);
929   }
930 
931   /// Returns true if the specified instruction has a delay slot
932   /// which must be filled by the code generator.
933   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
934     return hasProperty(MCID::DelaySlot, Type);
935   }
936 
937   /// Return true for instructions that can be folded as
938   /// memory operands in other instructions. The most common use for this
939   /// is instructions that are simple loads from memory that don't modify
940   /// the loaded value in any way, but it can also be used for instructions
941   /// that can be expressed as constant-pool loads, such as V_SETALLONES
942   /// on x86, to allow them to be folded when it is beneficial.
943   /// This should only be set on instructions that return a value in their
944   /// only virtual register definition.
945   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
946     return hasProperty(MCID::FoldableAsLoad, Type);
947   }
948 
949   /// Return true if this instruction behaves
950   /// the same way as the generic REG_SEQUENCE instructions.
951   /// E.g., on ARM,
952   /// dX VMOVDRR rY, rZ
953   /// is equivalent to
954   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
955   ///
956   /// Note that for the optimizers to be able to take advantage of
957   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
958   /// override accordingly.
959   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
960     return hasProperty(MCID::RegSequence, Type);
961   }
962 
963   /// Return true if this instruction behaves
964   /// the same way as the generic EXTRACT_SUBREG instructions.
965   /// E.g., on ARM,
966   /// rX, rY VMOVRRD dZ
967   /// is equivalent to two EXTRACT_SUBREG:
968   /// rX = EXTRACT_SUBREG dZ, ssub_0
969   /// rY = EXTRACT_SUBREG dZ, ssub_1
970   ///
971   /// Note that for the optimizers to be able to take advantage of
972   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
973   /// override accordingly.
974   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
975     return hasProperty(MCID::ExtractSubreg, Type);
976   }
977 
978   /// Return true if this instruction behaves
979   /// the same way as the generic INSERT_SUBREG instructions.
980   /// E.g., on ARM,
981   /// dX = VSETLNi32 dY, rZ, Imm
982   /// is equivalent to a INSERT_SUBREG:
983   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
984   ///
985   /// Note that for the optimizers to be able to take advantage of
986   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
987   /// override accordingly.
988   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
989     return hasProperty(MCID::InsertSubreg, Type);
990   }
991 
992   //===--------------------------------------------------------------------===//
993   // Side Effect Analysis
994   //===--------------------------------------------------------------------===//
995 
996   /// Return true if this instruction could possibly read memory.
997   /// Instructions with this flag set are not necessarily simple load
998   /// instructions, they may load a value and modify it, for example.
999   bool mayLoad(QueryType Type = AnyInBundle) const {
1000     if (isInlineAsm()) {
1001       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1002       if (ExtraInfo & InlineAsm::Extra_MayLoad)
1003         return true;
1004     }
1005     return hasProperty(MCID::MayLoad, Type);
1006   }
1007 
1008   /// Return true if this instruction could possibly modify memory.
1009   /// Instructions with this flag set are not necessarily simple store
1010   /// instructions, they may store a modified value based on their operands, or
1011   /// may not actually modify anything, for example.
1012   bool mayStore(QueryType Type = AnyInBundle) const {
1013     if (isInlineAsm()) {
1014       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1015       if (ExtraInfo & InlineAsm::Extra_MayStore)
1016         return true;
1017     }
1018     return hasProperty(MCID::MayStore, Type);
1019   }
1020 
1021   /// Return true if this instruction could possibly read or modify memory.
1022   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
1023     return mayLoad(Type) || mayStore(Type);
1024   }
1025 
1026   /// Return true if this instruction could possibly raise a floating-point
1027   /// exception.  This is the case if the instruction is a floating-point
1028   /// instruction that can in principle raise an exception, as indicated
1029   /// by the MCID::MayRaiseFPException property, *and* at the same time,
1030   /// the instruction is used in a context where we expect floating-point
1031   /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
1032   bool mayRaiseFPException() const {
1033     return hasProperty(MCID::MayRaiseFPException) &&
1034            !getFlag(MachineInstr::MIFlag::NoFPExcept);
1035   }
1036 
1037   //===--------------------------------------------------------------------===//
1038   // Flags that indicate whether an instruction can be modified by a method.
1039   //===--------------------------------------------------------------------===//
1040 
1041   /// Return true if this may be a 2- or 3-address
1042   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1043   /// result if Y and Z are exchanged.  If this flag is set, then the
1044   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1045   /// instruction.
1046   ///
1047   /// Note that this flag may be set on instructions that are only commutable
1048   /// sometimes.  In these cases, the call to commuteInstruction will fail.
1049   /// Also note that some instructions require non-trivial modification to
1050   /// commute them.
1051   bool isCommutable(QueryType Type = IgnoreBundle) const {
1052     return hasProperty(MCID::Commutable, Type);
1053   }
1054 
1055   /// Return true if this is a 2-address instruction
1056   /// which can be changed into a 3-address instruction if needed.  Doing this
1057   /// transformation can be profitable in the register allocator, because it
1058   /// means that the instruction can use a 2-address form if possible, but
1059   /// degrade into a less efficient form if the source and dest register cannot
1060   /// be assigned to the same register.  For example, this allows the x86
1061   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1062   /// is the same speed as the shift but has bigger code size.
1063   ///
1064   /// If this returns true, then the target must implement the
1065   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1066   /// is allowed to fail if the transformation isn't valid for this specific
1067   /// instruction (e.g. shl reg, 4 on x86).
1068   ///
1069   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
1070     return hasProperty(MCID::ConvertibleTo3Addr, Type);
1071   }
1072 
1073   /// Return true if this instruction requires
1074   /// custom insertion support when the DAG scheduler is inserting it into a
1075   /// machine basic block.  If this is true for the instruction, it basically
1076   /// means that it is a pseudo instruction used at SelectionDAG time that is
1077   /// expanded out into magic code by the target when MachineInstrs are formed.
1078   ///
1079   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1080   /// is used to insert this into the MachineBasicBlock.
1081   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
1082     return hasProperty(MCID::UsesCustomInserter, Type);
1083   }
1084 
1085   /// Return true if this instruction requires *adjustment*
1086   /// after instruction selection by calling a target hook. For example, this
1087   /// can be used to fill in ARM 's' optional operand depending on whether
1088   /// the conditional flag register is used.
1089   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
1090     return hasProperty(MCID::HasPostISelHook, Type);
1091   }
1092 
1093   /// Returns true if this instruction is a candidate for remat.
1094   /// This flag is deprecated, please don't use it anymore.  If this
1095   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
1096   /// verify the instruction is really rematable.
1097   bool isRematerializable(QueryType Type = AllInBundle) const {
1098     // It's only possible to re-mat a bundle if all bundled instructions are
1099     // re-materializable.
1100     return hasProperty(MCID::Rematerializable, Type);
1101   }
1102 
1103   /// Returns true if this instruction has the same cost (or less) than a move
1104   /// instruction. This is useful during certain types of optimizations
1105   /// (e.g., remat during two-address conversion or machine licm)
1106   /// where we would like to remat or hoist the instruction, but not if it costs
1107   /// more than moving the instruction into the appropriate register. Note, we
1108   /// are not marking copies from and to the same register class with this flag.
1109   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
1110     // Only returns true for a bundle if all bundled instructions are cheap.
1111     return hasProperty(MCID::CheapAsAMove, Type);
1112   }
1113 
1114   /// Returns true if this instruction source operands
1115   /// have special register allocation requirements that are not captured by the
1116   /// operand register classes. e.g. ARM::STRD's two source registers must be an
1117   /// even / odd pair, ARM::STM registers have to be in ascending order.
1118   /// Post-register allocation passes should not attempt to change allocations
1119   /// for sources of instructions with this flag.
1120   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
1121     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
1122   }
1123 
1124   /// Returns true if this instruction def operands
1125   /// have special register allocation requirements that are not captured by the
1126   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1127   /// even / odd pair, ARM::LDM registers have to be in ascending order.
1128   /// Post-register allocation passes should not attempt to change allocations
1129   /// for definitions of instructions with this flag.
1130   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1131     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
1132   }
1133 
1134   enum MICheckType {
1135     CheckDefs,      // Check all operands for equality
1136     CheckKillDead,  // Check all operands including kill / dead markers
1137     IgnoreDefs,     // Ignore all definitions
1138     IgnoreVRegDefs  // Ignore virtual register definitions
1139   };
1140 
1141   /// Return true if this instruction is identical to \p Other.
1142   /// Two instructions are identical if they have the same opcode and all their
1143   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1144   /// Note that this means liveness related flags (dead, undef, kill) do not
1145   /// affect the notion of identical.
1146   bool isIdenticalTo(const MachineInstr &Other,
1147                      MICheckType Check = CheckDefs) const;
1148 
1149   /// Unlink 'this' from the containing basic block, and return it without
1150   /// deleting it.
1151   ///
1152   /// This function can not be used on bundled instructions, use
1153   /// removeFromBundle() to remove individual instructions from a bundle.
1154   MachineInstr *removeFromParent();
1155 
1156   /// Unlink this instruction from its basic block and return it without
1157   /// deleting it.
1158   ///
1159   /// If the instruction is part of a bundle, the other instructions in the
1160   /// bundle remain bundled.
1161   MachineInstr *removeFromBundle();
1162 
1163   /// Unlink 'this' from the containing basic block and delete it.
1164   ///
1165   /// If this instruction is the header of a bundle, the whole bundle is erased.
1166   /// This function can not be used for instructions inside a bundle, use
1167   /// eraseFromBundle() to erase individual bundled instructions.
1168   void eraseFromParent();
1169 
1170   /// Unlink 'this' from the containing basic block and delete it.
1171   ///
1172   /// For all definitions mark their uses in DBG_VALUE nodes
1173   /// as undefined. Otherwise like eraseFromParent().
1174   void eraseFromParentAndMarkDBGValuesForRemoval();
1175 
1176   /// Unlink 'this' form its basic block and delete it.
1177   ///
1178   /// If the instruction is part of a bundle, the other instructions in the
1179   /// bundle remain bundled.
1180   void eraseFromBundle();
1181 
1182   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1183   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1184   bool isAnnotationLabel() const {
1185     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1186   }
1187 
1188   /// Returns true if the MachineInstr represents a label.
1189   bool isLabel() const {
1190     return isEHLabel() || isGCLabel() || isAnnotationLabel();
1191   }
1192 
1193   bool isCFIInstruction() const {
1194     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1195   }
1196 
1197   bool isPseudoProbe() const {
1198     return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1199   }
1200 
1201   // True if the instruction represents a position in the function.
1202   bool isPosition() const { return isLabel() || isCFIInstruction(); }
1203 
1204   bool isNonListDebugValue() const {
1205     return getOpcode() == TargetOpcode::DBG_VALUE;
1206   }
1207   bool isDebugValueList() const {
1208     return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
1209   }
1210   bool isDebugValue() const {
1211     return isNonListDebugValue() || isDebugValueList();
1212   }
1213   bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1214   bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1215   bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
1216   bool isDebugInstr() const {
1217     return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
1218   }
1219   bool isDebugOrPseudoInstr() const {
1220     return isDebugInstr() || isPseudoProbe();
1221   }
1222 
1223   bool isDebugOffsetImm() const {
1224     return isNonListDebugValue() && getDebugOffset().isImm();
1225   }
1226 
1227   /// A DBG_VALUE is indirect iff the location operand is a register and
1228   /// the offset operand is an immediate.
1229   bool isIndirectDebugValue() const {
1230     return isDebugOffsetImm() && getDebugOperand(0).isReg();
1231   }
1232 
1233   /// A DBG_VALUE is an entry value iff its debug expression contains the
1234   /// DW_OP_LLVM_entry_value operation.
1235   bool isDebugEntryValue() const;
1236 
1237   /// Return true if the instruction is a debug value which describes a part of
1238   /// a variable as unavailable.
1239   bool isUndefDebugValue() const {
1240     if (!isDebugValue())
1241       return false;
1242     // If any $noreg locations are given, this DV is undef.
1243     for (const MachineOperand &Op : debug_operands())
1244       if (Op.isReg() && !Op.getReg().isValid())
1245         return true;
1246     return false;
1247   }
1248 
1249   bool isPHI() const {
1250     return getOpcode() == TargetOpcode::PHI ||
1251            getOpcode() == TargetOpcode::G_PHI;
1252   }
1253   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1254   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1255   bool isInlineAsm() const {
1256     return getOpcode() == TargetOpcode::INLINEASM ||
1257            getOpcode() == TargetOpcode::INLINEASM_BR;
1258   }
1259 
1260   /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1261   /// specific, be attached to a generic MachineInstr.
1262   bool isMSInlineAsm() const {
1263     return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1264   }
1265 
1266   bool isStackAligningInlineAsm() const;
1267   InlineAsm::AsmDialect getInlineAsmDialect() const;
1268 
1269   bool isInsertSubreg() const {
1270     return getOpcode() == TargetOpcode::INSERT_SUBREG;
1271   }
1272 
1273   bool isSubregToReg() const {
1274     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1275   }
1276 
1277   bool isRegSequence() const {
1278     return getOpcode() == TargetOpcode::REG_SEQUENCE;
1279   }
1280 
1281   bool isBundle() const {
1282     return getOpcode() == TargetOpcode::BUNDLE;
1283   }
1284 
1285   bool isCopy() const {
1286     return getOpcode() == TargetOpcode::COPY;
1287   }
1288 
1289   bool isFullCopy() const {
1290     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1291   }
1292 
1293   bool isExtractSubreg() const {
1294     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1295   }
1296 
1297   /// Return true if the instruction behaves like a copy.
1298   /// This does not include native copy instructions.
1299   bool isCopyLike() const {
1300     return isCopy() || isSubregToReg();
1301   }
1302 
1303   /// Return true is the instruction is an identity copy.
1304   bool isIdentityCopy() const {
1305     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1306       getOperand(0).getSubReg() == getOperand(1).getSubReg();
1307   }
1308 
1309   /// Return true if this instruction doesn't produce any output in the form of
1310   /// executable instructions.
1311   bool isMetaInstruction() const {
1312     switch (getOpcode()) {
1313     default:
1314       return false;
1315     case TargetOpcode::IMPLICIT_DEF:
1316     case TargetOpcode::KILL:
1317     case TargetOpcode::CFI_INSTRUCTION:
1318     case TargetOpcode::EH_LABEL:
1319     case TargetOpcode::GC_LABEL:
1320     case TargetOpcode::DBG_VALUE:
1321     case TargetOpcode::DBG_VALUE_LIST:
1322     case TargetOpcode::DBG_INSTR_REF:
1323     case TargetOpcode::DBG_PHI:
1324     case TargetOpcode::DBG_LABEL:
1325     case TargetOpcode::LIFETIME_START:
1326     case TargetOpcode::LIFETIME_END:
1327     case TargetOpcode::PSEUDO_PROBE:
1328       return true;
1329     }
1330   }
1331 
1332   /// Return true if this is a transient instruction that is either very likely
1333   /// to be eliminated during register allocation (such as copy-like
1334   /// instructions), or if this instruction doesn't have an execution-time cost.
1335   bool isTransient() const {
1336     switch (getOpcode()) {
1337     default:
1338       return isMetaInstruction();
1339     // Copy-like instructions are usually eliminated during register allocation.
1340     case TargetOpcode::PHI:
1341     case TargetOpcode::G_PHI:
1342     case TargetOpcode::COPY:
1343     case TargetOpcode::INSERT_SUBREG:
1344     case TargetOpcode::SUBREG_TO_REG:
1345     case TargetOpcode::REG_SEQUENCE:
1346       return true;
1347     }
1348   }
1349 
1350   /// Return the number of instructions inside the MI bundle, excluding the
1351   /// bundle header.
1352   ///
1353   /// This is the number of instructions that MachineBasicBlock::iterator
1354   /// skips, 0 for unbundled instructions.
1355   unsigned getBundleSize() const;
1356 
1357   /// Return true if the MachineInstr reads the specified register.
1358   /// If TargetRegisterInfo is passed, then it also checks if there
1359   /// is a read of a super-register.
1360   /// This does not count partial redefines of virtual registers as reads:
1361   ///   %reg1024:6 = OP.
1362   bool readsRegister(Register Reg,
1363                      const TargetRegisterInfo *TRI = nullptr) const {
1364     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1365   }
1366 
1367   /// Return true if the MachineInstr reads the specified virtual register.
1368   /// Take into account that a partial define is a
1369   /// read-modify-write operation.
1370   bool readsVirtualRegister(Register Reg) const {
1371     return readsWritesVirtualRegister(Reg).first;
1372   }
1373 
1374   /// Return a pair of bools (reads, writes) indicating if this instruction
1375   /// reads or writes Reg. This also considers partial defines.
1376   /// If Ops is not null, all operand indices for Reg are added.
1377   std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1378                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1379 
1380   /// Return true if the MachineInstr kills the specified register.
1381   /// If TargetRegisterInfo is passed, then it also checks if there is
1382   /// a kill of a super-register.
1383   bool killsRegister(Register Reg,
1384                      const TargetRegisterInfo *TRI = nullptr) const {
1385     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1386   }
1387 
1388   /// Return true if the MachineInstr fully defines the specified register.
1389   /// If TargetRegisterInfo is passed, then it also checks
1390   /// if there is a def of a super-register.
1391   /// NOTE: It's ignoring subreg indices on virtual registers.
1392   bool definesRegister(Register Reg,
1393                        const TargetRegisterInfo *TRI = nullptr) const {
1394     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1395   }
1396 
1397   /// Return true if the MachineInstr modifies (fully define or partially
1398   /// define) the specified register.
1399   /// NOTE: It's ignoring subreg indices on virtual registers.
1400   bool modifiesRegister(Register Reg,
1401                         const TargetRegisterInfo *TRI = nullptr) const {
1402     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1403   }
1404 
1405   /// Returns true if the register is dead in this machine instruction.
1406   /// If TargetRegisterInfo is passed, then it also checks
1407   /// if there is a dead def of a super-register.
1408   bool registerDefIsDead(Register Reg,
1409                          const TargetRegisterInfo *TRI = nullptr) const {
1410     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1411   }
1412 
1413   /// Returns true if the MachineInstr has an implicit-use operand of exactly
1414   /// the given register (not considering sub/super-registers).
1415   bool hasRegisterImplicitUseOperand(Register Reg) const;
1416 
1417   /// Returns the operand index that is a use of the specific register or -1
1418   /// if it is not found. It further tightens the search criteria to a use
1419   /// that kills the register if isKill is true.
1420   int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1421                                 const TargetRegisterInfo *TRI = nullptr) const;
1422 
1423   /// Wrapper for findRegisterUseOperandIdx, it returns
1424   /// a pointer to the MachineOperand rather than an index.
1425   MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1426                                       const TargetRegisterInfo *TRI = nullptr) {
1427     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1428     return (Idx == -1) ? nullptr : &getOperand(Idx);
1429   }
1430 
1431   const MachineOperand *findRegisterUseOperand(
1432     Register Reg, bool isKill = false,
1433     const TargetRegisterInfo *TRI = nullptr) const {
1434     return const_cast<MachineInstr *>(this)->
1435       findRegisterUseOperand(Reg, isKill, TRI);
1436   }
1437 
1438   /// Returns the operand index that is a def of the specified register or
1439   /// -1 if it is not found. If isDead is true, defs that are not dead are
1440   /// skipped. If Overlap is true, then it also looks for defs that merely
1441   /// overlap the specified register. If TargetRegisterInfo is non-null,
1442   /// then it also checks if there is a def of a super-register.
1443   /// This may also return a register mask operand when Overlap is true.
1444   int findRegisterDefOperandIdx(Register Reg,
1445                                 bool isDead = false, bool Overlap = false,
1446                                 const TargetRegisterInfo *TRI = nullptr) const;
1447 
1448   /// Wrapper for findRegisterDefOperandIdx, it returns
1449   /// a pointer to the MachineOperand rather than an index.
1450   MachineOperand *
1451   findRegisterDefOperand(Register Reg, bool isDead = false,
1452                          bool Overlap = false,
1453                          const TargetRegisterInfo *TRI = nullptr) {
1454     int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1455     return (Idx == -1) ? nullptr : &getOperand(Idx);
1456   }
1457 
1458   const MachineOperand *
1459   findRegisterDefOperand(Register Reg, bool isDead = false,
1460                          bool Overlap = false,
1461                          const TargetRegisterInfo *TRI = nullptr) const {
1462     return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1463         Reg, isDead, Overlap, TRI);
1464   }
1465 
1466   /// Find the index of the first operand in the
1467   /// operand list that is used to represent the predicate. It returns -1 if
1468   /// none is found.
1469   int findFirstPredOperandIdx() const;
1470 
1471   /// Find the index of the flag word operand that
1472   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
1473   /// getOperand(OpIdx) does not belong to an inline asm operand group.
1474   ///
1475   /// If GroupNo is not NULL, it will receive the number of the operand group
1476   /// containing OpIdx.
1477   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1478 
1479   /// Compute the static register class constraint for operand OpIdx.
1480   /// For normal instructions, this is derived from the MCInstrDesc.
1481   /// For inline assembly it is derived from the flag words.
1482   ///
1483   /// Returns NULL if the static register class constraint cannot be
1484   /// determined.
1485   const TargetRegisterClass*
1486   getRegClassConstraint(unsigned OpIdx,
1487                         const TargetInstrInfo *TII,
1488                         const TargetRegisterInfo *TRI) const;
1489 
1490   /// Applies the constraints (def/use) implied by this MI on \p Reg to
1491   /// the given \p CurRC.
1492   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1493   /// instructions inside the bundle will be taken into account. In other words,
1494   /// this method accumulates all the constraints of the operand of this MI and
1495   /// the related bundle if MI is a bundle or inside a bundle.
1496   ///
1497   /// Returns the register class that satisfies both \p CurRC and the
1498   /// constraints set by MI. Returns NULL if such a register class does not
1499   /// exist.
1500   ///
1501   /// \pre CurRC must not be NULL.
1502   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1503       Register Reg, const TargetRegisterClass *CurRC,
1504       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1505       bool ExploreBundle = false) const;
1506 
1507   /// Applies the constraints (def/use) implied by the \p OpIdx operand
1508   /// to the given \p CurRC.
1509   ///
1510   /// Returns the register class that satisfies both \p CurRC and the
1511   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1512   /// does not exist.
1513   ///
1514   /// \pre CurRC must not be NULL.
1515   /// \pre The operand at \p OpIdx must be a register.
1516   const TargetRegisterClass *
1517   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1518                               const TargetInstrInfo *TII,
1519                               const TargetRegisterInfo *TRI) const;
1520 
1521   /// Add a tie between the register operands at DefIdx and UseIdx.
1522   /// The tie will cause the register allocator to ensure that the two
1523   /// operands are assigned the same physical register.
1524   ///
1525   /// Tied operands are managed automatically for explicit operands in the
1526   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1527   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1528 
1529   /// Given the index of a tied register operand, find the
1530   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1531   /// index of the tied operand which must exist.
1532   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1533 
1534   /// Given the index of a register def operand,
1535   /// check if the register def is tied to a source operand, due to either
1536   /// two-address elimination or inline assembly constraints. Returns the
1537   /// first tied use operand index by reference if UseOpIdx is not null.
1538   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1539                              unsigned *UseOpIdx = nullptr) const {
1540     const MachineOperand &MO = getOperand(DefOpIdx);
1541     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1542       return false;
1543     if (UseOpIdx)
1544       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1545     return true;
1546   }
1547 
1548   /// Return true if the use operand of the specified index is tied to a def
1549   /// operand. It also returns the def operand index by reference if DefOpIdx
1550   /// is not null.
1551   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1552                              unsigned *DefOpIdx = nullptr) const {
1553     const MachineOperand &MO = getOperand(UseOpIdx);
1554     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1555       return false;
1556     if (DefOpIdx)
1557       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1558     return true;
1559   }
1560 
1561   /// Clears kill flags on all operands.
1562   void clearKillInfo();
1563 
1564   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1565   /// properly composing subreg indices where necessary.
1566   void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1567                           const TargetRegisterInfo &RegInfo);
1568 
1569   /// We have determined MI kills a register. Look for the
1570   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1571   /// add a implicit operand if it's not found. Returns true if the operand
1572   /// exists / is added.
1573   bool addRegisterKilled(Register IncomingReg,
1574                          const TargetRegisterInfo *RegInfo,
1575                          bool AddIfNotFound = false);
1576 
1577   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1578   /// all aliasing registers.
1579   void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1580 
1581   /// We have determined MI defined a register without a use.
1582   /// Look for the operand that defines it and mark it as IsDead. If
1583   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1584   /// true if the operand exists / is added.
1585   bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1586                        bool AddIfNotFound = false);
1587 
1588   /// Clear all dead flags on operands defining register @p Reg.
1589   void clearRegisterDeads(Register Reg);
1590 
1591   /// Mark all subregister defs of register @p Reg with the undef flag.
1592   /// This function is used when we determined to have a subregister def in an
1593   /// otherwise undefined super register.
1594   void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1595 
1596   /// We have determined MI defines a register. Make sure there is an operand
1597   /// defining Reg.
1598   void addRegisterDefined(Register Reg,
1599                           const TargetRegisterInfo *RegInfo = nullptr);
1600 
1601   /// Mark every physreg used by this instruction as
1602   /// dead except those in the UsedRegs list.
1603   ///
1604   /// On instructions with register mask operands, also add implicit-def
1605   /// operands for all registers in UsedRegs.
1606   void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1607                              const TargetRegisterInfo &TRI);
1608 
1609   /// Return true if it is safe to move this instruction. If
1610   /// SawStore is set to true, it means that there is a store (or call) between
1611   /// the instruction's location and its intended destination.
1612   bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1613 
1614   /// Returns true if this instruction's memory access aliases the memory
1615   /// access of Other.
1616   //
1617   /// Assumes any physical registers used to compute addresses
1618   /// have the same value for both instructions.  Returns false if neither
1619   /// instruction writes to memory.
1620   ///
1621   /// @param AA Optional alias analysis, used to compare memory operands.
1622   /// @param Other MachineInstr to check aliasing against.
1623   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1624   bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1625 
1626   /// Return true if this instruction may have an ordered
1627   /// or volatile memory reference, or if the information describing the memory
1628   /// reference is not available. Return false if it is known to have no
1629   /// ordered or volatile memory references.
1630   bool hasOrderedMemoryRef() const;
1631 
1632   /// Return true if this load instruction never traps and points to a memory
1633   /// location whose value doesn't change during the execution of this function.
1634   ///
1635   /// Examples include loading a value from the constant pool or from the
1636   /// argument area of a function (if it does not change).  If the instruction
1637   /// does multiple loads, this returns true only if all of the loads are
1638   /// dereferenceable and invariant.
1639   bool isDereferenceableInvariantLoad(AAResults *AA) const;
1640 
1641   /// If the specified instruction is a PHI that always merges together the
1642   /// same virtual register, return the register, otherwise return 0.
1643   unsigned isConstantValuePHI() const;
1644 
1645   /// Return true if this instruction has side effects that are not modeled
1646   /// by mayLoad / mayStore, etc.
1647   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1648   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1649   /// INLINEASM instruction, in which case the side effect property is encoded
1650   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1651   ///
1652   bool hasUnmodeledSideEffects() const;
1653 
1654   /// Returns true if it is illegal to fold a load across this instruction.
1655   bool isLoadFoldBarrier() const;
1656 
1657   /// Return true if all the defs of this instruction are dead.
1658   bool allDefsAreDead() const;
1659 
1660   /// Return a valid size if the instruction is a spill instruction.
1661   Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1662 
1663   /// Return a valid size if the instruction is a folded spill instruction.
1664   Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1665 
1666   /// Return a valid size if the instruction is a restore instruction.
1667   Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1668 
1669   /// Return a valid size if the instruction is a folded restore instruction.
1670   Optional<unsigned>
1671   getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1672 
1673   /// Copy implicit register operands from specified
1674   /// instruction to this instruction.
1675   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1676 
1677   /// Debugging support
1678   /// @{
1679   /// Determine the generic type to be printed (if needed) on uses and defs.
1680   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1681                      const MachineRegisterInfo &MRI) const;
1682 
1683   /// Return true when an instruction has tied register that can't be determined
1684   /// by the instruction's descriptor. This is useful for MIR printing, to
1685   /// determine whether we need to print the ties or not.
1686   bool hasComplexRegisterTies() const;
1687 
1688   /// Print this MI to \p OS.
1689   /// Don't print information that can be inferred from other instructions if
1690   /// \p IsStandalone is false. It is usually true when only a fragment of the
1691   /// function is printed.
1692   /// Only print the defs and the opcode if \p SkipOpers is true.
1693   /// Otherwise, also print operands if \p SkipDebugLoc is true.
1694   /// Otherwise, also print the debug loc, with a terminating newline.
1695   /// \p TII is used to print the opcode name.  If it's not present, but the
1696   /// MI is in a function, the opcode will be printed using the function's TII.
1697   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1698              bool SkipDebugLoc = false, bool AddNewLine = true,
1699              const TargetInstrInfo *TII = nullptr) const;
1700   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1701              bool SkipOpers = false, bool SkipDebugLoc = false,
1702              bool AddNewLine = true,
1703              const TargetInstrInfo *TII = nullptr) const;
1704   void dump() const;
1705   /// Print on dbgs() the current instruction and the instructions defining its
1706   /// operands and so on until we reach \p MaxDepth.
1707   void dumpr(const MachineRegisterInfo &MRI,
1708              unsigned MaxDepth = UINT_MAX) const;
1709   /// @}
1710 
1711   //===--------------------------------------------------------------------===//
1712   // Accessors used to build up machine instructions.
1713 
1714   /// Add the specified operand to the instruction.  If it is an implicit
1715   /// operand, it is added to the end of the operand list.  If it is an
1716   /// explicit operand it is added at the end of the explicit operand list
1717   /// (before the first implicit operand).
1718   ///
1719   /// MF must be the machine function that was used to allocate this
1720   /// instruction.
1721   ///
1722   /// MachineInstrBuilder provides a more convenient interface for creating
1723   /// instructions and adding operands.
1724   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1725 
1726   /// Add an operand without providing an MF reference. This only works for
1727   /// instructions that are inserted in a basic block.
1728   ///
1729   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1730   /// preferred.
1731   void addOperand(const MachineOperand &Op);
1732 
1733   /// Replace the instruction descriptor (thus opcode) of
1734   /// the current instruction with a new one.
1735   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1736 
1737   /// Replace current source information with new such.
1738   /// Avoid using this, the constructor argument is preferable.
1739   void setDebugLoc(DebugLoc dl) {
1740     debugLoc = std::move(dl);
1741     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1742   }
1743 
1744   /// Erase an operand from an instruction, leaving it with one
1745   /// fewer operand than it started with.
1746   void RemoveOperand(unsigned OpNo);
1747 
1748   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1749   /// the memrefs to their most conservative state.  This should be used only
1750   /// as a last resort since it greatly pessimizes our knowledge of the memory
1751   /// access performed by the instruction.
1752   void dropMemRefs(MachineFunction &MF);
1753 
1754   /// Assign this MachineInstr's memory reference descriptor list.
1755   ///
1756   /// Unlike other methods, this *will* allocate them into a new array
1757   /// associated with the provided `MachineFunction`.
1758   void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1759 
1760   /// Add a MachineMemOperand to the machine instruction.
1761   /// This function should be used only occasionally. The setMemRefs function
1762   /// is the primary method for setting up a MachineInstr's MemRefs list.
1763   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1764 
1765   /// Clone another MachineInstr's memory reference descriptor list and replace
1766   /// ours with it.
1767   ///
1768   /// Note that `*this` may be the incoming MI!
1769   ///
1770   /// Prefer this API whenever possible as it can avoid allocations in common
1771   /// cases.
1772   void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1773 
1774   /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1775   /// list and replace ours with it.
1776   ///
1777   /// Note that `*this` may be one of the incoming MIs!
1778   ///
1779   /// Prefer this API whenever possible as it can avoid allocations in common
1780   /// cases.
1781   void cloneMergedMemRefs(MachineFunction &MF,
1782                           ArrayRef<const MachineInstr *> MIs);
1783 
1784   /// Set a symbol that will be emitted just prior to the instruction itself.
1785   ///
1786   /// Setting this to a null pointer will remove any such symbol.
1787   ///
1788   /// FIXME: This is not fully implemented yet.
1789   void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1790 
1791   /// Set a symbol that will be emitted just after the instruction itself.
1792   ///
1793   /// Setting this to a null pointer will remove any such symbol.
1794   ///
1795   /// FIXME: This is not fully implemented yet.
1796   void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1797 
1798   /// Clone another MachineInstr's pre- and post- instruction symbols and
1799   /// replace ours with it.
1800   void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1801 
1802   /// Set a marker on instructions that denotes where we should create and emit
1803   /// heap alloc site labels. This waits until after instruction selection and
1804   /// optimizations to create the label, so it should still work if the
1805   /// instruction is removed or duplicated.
1806   void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1807 
1808   /// Return the MIFlags which represent both MachineInstrs. This
1809   /// should be used when merging two MachineInstrs into one. This routine does
1810   /// not modify the MIFlags of this MachineInstr.
1811   uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1812 
1813   static uint16_t copyFlagsFromInstruction(const Instruction &I);
1814 
1815   /// Copy all flags to MachineInst MIFlags
1816   void copyIRFlags(const Instruction &I);
1817 
1818   /// Break any tie involving OpIdx.
1819   void untieRegOperand(unsigned OpIdx) {
1820     MachineOperand &MO = getOperand(OpIdx);
1821     if (MO.isReg() && MO.isTied()) {
1822       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1823       MO.TiedTo = 0;
1824     }
1825   }
1826 
1827   /// Add all implicit def and use operands to this instruction.
1828   void addImplicitDefUseOperands(MachineFunction &MF);
1829 
1830   /// Scan instructions immediately following MI and collect any matching
1831   /// DBG_VALUEs.
1832   void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1833 
1834   /// Find all DBG_VALUEs that point to the register def in this instruction
1835   /// and point them to \p Reg instead.
1836   void changeDebugValuesDefReg(Register Reg);
1837 
1838   /// Returns the Intrinsic::ID for this instruction.
1839   /// \pre Must have an intrinsic ID operand.
1840   unsigned getIntrinsicID() const {
1841     return getOperand(getNumExplicitDefs()).getIntrinsicID();
1842   }
1843 
1844   /// Sets all register debug operands in this debug value instruction to be
1845   /// undef.
1846   void setDebugValueUndef() {
1847     assert(isDebugValue() && "Must be a debug value instruction.");
1848     for (MachineOperand &MO : debug_operands()) {
1849       if (MO.isReg()) {
1850         MO.setReg(0);
1851         MO.setSubReg(0);
1852       }
1853     }
1854   }
1855 
1856   PseudoProbeAttributes getPseudoProbeAttribute() const {
1857     assert(isPseudoProbe() && "Must be a pseudo probe instruction");
1858     return (PseudoProbeAttributes)getOperand(3).getImm();
1859   }
1860 
1861   void addPseudoProbeAttribute(PseudoProbeAttributes Attr) {
1862     assert(isPseudoProbe() && "Must be a pseudo probe instruction");
1863     MachineOperand &AttrOperand = getOperand(3);
1864     AttrOperand.setImm(AttrOperand.getImm() | (uint32_t)Attr);
1865   }
1866 
1867 private:
1868   /// If this instruction is embedded into a MachineFunction, return the
1869   /// MachineRegisterInfo object for the current function, otherwise
1870   /// return null.
1871   MachineRegisterInfo *getRegInfo();
1872 
1873   /// Unlink all of the register operands in this instruction from their
1874   /// respective use lists.  This requires that the operands already be on their
1875   /// use lists.
1876   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1877 
1878   /// Add all of the register operands in this instruction from their
1879   /// respective use lists.  This requires that the operands not be on their
1880   /// use lists yet.
1881   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1882 
1883   /// Slow path for hasProperty when we're dealing with a bundle.
1884   bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1885 
1886   /// Implements the logic of getRegClassConstraintEffectForVReg for the
1887   /// this MI and the given operand index \p OpIdx.
1888   /// If the related operand does not constrained Reg, this returns CurRC.
1889   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1890       unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1891       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1892 
1893   /// Stores extra instruction information inline or allocates as ExtraInfo
1894   /// based on the number of pointers.
1895   void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
1896                     MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
1897                     MDNode *HeapAllocMarker);
1898 };
1899 
1900 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1901 /// instruction rather than by pointer value.
1902 /// The hashing and equality testing functions ignore definitions so this is
1903 /// useful for CSE, etc.
1904 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1905   static inline MachineInstr *getEmptyKey() {
1906     return nullptr;
1907   }
1908 
1909   static inline MachineInstr *getTombstoneKey() {
1910     return reinterpret_cast<MachineInstr*>(-1);
1911   }
1912 
1913   static unsigned getHashValue(const MachineInstr* const &MI);
1914 
1915   static bool isEqual(const MachineInstr* const &LHS,
1916                       const MachineInstr* const &RHS) {
1917     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1918         LHS == getEmptyKey() || LHS == getTombstoneKey())
1919       return LHS == RHS;
1920     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1921   }
1922 };
1923 
1924 //===----------------------------------------------------------------------===//
1925 // Debugging Support
1926 
1927 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1928   MI.print(OS);
1929   return OS;
1930 }
1931 
1932 } // end namespace llvm
1933 
1934 #endif // LLVM_CODEGEN_MACHINEINSTR_H
1935