1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the declaration of the MachineInstr class, which is the 10 // basic representation for all target dependent machine instructions used by 11 // the back end. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 16 #define LLVM_CODEGEN_MACHINEINSTR_H 17 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/PointerSumType.h" 20 #include "llvm/ADT/ilist.h" 21 #include "llvm/ADT/ilist_node.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/MC/MCInstrDesc.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/Support/ArrayRecycler.h" 32 #include "llvm/Support/TrailingObjects.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <utility> 37 38 namespace llvm { 39 40 template <typename T> class ArrayRef; 41 class DIExpression; 42 class DILocalVariable; 43 class MachineBasicBlock; 44 class MachineFunction; 45 class MachineMemOperand; 46 class MachineRegisterInfo; 47 class ModuleSlotTracker; 48 class raw_ostream; 49 template <typename T> class SmallVectorImpl; 50 class SmallBitVector; 51 class StringRef; 52 class TargetInstrInfo; 53 class TargetRegisterClass; 54 class TargetRegisterInfo; 55 56 //===----------------------------------------------------------------------===// 57 /// Representation of each machine instruction. 58 /// 59 /// This class isn't a POD type, but it must have a trivial destructor. When a 60 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 61 /// without having their destructor called. 62 /// 63 class MachineInstr 64 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, 65 ilist_sentinel_tracking<true>> { 66 public: 67 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; 68 69 /// Flags to specify different kinds of comments to output in 70 /// assembly code. These flags carry semantic information not 71 /// otherwise easily derivable from the IR text. 72 /// 73 enum CommentFlag { 74 ReloadReuse = 0x1, // higher bits are reserved for target dep comments. 75 NoSchedComment = 0x2, 76 TAsmComments = 0x4 // Target Asm comments should start from this value. 77 }; 78 79 enum MIFlag { 80 NoFlags = 0, 81 FrameSetup = 1 << 0, // Instruction is used as a part of 82 // function frame setup code. 83 FrameDestroy = 1 << 1, // Instruction is used as a part of 84 // function frame destruction code. 85 BundledPred = 1 << 2, // Instruction has bundled predecessors. 86 BundledSucc = 1 << 3, // Instruction has bundled successors. 87 FmNoNans = 1 << 4, // Instruction does not support Fast 88 // math nan values. 89 FmNoInfs = 1 << 5, // Instruction does not support Fast 90 // math infinity values. 91 FmNsz = 1 << 6, // Instruction is not required to retain 92 // signed zero values. 93 FmArcp = 1 << 7, // Instruction supports Fast math 94 // reciprocal approximations. 95 FmContract = 1 << 8, // Instruction supports Fast math 96 // contraction operations like fma. 97 FmAfn = 1 << 9, // Instruction may map to Fast math 98 // instrinsic approximation. 99 FmReassoc = 1 << 10, // Instruction supports Fast math 100 // reassociation of operand order. 101 NoUWrap = 1 << 11, // Instruction supports binary operator 102 // no unsigned wrap. 103 NoSWrap = 1 << 12, // Instruction supports binary operator 104 // no signed wrap. 105 IsExact = 1 << 13 // Instruction supports division is 106 // known to be exact. 107 }; 108 109 private: 110 const MCInstrDesc *MCID; // Instruction descriptor. 111 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. 112 113 // Operands are allocated by an ArrayRecycler. 114 MachineOperand *Operands = nullptr; // Pointer to the first operand. 115 unsigned NumOperands = 0; // Number of operands on instruction. 116 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 117 OperandCapacity CapOperands; // Capacity of the Operands array. 118 119 uint16_t Flags = 0; // Various bits of additional 120 // information about machine 121 // instruction. 122 123 uint8_t AsmPrinterFlags = 0; // Various bits of information used by 124 // the AsmPrinter to emit helpful 125 // comments. This is *not* semantic 126 // information. Do not use this for 127 // anything other than to convey comment 128 // information to AsmPrinter. 129 130 /// Internal implementation detail class that provides out-of-line storage for 131 /// extra info used by the machine instruction when this info cannot be stored 132 /// in-line within the instruction itself. 133 /// 134 /// This has to be defined eagerly due to the implementation constraints of 135 /// `PointerSumType` where it is used. 136 class ExtraInfo final 137 : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *> { 138 public: 139 static ExtraInfo *create(BumpPtrAllocator &Allocator, 140 ArrayRef<MachineMemOperand *> MMOs, 141 MCSymbol *PreInstrSymbol = nullptr, 142 MCSymbol *PostInstrSymbol = nullptr) { 143 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 144 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 145 auto *Result = new (Allocator.Allocate( 146 totalSizeToAlloc<MachineMemOperand *, MCSymbol *>( 147 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol), 148 alignof(ExtraInfo))) 149 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol); 150 151 // Copy the actual data into the trailing objects. 152 std::copy(MMOs.begin(), MMOs.end(), 153 Result->getTrailingObjects<MachineMemOperand *>()); 154 155 if (HasPreInstrSymbol) 156 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; 157 if (HasPostInstrSymbol) 158 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = 159 PostInstrSymbol; 160 161 return Result; 162 } 163 164 ArrayRef<MachineMemOperand *> getMMOs() const { 165 return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); 166 } 167 168 MCSymbol *getPreInstrSymbol() const { 169 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; 170 } 171 172 MCSymbol *getPostInstrSymbol() const { 173 return HasPostInstrSymbol 174 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] 175 : nullptr; 176 } 177 178 private: 179 friend TrailingObjects; 180 181 // Description of the extra info, used to interpret the actual optional 182 // data appended. 183 // 184 // Note that this is not terribly space optimized. This leaves a great deal 185 // of flexibility to fit more in here later. 186 const int NumMMOs; 187 const bool HasPreInstrSymbol; 188 const bool HasPostInstrSymbol; 189 190 // Implement the `TrailingObjects` internal API. 191 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { 192 return NumMMOs; 193 } 194 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { 195 return HasPreInstrSymbol + HasPostInstrSymbol; 196 } 197 198 // Just a boring constructor to allow us to initialize the sizes. Always use 199 // the `create` routine above. 200 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol) 201 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), 202 HasPostInstrSymbol(HasPostInstrSymbol) {} 203 }; 204 205 /// Enumeration of the kinds of inline extra info available. It is important 206 /// that the `MachineMemOperand` inline kind has a tag value of zero to make 207 /// it accessible as an `ArrayRef`. 208 enum ExtraInfoInlineKinds { 209 EIIK_MMO = 0, 210 EIIK_PreInstrSymbol, 211 EIIK_PostInstrSymbol, 212 EIIK_OutOfLine 213 }; 214 215 // We store extra information about the instruction here. The common case is 216 // expected to be nothing or a single pointer (typically a MMO or a symbol). 217 // We work to optimize this common case by storing it inline here rather than 218 // requiring a separate allocation, but we fall back to an allocation when 219 // multiple pointers are needed. 220 PointerSumType<ExtraInfoInlineKinds, 221 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, 222 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, 223 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, 224 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> 225 Info; 226 227 DebugLoc debugLoc; // Source line information. 228 229 // Intrusive list support 230 friend struct ilist_traits<MachineInstr>; 231 friend struct ilist_callback_traits<MachineBasicBlock>; 232 void setParent(MachineBasicBlock *P) { Parent = P; } 233 234 /// This constructor creates a copy of the given 235 /// MachineInstr in the given MachineFunction. 236 MachineInstr(MachineFunction &, const MachineInstr &); 237 238 /// This constructor create a MachineInstr and add the implicit operands. 239 /// It reserves space for number of operands specified by 240 /// MCInstrDesc. An explicit DebugLoc is supplied. 241 MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl, 242 bool NoImp = false); 243 244 // MachineInstrs are pool-allocated and owned by MachineFunction. 245 friend class MachineFunction; 246 247 public: 248 MachineInstr(const MachineInstr &) = delete; 249 MachineInstr &operator=(const MachineInstr &) = delete; 250 // Use MachineFunction::DeleteMachineInstr() instead. 251 ~MachineInstr() = delete; 252 253 const MachineBasicBlock* getParent() const { return Parent; } 254 MachineBasicBlock* getParent() { return Parent; } 255 256 /// Return the function that contains the basic block that this instruction 257 /// belongs to. 258 /// 259 /// Note: this is undefined behaviour if the instruction does not have a 260 /// parent. 261 const MachineFunction *getMF() const; 262 MachineFunction *getMF() { 263 return const_cast<MachineFunction *>( 264 static_cast<const MachineInstr *>(this)->getMF()); 265 } 266 267 /// Return the asm printer flags bitvector. 268 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 269 270 /// Clear the AsmPrinter bitvector. 271 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 272 273 /// Return whether an AsmPrinter flag is set. 274 bool getAsmPrinterFlag(CommentFlag Flag) const { 275 return AsmPrinterFlags & Flag; 276 } 277 278 /// Set a flag for the AsmPrinter. 279 void setAsmPrinterFlag(uint8_t Flag) { 280 AsmPrinterFlags |= Flag; 281 } 282 283 /// Clear specific AsmPrinter flags. 284 void clearAsmPrinterFlag(CommentFlag Flag) { 285 AsmPrinterFlags &= ~Flag; 286 } 287 288 /// Return the MI flags bitvector. 289 uint16_t getFlags() const { 290 return Flags; 291 } 292 293 /// Return whether an MI flag is set. 294 bool getFlag(MIFlag Flag) const { 295 return Flags & Flag; 296 } 297 298 /// Set a MI flag. 299 void setFlag(MIFlag Flag) { 300 Flags |= (uint16_t)Flag; 301 } 302 303 void setFlags(unsigned flags) { 304 // Filter out the automatically maintained flags. 305 unsigned Mask = BundledPred | BundledSucc; 306 Flags = (Flags & Mask) | (flags & ~Mask); 307 } 308 309 /// clearFlag - Clear a MI flag. 310 void clearFlag(MIFlag Flag) { 311 Flags &= ~((uint16_t)Flag); 312 } 313 314 /// Return true if MI is in a bundle (but not the first MI in a bundle). 315 /// 316 /// A bundle looks like this before it's finalized: 317 /// ---------------- 318 /// | MI | 319 /// ---------------- 320 /// | 321 /// ---------------- 322 /// | MI * | 323 /// ---------------- 324 /// | 325 /// ---------------- 326 /// | MI * | 327 /// ---------------- 328 /// In this case, the first MI starts a bundle but is not inside a bundle, the 329 /// next 2 MIs are considered "inside" the bundle. 330 /// 331 /// After a bundle is finalized, it looks like this: 332 /// ---------------- 333 /// | Bundle | 334 /// ---------------- 335 /// | 336 /// ---------------- 337 /// | MI * | 338 /// ---------------- 339 /// | 340 /// ---------------- 341 /// | MI * | 342 /// ---------------- 343 /// | 344 /// ---------------- 345 /// | MI * | 346 /// ---------------- 347 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 348 /// a bundle, but the next three MIs are. 349 bool isInsideBundle() const { 350 return getFlag(BundledPred); 351 } 352 353 /// Return true if this instruction part of a bundle. This is true 354 /// if either itself or its following instruction is marked "InsideBundle". 355 bool isBundled() const { 356 return isBundledWithPred() || isBundledWithSucc(); 357 } 358 359 /// Return true if this instruction is part of a bundle, and it is not the 360 /// first instruction in the bundle. 361 bool isBundledWithPred() const { return getFlag(BundledPred); } 362 363 /// Return true if this instruction is part of a bundle, and it is not the 364 /// last instruction in the bundle. 365 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 366 367 /// Bundle this instruction with its predecessor. This can be an unbundled 368 /// instruction, or it can be the first instruction in a bundle. 369 void bundleWithPred(); 370 371 /// Bundle this instruction with its successor. This can be an unbundled 372 /// instruction, or it can be the last instruction in a bundle. 373 void bundleWithSucc(); 374 375 /// Break bundle above this instruction. 376 void unbundleFromPred(); 377 378 /// Break bundle below this instruction. 379 void unbundleFromSucc(); 380 381 /// Returns the debug location id of this MachineInstr. 382 const DebugLoc &getDebugLoc() const { return debugLoc; } 383 384 /// Return the debug variable referenced by 385 /// this DBG_VALUE instruction. 386 const DILocalVariable *getDebugVariable() const; 387 388 /// Return the complex address expression referenced by 389 /// this DBG_VALUE instruction. 390 const DIExpression *getDebugExpression() const; 391 392 /// Return the debug label referenced by 393 /// this DBG_LABEL instruction. 394 const DILabel *getDebugLabel() const; 395 396 /// Emit an error referring to the source location of this instruction. 397 /// This should only be used for inline assembly that is somehow 398 /// impossible to compile. Other errors should have been handled much 399 /// earlier. 400 /// 401 /// If this method returns, the caller should try to recover from the error. 402 void emitError(StringRef Msg) const; 403 404 /// Returns the target instruction descriptor of this MachineInstr. 405 const MCInstrDesc &getDesc() const { return *MCID; } 406 407 /// Returns the opcode of this MachineInstr. 408 unsigned getOpcode() const { return MCID->Opcode; } 409 410 /// Retuns the total number of operands. 411 unsigned getNumOperands() const { return NumOperands; } 412 413 const MachineOperand& getOperand(unsigned i) const { 414 assert(i < getNumOperands() && "getOperand() out of range!"); 415 return Operands[i]; 416 } 417 MachineOperand& getOperand(unsigned i) { 418 assert(i < getNumOperands() && "getOperand() out of range!"); 419 return Operands[i]; 420 } 421 422 /// Returns the total number of definitions. 423 unsigned getNumDefs() const { 424 return getNumExplicitDefs() + MCID->getNumImplicitDefs(); 425 } 426 427 /// Return true if operand \p OpIdx is a subregister index. 428 bool isOperandSubregIdx(unsigned OpIdx) const { 429 assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && 430 "Expected MO_Immediate operand type."); 431 if (isExtractSubreg() && OpIdx == 2) 432 return true; 433 if (isInsertSubreg() && OpIdx == 3) 434 return true; 435 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) 436 return true; 437 if (isSubregToReg() && OpIdx == 3) 438 return true; 439 return false; 440 } 441 442 /// Returns the number of non-implicit operands. 443 unsigned getNumExplicitOperands() const; 444 445 /// Returns the number of non-implicit definitions. 446 unsigned getNumExplicitDefs() const; 447 448 /// iterator/begin/end - Iterate over all operands of a machine instruction. 449 using mop_iterator = MachineOperand *; 450 using const_mop_iterator = const MachineOperand *; 451 452 mop_iterator operands_begin() { return Operands; } 453 mop_iterator operands_end() { return Operands + NumOperands; } 454 455 const_mop_iterator operands_begin() const { return Operands; } 456 const_mop_iterator operands_end() const { return Operands + NumOperands; } 457 458 iterator_range<mop_iterator> operands() { 459 return make_range(operands_begin(), operands_end()); 460 } 461 iterator_range<const_mop_iterator> operands() const { 462 return make_range(operands_begin(), operands_end()); 463 } 464 iterator_range<mop_iterator> explicit_operands() { 465 return make_range(operands_begin(), 466 operands_begin() + getNumExplicitOperands()); 467 } 468 iterator_range<const_mop_iterator> explicit_operands() const { 469 return make_range(operands_begin(), 470 operands_begin() + getNumExplicitOperands()); 471 } 472 iterator_range<mop_iterator> implicit_operands() { 473 return make_range(explicit_operands().end(), operands_end()); 474 } 475 iterator_range<const_mop_iterator> implicit_operands() const { 476 return make_range(explicit_operands().end(), operands_end()); 477 } 478 /// Returns a range over all explicit operands that are register definitions. 479 /// Implicit definition are not included! 480 iterator_range<mop_iterator> defs() { 481 return make_range(operands_begin(), 482 operands_begin() + getNumExplicitDefs()); 483 } 484 /// \copydoc defs() 485 iterator_range<const_mop_iterator> defs() const { 486 return make_range(operands_begin(), 487 operands_begin() + getNumExplicitDefs()); 488 } 489 /// Returns a range that includes all operands that are register uses. 490 /// This may include unrelated operands which are not register uses. 491 iterator_range<mop_iterator> uses() { 492 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 493 } 494 /// \copydoc uses() 495 iterator_range<const_mop_iterator> uses() const { 496 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 497 } 498 iterator_range<mop_iterator> explicit_uses() { 499 return make_range(operands_begin() + getNumExplicitDefs(), 500 operands_begin() + getNumExplicitOperands()); 501 } 502 iterator_range<const_mop_iterator> explicit_uses() const { 503 return make_range(operands_begin() + getNumExplicitDefs(), 504 operands_begin() + getNumExplicitOperands()); 505 } 506 507 /// Returns the number of the operand iterator \p I points to. 508 unsigned getOperandNo(const_mop_iterator I) const { 509 return I - operands_begin(); 510 } 511 512 /// Access to memory operands of the instruction. If there are none, that does 513 /// not imply anything about whether the function accesses memory. Instead, 514 /// the caller must behave conservatively. 515 ArrayRef<MachineMemOperand *> memoperands() const { 516 if (!Info) 517 return {}; 518 519 if (Info.is<EIIK_MMO>()) 520 return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1); 521 522 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 523 return EI->getMMOs(); 524 525 return {}; 526 } 527 528 /// Access to memory operands of the instruction. 529 /// 530 /// If `memoperands_begin() == memoperands_end()`, that does not imply 531 /// anything about whether the function accesses memory. Instead, the caller 532 /// must behave conservatively. 533 mmo_iterator memoperands_begin() const { return memoperands().begin(); } 534 535 /// Access to memory operands of the instruction. 536 /// 537 /// If `memoperands_begin() == memoperands_end()`, that does not imply 538 /// anything about whether the function accesses memory. Instead, the caller 539 /// must behave conservatively. 540 mmo_iterator memoperands_end() const { return memoperands().end(); } 541 542 /// Return true if we don't have any memory operands which described the 543 /// memory access done by this instruction. If this is true, calling code 544 /// must be conservative. 545 bool memoperands_empty() const { return memoperands().empty(); } 546 547 /// Return true if this instruction has exactly one MachineMemOperand. 548 bool hasOneMemOperand() const { return memoperands().size() == 1; } 549 550 /// Return the number of memory operands. 551 unsigned getNumMemOperands() const { return memoperands().size(); } 552 553 /// Helper to extract a pre-instruction symbol if one has been added. 554 MCSymbol *getPreInstrSymbol() const { 555 if (!Info) 556 return nullptr; 557 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) 558 return S; 559 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 560 return EI->getPreInstrSymbol(); 561 562 return nullptr; 563 } 564 565 /// Helper to extract a post-instruction symbol if one has been added. 566 MCSymbol *getPostInstrSymbol() const { 567 if (!Info) 568 return nullptr; 569 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) 570 return S; 571 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 572 return EI->getPostInstrSymbol(); 573 574 return nullptr; 575 } 576 577 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 578 /// queries but they are bundle aware. 579 580 enum QueryType { 581 IgnoreBundle, // Ignore bundles 582 AnyInBundle, // Return true if any instruction in bundle has property 583 AllInBundle // Return true if all instructions in bundle have property 584 }; 585 586 /// Return true if the instruction (or in the case of a bundle, 587 /// the instructions inside the bundle) has the specified property. 588 /// The first argument is the property being queried. 589 /// The second argument indicates whether the query should look inside 590 /// instruction bundles. 591 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 592 assert(MCFlag < 64 && 593 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); 594 // Inline the fast path for unbundled or bundle-internal instructions. 595 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 596 return getDesc().getFlags() & (1ULL << MCFlag); 597 598 // If this is the first instruction in a bundle, take the slow path. 599 return hasPropertyInBundle(1ULL << MCFlag, Type); 600 } 601 602 /// Return true if this instruction can have a variable number of operands. 603 /// In this case, the variable operands will be after the normal 604 /// operands but before the implicit definitions and uses (if any are 605 /// present). 606 bool isVariadic(QueryType Type = IgnoreBundle) const { 607 return hasProperty(MCID::Variadic, Type); 608 } 609 610 /// Set if this instruction has an optional definition, e.g. 611 /// ARM instructions which can set condition code if 's' bit is set. 612 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 613 return hasProperty(MCID::HasOptionalDef, Type); 614 } 615 616 /// Return true if this is a pseudo instruction that doesn't 617 /// correspond to a real machine instruction. 618 bool isPseudo(QueryType Type = IgnoreBundle) const { 619 return hasProperty(MCID::Pseudo, Type); 620 } 621 622 bool isReturn(QueryType Type = AnyInBundle) const { 623 return hasProperty(MCID::Return, Type); 624 } 625 626 /// Return true if this is an instruction that marks the end of an EH scope, 627 /// i.e., a catchpad or a cleanuppad instruction. 628 bool isEHScopeReturn(QueryType Type = AnyInBundle) const { 629 return hasProperty(MCID::EHScopeReturn, Type); 630 } 631 632 bool isCall(QueryType Type = AnyInBundle) const { 633 return hasProperty(MCID::Call, Type); 634 } 635 636 /// Returns true if the specified instruction stops control flow 637 /// from executing the instruction immediately following it. Examples include 638 /// unconditional branches and return instructions. 639 bool isBarrier(QueryType Type = AnyInBundle) const { 640 return hasProperty(MCID::Barrier, Type); 641 } 642 643 /// Returns true if this instruction part of the terminator for a basic block. 644 /// Typically this is things like return and branch instructions. 645 /// 646 /// Various passes use this to insert code into the bottom of a basic block, 647 /// but before control flow occurs. 648 bool isTerminator(QueryType Type = AnyInBundle) const { 649 return hasProperty(MCID::Terminator, Type); 650 } 651 652 /// Returns true if this is a conditional, unconditional, or indirect branch. 653 /// Predicates below can be used to discriminate between 654 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 655 /// get more information. 656 bool isBranch(QueryType Type = AnyInBundle) const { 657 return hasProperty(MCID::Branch, Type); 658 } 659 660 /// Return true if this is an indirect branch, such as a 661 /// branch through a register. 662 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 663 return hasProperty(MCID::IndirectBranch, Type); 664 } 665 666 /// Return true if this is a branch which may fall 667 /// through to the next instruction or may transfer control flow to some other 668 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 669 /// information about this branch. 670 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 671 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); 672 } 673 674 /// Return true if this is a branch which always 675 /// transfers control flow to some other block. The 676 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 677 /// about this branch. 678 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 679 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); 680 } 681 682 /// Return true if this instruction has a predicate operand that 683 /// controls execution. It may be set to 'always', or may be set to other 684 /// values. There are various methods in TargetInstrInfo that can be used to 685 /// control and modify the predicate in this instruction. 686 bool isPredicable(QueryType Type = AllInBundle) const { 687 // If it's a bundle than all bundled instructions must be predicable for this 688 // to return true. 689 return hasProperty(MCID::Predicable, Type); 690 } 691 692 /// Return true if this instruction is a comparison. 693 bool isCompare(QueryType Type = IgnoreBundle) const { 694 return hasProperty(MCID::Compare, Type); 695 } 696 697 /// Return true if this instruction is a move immediate 698 /// (including conditional moves) instruction. 699 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 700 return hasProperty(MCID::MoveImm, Type); 701 } 702 703 /// Return true if this instruction is a register move. 704 /// (including moving values from subreg to reg) 705 bool isMoveReg(QueryType Type = IgnoreBundle) const { 706 return hasProperty(MCID::MoveReg, Type); 707 } 708 709 /// Return true if this instruction is a bitcast instruction. 710 bool isBitcast(QueryType Type = IgnoreBundle) const { 711 return hasProperty(MCID::Bitcast, Type); 712 } 713 714 /// Return true if this instruction is a select instruction. 715 bool isSelect(QueryType Type = IgnoreBundle) const { 716 return hasProperty(MCID::Select, Type); 717 } 718 719 /// Return true if this instruction cannot be safely duplicated. 720 /// For example, if the instruction has a unique labels attached 721 /// to it, duplicating it would cause multiple definition errors. 722 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 723 return hasProperty(MCID::NotDuplicable, Type); 724 } 725 726 /// Return true if this instruction is convergent. 727 /// Convergent instructions can not be made control-dependent on any 728 /// additional values. 729 bool isConvergent(QueryType Type = AnyInBundle) const { 730 if (isInlineAsm()) { 731 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 732 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 733 return true; 734 } 735 return hasProperty(MCID::Convergent, Type); 736 } 737 738 /// Returns true if the specified instruction has a delay slot 739 /// which must be filled by the code generator. 740 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 741 return hasProperty(MCID::DelaySlot, Type); 742 } 743 744 /// Return true for instructions that can be folded as 745 /// memory operands in other instructions. The most common use for this 746 /// is instructions that are simple loads from memory that don't modify 747 /// the loaded value in any way, but it can also be used for instructions 748 /// that can be expressed as constant-pool loads, such as V_SETALLONES 749 /// on x86, to allow them to be folded when it is beneficial. 750 /// This should only be set on instructions that return a value in their 751 /// only virtual register definition. 752 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 753 return hasProperty(MCID::FoldableAsLoad, Type); 754 } 755 756 /// Return true if this instruction behaves 757 /// the same way as the generic REG_SEQUENCE instructions. 758 /// E.g., on ARM, 759 /// dX VMOVDRR rY, rZ 760 /// is equivalent to 761 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 762 /// 763 /// Note that for the optimizers to be able to take advantage of 764 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 765 /// override accordingly. 766 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 767 return hasProperty(MCID::RegSequence, Type); 768 } 769 770 /// Return true if this instruction behaves 771 /// the same way as the generic EXTRACT_SUBREG instructions. 772 /// E.g., on ARM, 773 /// rX, rY VMOVRRD dZ 774 /// is equivalent to two EXTRACT_SUBREG: 775 /// rX = EXTRACT_SUBREG dZ, ssub_0 776 /// rY = EXTRACT_SUBREG dZ, ssub_1 777 /// 778 /// Note that for the optimizers to be able to take advantage of 779 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 780 /// override accordingly. 781 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 782 return hasProperty(MCID::ExtractSubreg, Type); 783 } 784 785 /// Return true if this instruction behaves 786 /// the same way as the generic INSERT_SUBREG instructions. 787 /// E.g., on ARM, 788 /// dX = VSETLNi32 dY, rZ, Imm 789 /// is equivalent to a INSERT_SUBREG: 790 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 791 /// 792 /// Note that for the optimizers to be able to take advantage of 793 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 794 /// override accordingly. 795 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 796 return hasProperty(MCID::InsertSubreg, Type); 797 } 798 799 //===--------------------------------------------------------------------===// 800 // Side Effect Analysis 801 //===--------------------------------------------------------------------===// 802 803 /// Return true if this instruction could possibly read memory. 804 /// Instructions with this flag set are not necessarily simple load 805 /// instructions, they may load a value and modify it, for example. 806 bool mayLoad(QueryType Type = AnyInBundle) const { 807 if (isInlineAsm()) { 808 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 809 if (ExtraInfo & InlineAsm::Extra_MayLoad) 810 return true; 811 } 812 return hasProperty(MCID::MayLoad, Type); 813 } 814 815 /// Return true if this instruction could possibly modify memory. 816 /// Instructions with this flag set are not necessarily simple store 817 /// instructions, they may store a modified value based on their operands, or 818 /// may not actually modify anything, for example. 819 bool mayStore(QueryType Type = AnyInBundle) const { 820 if (isInlineAsm()) { 821 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 822 if (ExtraInfo & InlineAsm::Extra_MayStore) 823 return true; 824 } 825 return hasProperty(MCID::MayStore, Type); 826 } 827 828 /// Return true if this instruction could possibly read or modify memory. 829 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 830 return mayLoad(Type) || mayStore(Type); 831 } 832 833 //===--------------------------------------------------------------------===// 834 // Flags that indicate whether an instruction can be modified by a method. 835 //===--------------------------------------------------------------------===// 836 837 /// Return true if this may be a 2- or 3-address 838 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 839 /// result if Y and Z are exchanged. If this flag is set, then the 840 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 841 /// instruction. 842 /// 843 /// Note that this flag may be set on instructions that are only commutable 844 /// sometimes. In these cases, the call to commuteInstruction will fail. 845 /// Also note that some instructions require non-trivial modification to 846 /// commute them. 847 bool isCommutable(QueryType Type = IgnoreBundle) const { 848 return hasProperty(MCID::Commutable, Type); 849 } 850 851 /// Return true if this is a 2-address instruction 852 /// which can be changed into a 3-address instruction if needed. Doing this 853 /// transformation can be profitable in the register allocator, because it 854 /// means that the instruction can use a 2-address form if possible, but 855 /// degrade into a less efficient form if the source and dest register cannot 856 /// be assigned to the same register. For example, this allows the x86 857 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 858 /// is the same speed as the shift but has bigger code size. 859 /// 860 /// If this returns true, then the target must implement the 861 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 862 /// is allowed to fail if the transformation isn't valid for this specific 863 /// instruction (e.g. shl reg, 4 on x86). 864 /// 865 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 866 return hasProperty(MCID::ConvertibleTo3Addr, Type); 867 } 868 869 /// Return true if this instruction requires 870 /// custom insertion support when the DAG scheduler is inserting it into a 871 /// machine basic block. If this is true for the instruction, it basically 872 /// means that it is a pseudo instruction used at SelectionDAG time that is 873 /// expanded out into magic code by the target when MachineInstrs are formed. 874 /// 875 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 876 /// is used to insert this into the MachineBasicBlock. 877 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 878 return hasProperty(MCID::UsesCustomInserter, Type); 879 } 880 881 /// Return true if this instruction requires *adjustment* 882 /// after instruction selection by calling a target hook. For example, this 883 /// can be used to fill in ARM 's' optional operand depending on whether 884 /// the conditional flag register is used. 885 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 886 return hasProperty(MCID::HasPostISelHook, Type); 887 } 888 889 /// Returns true if this instruction is a candidate for remat. 890 /// This flag is deprecated, please don't use it anymore. If this 891 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 892 /// verify the instruction is really rematable. 893 bool isRematerializable(QueryType Type = AllInBundle) const { 894 // It's only possible to re-mat a bundle if all bundled instructions are 895 // re-materializable. 896 return hasProperty(MCID::Rematerializable, Type); 897 } 898 899 /// Returns true if this instruction has the same cost (or less) than a move 900 /// instruction. This is useful during certain types of optimizations 901 /// (e.g., remat during two-address conversion or machine licm) 902 /// where we would like to remat or hoist the instruction, but not if it costs 903 /// more than moving the instruction into the appropriate register. Note, we 904 /// are not marking copies from and to the same register class with this flag. 905 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 906 // Only returns true for a bundle if all bundled instructions are cheap. 907 return hasProperty(MCID::CheapAsAMove, Type); 908 } 909 910 /// Returns true if this instruction source operands 911 /// have special register allocation requirements that are not captured by the 912 /// operand register classes. e.g. ARM::STRD's two source registers must be an 913 /// even / odd pair, ARM::STM registers have to be in ascending order. 914 /// Post-register allocation passes should not attempt to change allocations 915 /// for sources of instructions with this flag. 916 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 917 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 918 } 919 920 /// Returns true if this instruction def operands 921 /// have special register allocation requirements that are not captured by the 922 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 923 /// even / odd pair, ARM::LDM registers have to be in ascending order. 924 /// Post-register allocation passes should not attempt to change allocations 925 /// for definitions of instructions with this flag. 926 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 927 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 928 } 929 930 enum MICheckType { 931 CheckDefs, // Check all operands for equality 932 CheckKillDead, // Check all operands including kill / dead markers 933 IgnoreDefs, // Ignore all definitions 934 IgnoreVRegDefs // Ignore virtual register definitions 935 }; 936 937 /// Return true if this instruction is identical to \p Other. 938 /// Two instructions are identical if they have the same opcode and all their 939 /// operands are identical (with respect to MachineOperand::isIdenticalTo()). 940 /// Note that this means liveness related flags (dead, undef, kill) do not 941 /// affect the notion of identical. 942 bool isIdenticalTo(const MachineInstr &Other, 943 MICheckType Check = CheckDefs) const; 944 945 /// Unlink 'this' from the containing basic block, and return it without 946 /// deleting it. 947 /// 948 /// This function can not be used on bundled instructions, use 949 /// removeFromBundle() to remove individual instructions from a bundle. 950 MachineInstr *removeFromParent(); 951 952 /// Unlink this instruction from its basic block and return it without 953 /// deleting it. 954 /// 955 /// If the instruction is part of a bundle, the other instructions in the 956 /// bundle remain bundled. 957 MachineInstr *removeFromBundle(); 958 959 /// Unlink 'this' from the containing basic block and delete it. 960 /// 961 /// If this instruction is the header of a bundle, the whole bundle is erased. 962 /// This function can not be used for instructions inside a bundle, use 963 /// eraseFromBundle() to erase individual bundled instructions. 964 void eraseFromParent(); 965 966 /// Unlink 'this' from the containing basic block and delete it. 967 /// 968 /// For all definitions mark their uses in DBG_VALUE nodes 969 /// as undefined. Otherwise like eraseFromParent(). 970 void eraseFromParentAndMarkDBGValuesForRemoval(); 971 972 /// Unlink 'this' form its basic block and delete it. 973 /// 974 /// If the instruction is part of a bundle, the other instructions in the 975 /// bundle remain bundled. 976 void eraseFromBundle(); 977 978 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 979 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 980 bool isAnnotationLabel() const { 981 return getOpcode() == TargetOpcode::ANNOTATION_LABEL; 982 } 983 984 /// Returns true if the MachineInstr represents a label. 985 bool isLabel() const { 986 return isEHLabel() || isGCLabel() || isAnnotationLabel(); 987 } 988 989 bool isCFIInstruction() const { 990 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 991 } 992 993 // True if the instruction represents a position in the function. 994 bool isPosition() const { return isLabel() || isCFIInstruction(); } 995 996 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } 997 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } 998 bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); } 999 1000 /// A DBG_VALUE is indirect iff the first operand is a register and 1001 /// the second operand is an immediate. 1002 bool isIndirectDebugValue() const { 1003 return isDebugValue() 1004 && getOperand(0).isReg() 1005 && getOperand(1).isImm(); 1006 } 1007 1008 bool isPHI() const { 1009 return getOpcode() == TargetOpcode::PHI || 1010 getOpcode() == TargetOpcode::G_PHI; 1011 } 1012 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 1013 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 1014 bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; } 1015 1016 bool isMSInlineAsm() const { 1017 return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect(); 1018 } 1019 1020 bool isStackAligningInlineAsm() const; 1021 InlineAsm::AsmDialect getInlineAsmDialect() const; 1022 1023 bool isInsertSubreg() const { 1024 return getOpcode() == TargetOpcode::INSERT_SUBREG; 1025 } 1026 1027 bool isSubregToReg() const { 1028 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 1029 } 1030 1031 bool isRegSequence() const { 1032 return getOpcode() == TargetOpcode::REG_SEQUENCE; 1033 } 1034 1035 bool isBundle() const { 1036 return getOpcode() == TargetOpcode::BUNDLE; 1037 } 1038 1039 bool isCopy() const { 1040 return getOpcode() == TargetOpcode::COPY; 1041 } 1042 1043 bool isFullCopy() const { 1044 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 1045 } 1046 1047 bool isExtractSubreg() const { 1048 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 1049 } 1050 1051 /// Return true if the instruction behaves like a copy. 1052 /// This does not include native copy instructions. 1053 bool isCopyLike() const { 1054 return isCopy() || isSubregToReg(); 1055 } 1056 1057 /// Return true is the instruction is an identity copy. 1058 bool isIdentityCopy() const { 1059 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 1060 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 1061 } 1062 1063 /// Return true if this instruction doesn't produce any output in the form of 1064 /// executable instructions. 1065 bool isMetaInstruction() const { 1066 switch (getOpcode()) { 1067 default: 1068 return false; 1069 case TargetOpcode::IMPLICIT_DEF: 1070 case TargetOpcode::KILL: 1071 case TargetOpcode::CFI_INSTRUCTION: 1072 case TargetOpcode::EH_LABEL: 1073 case TargetOpcode::GC_LABEL: 1074 case TargetOpcode::DBG_VALUE: 1075 case TargetOpcode::DBG_LABEL: 1076 case TargetOpcode::LIFETIME_START: 1077 case TargetOpcode::LIFETIME_END: 1078 return true; 1079 } 1080 } 1081 1082 /// Return true if this is a transient instruction that is either very likely 1083 /// to be eliminated during register allocation (such as copy-like 1084 /// instructions), or if this instruction doesn't have an execution-time cost. 1085 bool isTransient() const { 1086 switch (getOpcode()) { 1087 default: 1088 return isMetaInstruction(); 1089 // Copy-like instructions are usually eliminated during register allocation. 1090 case TargetOpcode::PHI: 1091 case TargetOpcode::G_PHI: 1092 case TargetOpcode::COPY: 1093 case TargetOpcode::INSERT_SUBREG: 1094 case TargetOpcode::SUBREG_TO_REG: 1095 case TargetOpcode::REG_SEQUENCE: 1096 return true; 1097 } 1098 } 1099 1100 /// Return the number of instructions inside the MI bundle, excluding the 1101 /// bundle header. 1102 /// 1103 /// This is the number of instructions that MachineBasicBlock::iterator 1104 /// skips, 0 for unbundled instructions. 1105 unsigned getBundleSize() const; 1106 1107 /// Return true if the MachineInstr reads the specified register. 1108 /// If TargetRegisterInfo is passed, then it also checks if there 1109 /// is a read of a super-register. 1110 /// This does not count partial redefines of virtual registers as reads: 1111 /// %reg1024:6 = OP. 1112 bool readsRegister(unsigned Reg, 1113 const TargetRegisterInfo *TRI = nullptr) const { 1114 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 1115 } 1116 1117 /// Return true if the MachineInstr reads the specified virtual register. 1118 /// Take into account that a partial define is a 1119 /// read-modify-write operation. 1120 bool readsVirtualRegister(unsigned Reg) const { 1121 return readsWritesVirtualRegister(Reg).first; 1122 } 1123 1124 /// Return a pair of bools (reads, writes) indicating if this instruction 1125 /// reads or writes Reg. This also considers partial defines. 1126 /// If Ops is not null, all operand indices for Reg are added. 1127 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg, 1128 SmallVectorImpl<unsigned> *Ops = nullptr) const; 1129 1130 /// Return true if the MachineInstr kills the specified register. 1131 /// If TargetRegisterInfo is passed, then it also checks if there is 1132 /// a kill of a super-register. 1133 bool killsRegister(unsigned Reg, 1134 const TargetRegisterInfo *TRI = nullptr) const { 1135 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 1136 } 1137 1138 /// Return true if the MachineInstr fully defines the specified register. 1139 /// If TargetRegisterInfo is passed, then it also checks 1140 /// if there is a def of a super-register. 1141 /// NOTE: It's ignoring subreg indices on virtual registers. 1142 bool definesRegister(unsigned Reg, 1143 const TargetRegisterInfo *TRI = nullptr) const { 1144 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 1145 } 1146 1147 /// Return true if the MachineInstr modifies (fully define or partially 1148 /// define) the specified register. 1149 /// NOTE: It's ignoring subreg indices on virtual registers. 1150 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const { 1151 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 1152 } 1153 1154 /// Returns true if the register is dead in this machine instruction. 1155 /// If TargetRegisterInfo is passed, then it also checks 1156 /// if there is a dead def of a super-register. 1157 bool registerDefIsDead(unsigned Reg, 1158 const TargetRegisterInfo *TRI = nullptr) const { 1159 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 1160 } 1161 1162 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1163 /// the given register (not considering sub/super-registers). 1164 bool hasRegisterImplicitUseOperand(unsigned Reg) const; 1165 1166 /// Returns the operand index that is a use of the specific register or -1 1167 /// if it is not found. It further tightens the search criteria to a use 1168 /// that kills the register if isKill is true. 1169 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false, 1170 const TargetRegisterInfo *TRI = nullptr) const; 1171 1172 /// Wrapper for findRegisterUseOperandIdx, it returns 1173 /// a pointer to the MachineOperand rather than an index. 1174 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false, 1175 const TargetRegisterInfo *TRI = nullptr) { 1176 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 1177 return (Idx == -1) ? nullptr : &getOperand(Idx); 1178 } 1179 1180 const MachineOperand *findRegisterUseOperand( 1181 unsigned Reg, bool isKill = false, 1182 const TargetRegisterInfo *TRI = nullptr) const { 1183 return const_cast<MachineInstr *>(this)-> 1184 findRegisterUseOperand(Reg, isKill, TRI); 1185 } 1186 1187 /// Returns the operand index that is a def of the specified register or 1188 /// -1 if it is not found. If isDead is true, defs that are not dead are 1189 /// skipped. If Overlap is true, then it also looks for defs that merely 1190 /// overlap the specified register. If TargetRegisterInfo is non-null, 1191 /// then it also checks if there is a def of a super-register. 1192 /// This may also return a register mask operand when Overlap is true. 1193 int findRegisterDefOperandIdx(unsigned Reg, 1194 bool isDead = false, bool Overlap = false, 1195 const TargetRegisterInfo *TRI = nullptr) const; 1196 1197 /// Wrapper for findRegisterDefOperandIdx, it returns 1198 /// a pointer to the MachineOperand rather than an index. 1199 MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false, 1200 const TargetRegisterInfo *TRI = nullptr) { 1201 int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI); 1202 return (Idx == -1) ? nullptr : &getOperand(Idx); 1203 } 1204 1205 /// Find the index of the first operand in the 1206 /// operand list that is used to represent the predicate. It returns -1 if 1207 /// none is found. 1208 int findFirstPredOperandIdx() const; 1209 1210 /// Find the index of the flag word operand that 1211 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 1212 /// getOperand(OpIdx) does not belong to an inline asm operand group. 1213 /// 1214 /// If GroupNo is not NULL, it will receive the number of the operand group 1215 /// containing OpIdx. 1216 /// 1217 /// The flag operand is an immediate that can be decoded with methods like 1218 /// InlineAsm::hasRegClassConstraint(). 1219 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 1220 1221 /// Compute the static register class constraint for operand OpIdx. 1222 /// For normal instructions, this is derived from the MCInstrDesc. 1223 /// For inline assembly it is derived from the flag words. 1224 /// 1225 /// Returns NULL if the static register class constraint cannot be 1226 /// determined. 1227 const TargetRegisterClass* 1228 getRegClassConstraint(unsigned OpIdx, 1229 const TargetInstrInfo *TII, 1230 const TargetRegisterInfo *TRI) const; 1231 1232 /// Applies the constraints (def/use) implied by this MI on \p Reg to 1233 /// the given \p CurRC. 1234 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1235 /// instructions inside the bundle will be taken into account. In other words, 1236 /// this method accumulates all the constraints of the operand of this MI and 1237 /// the related bundle if MI is a bundle or inside a bundle. 1238 /// 1239 /// Returns the register class that satisfies both \p CurRC and the 1240 /// constraints set by MI. Returns NULL if such a register class does not 1241 /// exist. 1242 /// 1243 /// \pre CurRC must not be NULL. 1244 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1245 unsigned Reg, const TargetRegisterClass *CurRC, 1246 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1247 bool ExploreBundle = false) const; 1248 1249 /// Applies the constraints (def/use) implied by the \p OpIdx operand 1250 /// to the given \p CurRC. 1251 /// 1252 /// Returns the register class that satisfies both \p CurRC and the 1253 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1254 /// does not exist. 1255 /// 1256 /// \pre CurRC must not be NULL. 1257 /// \pre The operand at \p OpIdx must be a register. 1258 const TargetRegisterClass * 1259 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1260 const TargetInstrInfo *TII, 1261 const TargetRegisterInfo *TRI) const; 1262 1263 /// Add a tie between the register operands at DefIdx and UseIdx. 1264 /// The tie will cause the register allocator to ensure that the two 1265 /// operands are assigned the same physical register. 1266 /// 1267 /// Tied operands are managed automatically for explicit operands in the 1268 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1269 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1270 1271 /// Given the index of a tied register operand, find the 1272 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1273 /// index of the tied operand which must exist. 1274 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1275 1276 /// Given the index of a register def operand, 1277 /// check if the register def is tied to a source operand, due to either 1278 /// two-address elimination or inline assembly constraints. Returns the 1279 /// first tied use operand index by reference if UseOpIdx is not null. 1280 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1281 unsigned *UseOpIdx = nullptr) const { 1282 const MachineOperand &MO = getOperand(DefOpIdx); 1283 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1284 return false; 1285 if (UseOpIdx) 1286 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1287 return true; 1288 } 1289 1290 /// Return true if the use operand of the specified index is tied to a def 1291 /// operand. It also returns the def operand index by reference if DefOpIdx 1292 /// is not null. 1293 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1294 unsigned *DefOpIdx = nullptr) const { 1295 const MachineOperand &MO = getOperand(UseOpIdx); 1296 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1297 return false; 1298 if (DefOpIdx) 1299 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1300 return true; 1301 } 1302 1303 /// Clears kill flags on all operands. 1304 void clearKillInfo(); 1305 1306 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1307 /// properly composing subreg indices where necessary. 1308 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, 1309 const TargetRegisterInfo &RegInfo); 1310 1311 /// We have determined MI kills a register. Look for the 1312 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1313 /// add a implicit operand if it's not found. Returns true if the operand 1314 /// exists / is added. 1315 bool addRegisterKilled(unsigned IncomingReg, 1316 const TargetRegisterInfo *RegInfo, 1317 bool AddIfNotFound = false); 1318 1319 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1320 /// all aliasing registers. 1321 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo); 1322 1323 /// We have determined MI defined a register without a use. 1324 /// Look for the operand that defines it and mark it as IsDead. If 1325 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1326 /// true if the operand exists / is added. 1327 bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo, 1328 bool AddIfNotFound = false); 1329 1330 /// Clear all dead flags on operands defining register @p Reg. 1331 void clearRegisterDeads(unsigned Reg); 1332 1333 /// Mark all subregister defs of register @p Reg with the undef flag. 1334 /// This function is used when we determined to have a subregister def in an 1335 /// otherwise undefined super register. 1336 void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true); 1337 1338 /// We have determined MI defines a register. Make sure there is an operand 1339 /// defining Reg. 1340 void addRegisterDefined(unsigned Reg, 1341 const TargetRegisterInfo *RegInfo = nullptr); 1342 1343 /// Mark every physreg used by this instruction as 1344 /// dead except those in the UsedRegs list. 1345 /// 1346 /// On instructions with register mask operands, also add implicit-def 1347 /// operands for all registers in UsedRegs. 1348 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1349 const TargetRegisterInfo &TRI); 1350 1351 /// Return true if it is safe to move this instruction. If 1352 /// SawStore is set to true, it means that there is a store (or call) between 1353 /// the instruction's location and its intended destination. 1354 bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const; 1355 1356 /// Returns true if this instruction's memory access aliases the memory 1357 /// access of Other. 1358 // 1359 /// Assumes any physical registers used to compute addresses 1360 /// have the same value for both instructions. Returns false if neither 1361 /// instruction writes to memory. 1362 /// 1363 /// @param AA Optional alias analysis, used to compare memory operands. 1364 /// @param Other MachineInstr to check aliasing against. 1365 /// @param UseTBAA Whether to pass TBAA information to alias analysis. 1366 bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA); 1367 1368 /// Return true if this instruction may have an ordered 1369 /// or volatile memory reference, or if the information describing the memory 1370 /// reference is not available. Return false if it is known to have no 1371 /// ordered or volatile memory references. 1372 bool hasOrderedMemoryRef() const; 1373 1374 /// Return true if this load instruction never traps and points to a memory 1375 /// location whose value doesn't change during the execution of this function. 1376 /// 1377 /// Examples include loading a value from the constant pool or from the 1378 /// argument area of a function (if it does not change). If the instruction 1379 /// does multiple loads, this returns true only if all of the loads are 1380 /// dereferenceable and invariant. 1381 bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const; 1382 1383 /// If the specified instruction is a PHI that always merges together the 1384 /// same virtual register, return the register, otherwise return 0. 1385 unsigned isConstantValuePHI() const; 1386 1387 /// Return true if this instruction has side effects that are not modeled 1388 /// by mayLoad / mayStore, etc. 1389 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1390 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1391 /// INLINEASM instruction, in which case the side effect property is encoded 1392 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1393 /// 1394 bool hasUnmodeledSideEffects() const; 1395 1396 /// Returns true if it is illegal to fold a load across this instruction. 1397 bool isLoadFoldBarrier() const; 1398 1399 /// Return true if all the defs of this instruction are dead. 1400 bool allDefsAreDead() const; 1401 1402 /// Copy implicit register operands from specified 1403 /// instruction to this instruction. 1404 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1405 1406 /// Debugging support 1407 /// @{ 1408 /// Determine the generic type to be printed (if needed) on uses and defs. 1409 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1410 const MachineRegisterInfo &MRI) const; 1411 1412 /// Return true when an instruction has tied register that can't be determined 1413 /// by the instruction's descriptor. This is useful for MIR printing, to 1414 /// determine whether we need to print the ties or not. 1415 bool hasComplexRegisterTies() const; 1416 1417 /// Print this MI to \p OS. 1418 /// Don't print information that can be inferred from other instructions if 1419 /// \p IsStandalone is false. It is usually true when only a fragment of the 1420 /// function is printed. 1421 /// Only print the defs and the opcode if \p SkipOpers is true. 1422 /// Otherwise, also print operands if \p SkipDebugLoc is true. 1423 /// Otherwise, also print the debug loc, with a terminating newline. 1424 /// \p TII is used to print the opcode name. If it's not present, but the 1425 /// MI is in a function, the opcode will be printed using the function's TII. 1426 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, 1427 bool SkipDebugLoc = false, bool AddNewLine = true, 1428 const TargetInstrInfo *TII = nullptr) const; 1429 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, 1430 bool SkipOpers = false, bool SkipDebugLoc = false, 1431 bool AddNewLine = true, 1432 const TargetInstrInfo *TII = nullptr) const; 1433 void dump() const; 1434 /// @} 1435 1436 //===--------------------------------------------------------------------===// 1437 // Accessors used to build up machine instructions. 1438 1439 /// Add the specified operand to the instruction. If it is an implicit 1440 /// operand, it is added to the end of the operand list. If it is an 1441 /// explicit operand it is added at the end of the explicit operand list 1442 /// (before the first implicit operand). 1443 /// 1444 /// MF must be the machine function that was used to allocate this 1445 /// instruction. 1446 /// 1447 /// MachineInstrBuilder provides a more convenient interface for creating 1448 /// instructions and adding operands. 1449 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1450 1451 /// Add an operand without providing an MF reference. This only works for 1452 /// instructions that are inserted in a basic block. 1453 /// 1454 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1455 /// preferred. 1456 void addOperand(const MachineOperand &Op); 1457 1458 /// Replace the instruction descriptor (thus opcode) of 1459 /// the current instruction with a new one. 1460 void setDesc(const MCInstrDesc &tid) { MCID = &tid; } 1461 1462 /// Replace current source information with new such. 1463 /// Avoid using this, the constructor argument is preferable. 1464 void setDebugLoc(DebugLoc dl) { 1465 debugLoc = std::move(dl); 1466 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1467 } 1468 1469 /// Erase an operand from an instruction, leaving it with one 1470 /// fewer operand than it started with. 1471 void RemoveOperand(unsigned OpNo); 1472 1473 /// Clear this MachineInstr's memory reference descriptor list. This resets 1474 /// the memrefs to their most conservative state. This should be used only 1475 /// as a last resort since it greatly pessimizes our knowledge of the memory 1476 /// access performed by the instruction. 1477 void dropMemRefs(MachineFunction &MF); 1478 1479 /// Assign this MachineInstr's memory reference descriptor list. 1480 /// 1481 /// Unlike other methods, this *will* allocate them into a new array 1482 /// associated with the provided `MachineFunction`. 1483 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); 1484 1485 /// Add a MachineMemOperand to the machine instruction. 1486 /// This function should be used only occasionally. The setMemRefs function 1487 /// is the primary method for setting up a MachineInstr's MemRefs list. 1488 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1489 1490 /// Clone another MachineInstr's memory reference descriptor list and replace 1491 /// ours with it. 1492 /// 1493 /// Note that `*this` may be the incoming MI! 1494 /// 1495 /// Prefer this API whenever possible as it can avoid allocations in common 1496 /// cases. 1497 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); 1498 1499 /// Clone the merge of multiple MachineInstrs' memory reference descriptors 1500 /// list and replace ours with it. 1501 /// 1502 /// Note that `*this` may be one of the incoming MIs! 1503 /// 1504 /// Prefer this API whenever possible as it can avoid allocations in common 1505 /// cases. 1506 void cloneMergedMemRefs(MachineFunction &MF, 1507 ArrayRef<const MachineInstr *> MIs); 1508 1509 /// Set a symbol that will be emitted just prior to the instruction itself. 1510 /// 1511 /// Setting this to a null pointer will remove any such symbol. 1512 /// 1513 /// FIXME: This is not fully implemented yet. 1514 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1515 1516 /// Set a symbol that will be emitted just after the instruction itself. 1517 /// 1518 /// Setting this to a null pointer will remove any such symbol. 1519 /// 1520 /// FIXME: This is not fully implemented yet. 1521 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1522 1523 /// Return the MIFlags which represent both MachineInstrs. This 1524 /// should be used when merging two MachineInstrs into one. This routine does 1525 /// not modify the MIFlags of this MachineInstr. 1526 uint16_t mergeFlagsWith(const MachineInstr& Other) const; 1527 1528 /// Copy all flags to MachineInst MIFlags 1529 void copyIRFlags(const Instruction &I); 1530 1531 /// Break any tie involving OpIdx. 1532 void untieRegOperand(unsigned OpIdx) { 1533 MachineOperand &MO = getOperand(OpIdx); 1534 if (MO.isReg() && MO.isTied()) { 1535 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1536 MO.TiedTo = 0; 1537 } 1538 } 1539 1540 /// Add all implicit def and use operands to this instruction. 1541 void addImplicitDefUseOperands(MachineFunction &MF); 1542 1543 /// Scan instructions following MI and collect any matching DBG_VALUEs. 1544 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); 1545 1546 /// Find all DBG_VALUEs immediately following this instruction that point 1547 /// to a register def in this instruction and point them to \p Reg instead. 1548 void changeDebugValuesDefReg(unsigned Reg); 1549 1550 private: 1551 /// If this instruction is embedded into a MachineFunction, return the 1552 /// MachineRegisterInfo object for the current function, otherwise 1553 /// return null. 1554 MachineRegisterInfo *getRegInfo(); 1555 1556 /// Unlink all of the register operands in this instruction from their 1557 /// respective use lists. This requires that the operands already be on their 1558 /// use lists. 1559 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 1560 1561 /// Add all of the register operands in this instruction from their 1562 /// respective use lists. This requires that the operands not be on their 1563 /// use lists yet. 1564 void AddRegOperandsToUseLists(MachineRegisterInfo&); 1565 1566 /// Slow path for hasProperty when we're dealing with a bundle. 1567 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; 1568 1569 /// Implements the logic of getRegClassConstraintEffectForVReg for the 1570 /// this MI and the given operand index \p OpIdx. 1571 /// If the related operand does not constrained Reg, this returns CurRC. 1572 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 1573 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1574 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 1575 }; 1576 1577 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 1578 /// instruction rather than by pointer value. 1579 /// The hashing and equality testing functions ignore definitions so this is 1580 /// useful for CSE, etc. 1581 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1582 static inline MachineInstr *getEmptyKey() { 1583 return nullptr; 1584 } 1585 1586 static inline MachineInstr *getTombstoneKey() { 1587 return reinterpret_cast<MachineInstr*>(-1); 1588 } 1589 1590 static unsigned getHashValue(const MachineInstr* const &MI); 1591 1592 static bool isEqual(const MachineInstr* const &LHS, 1593 const MachineInstr* const &RHS) { 1594 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1595 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1596 return LHS == RHS; 1597 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 1598 } 1599 }; 1600 1601 //===----------------------------------------------------------------------===// 1602 // Debugging Support 1603 1604 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1605 MI.print(OS); 1606 return OS; 1607 } 1608 1609 } // end namespace llvm 1610 1611 #endif // LLVM_CODEGEN_MACHINEINSTR_H 1612