1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
17 
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/ilist.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/ArrayRecycler.h"
32 #include "llvm/Support/TrailingObjects.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <utility>
37 
38 namespace llvm {
39 
40 template <typename T> class ArrayRef;
41 class DIExpression;
42 class DILocalVariable;
43 class MachineBasicBlock;
44 class MachineFunction;
45 class MachineMemOperand;
46 class MachineRegisterInfo;
47 class ModuleSlotTracker;
48 class raw_ostream;
49 template <typename T> class SmallVectorImpl;
50 class SmallBitVector;
51 class StringRef;
52 class TargetInstrInfo;
53 class TargetRegisterClass;
54 class TargetRegisterInfo;
55 
56 //===----------------------------------------------------------------------===//
57 /// Representation of each machine instruction.
58 ///
59 /// This class isn't a POD type, but it must have a trivial destructor. When a
60 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
61 /// without having their destructor called.
62 ///
63 class MachineInstr
64     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
65                                     ilist_sentinel_tracking<true>> {
66 public:
67   using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
68 
69   /// Flags to specify different kinds of comments to output in
70   /// assembly code.  These flags carry semantic information not
71   /// otherwise easily derivable from the IR text.
72   ///
73   enum CommentFlag {
74     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
75     NoSchedComment = 0x2,
76     TAsmComments = 0x4    // Target Asm comments should start from this value.
77   };
78 
79   enum MIFlag {
80     NoFlags      = 0,
81     FrameSetup   = 1 << 0,              // Instruction is used as a part of
82                                         // function frame setup code.
83     FrameDestroy = 1 << 1,              // Instruction is used as a part of
84                                         // function frame destruction code.
85     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
86     BundledSucc  = 1 << 3,              // Instruction has bundled successors.
87     FmNoNans     = 1 << 4,              // Instruction does not support Fast
88                                         // math nan values.
89     FmNoInfs     = 1 << 5,              // Instruction does not support Fast
90                                         // math infinity values.
91     FmNsz        = 1 << 6,              // Instruction is not required to retain
92                                         // signed zero values.
93     FmArcp       = 1 << 7,              // Instruction supports Fast math
94                                         // reciprocal approximations.
95     FmContract   = 1 << 8,              // Instruction supports Fast math
96                                         // contraction operations like fma.
97     FmAfn        = 1 << 9,              // Instruction may map to Fast math
98                                         // instrinsic approximation.
99     FmReassoc    = 1 << 10,             // Instruction supports Fast math
100                                         // reassociation of operand order.
101     NoUWrap      = 1 << 11,             // Instruction supports binary operator
102                                         // no unsigned wrap.
103     NoSWrap      = 1 << 12,             // Instruction supports binary operator
104                                         // no signed wrap.
105     IsExact      = 1 << 13              // Instruction supports division is
106                                         // known to be exact.
107   };
108 
109 private:
110   const MCInstrDesc *MCID;              // Instruction descriptor.
111   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
112 
113   // Operands are allocated by an ArrayRecycler.
114   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
115   unsigned NumOperands = 0;             // Number of operands on instruction.
116   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
117   OperandCapacity CapOperands;          // Capacity of the Operands array.
118 
119   uint16_t Flags = 0;                   // Various bits of additional
120                                         // information about machine
121                                         // instruction.
122 
123   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
124                                         // the AsmPrinter to emit helpful
125                                         // comments.  This is *not* semantic
126                                         // information.  Do not use this for
127                                         // anything other than to convey comment
128                                         // information to AsmPrinter.
129 
130   /// Internal implementation detail class that provides out-of-line storage for
131   /// extra info used by the machine instruction when this info cannot be stored
132   /// in-line within the instruction itself.
133   ///
134   /// This has to be defined eagerly due to the implementation constraints of
135   /// `PointerSumType` where it is used.
136   class ExtraInfo final
137       : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *> {
138   public:
139     static ExtraInfo *create(BumpPtrAllocator &Allocator,
140                              ArrayRef<MachineMemOperand *> MMOs,
141                              MCSymbol *PreInstrSymbol = nullptr,
142                              MCSymbol *PostInstrSymbol = nullptr) {
143       bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
144       bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
145       auto *Result = new (Allocator.Allocate(
146           totalSizeToAlloc<MachineMemOperand *, MCSymbol *>(
147               MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol),
148           alignof(ExtraInfo)))
149           ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol);
150 
151       // Copy the actual data into the trailing objects.
152       std::copy(MMOs.begin(), MMOs.end(),
153                 Result->getTrailingObjects<MachineMemOperand *>());
154 
155       if (HasPreInstrSymbol)
156         Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
157       if (HasPostInstrSymbol)
158         Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
159             PostInstrSymbol;
160 
161       return Result;
162     }
163 
164     ArrayRef<MachineMemOperand *> getMMOs() const {
165       return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
166     }
167 
168     MCSymbol *getPreInstrSymbol() const {
169       return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
170     }
171 
172     MCSymbol *getPostInstrSymbol() const {
173       return HasPostInstrSymbol
174                  ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
175                  : nullptr;
176     }
177 
178   private:
179     friend TrailingObjects;
180 
181     // Description of the extra info, used to interpret the actual optional
182     // data appended.
183     //
184     // Note that this is not terribly space optimized. This leaves a great deal
185     // of flexibility to fit more in here later.
186     const int NumMMOs;
187     const bool HasPreInstrSymbol;
188     const bool HasPostInstrSymbol;
189 
190     // Implement the `TrailingObjects` internal API.
191     size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
192       return NumMMOs;
193     }
194     size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
195       return HasPreInstrSymbol + HasPostInstrSymbol;
196     }
197 
198     // Just a boring constructor to allow us to initialize the sizes. Always use
199     // the `create` routine above.
200     ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol)
201         : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
202           HasPostInstrSymbol(HasPostInstrSymbol) {}
203   };
204 
205   /// Enumeration of the kinds of inline extra info available. It is important
206   /// that the `MachineMemOperand` inline kind has a tag value of zero to make
207   /// it accessible as an `ArrayRef`.
208   enum ExtraInfoInlineKinds {
209     EIIK_MMO = 0,
210     EIIK_PreInstrSymbol,
211     EIIK_PostInstrSymbol,
212     EIIK_OutOfLine
213   };
214 
215   // We store extra information about the instruction here. The common case is
216   // expected to be nothing or a single pointer (typically a MMO or a symbol).
217   // We work to optimize this common case by storing it inline here rather than
218   // requiring a separate allocation, but we fall back to an allocation when
219   // multiple pointers are needed.
220   PointerSumType<ExtraInfoInlineKinds,
221                  PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
222                  PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
223                  PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
224                  PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
225       Info;
226 
227   DebugLoc debugLoc;                    // Source line information.
228 
229   // Intrusive list support
230   friend struct ilist_traits<MachineInstr>;
231   friend struct ilist_callback_traits<MachineBasicBlock>;
232   void setParent(MachineBasicBlock *P) { Parent = P; }
233 
234   /// This constructor creates a copy of the given
235   /// MachineInstr in the given MachineFunction.
236   MachineInstr(MachineFunction &, const MachineInstr &);
237 
238   /// This constructor create a MachineInstr and add the implicit operands.
239   /// It reserves space for number of operands specified by
240   /// MCInstrDesc.  An explicit DebugLoc is supplied.
241   MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
242                bool NoImp = false);
243 
244   // MachineInstrs are pool-allocated and owned by MachineFunction.
245   friend class MachineFunction;
246 
247 public:
248   MachineInstr(const MachineInstr &) = delete;
249   MachineInstr &operator=(const MachineInstr &) = delete;
250   // Use MachineFunction::DeleteMachineInstr() instead.
251   ~MachineInstr() = delete;
252 
253   const MachineBasicBlock* getParent() const { return Parent; }
254   MachineBasicBlock* getParent() { return Parent; }
255 
256   /// Return the function that contains the basic block that this instruction
257   /// belongs to.
258   ///
259   /// Note: this is undefined behaviour if the instruction does not have a
260   /// parent.
261   const MachineFunction *getMF() const;
262   MachineFunction *getMF() {
263     return const_cast<MachineFunction *>(
264         static_cast<const MachineInstr *>(this)->getMF());
265   }
266 
267   /// Return the asm printer flags bitvector.
268   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
269 
270   /// Clear the AsmPrinter bitvector.
271   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
272 
273   /// Return whether an AsmPrinter flag is set.
274   bool getAsmPrinterFlag(CommentFlag Flag) const {
275     return AsmPrinterFlags & Flag;
276   }
277 
278   /// Set a flag for the AsmPrinter.
279   void setAsmPrinterFlag(uint8_t Flag) {
280     AsmPrinterFlags |= Flag;
281   }
282 
283   /// Clear specific AsmPrinter flags.
284   void clearAsmPrinterFlag(CommentFlag Flag) {
285     AsmPrinterFlags &= ~Flag;
286   }
287 
288   /// Return the MI flags bitvector.
289   uint16_t getFlags() const {
290     return Flags;
291   }
292 
293   /// Return whether an MI flag is set.
294   bool getFlag(MIFlag Flag) const {
295     return Flags & Flag;
296   }
297 
298   /// Set a MI flag.
299   void setFlag(MIFlag Flag) {
300     Flags |= (uint16_t)Flag;
301   }
302 
303   void setFlags(unsigned flags) {
304     // Filter out the automatically maintained flags.
305     unsigned Mask = BundledPred | BundledSucc;
306     Flags = (Flags & Mask) | (flags & ~Mask);
307   }
308 
309   /// clearFlag - Clear a MI flag.
310   void clearFlag(MIFlag Flag) {
311     Flags &= ~((uint16_t)Flag);
312   }
313 
314   /// Return true if MI is in a bundle (but not the first MI in a bundle).
315   ///
316   /// A bundle looks like this before it's finalized:
317   ///   ----------------
318   ///   |      MI      |
319   ///   ----------------
320   ///          |
321   ///   ----------------
322   ///   |      MI    * |
323   ///   ----------------
324   ///          |
325   ///   ----------------
326   ///   |      MI    * |
327   ///   ----------------
328   /// In this case, the first MI starts a bundle but is not inside a bundle, the
329   /// next 2 MIs are considered "inside" the bundle.
330   ///
331   /// After a bundle is finalized, it looks like this:
332   ///   ----------------
333   ///   |    Bundle    |
334   ///   ----------------
335   ///          |
336   ///   ----------------
337   ///   |      MI    * |
338   ///   ----------------
339   ///          |
340   ///   ----------------
341   ///   |      MI    * |
342   ///   ----------------
343   ///          |
344   ///   ----------------
345   ///   |      MI    * |
346   ///   ----------------
347   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
348   /// a bundle, but the next three MIs are.
349   bool isInsideBundle() const {
350     return getFlag(BundledPred);
351   }
352 
353   /// Return true if this instruction part of a bundle. This is true
354   /// if either itself or its following instruction is marked "InsideBundle".
355   bool isBundled() const {
356     return isBundledWithPred() || isBundledWithSucc();
357   }
358 
359   /// Return true if this instruction is part of a bundle, and it is not the
360   /// first instruction in the bundle.
361   bool isBundledWithPred() const { return getFlag(BundledPred); }
362 
363   /// Return true if this instruction is part of a bundle, and it is not the
364   /// last instruction in the bundle.
365   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
366 
367   /// Bundle this instruction with its predecessor. This can be an unbundled
368   /// instruction, or it can be the first instruction in a bundle.
369   void bundleWithPred();
370 
371   /// Bundle this instruction with its successor. This can be an unbundled
372   /// instruction, or it can be the last instruction in a bundle.
373   void bundleWithSucc();
374 
375   /// Break bundle above this instruction.
376   void unbundleFromPred();
377 
378   /// Break bundle below this instruction.
379   void unbundleFromSucc();
380 
381   /// Returns the debug location id of this MachineInstr.
382   const DebugLoc &getDebugLoc() const { return debugLoc; }
383 
384   /// Return the debug variable referenced by
385   /// this DBG_VALUE instruction.
386   const DILocalVariable *getDebugVariable() const;
387 
388   /// Return the complex address expression referenced by
389   /// this DBG_VALUE instruction.
390   const DIExpression *getDebugExpression() const;
391 
392   /// Return the debug label referenced by
393   /// this DBG_LABEL instruction.
394   const DILabel *getDebugLabel() const;
395 
396   /// Emit an error referring to the source location of this instruction.
397   /// This should only be used for inline assembly that is somehow
398   /// impossible to compile. Other errors should have been handled much
399   /// earlier.
400   ///
401   /// If this method returns, the caller should try to recover from the error.
402   void emitError(StringRef Msg) const;
403 
404   /// Returns the target instruction descriptor of this MachineInstr.
405   const MCInstrDesc &getDesc() const { return *MCID; }
406 
407   /// Returns the opcode of this MachineInstr.
408   unsigned getOpcode() const { return MCID->Opcode; }
409 
410   /// Retuns the total number of operands.
411   unsigned getNumOperands() const { return NumOperands; }
412 
413   const MachineOperand& getOperand(unsigned i) const {
414     assert(i < getNumOperands() && "getOperand() out of range!");
415     return Operands[i];
416   }
417   MachineOperand& getOperand(unsigned i) {
418     assert(i < getNumOperands() && "getOperand() out of range!");
419     return Operands[i];
420   }
421 
422   /// Returns the total number of definitions.
423   unsigned getNumDefs() const {
424     return getNumExplicitDefs() + MCID->getNumImplicitDefs();
425   }
426 
427   /// Return true if operand \p OpIdx is a subregister index.
428   bool isOperandSubregIdx(unsigned OpIdx) const {
429     assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
430            "Expected MO_Immediate operand type.");
431     if (isExtractSubreg() && OpIdx == 2)
432       return true;
433     if (isInsertSubreg() && OpIdx == 3)
434       return true;
435     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
436       return true;
437     if (isSubregToReg() && OpIdx == 3)
438       return true;
439     return false;
440   }
441 
442   /// Returns the number of non-implicit operands.
443   unsigned getNumExplicitOperands() const;
444 
445   /// Returns the number of non-implicit definitions.
446   unsigned getNumExplicitDefs() const;
447 
448   /// iterator/begin/end - Iterate over all operands of a machine instruction.
449   using mop_iterator = MachineOperand *;
450   using const_mop_iterator = const MachineOperand *;
451 
452   mop_iterator operands_begin() { return Operands; }
453   mop_iterator operands_end() { return Operands + NumOperands; }
454 
455   const_mop_iterator operands_begin() const { return Operands; }
456   const_mop_iterator operands_end() const { return Operands + NumOperands; }
457 
458   iterator_range<mop_iterator> operands() {
459     return make_range(operands_begin(), operands_end());
460   }
461   iterator_range<const_mop_iterator> operands() const {
462     return make_range(operands_begin(), operands_end());
463   }
464   iterator_range<mop_iterator> explicit_operands() {
465     return make_range(operands_begin(),
466                       operands_begin() + getNumExplicitOperands());
467   }
468   iterator_range<const_mop_iterator> explicit_operands() const {
469     return make_range(operands_begin(),
470                       operands_begin() + getNumExplicitOperands());
471   }
472   iterator_range<mop_iterator> implicit_operands() {
473     return make_range(explicit_operands().end(), operands_end());
474   }
475   iterator_range<const_mop_iterator> implicit_operands() const {
476     return make_range(explicit_operands().end(), operands_end());
477   }
478   /// Returns a range over all explicit operands that are register definitions.
479   /// Implicit definition are not included!
480   iterator_range<mop_iterator> defs() {
481     return make_range(operands_begin(),
482                       operands_begin() + getNumExplicitDefs());
483   }
484   /// \copydoc defs()
485   iterator_range<const_mop_iterator> defs() const {
486     return make_range(operands_begin(),
487                       operands_begin() + getNumExplicitDefs());
488   }
489   /// Returns a range that includes all operands that are register uses.
490   /// This may include unrelated operands which are not register uses.
491   iterator_range<mop_iterator> uses() {
492     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
493   }
494   /// \copydoc uses()
495   iterator_range<const_mop_iterator> uses() const {
496     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
497   }
498   iterator_range<mop_iterator> explicit_uses() {
499     return make_range(operands_begin() + getNumExplicitDefs(),
500                       operands_begin() + getNumExplicitOperands());
501   }
502   iterator_range<const_mop_iterator> explicit_uses() const {
503     return make_range(operands_begin() + getNumExplicitDefs(),
504                       operands_begin() + getNumExplicitOperands());
505   }
506 
507   /// Returns the number of the operand iterator \p I points to.
508   unsigned getOperandNo(const_mop_iterator I) const {
509     return I - operands_begin();
510   }
511 
512   /// Access to memory operands of the instruction. If there are none, that does
513   /// not imply anything about whether the function accesses memory. Instead,
514   /// the caller must behave conservatively.
515   ArrayRef<MachineMemOperand *> memoperands() const {
516     if (!Info)
517       return {};
518 
519     if (Info.is<EIIK_MMO>())
520       return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
521 
522     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
523       return EI->getMMOs();
524 
525     return {};
526   }
527 
528   /// Access to memory operands of the instruction.
529   ///
530   /// If `memoperands_begin() == memoperands_end()`, that does not imply
531   /// anything about whether the function accesses memory. Instead, the caller
532   /// must behave conservatively.
533   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
534 
535   /// Access to memory operands of the instruction.
536   ///
537   /// If `memoperands_begin() == memoperands_end()`, that does not imply
538   /// anything about whether the function accesses memory. Instead, the caller
539   /// must behave conservatively.
540   mmo_iterator memoperands_end() const { return memoperands().end(); }
541 
542   /// Return true if we don't have any memory operands which described the
543   /// memory access done by this instruction.  If this is true, calling code
544   /// must be conservative.
545   bool memoperands_empty() const { return memoperands().empty(); }
546 
547   /// Return true if this instruction has exactly one MachineMemOperand.
548   bool hasOneMemOperand() const { return memoperands().size() == 1; }
549 
550   /// Return the number of memory operands.
551   unsigned getNumMemOperands() const { return memoperands().size(); }
552 
553   /// Helper to extract a pre-instruction symbol if one has been added.
554   MCSymbol *getPreInstrSymbol() const {
555     if (!Info)
556       return nullptr;
557     if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
558       return S;
559     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
560       return EI->getPreInstrSymbol();
561 
562     return nullptr;
563   }
564 
565   /// Helper to extract a post-instruction symbol if one has been added.
566   MCSymbol *getPostInstrSymbol() const {
567     if (!Info)
568       return nullptr;
569     if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
570       return S;
571     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
572       return EI->getPostInstrSymbol();
573 
574     return nullptr;
575   }
576 
577   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
578   /// queries but they are bundle aware.
579 
580   enum QueryType {
581     IgnoreBundle,    // Ignore bundles
582     AnyInBundle,     // Return true if any instruction in bundle has property
583     AllInBundle      // Return true if all instructions in bundle have property
584   };
585 
586   /// Return true if the instruction (or in the case of a bundle,
587   /// the instructions inside the bundle) has the specified property.
588   /// The first argument is the property being queried.
589   /// The second argument indicates whether the query should look inside
590   /// instruction bundles.
591   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
592     assert(MCFlag < 64 &&
593            "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
594     // Inline the fast path for unbundled or bundle-internal instructions.
595     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
596       return getDesc().getFlags() & (1ULL << MCFlag);
597 
598     // If this is the first instruction in a bundle, take the slow path.
599     return hasPropertyInBundle(1ULL << MCFlag, Type);
600   }
601 
602   /// Return true if this instruction can have a variable number of operands.
603   /// In this case, the variable operands will be after the normal
604   /// operands but before the implicit definitions and uses (if any are
605   /// present).
606   bool isVariadic(QueryType Type = IgnoreBundle) const {
607     return hasProperty(MCID::Variadic, Type);
608   }
609 
610   /// Set if this instruction has an optional definition, e.g.
611   /// ARM instructions which can set condition code if 's' bit is set.
612   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
613     return hasProperty(MCID::HasOptionalDef, Type);
614   }
615 
616   /// Return true if this is a pseudo instruction that doesn't
617   /// correspond to a real machine instruction.
618   bool isPseudo(QueryType Type = IgnoreBundle) const {
619     return hasProperty(MCID::Pseudo, Type);
620   }
621 
622   bool isReturn(QueryType Type = AnyInBundle) const {
623     return hasProperty(MCID::Return, Type);
624   }
625 
626   /// Return true if this is an instruction that marks the end of an EH scope,
627   /// i.e., a catchpad or a cleanuppad instruction.
628   bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
629     return hasProperty(MCID::EHScopeReturn, Type);
630   }
631 
632   bool isCall(QueryType Type = AnyInBundle) const {
633     return hasProperty(MCID::Call, Type);
634   }
635 
636   /// Returns true if the specified instruction stops control flow
637   /// from executing the instruction immediately following it.  Examples include
638   /// unconditional branches and return instructions.
639   bool isBarrier(QueryType Type = AnyInBundle) const {
640     return hasProperty(MCID::Barrier, Type);
641   }
642 
643   /// Returns true if this instruction part of the terminator for a basic block.
644   /// Typically this is things like return and branch instructions.
645   ///
646   /// Various passes use this to insert code into the bottom of a basic block,
647   /// but before control flow occurs.
648   bool isTerminator(QueryType Type = AnyInBundle) const {
649     return hasProperty(MCID::Terminator, Type);
650   }
651 
652   /// Returns true if this is a conditional, unconditional, or indirect branch.
653   /// Predicates below can be used to discriminate between
654   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
655   /// get more information.
656   bool isBranch(QueryType Type = AnyInBundle) const {
657     return hasProperty(MCID::Branch, Type);
658   }
659 
660   /// Return true if this is an indirect branch, such as a
661   /// branch through a register.
662   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
663     return hasProperty(MCID::IndirectBranch, Type);
664   }
665 
666   /// Return true if this is a branch which may fall
667   /// through to the next instruction or may transfer control flow to some other
668   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
669   /// information about this branch.
670   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
671     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
672   }
673 
674   /// Return true if this is a branch which always
675   /// transfers control flow to some other block.  The
676   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
677   /// about this branch.
678   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
679     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
680   }
681 
682   /// Return true if this instruction has a predicate operand that
683   /// controls execution.  It may be set to 'always', or may be set to other
684   /// values.   There are various methods in TargetInstrInfo that can be used to
685   /// control and modify the predicate in this instruction.
686   bool isPredicable(QueryType Type = AllInBundle) const {
687     // If it's a bundle than all bundled instructions must be predicable for this
688     // to return true.
689     return hasProperty(MCID::Predicable, Type);
690   }
691 
692   /// Return true if this instruction is a comparison.
693   bool isCompare(QueryType Type = IgnoreBundle) const {
694     return hasProperty(MCID::Compare, Type);
695   }
696 
697   /// Return true if this instruction is a move immediate
698   /// (including conditional moves) instruction.
699   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
700     return hasProperty(MCID::MoveImm, Type);
701   }
702 
703   /// Return true if this instruction is a register move.
704   /// (including moving values from subreg to reg)
705   bool isMoveReg(QueryType Type = IgnoreBundle) const {
706     return hasProperty(MCID::MoveReg, Type);
707   }
708 
709   /// Return true if this instruction is a bitcast instruction.
710   bool isBitcast(QueryType Type = IgnoreBundle) const {
711     return hasProperty(MCID::Bitcast, Type);
712   }
713 
714   /// Return true if this instruction is a select instruction.
715   bool isSelect(QueryType Type = IgnoreBundle) const {
716     return hasProperty(MCID::Select, Type);
717   }
718 
719   /// Return true if this instruction cannot be safely duplicated.
720   /// For example, if the instruction has a unique labels attached
721   /// to it, duplicating it would cause multiple definition errors.
722   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
723     return hasProperty(MCID::NotDuplicable, Type);
724   }
725 
726   /// Return true if this instruction is convergent.
727   /// Convergent instructions can not be made control-dependent on any
728   /// additional values.
729   bool isConvergent(QueryType Type = AnyInBundle) const {
730     if (isInlineAsm()) {
731       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
732       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
733         return true;
734     }
735     return hasProperty(MCID::Convergent, Type);
736   }
737 
738   /// Returns true if the specified instruction has a delay slot
739   /// which must be filled by the code generator.
740   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
741     return hasProperty(MCID::DelaySlot, Type);
742   }
743 
744   /// Return true for instructions that can be folded as
745   /// memory operands in other instructions. The most common use for this
746   /// is instructions that are simple loads from memory that don't modify
747   /// the loaded value in any way, but it can also be used for instructions
748   /// that can be expressed as constant-pool loads, such as V_SETALLONES
749   /// on x86, to allow them to be folded when it is beneficial.
750   /// This should only be set on instructions that return a value in their
751   /// only virtual register definition.
752   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
753     return hasProperty(MCID::FoldableAsLoad, Type);
754   }
755 
756   /// Return true if this instruction behaves
757   /// the same way as the generic REG_SEQUENCE instructions.
758   /// E.g., on ARM,
759   /// dX VMOVDRR rY, rZ
760   /// is equivalent to
761   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
762   ///
763   /// Note that for the optimizers to be able to take advantage of
764   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
765   /// override accordingly.
766   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
767     return hasProperty(MCID::RegSequence, Type);
768   }
769 
770   /// Return true if this instruction behaves
771   /// the same way as the generic EXTRACT_SUBREG instructions.
772   /// E.g., on ARM,
773   /// rX, rY VMOVRRD dZ
774   /// is equivalent to two EXTRACT_SUBREG:
775   /// rX = EXTRACT_SUBREG dZ, ssub_0
776   /// rY = EXTRACT_SUBREG dZ, ssub_1
777   ///
778   /// Note that for the optimizers to be able to take advantage of
779   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
780   /// override accordingly.
781   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
782     return hasProperty(MCID::ExtractSubreg, Type);
783   }
784 
785   /// Return true if this instruction behaves
786   /// the same way as the generic INSERT_SUBREG instructions.
787   /// E.g., on ARM,
788   /// dX = VSETLNi32 dY, rZ, Imm
789   /// is equivalent to a INSERT_SUBREG:
790   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
791   ///
792   /// Note that for the optimizers to be able to take advantage of
793   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
794   /// override accordingly.
795   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
796     return hasProperty(MCID::InsertSubreg, Type);
797   }
798 
799   //===--------------------------------------------------------------------===//
800   // Side Effect Analysis
801   //===--------------------------------------------------------------------===//
802 
803   /// Return true if this instruction could possibly read memory.
804   /// Instructions with this flag set are not necessarily simple load
805   /// instructions, they may load a value and modify it, for example.
806   bool mayLoad(QueryType Type = AnyInBundle) const {
807     if (isInlineAsm()) {
808       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
809       if (ExtraInfo & InlineAsm::Extra_MayLoad)
810         return true;
811     }
812     return hasProperty(MCID::MayLoad, Type);
813   }
814 
815   /// Return true if this instruction could possibly modify memory.
816   /// Instructions with this flag set are not necessarily simple store
817   /// instructions, they may store a modified value based on their operands, or
818   /// may not actually modify anything, for example.
819   bool mayStore(QueryType Type = AnyInBundle) const {
820     if (isInlineAsm()) {
821       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
822       if (ExtraInfo & InlineAsm::Extra_MayStore)
823         return true;
824     }
825     return hasProperty(MCID::MayStore, Type);
826   }
827 
828   /// Return true if this instruction could possibly read or modify memory.
829   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
830     return mayLoad(Type) || mayStore(Type);
831   }
832 
833   //===--------------------------------------------------------------------===//
834   // Flags that indicate whether an instruction can be modified by a method.
835   //===--------------------------------------------------------------------===//
836 
837   /// Return true if this may be a 2- or 3-address
838   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
839   /// result if Y and Z are exchanged.  If this flag is set, then the
840   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
841   /// instruction.
842   ///
843   /// Note that this flag may be set on instructions that are only commutable
844   /// sometimes.  In these cases, the call to commuteInstruction will fail.
845   /// Also note that some instructions require non-trivial modification to
846   /// commute them.
847   bool isCommutable(QueryType Type = IgnoreBundle) const {
848     return hasProperty(MCID::Commutable, Type);
849   }
850 
851   /// Return true if this is a 2-address instruction
852   /// which can be changed into a 3-address instruction if needed.  Doing this
853   /// transformation can be profitable in the register allocator, because it
854   /// means that the instruction can use a 2-address form if possible, but
855   /// degrade into a less efficient form if the source and dest register cannot
856   /// be assigned to the same register.  For example, this allows the x86
857   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
858   /// is the same speed as the shift but has bigger code size.
859   ///
860   /// If this returns true, then the target must implement the
861   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
862   /// is allowed to fail if the transformation isn't valid for this specific
863   /// instruction (e.g. shl reg, 4 on x86).
864   ///
865   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
866     return hasProperty(MCID::ConvertibleTo3Addr, Type);
867   }
868 
869   /// Return true if this instruction requires
870   /// custom insertion support when the DAG scheduler is inserting it into a
871   /// machine basic block.  If this is true for the instruction, it basically
872   /// means that it is a pseudo instruction used at SelectionDAG time that is
873   /// expanded out into magic code by the target when MachineInstrs are formed.
874   ///
875   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
876   /// is used to insert this into the MachineBasicBlock.
877   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
878     return hasProperty(MCID::UsesCustomInserter, Type);
879   }
880 
881   /// Return true if this instruction requires *adjustment*
882   /// after instruction selection by calling a target hook. For example, this
883   /// can be used to fill in ARM 's' optional operand depending on whether
884   /// the conditional flag register is used.
885   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
886     return hasProperty(MCID::HasPostISelHook, Type);
887   }
888 
889   /// Returns true if this instruction is a candidate for remat.
890   /// This flag is deprecated, please don't use it anymore.  If this
891   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
892   /// verify the instruction is really rematable.
893   bool isRematerializable(QueryType Type = AllInBundle) const {
894     // It's only possible to re-mat a bundle if all bundled instructions are
895     // re-materializable.
896     return hasProperty(MCID::Rematerializable, Type);
897   }
898 
899   /// Returns true if this instruction has the same cost (or less) than a move
900   /// instruction. This is useful during certain types of optimizations
901   /// (e.g., remat during two-address conversion or machine licm)
902   /// where we would like to remat or hoist the instruction, but not if it costs
903   /// more than moving the instruction into the appropriate register. Note, we
904   /// are not marking copies from and to the same register class with this flag.
905   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
906     // Only returns true for a bundle if all bundled instructions are cheap.
907     return hasProperty(MCID::CheapAsAMove, Type);
908   }
909 
910   /// Returns true if this instruction source operands
911   /// have special register allocation requirements that are not captured by the
912   /// operand register classes. e.g. ARM::STRD's two source registers must be an
913   /// even / odd pair, ARM::STM registers have to be in ascending order.
914   /// Post-register allocation passes should not attempt to change allocations
915   /// for sources of instructions with this flag.
916   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
917     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
918   }
919 
920   /// Returns true if this instruction def operands
921   /// have special register allocation requirements that are not captured by the
922   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
923   /// even / odd pair, ARM::LDM registers have to be in ascending order.
924   /// Post-register allocation passes should not attempt to change allocations
925   /// for definitions of instructions with this flag.
926   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
927     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
928   }
929 
930   enum MICheckType {
931     CheckDefs,      // Check all operands for equality
932     CheckKillDead,  // Check all operands including kill / dead markers
933     IgnoreDefs,     // Ignore all definitions
934     IgnoreVRegDefs  // Ignore virtual register definitions
935   };
936 
937   /// Return true if this instruction is identical to \p Other.
938   /// Two instructions are identical if they have the same opcode and all their
939   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
940   /// Note that this means liveness related flags (dead, undef, kill) do not
941   /// affect the notion of identical.
942   bool isIdenticalTo(const MachineInstr &Other,
943                      MICheckType Check = CheckDefs) const;
944 
945   /// Unlink 'this' from the containing basic block, and return it without
946   /// deleting it.
947   ///
948   /// This function can not be used on bundled instructions, use
949   /// removeFromBundle() to remove individual instructions from a bundle.
950   MachineInstr *removeFromParent();
951 
952   /// Unlink this instruction from its basic block and return it without
953   /// deleting it.
954   ///
955   /// If the instruction is part of a bundle, the other instructions in the
956   /// bundle remain bundled.
957   MachineInstr *removeFromBundle();
958 
959   /// Unlink 'this' from the containing basic block and delete it.
960   ///
961   /// If this instruction is the header of a bundle, the whole bundle is erased.
962   /// This function can not be used for instructions inside a bundle, use
963   /// eraseFromBundle() to erase individual bundled instructions.
964   void eraseFromParent();
965 
966   /// Unlink 'this' from the containing basic block and delete it.
967   ///
968   /// For all definitions mark their uses in DBG_VALUE nodes
969   /// as undefined. Otherwise like eraseFromParent().
970   void eraseFromParentAndMarkDBGValuesForRemoval();
971 
972   /// Unlink 'this' form its basic block and delete it.
973   ///
974   /// If the instruction is part of a bundle, the other instructions in the
975   /// bundle remain bundled.
976   void eraseFromBundle();
977 
978   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
979   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
980   bool isAnnotationLabel() const {
981     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
982   }
983 
984   /// Returns true if the MachineInstr represents a label.
985   bool isLabel() const {
986     return isEHLabel() || isGCLabel() || isAnnotationLabel();
987   }
988 
989   bool isCFIInstruction() const {
990     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
991   }
992 
993   // True if the instruction represents a position in the function.
994   bool isPosition() const { return isLabel() || isCFIInstruction(); }
995 
996   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
997   bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
998   bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); }
999 
1000   /// A DBG_VALUE is indirect iff the first operand is a register and
1001   /// the second operand is an immediate.
1002   bool isIndirectDebugValue() const {
1003     return isDebugValue()
1004       && getOperand(0).isReg()
1005       && getOperand(1).isImm();
1006   }
1007 
1008   bool isPHI() const {
1009     return getOpcode() == TargetOpcode::PHI ||
1010            getOpcode() == TargetOpcode::G_PHI;
1011   }
1012   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1013   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1014   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
1015 
1016   bool isMSInlineAsm() const {
1017     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
1018   }
1019 
1020   bool isStackAligningInlineAsm() const;
1021   InlineAsm::AsmDialect getInlineAsmDialect() const;
1022 
1023   bool isInsertSubreg() const {
1024     return getOpcode() == TargetOpcode::INSERT_SUBREG;
1025   }
1026 
1027   bool isSubregToReg() const {
1028     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1029   }
1030 
1031   bool isRegSequence() const {
1032     return getOpcode() == TargetOpcode::REG_SEQUENCE;
1033   }
1034 
1035   bool isBundle() const {
1036     return getOpcode() == TargetOpcode::BUNDLE;
1037   }
1038 
1039   bool isCopy() const {
1040     return getOpcode() == TargetOpcode::COPY;
1041   }
1042 
1043   bool isFullCopy() const {
1044     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1045   }
1046 
1047   bool isExtractSubreg() const {
1048     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1049   }
1050 
1051   /// Return true if the instruction behaves like a copy.
1052   /// This does not include native copy instructions.
1053   bool isCopyLike() const {
1054     return isCopy() || isSubregToReg();
1055   }
1056 
1057   /// Return true is the instruction is an identity copy.
1058   bool isIdentityCopy() const {
1059     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1060       getOperand(0).getSubReg() == getOperand(1).getSubReg();
1061   }
1062 
1063   /// Return true if this instruction doesn't produce any output in the form of
1064   /// executable instructions.
1065   bool isMetaInstruction() const {
1066     switch (getOpcode()) {
1067     default:
1068       return false;
1069     case TargetOpcode::IMPLICIT_DEF:
1070     case TargetOpcode::KILL:
1071     case TargetOpcode::CFI_INSTRUCTION:
1072     case TargetOpcode::EH_LABEL:
1073     case TargetOpcode::GC_LABEL:
1074     case TargetOpcode::DBG_VALUE:
1075     case TargetOpcode::DBG_LABEL:
1076     case TargetOpcode::LIFETIME_START:
1077     case TargetOpcode::LIFETIME_END:
1078       return true;
1079     }
1080   }
1081 
1082   /// Return true if this is a transient instruction that is either very likely
1083   /// to be eliminated during register allocation (such as copy-like
1084   /// instructions), or if this instruction doesn't have an execution-time cost.
1085   bool isTransient() const {
1086     switch (getOpcode()) {
1087     default:
1088       return isMetaInstruction();
1089     // Copy-like instructions are usually eliminated during register allocation.
1090     case TargetOpcode::PHI:
1091     case TargetOpcode::G_PHI:
1092     case TargetOpcode::COPY:
1093     case TargetOpcode::INSERT_SUBREG:
1094     case TargetOpcode::SUBREG_TO_REG:
1095     case TargetOpcode::REG_SEQUENCE:
1096       return true;
1097     }
1098   }
1099 
1100   /// Return the number of instructions inside the MI bundle, excluding the
1101   /// bundle header.
1102   ///
1103   /// This is the number of instructions that MachineBasicBlock::iterator
1104   /// skips, 0 for unbundled instructions.
1105   unsigned getBundleSize() const;
1106 
1107   /// Return true if the MachineInstr reads the specified register.
1108   /// If TargetRegisterInfo is passed, then it also checks if there
1109   /// is a read of a super-register.
1110   /// This does not count partial redefines of virtual registers as reads:
1111   ///   %reg1024:6 = OP.
1112   bool readsRegister(unsigned Reg,
1113                      const TargetRegisterInfo *TRI = nullptr) const {
1114     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1115   }
1116 
1117   /// Return true if the MachineInstr reads the specified virtual register.
1118   /// Take into account that a partial define is a
1119   /// read-modify-write operation.
1120   bool readsVirtualRegister(unsigned Reg) const {
1121     return readsWritesVirtualRegister(Reg).first;
1122   }
1123 
1124   /// Return a pair of bools (reads, writes) indicating if this instruction
1125   /// reads or writes Reg. This also considers partial defines.
1126   /// If Ops is not null, all operand indices for Reg are added.
1127   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
1128                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1129 
1130   /// Return true if the MachineInstr kills the specified register.
1131   /// If TargetRegisterInfo is passed, then it also checks if there is
1132   /// a kill of a super-register.
1133   bool killsRegister(unsigned Reg,
1134                      const TargetRegisterInfo *TRI = nullptr) const {
1135     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1136   }
1137 
1138   /// Return true if the MachineInstr fully defines the specified register.
1139   /// If TargetRegisterInfo is passed, then it also checks
1140   /// if there is a def of a super-register.
1141   /// NOTE: It's ignoring subreg indices on virtual registers.
1142   bool definesRegister(unsigned Reg,
1143                        const TargetRegisterInfo *TRI = nullptr) const {
1144     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1145   }
1146 
1147   /// Return true if the MachineInstr modifies (fully define or partially
1148   /// define) the specified register.
1149   /// NOTE: It's ignoring subreg indices on virtual registers.
1150   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
1151     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1152   }
1153 
1154   /// Returns true if the register is dead in this machine instruction.
1155   /// If TargetRegisterInfo is passed, then it also checks
1156   /// if there is a dead def of a super-register.
1157   bool registerDefIsDead(unsigned Reg,
1158                          const TargetRegisterInfo *TRI = nullptr) const {
1159     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1160   }
1161 
1162   /// Returns true if the MachineInstr has an implicit-use operand of exactly
1163   /// the given register (not considering sub/super-registers).
1164   bool hasRegisterImplicitUseOperand(unsigned Reg) const;
1165 
1166   /// Returns the operand index that is a use of the specific register or -1
1167   /// if it is not found. It further tightens the search criteria to a use
1168   /// that kills the register if isKill is true.
1169   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
1170                                 const TargetRegisterInfo *TRI = nullptr) const;
1171 
1172   /// Wrapper for findRegisterUseOperandIdx, it returns
1173   /// a pointer to the MachineOperand rather than an index.
1174   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
1175                                       const TargetRegisterInfo *TRI = nullptr) {
1176     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1177     return (Idx == -1) ? nullptr : &getOperand(Idx);
1178   }
1179 
1180   const MachineOperand *findRegisterUseOperand(
1181     unsigned Reg, bool isKill = false,
1182     const TargetRegisterInfo *TRI = nullptr) const {
1183     return const_cast<MachineInstr *>(this)->
1184       findRegisterUseOperand(Reg, isKill, TRI);
1185   }
1186 
1187   /// Returns the operand index that is a def of the specified register or
1188   /// -1 if it is not found. If isDead is true, defs that are not dead are
1189   /// skipped. If Overlap is true, then it also looks for defs that merely
1190   /// overlap the specified register. If TargetRegisterInfo is non-null,
1191   /// then it also checks if there is a def of a super-register.
1192   /// This may also return a register mask operand when Overlap is true.
1193   int findRegisterDefOperandIdx(unsigned Reg,
1194                                 bool isDead = false, bool Overlap = false,
1195                                 const TargetRegisterInfo *TRI = nullptr) const;
1196 
1197   /// Wrapper for findRegisterDefOperandIdx, it returns
1198   /// a pointer to the MachineOperand rather than an index.
1199   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
1200                                       const TargetRegisterInfo *TRI = nullptr) {
1201     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
1202     return (Idx == -1) ? nullptr : &getOperand(Idx);
1203   }
1204 
1205   /// Find the index of the first operand in the
1206   /// operand list that is used to represent the predicate. It returns -1 if
1207   /// none is found.
1208   int findFirstPredOperandIdx() const;
1209 
1210   /// Find the index of the flag word operand that
1211   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
1212   /// getOperand(OpIdx) does not belong to an inline asm operand group.
1213   ///
1214   /// If GroupNo is not NULL, it will receive the number of the operand group
1215   /// containing OpIdx.
1216   ///
1217   /// The flag operand is an immediate that can be decoded with methods like
1218   /// InlineAsm::hasRegClassConstraint().
1219   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1220 
1221   /// Compute the static register class constraint for operand OpIdx.
1222   /// For normal instructions, this is derived from the MCInstrDesc.
1223   /// For inline assembly it is derived from the flag words.
1224   ///
1225   /// Returns NULL if the static register class constraint cannot be
1226   /// determined.
1227   const TargetRegisterClass*
1228   getRegClassConstraint(unsigned OpIdx,
1229                         const TargetInstrInfo *TII,
1230                         const TargetRegisterInfo *TRI) const;
1231 
1232   /// Applies the constraints (def/use) implied by this MI on \p Reg to
1233   /// the given \p CurRC.
1234   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1235   /// instructions inside the bundle will be taken into account. In other words,
1236   /// this method accumulates all the constraints of the operand of this MI and
1237   /// the related bundle if MI is a bundle or inside a bundle.
1238   ///
1239   /// Returns the register class that satisfies both \p CurRC and the
1240   /// constraints set by MI. Returns NULL if such a register class does not
1241   /// exist.
1242   ///
1243   /// \pre CurRC must not be NULL.
1244   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1245       unsigned Reg, const TargetRegisterClass *CurRC,
1246       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1247       bool ExploreBundle = false) const;
1248 
1249   /// Applies the constraints (def/use) implied by the \p OpIdx operand
1250   /// to the given \p CurRC.
1251   ///
1252   /// Returns the register class that satisfies both \p CurRC and the
1253   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1254   /// does not exist.
1255   ///
1256   /// \pre CurRC must not be NULL.
1257   /// \pre The operand at \p OpIdx must be a register.
1258   const TargetRegisterClass *
1259   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1260                               const TargetInstrInfo *TII,
1261                               const TargetRegisterInfo *TRI) const;
1262 
1263   /// Add a tie between the register operands at DefIdx and UseIdx.
1264   /// The tie will cause the register allocator to ensure that the two
1265   /// operands are assigned the same physical register.
1266   ///
1267   /// Tied operands are managed automatically for explicit operands in the
1268   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1269   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1270 
1271   /// Given the index of a tied register operand, find the
1272   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1273   /// index of the tied operand which must exist.
1274   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1275 
1276   /// Given the index of a register def operand,
1277   /// check if the register def is tied to a source operand, due to either
1278   /// two-address elimination or inline assembly constraints. Returns the
1279   /// first tied use operand index by reference if UseOpIdx is not null.
1280   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1281                              unsigned *UseOpIdx = nullptr) const {
1282     const MachineOperand &MO = getOperand(DefOpIdx);
1283     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1284       return false;
1285     if (UseOpIdx)
1286       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1287     return true;
1288   }
1289 
1290   /// Return true if the use operand of the specified index is tied to a def
1291   /// operand. It also returns the def operand index by reference if DefOpIdx
1292   /// is not null.
1293   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1294                              unsigned *DefOpIdx = nullptr) const {
1295     const MachineOperand &MO = getOperand(UseOpIdx);
1296     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1297       return false;
1298     if (DefOpIdx)
1299       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1300     return true;
1301   }
1302 
1303   /// Clears kill flags on all operands.
1304   void clearKillInfo();
1305 
1306   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1307   /// properly composing subreg indices where necessary.
1308   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
1309                           const TargetRegisterInfo &RegInfo);
1310 
1311   /// We have determined MI kills a register. Look for the
1312   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1313   /// add a implicit operand if it's not found. Returns true if the operand
1314   /// exists / is added.
1315   bool addRegisterKilled(unsigned IncomingReg,
1316                          const TargetRegisterInfo *RegInfo,
1317                          bool AddIfNotFound = false);
1318 
1319   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1320   /// all aliasing registers.
1321   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
1322 
1323   /// We have determined MI defined a register without a use.
1324   /// Look for the operand that defines it and mark it as IsDead. If
1325   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1326   /// true if the operand exists / is added.
1327   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
1328                        bool AddIfNotFound = false);
1329 
1330   /// Clear all dead flags on operands defining register @p Reg.
1331   void clearRegisterDeads(unsigned Reg);
1332 
1333   /// Mark all subregister defs of register @p Reg with the undef flag.
1334   /// This function is used when we determined to have a subregister def in an
1335   /// otherwise undefined super register.
1336   void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
1337 
1338   /// We have determined MI defines a register. Make sure there is an operand
1339   /// defining Reg.
1340   void addRegisterDefined(unsigned Reg,
1341                           const TargetRegisterInfo *RegInfo = nullptr);
1342 
1343   /// Mark every physreg used by this instruction as
1344   /// dead except those in the UsedRegs list.
1345   ///
1346   /// On instructions with register mask operands, also add implicit-def
1347   /// operands for all registers in UsedRegs.
1348   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1349                              const TargetRegisterInfo &TRI);
1350 
1351   /// Return true if it is safe to move this instruction. If
1352   /// SawStore is set to true, it means that there is a store (or call) between
1353   /// the instruction's location and its intended destination.
1354   bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
1355 
1356   /// Returns true if this instruction's memory access aliases the memory
1357   /// access of Other.
1358   //
1359   /// Assumes any physical registers used to compute addresses
1360   /// have the same value for both instructions.  Returns false if neither
1361   /// instruction writes to memory.
1362   ///
1363   /// @param AA Optional alias analysis, used to compare memory operands.
1364   /// @param Other MachineInstr to check aliasing against.
1365   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1366   bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
1367 
1368   /// Return true if this instruction may have an ordered
1369   /// or volatile memory reference, or if the information describing the memory
1370   /// reference is not available. Return false if it is known to have no
1371   /// ordered or volatile memory references.
1372   bool hasOrderedMemoryRef() const;
1373 
1374   /// Return true if this load instruction never traps and points to a memory
1375   /// location whose value doesn't change during the execution of this function.
1376   ///
1377   /// Examples include loading a value from the constant pool or from the
1378   /// argument area of a function (if it does not change).  If the instruction
1379   /// does multiple loads, this returns true only if all of the loads are
1380   /// dereferenceable and invariant.
1381   bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
1382 
1383   /// If the specified instruction is a PHI that always merges together the
1384   /// same virtual register, return the register, otherwise return 0.
1385   unsigned isConstantValuePHI() const;
1386 
1387   /// Return true if this instruction has side effects that are not modeled
1388   /// by mayLoad / mayStore, etc.
1389   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1390   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1391   /// INLINEASM instruction, in which case the side effect property is encoded
1392   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1393   ///
1394   bool hasUnmodeledSideEffects() const;
1395 
1396   /// Returns true if it is illegal to fold a load across this instruction.
1397   bool isLoadFoldBarrier() const;
1398 
1399   /// Return true if all the defs of this instruction are dead.
1400   bool allDefsAreDead() const;
1401 
1402   /// Copy implicit register operands from specified
1403   /// instruction to this instruction.
1404   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1405 
1406   /// Debugging support
1407   /// @{
1408   /// Determine the generic type to be printed (if needed) on uses and defs.
1409   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1410                      const MachineRegisterInfo &MRI) const;
1411 
1412   /// Return true when an instruction has tied register that can't be determined
1413   /// by the instruction's descriptor. This is useful for MIR printing, to
1414   /// determine whether we need to print the ties or not.
1415   bool hasComplexRegisterTies() const;
1416 
1417   /// Print this MI to \p OS.
1418   /// Don't print information that can be inferred from other instructions if
1419   /// \p IsStandalone is false. It is usually true when only a fragment of the
1420   /// function is printed.
1421   /// Only print the defs and the opcode if \p SkipOpers is true.
1422   /// Otherwise, also print operands if \p SkipDebugLoc is true.
1423   /// Otherwise, also print the debug loc, with a terminating newline.
1424   /// \p TII is used to print the opcode name.  If it's not present, but the
1425   /// MI is in a function, the opcode will be printed using the function's TII.
1426   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1427              bool SkipDebugLoc = false, bool AddNewLine = true,
1428              const TargetInstrInfo *TII = nullptr) const;
1429   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1430              bool SkipOpers = false, bool SkipDebugLoc = false,
1431              bool AddNewLine = true,
1432              const TargetInstrInfo *TII = nullptr) const;
1433   void dump() const;
1434   /// @}
1435 
1436   //===--------------------------------------------------------------------===//
1437   // Accessors used to build up machine instructions.
1438 
1439   /// Add the specified operand to the instruction.  If it is an implicit
1440   /// operand, it is added to the end of the operand list.  If it is an
1441   /// explicit operand it is added at the end of the explicit operand list
1442   /// (before the first implicit operand).
1443   ///
1444   /// MF must be the machine function that was used to allocate this
1445   /// instruction.
1446   ///
1447   /// MachineInstrBuilder provides a more convenient interface for creating
1448   /// instructions and adding operands.
1449   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1450 
1451   /// Add an operand without providing an MF reference. This only works for
1452   /// instructions that are inserted in a basic block.
1453   ///
1454   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1455   /// preferred.
1456   void addOperand(const MachineOperand &Op);
1457 
1458   /// Replace the instruction descriptor (thus opcode) of
1459   /// the current instruction with a new one.
1460   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1461 
1462   /// Replace current source information with new such.
1463   /// Avoid using this, the constructor argument is preferable.
1464   void setDebugLoc(DebugLoc dl) {
1465     debugLoc = std::move(dl);
1466     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1467   }
1468 
1469   /// Erase an operand from an instruction, leaving it with one
1470   /// fewer operand than it started with.
1471   void RemoveOperand(unsigned OpNo);
1472 
1473   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1474   /// the memrefs to their most conservative state.  This should be used only
1475   /// as a last resort since it greatly pessimizes our knowledge of the memory
1476   /// access performed by the instruction.
1477   void dropMemRefs(MachineFunction &MF);
1478 
1479   /// Assign this MachineInstr's memory reference descriptor list.
1480   ///
1481   /// Unlike other methods, this *will* allocate them into a new array
1482   /// associated with the provided `MachineFunction`.
1483   void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1484 
1485   /// Add a MachineMemOperand to the machine instruction.
1486   /// This function should be used only occasionally. The setMemRefs function
1487   /// is the primary method for setting up a MachineInstr's MemRefs list.
1488   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1489 
1490   /// Clone another MachineInstr's memory reference descriptor list and replace
1491   /// ours with it.
1492   ///
1493   /// Note that `*this` may be the incoming MI!
1494   ///
1495   /// Prefer this API whenever possible as it can avoid allocations in common
1496   /// cases.
1497   void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1498 
1499   /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1500   /// list and replace ours with it.
1501   ///
1502   /// Note that `*this` may be one of the incoming MIs!
1503   ///
1504   /// Prefer this API whenever possible as it can avoid allocations in common
1505   /// cases.
1506   void cloneMergedMemRefs(MachineFunction &MF,
1507                           ArrayRef<const MachineInstr *> MIs);
1508 
1509   /// Set a symbol that will be emitted just prior to the instruction itself.
1510   ///
1511   /// Setting this to a null pointer will remove any such symbol.
1512   ///
1513   /// FIXME: This is not fully implemented yet.
1514   void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1515 
1516   /// Set a symbol that will be emitted just after the instruction itself.
1517   ///
1518   /// Setting this to a null pointer will remove any such symbol.
1519   ///
1520   /// FIXME: This is not fully implemented yet.
1521   void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1522 
1523   /// Return the MIFlags which represent both MachineInstrs. This
1524   /// should be used when merging two MachineInstrs into one. This routine does
1525   /// not modify the MIFlags of this MachineInstr.
1526   uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1527 
1528   /// Copy all flags to MachineInst MIFlags
1529   void copyIRFlags(const Instruction &I);
1530 
1531   /// Break any tie involving OpIdx.
1532   void untieRegOperand(unsigned OpIdx) {
1533     MachineOperand &MO = getOperand(OpIdx);
1534     if (MO.isReg() && MO.isTied()) {
1535       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1536       MO.TiedTo = 0;
1537     }
1538   }
1539 
1540   /// Add all implicit def and use operands to this instruction.
1541   void addImplicitDefUseOperands(MachineFunction &MF);
1542 
1543   /// Scan instructions following MI and collect any matching DBG_VALUEs.
1544   void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1545 
1546   /// Find all DBG_VALUEs immediately following this instruction that point
1547   /// to a register def in this instruction and point them to \p Reg instead.
1548   void changeDebugValuesDefReg(unsigned Reg);
1549 
1550 private:
1551   /// If this instruction is embedded into a MachineFunction, return the
1552   /// MachineRegisterInfo object for the current function, otherwise
1553   /// return null.
1554   MachineRegisterInfo *getRegInfo();
1555 
1556   /// Unlink all of the register operands in this instruction from their
1557   /// respective use lists.  This requires that the operands already be on their
1558   /// use lists.
1559   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1560 
1561   /// Add all of the register operands in this instruction from their
1562   /// respective use lists.  This requires that the operands not be on their
1563   /// use lists yet.
1564   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1565 
1566   /// Slow path for hasProperty when we're dealing with a bundle.
1567   bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1568 
1569   /// Implements the logic of getRegClassConstraintEffectForVReg for the
1570   /// this MI and the given operand index \p OpIdx.
1571   /// If the related operand does not constrained Reg, this returns CurRC.
1572   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1573       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1574       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1575 };
1576 
1577 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1578 /// instruction rather than by pointer value.
1579 /// The hashing and equality testing functions ignore definitions so this is
1580 /// useful for CSE, etc.
1581 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1582   static inline MachineInstr *getEmptyKey() {
1583     return nullptr;
1584   }
1585 
1586   static inline MachineInstr *getTombstoneKey() {
1587     return reinterpret_cast<MachineInstr*>(-1);
1588   }
1589 
1590   static unsigned getHashValue(const MachineInstr* const &MI);
1591 
1592   static bool isEqual(const MachineInstr* const &LHS,
1593                       const MachineInstr* const &RHS) {
1594     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1595         LHS == getEmptyKey() || LHS == getTombstoneKey())
1596       return LHS == RHS;
1597     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1598   }
1599 };
1600 
1601 //===----------------------------------------------------------------------===//
1602 // Debugging Support
1603 
1604 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1605   MI.print(OS);
1606   return OS;
1607 }
1608 
1609 } // end namespace llvm
1610 
1611 #endif // LLVM_CODEGEN_MACHINEINSTR_H
1612