1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the MachineInstr class, which is the
11 // basic representation for all target dependent machine instructions used by
12 // the back end.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
17 #define LLVM_CODEGEN_MACHINEINSTR_H
18 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/ilist.h"
24 #include "llvm/ADT/ilist_node.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/Support/ArrayRecycler.h"
33 #include "llvm/Target/TargetOpcodes.h"
34 
35 namespace llvm {
36 
37 template <typename T> class SmallVectorImpl;
38 class TargetInstrInfo;
39 class TargetRegisterClass;
40 class TargetRegisterInfo;
41 #ifdef LLVM_BUILD_GLOBAL_ISEL
42 class Type;
43 #endif
44 class MachineFunction;
45 class MachineMemOperand;
46 
47 //===----------------------------------------------------------------------===//
48 /// Representation of each machine instruction.
49 ///
50 /// This class isn't a POD type, but it must have a trivial destructor. When a
51 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
52 /// without having their destructor called.
53 ///
54 class MachineInstr
55     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock> {
56 public:
57   typedef MachineMemOperand **mmo_iterator;
58 
59   /// Flags to specify different kinds of comments to output in
60   /// assembly code.  These flags carry semantic information not
61   /// otherwise easily derivable from the IR text.
62   ///
63   enum CommentFlag {
64     ReloadReuse = 0x1
65   };
66 
67   enum MIFlag {
68     NoFlags      = 0,
69     FrameSetup   = 1 << 0,              // Instruction is used as a part of
70                                         // function frame setup code.
71     FrameDestroy = 1 << 1,              // Instruction is used as a part of
72                                         // function frame destruction code.
73     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
74     BundledSucc  = 1 << 3               // Instruction has bundled successors.
75   };
76 private:
77   const MCInstrDesc *MCID;              // Instruction descriptor.
78   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
79 
80   // Operands are allocated by an ArrayRecycler.
81   MachineOperand *Operands;             // Pointer to the first operand.
82   unsigned NumOperands;                 // Number of operands on instruction.
83   typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
84   OperandCapacity CapOperands;          // Capacity of the Operands array.
85 
86   uint8_t Flags;                        // Various bits of additional
87                                         // information about machine
88                                         // instruction.
89 
90   uint8_t AsmPrinterFlags;              // Various bits of information used by
91                                         // the AsmPrinter to emit helpful
92                                         // comments.  This is *not* semantic
93                                         // information.  Do not use this for
94                                         // anything other than to convey comment
95                                         // information to AsmPrinter.
96 
97   uint8_t NumMemRefs;                   // Information on memory references.
98   // Note that MemRefs == nullptr,  means 'don't know', not 'no memory access'.
99   // Calling code must treat missing information conservatively.  If the number
100   // of memory operands required to be precise exceeds the maximum value of
101   // NumMemRefs - currently 256 - we remove the operands entirely. Note also
102   // that this is a non-owning reference to a shared copy on write buffer owned
103   // by the MachineFunction and created via MF.allocateMemRefsArray.
104   mmo_iterator MemRefs;
105 
106   DebugLoc debugLoc;                    // Source line information.
107 
108 #ifdef LLVM_BUILD_GLOBAL_ISEL
109   /// Type of the instruction in case of a generic opcode.
110   /// \invariant This must be nullptr is getOpcode() is not
111   /// in the range of generic opcodes.
112   Type *Ty;
113 #endif
114 
115   MachineInstr(const MachineInstr&) = delete;
116   void operator=(const MachineInstr&) = delete;
117   // Use MachineFunction::DeleteMachineInstr() instead.
118   ~MachineInstr() = delete;
119 
120   // Intrusive list support
121   friend struct ilist_traits<MachineInstr>;
122   friend struct ilist_traits<MachineBasicBlock>;
123   void setParent(MachineBasicBlock *P) { Parent = P; }
124 
125   /// This constructor creates a copy of the given
126   /// MachineInstr in the given MachineFunction.
127   MachineInstr(MachineFunction &, const MachineInstr &);
128 
129   /// This constructor create a MachineInstr and add the implicit operands.
130   /// It reserves space for number of operands specified by
131   /// MCInstrDesc.  An explicit DebugLoc is supplied.
132   MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
133                bool NoImp = false);
134 
135   // MachineInstrs are pool-allocated and owned by MachineFunction.
136   friend class MachineFunction;
137 
138 public:
139   const MachineBasicBlock* getParent() const { return Parent; }
140   MachineBasicBlock* getParent() { return Parent; }
141 
142   /// Return the asm printer flags bitvector.
143   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
144 
145   /// Clear the AsmPrinter bitvector.
146   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
147 
148   /// Return whether an AsmPrinter flag is set.
149   bool getAsmPrinterFlag(CommentFlag Flag) const {
150     return AsmPrinterFlags & Flag;
151   }
152 
153   /// Set a flag for the AsmPrinter.
154   void setAsmPrinterFlag(CommentFlag Flag) {
155     AsmPrinterFlags |= (uint8_t)Flag;
156   }
157 
158   /// Clear specific AsmPrinter flags.
159   void clearAsmPrinterFlag(CommentFlag Flag) {
160     AsmPrinterFlags &= ~Flag;
161   }
162 
163   /// Return the MI flags bitvector.
164   uint8_t getFlags() const {
165     return Flags;
166   }
167 
168   /// Return whether an MI flag is set.
169   bool getFlag(MIFlag Flag) const {
170     return Flags & Flag;
171   }
172 
173   /// Set a MI flag.
174   void setFlag(MIFlag Flag) {
175     Flags |= (uint8_t)Flag;
176   }
177 
178   void setFlags(unsigned flags) {
179     // Filter out the automatically maintained flags.
180     unsigned Mask = BundledPred | BundledSucc;
181     Flags = (Flags & Mask) | (flags & ~Mask);
182   }
183 
184   /// clearFlag - Clear a MI flag.
185   void clearFlag(MIFlag Flag) {
186     Flags &= ~((uint8_t)Flag);
187   }
188 
189 #ifdef LLVM_BUILD_GLOBAL_ISEL
190   /// Set the type of the instruction.
191   /// \pre getOpcode() is in the range of the generic opcodes.
192   void setType(Type *Ty) {
193     assert((!Ty || isPreISelGenericOpcode(getOpcode())) &&
194            "Non generic instructions are not supposed to be typed");
195     this->Ty = Ty;
196   }
197   Type *getType() const { return Ty; }
198 #endif
199 
200   /// Return true if MI is in a bundle (but not the first MI in a bundle).
201   ///
202   /// A bundle looks like this before it's finalized:
203   ///   ----------------
204   ///   |      MI      |
205   ///   ----------------
206   ///          |
207   ///   ----------------
208   ///   |      MI    * |
209   ///   ----------------
210   ///          |
211   ///   ----------------
212   ///   |      MI    * |
213   ///   ----------------
214   /// In this case, the first MI starts a bundle but is not inside a bundle, the
215   /// next 2 MIs are considered "inside" the bundle.
216   ///
217   /// After a bundle is finalized, it looks like this:
218   ///   ----------------
219   ///   |    Bundle    |
220   ///   ----------------
221   ///          |
222   ///   ----------------
223   ///   |      MI    * |
224   ///   ----------------
225   ///          |
226   ///   ----------------
227   ///   |      MI    * |
228   ///   ----------------
229   ///          |
230   ///   ----------------
231   ///   |      MI    * |
232   ///   ----------------
233   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
234   /// a bundle, but the next three MIs are.
235   bool isInsideBundle() const {
236     return getFlag(BundledPred);
237   }
238 
239   /// Return true if this instruction part of a bundle. This is true
240   /// if either itself or its following instruction is marked "InsideBundle".
241   bool isBundled() const {
242     return isBundledWithPred() || isBundledWithSucc();
243   }
244 
245   /// Return true if this instruction is part of a bundle, and it is not the
246   /// first instruction in the bundle.
247   bool isBundledWithPred() const { return getFlag(BundledPred); }
248 
249   /// Return true if this instruction is part of a bundle, and it is not the
250   /// last instruction in the bundle.
251   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
252 
253   /// Bundle this instruction with its predecessor. This can be an unbundled
254   /// instruction, or it can be the first instruction in a bundle.
255   void bundleWithPred();
256 
257   /// Bundle this instruction with its successor. This can be an unbundled
258   /// instruction, or it can be the last instruction in a bundle.
259   void bundleWithSucc();
260 
261   /// Break bundle above this instruction.
262   void unbundleFromPred();
263 
264   /// Break bundle below this instruction.
265   void unbundleFromSucc();
266 
267   /// Returns the debug location id of this MachineInstr.
268   const DebugLoc &getDebugLoc() const { return debugLoc; }
269 
270   /// Return the debug variable referenced by
271   /// this DBG_VALUE instruction.
272   const DILocalVariable *getDebugVariable() const {
273     assert(isDebugValue() && "not a DBG_VALUE");
274     return cast<DILocalVariable>(getOperand(2).getMetadata());
275   }
276 
277   /// Return the complex address expression referenced by
278   /// this DBG_VALUE instruction.
279   const DIExpression *getDebugExpression() const {
280     assert(isDebugValue() && "not a DBG_VALUE");
281     return cast<DIExpression>(getOperand(3).getMetadata());
282   }
283 
284   /// Emit an error referring to the source location of this instruction.
285   /// This should only be used for inline assembly that is somehow
286   /// impossible to compile. Other errors should have been handled much
287   /// earlier.
288   ///
289   /// If this method returns, the caller should try to recover from the error.
290   ///
291   void emitError(StringRef Msg) const;
292 
293   /// Returns the target instruction descriptor of this MachineInstr.
294   const MCInstrDesc &getDesc() const { return *MCID; }
295 
296   /// Returns the opcode of this MachineInstr.
297   unsigned getOpcode() const { return MCID->Opcode; }
298 
299   /// Access to explicit operands of the instruction.
300   ///
301   unsigned getNumOperands() const { return NumOperands; }
302 
303   const MachineOperand& getOperand(unsigned i) const {
304     assert(i < getNumOperands() && "getOperand() out of range!");
305     return Operands[i];
306   }
307   MachineOperand& getOperand(unsigned i) {
308     assert(i < getNumOperands() && "getOperand() out of range!");
309     return Operands[i];
310   }
311 
312   /// Returns the number of non-implicit operands.
313   unsigned getNumExplicitOperands() const;
314 
315   /// iterator/begin/end - Iterate over all operands of a machine instruction.
316   typedef MachineOperand *mop_iterator;
317   typedef const MachineOperand *const_mop_iterator;
318 
319   mop_iterator operands_begin() { return Operands; }
320   mop_iterator operands_end() { return Operands + NumOperands; }
321 
322   const_mop_iterator operands_begin() const { return Operands; }
323   const_mop_iterator operands_end() const { return Operands + NumOperands; }
324 
325   iterator_range<mop_iterator> operands() {
326     return make_range(operands_begin(), operands_end());
327   }
328   iterator_range<const_mop_iterator> operands() const {
329     return make_range(operands_begin(), operands_end());
330   }
331   iterator_range<mop_iterator> explicit_operands() {
332     return make_range(operands_begin(),
333                       operands_begin() + getNumExplicitOperands());
334   }
335   iterator_range<const_mop_iterator> explicit_operands() const {
336     return make_range(operands_begin(),
337                       operands_begin() + getNumExplicitOperands());
338   }
339   iterator_range<mop_iterator> implicit_operands() {
340     return make_range(explicit_operands().end(), operands_end());
341   }
342   iterator_range<const_mop_iterator> implicit_operands() const {
343     return make_range(explicit_operands().end(), operands_end());
344   }
345   /// Returns a range over all explicit operands that are register definitions.
346   /// Implicit definition are not included!
347   iterator_range<mop_iterator> defs() {
348     return make_range(operands_begin(),
349                       operands_begin() + getDesc().getNumDefs());
350   }
351   /// \copydoc defs()
352   iterator_range<const_mop_iterator> defs() const {
353     return make_range(operands_begin(),
354                       operands_begin() + getDesc().getNumDefs());
355   }
356   /// Returns a range that includes all operands that are register uses.
357   /// This may include unrelated operands which are not register uses.
358   iterator_range<mop_iterator> uses() {
359     return make_range(operands_begin() + getDesc().getNumDefs(),
360                       operands_end());
361   }
362   /// \copydoc uses()
363   iterator_range<const_mop_iterator> uses() const {
364     return make_range(operands_begin() + getDesc().getNumDefs(),
365                       operands_end());
366   }
367   iterator_range<mop_iterator> explicit_uses() {
368     return make_range(operands_begin() + getDesc().getNumDefs(),
369                       operands_begin() + getNumExplicitOperands() );
370   }
371   iterator_range<const_mop_iterator> explicit_uses() const {
372     return make_range(operands_begin() + getDesc().getNumDefs(),
373                       operands_begin() + getNumExplicitOperands() );
374   }
375 
376   /// Returns the number of the operand iterator \p I points to.
377   unsigned getOperandNo(const_mop_iterator I) const {
378     return I - operands_begin();
379   }
380 
381   /// Access to memory operands of the instruction
382   mmo_iterator memoperands_begin() const { return MemRefs; }
383   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
384   /// Return true if we don't have any memory operands which described the the
385   /// memory access done by this instruction.  If this is true, calling code
386   /// must be conservative.
387   bool memoperands_empty() const { return NumMemRefs == 0; }
388 
389   iterator_range<mmo_iterator>  memoperands() {
390     return make_range(memoperands_begin(), memoperands_end());
391   }
392   iterator_range<mmo_iterator> memoperands() const {
393     return make_range(memoperands_begin(), memoperands_end());
394   }
395 
396   /// Return true if this instruction has exactly one MachineMemOperand.
397   bool hasOneMemOperand() const {
398     return NumMemRefs == 1;
399   }
400 
401   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
402   /// queries but they are bundle aware.
403 
404   enum QueryType {
405     IgnoreBundle,    // Ignore bundles
406     AnyInBundle,     // Return true if any instruction in bundle has property
407     AllInBundle      // Return true if all instructions in bundle have property
408   };
409 
410   /// Return true if the instruction (or in the case of a bundle,
411   /// the instructions inside the bundle) has the specified property.
412   /// The first argument is the property being queried.
413   /// The second argument indicates whether the query should look inside
414   /// instruction bundles.
415   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
416     // Inline the fast path for unbundled or bundle-internal instructions.
417     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
418       return getDesc().getFlags() & (1 << MCFlag);
419 
420     // If this is the first instruction in a bundle, take the slow path.
421     return hasPropertyInBundle(1 << MCFlag, Type);
422   }
423 
424   /// Return true if this instruction can have a variable number of operands.
425   /// In this case, the variable operands will be after the normal
426   /// operands but before the implicit definitions and uses (if any are
427   /// present).
428   bool isVariadic(QueryType Type = IgnoreBundle) const {
429     return hasProperty(MCID::Variadic, Type);
430   }
431 
432   /// Set if this instruction has an optional definition, e.g.
433   /// ARM instructions which can set condition code if 's' bit is set.
434   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
435     return hasProperty(MCID::HasOptionalDef, Type);
436   }
437 
438   /// Return true if this is a pseudo instruction that doesn't
439   /// correspond to a real machine instruction.
440   bool isPseudo(QueryType Type = IgnoreBundle) const {
441     return hasProperty(MCID::Pseudo, Type);
442   }
443 
444   bool isReturn(QueryType Type = AnyInBundle) const {
445     return hasProperty(MCID::Return, Type);
446   }
447 
448   bool isCall(QueryType Type = AnyInBundle) const {
449     return hasProperty(MCID::Call, Type);
450   }
451 
452   /// Returns true if the specified instruction stops control flow
453   /// from executing the instruction immediately following it.  Examples include
454   /// unconditional branches and return instructions.
455   bool isBarrier(QueryType Type = AnyInBundle) const {
456     return hasProperty(MCID::Barrier, Type);
457   }
458 
459   /// Returns true if this instruction part of the terminator for a basic block.
460   /// Typically this is things like return and branch instructions.
461   ///
462   /// Various passes use this to insert code into the bottom of a basic block,
463   /// but before control flow occurs.
464   bool isTerminator(QueryType Type = AnyInBundle) const {
465     return hasProperty(MCID::Terminator, Type);
466   }
467 
468   /// Returns true if this is a conditional, unconditional, or indirect branch.
469   /// Predicates below can be used to discriminate between
470   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
471   /// get more information.
472   bool isBranch(QueryType Type = AnyInBundle) const {
473     return hasProperty(MCID::Branch, Type);
474   }
475 
476   /// Return true if this is an indirect branch, such as a
477   /// branch through a register.
478   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
479     return hasProperty(MCID::IndirectBranch, Type);
480   }
481 
482   /// Return true if this is a branch which may fall
483   /// through to the next instruction or may transfer control flow to some other
484   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
485   /// information about this branch.
486   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
487     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
488   }
489 
490   /// Return true if this is a branch which always
491   /// transfers control flow to some other block.  The
492   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
493   /// about this branch.
494   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
495     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
496   }
497 
498   /// Return true if this instruction has a predicate operand that
499   /// controls execution.  It may be set to 'always', or may be set to other
500   /// values.   There are various methods in TargetInstrInfo that can be used to
501   /// control and modify the predicate in this instruction.
502   bool isPredicable(QueryType Type = AllInBundle) const {
503     // If it's a bundle than all bundled instructions must be predicable for this
504     // to return true.
505     return hasProperty(MCID::Predicable, Type);
506   }
507 
508   /// Return true if this instruction is a comparison.
509   bool isCompare(QueryType Type = IgnoreBundle) const {
510     return hasProperty(MCID::Compare, Type);
511   }
512 
513   /// Return true if this instruction is a move immediate
514   /// (including conditional moves) instruction.
515   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
516     return hasProperty(MCID::MoveImm, Type);
517   }
518 
519   /// Return true if this instruction is a bitcast instruction.
520   bool isBitcast(QueryType Type = IgnoreBundle) const {
521     return hasProperty(MCID::Bitcast, Type);
522   }
523 
524   /// Return true if this instruction is a select instruction.
525   bool isSelect(QueryType Type = IgnoreBundle) const {
526     return hasProperty(MCID::Select, Type);
527   }
528 
529   /// Return true if this instruction cannot be safely duplicated.
530   /// For example, if the instruction has a unique labels attached
531   /// to it, duplicating it would cause multiple definition errors.
532   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
533     return hasProperty(MCID::NotDuplicable, Type);
534   }
535 
536   /// Return true if this instruction is convergent.
537   /// Convergent instructions can not be made control-dependent on any
538   /// additional values.
539   bool isConvergent(QueryType Type = AnyInBundle) const {
540     return hasProperty(MCID::Convergent, Type);
541   }
542 
543   /// Returns true if the specified instruction has a delay slot
544   /// which must be filled by the code generator.
545   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
546     return hasProperty(MCID::DelaySlot, Type);
547   }
548 
549   /// Return true for instructions that can be folded as
550   /// memory operands in other instructions. The most common use for this
551   /// is instructions that are simple loads from memory that don't modify
552   /// the loaded value in any way, but it can also be used for instructions
553   /// that can be expressed as constant-pool loads, such as V_SETALLONES
554   /// on x86, to allow them to be folded when it is beneficial.
555   /// This should only be set on instructions that return a value in their
556   /// only virtual register definition.
557   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
558     return hasProperty(MCID::FoldableAsLoad, Type);
559   }
560 
561   /// \brief Return true if this instruction behaves
562   /// the same way as the generic REG_SEQUENCE instructions.
563   /// E.g., on ARM,
564   /// dX VMOVDRR rY, rZ
565   /// is equivalent to
566   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
567   ///
568   /// Note that for the optimizers to be able to take advantage of
569   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
570   /// override accordingly.
571   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
572     return hasProperty(MCID::RegSequence, Type);
573   }
574 
575   /// \brief Return true if this instruction behaves
576   /// the same way as the generic EXTRACT_SUBREG instructions.
577   /// E.g., on ARM,
578   /// rX, rY VMOVRRD dZ
579   /// is equivalent to two EXTRACT_SUBREG:
580   /// rX = EXTRACT_SUBREG dZ, ssub_0
581   /// rY = EXTRACT_SUBREG dZ, ssub_1
582   ///
583   /// Note that for the optimizers to be able to take advantage of
584   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
585   /// override accordingly.
586   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
587     return hasProperty(MCID::ExtractSubreg, Type);
588   }
589 
590   /// \brief Return true if this instruction behaves
591   /// the same way as the generic INSERT_SUBREG instructions.
592   /// E.g., on ARM,
593   /// dX = VSETLNi32 dY, rZ, Imm
594   /// is equivalent to a INSERT_SUBREG:
595   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
596   ///
597   /// Note that for the optimizers to be able to take advantage of
598   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
599   /// override accordingly.
600   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
601     return hasProperty(MCID::InsertSubreg, Type);
602   }
603 
604   //===--------------------------------------------------------------------===//
605   // Side Effect Analysis
606   //===--------------------------------------------------------------------===//
607 
608   /// Return true if this instruction could possibly read memory.
609   /// Instructions with this flag set are not necessarily simple load
610   /// instructions, they may load a value and modify it, for example.
611   bool mayLoad(QueryType Type = AnyInBundle) const {
612     if (isInlineAsm()) {
613       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
614       if (ExtraInfo & InlineAsm::Extra_MayLoad)
615         return true;
616     }
617     return hasProperty(MCID::MayLoad, Type);
618   }
619 
620   /// Return true if this instruction could possibly modify memory.
621   /// Instructions with this flag set are not necessarily simple store
622   /// instructions, they may store a modified value based on their operands, or
623   /// may not actually modify anything, for example.
624   bool mayStore(QueryType Type = AnyInBundle) const {
625     if (isInlineAsm()) {
626       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
627       if (ExtraInfo & InlineAsm::Extra_MayStore)
628         return true;
629     }
630     return hasProperty(MCID::MayStore, Type);
631   }
632 
633   /// Return true if this instruction could possibly read or modify memory.
634   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
635     return mayLoad(Type) || mayStore(Type);
636   }
637 
638   //===--------------------------------------------------------------------===//
639   // Flags that indicate whether an instruction can be modified by a method.
640   //===--------------------------------------------------------------------===//
641 
642   /// Return true if this may be a 2- or 3-address
643   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
644   /// result if Y and Z are exchanged.  If this flag is set, then the
645   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
646   /// instruction.
647   ///
648   /// Note that this flag may be set on instructions that are only commutable
649   /// sometimes.  In these cases, the call to commuteInstruction will fail.
650   /// Also note that some instructions require non-trivial modification to
651   /// commute them.
652   bool isCommutable(QueryType Type = IgnoreBundle) const {
653     return hasProperty(MCID::Commutable, Type);
654   }
655 
656   /// Return true if this is a 2-address instruction
657   /// which can be changed into a 3-address instruction if needed.  Doing this
658   /// transformation can be profitable in the register allocator, because it
659   /// means that the instruction can use a 2-address form if possible, but
660   /// degrade into a less efficient form if the source and dest register cannot
661   /// be assigned to the same register.  For example, this allows the x86
662   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
663   /// is the same speed as the shift but has bigger code size.
664   ///
665   /// If this returns true, then the target must implement the
666   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
667   /// is allowed to fail if the transformation isn't valid for this specific
668   /// instruction (e.g. shl reg, 4 on x86).
669   ///
670   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
671     return hasProperty(MCID::ConvertibleTo3Addr, Type);
672   }
673 
674   /// Return true if this instruction requires
675   /// custom insertion support when the DAG scheduler is inserting it into a
676   /// machine basic block.  If this is true for the instruction, it basically
677   /// means that it is a pseudo instruction used at SelectionDAG time that is
678   /// expanded out into magic code by the target when MachineInstrs are formed.
679   ///
680   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
681   /// is used to insert this into the MachineBasicBlock.
682   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
683     return hasProperty(MCID::UsesCustomInserter, Type);
684   }
685 
686   /// Return true if this instruction requires *adjustment*
687   /// after instruction selection by calling a target hook. For example, this
688   /// can be used to fill in ARM 's' optional operand depending on whether
689   /// the conditional flag register is used.
690   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
691     return hasProperty(MCID::HasPostISelHook, Type);
692   }
693 
694   /// Returns true if this instruction is a candidate for remat.
695   /// This flag is deprecated, please don't use it anymore.  If this
696   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
697   /// verify the instruction is really rematable.
698   bool isRematerializable(QueryType Type = AllInBundle) const {
699     // It's only possible to re-mat a bundle if all bundled instructions are
700     // re-materializable.
701     return hasProperty(MCID::Rematerializable, Type);
702   }
703 
704   /// Returns true if this instruction has the same cost (or less) than a move
705   /// instruction. This is useful during certain types of optimizations
706   /// (e.g., remat during two-address conversion or machine licm)
707   /// where we would like to remat or hoist the instruction, but not if it costs
708   /// more than moving the instruction into the appropriate register. Note, we
709   /// are not marking copies from and to the same register class with this flag.
710   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
711     // Only returns true for a bundle if all bundled instructions are cheap.
712     return hasProperty(MCID::CheapAsAMove, Type);
713   }
714 
715   /// Returns true if this instruction source operands
716   /// have special register allocation requirements that are not captured by the
717   /// operand register classes. e.g. ARM::STRD's two source registers must be an
718   /// even / odd pair, ARM::STM registers have to be in ascending order.
719   /// Post-register allocation passes should not attempt to change allocations
720   /// for sources of instructions with this flag.
721   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
722     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
723   }
724 
725   /// Returns true if this instruction def operands
726   /// have special register allocation requirements that are not captured by the
727   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
728   /// even / odd pair, ARM::LDM registers have to be in ascending order.
729   /// Post-register allocation passes should not attempt to change allocations
730   /// for definitions of instructions with this flag.
731   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
732     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
733   }
734 
735 
736   enum MICheckType {
737     CheckDefs,      // Check all operands for equality
738     CheckKillDead,  // Check all operands including kill / dead markers
739     IgnoreDefs,     // Ignore all definitions
740     IgnoreVRegDefs  // Ignore virtual register definitions
741   };
742 
743   /// Return true if this instruction is identical to (same
744   /// opcode and same operands as) the specified instruction.
745   bool isIdenticalTo(const MachineInstr &Other,
746                      MICheckType Check = CheckDefs) const;
747 
748   /// Unlink 'this' from the containing basic block, and return it without
749   /// deleting it.
750   ///
751   /// This function can not be used on bundled instructions, use
752   /// removeFromBundle() to remove individual instructions from a bundle.
753   MachineInstr *removeFromParent();
754 
755   /// Unlink this instruction from its basic block and return it without
756   /// deleting it.
757   ///
758   /// If the instruction is part of a bundle, the other instructions in the
759   /// bundle remain bundled.
760   MachineInstr *removeFromBundle();
761 
762   /// Unlink 'this' from the containing basic block and delete it.
763   ///
764   /// If this instruction is the header of a bundle, the whole bundle is erased.
765   /// This function can not be used for instructions inside a bundle, use
766   /// eraseFromBundle() to erase individual bundled instructions.
767   void eraseFromParent();
768 
769   /// Unlink 'this' from the containing basic block and delete it.
770   ///
771   /// For all definitions mark their uses in DBG_VALUE nodes
772   /// as undefined. Otherwise like eraseFromParent().
773   void eraseFromParentAndMarkDBGValuesForRemoval();
774 
775   /// Unlink 'this' form its basic block and delete it.
776   ///
777   /// If the instruction is part of a bundle, the other instructions in the
778   /// bundle remain bundled.
779   void eraseFromBundle();
780 
781   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
782   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
783 
784   /// Returns true if the MachineInstr represents a label.
785   bool isLabel() const { return isEHLabel() || isGCLabel(); }
786   bool isCFIInstruction() const {
787     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
788   }
789 
790   // True if the instruction represents a position in the function.
791   bool isPosition() const { return isLabel() || isCFIInstruction(); }
792 
793   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
794   /// A DBG_VALUE is indirect iff the first operand is a register and
795   /// the second operand is an immediate.
796   bool isIndirectDebugValue() const {
797     return isDebugValue()
798       && getOperand(0).isReg()
799       && getOperand(1).isImm();
800   }
801 
802   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
803   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
804   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
805   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
806   bool isMSInlineAsm() const {
807     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
808   }
809   bool isStackAligningInlineAsm() const;
810   InlineAsm::AsmDialect getInlineAsmDialect() const;
811   bool isInsertSubreg() const {
812     return getOpcode() == TargetOpcode::INSERT_SUBREG;
813   }
814   bool isSubregToReg() const {
815     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
816   }
817   bool isRegSequence() const {
818     return getOpcode() == TargetOpcode::REG_SEQUENCE;
819   }
820   bool isBundle() const {
821     return getOpcode() == TargetOpcode::BUNDLE;
822   }
823   bool isCopy() const {
824     return getOpcode() == TargetOpcode::COPY;
825   }
826   bool isFullCopy() const {
827     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
828   }
829   bool isExtractSubreg() const {
830     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
831   }
832 
833   /// Return true if the instruction behaves like a copy.
834   /// This does not include native copy instructions.
835   bool isCopyLike() const {
836     return isCopy() || isSubregToReg();
837   }
838 
839   /// Return true is the instruction is an identity copy.
840   bool isIdentityCopy() const {
841     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
842       getOperand(0).getSubReg() == getOperand(1).getSubReg();
843   }
844 
845   /// Return true if this is a transient instruction that is
846   /// either very likely to be eliminated during register allocation (such as
847   /// copy-like instructions), or if this instruction doesn't have an
848   /// execution-time cost.
849   bool isTransient() const {
850     switch(getOpcode()) {
851     default: return false;
852     // Copy-like instructions are usually eliminated during register allocation.
853     case TargetOpcode::PHI:
854     case TargetOpcode::COPY:
855     case TargetOpcode::INSERT_SUBREG:
856     case TargetOpcode::SUBREG_TO_REG:
857     case TargetOpcode::REG_SEQUENCE:
858     // Pseudo-instructions that don't produce any real output.
859     case TargetOpcode::IMPLICIT_DEF:
860     case TargetOpcode::KILL:
861     case TargetOpcode::CFI_INSTRUCTION:
862     case TargetOpcode::EH_LABEL:
863     case TargetOpcode::GC_LABEL:
864     case TargetOpcode::DBG_VALUE:
865       return true;
866     }
867   }
868 
869   /// Return the number of instructions inside the MI bundle, excluding the
870   /// bundle header.
871   ///
872   /// This is the number of instructions that MachineBasicBlock::iterator
873   /// skips, 0 for unbundled instructions.
874   unsigned getBundleSize() const;
875 
876   /// Return true if the MachineInstr reads the specified register.
877   /// If TargetRegisterInfo is passed, then it also checks if there
878   /// is a read of a super-register.
879   /// This does not count partial redefines of virtual registers as reads:
880   ///   %reg1024:6 = OP.
881   bool readsRegister(unsigned Reg,
882                      const TargetRegisterInfo *TRI = nullptr) const {
883     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
884   }
885 
886   /// Return true if the MachineInstr reads the specified virtual register.
887   /// Take into account that a partial define is a
888   /// read-modify-write operation.
889   bool readsVirtualRegister(unsigned Reg) const {
890     return readsWritesVirtualRegister(Reg).first;
891   }
892 
893   /// Return a pair of bools (reads, writes) indicating if this instruction
894   /// reads or writes Reg. This also considers partial defines.
895   /// If Ops is not null, all operand indices for Reg are added.
896   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
897                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
898 
899   /// Return true if the MachineInstr kills the specified register.
900   /// If TargetRegisterInfo is passed, then it also checks if there is
901   /// a kill of a super-register.
902   bool killsRegister(unsigned Reg,
903                      const TargetRegisterInfo *TRI = nullptr) const {
904     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
905   }
906 
907   /// Return true if the MachineInstr fully defines the specified register.
908   /// If TargetRegisterInfo is passed, then it also checks
909   /// if there is a def of a super-register.
910   /// NOTE: It's ignoring subreg indices on virtual registers.
911   bool definesRegister(unsigned Reg,
912                        const TargetRegisterInfo *TRI = nullptr) const {
913     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
914   }
915 
916   /// Return true if the MachineInstr modifies (fully define or partially
917   /// define) the specified register.
918   /// NOTE: It's ignoring subreg indices on virtual registers.
919   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
920     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
921   }
922 
923   /// Returns true if the register is dead in this machine instruction.
924   /// If TargetRegisterInfo is passed, then it also checks
925   /// if there is a dead def of a super-register.
926   bool registerDefIsDead(unsigned Reg,
927                          const TargetRegisterInfo *TRI = nullptr) const {
928     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
929   }
930 
931   /// Returns the operand index that is a use of the specific register or -1
932   /// if it is not found. It further tightens the search criteria to a use
933   /// that kills the register if isKill is true.
934   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
935                                 const TargetRegisterInfo *TRI = nullptr) const;
936 
937   /// Wrapper for findRegisterUseOperandIdx, it returns
938   /// a pointer to the MachineOperand rather than an index.
939   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
940                                       const TargetRegisterInfo *TRI = nullptr) {
941     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
942     return (Idx == -1) ? nullptr : &getOperand(Idx);
943   }
944 
945   const MachineOperand *findRegisterUseOperand(
946     unsigned Reg, bool isKill = false,
947     const TargetRegisterInfo *TRI = nullptr) const {
948     return const_cast<MachineInstr *>(this)->
949       findRegisterUseOperand(Reg, isKill, TRI);
950   }
951 
952   /// Returns the operand index that is a def of the specified register or
953   /// -1 if it is not found. If isDead is true, defs that are not dead are
954   /// skipped. If Overlap is true, then it also looks for defs that merely
955   /// overlap the specified register. If TargetRegisterInfo is non-null,
956   /// then it also checks if there is a def of a super-register.
957   /// This may also return a register mask operand when Overlap is true.
958   int findRegisterDefOperandIdx(unsigned Reg,
959                                 bool isDead = false, bool Overlap = false,
960                                 const TargetRegisterInfo *TRI = nullptr) const;
961 
962   /// Wrapper for findRegisterDefOperandIdx, it returns
963   /// a pointer to the MachineOperand rather than an index.
964   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
965                                       const TargetRegisterInfo *TRI = nullptr) {
966     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
967     return (Idx == -1) ? nullptr : &getOperand(Idx);
968   }
969 
970   /// Find the index of the first operand in the
971   /// operand list that is used to represent the predicate. It returns -1 if
972   /// none is found.
973   int findFirstPredOperandIdx() const;
974 
975   /// Find the index of the flag word operand that
976   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
977   /// getOperand(OpIdx) does not belong to an inline asm operand group.
978   ///
979   /// If GroupNo is not NULL, it will receive the number of the operand group
980   /// containing OpIdx.
981   ///
982   /// The flag operand is an immediate that can be decoded with methods like
983   /// InlineAsm::hasRegClassConstraint().
984   ///
985   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
986 
987   /// Compute the static register class constraint for operand OpIdx.
988   /// For normal instructions, this is derived from the MCInstrDesc.
989   /// For inline assembly it is derived from the flag words.
990   ///
991   /// Returns NULL if the static register class constraint cannot be
992   /// determined.
993   ///
994   const TargetRegisterClass*
995   getRegClassConstraint(unsigned OpIdx,
996                         const TargetInstrInfo *TII,
997                         const TargetRegisterInfo *TRI) const;
998 
999   /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
1000   /// the given \p CurRC.
1001   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1002   /// instructions inside the bundle will be taken into account. In other words,
1003   /// this method accumulates all the constraints of the operand of this MI and
1004   /// the related bundle if MI is a bundle or inside a bundle.
1005   ///
1006   /// Returns the register class that satisfies both \p CurRC and the
1007   /// constraints set by MI. Returns NULL if such a register class does not
1008   /// exist.
1009   ///
1010   /// \pre CurRC must not be NULL.
1011   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1012       unsigned Reg, const TargetRegisterClass *CurRC,
1013       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1014       bool ExploreBundle = false) const;
1015 
1016   /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
1017   /// to the given \p CurRC.
1018   ///
1019   /// Returns the register class that satisfies both \p CurRC and the
1020   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1021   /// does not exist.
1022   ///
1023   /// \pre CurRC must not be NULL.
1024   /// \pre The operand at \p OpIdx must be a register.
1025   const TargetRegisterClass *
1026   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1027                               const TargetInstrInfo *TII,
1028                               const TargetRegisterInfo *TRI) const;
1029 
1030   /// Add a tie between the register operands at DefIdx and UseIdx.
1031   /// The tie will cause the register allocator to ensure that the two
1032   /// operands are assigned the same physical register.
1033   ///
1034   /// Tied operands are managed automatically for explicit operands in the
1035   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1036   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1037 
1038   /// Given the index of a tied register operand, find the
1039   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1040   /// index of the tied operand which must exist.
1041   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1042 
1043   /// Given the index of a register def operand,
1044   /// check if the register def is tied to a source operand, due to either
1045   /// two-address elimination or inline assembly constraints. Returns the
1046   /// first tied use operand index by reference if UseOpIdx is not null.
1047   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1048                              unsigned *UseOpIdx = nullptr) const {
1049     const MachineOperand &MO = getOperand(DefOpIdx);
1050     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1051       return false;
1052     if (UseOpIdx)
1053       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1054     return true;
1055   }
1056 
1057   /// Return true if the use operand of the specified index is tied to a def
1058   /// operand. It also returns the def operand index by reference if DefOpIdx
1059   /// is not null.
1060   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1061                              unsigned *DefOpIdx = nullptr) const {
1062     const MachineOperand &MO = getOperand(UseOpIdx);
1063     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1064       return false;
1065     if (DefOpIdx)
1066       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1067     return true;
1068   }
1069 
1070   /// Clears kill flags on all operands.
1071   void clearKillInfo();
1072 
1073   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1074   /// properly composing subreg indices where necessary.
1075   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
1076                           const TargetRegisterInfo &RegInfo);
1077 
1078   /// We have determined MI kills a register. Look for the
1079   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1080   /// add a implicit operand if it's not found. Returns true if the operand
1081   /// exists / is added.
1082   bool addRegisterKilled(unsigned IncomingReg,
1083                          const TargetRegisterInfo *RegInfo,
1084                          bool AddIfNotFound = false);
1085 
1086   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1087   /// all aliasing registers.
1088   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
1089 
1090   /// We have determined MI defined a register without a use.
1091   /// Look for the operand that defines it and mark it as IsDead. If
1092   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1093   /// true if the operand exists / is added.
1094   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
1095                        bool AddIfNotFound = false);
1096 
1097   /// Clear all dead flags on operands defining register @p Reg.
1098   void clearRegisterDeads(unsigned Reg);
1099 
1100   /// Mark all subregister defs of register @p Reg with the undef flag.
1101   /// This function is used when we determined to have a subregister def in an
1102   /// otherwise undefined super register.
1103   void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
1104 
1105   /// We have determined MI defines a register. Make sure there is an operand
1106   /// defining Reg.
1107   void addRegisterDefined(unsigned Reg,
1108                           const TargetRegisterInfo *RegInfo = nullptr);
1109 
1110   /// Mark every physreg used by this instruction as
1111   /// dead except those in the UsedRegs list.
1112   ///
1113   /// On instructions with register mask operands, also add implicit-def
1114   /// operands for all registers in UsedRegs.
1115   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1116                              const TargetRegisterInfo &TRI);
1117 
1118   /// Return true if it is safe to move this instruction. If
1119   /// SawStore is set to true, it means that there is a store (or call) between
1120   /// the instruction's location and its intended destination.
1121   bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
1122 
1123   /// Return true if this instruction may have an ordered
1124   /// or volatile memory reference, or if the information describing the memory
1125   /// reference is not available. Return false if it is known to have no
1126   /// ordered or volatile memory references.
1127   bool hasOrderedMemoryRef() const;
1128 
1129   /// Return true if this instruction is loading from a
1130   /// location whose value is invariant across the function.  For example,
1131   /// loading a value from the constant pool or from the argument area of
1132   /// a function if it does not change.  This should only return true of *all*
1133   /// loads the instruction does are invariant (if it does multiple loads).
1134   bool isInvariantLoad(AliasAnalysis *AA) const;
1135 
1136   /// If the specified instruction is a PHI that always merges together the
1137   /// same virtual register, return the register, otherwise return 0.
1138   unsigned isConstantValuePHI() const;
1139 
1140   /// Return true if this instruction has side effects that are not modeled
1141   /// by mayLoad / mayStore, etc.
1142   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1143   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1144   /// INLINEASM instruction, in which case the side effect property is encoded
1145   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1146   ///
1147   bool hasUnmodeledSideEffects() const;
1148 
1149   /// Returns true if it is illegal to fold a load across this instruction.
1150   bool isLoadFoldBarrier() const;
1151 
1152   /// Return true if all the defs of this instruction are dead.
1153   bool allDefsAreDead() const;
1154 
1155   /// Copy implicit register operands from specified
1156   /// instruction to this instruction.
1157   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1158 
1159   //
1160   // Debugging support
1161   //
1162   void print(raw_ostream &OS, bool SkipOpers = false) const;
1163   void print(raw_ostream &OS, ModuleSlotTracker &MST,
1164              bool SkipOpers = false) const;
1165   void dump() const;
1166 
1167   //===--------------------------------------------------------------------===//
1168   // Accessors used to build up machine instructions.
1169 
1170   /// Add the specified operand to the instruction.  If it is an implicit
1171   /// operand, it is added to the end of the operand list.  If it is an
1172   /// explicit operand it is added at the end of the explicit operand list
1173   /// (before the first implicit operand).
1174   ///
1175   /// MF must be the machine function that was used to allocate this
1176   /// instruction.
1177   ///
1178   /// MachineInstrBuilder provides a more convenient interface for creating
1179   /// instructions and adding operands.
1180   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1181 
1182   /// Add an operand without providing an MF reference. This only works for
1183   /// instructions that are inserted in a basic block.
1184   ///
1185   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1186   /// preferred.
1187   void addOperand(const MachineOperand &Op);
1188 
1189   /// Replace the instruction descriptor (thus opcode) of
1190   /// the current instruction with a new one.
1191   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1192 
1193   /// Replace current source information with new such.
1194   /// Avoid using this, the constructor argument is preferable.
1195   void setDebugLoc(DebugLoc dl) {
1196     debugLoc = std::move(dl);
1197     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1198   }
1199 
1200   /// Erase an operand from an instruction, leaving it with one
1201   /// fewer operand than it started with.
1202   void RemoveOperand(unsigned i);
1203 
1204   /// Add a MachineMemOperand to the machine instruction.
1205   /// This function should be used only occasionally. The setMemRefs function
1206   /// is the primary method for setting up a MachineInstr's MemRefs list.
1207   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1208 
1209   /// Assign this MachineInstr's memory reference descriptor list.
1210   /// This does not transfer ownership.
1211   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
1212     setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
1213   }
1214 
1215   /// Assign this MachineInstr's memory reference descriptor list.  First
1216   /// element in the pair is the begin iterator/pointer to the array; the
1217   /// second is the number of MemoryOperands.  This does not transfer ownership
1218   /// of the underlying memory.
1219   void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
1220     MemRefs = NewMemRefs.first;
1221     NumMemRefs = uint8_t(NewMemRefs.second);
1222     assert(NumMemRefs == NewMemRefs.second &&
1223            "Too many memrefs - must drop memory operands");
1224   }
1225 
1226   /// Return a set of memrefs (begin iterator, size) which conservatively
1227   /// describe the memory behavior of both MachineInstrs.  This is appropriate
1228   /// for use when merging two MachineInstrs into one. This routine does not
1229   /// modify the memrefs of the this MachineInstr.
1230   std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
1231 
1232   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1233   /// the memrefs to their most conservative state.  This should be used only
1234   /// as a last resort since it greatly pessimizes our knowledge of the memory
1235   /// access performed by the instruction.
1236   void dropMemRefs() {
1237     MemRefs = nullptr;
1238     NumMemRefs = 0;
1239   }
1240 
1241   /// Break any tie involving OpIdx.
1242   void untieRegOperand(unsigned OpIdx) {
1243     MachineOperand &MO = getOperand(OpIdx);
1244     if (MO.isReg() && MO.isTied()) {
1245       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1246       MO.TiedTo = 0;
1247     }
1248   }
1249 
1250   /// Add all implicit def and use operands to this instruction.
1251   void addImplicitDefUseOperands(MachineFunction &MF);
1252 
1253 private:
1254   /// If this instruction is embedded into a MachineFunction, return the
1255   /// MachineRegisterInfo object for the current function, otherwise
1256   /// return null.
1257   MachineRegisterInfo *getRegInfo();
1258 
1259   /// Unlink all of the register operands in this instruction from their
1260   /// respective use lists.  This requires that the operands already be on their
1261   /// use lists.
1262   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1263 
1264   /// Add all of the register operands in this instruction from their
1265   /// respective use lists.  This requires that the operands not be on their
1266   /// use lists yet.
1267   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1268 
1269   /// Slow path for hasProperty when we're dealing with a bundle.
1270   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
1271 
1272   /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
1273   /// this MI and the given operand index \p OpIdx.
1274   /// If the related operand does not constrained Reg, this returns CurRC.
1275   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1276       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1277       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1278 };
1279 
1280 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1281 /// instruction rather than by pointer value.
1282 /// The hashing and equality testing functions ignore definitions so this is
1283 /// useful for CSE, etc.
1284 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1285   static inline MachineInstr *getEmptyKey() {
1286     return nullptr;
1287   }
1288 
1289   static inline MachineInstr *getTombstoneKey() {
1290     return reinterpret_cast<MachineInstr*>(-1);
1291   }
1292 
1293   static unsigned getHashValue(const MachineInstr* const &MI);
1294 
1295   static bool isEqual(const MachineInstr* const &LHS,
1296                       const MachineInstr* const &RHS) {
1297     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1298         LHS == getEmptyKey() || LHS == getTombstoneKey())
1299       return LHS == RHS;
1300     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1301   }
1302 };
1303 
1304 //===----------------------------------------------------------------------===//
1305 // Debugging Support
1306 
1307 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1308   MI.print(OS);
1309   return OS;
1310 }
1311 
1312 } // End llvm namespace
1313 
1314 #endif
1315