1=================== 2Debugging with XRay 3=================== 4 5This document shows an example of how you would go about analyzing applications 6built with XRay instrumentation. Here we will attempt to debug ``llc`` 7compiling some sample LLVM IR generated by Clang. 8 9.. contents:: 10 :local: 11 12Building with XRay 13------------------ 14 15To debug an application with XRay instrumentation, we need to build it with a 16Clang that supports the ``-fxray-instrument`` option. See `XRay <XRay.html>`_ 17for more technical details of how XRay works for background information. 18 19In our example, we need to add ``-fxray-instrument`` to the list of flags 20passed to Clang when building a binary. Note that we need to link with Clang as 21well to get the XRay runtime linked in appropriately. For building ``llc`` with 22XRay, we do something similar below for our LLVM build: 23 24:: 25 26 $ mkdir -p llvm-build && cd llvm-build 27 # Assume that the LLVM sources are at ../llvm 28 $ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \ 29 -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument" -DCMAKE_CXX_FLAGS="-fxray-instrument" \ 30 # Once this finishes, we should build llc 31 $ ninja llc 32 33 34To verify that we have an XRay instrumented binary, we can use ``objdump`` to 35look for the ``xray_instr_map`` section. 36 37:: 38 39 $ objdump -h -j xray_instr_map ./bin/llc 40 ./bin/llc: file format elf64-x86-64 41 42 Sections: 43 Idx Name Size VMA LMA File off Algn 44 14 xray_instr_map 00002fc0 00000000041516c6 00000000041516c6 03d516c6 2**0 45 CONTENTS, ALLOC, LOAD, READONLY, DATA 46 47Getting Traces 48-------------- 49 50By default, XRay does not write out the trace files or patch the application 51before main starts. If we just run ``llc`` it should just work like a normally 52built binary. However, if we want to get a full trace of the application's 53operations (of the functions we do end up instrumenting with XRay) then we need 54to enable XRay at application start. To do this, XRay checks the 55``XRAY_OPTIONS`` environment variable. 56 57:: 58 59 # The following doesn't create an XRay trace by default. 60 $ ./bin/llc input.ll 61 62 # We need to set the XRAY_OPTIONS to enable some features. 63 $ XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic verbosity=1" ./bin/llc input.ll 64 ==69819==XRay: Log file in 'xray-log.llc.m35qPB' 65 66At this point we now have an XRay trace we can start analysing. 67 68The ``llvm-xray`` Tool 69---------------------- 70 71Having a trace then allows us to do basic accounting of the functions that were 72instrumented, and how much time we're spending in parts of the code. To make 73sense of this data, we use the ``llvm-xray`` tool which has a few subcommands 74to help us understand our trace. 75 76One of the simplest things we can do is to get an accounting of the functions 77that have been instrumented. We can see an example accounting with ``llvm-xray 78account``: 79 80:: 81 82 $ llvm-xray account xray-log.llc.m35qPB -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc 83 Functions with latencies: 29 84 funcid count [ min, med, 90p, 99p, max] sum function 85 187 360 [ 0.000000, 0.000001, 0.000014, 0.000032, 0.000075] 0.001596 LLLexer.cpp:446:0: llvm::LLLexer::LexIdentifier() 86 85 130 [ 0.000000, 0.000000, 0.000018, 0.000023, 0.000156] 0.000799 X86ISelDAGToDAG.cpp:1984:0: (anonymous namespace)::X86DAGToDAGISel::Select(llvm::SDNode*) 87 138 130 [ 0.000000, 0.000000, 0.000017, 0.000155, 0.000155] 0.000774 SelectionDAGISel.cpp:2963:0: llvm::SelectionDAGISel::SelectCodeCommon(llvm::SDNode*, unsigned char const*, unsigned int) 88 188 103 [ 0.000000, 0.000000, 0.000003, 0.000123, 0.000214] 0.000737 LLParser.cpp:2692:0: llvm::LLParser::ParseValID(llvm::ValID&, llvm::LLParser::PerFunctionState*) 89 88 1 [ 0.000562, 0.000562, 0.000562, 0.000562, 0.000562] 0.000562 X86ISelLowering.cpp:83:0: llvm::X86TargetLowering::X86TargetLowering(llvm::X86TargetMachine const&, llvm::X86Subtarget const&) 90 125 102 [ 0.000001, 0.000003, 0.000010, 0.000017, 0.000049] 0.000471 Verifier.cpp:3714:0: (anonymous namespace)::Verifier::visitInstruction(llvm::Instruction&) 91 90 8 [ 0.000023, 0.000035, 0.000106, 0.000106, 0.000106] 0.000342 X86ISelLowering.cpp:3363:0: llvm::X86TargetLowering::LowerCall(llvm::TargetLowering::CallLoweringInfo&, llvm::SmallVectorImpl<llvm::SDValue>&) const 92 124 32 [ 0.000003, 0.000007, 0.000016, 0.000041, 0.000041] 0.000310 Verifier.cpp:1967:0: (anonymous namespace)::Verifier::visitFunction(llvm::Function const&) 93 123 1 [ 0.000302, 0.000302, 0.000302, 0.000302, 0.000302] 0.000302 LLVMContextImpl.cpp:54:0: llvm::LLVMContextImpl::~LLVMContextImpl() 94 139 46 [ 0.000000, 0.000002, 0.000006, 0.000008, 0.000019] 0.000138 TargetLowering.cpp:506:0: llvm::TargetLowering::SimplifyDemandedBits(llvm::SDValue, llvm::APInt const&, llvm::APInt&, llvm::APInt&, llvm::TargetLowering::TargetLoweringOpt&, unsigned int, bool) const 95 96This shows us that for our input file, ``llc`` spent the most cumulative time 97in the lexer (a total of 1 millisecond). If we wanted for example to work with 98this data in a spreadsheet, we can output the results as CSV using the 99``-format=csv`` option to the command for further analysis. 100 101If we want to get a textual representation of the raw trace we can use the 102``llvm-xray convert`` tool to get YAML output. The first few lines of that 103output for an example trace would look like the following: 104 105:: 106 107 $ llvm-xray convert -f yaml -symbolize -instr_map=./bin/llc xray-log.llc.m35qPB 108 --- 109 header: 110 version: 1 111 type: 0 112 constant-tsc: true 113 nonstop-tsc: true 114 cycle-frequency: 2601000000 115 records: 116 - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426023268520 } 117 - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426023523052 } 118 - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426029925386 } 119 - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426030031128 } 120 - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426046951388 } 121 - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047282020 } 122 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426047857332 } 123 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047984152 } 124 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048036584 } 125 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048042292 } 126 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048055056 } 127 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048067316 } 128 129Controlling Fidelity 130-------------------- 131 132So far in our examples, we haven't been getting full coverage of the functions 133we have in the binary. To get that, we need to modify the compiler flags so 134that we can instrument more (if not all) the functions we have in the binary. 135We have two options for doing that, and we explore both of these below. 136 137Instruction Threshold 138````````````````````` 139 140The first "blunt" way of doing this is by setting the minimum threshold for 141function bodies to 1. We can do that with the 142``-fxray-instruction-threshold=N`` flag when building our binary. We rebuild 143``llc`` with this option and observe the results: 144 145:: 146 147 $ rm CMakeCache.txt 148 $ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \ 149 -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument -fxray-instruction-threshold=1" \ 150 -DCMAKE_CXX_FLAGS="-fxray-instrument -fxray-instruction-threshold=1" 151 $ ninja llc 152 $ XRAY_OPTIONS="patch_premain=true" ./bin/llc input.ll 153 ==69819==XRay: Log file in 'xray-log.llc.5rqxkU' 154 155 $ llvm-xray account xray-log.llc.5rqxkU -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc 156 Functions with latencies: 36652 157 funcid count [ min, med, 90p, 99p, max] sum function 158 75 1 [ 0.672368, 0.672368, 0.672368, 0.672368, 0.672368] 0.672368 llc.cpp:271:0: main 159 78 1 [ 0.626455, 0.626455, 0.626455, 0.626455, 0.626455] 0.626455 llc.cpp:381:0: compileModule(char**, llvm::LLVMContext&) 160 139617 1 [ 0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1723:0: llvm::legacy::PassManager::run(llvm::Module&) 161 139610 1 [ 0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1681:0: llvm::legacy::PassManagerImpl::run(llvm::Module&) 162 139612 1 [ 0.470948, 0.470948, 0.470948, 0.470948, 0.470948] 0.470948 LegacyPassManager.cpp:1564:0: (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&) 163 139607 2 [ 0.147345, 0.315994, 0.315994, 0.315994, 0.315994] 0.463340 LegacyPassManager.cpp:1530:0: llvm::FPPassManager::runOnModule(llvm::Module&) 164 139605 21 [ 0.000002, 0.000002, 0.102593, 0.213336, 0.213336] 0.463331 LegacyPassManager.cpp:1491:0: llvm::FPPassManager::runOnFunction(llvm::Function&) 165 139563 26096 [ 0.000002, 0.000002, 0.000037, 0.000063, 0.000215] 0.225708 LegacyPassManager.cpp:1083:0: llvm::PMDataManager::findAnalysisPass(void const*, bool) 166 108055 188 [ 0.000002, 0.000120, 0.001375, 0.004523, 0.062624] 0.159279 MachineFunctionPass.cpp:38:0: llvm::MachineFunctionPass::runOnFunction(llvm::Function&) 167 62635 22 [ 0.000041, 0.000046, 0.000050, 0.126744, 0.126744] 0.127715 X86TargetMachine.cpp:242:0: llvm::X86TargetMachine::getSubtargetImpl(llvm::Function const&) const 168 169 170Instrumentation Attributes 171`````````````````````````` 172 173The other way is to use configuration files for selecting which functions 174should always be instrumented by the compiler. This gives us a way of ensuring 175that certain functions are either always or never instrumented by not having to 176add the attribute to the source. 177 178To use this feature, you can define one file for the functions to always 179instrument, and another for functions to never instrument. The format of these 180files are exactly the same as the SanitizerLists files that control similar 181things for the sanitizer implementations. For example, we can have two 182different files like below: 183 184:: 185 186 # always-instrument.txt 187 # always instrument functions that match the following filters: 188 fun:main 189 190 # never-instrument.txt 191 # never instrument functions that match the following filters: 192 fun:__cxx_* 193 194Given the above two files we can re-build by providing those two files as 195arguments to clang as ``-fxray-always-instrument=always-instrument.txt`` or 196``-fxray-never-instrument=never-instrument.txt``. 197 198The XRay stack tool 199------------------- 200 201Given a trace, and optionally an instrumentation map, the ``llvm-xray stack`` 202command can be used to analyze a call stack graph constructed from the function 203call timeline. 204 205The simplest way to use the command is simply to output the top stacks by call 206count and time spent. 207 208:: 209 210 $ llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc 211 212 Unique Stacks: 3069 213 Top 10 Stacks by leaf sum: 214 215 Sum: 9633790 216 lvl function count sum 217 #0 main 1 58421550 218 #1 compileModule(char**, llvm::LLVMContext&) 1 51440360 219 #2 llvm::legacy::PassManagerImpl::run(llvm::Module&) 1 40535375 220 #3 llvm::FPPassManager::runOnModule(llvm::Module&) 2 39337525 221 #4 llvm::FPPassManager::runOnFunction(llvm::Function&) 6 39331465 222 #5 llvm::PMDataManager::verifyPreservedAnalysis(llvm::Pass*) 399 16628590 223 #6 llvm::PMTopLevelManager::findAnalysisPass(void const*) 4584 15155600 224 #7 llvm::PMDataManager::findAnalysisPass(void const*, bool) 32088 9633790 225 226 ..etc.. 227 228In the default mode, identical stacks on different threads are independently 229aggregated. In a multithreaded program, you may end up having identical call 230stacks fill your list of top calls. 231 232To address this, you may specify the ``-aggregate-threads`` or 233``-per-thread-stacks`` flags. ``-per-thread-stacks`` treats the thread id as an 234implicit root in each call stack tree, while ``-aggregate-threads`` combines 235identical stacks from all threads. 236 237Flame Graph Generation 238---------------------- 239 240The ``llvm-xray stack`` tool may also be used to generate flamegraphs for 241visualizing your instrumented invocations. The tool does not generate the graphs 242themselves, but instead generates a format that can be used with Brendan Gregg's 243FlameGraph tool, currently available on `github 244<https://github.com/brendangregg/FlameGraph>`_. 245 246To generate output for a flamegraph, a few more options are necessary. 247 248- ``-all-stacks`` - Emits all of the stacks instead of just the top stacks. 249- ``-stack-format`` - Choose the flamegraph output format 'flame'. 250- ``-aggregation-type`` - Choose the metric to graph. 251 252You may pipe the command output directly to the flamegraph tool to obtain an 253svg file. 254 255:: 256 257 $llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc -stack-format=flame -aggregation-type=time -all-stacks | \ 258 /path/to/FlameGraph/flamegraph.pl > flamegraph.svg 259 260If you open the svg in a browser, mouse events allow exploring the call stacks. 261 262Further Exploration 263------------------- 264 265The ``llvm-xray`` tool has a few other subcommands that are in various stages 266of being developed. One interesting subcommand that can highlight a few 267interesting things is the ``graph`` subcommand. Given for example the following 268toy program that we build with XRay instrumentation, we can see how the 269generated graph may be a helpful indicator of where time is being spent for the 270application. 271 272.. code-block:: c++ 273 274 // sample.cc 275 #include <iostream> 276 #include <thread> 277 278 [[clang::xray_always_instrument]] void f() { 279 std::cerr << '.'; 280 } 281 282 [[clang::xray_always_instrument]] void g() { 283 for (int i = 0; i < 1 << 10; ++i) { 284 std::cerr << '-'; 285 } 286 } 287 288 int main(int argc, char* argv[]) { 289 std::thread t1([] { 290 for (int i = 0; i < 1 << 10; ++i) 291 f(); 292 }); 293 std::thread t2([] { 294 g(); 295 }); 296 t1.join(); 297 t2.join(); 298 std::cerr << '\n'; 299 } 300 301We then build the above with XRay instrumentation: 302 303:: 304 305 $ clang++ -o sample -O3 sample.cc -std=c++11 -fxray-instrument -fxray-instruction-threshold=1 306 $ XRAY_OPTIONS="patch_premain=true" ./sample 307 308We can then explore the graph rendering of the trace generated by this sample 309application. We assume you have the graphviz toosl available in your system, 310including both ``unflatten`` and ``dot``. If you prefer rendering or exploring 311the graph using another tool, then that should be feasible as well. ``llvm-xray 312graph`` will create DOT format graphs which should be usable in most graph 313rendering applications. One example invocation of the ``llvm-xray graph`` 314command should yield some interesting insights to the workings of C++ 315applications: 316 317:: 318 319 $ llvm-xray graph xray-log.sample.* -m sample -color-edges=sum -edge-label=sum \ 320 | unflatten -f -l10 | dot -Tsvg -o sample.svg 321 322Next Steps 323---------- 324 325If you have some interesting analyses you'd like to implement as part of the 326llvm-xray tool, please feel free to propose them on the llvm-dev@ mailing list. 327The following are some ideas to inspire you in getting involved and potentially 328making things better. 329 330 - Implement a query/filtering library that allows for finding patterns in the 331 XRay traces. 332 - A conversion from the XRay trace onto something that can be visualised 333 better by other tools (like the Chrome trace viewer for example). 334 - Collecting function call stacks and how often they're encountered in the 335 XRay trace. 336 337 338