1================================
2Source Level Debugging with LLVM
3================================
4
5.. contents::
6   :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM.  It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information.  Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here.  The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26  compiler.  No transformations, analyses, or code generators should need to
27  be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30  ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33  LLVM-to-LLVM tools should not need to know anything about the semantics of
34  the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37  LLVM should not put any restrictions of the flavor of the source-language,
38  and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41  to compile a program to native machine code and standard debugging
42  formats.  This allows compatibility with traditional machine-code level
43  debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects.  The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information.  As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process.  This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger.  Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis.  In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86  the source-level state of the program**, regardless of which LLVM
87  optimizations have been run, and without any modification to the
88  optimizations themselves.  However, some optimizations may impact the
89  ability to modify the current state of the program with a debugger, such
90  as setting program variables, or calling functions that have been
91  deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94  debugging information, allowing them to update the debugging information
95  as they perform aggressive optimizations.  This means that, with effort,
96  the LLVM optimizers could optimize debug code just as well as non-debug
97  code.
98
99* LLVM debug information does not prevent optimizations from
100  happening (for example inlining, basic block reordering/merging/cleanup,
101  tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104  the program, using existing facilities.  For example, duplicate
105  information is automatically merged by the linker, and unused information
106  is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger.  Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information.  It can be run like this:
119
120.. code-block:: bash
121
122  % cd llvm/projects/test-suite/MultiSource/Benchmarks  # or some other level
123  % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes.  If
126debugging information influences optimization passes then it will be reported
127as a failure.  See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information.  In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc).  It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum.  The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`.  These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language.  :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
172information appended at the end that is source-language specific.  All debugging
173information objects start with a tag to indicate what type of object it is.
174The source-language is allowed to define its own objects, by using unreserved
175tag numbers.  We recommend using with tags in the range 0x1000 through 0x2000
176(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
177
178The fields of debug descriptors used internally by LLVM are restricted to only
179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
180``mdnode``.
181
182.. code-block:: llvm
183
184  !1 = metadata !{
185    i32,   ;; A tag
186    ...
187  }
188
189<a name="LLVMDebugVersion">The first field of a descriptor is always an
190``i32`` containing a tag value identifying the content of the descriptor.
191The remaining fields are specific to the descriptor.  The values of tags are
192loosely bound to the tag values of DWARF information entries.  However, that
193does not restrict the use of the information supplied to DWARF targets.
194
195The details of the various descriptors follow.
196
197Compile unit descriptors
198^^^^^^^^^^^^^^^^^^^^^^^^
199
200.. code-block:: llvm
201
202  !0 = metadata !{
203    i32,       ;; Tag = 17 (DW_TAG_compile_unit)
204    metadata,  ;; Source directory (including trailing slash) & file pair
205    i32,       ;; DWARF language identifier (ex. DW_LANG_C89)
206    metadata   ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
207    i1,        ;; True if this is optimized.
208    metadata,  ;; Flags
209    i32        ;; Runtime version
210    metadata   ;; List of enums types
211    metadata   ;; List of retained types
212    metadata   ;; List of subprograms
213    metadata   ;; List of global variables
214    metadata   ;; List of imported entities
215    metadata   ;; Split debug filename
216  }
217
218These descriptors contain a source language ID for the file (we use the DWARF
2193.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
220``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of
221strings for the source file name and the working directory, as well as an
222identifier string for the compiler that produced it.
223
224Compile unit descriptors provide the root context for objects declared in a
225specific compilation unit.  File descriptors are defined using this context.
226These descriptors are collected by a named metadata ``!llvm.dbg.cu``.  They
227keep track of subprograms, global variables, type information, and imported
228entities (declarations and namespaces).
229
230.. _format_files:
231
232File descriptors
233^^^^^^^^^^^^^^^^
234
235.. code-block:: llvm
236
237  !0 = metadata !{
238    i32,       ;; Tag = 41 (DW_TAG_file_type)
239    metadata,  ;; Source directory (including trailing slash) & file pair
240  }
241
242These descriptors contain information for a file.  Global variables and top
243level functions would be defined using this context.  File descriptors also
244provide context for source line correspondence.
245
246Each input file is encoded as a separate file descriptor in LLVM debugging
247information output.
248
249.. _format_global_variables:
250
251Global variable descriptors
252^^^^^^^^^^^^^^^^^^^^^^^^^^^
253
254.. code-block:: llvm
255
256  !1 = metadata !{
257    i32,      ;; Tag = 52 (DW_TAG_variable)
258    i32,      ;; Unused field.
259    metadata, ;; Reference to context descriptor
260    metadata, ;; Name
261    metadata, ;; Display name (fully qualified C++ name)
262    metadata, ;; MIPS linkage name (for C++)
263    metadata, ;; Reference to file where defined
264    i32,      ;; Line number where defined
265    metadata, ;; Reference to type descriptor
266    i1,       ;; True if the global is local to compile unit (static)
267    i1,       ;; True if the global is defined in the compile unit (not extern)
268    {}*,      ;; Reference to the global variable
269    metadata, ;; The static member declaration, if any
270  }
271
272These descriptors provide debug information about globals variables.  They
273provide details such as name, type and where the variable is defined.  All
274global variables are collected inside the named metadata ``!llvm.dbg.cu``.
275
276.. _format_subprograms:
277
278Subprogram descriptors
279^^^^^^^^^^^^^^^^^^^^^^
280
281.. code-block:: llvm
282
283  !2 = metadata !{
284    i32,      ;; Tag = 46 (DW_TAG_subprogram)
285    metadata, ;; Source directory (including trailing slash) & file pair
286    metadata, ;; Reference to context descriptor
287    metadata, ;; Name
288    metadata, ;; Display name (fully qualified C++ name)
289    metadata, ;; MIPS linkage name (for C++)
290    i32,      ;; Line number where defined
291    metadata, ;; Reference to type descriptor
292    i1,       ;; True if the global is local to compile unit (static)
293    i1,       ;; True if the global is defined in the compile unit (not extern)
294    i32,      ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
295    i32,      ;; Index into a virtual function
296    metadata, ;; indicates which base type contains the vtable pointer for the
297              ;; derived class
298    i32,      ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
299    i1,       ;; isOptimized
300    Function * , ;; Pointer to LLVM function
301    metadata, ;; Lists function template parameters
302    metadata, ;; Function declaration descriptor
303    metadata, ;; List of function variables
304    i32       ;; Line number where the scope of the subprogram begins
305  }
306
307These descriptors provide debug information about functions, methods and
308subprograms.  They provide details such as name, return types and the source
309location where the subprogram is defined.
310
311Block descriptors
312^^^^^^^^^^^^^^^^^
313
314.. code-block:: llvm
315
316  !3 = metadata !{
317    i32,     ;; Tag = 11 (DW_TAG_lexical_block)
318    metadata,;; Source directory (including trailing slash) & file pair
319    metadata,;; Reference to context descriptor
320    i32,     ;; Line number
321    i32,     ;; Column number
322    i32      ;; Unique ID to identify blocks from a template function
323  }
324
325This descriptor provides debug information about nested blocks within a
326subprogram.  The line number and column numbers are used to dinstinguish two
327lexical blocks at same depth.
328
329.. code-block:: llvm
330
331  !3 = metadata !{
332    i32,     ;; Tag = 11 (DW_TAG_lexical_block)
333    metadata,;; Source directory (including trailing slash) & file pair
334    metadata ;; Reference to the scope we're annotating with a file change
335  }
336
337This descriptor provides a wrapper around a lexical scope to handle file
338changes in the middle of a lexical block.
339
340.. _format_basic_type:
341
342Basic type descriptors
343^^^^^^^^^^^^^^^^^^^^^^
344
345.. code-block:: llvm
346
347  !4 = metadata !{
348    i32,      ;; Tag = 36 (DW_TAG_base_type)
349    metadata,;; Source directory (including trailing slash) & file pair (may be null)
350    metadata, ;; Reference to context
351    metadata, ;; Name (may be "" for anonymous types)
352    i32,      ;; Line number where defined (may be 0)
353    i64,      ;; Size in bits
354    i64,      ;; Alignment in bits
355    i64,      ;; Offset in bits
356    i32,      ;; Flags
357    i32       ;; DWARF type encoding
358  }
359
360These descriptors define primitive types used in the code.  Example ``int``,
361``bool`` and ``float``.  The context provides the scope of the type, which is
362usually the top level.  Since basic types are not usually user defined the
363context and line number can be left as NULL and 0.  The size, alignment and
364offset are expressed in bits and can be 64 bit values.  The alignment is used
365to round the offset when embedded in a :ref:`composite type
366<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
367The offset is the bit offset if embedded in a :ref:`composite type
368<format_composite_type>`.
369
370The type encoding provides the details of the type.  The values are typically
371one of the following:
372
373.. code-block:: llvm
374
375  DW_ATE_address       = 1
376  DW_ATE_boolean       = 2
377  DW_ATE_float         = 4
378  DW_ATE_signed        = 5
379  DW_ATE_signed_char   = 6
380  DW_ATE_unsigned      = 7
381  DW_ATE_unsigned_char = 8
382
383.. _format_derived_type:
384
385Derived type descriptors
386^^^^^^^^^^^^^^^^^^^^^^^^
387
388.. code-block:: llvm
389
390  !5 = metadata !{
391    i32,      ;; Tag (see below)
392    metadata,;; Source directory (including trailing slash) & file pair (may be null)
393    metadata, ;; Reference to context
394    metadata, ;; Name (may be "" for anonymous types)
395    i32,      ;; Line number where defined (may be 0)
396    i64,      ;; Size in bits
397    i64,      ;; Alignment in bits
398    i64,      ;; Offset in bits
399    i32,      ;; Flags to encode attributes, e.g. private
400    metadata, ;; Reference to type derived from
401    metadata, ;; (optional) Name of the Objective C property associated with
402              ;; Objective-C an ivar, or the type of which this
403              ;; pointer-to-member is pointing to members of.
404    metadata, ;; (optional) Name of the Objective C property getter selector.
405    metadata, ;; (optional) Name of the Objective C property setter selector.
406    i32       ;; (optional) Objective C property attributes.
407  }
408
409These descriptors are used to define types derived from other types.  The value
410of the tag varies depending on the meaning.  The following are possible tag
411values:
412
413.. code-block:: llvm
414
415  DW_TAG_formal_parameter   = 5
416  DW_TAG_member             = 13
417  DW_TAG_pointer_type       = 15
418  DW_TAG_reference_type     = 16
419  DW_TAG_typedef            = 22
420  DW_TAG_ptr_to_member_type = 31
421  DW_TAG_const_type         = 38
422  DW_TAG_volatile_type      = 53
423  DW_TAG_restrict_type      = 55
424
425``DW_TAG_member`` is used to define a member of a :ref:`composite type
426<format_composite_type>` or :ref:`subprogram <format_subprograms>`.  The type
427of the member is the :ref:`derived type <format_derived_type>`.
428``DW_TAG_formal_parameter`` is used to define a member which is a formal
429argument of a subprogram.
430
431``DW_TAG_typedef`` is used to provide a name for the derived type.
432
433``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
434``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
435:ref:`derived type <format_derived_type>`.
436
437:ref:`Derived type <format_derived_type>` location can be determined from the
438context and line number.  The size, alignment and offset are expressed in bits
439and can be 64 bit values.  The alignment is used to round the offset when
440embedded in a :ref:`composite type <format_composite_type>`  (example to keep
441float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
442in a :ref:`composite type <format_composite_type>`.
443
444Note that the ``void *`` type is expressed as a type derived from NULL.
445
446.. _format_composite_type:
447
448Composite type descriptors
449^^^^^^^^^^^^^^^^^^^^^^^^^^
450
451.. code-block:: llvm
452
453  !6 = metadata !{
454    i32,      ;; Tag (see below)
455    metadata,;; Source directory (including trailing slash) & file pair (may be null)
456    metadata, ;; Reference to context
457    metadata, ;; Name (may be "" for anonymous types)
458    i32,      ;; Line number where defined (may be 0)
459    i64,      ;; Size in bits
460    i64,      ;; Alignment in bits
461    i64,      ;; Offset in bits
462    i32,      ;; Flags
463    metadata, ;; Reference to type derived from
464    metadata, ;; Reference to array of member descriptors
465    i32       ;; Runtime languages
466    metadata, ;; Base type containing the vtable pointer for this type
467    metadata  ;; Template parameters
468  }
469
470These descriptors are used to define types that are composed of 0 or more
471elements.  The value of the tag varies depending on the meaning.  The following
472are possible tag values:
473
474.. code-block:: llvm
475
476  DW_TAG_array_type       = 1
477  DW_TAG_enumeration_type = 4
478  DW_TAG_structure_type   = 19
479  DW_TAG_union_type       = 23
480  DW_TAG_subroutine_type  = 21
481  DW_TAG_inheritance      = 28
482
483The vector flag indicates that an array type is a native packed vector.
484
485The members of array types (tag = ``DW_TAG_array_type``) are
486:ref:`subrange descriptors <format_subrange>`, each
487representing the range of subscripts at that level of indexing.
488
489The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
490:ref:`enumerator descriptors <format_enumerator>`, each representing the
491definition of enumeration value for the set.  All enumeration type descriptors
492are collected inside the named metadata ``!llvm.dbg.cu``.
493
494The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
495``DW_TAG_union_type``) types are any one of the :ref:`basic
496<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
497<format_composite_type>` type descriptors, each representing a field member of
498the structure or union.
499
500For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
501information about base classes, static members and member functions.  If a
502member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
503of ``DW_TAG_inheritance``, then the type represents a base class.  If the member
504of is a :ref:`global variable descriptor <format_global_variables>` then it
505represents a static member.  And, if the member is a :ref:`subprogram
506descriptor <format_subprograms>` then it represents a member function.  For
507static members and member functions, ``getName()`` returns the members link or
508the C++ mangled name.  ``getDisplayName()`` the simplied version of the name.
509
510The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
511is the return type for the subroutine.  The remaining elements are the formal
512arguments to the subroutine.
513
514:ref:`Composite type <format_composite_type>` location can be determined from
515the context and line number.  The size, alignment and offset are expressed in
516bits and can be 64 bit values.  The alignment is used to round the offset when
517embedded in a :ref:`composite type <format_composite_type>` (as an example, to
518keep float doubles on 64 bit boundaries).  The offset is the bit offset if
519embedded in a :ref:`composite type <format_composite_type>`.
520
521.. _format_subrange:
522
523Subrange descriptors
524^^^^^^^^^^^^^^^^^^^^
525
526.. code-block:: llvm
527
528  !42 = metadata !{
529    i32,    ;; Tag = 33 (DW_TAG_subrange_type)
530    i64,    ;; Low value
531    i64     ;; High value
532  }
533
534These descriptors are used to define ranges of array subscripts for an array
535:ref:`composite type <format_composite_type>`.  The low value defines the lower
536bounds typically zero for C/C++.  The high value is the upper bounds.  Values
537are 64 bit.  ``High - Low + 1`` is the size of the array.  If ``Low > High``
538the array bounds are not included in generated debugging information.
539
540.. _format_enumerator:
541
542Enumerator descriptors
543^^^^^^^^^^^^^^^^^^^^^^
544
545.. code-block:: llvm
546
547  !6 = metadata !{
548    i32,      ;; Tag = 40 (DW_TAG_enumerator)
549    metadata, ;; Name
550    i64       ;; Value
551  }
552
553These descriptors are used to define members of an enumeration :ref:`composite
554type <format_composite_type>`, it associates the name to the value.
555
556Local variables
557^^^^^^^^^^^^^^^
558
559.. code-block:: llvm
560
561  !7 = metadata !{
562    i32,      ;; Tag (see below)
563    metadata, ;; Context
564    metadata, ;; Name
565    metadata, ;; Reference to file where defined
566    i32,      ;; 24 bit - Line number where defined
567              ;; 8 bit - Argument number. 1 indicates 1st argument.
568    metadata, ;; Type descriptor
569    i32,      ;; flags
570    metadata  ;; (optional) Reference to inline location
571  }
572
573These descriptors are used to define variables local to a sub program.  The
574value of the tag depends on the usage of the variable:
575
576.. code-block:: llvm
577
578  DW_TAG_auto_variable   = 256
579  DW_TAG_arg_variable    = 257
580
581An auto variable is any variable declared in the body of the function.  An
582argument variable is any variable that appears as a formal argument to the
583function.
584
585The context is either the subprogram or block where the variable is defined.
586Name the source variable name.  Context and line indicate where the variable
587was defined.  Type descriptor defines the declared type of the variable.
588
589.. _format_common_intrinsics:
590
591Debugger intrinsic functions
592^^^^^^^^^^^^^^^^^^^^^^^^^^^^
593
594LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
595provide debug information at various points in generated code.
596
597``llvm.dbg.declare``
598^^^^^^^^^^^^^^^^^^^^
599
600.. code-block:: llvm
601
602  void %llvm.dbg.declare(metadata, metadata)
603
604This intrinsic provides information about a local element (e.g., variable).
605The first argument is metadata holding the alloca for the variable.  The second
606argument is metadata containing a description of the variable.
607
608``llvm.dbg.value``
609^^^^^^^^^^^^^^^^^^
610
611.. code-block:: llvm
612
613  void %llvm.dbg.value(metadata, i64, metadata)
614
615This intrinsic provides information when a user source variable is set to a new
616value.  The first argument is the new value (wrapped as metadata).  The second
617argument is the offset in the user source variable where the new value is
618written.  The third argument is metadata containing a description of the user
619source variable.
620
621Object lifetimes and scoping
622============================
623
624In many languages, the local variables in functions can have their lifetimes or
625scopes limited to a subset of a function.  In the C family of languages, for
626example, variables are only live (readable and writable) within the source
627block that they are defined in.  In functional languages, values are only
628readable after they have been defined.  Though this is a very obvious concept,
629it is non-trivial to model in LLVM, because it has no notion of scoping in this
630sense, and does not want to be tied to a language's scoping rules.
631
632In order to handle this, the LLVM debug format uses the metadata attached to
633llvm instructions to encode line number and scoping information.  Consider the
634following C fragment, for example:
635
636.. code-block:: c
637
638  1.  void foo() {
639  2.    int X = 21;
640  3.    int Y = 22;
641  4.    {
642  5.      int Z = 23;
643  6.      Z = X;
644  7.    }
645  8.    X = Y;
646  9.  }
647
648Compiled to LLVM, this function would be represented like this:
649
650.. code-block:: llvm
651
652  define void @_Z3foov() #0 {
653  entry:
654    %X = alloca i32, align 4                        ; [#uses=3 type=i32*]
655    %Y = alloca i32, align 4                        ; [#uses=2 type=i32*]
656    %Z = alloca i32, align 4                        ; [#uses=2 type=i32*]
657    call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !8), !dbg !10
658      ; [debug line = 2:7] [debug variable = X]
659    store i32 21, i32* %X, align 4, !dbg !11        ; [debug line = 2:13]
660    call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !12), !dbg !13
661      ; [debug line = 3:7] [debug variable = Y]
662    store i32 22, i32* %Y, align 4, !dbg !14        ; [debug line = 3:13]
663    call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
664      ; [debug line = 5:9] [debug variable = Z]
665    store i32 23, i32* %Z, align 4, !dbg !18        ; [debug line = 5:15]
666    %0 = load i32* %X, align 4, !dbg !19            ; [#uses=1 type=i32] \
667      [debug line = 6:5]
668    store i32 %0, i32* %Z, align 4, !dbg !19        ; [debug line = 6:5]
669    %1 = load i32* %Y, align 4, !dbg !20            ; [#uses=1 type=i32] \
670      [debug line = 8:3]
671    store i32 %1, i32* %X, align 4, !dbg !20        ; [debug line = 8:3]
672    ret void, !dbg !21                              ; [debug line = 9:1]
673  }
674
675  ; [#uses=3]
676  ; Function Attrs: nounwind readnone
677  declare void @llvm.dbg.declare(metadata, metadata) #1
678
679  attributes #0 = { optsize zeroext "less-precise-fpmad"="false"
680    "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="true"
681    "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false"
682    "use-soft-float"="false" }
683  attributes #1 = { nounwind readnone }
684
685  !llvm.dbg.cu = !{!0}
686
687  !0 = metadata !{i32 786449, metadata !1, i32 12,
688                  metadata !"clang version 3.4 ", i1 false, metadata !"", i32 0,
689                  metadata !2, metadata !2, metadata !3, metadata !2,
690                  metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \
691                    [/private/tmp/foo.c] \
692                    [DW_LANG_C]
693  !1 = metadata !{metadata !"foo.c", metadata !"/private/tmp"}
694  !2 = metadata !{i32 0}
695  !3 = metadata !{metadata !4}
696  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
697                  metadata !"foo", metadata !"_Z3foov", i32 1, metadata !6,
698                  i1 false, i1 true, i32 0, i32 0, null, i32 256, i1 false,
699                  void ()* @_Z3foov, null, null, metadata !2, i32 1}
700                  ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
701  !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \
702                    [/private/tmp/foo.c]
703  !6 = metadata !{i32 786453, i32 0, i32 0, metadata !"", i32 0, i64 0, i64 0,
704                  i64 0, i32 0, null, metadata !7, i32 0, i32 0}
705                  ; [ DW_TAG_subroutine_type ] \
706                    [line 0, size 0, align 0, offset 0] [from ]
707  !7 = metadata !{null}
708  !8 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2, \
709                  metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \
710                    [line 2]
711  !9 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32, \
712                  i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \
713                    [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
714  !10 = metadata !{i32 2, i32 7, metadata !4, null}
715  !11 = metadata !{i32 2, i32 13, metadata !4, null}
716  !12 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3, \
717                   metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \
718                     [line 3]
719  !13 = metadata !{i32 3, i32 7, metadata !4, null}
720  !14 = metadata !{i32 3, i32 13, metadata !4, null}
721  !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5, \
722                   metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \
723                     [line 5]
724  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 3, i32 0}
725                   ; [ DW_TAG_lexical_block ] [/private/tmp/foo.c]
726  !17 = metadata !{i32 5, i32 9, metadata !16, null}
727  !18 = metadata !{i32 5, i32 15, metadata !16, null}
728  !19 = metadata !{i32 6, i32 5, metadata !16, null}
729  !20 = metadata !{i32 8, i32 3, metadata !4, null}
730  !21 = metadata !{i32 9, i32 1, metadata !4, null}
731
732This example illustrates a few important details about LLVM debugging
733information.  In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
734location information, which are attached to an instruction, are applied
735together to allow a debugger to analyze the relationship between statements,
736variable definitions, and the code used to implement the function.
737
738.. code-block:: llvm
739
740  call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !8), !dbg !10
741    ; [debug line = 2:7] [debug variable = X]
742
743The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
744variable ``X``.  The metadata ``!dbg !10`` attached to the intrinsic provides
745scope information for the variable ``X``.
746
747.. code-block:: llvm
748
749  !10 = metadata !{i32 2, i32 7, metadata !4, null}
750  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
751                  metadata !"foo", metadata !"_Z3foov", i32 1, metadata !6,
752                  i1 false, i1 true, i32 0, i32 0, null, i32 256, i1 false,
753                  void ()* @_Z3foov, null, null, metadata !2, i32 1}
754                  ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
755
756Here ``!10`` is metadata providing location information.  It has four fields:
757line number, column number, scope, and original scope.  The original scope
758represents inline location if this instruction is inlined inside a caller, and
759is null otherwise.  In this example, scope is encoded by ``!4``, a
760:ref:`subprogram descriptor <format_subprograms>`.  This way the location
761information attached to the intrinsics indicates that the variable ``X`` is
762declared at line number 2 at a function level scope in function ``foo``.
763
764Now lets take another example.
765
766.. code-block:: llvm
767
768  call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
769    ; [debug line = 5:9] [debug variable = Z]
770
771The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
772variable ``Z``.  The metadata ``!dbg !17`` attached to the intrinsic provides
773scope information for the variable ``Z``.
774
775.. code-block:: llvm
776
777  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 3, i32 0}
778                   ; [ DW_TAG_lexical_block ] [/private/tmp/foo.c]
779  !17 = metadata !{i32 5, i32 9, metadata !16, null}
780
781Here ``!15`` indicates that ``Z`` is declared at line number 5 and
782column number 9 inside of lexical scope ``!16``.  The lexical scope itself
783resides inside of subprogram ``!4`` described above.
784
785The scope information attached with each instruction provides a straightforward
786way to find instructions covered by a scope.
787
788.. _ccxx_frontend:
789
790C/C++ front-end specific debug information
791==========================================
792
793The C and C++ front-ends represent information about the program in a format
794that is effectively identical to `DWARF 3.0
795<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
796content.  This allows code generators to trivially support native debuggers by
797generating standard dwarf information, and contains enough information for
798non-dwarf targets to translate it as needed.
799
800This section describes the forms used to represent C and C++ programs.  Other
801languages could pattern themselves after this (which itself is tuned to
802representing programs in the same way that DWARF 3 does), or they could choose
803to provide completely different forms if they don't fit into the DWARF model.
804As support for debugging information gets added to the various LLVM
805source-language front-ends, the information used should be documented here.
806
807The following sections provide examples of various C/C++ constructs and the
808debug information that would best describe those constructs.
809
810C/C++ source file information
811-----------------------------
812
813Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
814directory ``/Users/mine/sources``, the following code:
815
816.. code-block:: c
817
818  #include "MyHeader.h"
819
820  int main(int argc, char *argv[]) {
821    return 0;
822  }
823
824a C/C++ front-end would generate the following descriptors:
825
826.. code-block:: llvm
827
828  ...
829  ;;
830  ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
831  ;;
832  !0 = metadata !{
833    i32 786449,   ;; Tag
834    metadata !1,  ;; File/directory name
835    i32 4,        ;; Language Id
836    metadata !"clang version 3.4 ",
837    i1 false,     ;; Optimized compile unit
838    metadata !"", ;; Compiler flags
839    i32 0,        ;; Runtime version
840    metadata !2,  ;; Enumeration types
841    metadata !2,  ;; Retained types
842    metadata !3,  ;; Subprograms
843    metadata !2,  ;; Global variables
844    metadata !2,  ;; Imported entities (declarations and namespaces)
845    metadata !""  ;; Split debug filename
846  }
847
848  ;;
849  ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
850  ;;
851  !1 = metadata !{
852    metadata !"MySource.cpp",
853    metadata !"/Users/mine/sources"
854  }
855  !5 = metadata !{
856    i32 786473, ;; Tag
857    metadata !1
858  }
859
860  ;;
861  ;; Define the file for the file "/Users/mine/sources/Myheader.h"
862  ;;
863  !14 = metadata !{
864    i32 786473, ;; Tag
865    metadata !15
866  }
867  !15 = metadata !{
868    metadata !"./MyHeader.h",
869    metadata !"/Users/mine/sources",
870  }
871
872  ...
873
874``llvm::Instruction`` provides easy access to metadata attached with an
875instruction.  One can extract line number information encoded in LLVM IR using
876``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
877
878.. code-block:: c++
879
880  if (MDNode *N = I->getMetadata("dbg")) {  // Here I is an LLVM instruction
881    DILocation Loc(N);                      // DILocation is in DebugInfo.h
882    unsigned Line = Loc.getLineNumber();
883    StringRef File = Loc.getFilename();
884    StringRef Dir = Loc.getDirectory();
885  }
886
887C/C++ global variable information
888---------------------------------
889
890Given an integer global variable declared as follows:
891
892.. code-block:: c
893
894  int MyGlobal = 100;
895
896a C/C++ front-end would generate the following descriptors:
897
898.. code-block:: llvm
899
900  ;;
901  ;; Define the global itself.
902  ;;
903  %MyGlobal = global int 100
904  ...
905  ;;
906  ;; List of debug info of globals
907  ;;
908  !llvm.dbg.cu = !{!0}
909
910  ;; Define the compile unit.
911  !0 = metadata !{
912    i32 786449,                       ;; Tag
913    i32 0,                            ;; Context
914    i32 4,                            ;; Language
915    metadata !"foo.cpp",              ;; File
916    metadata !"/Volumes/Data/tmp",    ;; Directory
917    metadata !"clang version 3.1 ",   ;; Producer
918    i1 true,                          ;; Deprecated field
919    i1 false,                         ;; "isOptimized"?
920    metadata !"",                     ;; Flags
921    i32 0,                            ;; Runtime Version
922    metadata !1,                      ;; Enum Types
923    metadata !1,                      ;; Retained Types
924    metadata !1,                      ;; Subprograms
925    metadata !3,                      ;; Global Variables
926    metadata !1,                      ;; Imported entities
927    "",                               ;; Split debug filename
928  } ; [ DW_TAG_compile_unit ]
929
930  ;; The Array of Global Variables
931  !3 = metadata !{
932    metadata !4
933  }
934
935  ;;
936  ;; Define the global variable itself.
937  ;;
938  !4 = metadata !{
939    i32 786484,                        ;; Tag
940    i32 0,                             ;; Unused
941    null,                              ;; Unused
942    metadata !"MyGlobal",              ;; Name
943    metadata !"MyGlobal",              ;; Display Name
944    metadata !"",                      ;; Linkage Name
945    metadata !6,                       ;; File
946    i32 1,                             ;; Line
947    metadata !7,                       ;; Type
948    i32 0,                             ;; IsLocalToUnit
949    i32 1,                             ;; IsDefinition
950    i32* @MyGlobal,                    ;; LLVM-IR Value
951    null                               ;; Static member declaration
952  } ; [ DW_TAG_variable ]
953
954  ;;
955  ;; Define the file
956  ;;
957  !5 = metadata !{
958    metadata !"foo.cpp",               ;; File
959    metadata !"/Volumes/Data/tmp",     ;; Directory
960  }
961  !6 = metadata !{
962    i32 786473,                        ;; Tag
963    metadata !5                        ;; Unused
964  } ; [ DW_TAG_file_type ]
965
966  ;;
967  ;; Define the type
968  ;;
969  !7 = metadata !{
970    i32 786468,                         ;; Tag
971    null,                               ;; Unused
972    null,                               ;; Unused
973    metadata !"int",                    ;; Name
974    i32 0,                              ;; Line
975    i64 32,                             ;; Size in Bits
976    i64 32,                             ;; Align in Bits
977    i64 0,                              ;; Offset
978    i32 0,                              ;; Flags
979    i32 5                               ;; Encoding
980  } ; [ DW_TAG_base_type ]
981
982C/C++ function information
983--------------------------
984
985Given a function declared as follows:
986
987.. code-block:: c
988
989  int main(int argc, char *argv[]) {
990    return 0;
991  }
992
993a C/C++ front-end would generate the following descriptors:
994
995.. code-block:: llvm
996
997  ;;
998  ;; Define the anchor for subprograms.
999  ;;
1000  !6 = metadata !{
1001    i32 786484,        ;; Tag
1002    metadata !1,       ;; File
1003    metadata !1,       ;; Context
1004    metadata !"main",  ;; Name
1005    metadata !"main",  ;; Display name
1006    metadata !"main",  ;; Linkage name
1007    i32 1,             ;; Line number
1008    metadata !4,       ;; Type
1009    i1 false,          ;; Is local
1010    i1 true,           ;; Is definition
1011    i32 0,             ;; Virtuality attribute, e.g. pure virtual function
1012    i32 0,             ;; Index into virtual table for C++ methods
1013    i32 0,             ;; Type that holds virtual table.
1014    i32 0,             ;; Flags
1015    i1 false,          ;; True if this function is optimized
1016    Function *,        ;; Pointer to llvm::Function
1017    null,              ;; Function template parameters
1018    null,              ;; List of function variables (emitted when optimizing)
1019    1                  ;; Line number of the opening '{' of the function
1020  }
1021  ;;
1022  ;; Define the subprogram itself.
1023  ;;
1024  define i32 @main(i32 %argc, i8** %argv) {
1025  ...
1026  }
1027
1028C/C++ basic types
1029-----------------
1030
1031The following are the basic type descriptors for C/C++ core types:
1032
1033bool
1034^^^^
1035
1036.. code-block:: llvm
1037
1038  !2 = metadata !{
1039    i32 786468,        ;; Tag
1040    null,              ;; File
1041    null,              ;; Context
1042    metadata !"bool",  ;; Name
1043    i32 0,             ;; Line number
1044    i64 8,             ;; Size in Bits
1045    i64 8,             ;; Align in Bits
1046    i64 0,             ;; Offset in Bits
1047    i32 0,             ;; Flags
1048    i32 2              ;; Encoding
1049  }
1050
1051char
1052^^^^
1053
1054.. code-block:: llvm
1055
1056  !2 = metadata !{
1057    i32 786468,        ;; Tag
1058    null,              ;; File
1059    null,              ;; Context
1060    metadata !"char",  ;; Name
1061    i32 0,             ;; Line number
1062    i64 8,             ;; Size in Bits
1063    i64 8,             ;; Align in Bits
1064    i64 0,             ;; Offset in Bits
1065    i32 0,             ;; Flags
1066    i32 6              ;; Encoding
1067  }
1068
1069unsigned char
1070^^^^^^^^^^^^^
1071
1072.. code-block:: llvm
1073
1074  !2 = metadata !{
1075    i32 786468,        ;; Tag
1076    null,              ;; File
1077    null,              ;; Context
1078    metadata !"unsigned char",
1079    i32 0,             ;; Line number
1080    i64 8,             ;; Size in Bits
1081    i64 8,             ;; Align in Bits
1082    i64 0,             ;; Offset in Bits
1083    i32 0,             ;; Flags
1084    i32 8              ;; Encoding
1085  }
1086
1087short
1088^^^^^
1089
1090.. code-block:: llvm
1091
1092  !2 = metadata !{
1093    i32 786468,        ;; Tag
1094    null,              ;; File
1095    null,              ;; Context
1096    metadata !"short int",
1097    i32 0,             ;; Line number
1098    i64 16,            ;; Size in Bits
1099    i64 16,            ;; Align in Bits
1100    i64 0,             ;; Offset in Bits
1101    i32 0,             ;; Flags
1102    i32 5              ;; Encoding
1103  }
1104
1105unsigned short
1106^^^^^^^^^^^^^^
1107
1108.. code-block:: llvm
1109
1110  !2 = metadata !{
1111    i32 786468,        ;; Tag
1112    null,              ;; File
1113    null,              ;; Context
1114    metadata !"short unsigned int",
1115    i32 0,             ;; Line number
1116    i64 16,            ;; Size in Bits
1117    i64 16,            ;; Align in Bits
1118    i64 0,             ;; Offset in Bits
1119    i32 0,             ;; Flags
1120    i32 7              ;; Encoding
1121  }
1122
1123int
1124^^^
1125
1126.. code-block:: llvm
1127
1128  !2 = metadata !{
1129    i32 786468,        ;; Tag
1130    null,              ;; File
1131    null,              ;; Context
1132    metadata !"int",   ;; Name
1133    i32 0,             ;; Line number
1134    i64 32,            ;; Size in Bits
1135    i64 32,            ;; Align in Bits
1136    i64 0,             ;; Offset in Bits
1137    i32 0,             ;; Flags
1138    i32 5              ;; Encoding
1139  }
1140
1141unsigned int
1142^^^^^^^^^^^^
1143
1144.. code-block:: llvm
1145
1146  !2 = metadata !{
1147    i32 786468,        ;; Tag
1148    null,              ;; File
1149    null,              ;; Context
1150    metadata !"unsigned int",
1151    i32 0,             ;; Line number
1152    i64 32,            ;; Size in Bits
1153    i64 32,            ;; Align in Bits
1154    i64 0,             ;; Offset in Bits
1155    i32 0,             ;; Flags
1156    i32 7              ;; Encoding
1157  }
1158
1159long long
1160^^^^^^^^^
1161
1162.. code-block:: llvm
1163
1164  !2 = metadata !{
1165    i32 786468,        ;; Tag
1166    null,              ;; File
1167    null,              ;; Context
1168    metadata !"long long int",
1169    i32 0,             ;; Line number
1170    i64 64,            ;; Size in Bits
1171    i64 64,            ;; Align in Bits
1172    i64 0,             ;; Offset in Bits
1173    i32 0,             ;; Flags
1174    i32 5              ;; Encoding
1175  }
1176
1177unsigned long long
1178^^^^^^^^^^^^^^^^^^
1179
1180.. code-block:: llvm
1181
1182  !2 = metadata !{
1183    i32 786468,        ;; Tag
1184    null,              ;; File
1185    null,              ;; Context
1186    metadata !"long long unsigned int",
1187    i32 0,             ;; Line number
1188    i64 64,            ;; Size in Bits
1189    i64 64,            ;; Align in Bits
1190    i64 0,             ;; Offset in Bits
1191    i32 0,             ;; Flags
1192    i32 7              ;; Encoding
1193  }
1194
1195float
1196^^^^^
1197
1198.. code-block:: llvm
1199
1200  !2 = metadata !{
1201    i32 786468,        ;; Tag
1202    null,              ;; File
1203    null,              ;; Context
1204    metadata !"float",
1205    i32 0,             ;; Line number
1206    i64 32,            ;; Size in Bits
1207    i64 32,            ;; Align in Bits
1208    i64 0,             ;; Offset in Bits
1209    i32 0,             ;; Flags
1210    i32 4              ;; Encoding
1211  }
1212
1213double
1214^^^^^^
1215
1216.. code-block:: llvm
1217
1218  !2 = metadata !{
1219    i32 786468,        ;; Tag
1220    null,              ;; File
1221    null,              ;; Context
1222    metadata !"double",;; Name
1223    i32 0,             ;; Line number
1224    i64 64,            ;; Size in Bits
1225    i64 64,            ;; Align in Bits
1226    i64 0,             ;; Offset in Bits
1227    i32 0,             ;; Flags
1228    i32 4              ;; Encoding
1229  }
1230
1231C/C++ derived types
1232-------------------
1233
1234Given the following as an example of C/C++ derived type:
1235
1236.. code-block:: c
1237
1238  typedef const int *IntPtr;
1239
1240a C/C++ front-end would generate the following descriptors:
1241
1242.. code-block:: llvm
1243
1244  ;;
1245  ;; Define the typedef "IntPtr".
1246  ;;
1247  !2 = metadata !{
1248    i32 786454,          ;; Tag
1249    metadata !3,         ;; File
1250    metadata !1,         ;; Context
1251    metadata !"IntPtr",  ;; Name
1252    i32 0,               ;; Line number
1253    i64 0,               ;; Size in bits
1254    i64 0,               ;; Align in bits
1255    i64 0,               ;; Offset in bits
1256    i32 0,               ;; Flags
1257    metadata !4          ;; Derived From type
1258  }
1259  ;;
1260  ;; Define the pointer type.
1261  ;;
1262  !4 = metadata !{
1263    i32 786447,          ;; Tag
1264    null,                ;; File
1265    null,                ;; Context
1266    metadata !"",        ;; Name
1267    i32 0,               ;; Line number
1268    i64 64,              ;; Size in bits
1269    i64 64,              ;; Align in bits
1270    i64 0,               ;; Offset in bits
1271    i32 0,               ;; Flags
1272    metadata !5          ;; Derived From type
1273  }
1274  ;;
1275  ;; Define the const type.
1276  ;;
1277  !5 = metadata !{
1278    i32 786470,          ;; Tag
1279    null,                ;; File
1280    null,                ;; Context
1281    metadata !"",        ;; Name
1282    i32 0,               ;; Line number
1283    i64 0,               ;; Size in bits
1284    i64 0,               ;; Align in bits
1285    i64 0,               ;; Offset in bits
1286    i32 0,               ;; Flags
1287    metadata !6          ;; Derived From type
1288  }
1289  ;;
1290  ;; Define the int type.
1291  ;;
1292  !6 = metadata !{
1293    i32 786468,          ;; Tag
1294    null,                ;; File
1295    null,                ;; Context
1296    metadata !"int",     ;; Name
1297    i32 0,               ;; Line number
1298    i64 32,              ;; Size in bits
1299    i64 32,              ;; Align in bits
1300    i64 0,               ;; Offset in bits
1301    i32 0,               ;; Flags
1302    i32 5                ;; Encoding
1303  }
1304
1305C/C++ struct/union types
1306------------------------
1307
1308Given the following as an example of C/C++ struct type:
1309
1310.. code-block:: c
1311
1312  struct Color {
1313    unsigned Red;
1314    unsigned Green;
1315    unsigned Blue;
1316  };
1317
1318a C/C++ front-end would generate the following descriptors:
1319
1320.. code-block:: llvm
1321
1322  ;;
1323  ;; Define basic type for unsigned int.
1324  ;;
1325  !5 = metadata !{
1326    i32 786468,        ;; Tag
1327    null,              ;; File
1328    null,              ;; Context
1329    metadata !"unsigned int",
1330    i32 0,             ;; Line number
1331    i64 32,            ;; Size in Bits
1332    i64 32,            ;; Align in Bits
1333    i64 0,             ;; Offset in Bits
1334    i32 0,             ;; Flags
1335    i32 7              ;; Encoding
1336  }
1337  ;;
1338  ;; Define composite type for struct Color.
1339  ;;
1340  !2 = metadata !{
1341    i32 786451,        ;; Tag
1342    metadata !1,       ;; Compile unit
1343    null,              ;; Context
1344    metadata !"Color", ;; Name
1345    i32 1,             ;; Line number
1346    i64 96,            ;; Size in bits
1347    i64 32,            ;; Align in bits
1348    i64 0,             ;; Offset in bits
1349    i32 0,             ;; Flags
1350    null,              ;; Derived From
1351    metadata !3,       ;; Elements
1352    i32 0,             ;; Runtime Language
1353    null,              ;; Base type containing the vtable pointer for this type
1354    null               ;; Template parameters
1355  }
1356
1357  ;;
1358  ;; Define the Red field.
1359  ;;
1360  !4 = metadata !{
1361    i32 786445,        ;; Tag
1362    metadata !1,       ;; File
1363    metadata !1,       ;; Context
1364    metadata !"Red",   ;; Name
1365    i32 2,             ;; Line number
1366    i64 32,            ;; Size in bits
1367    i64 32,            ;; Align in bits
1368    i64 0,             ;; Offset in bits
1369    i32 0,             ;; Flags
1370    metadata !5        ;; Derived From type
1371  }
1372
1373  ;;
1374  ;; Define the Green field.
1375  ;;
1376  !6 = metadata !{
1377    i32 786445,        ;; Tag
1378    metadata !1,       ;; File
1379    metadata !1,       ;; Context
1380    metadata !"Green", ;; Name
1381    i32 3,             ;; Line number
1382    i64 32,            ;; Size in bits
1383    i64 32,            ;; Align in bits
1384    i64 32,             ;; Offset in bits
1385    i32 0,             ;; Flags
1386    metadata !5        ;; Derived From type
1387  }
1388
1389  ;;
1390  ;; Define the Blue field.
1391  ;;
1392  !7 = metadata !{
1393    i32 786445,        ;; Tag
1394    metadata !1,       ;; File
1395    metadata !1,       ;; Context
1396    metadata !"Blue",  ;; Name
1397    i32 4,             ;; Line number
1398    i64 32,            ;; Size in bits
1399    i64 32,            ;; Align in bits
1400    i64 64,             ;; Offset in bits
1401    i32 0,             ;; Flags
1402    metadata !5        ;; Derived From type
1403  }
1404
1405  ;;
1406  ;; Define the array of fields used by the composite type Color.
1407  ;;
1408  !3 = metadata !{metadata !4, metadata !6, metadata !7}
1409
1410C/C++ enumeration types
1411-----------------------
1412
1413Given the following as an example of C/C++ enumeration type:
1414
1415.. code-block:: c
1416
1417  enum Trees {
1418    Spruce = 100,
1419    Oak = 200,
1420    Maple = 300
1421  };
1422
1423a C/C++ front-end would generate the following descriptors:
1424
1425.. code-block:: llvm
1426
1427  ;;
1428  ;; Define composite type for enum Trees
1429  ;;
1430  !2 = metadata !{
1431    i32 786436,        ;; Tag
1432    metadata !1,       ;; File
1433    metadata !1,       ;; Context
1434    metadata !"Trees", ;; Name
1435    i32 1,             ;; Line number
1436    i64 32,            ;; Size in bits
1437    i64 32,            ;; Align in bits
1438    i64 0,             ;; Offset in bits
1439    i32 0,             ;; Flags
1440    null,              ;; Derived From type
1441    metadata !3,       ;; Elements
1442    i32 0              ;; Runtime language
1443  }
1444
1445  ;;
1446  ;; Define the array of enumerators used by composite type Trees.
1447  ;;
1448  !3 = metadata !{metadata !4, metadata !5, metadata !6}
1449
1450  ;;
1451  ;; Define Spruce enumerator.
1452  ;;
1453  !4 = metadata !{i32 786472, metadata !"Spruce", i64 100}
1454
1455  ;;
1456  ;; Define Oak enumerator.
1457  ;;
1458  !5 = metadata !{i32 786472, metadata !"Oak", i64 200}
1459
1460  ;;
1461  ;; Define Maple enumerator.
1462  ;;
1463  !6 = metadata !{i32 786472, metadata !"Maple", i64 300}
1464
1465Debugging information format
1466============================
1467
1468Debugging Information Extension for Objective C Properties
1469----------------------------------------------------------
1470
1471Introduction
1472^^^^^^^^^^^^
1473
1474Objective C provides a simpler way to declare and define accessor methods using
1475declared properties.  The language provides features to declare a property and
1476to let compiler synthesize accessor methods.
1477
1478The debugger lets developer inspect Objective C interfaces and their instance
1479variables and class variables.  However, the debugger does not know anything
1480about the properties defined in Objective C interfaces.  The debugger consumes
1481information generated by compiler in DWARF format.  The format does not support
1482encoding of Objective C properties.  This proposal describes DWARF extensions to
1483encode Objective C properties, which the debugger can use to let developers
1484inspect Objective C properties.
1485
1486Proposal
1487^^^^^^^^
1488
1489Objective C properties exist separately from class members.  A property can be
1490defined only by "setter" and "getter" selectors, and be calculated anew on each
1491access.  Or a property can just be a direct access to some declared ivar.
1492Finally it can have an ivar "automatically synthesized" for it by the compiler,
1493in which case the property can be referred to in user code directly using the
1494standard C dereference syntax as well as through the property "dot" syntax, but
1495there is no entry in the ``@interface`` declaration corresponding to this ivar.
1496
1497To facilitate debugging, these properties we will add a new DWARF TAG into the
1498``DW_TAG_structure_type`` definition for the class to hold the description of a
1499given property, and a set of DWARF attributes that provide said description.
1500The property tag will also contain the name and declared type of the property.
1501
1502If there is a related ivar, there will also be a DWARF property attribute placed
1503in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1504for that property.  And in the case where the compiler synthesizes the ivar
1505directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1506ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1507to access this ivar directly in code, and with the property attribute pointing
1508back to the property it is backing.
1509
1510The following examples will serve as illustration for our discussion:
1511
1512.. code-block:: objc
1513
1514  @interface I1 {
1515    int n2;
1516  }
1517
1518  @property int p1;
1519  @property int p2;
1520  @end
1521
1522  @implementation I1
1523  @synthesize p1;
1524  @synthesize p2 = n2;
1525  @end
1526
1527This produces the following DWARF (this is a "pseudo dwarfdump" output):
1528
1529.. code-block:: none
1530
1531  0x00000100:  TAG_structure_type [7] *
1532                 AT_APPLE_runtime_class( 0x10 )
1533                 AT_name( "I1" )
1534                 AT_decl_file( "Objc_Property.m" )
1535                 AT_decl_line( 3 )
1536
1537  0x00000110    TAG_APPLE_property
1538                  AT_name ( "p1" )
1539                  AT_type ( {0x00000150} ( int ) )
1540
1541  0x00000120:   TAG_APPLE_property
1542                  AT_name ( "p2" )
1543                  AT_type ( {0x00000150} ( int ) )
1544
1545  0x00000130:   TAG_member [8]
1546                  AT_name( "_p1" )
1547                  AT_APPLE_property ( {0x00000110} "p1" )
1548                  AT_type( {0x00000150} ( int ) )
1549                  AT_artificial ( 0x1 )
1550
1551  0x00000140:    TAG_member [8]
1552                   AT_name( "n2" )
1553                   AT_APPLE_property ( {0x00000120} "p2" )
1554                   AT_type( {0x00000150} ( int ) )
1555
1556  0x00000150:  AT_type( ( int ) )
1557
1558Note, the current convention is that the name of the ivar for an
1559auto-synthesized property is the name of the property from which it derives
1560with an underscore prepended, as is shown in the example.  But we actually
1561don't need to know this convention, since we are given the name of the ivar
1562directly.
1563
1564Also, it is common practice in ObjC to have different property declarations in
1565the @interface and @implementation - e.g. to provide a read-only property in
1566the interface,and a read-write interface in the implementation.  In that case,
1567the compiler should emit whichever property declaration will be in force in the
1568current translation unit.
1569
1570Developers can decorate a property with attributes which are encoded using
1571``DW_AT_APPLE_property_attribute``.
1572
1573.. code-block:: objc
1574
1575  @property (readonly, nonatomic) int pr;
1576
1577.. code-block:: none
1578
1579  TAG_APPLE_property [8]
1580    AT_name( "pr" )
1581    AT_type ( {0x00000147} (int) )
1582    AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1583
1584The setter and getter method names are attached to the property using
1585``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1586
1587.. code-block:: objc
1588
1589  @interface I1
1590  @property (setter=myOwnP3Setter:) int p3;
1591  -(void)myOwnP3Setter:(int)a;
1592  @end
1593
1594  @implementation I1
1595  @synthesize p3;
1596  -(void)myOwnP3Setter:(int)a{ }
1597  @end
1598
1599The DWARF for this would be:
1600
1601.. code-block:: none
1602
1603  0x000003bd: TAG_structure_type [7] *
1604                AT_APPLE_runtime_class( 0x10 )
1605                AT_name( "I1" )
1606                AT_decl_file( "Objc_Property.m" )
1607                AT_decl_line( 3 )
1608
1609  0x000003cd      TAG_APPLE_property
1610                    AT_name ( "p3" )
1611                    AT_APPLE_property_setter ( "myOwnP3Setter:" )
1612                    AT_type( {0x00000147} ( int ) )
1613
1614  0x000003f3:     TAG_member [8]
1615                    AT_name( "_p3" )
1616                    AT_type ( {0x00000147} ( int ) )
1617                    AT_APPLE_property ( {0x000003cd} )
1618                    AT_artificial ( 0x1 )
1619
1620New DWARF Tags
1621^^^^^^^^^^^^^^
1622
1623+-----------------------+--------+
1624| TAG                   | Value  |
1625+=======================+========+
1626| DW_TAG_APPLE_property | 0x4200 |
1627+-----------------------+--------+
1628
1629New DWARF Attributes
1630^^^^^^^^^^^^^^^^^^^^
1631
1632+--------------------------------+--------+-----------+
1633| Attribute                      | Value  | Classes   |
1634+================================+========+===========+
1635| DW_AT_APPLE_property           | 0x3fed | Reference |
1636+--------------------------------+--------+-----------+
1637| DW_AT_APPLE_property_getter    | 0x3fe9 | String    |
1638+--------------------------------+--------+-----------+
1639| DW_AT_APPLE_property_setter    | 0x3fea | String    |
1640+--------------------------------+--------+-----------+
1641| DW_AT_APPLE_property_attribute | 0x3feb | Constant  |
1642+--------------------------------+--------+-----------+
1643
1644New DWARF Constants
1645^^^^^^^^^^^^^^^^^^^
1646
1647+--------------------------------+-------+
1648| Name                           | Value |
1649+================================+=======+
1650| DW_AT_APPLE_PROPERTY_readonly  | 0x1   |
1651+--------------------------------+-------+
1652| DW_AT_APPLE_PROPERTY_readwrite | 0x2   |
1653+--------------------------------+-------+
1654| DW_AT_APPLE_PROPERTY_assign    | 0x4   |
1655+--------------------------------+-------+
1656| DW_AT_APPLE_PROPERTY_retain    | 0x8   |
1657+--------------------------------+-------+
1658| DW_AT_APPLE_PROPERTY_copy      | 0x10  |
1659+--------------------------------+-------+
1660| DW_AT_APPLE_PROPERTY_nonatomic | 0x20  |
1661+--------------------------------+-------+
1662
1663Name Accelerator Tables
1664-----------------------
1665
1666Introduction
1667^^^^^^^^^^^^
1668
1669The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1670debugger needs.  The "``pub``" in the section name indicates that the entries
1671in the table are publicly visible names only.  This means no static or hidden
1672functions show up in the "``.debug_pubnames``".  No static variables or private
1673class variables are in the "``.debug_pubtypes``".  Many compilers add different
1674things to these tables, so we can't rely upon the contents between gcc, icc, or
1675clang.
1676
1677The typical query given by users tends not to match up with the contents of
1678these tables.  For example, the DWARF spec states that "In the case of the name
1679of a function member or static data member of a C++ structure, class or union,
1680the name presented in the "``.debug_pubnames``" section is not the simple name
1681given by the ``DW_AT_name attribute`` of the referenced debugging information
1682entry, but rather the fully qualified name of the data or function member."
1683So the only names in these tables for complex C++ entries is a fully
1684qualified name.  Debugger users tend not to enter their search strings as
1685"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1686"``a::b::c``".  So the name entered in the name table must be demangled in
1687order to chop it up appropriately and additional names must be manually entered
1688into the table to make it effective as a name lookup table for debuggers to
1689se.
1690
1691All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1692its inconsistent and useless public-only name content making it a waste of
1693space in the object file.  These tables, when they are written to disk, are not
1694sorted in any way, leaving every debugger to do its own parsing and sorting.
1695These tables also include an inlined copy of the string values in the table
1696itself making the tables much larger than they need to be on disk, especially
1697for large C++ programs.
1698
1699Can't we just fix the sections by adding all of the names we need to this
1700table? No, because that is not what the tables are defined to contain and we
1701won't know the difference between the old bad tables and the new good tables.
1702At best we could make our own renamed sections that contain all of the data we
1703need.
1704
1705These tables are also insufficient for what a debugger like LLDB needs.  LLDB
1706uses clang for its expression parsing where LLDB acts as a PCH.  LLDB is then
1707often asked to look for type "``foo``" or namespace "``bar``", or list items in
1708namespace "``baz``".  Namespaces are not included in the pubnames or pubtypes
1709tables.  Since clang asks a lot of questions when it is parsing an expression,
1710we need to be very fast when looking up names, as it happens a lot.  Having new
1711accelerator tables that are optimized for very quick lookups will benefit this
1712type of debugging experience greatly.
1713
1714We would like to generate name lookup tables that can be mapped into memory
1715from disk, and used as is, with little or no up-front parsing.  We would also
1716be able to control the exact content of these different tables so they contain
1717exactly what we need.  The Name Accelerator Tables were designed to fix these
1718issues.  In order to solve these issues we need to:
1719
1720* Have a format that can be mapped into memory from disk and used as is
1721* Lookups should be very fast
1722* Extensible table format so these tables can be made by many producers
1723* Contain all of the names needed for typical lookups out of the box
1724* Strict rules for the contents of tables
1725
1726Table size is important and the accelerator table format should allow the reuse
1727of strings from common string tables so the strings for the names are not
1728duplicated.  We also want to make sure the table is ready to be used as-is by
1729simply mapping the table into memory with minimal header parsing.
1730
1731The name lookups need to be fast and optimized for the kinds of lookups that
1732debuggers tend to do.  Optimally we would like to touch as few parts of the
1733mapped table as possible when doing a name lookup and be able to quickly find
1734the name entry we are looking for, or discover there are no matches.  In the
1735case of debuggers we optimized for lookups that fail most of the time.
1736
1737Each table that is defined should have strict rules on exactly what is in the
1738accelerator tables and documented so clients can rely on the content.
1739
1740Hash Tables
1741^^^^^^^^^^^
1742
1743Standard Hash Tables
1744""""""""""""""""""""
1745
1746Typical hash tables have a header, buckets, and each bucket points to the
1747bucket contents:
1748
1749.. code-block:: none
1750
1751  .------------.
1752  |  HEADER    |
1753  |------------|
1754  |  BUCKETS   |
1755  |------------|
1756  |  DATA      |
1757  `------------'
1758
1759The BUCKETS are an array of offsets to DATA for each hash:
1760
1761.. code-block:: none
1762
1763  .------------.
1764  | 0x00001000 | BUCKETS[0]
1765  | 0x00002000 | BUCKETS[1]
1766  | 0x00002200 | BUCKETS[2]
1767  | 0x000034f0 | BUCKETS[3]
1768  |            | ...
1769  | 0xXXXXXXXX | BUCKETS[n_buckets]
1770  '------------'
1771
1772So for ``bucket[3]`` in the example above, we have an offset into the table
17730x000034f0 which points to a chain of entries for the bucket.  Each bucket must
1774contain a next pointer, full 32 bit hash value, the string itself, and the data
1775for the current string value.
1776
1777.. code-block:: none
1778
1779              .------------.
1780  0x000034f0: | 0x00003500 | next pointer
1781              | 0x12345678 | 32 bit hash
1782              | "erase"    | string value
1783              | data[n]    | HashData for this bucket
1784              |------------|
1785  0x00003500: | 0x00003550 | next pointer
1786              | 0x29273623 | 32 bit hash
1787              | "dump"     | string value
1788              | data[n]    | HashData for this bucket
1789              |------------|
1790  0x00003550: | 0x00000000 | next pointer
1791              | 0x82638293 | 32 bit hash
1792              | "main"     | string value
1793              | data[n]    | HashData for this bucket
1794              `------------'
1795
1796The problem with this layout for debuggers is that we need to optimize for the
1797negative lookup case where the symbol we're searching for is not present.  So
1798if we were to lookup "``printf``" in the table above, we would make a 32 hash
1799for "``printf``", it might match ``bucket[3]``.  We would need to go to the
1800offset 0x000034f0 and start looking to see if our 32 bit hash matches.  To do
1801so, we need to read the next pointer, then read the hash, compare it, and skip
1802to the next bucket.  Each time we are skipping many bytes in memory and
1803touching new cache pages just to do the compare on the full 32 bit hash.  All
1804of these accesses then tell us that we didn't have a match.
1805
1806Name Hash Tables
1807""""""""""""""""
1808
1809To solve the issues mentioned above we have structured the hash tables a bit
1810differently: a header, buckets, an array of all unique 32 bit hash values,
1811followed by an array of hash value data offsets, one for each hash value, then
1812the data for all hash values:
1813
1814.. code-block:: none
1815
1816  .-------------.
1817  |  HEADER     |
1818  |-------------|
1819  |  BUCKETS    |
1820  |-------------|
1821  |  HASHES     |
1822  |-------------|
1823  |  OFFSETS    |
1824  |-------------|
1825  |  DATA       |
1826  `-------------'
1827
1828The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array.  By
1829making all of the full 32 bit hash values contiguous in memory, we allow
1830ourselves to efficiently check for a match while touching as little memory as
1831possible.  Most often checking the 32 bit hash values is as far as the lookup
1832goes.  If it does match, it usually is a match with no collisions.  So for a
1833table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1834values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1835``OFFSETS`` as:
1836
1837.. code-block:: none
1838
1839  .-------------------------.
1840  |  HEADER.magic           | uint32_t
1841  |  HEADER.version         | uint16_t
1842  |  HEADER.hash_function   | uint16_t
1843  |  HEADER.bucket_count    | uint32_t
1844  |  HEADER.hashes_count    | uint32_t
1845  |  HEADER.header_data_len | uint32_t
1846  |  HEADER_DATA            | HeaderData
1847  |-------------------------|
1848  |  BUCKETS                | uint32_t[n_buckets] // 32 bit hash indexes
1849  |-------------------------|
1850  |  HASHES                 | uint32_t[n_hashes] // 32 bit hash values
1851  |-------------------------|
1852  |  OFFSETS                | uint32_t[n_hashes] // 32 bit offsets to hash value data
1853  |-------------------------|
1854  |  ALL HASH DATA          |
1855  `-------------------------'
1856
1857So taking the exact same data from the standard hash example above we end up
1858with:
1859
1860.. code-block:: none
1861
1862              .------------.
1863              | HEADER     |
1864              |------------|
1865              |          0 | BUCKETS[0]
1866              |          2 | BUCKETS[1]
1867              |          5 | BUCKETS[2]
1868              |          6 | BUCKETS[3]
1869              |            | ...
1870              |        ... | BUCKETS[n_buckets]
1871              |------------|
1872              | 0x........ | HASHES[0]
1873              | 0x........ | HASHES[1]
1874              | 0x........ | HASHES[2]
1875              | 0x........ | HASHES[3]
1876              | 0x........ | HASHES[4]
1877              | 0x........ | HASHES[5]
1878              | 0x12345678 | HASHES[6]    hash for BUCKETS[3]
1879              | 0x29273623 | HASHES[7]    hash for BUCKETS[3]
1880              | 0x82638293 | HASHES[8]    hash for BUCKETS[3]
1881              | 0x........ | HASHES[9]
1882              | 0x........ | HASHES[10]
1883              | 0x........ | HASHES[11]
1884              | 0x........ | HASHES[12]
1885              | 0x........ | HASHES[13]
1886              | 0x........ | HASHES[n_hashes]
1887              |------------|
1888              | 0x........ | OFFSETS[0]
1889              | 0x........ | OFFSETS[1]
1890              | 0x........ | OFFSETS[2]
1891              | 0x........ | OFFSETS[3]
1892              | 0x........ | OFFSETS[4]
1893              | 0x........ | OFFSETS[5]
1894              | 0x000034f0 | OFFSETS[6]   offset for BUCKETS[3]
1895              | 0x00003500 | OFFSETS[7]   offset for BUCKETS[3]
1896              | 0x00003550 | OFFSETS[8]   offset for BUCKETS[3]
1897              | 0x........ | OFFSETS[9]
1898              | 0x........ | OFFSETS[10]
1899              | 0x........ | OFFSETS[11]
1900              | 0x........ | OFFSETS[12]
1901              | 0x........ | OFFSETS[13]
1902              | 0x........ | OFFSETS[n_hashes]
1903              |------------|
1904              |            |
1905              |            |
1906              |            |
1907              |            |
1908              |            |
1909              |------------|
1910  0x000034f0: | 0x00001203 | .debug_str ("erase")
1911              | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1912              | 0x........ | HashData[0]
1913              | 0x........ | HashData[1]
1914              | 0x........ | HashData[2]
1915              | 0x........ | HashData[3]
1916              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1917              |------------|
1918  0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1919              | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1920              | 0x........ | HashData[0]
1921              | 0x........ | HashData[1]
1922              | 0x00001203 | String offset into .debug_str ("dump")
1923              | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1924              | 0x........ | HashData[0]
1925              | 0x........ | HashData[1]
1926              | 0x........ | HashData[2]
1927              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1928              |------------|
1929  0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1930              | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1931              | 0x........ | HashData[0]
1932              | 0x........ | HashData[1]
1933              | 0x........ | HashData[2]
1934              | 0x........ | HashData[3]
1935              | 0x........ | HashData[4]
1936              | 0x........ | HashData[5]
1937              | 0x........ | HashData[6]
1938              | 0x........ | HashData[7]
1939              | 0x........ | HashData[8]
1940              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1941              `------------'
1942
1943So we still have all of the same data, we just organize it more efficiently for
1944debugger lookup.  If we repeat the same "``printf``" lookup from above, we
1945would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1946hash value and modulo it by ``n_buckets``.  ``BUCKETS[3]`` contains "6" which
1947is the index into the ``HASHES`` table.  We would then compare any consecutive
194832 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1949``BUCKETS[3]``.  We do this by verifying that each subsequent hash value modulo
1950``n_buckets`` is still 3.  In the case of a failed lookup we would access the
1951memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1952before we know that we have no match.  We don't end up marching through
1953multiple words of memory and we really keep the number of processor data cache
1954lines being accessed as small as possible.
1955
1956The string hash that is used for these lookup tables is the Daniel J.
1957Bernstein hash which is also used in the ELF ``GNU_HASH`` sections.  It is a
1958very good hash for all kinds of names in programs with very few hash
1959collisions.
1960
1961Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1962
1963Details
1964^^^^^^^
1965
1966These name hash tables are designed to be generic where specializations of the
1967table get to define additional data that goes into the header ("``HeaderData``"),
1968how the string value is stored ("``KeyType``") and the content of the data for each
1969hash value.
1970
1971Header Layout
1972"""""""""""""
1973
1974The header has a fixed part, and the specialized part.  The exact format of the
1975header is:
1976
1977.. code-block:: c
1978
1979  struct Header
1980  {
1981    uint32_t   magic;           // 'HASH' magic value to allow endian detection
1982    uint16_t   version;         // Version number
1983    uint16_t   hash_function;   // The hash function enumeration that was used
1984    uint32_t   bucket_count;    // The number of buckets in this hash table
1985    uint32_t   hashes_count;    // The total number of unique hash values and hash data offsets in this table
1986    uint32_t   header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1987                                // Specifically the length of the following HeaderData field - this does not
1988                                // include the size of the preceding fields
1989    HeaderData header_data;     // Implementation specific header data
1990  };
1991
1992The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1993encoded as an ASCII integer.  This allows the detection of the start of the
1994hash table and also allows the table's byte order to be determined so the table
1995can be correctly extracted.  The "``magic``" value is followed by a 16 bit
1996``version`` number which allows the table to be revised and modified in the
1997future.  The current version number is 1. ``hash_function`` is a ``uint16_t``
1998enumeration that specifies which hash function was used to produce this table.
1999The current values for the hash function enumerations include:
2000
2001.. code-block:: c
2002
2003  enum HashFunctionType
2004  {
2005    eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
2006  };
2007
2008``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
2009are in the ``BUCKETS`` array.  ``hashes_count`` is the number of unique 32 bit
2010hash values that are in the ``HASHES`` array, and is the same number of offsets
2011are contained in the ``OFFSETS`` array.  ``header_data_len`` specifies the size
2012in bytes of the ``HeaderData`` that is filled in by specialized versions of
2013this table.
2014
2015Fixed Lookup
2016""""""""""""
2017
2018The header is followed by the buckets, hashes, offsets, and hash value data.
2019
2020.. code-block:: c
2021
2022  struct FixedTable
2023  {
2024    uint32_t buckets[Header.bucket_count];  // An array of hash indexes into the "hashes[]" array below
2025    uint32_t hashes [Header.hashes_count];  // Every unique 32 bit hash for the entire table is in this table
2026    uint32_t offsets[Header.hashes_count];  // An offset that corresponds to each item in the "hashes[]" array above
2027  };
2028
2029``buckets`` is an array of 32 bit indexes into the ``hashes`` array.  The
2030``hashes`` array contains all of the 32 bit hash values for all names in the
2031hash table.  Each hash in the ``hashes`` table has an offset in the ``offsets``
2032array that points to the data for the hash value.
2033
2034This table setup makes it very easy to repurpose these tables to contain
2035different data, while keeping the lookup mechanism the same for all tables.
2036This layout also makes it possible to save the table to disk and map it in
2037later and do very efficient name lookups with little or no parsing.
2038
2039DWARF lookup tables can be implemented in a variety of ways and can store a lot
2040of information for each name.  We want to make the DWARF tables extensible and
2041able to store the data efficiently so we have used some of the DWARF features
2042that enable efficient data storage to define exactly what kind of data we store
2043for each name.
2044
2045The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2046We might want to store an offset to all of the debug information entries (DIEs)
2047for each name.  To keep things extensible, we create a list of items, or
2048Atoms, that are contained in the data for each name.  First comes the type of
2049the data in each atom:
2050
2051.. code-block:: c
2052
2053  enum AtomType
2054  {
2055    eAtomTypeNULL       = 0u,
2056    eAtomTypeDIEOffset  = 1u,   // DIE offset, check form for encoding
2057    eAtomTypeCUOffset   = 2u,   // DIE offset of the compiler unit header that contains the item in question
2058    eAtomTypeTag        = 3u,   // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2059    eAtomTypeNameFlags  = 4u,   // Flags from enum NameFlags
2060    eAtomTypeTypeFlags  = 5u,   // Flags from enum TypeFlags
2061  };
2062
2063The enumeration values and their meanings are:
2064
2065.. code-block:: none
2066
2067  eAtomTypeNULL       - a termination atom that specifies the end of the atom list
2068  eAtomTypeDIEOffset  - an offset into the .debug_info section for the DWARF DIE for this name
2069  eAtomTypeCUOffset   - an offset into the .debug_info section for the CU that contains the DIE
2070  eAtomTypeDIETag     - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2071  eAtomTypeNameFlags  - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2072  eAtomTypeTypeFlags  - Flags for types (isCXXClass, isObjCClass, ...)
2073
2074Then we allow each atom type to define the atom type and how the data for each
2075atom type data is encoded:
2076
2077.. code-block:: c
2078
2079  struct Atom
2080  {
2081    uint16_t type;  // AtomType enum value
2082    uint16_t form;  // DWARF DW_FORM_XXX defines
2083  };
2084
2085The ``form`` type above is from the DWARF specification and defines the exact
2086encoding of the data for the Atom type.  See the DWARF specification for the
2087``DW_FORM_`` definitions.
2088
2089.. code-block:: c
2090
2091  struct HeaderData
2092  {
2093    uint32_t die_offset_base;
2094    uint32_t atom_count;
2095    Atoms    atoms[atom_count0];
2096  };
2097
2098``HeaderData`` defines the base DIE offset that should be added to any atoms
2099that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2100``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``.  It also defines
2101what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2102each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2103should be interpreted.
2104
2105For the current implementations of the "``.apple_names``" (all functions +
2106globals), the "``.apple_types``" (names of all types that are defined), and
2107the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2108array to be:
2109
2110.. code-block:: c
2111
2112  HeaderData.atom_count = 1;
2113  HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2114  HeaderData.atoms[0].form = DW_FORM_data4;
2115
2116This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
2117encoded as a 32 bit value (DW_FORM_data4).  This allows a single name to have
2118multiple matching DIEs in a single file, which could come up with an inlined
2119function for instance.  Future tables could include more information about the
2120DIE such as flags indicating if the DIE is a function, method, block,
2121or inlined.
2122
2123The KeyType for the DWARF table is a 32 bit string table offset into the
2124".debug_str" table.  The ".debug_str" is the string table for the DWARF which
2125may already contain copies of all of the strings.  This helps make sure, with
2126help from the compiler, that we reuse the strings between all of the DWARF
2127sections and keeps the hash table size down.  Another benefit to having the
2128compiler generate all strings as DW_FORM_strp in the debug info, is that
2129DWARF parsing can be made much faster.
2130
2131After a lookup is made, we get an offset into the hash data.  The hash data
2132needs to be able to deal with 32 bit hash collisions, so the chunk of data
2133at the offset in the hash data consists of a triple:
2134
2135.. code-block:: c
2136
2137  uint32_t str_offset
2138  uint32_t hash_data_count
2139  HashData[hash_data_count]
2140
2141If "str_offset" is zero, then the bucket contents are done. 99.9% of the
2142hash data chunks contain a single item (no 32 bit hash collision):
2143
2144.. code-block:: none
2145
2146  .------------.
2147  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2148  | 0x00000004 | uint32_t HashData count
2149  | 0x........ | uint32_t HashData[0] DIE offset
2150  | 0x........ | uint32_t HashData[1] DIE offset
2151  | 0x........ | uint32_t HashData[2] DIE offset
2152  | 0x........ | uint32_t HashData[3] DIE offset
2153  | 0x00000000 | uint32_t KeyType (end of hash chain)
2154  `------------'
2155
2156If there are collisions, you will have multiple valid string offsets:
2157
2158.. code-block:: none
2159
2160  .------------.
2161  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2162  | 0x00000004 | uint32_t HashData count
2163  | 0x........ | uint32_t HashData[0] DIE offset
2164  | 0x........ | uint32_t HashData[1] DIE offset
2165  | 0x........ | uint32_t HashData[2] DIE offset
2166  | 0x........ | uint32_t HashData[3] DIE offset
2167  | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2168  | 0x00000002 | uint32_t HashData count
2169  | 0x........ | uint32_t HashData[0] DIE offset
2170  | 0x........ | uint32_t HashData[1] DIE offset
2171  | 0x00000000 | uint32_t KeyType (end of hash chain)
2172  `------------'
2173
2174Current testing with real world C++ binaries has shown that there is around 1
217532 bit hash collision per 100,000 name entries.
2176
2177Contents
2178^^^^^^^^
2179
2180As we said, we want to strictly define exactly what is included in the
2181different tables.  For DWARF, we have 3 tables: "``.apple_names``",
2182"``.apple_types``", and "``.apple_namespaces``".
2183
2184"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2185``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2186``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2187``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``.  It also contains
2188``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2189static variables).  All global and static variables should be included,
2190including those scoped within functions and classes.  For example using the
2191following code:
2192
2193.. code-block:: c
2194
2195  static int var = 0;
2196
2197  void f ()
2198  {
2199    static int var = 0;
2200  }
2201
2202Both of the static ``var`` variables would be included in the table.  All
2203functions should emit both their full names and their basenames.  For C or C++,
2204the full name is the mangled name (if available) which is usually in the
2205``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2206function basename.  If global or static variables have a mangled name in a
2207``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2208simple name found in the ``DW_AT_name`` attribute.
2209
2210"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2211tag is one of:
2212
2213* DW_TAG_array_type
2214* DW_TAG_class_type
2215* DW_TAG_enumeration_type
2216* DW_TAG_pointer_type
2217* DW_TAG_reference_type
2218* DW_TAG_string_type
2219* DW_TAG_structure_type
2220* DW_TAG_subroutine_type
2221* DW_TAG_typedef
2222* DW_TAG_union_type
2223* DW_TAG_ptr_to_member_type
2224* DW_TAG_set_type
2225* DW_TAG_subrange_type
2226* DW_TAG_base_type
2227* DW_TAG_const_type
2228* DW_TAG_constant
2229* DW_TAG_file_type
2230* DW_TAG_namelist
2231* DW_TAG_packed_type
2232* DW_TAG_volatile_type
2233* DW_TAG_restrict_type
2234* DW_TAG_interface_type
2235* DW_TAG_unspecified_type
2236* DW_TAG_shared_type
2237
2238Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2239not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2240value).  For example, using the following code:
2241
2242.. code-block:: c
2243
2244  int main ()
2245  {
2246    int *b = 0;
2247    return *b;
2248  }
2249
2250We get a few type DIEs:
2251
2252.. code-block:: none
2253
2254  0x00000067:     TAG_base_type [5]
2255                  AT_encoding( DW_ATE_signed )
2256                  AT_name( "int" )
2257                  AT_byte_size( 0x04 )
2258
2259  0x0000006e:     TAG_pointer_type [6]
2260                  AT_type( {0x00000067} ( int ) )
2261                  AT_byte_size( 0x08 )
2262
2263The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2264
2265"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2266If we run into a namespace that has no name this is an anonymous namespace, and
2267the name should be output as "``(anonymous namespace)``" (without the quotes).
2268Why?  This matches the output of the ``abi::cxa_demangle()`` that is in the
2269standard C++ library that demangles mangled names.
2270
2271
2272Language Extensions and File Format Changes
2273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2274
2275Objective-C Extensions
2276""""""""""""""""""""""
2277
2278"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2279Objective-C class.  The name used in the hash table is the name of the
2280Objective-C class itself.  If the Objective-C class has a category, then an
2281entry is made for both the class name without the category, and for the class
2282name with the category.  So if we have a DIE at offset 0x1234 with a name of
2283method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2284an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2285"``NSString(my_additions)``" that points to 0x1234.  This allows us to quickly
2286track down all Objective-C methods for an Objective-C class when doing
2287expressions.  It is needed because of the dynamic nature of Objective-C where
2288anyone can add methods to a class.  The DWARF for Objective-C methods is also
2289emitted differently from C++ classes where the methods are not usually
2290contained in the class definition, they are scattered about across one or more
2291compile units.  Categories can also be defined in different shared libraries.
2292So we need to be able to quickly find all of the methods and class functions
2293given the Objective-C class name, or quickly find all methods and class
2294functions for a class + category name.  This table does not contain any
2295selector names, it just maps Objective-C class names (or class names +
2296category) to all of the methods and class functions.  The selectors are added
2297as function basenames in the "``.debug_names``" section.
2298
2299In the "``.apple_names``" section for Objective-C functions, the full name is
2300the entire function name with the brackets ("``-[NSString
2301stringWithCString:]``") and the basename is the selector only
2302("``stringWithCString:``").
2303
2304Mach-O Changes
2305""""""""""""""
2306
2307The sections names for the apple hash tables are for non mach-o files.  For
2308mach-o files, the sections should be contained in the ``__DWARF`` segment with
2309names as follows:
2310
2311* "``.apple_names``" -> "``__apple_names``"
2312* "``.apple_types``" -> "``__apple_types``"
2313* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2314* "``.apple_objc``" -> "``__apple_objc``"
2315
2316