1================================
2Source Level Debugging with LLVM
3================================
4
5.. contents::
6   :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM.  It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information.  Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here.  The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26  compiler.  No transformations, analyses, or code generators should need to
27  be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30  ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33  LLVM-to-LLVM tools should not need to know anything about the semantics of
34  the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37  LLVM should not put any restrictions of the flavor of the source-language,
38  and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41  to compile a program to native machine code and standard debugging
42  formats.  This allows compatibility with traditional machine-code level
43  debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects.  The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information.  As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process.  This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger.  Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis.  In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86  the source-level state of the program**, regardless of which LLVM
87  optimizations have been run, and without any modification to the
88  optimizations themselves.  However, some optimizations may impact the
89  ability to modify the current state of the program with a debugger, such
90  as setting program variables, or calling functions that have been
91  deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94  debugging information, allowing them to update the debugging information
95  as they perform aggressive optimizations.  This means that, with effort,
96  the LLVM optimizers could optimize debug code just as well as non-debug
97  code.
98
99* LLVM debug information does not prevent optimizations from
100  happening (for example inlining, basic block reordering/merging/cleanup,
101  tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104  the program, using existing facilities.  For example, duplicate
105  information is automatically merged by the linker, and unused information
106  is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger.  Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information.  It can be run like this:
119
120.. code-block:: bash
121
122  % cd llvm/projects/test-suite/MultiSource/Benchmarks  # or some other level
123  % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes.  If
126debugging information influences optimization passes then it will be reported
127as a failure.  See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information.  In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc).  It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum.  The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`.  These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language.  :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
172information appended at the end that is source-language specific.  All debugging
173information objects start with a tag to indicate what type of object it is.
174The source-language is allowed to define its own objects, by using unreserved
175tag numbers.  We recommend using with tags in the range 0x1000 through 0x2000
176(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
177
178The fields of debug descriptors used internally by LLVM are restricted to only
179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
180``mdnode``.
181
182.. code-block:: llvm
183
184  !1 = metadata !{
185    i32,   ;; A tag
186    ...
187  }
188
189<a name="LLVMDebugVersion">The first field of a descriptor is always an
190``i32`` containing a tag value identifying the content of the descriptor.
191The remaining fields are specific to the descriptor.  The values of tags are
192loosely bound to the tag values of DWARF information entries.  However, that
193does not restrict the use of the information supplied to DWARF targets.
194
195The details of the various descriptors follow.
196
197Compile unit descriptors
198^^^^^^^^^^^^^^^^^^^^^^^^
199
200.. code-block:: llvm
201
202  !0 = metadata !{
203    i32,       ;; Tag = 17 (DW_TAG_compile_unit)
204    metadata,  ;; Source directory (including trailing slash) & file pair
205    i32,       ;; DWARF language identifier (ex. DW_LANG_C89)
206    metadata   ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
207    i1,        ;; True if this is optimized.
208    metadata,  ;; Flags
209    i32        ;; Runtime version
210    metadata   ;; List of enums types
211    metadata   ;; List of retained types
212    metadata   ;; List of subprograms
213    metadata   ;; List of global variables
214    metadata   ;; List of imported entities
215    metadata   ;; Split debug filename
216  }
217
218These descriptors contain a source language ID for the file (we use the DWARF
2193.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
220``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of
221strings for the source file name and the working directory, as well as an
222identifier string for the compiler that produced it.
223
224Compile unit descriptors provide the root context for objects declared in a
225specific compilation unit.  File descriptors are defined using this context.
226These descriptors are collected by a named metadata ``!llvm.dbg.cu``.  They
227keep track of subprograms, global variables, type information, and imported
228entities (declarations and namespaces).
229
230.. _format_files:
231
232File descriptors
233^^^^^^^^^^^^^^^^
234
235.. code-block:: llvm
236
237  !0 = metadata !{
238    i32,      ;; Tag = 41 (DW_TAG_file_type)
239    metadata, ;; Source directory (including trailing slash) & file pair
240  }
241
242These descriptors contain information for a file.  Global variables and top
243level functions would be defined using this context.  File descriptors also
244provide context for source line correspondence.
245
246Each input file is encoded as a separate file descriptor in LLVM debugging
247information output.
248
249.. _format_global_variables:
250
251Global variable descriptors
252^^^^^^^^^^^^^^^^^^^^^^^^^^^
253
254.. code-block:: llvm
255
256  !1 = metadata !{
257    i32,      ;; Tag = 52 (DW_TAG_variable)
258    i32,      ;; Unused field.
259    metadata, ;; Reference to context descriptor
260    metadata, ;; Name
261    metadata, ;; Display name (fully qualified C++ name)
262    metadata, ;; MIPS linkage name (for C++)
263    metadata, ;; Reference to file where defined
264    i32,      ;; Line number where defined
265    metadata, ;; Reference to type descriptor
266    i1,       ;; True if the global is local to compile unit (static)
267    i1,       ;; True if the global is defined in the compile unit (not extern)
268    {}*,      ;; Reference to the global variable
269    metadata, ;; The static member declaration, if any
270  }
271
272These descriptors provide debug information about global variables.  They
273provide details such as name, type and where the variable is defined.  All
274global variables are collected inside the named metadata ``!llvm.dbg.cu``.
275
276.. _format_subprograms:
277
278Subprogram descriptors
279^^^^^^^^^^^^^^^^^^^^^^
280
281.. code-block:: llvm
282
283  !2 = metadata !{
284    i32,      ;; Tag = 46 (DW_TAG_subprogram)
285    metadata, ;; Source directory (including trailing slash) & file pair
286    metadata, ;; Reference to context descriptor
287    metadata, ;; Name
288    metadata, ;; Display name (fully qualified C++ name)
289    metadata, ;; MIPS linkage name (for C++)
290    i32,      ;; Line number where defined
291    metadata, ;; Reference to type descriptor
292    i1,       ;; True if the global is local to compile unit (static)
293    i1,       ;; True if the global is defined in the compile unit (not extern)
294    i32,      ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
295    i32,      ;; Index into a virtual function
296    metadata, ;; indicates which base type contains the vtable pointer for the
297              ;; derived class
298    i32,      ;; Flags - Artificial, Private, Protected, Explicit, Prototyped.
299    i1,       ;; isOptimized
300    {}*,      ;; Reference to the LLVM function
301    metadata, ;; Lists function template parameters
302    metadata, ;; Function declaration descriptor
303    metadata, ;; List of function variables
304    i32       ;; Line number where the scope of the subprogram begins
305  }
306
307These descriptors provide debug information about functions, methods and
308subprograms.  They provide details such as name, return types and the source
309location where the subprogram is defined.
310
311Block descriptors
312^^^^^^^^^^^^^^^^^
313
314.. code-block:: llvm
315
316  !3 = metadata !{
317    i32,      ;; Tag = 11 (DW_TAG_lexical_block)
318    metadata, ;; Source directory (including trailing slash) & file pair
319    metadata, ;; Reference to context descriptor
320    i32,      ;; Line number
321    i32,      ;; Column number
322    i32,      ;; DWARF path discriminator value
323    i32       ;; Unique ID to identify blocks from a template function
324  }
325
326This descriptor provides debug information about nested blocks within a
327subprogram.  The line number and column numbers are used to dinstinguish two
328lexical blocks at same depth.
329
330.. code-block:: llvm
331
332  !3 = metadata !{
333    i32,      ;; Tag = 11 (DW_TAG_lexical_block)
334    metadata, ;; Source directory (including trailing slash) & file pair
335    metadata  ;; Reference to the scope we're annotating with a file change
336  }
337
338This descriptor provides a wrapper around a lexical scope to handle file
339changes in the middle of a lexical block.
340
341.. _format_basic_type:
342
343Basic type descriptors
344^^^^^^^^^^^^^^^^^^^^^^
345
346.. code-block:: llvm
347
348  !4 = metadata !{
349    i32,      ;; Tag = 36 (DW_TAG_base_type)
350    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
351    metadata, ;; Reference to context
352    metadata, ;; Name (may be "" for anonymous types)
353    i32,      ;; Line number where defined (may be 0)
354    i64,      ;; Size in bits
355    i64,      ;; Alignment in bits
356    i64,      ;; Offset in bits
357    i32,      ;; Flags
358    i32       ;; DWARF type encoding
359  }
360
361These descriptors define primitive types used in the code.  Example ``int``,
362``bool`` and ``float``.  The context provides the scope of the type, which is
363usually the top level.  Since basic types are not usually user defined the
364context and line number can be left as NULL and 0.  The size, alignment and
365offset are expressed in bits and can be 64 bit values.  The alignment is used
366to round the offset when embedded in a :ref:`composite type
367<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
368The offset is the bit offset if embedded in a :ref:`composite type
369<format_composite_type>`.
370
371The type encoding provides the details of the type.  The values are typically
372one of the following:
373
374.. code-block:: llvm
375
376  DW_ATE_address       = 1
377  DW_ATE_boolean       = 2
378  DW_ATE_float         = 4
379  DW_ATE_signed        = 5
380  DW_ATE_signed_char   = 6
381  DW_ATE_unsigned      = 7
382  DW_ATE_unsigned_char = 8
383
384.. _format_derived_type:
385
386Derived type descriptors
387^^^^^^^^^^^^^^^^^^^^^^^^
388
389.. code-block:: llvm
390
391  !5 = metadata !{
392    i32,      ;; Tag (see below)
393    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
394    metadata, ;; Reference to context
395    metadata, ;; Name (may be "" for anonymous types)
396    i32,      ;; Line number where defined (may be 0)
397    i64,      ;; Size in bits
398    i64,      ;; Alignment in bits
399    i64,      ;; Offset in bits
400    i32,      ;; Flags to encode attributes, e.g. private
401    metadata, ;; Reference to type derived from
402    metadata, ;; (optional) Name of the Objective C property associated with
403              ;; Objective-C an ivar, or the type of which this
404              ;; pointer-to-member is pointing to members of.
405    metadata, ;; (optional) Name of the Objective C property getter selector.
406    metadata, ;; (optional) Name of the Objective C property setter selector.
407    i32       ;; (optional) Objective C property attributes.
408  }
409
410These descriptors are used to define types derived from other types.  The value
411of the tag varies depending on the meaning.  The following are possible tag
412values:
413
414.. code-block:: llvm
415
416  DW_TAG_formal_parameter   = 5
417  DW_TAG_member             = 13
418  DW_TAG_pointer_type       = 15
419  DW_TAG_reference_type     = 16
420  DW_TAG_typedef            = 22
421  DW_TAG_ptr_to_member_type = 31
422  DW_TAG_const_type         = 38
423  DW_TAG_volatile_type      = 53
424  DW_TAG_restrict_type      = 55
425
426``DW_TAG_member`` is used to define a member of a :ref:`composite type
427<format_composite_type>` or :ref:`subprogram <format_subprograms>`.  The type
428of the member is the :ref:`derived type <format_derived_type>`.
429``DW_TAG_formal_parameter`` is used to define a member which is a formal
430argument of a subprogram.
431
432``DW_TAG_typedef`` is used to provide a name for the derived type.
433
434``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
435``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
436:ref:`derived type <format_derived_type>`.
437
438:ref:`Derived type <format_derived_type>` location can be determined from the
439context and line number.  The size, alignment and offset are expressed in bits
440and can be 64 bit values.  The alignment is used to round the offset when
441embedded in a :ref:`composite type <format_composite_type>`  (example to keep
442float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
443in a :ref:`composite type <format_composite_type>`.
444
445Note that the ``void *`` type is expressed as a type derived from NULL.
446
447.. _format_composite_type:
448
449Composite type descriptors
450^^^^^^^^^^^^^^^^^^^^^^^^^^
451
452.. code-block:: llvm
453
454  !6 = metadata !{
455    i32,      ;; Tag (see below)
456    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
457    metadata, ;; Reference to context
458    metadata, ;; Name (may be "" for anonymous types)
459    i32,      ;; Line number where defined (may be 0)
460    i64,      ;; Size in bits
461    i64,      ;; Alignment in bits
462    i64,      ;; Offset in bits
463    i32,      ;; Flags
464    metadata, ;; Reference to type derived from
465    metadata, ;; Reference to array of member descriptors
466    i32,      ;; Runtime languages
467    metadata, ;; Base type containing the vtable pointer for this type
468    metadata, ;; Template parameters
469    metadata  ;; A unique identifier for type uniquing purpose (may be null)
470  }
471
472These descriptors are used to define types that are composed of 0 or more
473elements.  The value of the tag varies depending on the meaning.  The following
474are possible tag values:
475
476.. code-block:: llvm
477
478  DW_TAG_array_type       = 1
479  DW_TAG_enumeration_type = 4
480  DW_TAG_structure_type   = 19
481  DW_TAG_union_type       = 23
482  DW_TAG_subroutine_type  = 21
483  DW_TAG_inheritance      = 28
484
485The vector flag indicates that an array type is a native packed vector.
486
487The members of array types (tag = ``DW_TAG_array_type``) are
488:ref:`subrange descriptors <format_subrange>`, each
489representing the range of subscripts at that level of indexing.
490
491The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
492:ref:`enumerator descriptors <format_enumerator>`, each representing the
493definition of enumeration value for the set.  All enumeration type descriptors
494are collected inside the named metadata ``!llvm.dbg.cu``.
495
496The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
497``DW_TAG_union_type``) types are any one of the :ref:`basic
498<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
499<format_composite_type>` type descriptors, each representing a field member of
500the structure or union.
501
502For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
503information about base classes, static members and member functions.  If a
504member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
505of ``DW_TAG_inheritance``, then the type represents a base class.  If the member
506of is a :ref:`global variable descriptor <format_global_variables>` then it
507represents a static member.  And, if the member is a :ref:`subprogram
508descriptor <format_subprograms>` then it represents a member function.  For
509static members and member functions, ``getName()`` returns the members link or
510the C++ mangled name.  ``getDisplayName()`` the simplied version of the name.
511
512The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
513is the return type for the subroutine.  The remaining elements are the formal
514arguments to the subroutine.
515
516:ref:`Composite type <format_composite_type>` location can be determined from
517the context and line number.  The size, alignment and offset are expressed in
518bits and can be 64 bit values.  The alignment is used to round the offset when
519embedded in a :ref:`composite type <format_composite_type>` (as an example, to
520keep float doubles on 64 bit boundaries).  The offset is the bit offset if
521embedded in a :ref:`composite type <format_composite_type>`.
522
523.. _format_subrange:
524
525Subrange descriptors
526^^^^^^^^^^^^^^^^^^^^
527
528.. code-block:: llvm
529
530  !42 = metadata !{
531    i32,      ;; Tag = 33 (DW_TAG_subrange_type)
532    i64,      ;; Low value
533    i64       ;; High value
534  }
535
536These descriptors are used to define ranges of array subscripts for an array
537:ref:`composite type <format_composite_type>`.  The low value defines the lower
538bounds typically zero for C/C++.  The high value is the upper bounds.  Values
539are 64 bit.  ``High - Low + 1`` is the size of the array.  If ``Low > High``
540the array bounds are not included in generated debugging information.
541
542.. _format_enumerator:
543
544Enumerator descriptors
545^^^^^^^^^^^^^^^^^^^^^^
546
547.. code-block:: llvm
548
549  !6 = metadata !{
550    i32,      ;; Tag = 40 (DW_TAG_enumerator)
551    metadata, ;; Name
552    i64       ;; Value
553  }
554
555These descriptors are used to define members of an enumeration :ref:`composite
556type <format_composite_type>`, it associates the name to the value.
557
558Local variables
559^^^^^^^^^^^^^^^
560
561.. code-block:: llvm
562
563  !7 = metadata !{
564    i32,      ;; Tag (see below)
565    metadata, ;; Context
566    metadata, ;; Name
567    metadata, ;; Reference to file where defined
568    i32,      ;; 24 bit - Line number where defined
569              ;; 8 bit - Argument number. 1 indicates 1st argument.
570    metadata, ;; Reference to the type descriptor
571    i32,      ;; flags
572    metadata  ;; (optional) Reference to inline location
573    metadata  ;; (optional) Reference to a complex expression (see below)
574  }
575
576These descriptors are used to define variables local to a sub program.  The
577value of the tag depends on the usage of the variable:
578
579.. code-block:: llvm
580
581  DW_TAG_auto_variable   = 256
582  DW_TAG_arg_variable    = 257
583
584An auto variable is any variable declared in the body of the function.  An
585argument variable is any variable that appears as a formal argument to the
586function.
587
588The context is either the subprogram or block where the variable is defined.
589Name the source variable name.  Context and line indicate where the variable
590was defined.  Type descriptor defines the declared type of the variable.
591
592.. _format_common_intrinsics:
593
594Debugger intrinsic functions
595^^^^^^^^^^^^^^^^^^^^^^^^^^^^
596
597LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
598provide debug information at various points in generated code.
599
600``llvm.dbg.declare``
601^^^^^^^^^^^^^^^^^^^^
602
603.. code-block:: llvm
604
605  void %llvm.dbg.declare(metadata, metadata)
606
607This intrinsic provides information about a local element (e.g., variable).
608The first argument is metadata holding the alloca for the variable.  The second
609argument is metadata containing a description of the variable.
610
611``llvm.dbg.value``
612^^^^^^^^^^^^^^^^^^
613
614.. code-block:: llvm
615
616  void %llvm.dbg.value(metadata, i64, metadata)
617
618This intrinsic provides information when a user source variable is set to a new
619value.  The first argument is the new value (wrapped as metadata).  The second
620argument is the offset in the user source variable where the new value is
621written.  The third argument is metadata containing a description of the user
622source variable.
623
624Object lifetimes and scoping
625============================
626
627In many languages, the local variables in functions can have their lifetimes or
628scopes limited to a subset of a function.  In the C family of languages, for
629example, variables are only live (readable and writable) within the source
630block that they are defined in.  In functional languages, values are only
631readable after they have been defined.  Though this is a very obvious concept,
632it is non-trivial to model in LLVM, because it has no notion of scoping in this
633sense, and does not want to be tied to a language's scoping rules.
634
635In order to handle this, the LLVM debug format uses the metadata attached to
636llvm instructions to encode line number and scoping information.  Consider the
637following C fragment, for example:
638
639.. code-block:: c
640
641  1.  void foo() {
642  2.    int X = 21;
643  3.    int Y = 22;
644  4.    {
645  5.      int Z = 23;
646  6.      Z = X;
647  7.    }
648  8.    X = Y;
649  9.  }
650
651Compiled to LLVM, this function would be represented like this:
652
653.. code-block:: llvm
654
655  define void @foo() #0 {
656  entry:
657   %X = alloca i32, align 4
658    %Y = alloca i32, align 4
659    %Z = alloca i32, align 4
660    call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
661      ; [debug line = 2:7] [debug variable = X]
662    store i32 21, i32* %X, align 4, !dbg !12
663    call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14
664      ; [debug line = 3:7] [debug variable = Y]
665    store i32 22, i32* %Y, align 4, !dbg !14
666    call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
667      ; [debug line = 5:9] [debug variable = Z]
668    store i32 23, i32* %Z, align 4, !dbg !17
669    %0 = load i32* %X, align 4, !dbg !18
670      [debug line = 6:5]
671    store i32 %0, i32* %Z, align 4, !dbg !18
672    %1 = load i32* %Y, align 4, !dbg !19
673      [debug line = 8:3]
674    store i32 %1, i32* %X, align 4, !dbg !19
675    ret void, !dbg !20
676  }
677
678  ; Function Attrs: nounwind readnone
679  declare void @llvm.dbg.declare(metadata, metadata) #1
680
681  attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false"
682    "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"
683    "no-infs-fp-math"="false" "no-nans-fp-math"="false"
684    "stack-protector-buffer-size"="8" "unsafe-fp-math"="false"
685    "use-soft-float"="false" }
686  attributes #1 = { nounwind readnone }
687
688  !llvm.dbg.cu = !{!0}
689  !llvm.module.flags = !{!8}
690  !llvm.ident = !{!9}
691
692  !0 = metadata !{i32 786449, metadata !1, i32 12,
693                  metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)",
694                  i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3,
695                  metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \
696                    [/private/tmp/foo.c] \
697                    [DW_LANG_C99]
698  !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"}
699  !2 = metadata !{i32 0}
700  !3 = metadata !{metadata !4}
701  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
702                  metadata !"foo", metadata !"", i32 1, metadata !6,
703                  i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
704                  void ()* @foo, null, null, metadata !2, i32 1}
705                  ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
706  !5 = metadata !{i32 786473, metadata !1}  ; [ DW_TAG_file_type ] \
707                    [/private/tmp/t.c]
708  !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0,
709                  i64 0, i32 0, null, metadata !7, i32 0, null, null, null}
710                  ; [ DW_TAG_subroutine_type ] \
711                    [line 0, size 0, align 0, offset 0] [from ]
712  !7 = metadata !{null}
713  !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2}
714  !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"}
715  !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2,
716                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \
717                     [line 2]
718  !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32,
719                   i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \
720                     [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
721  !12 = metadata !{i32 2, i32 0, metadata !4, null}
722  !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3,
723                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \
724                     [line 3]
725  !14 = metadata !{i32 3, i32 0, metadata !4, null}
726  !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5,
727                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \
728                     [line 5]
729  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0,
730                   i32 0} \
731                   ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
732  !17 = metadata !{i32 5, i32 0, metadata !16, null}
733  !18 = metadata !{i32 6, i32 0, metadata !16, null}
734  !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ]
735  !20 = metadata !{i32 9, i32 0, metadata !4, null}
736
737This example illustrates a few important details about LLVM debugging
738information.  In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
739location information, which are attached to an instruction, are applied
740together to allow a debugger to analyze the relationship between statements,
741variable definitions, and the code used to implement the function.
742
743.. code-block:: llvm
744
745  call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
746    ; [debug line = 2:7] [debug variable = X]
747
748The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
749variable ``X``.  The metadata ``!dbg !12`` attached to the intrinsic provides
750scope information for the variable ``X``.
751
752.. code-block:: llvm
753
754  !12 = metadata !{i32 2, i32 0, metadata !4, null}
755  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
756                  metadata !"foo", metadata !"", i32 1, metadata !6,
757                  i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
758                  void ()* @foo, null, null, metadata !2, i32 1}
759                    ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
760
761Here ``!12`` is metadata providing location information.  It has four fields:
762line number, column number, scope, and original scope.  The original scope
763represents inline location if this instruction is inlined inside a caller, and
764is null otherwise.  In this example, scope is encoded by ``!4``, a
765:ref:`subprogram descriptor <format_subprograms>`.  This way the location
766information attached to the intrinsics indicates that the variable ``X`` is
767declared at line number 2 at a function level scope in function ``foo``.
768
769Now lets take another example.
770
771.. code-block:: llvm
772
773  call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
774    ; [debug line = 5:9] [debug variable = Z]
775
776The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
777variable ``Z``.  The metadata ``!dbg !17`` attached to the intrinsic provides
778scope information for the variable ``Z``.
779
780.. code-block:: llvm
781
782  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0,
783                   i32 0}
784                   ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
785  !17 = metadata !{i32 5, i32 0, metadata !16, null}
786
787Here ``!15`` indicates that ``Z`` is declared at line number 5 and
788column number 0 inside of lexical scope ``!16``.  The lexical scope itself
789resides inside of subprogram ``!4`` described above.
790
791The scope information attached with each instruction provides a straightforward
792way to find instructions covered by a scope.
793
794.. _ccxx_frontend:
795
796C/C++ front-end specific debug information
797==========================================
798
799The C and C++ front-ends represent information about the program in a format
800that is effectively identical to `DWARF 3.0
801<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
802content.  This allows code generators to trivially support native debuggers by
803generating standard dwarf information, and contains enough information for
804non-dwarf targets to translate it as needed.
805
806This section describes the forms used to represent C and C++ programs.  Other
807languages could pattern themselves after this (which itself is tuned to
808representing programs in the same way that DWARF 3 does), or they could choose
809to provide completely different forms if they don't fit into the DWARF model.
810As support for debugging information gets added to the various LLVM
811source-language front-ends, the information used should be documented here.
812
813The following sections provide examples of various C/C++ constructs and the
814debug information that would best describe those constructs.
815
816C/C++ source file information
817-----------------------------
818
819Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
820directory ``/Users/mine/sources``, the following code:
821
822.. code-block:: c
823
824  #include "MyHeader.h"
825
826  int main(int argc, char *argv[]) {
827    return 0;
828  }
829
830a C/C++ front-end would generate the following descriptors:
831
832.. code-block:: llvm
833
834  ...
835  ;;
836  ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
837  ;;
838  !0 = metadata !{
839    i32 786449,   ;; Tag
840    metadata !1,  ;; File/directory name
841    i32 4,        ;; Language Id
842    metadata !"clang version 3.4 ",
843    i1 false,     ;; Optimized compile unit
844    metadata !"", ;; Compiler flags
845    i32 0,        ;; Runtime version
846    metadata !2,  ;; Enumeration types
847    metadata !2,  ;; Retained types
848    metadata !3,  ;; Subprograms
849    metadata !2,  ;; Global variables
850    metadata !2,  ;; Imported entities (declarations and namespaces)
851    metadata !""  ;; Split debug filename
852  }
853
854  ;;
855  ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
856  ;;
857  !1 = metadata !{
858    metadata !"MySource.cpp",
859    metadata !"/Users/mine/sources"
860  }
861  !5 = metadata !{
862    i32 786473, ;; Tag
863    metadata !1
864  }
865
866  ;;
867  ;; Define the file for the file "/Users/mine/sources/Myheader.h"
868  ;;
869  !14 = metadata !{
870    i32 786473, ;; Tag
871    metadata !15
872  }
873  !15 = metadata !{
874    metadata !"./MyHeader.h",
875    metadata !"/Users/mine/sources",
876  }
877
878  ...
879
880``llvm::Instruction`` provides easy access to metadata attached with an
881instruction.  One can extract line number information encoded in LLVM IR using
882``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
883
884.. code-block:: c++
885
886  if (MDNode *N = I->getMetadata("dbg")) {  // Here I is an LLVM instruction
887    DILocation Loc(N);                      // DILocation is in DebugInfo.h
888    unsigned Line = Loc.getLineNumber();
889    StringRef File = Loc.getFilename();
890    StringRef Dir = Loc.getDirectory();
891  }
892
893C/C++ global variable information
894---------------------------------
895
896Given an integer global variable declared as follows:
897
898.. code-block:: c
899
900  int MyGlobal = 100;
901
902a C/C++ front-end would generate the following descriptors:
903
904.. code-block:: llvm
905
906  ;;
907  ;; Define the global itself.
908  ;;
909  %MyGlobal = global int 100
910  ...
911  ;;
912  ;; List of debug info of globals
913  ;;
914  !llvm.dbg.cu = !{!0}
915
916  ;; Define the compile unit.
917  !0 = metadata !{
918    i32 786449,                       ;; Tag
919    i32 0,                            ;; Context
920    i32 4,                            ;; Language
921    metadata !"foo.cpp",              ;; File
922    metadata !"/Volumes/Data/tmp",    ;; Directory
923    metadata !"clang version 3.1 ",   ;; Producer
924    i1 true,                          ;; Deprecated field
925    i1 false,                         ;; "isOptimized"?
926    metadata !"",                     ;; Flags
927    i32 0,                            ;; Runtime Version
928    metadata !1,                      ;; Enum Types
929    metadata !1,                      ;; Retained Types
930    metadata !1,                      ;; Subprograms
931    metadata !3,                      ;; Global Variables
932    metadata !1,                      ;; Imported entities
933    "",                               ;; Split debug filename
934  } ; [ DW_TAG_compile_unit ]
935
936  ;; The Array of Global Variables
937  !3 = metadata !{
938    metadata !4
939  }
940
941  ;;
942  ;; Define the global variable itself.
943  ;;
944  !4 = metadata !{
945    i32 786484,                        ;; Tag
946    i32 0,                             ;; Unused
947    null,                              ;; Unused
948    metadata !"MyGlobal",              ;; Name
949    metadata !"MyGlobal",              ;; Display Name
950    metadata !"",                      ;; Linkage Name
951    metadata !6,                       ;; File
952    i32 1,                             ;; Line
953    metadata !7,                       ;; Type
954    i32 0,                             ;; IsLocalToUnit
955    i32 1,                             ;; IsDefinition
956    i32* @MyGlobal,                    ;; LLVM-IR Value
957    null                               ;; Static member declaration
958  } ; [ DW_TAG_variable ]
959
960  ;;
961  ;; Define the file
962  ;;
963  !5 = metadata !{
964    metadata !"foo.cpp",               ;; File
965    metadata !"/Volumes/Data/tmp",     ;; Directory
966  }
967  !6 = metadata !{
968    i32 786473,                        ;; Tag
969    metadata !5                        ;; Unused
970  } ; [ DW_TAG_file_type ]
971
972  ;;
973  ;; Define the type
974  ;;
975  !7 = metadata !{
976    i32 786468,                         ;; Tag
977    null,                               ;; Unused
978    null,                               ;; Unused
979    metadata !"int",                    ;; Name
980    i32 0,                              ;; Line
981    i64 32,                             ;; Size in Bits
982    i64 32,                             ;; Align in Bits
983    i64 0,                              ;; Offset
984    i32 0,                              ;; Flags
985    i32 5                               ;; Encoding
986  } ; [ DW_TAG_base_type ]
987
988C/C++ function information
989--------------------------
990
991Given a function declared as follows:
992
993.. code-block:: c
994
995  int main(int argc, char *argv[]) {
996    return 0;
997  }
998
999a C/C++ front-end would generate the following descriptors:
1000
1001.. code-block:: llvm
1002
1003  ;;
1004  ;; Define the anchor for subprograms.
1005  ;;
1006  !6 = metadata !{
1007    i32 786484,        ;; Tag
1008    metadata !1,       ;; File
1009    metadata !1,       ;; Context
1010    metadata !"main",  ;; Name
1011    metadata !"main",  ;; Display name
1012    metadata !"main",  ;; Linkage name
1013    i32 1,             ;; Line number
1014    metadata !4,       ;; Type
1015    i1 false,          ;; Is local
1016    i1 true,           ;; Is definition
1017    i32 0,             ;; Virtuality attribute, e.g. pure virtual function
1018    i32 0,             ;; Index into virtual table for C++ methods
1019    i32 0,             ;; Type that holds virtual table.
1020    i32 0,             ;; Flags
1021    i1 false,          ;; True if this function is optimized
1022    Function *,        ;; Pointer to llvm::Function
1023    null,              ;; Function template parameters
1024    null,              ;; List of function variables (emitted when optimizing)
1025    1                  ;; Line number of the opening '{' of the function
1026  }
1027  ;;
1028  ;; Define the subprogram itself.
1029  ;;
1030  define i32 @main(i32 %argc, i8** %argv) {
1031  ...
1032  }
1033
1034C/C++ basic types
1035-----------------
1036
1037The following are the basic type descriptors for C/C++ core types:
1038
1039bool
1040^^^^
1041
1042.. code-block:: llvm
1043
1044  !2 = metadata !{
1045    i32 786468,        ;; Tag
1046    null,              ;; File
1047    null,              ;; Context
1048    metadata !"bool",  ;; Name
1049    i32 0,             ;; Line number
1050    i64 8,             ;; Size in Bits
1051    i64 8,             ;; Align in Bits
1052    i64 0,             ;; Offset in Bits
1053    i32 0,             ;; Flags
1054    i32 2              ;; Encoding
1055  }
1056
1057char
1058^^^^
1059
1060.. code-block:: llvm
1061
1062  !2 = metadata !{
1063    i32 786468,        ;; Tag
1064    null,              ;; File
1065    null,              ;; Context
1066    metadata !"char",  ;; Name
1067    i32 0,             ;; Line number
1068    i64 8,             ;; Size in Bits
1069    i64 8,             ;; Align in Bits
1070    i64 0,             ;; Offset in Bits
1071    i32 0,             ;; Flags
1072    i32 6              ;; Encoding
1073  }
1074
1075unsigned char
1076^^^^^^^^^^^^^
1077
1078.. code-block:: llvm
1079
1080  !2 = metadata !{
1081    i32 786468,        ;; Tag
1082    null,              ;; File
1083    null,              ;; Context
1084    metadata !"unsigned char",
1085    i32 0,             ;; Line number
1086    i64 8,             ;; Size in Bits
1087    i64 8,             ;; Align in Bits
1088    i64 0,             ;; Offset in Bits
1089    i32 0,             ;; Flags
1090    i32 8              ;; Encoding
1091  }
1092
1093short
1094^^^^^
1095
1096.. code-block:: llvm
1097
1098  !2 = metadata !{
1099    i32 786468,        ;; Tag
1100    null,              ;; File
1101    null,              ;; Context
1102    metadata !"short int",
1103    i32 0,             ;; Line number
1104    i64 16,            ;; Size in Bits
1105    i64 16,            ;; Align in Bits
1106    i64 0,             ;; Offset in Bits
1107    i32 0,             ;; Flags
1108    i32 5              ;; Encoding
1109  }
1110
1111unsigned short
1112^^^^^^^^^^^^^^
1113
1114.. code-block:: llvm
1115
1116  !2 = metadata !{
1117    i32 786468,        ;; Tag
1118    null,              ;; File
1119    null,              ;; Context
1120    metadata !"short unsigned int",
1121    i32 0,             ;; Line number
1122    i64 16,            ;; Size in Bits
1123    i64 16,            ;; Align in Bits
1124    i64 0,             ;; Offset in Bits
1125    i32 0,             ;; Flags
1126    i32 7              ;; Encoding
1127  }
1128
1129int
1130^^^
1131
1132.. code-block:: llvm
1133
1134  !2 = metadata !{
1135    i32 786468,        ;; Tag
1136    null,              ;; File
1137    null,              ;; Context
1138    metadata !"int",   ;; Name
1139    i32 0,             ;; Line number
1140    i64 32,            ;; Size in Bits
1141    i64 32,            ;; Align in Bits
1142    i64 0,             ;; Offset in Bits
1143    i32 0,             ;; Flags
1144    i32 5              ;; Encoding
1145  }
1146
1147unsigned int
1148^^^^^^^^^^^^
1149
1150.. code-block:: llvm
1151
1152  !2 = metadata !{
1153    i32 786468,        ;; Tag
1154    null,              ;; File
1155    null,              ;; Context
1156    metadata !"unsigned int",
1157    i32 0,             ;; Line number
1158    i64 32,            ;; Size in Bits
1159    i64 32,            ;; Align in Bits
1160    i64 0,             ;; Offset in Bits
1161    i32 0,             ;; Flags
1162    i32 7              ;; Encoding
1163  }
1164
1165long long
1166^^^^^^^^^
1167
1168.. code-block:: llvm
1169
1170  !2 = metadata !{
1171    i32 786468,        ;; Tag
1172    null,              ;; File
1173    null,              ;; Context
1174    metadata !"long long int",
1175    i32 0,             ;; Line number
1176    i64 64,            ;; Size in Bits
1177    i64 64,            ;; Align in Bits
1178    i64 0,             ;; Offset in Bits
1179    i32 0,             ;; Flags
1180    i32 5              ;; Encoding
1181  }
1182
1183unsigned long long
1184^^^^^^^^^^^^^^^^^^
1185
1186.. code-block:: llvm
1187
1188  !2 = metadata !{
1189    i32 786468,        ;; Tag
1190    null,              ;; File
1191    null,              ;; Context
1192    metadata !"long long unsigned int",
1193    i32 0,             ;; Line number
1194    i64 64,            ;; Size in Bits
1195    i64 64,            ;; Align in Bits
1196    i64 0,             ;; Offset in Bits
1197    i32 0,             ;; Flags
1198    i32 7              ;; Encoding
1199  }
1200
1201float
1202^^^^^
1203
1204.. code-block:: llvm
1205
1206  !2 = metadata !{
1207    i32 786468,        ;; Tag
1208    null,              ;; File
1209    null,              ;; Context
1210    metadata !"float",
1211    i32 0,             ;; Line number
1212    i64 32,            ;; Size in Bits
1213    i64 32,            ;; Align in Bits
1214    i64 0,             ;; Offset in Bits
1215    i32 0,             ;; Flags
1216    i32 4              ;; Encoding
1217  }
1218
1219double
1220^^^^^^
1221
1222.. code-block:: llvm
1223
1224  !2 = metadata !{
1225    i32 786468,        ;; Tag
1226    null,              ;; File
1227    null,              ;; Context
1228    metadata !"double",;; Name
1229    i32 0,             ;; Line number
1230    i64 64,            ;; Size in Bits
1231    i64 64,            ;; Align in Bits
1232    i64 0,             ;; Offset in Bits
1233    i32 0,             ;; Flags
1234    i32 4              ;; Encoding
1235  }
1236
1237C/C++ derived types
1238-------------------
1239
1240Given the following as an example of C/C++ derived type:
1241
1242.. code-block:: c
1243
1244  typedef const int *IntPtr;
1245
1246a C/C++ front-end would generate the following descriptors:
1247
1248.. code-block:: llvm
1249
1250  ;;
1251  ;; Define the typedef "IntPtr".
1252  ;;
1253  !2 = metadata !{
1254    i32 786454,          ;; Tag
1255    metadata !3,         ;; File
1256    metadata !1,         ;; Context
1257    metadata !"IntPtr",  ;; Name
1258    i32 0,               ;; Line number
1259    i64 0,               ;; Size in bits
1260    i64 0,               ;; Align in bits
1261    i64 0,               ;; Offset in bits
1262    i32 0,               ;; Flags
1263    metadata !4          ;; Derived From type
1264  }
1265  ;;
1266  ;; Define the pointer type.
1267  ;;
1268  !4 = metadata !{
1269    i32 786447,          ;; Tag
1270    null,                ;; File
1271    null,                ;; Context
1272    metadata !"",        ;; Name
1273    i32 0,               ;; Line number
1274    i64 64,              ;; Size in bits
1275    i64 64,              ;; Align in bits
1276    i64 0,               ;; Offset in bits
1277    i32 0,               ;; Flags
1278    metadata !5          ;; Derived From type
1279  }
1280  ;;
1281  ;; Define the const type.
1282  ;;
1283  !5 = metadata !{
1284    i32 786470,          ;; Tag
1285    null,                ;; File
1286    null,                ;; Context
1287    metadata !"",        ;; Name
1288    i32 0,               ;; Line number
1289    i64 0,               ;; Size in bits
1290    i64 0,               ;; Align in bits
1291    i64 0,               ;; Offset in bits
1292    i32 0,               ;; Flags
1293    metadata !6          ;; Derived From type
1294  }
1295  ;;
1296  ;; Define the int type.
1297  ;;
1298  !6 = metadata !{
1299    i32 786468,          ;; Tag
1300    null,                ;; File
1301    null,                ;; Context
1302    metadata !"int",     ;; Name
1303    i32 0,               ;; Line number
1304    i64 32,              ;; Size in bits
1305    i64 32,              ;; Align in bits
1306    i64 0,               ;; Offset in bits
1307    i32 0,               ;; Flags
1308    i32 5                ;; Encoding
1309  }
1310
1311C/C++ struct/union types
1312------------------------
1313
1314Given the following as an example of C/C++ struct type:
1315
1316.. code-block:: c
1317
1318  struct Color {
1319    unsigned Red;
1320    unsigned Green;
1321    unsigned Blue;
1322  };
1323
1324a C/C++ front-end would generate the following descriptors:
1325
1326.. code-block:: llvm
1327
1328  ;;
1329  ;; Define basic type for unsigned int.
1330  ;;
1331  !5 = metadata !{
1332    i32 786468,        ;; Tag
1333    null,              ;; File
1334    null,              ;; Context
1335    metadata !"unsigned int",
1336    i32 0,             ;; Line number
1337    i64 32,            ;; Size in Bits
1338    i64 32,            ;; Align in Bits
1339    i64 0,             ;; Offset in Bits
1340    i32 0,             ;; Flags
1341    i32 7              ;; Encoding
1342  }
1343  ;;
1344  ;; Define composite type for struct Color.
1345  ;;
1346  !2 = metadata !{
1347    i32 786451,        ;; Tag
1348    metadata !1,       ;; Compile unit
1349    null,              ;; Context
1350    metadata !"Color", ;; Name
1351    i32 1,             ;; Line number
1352    i64 96,            ;; Size in bits
1353    i64 32,            ;; Align in bits
1354    i64 0,             ;; Offset in bits
1355    i32 0,             ;; Flags
1356    null,              ;; Derived From
1357    metadata !3,       ;; Elements
1358    i32 0,             ;; Runtime Language
1359    null,              ;; Base type containing the vtable pointer for this type
1360    null               ;; Template parameters
1361  }
1362
1363  ;;
1364  ;; Define the Red field.
1365  ;;
1366  !4 = metadata !{
1367    i32 786445,        ;; Tag
1368    metadata !1,       ;; File
1369    metadata !1,       ;; Context
1370    metadata !"Red",   ;; Name
1371    i32 2,             ;; Line number
1372    i64 32,            ;; Size in bits
1373    i64 32,            ;; Align in bits
1374    i64 0,             ;; Offset in bits
1375    i32 0,             ;; Flags
1376    metadata !5        ;; Derived From type
1377  }
1378
1379  ;;
1380  ;; Define the Green field.
1381  ;;
1382  !6 = metadata !{
1383    i32 786445,        ;; Tag
1384    metadata !1,       ;; File
1385    metadata !1,       ;; Context
1386    metadata !"Green", ;; Name
1387    i32 3,             ;; Line number
1388    i64 32,            ;; Size in bits
1389    i64 32,            ;; Align in bits
1390    i64 32,             ;; Offset in bits
1391    i32 0,             ;; Flags
1392    metadata !5        ;; Derived From type
1393  }
1394
1395  ;;
1396  ;; Define the Blue field.
1397  ;;
1398  !7 = metadata !{
1399    i32 786445,        ;; Tag
1400    metadata !1,       ;; File
1401    metadata !1,       ;; Context
1402    metadata !"Blue",  ;; Name
1403    i32 4,             ;; Line number
1404    i64 32,            ;; Size in bits
1405    i64 32,            ;; Align in bits
1406    i64 64,             ;; Offset in bits
1407    i32 0,             ;; Flags
1408    metadata !5        ;; Derived From type
1409  }
1410
1411  ;;
1412  ;; Define the array of fields used by the composite type Color.
1413  ;;
1414  !3 = metadata !{metadata !4, metadata !6, metadata !7}
1415
1416C/C++ enumeration types
1417-----------------------
1418
1419Given the following as an example of C/C++ enumeration type:
1420
1421.. code-block:: c
1422
1423  enum Trees {
1424    Spruce = 100,
1425    Oak = 200,
1426    Maple = 300
1427  };
1428
1429a C/C++ front-end would generate the following descriptors:
1430
1431.. code-block:: llvm
1432
1433  ;;
1434  ;; Define composite type for enum Trees
1435  ;;
1436  !2 = metadata !{
1437    i32 786436,        ;; Tag
1438    metadata !1,       ;; File
1439    metadata !1,       ;; Context
1440    metadata !"Trees", ;; Name
1441    i32 1,             ;; Line number
1442    i64 32,            ;; Size in bits
1443    i64 32,            ;; Align in bits
1444    i64 0,             ;; Offset in bits
1445    i32 0,             ;; Flags
1446    null,              ;; Derived From type
1447    metadata !3,       ;; Elements
1448    i32 0              ;; Runtime language
1449  }
1450
1451  ;;
1452  ;; Define the array of enumerators used by composite type Trees.
1453  ;;
1454  !3 = metadata !{metadata !4, metadata !5, metadata !6}
1455
1456  ;;
1457  ;; Define Spruce enumerator.
1458  ;;
1459  !4 = metadata !{i32 786472, metadata !"Spruce", i64 100}
1460
1461  ;;
1462  ;; Define Oak enumerator.
1463  ;;
1464  !5 = metadata !{i32 786472, metadata !"Oak", i64 200}
1465
1466  ;;
1467  ;; Define Maple enumerator.
1468  ;;
1469  !6 = metadata !{i32 786472, metadata !"Maple", i64 300}
1470
1471Debugging information format
1472============================
1473
1474Debugging Information Extension for Objective C Properties
1475----------------------------------------------------------
1476
1477Introduction
1478^^^^^^^^^^^^
1479
1480Objective C provides a simpler way to declare and define accessor methods using
1481declared properties.  The language provides features to declare a property and
1482to let compiler synthesize accessor methods.
1483
1484The debugger lets developer inspect Objective C interfaces and their instance
1485variables and class variables.  However, the debugger does not know anything
1486about the properties defined in Objective C interfaces.  The debugger consumes
1487information generated by compiler in DWARF format.  The format does not support
1488encoding of Objective C properties.  This proposal describes DWARF extensions to
1489encode Objective C properties, which the debugger can use to let developers
1490inspect Objective C properties.
1491
1492Proposal
1493^^^^^^^^
1494
1495Objective C properties exist separately from class members.  A property can be
1496defined only by "setter" and "getter" selectors, and be calculated anew on each
1497access.  Or a property can just be a direct access to some declared ivar.
1498Finally it can have an ivar "automatically synthesized" for it by the compiler,
1499in which case the property can be referred to in user code directly using the
1500standard C dereference syntax as well as through the property "dot" syntax, but
1501there is no entry in the ``@interface`` declaration corresponding to this ivar.
1502
1503To facilitate debugging, these properties we will add a new DWARF TAG into the
1504``DW_TAG_structure_type`` definition for the class to hold the description of a
1505given property, and a set of DWARF attributes that provide said description.
1506The property tag will also contain the name and declared type of the property.
1507
1508If there is a related ivar, there will also be a DWARF property attribute placed
1509in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1510for that property.  And in the case where the compiler synthesizes the ivar
1511directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1512ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1513to access this ivar directly in code, and with the property attribute pointing
1514back to the property it is backing.
1515
1516The following examples will serve as illustration for our discussion:
1517
1518.. code-block:: objc
1519
1520  @interface I1 {
1521    int n2;
1522  }
1523
1524  @property int p1;
1525  @property int p2;
1526  @end
1527
1528  @implementation I1
1529  @synthesize p1;
1530  @synthesize p2 = n2;
1531  @end
1532
1533This produces the following DWARF (this is a "pseudo dwarfdump" output):
1534
1535.. code-block:: none
1536
1537  0x00000100:  TAG_structure_type [7] *
1538                 AT_APPLE_runtime_class( 0x10 )
1539                 AT_name( "I1" )
1540                 AT_decl_file( "Objc_Property.m" )
1541                 AT_decl_line( 3 )
1542
1543  0x00000110    TAG_APPLE_property
1544                  AT_name ( "p1" )
1545                  AT_type ( {0x00000150} ( int ) )
1546
1547  0x00000120:   TAG_APPLE_property
1548                  AT_name ( "p2" )
1549                  AT_type ( {0x00000150} ( int ) )
1550
1551  0x00000130:   TAG_member [8]
1552                  AT_name( "_p1" )
1553                  AT_APPLE_property ( {0x00000110} "p1" )
1554                  AT_type( {0x00000150} ( int ) )
1555                  AT_artificial ( 0x1 )
1556
1557  0x00000140:    TAG_member [8]
1558                   AT_name( "n2" )
1559                   AT_APPLE_property ( {0x00000120} "p2" )
1560                   AT_type( {0x00000150} ( int ) )
1561
1562  0x00000150:  AT_type( ( int ) )
1563
1564Note, the current convention is that the name of the ivar for an
1565auto-synthesized property is the name of the property from which it derives
1566with an underscore prepended, as is shown in the example.  But we actually
1567don't need to know this convention, since we are given the name of the ivar
1568directly.
1569
1570Also, it is common practice in ObjC to have different property declarations in
1571the @interface and @implementation - e.g. to provide a read-only property in
1572the interface,and a read-write interface in the implementation.  In that case,
1573the compiler should emit whichever property declaration will be in force in the
1574current translation unit.
1575
1576Developers can decorate a property with attributes which are encoded using
1577``DW_AT_APPLE_property_attribute``.
1578
1579.. code-block:: objc
1580
1581  @property (readonly, nonatomic) int pr;
1582
1583.. code-block:: none
1584
1585  TAG_APPLE_property [8]
1586    AT_name( "pr" )
1587    AT_type ( {0x00000147} (int) )
1588    AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1589
1590The setter and getter method names are attached to the property using
1591``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1592
1593.. code-block:: objc
1594
1595  @interface I1
1596  @property (setter=myOwnP3Setter:) int p3;
1597  -(void)myOwnP3Setter:(int)a;
1598  @end
1599
1600  @implementation I1
1601  @synthesize p3;
1602  -(void)myOwnP3Setter:(int)a{ }
1603  @end
1604
1605The DWARF for this would be:
1606
1607.. code-block:: none
1608
1609  0x000003bd: TAG_structure_type [7] *
1610                AT_APPLE_runtime_class( 0x10 )
1611                AT_name( "I1" )
1612                AT_decl_file( "Objc_Property.m" )
1613                AT_decl_line( 3 )
1614
1615  0x000003cd      TAG_APPLE_property
1616                    AT_name ( "p3" )
1617                    AT_APPLE_property_setter ( "myOwnP3Setter:" )
1618                    AT_type( {0x00000147} ( int ) )
1619
1620  0x000003f3:     TAG_member [8]
1621                    AT_name( "_p3" )
1622                    AT_type ( {0x00000147} ( int ) )
1623                    AT_APPLE_property ( {0x000003cd} )
1624                    AT_artificial ( 0x1 )
1625
1626New DWARF Tags
1627^^^^^^^^^^^^^^
1628
1629+-----------------------+--------+
1630| TAG                   | Value  |
1631+=======================+========+
1632| DW_TAG_APPLE_property | 0x4200 |
1633+-----------------------+--------+
1634
1635New DWARF Attributes
1636^^^^^^^^^^^^^^^^^^^^
1637
1638+--------------------------------+--------+-----------+
1639| Attribute                      | Value  | Classes   |
1640+================================+========+===========+
1641| DW_AT_APPLE_property           | 0x3fed | Reference |
1642+--------------------------------+--------+-----------+
1643| DW_AT_APPLE_property_getter    | 0x3fe9 | String    |
1644+--------------------------------+--------+-----------+
1645| DW_AT_APPLE_property_setter    | 0x3fea | String    |
1646+--------------------------------+--------+-----------+
1647| DW_AT_APPLE_property_attribute | 0x3feb | Constant  |
1648+--------------------------------+--------+-----------+
1649
1650New DWARF Constants
1651^^^^^^^^^^^^^^^^^^^
1652
1653+--------------------------------+-------+
1654| Name                           | Value |
1655+================================+=======+
1656| DW_AT_APPLE_PROPERTY_readonly  | 0x1   |
1657+--------------------------------+-------+
1658| DW_AT_APPLE_PROPERTY_readwrite | 0x2   |
1659+--------------------------------+-------+
1660| DW_AT_APPLE_PROPERTY_assign    | 0x4   |
1661+--------------------------------+-------+
1662| DW_AT_APPLE_PROPERTY_retain    | 0x8   |
1663+--------------------------------+-------+
1664| DW_AT_APPLE_PROPERTY_copy      | 0x10  |
1665+--------------------------------+-------+
1666| DW_AT_APPLE_PROPERTY_nonatomic | 0x20  |
1667+--------------------------------+-------+
1668
1669Name Accelerator Tables
1670-----------------------
1671
1672Introduction
1673^^^^^^^^^^^^
1674
1675The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1676debugger needs.  The "``pub``" in the section name indicates that the entries
1677in the table are publicly visible names only.  This means no static or hidden
1678functions show up in the "``.debug_pubnames``".  No static variables or private
1679class variables are in the "``.debug_pubtypes``".  Many compilers add different
1680things to these tables, so we can't rely upon the contents between gcc, icc, or
1681clang.
1682
1683The typical query given by users tends not to match up with the contents of
1684these tables.  For example, the DWARF spec states that "In the case of the name
1685of a function member or static data member of a C++ structure, class or union,
1686the name presented in the "``.debug_pubnames``" section is not the simple name
1687given by the ``DW_AT_name attribute`` of the referenced debugging information
1688entry, but rather the fully qualified name of the data or function member."
1689So the only names in these tables for complex C++ entries is a fully
1690qualified name.  Debugger users tend not to enter their search strings as
1691"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1692"``a::b::c``".  So the name entered in the name table must be demangled in
1693order to chop it up appropriately and additional names must be manually entered
1694into the table to make it effective as a name lookup table for debuggers to
1695se.
1696
1697All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1698its inconsistent and useless public-only name content making it a waste of
1699space in the object file.  These tables, when they are written to disk, are not
1700sorted in any way, leaving every debugger to do its own parsing and sorting.
1701These tables also include an inlined copy of the string values in the table
1702itself making the tables much larger than they need to be on disk, especially
1703for large C++ programs.
1704
1705Can't we just fix the sections by adding all of the names we need to this
1706table? No, because that is not what the tables are defined to contain and we
1707won't know the difference between the old bad tables and the new good tables.
1708At best we could make our own renamed sections that contain all of the data we
1709need.
1710
1711These tables are also insufficient for what a debugger like LLDB needs.  LLDB
1712uses clang for its expression parsing where LLDB acts as a PCH.  LLDB is then
1713often asked to look for type "``foo``" or namespace "``bar``", or list items in
1714namespace "``baz``".  Namespaces are not included in the pubnames or pubtypes
1715tables.  Since clang asks a lot of questions when it is parsing an expression,
1716we need to be very fast when looking up names, as it happens a lot.  Having new
1717accelerator tables that are optimized for very quick lookups will benefit this
1718type of debugging experience greatly.
1719
1720We would like to generate name lookup tables that can be mapped into memory
1721from disk, and used as is, with little or no up-front parsing.  We would also
1722be able to control the exact content of these different tables so they contain
1723exactly what we need.  The Name Accelerator Tables were designed to fix these
1724issues.  In order to solve these issues we need to:
1725
1726* Have a format that can be mapped into memory from disk and used as is
1727* Lookups should be very fast
1728* Extensible table format so these tables can be made by many producers
1729* Contain all of the names needed for typical lookups out of the box
1730* Strict rules for the contents of tables
1731
1732Table size is important and the accelerator table format should allow the reuse
1733of strings from common string tables so the strings for the names are not
1734duplicated.  We also want to make sure the table is ready to be used as-is by
1735simply mapping the table into memory with minimal header parsing.
1736
1737The name lookups need to be fast and optimized for the kinds of lookups that
1738debuggers tend to do.  Optimally we would like to touch as few parts of the
1739mapped table as possible when doing a name lookup and be able to quickly find
1740the name entry we are looking for, or discover there are no matches.  In the
1741case of debuggers we optimized for lookups that fail most of the time.
1742
1743Each table that is defined should have strict rules on exactly what is in the
1744accelerator tables and documented so clients can rely on the content.
1745
1746Hash Tables
1747^^^^^^^^^^^
1748
1749Standard Hash Tables
1750""""""""""""""""""""
1751
1752Typical hash tables have a header, buckets, and each bucket points to the
1753bucket contents:
1754
1755.. code-block:: none
1756
1757  .------------.
1758  |  HEADER    |
1759  |------------|
1760  |  BUCKETS   |
1761  |------------|
1762  |  DATA      |
1763  `------------'
1764
1765The BUCKETS are an array of offsets to DATA for each hash:
1766
1767.. code-block:: none
1768
1769  .------------.
1770  | 0x00001000 | BUCKETS[0]
1771  | 0x00002000 | BUCKETS[1]
1772  | 0x00002200 | BUCKETS[2]
1773  | 0x000034f0 | BUCKETS[3]
1774  |            | ...
1775  | 0xXXXXXXXX | BUCKETS[n_buckets]
1776  '------------'
1777
1778So for ``bucket[3]`` in the example above, we have an offset into the table
17790x000034f0 which points to a chain of entries for the bucket.  Each bucket must
1780contain a next pointer, full 32 bit hash value, the string itself, and the data
1781for the current string value.
1782
1783.. code-block:: none
1784
1785              .------------.
1786  0x000034f0: | 0x00003500 | next pointer
1787              | 0x12345678 | 32 bit hash
1788              | "erase"    | string value
1789              | data[n]    | HashData for this bucket
1790              |------------|
1791  0x00003500: | 0x00003550 | next pointer
1792              | 0x29273623 | 32 bit hash
1793              | "dump"     | string value
1794              | data[n]    | HashData for this bucket
1795              |------------|
1796  0x00003550: | 0x00000000 | next pointer
1797              | 0x82638293 | 32 bit hash
1798              | "main"     | string value
1799              | data[n]    | HashData for this bucket
1800              `------------'
1801
1802The problem with this layout for debuggers is that we need to optimize for the
1803negative lookup case where the symbol we're searching for is not present.  So
1804if we were to lookup "``printf``" in the table above, we would make a 32 hash
1805for "``printf``", it might match ``bucket[3]``.  We would need to go to the
1806offset 0x000034f0 and start looking to see if our 32 bit hash matches.  To do
1807so, we need to read the next pointer, then read the hash, compare it, and skip
1808to the next bucket.  Each time we are skipping many bytes in memory and
1809touching new cache pages just to do the compare on the full 32 bit hash.  All
1810of these accesses then tell us that we didn't have a match.
1811
1812Name Hash Tables
1813""""""""""""""""
1814
1815To solve the issues mentioned above we have structured the hash tables a bit
1816differently: a header, buckets, an array of all unique 32 bit hash values,
1817followed by an array of hash value data offsets, one for each hash value, then
1818the data for all hash values:
1819
1820.. code-block:: none
1821
1822  .-------------.
1823  |  HEADER     |
1824  |-------------|
1825  |  BUCKETS    |
1826  |-------------|
1827  |  HASHES     |
1828  |-------------|
1829  |  OFFSETS    |
1830  |-------------|
1831  |  DATA       |
1832  `-------------'
1833
1834The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array.  By
1835making all of the full 32 bit hash values contiguous in memory, we allow
1836ourselves to efficiently check for a match while touching as little memory as
1837possible.  Most often checking the 32 bit hash values is as far as the lookup
1838goes.  If it does match, it usually is a match with no collisions.  So for a
1839table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1840values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1841``OFFSETS`` as:
1842
1843.. code-block:: none
1844
1845  .-------------------------.
1846  |  HEADER.magic           | uint32_t
1847  |  HEADER.version         | uint16_t
1848  |  HEADER.hash_function   | uint16_t
1849  |  HEADER.bucket_count    | uint32_t
1850  |  HEADER.hashes_count    | uint32_t
1851  |  HEADER.header_data_len | uint32_t
1852  |  HEADER_DATA            | HeaderData
1853  |-------------------------|
1854  |  BUCKETS                | uint32_t[n_buckets] // 32 bit hash indexes
1855  |-------------------------|
1856  |  HASHES                 | uint32_t[n_hashes] // 32 bit hash values
1857  |-------------------------|
1858  |  OFFSETS                | uint32_t[n_hashes] // 32 bit offsets to hash value data
1859  |-------------------------|
1860  |  ALL HASH DATA          |
1861  `-------------------------'
1862
1863So taking the exact same data from the standard hash example above we end up
1864with:
1865
1866.. code-block:: none
1867
1868              .------------.
1869              | HEADER     |
1870              |------------|
1871              |          0 | BUCKETS[0]
1872              |          2 | BUCKETS[1]
1873              |          5 | BUCKETS[2]
1874              |          6 | BUCKETS[3]
1875              |            | ...
1876              |        ... | BUCKETS[n_buckets]
1877              |------------|
1878              | 0x........ | HASHES[0]
1879              | 0x........ | HASHES[1]
1880              | 0x........ | HASHES[2]
1881              | 0x........ | HASHES[3]
1882              | 0x........ | HASHES[4]
1883              | 0x........ | HASHES[5]
1884              | 0x12345678 | HASHES[6]    hash for BUCKETS[3]
1885              | 0x29273623 | HASHES[7]    hash for BUCKETS[3]
1886              | 0x82638293 | HASHES[8]    hash for BUCKETS[3]
1887              | 0x........ | HASHES[9]
1888              | 0x........ | HASHES[10]
1889              | 0x........ | HASHES[11]
1890              | 0x........ | HASHES[12]
1891              | 0x........ | HASHES[13]
1892              | 0x........ | HASHES[n_hashes]
1893              |------------|
1894              | 0x........ | OFFSETS[0]
1895              | 0x........ | OFFSETS[1]
1896              | 0x........ | OFFSETS[2]
1897              | 0x........ | OFFSETS[3]
1898              | 0x........ | OFFSETS[4]
1899              | 0x........ | OFFSETS[5]
1900              | 0x000034f0 | OFFSETS[6]   offset for BUCKETS[3]
1901              | 0x00003500 | OFFSETS[7]   offset for BUCKETS[3]
1902              | 0x00003550 | OFFSETS[8]   offset for BUCKETS[3]
1903              | 0x........ | OFFSETS[9]
1904              | 0x........ | OFFSETS[10]
1905              | 0x........ | OFFSETS[11]
1906              | 0x........ | OFFSETS[12]
1907              | 0x........ | OFFSETS[13]
1908              | 0x........ | OFFSETS[n_hashes]
1909              |------------|
1910              |            |
1911              |            |
1912              |            |
1913              |            |
1914              |            |
1915              |------------|
1916  0x000034f0: | 0x00001203 | .debug_str ("erase")
1917              | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1918              | 0x........ | HashData[0]
1919              | 0x........ | HashData[1]
1920              | 0x........ | HashData[2]
1921              | 0x........ | HashData[3]
1922              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1923              |------------|
1924  0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1925              | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1926              | 0x........ | HashData[0]
1927              | 0x........ | HashData[1]
1928              | 0x00001203 | String offset into .debug_str ("dump")
1929              | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1930              | 0x........ | HashData[0]
1931              | 0x........ | HashData[1]
1932              | 0x........ | HashData[2]
1933              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1934              |------------|
1935  0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1936              | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1937              | 0x........ | HashData[0]
1938              | 0x........ | HashData[1]
1939              | 0x........ | HashData[2]
1940              | 0x........ | HashData[3]
1941              | 0x........ | HashData[4]
1942              | 0x........ | HashData[5]
1943              | 0x........ | HashData[6]
1944              | 0x........ | HashData[7]
1945              | 0x........ | HashData[8]
1946              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1947              `------------'
1948
1949So we still have all of the same data, we just organize it more efficiently for
1950debugger lookup.  If we repeat the same "``printf``" lookup from above, we
1951would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1952hash value and modulo it by ``n_buckets``.  ``BUCKETS[3]`` contains "6" which
1953is the index into the ``HASHES`` table.  We would then compare any consecutive
195432 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1955``BUCKETS[3]``.  We do this by verifying that each subsequent hash value modulo
1956``n_buckets`` is still 3.  In the case of a failed lookup we would access the
1957memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1958before we know that we have no match.  We don't end up marching through
1959multiple words of memory and we really keep the number of processor data cache
1960lines being accessed as small as possible.
1961
1962The string hash that is used for these lookup tables is the Daniel J.
1963Bernstein hash which is also used in the ELF ``GNU_HASH`` sections.  It is a
1964very good hash for all kinds of names in programs with very few hash
1965collisions.
1966
1967Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1968
1969Details
1970^^^^^^^
1971
1972These name hash tables are designed to be generic where specializations of the
1973table get to define additional data that goes into the header ("``HeaderData``"),
1974how the string value is stored ("``KeyType``") and the content of the data for each
1975hash value.
1976
1977Header Layout
1978"""""""""""""
1979
1980The header has a fixed part, and the specialized part.  The exact format of the
1981header is:
1982
1983.. code-block:: c
1984
1985  struct Header
1986  {
1987    uint32_t   magic;           // 'HASH' magic value to allow endian detection
1988    uint16_t   version;         // Version number
1989    uint16_t   hash_function;   // The hash function enumeration that was used
1990    uint32_t   bucket_count;    // The number of buckets in this hash table
1991    uint32_t   hashes_count;    // The total number of unique hash values and hash data offsets in this table
1992    uint32_t   header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1993                                // Specifically the length of the following HeaderData field - this does not
1994                                // include the size of the preceding fields
1995    HeaderData header_data;     // Implementation specific header data
1996  };
1997
1998The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1999encoded as an ASCII integer.  This allows the detection of the start of the
2000hash table and also allows the table's byte order to be determined so the table
2001can be correctly extracted.  The "``magic``" value is followed by a 16 bit
2002``version`` number which allows the table to be revised and modified in the
2003future.  The current version number is 1. ``hash_function`` is a ``uint16_t``
2004enumeration that specifies which hash function was used to produce this table.
2005The current values for the hash function enumerations include:
2006
2007.. code-block:: c
2008
2009  enum HashFunctionType
2010  {
2011    eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
2012  };
2013
2014``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
2015are in the ``BUCKETS`` array.  ``hashes_count`` is the number of unique 32 bit
2016hash values that are in the ``HASHES`` array, and is the same number of offsets
2017are contained in the ``OFFSETS`` array.  ``header_data_len`` specifies the size
2018in bytes of the ``HeaderData`` that is filled in by specialized versions of
2019this table.
2020
2021Fixed Lookup
2022""""""""""""
2023
2024The header is followed by the buckets, hashes, offsets, and hash value data.
2025
2026.. code-block:: c
2027
2028  struct FixedTable
2029  {
2030    uint32_t buckets[Header.bucket_count];  // An array of hash indexes into the "hashes[]" array below
2031    uint32_t hashes [Header.hashes_count];  // Every unique 32 bit hash for the entire table is in this table
2032    uint32_t offsets[Header.hashes_count];  // An offset that corresponds to each item in the "hashes[]" array above
2033  };
2034
2035``buckets`` is an array of 32 bit indexes into the ``hashes`` array.  The
2036``hashes`` array contains all of the 32 bit hash values for all names in the
2037hash table.  Each hash in the ``hashes`` table has an offset in the ``offsets``
2038array that points to the data for the hash value.
2039
2040This table setup makes it very easy to repurpose these tables to contain
2041different data, while keeping the lookup mechanism the same for all tables.
2042This layout also makes it possible to save the table to disk and map it in
2043later and do very efficient name lookups with little or no parsing.
2044
2045DWARF lookup tables can be implemented in a variety of ways and can store a lot
2046of information for each name.  We want to make the DWARF tables extensible and
2047able to store the data efficiently so we have used some of the DWARF features
2048that enable efficient data storage to define exactly what kind of data we store
2049for each name.
2050
2051The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2052We might want to store an offset to all of the debug information entries (DIEs)
2053for each name.  To keep things extensible, we create a list of items, or
2054Atoms, that are contained in the data for each name.  First comes the type of
2055the data in each atom:
2056
2057.. code-block:: c
2058
2059  enum AtomType
2060  {
2061    eAtomTypeNULL       = 0u,
2062    eAtomTypeDIEOffset  = 1u,   // DIE offset, check form for encoding
2063    eAtomTypeCUOffset   = 2u,   // DIE offset of the compiler unit header that contains the item in question
2064    eAtomTypeTag        = 3u,   // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2065    eAtomTypeNameFlags  = 4u,   // Flags from enum NameFlags
2066    eAtomTypeTypeFlags  = 5u,   // Flags from enum TypeFlags
2067  };
2068
2069The enumeration values and their meanings are:
2070
2071.. code-block:: none
2072
2073  eAtomTypeNULL       - a termination atom that specifies the end of the atom list
2074  eAtomTypeDIEOffset  - an offset into the .debug_info section for the DWARF DIE for this name
2075  eAtomTypeCUOffset   - an offset into the .debug_info section for the CU that contains the DIE
2076  eAtomTypeDIETag     - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2077  eAtomTypeNameFlags  - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2078  eAtomTypeTypeFlags  - Flags for types (isCXXClass, isObjCClass, ...)
2079
2080Then we allow each atom type to define the atom type and how the data for each
2081atom type data is encoded:
2082
2083.. code-block:: c
2084
2085  struct Atom
2086  {
2087    uint16_t type;  // AtomType enum value
2088    uint16_t form;  // DWARF DW_FORM_XXX defines
2089  };
2090
2091The ``form`` type above is from the DWARF specification and defines the exact
2092encoding of the data for the Atom type.  See the DWARF specification for the
2093``DW_FORM_`` definitions.
2094
2095.. code-block:: c
2096
2097  struct HeaderData
2098  {
2099    uint32_t die_offset_base;
2100    uint32_t atom_count;
2101    Atoms    atoms[atom_count0];
2102  };
2103
2104``HeaderData`` defines the base DIE offset that should be added to any atoms
2105that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2106``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``.  It also defines
2107what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2108each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2109should be interpreted.
2110
2111For the current implementations of the "``.apple_names``" (all functions +
2112globals), the "``.apple_types``" (names of all types that are defined), and
2113the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2114array to be:
2115
2116.. code-block:: c
2117
2118  HeaderData.atom_count = 1;
2119  HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2120  HeaderData.atoms[0].form = DW_FORM_data4;
2121
2122This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
2123encoded as a 32 bit value (DW_FORM_data4).  This allows a single name to have
2124multiple matching DIEs in a single file, which could come up with an inlined
2125function for instance.  Future tables could include more information about the
2126DIE such as flags indicating if the DIE is a function, method, block,
2127or inlined.
2128
2129The KeyType for the DWARF table is a 32 bit string table offset into the
2130".debug_str" table.  The ".debug_str" is the string table for the DWARF which
2131may already contain copies of all of the strings.  This helps make sure, with
2132help from the compiler, that we reuse the strings between all of the DWARF
2133sections and keeps the hash table size down.  Another benefit to having the
2134compiler generate all strings as DW_FORM_strp in the debug info, is that
2135DWARF parsing can be made much faster.
2136
2137After a lookup is made, we get an offset into the hash data.  The hash data
2138needs to be able to deal with 32 bit hash collisions, so the chunk of data
2139at the offset in the hash data consists of a triple:
2140
2141.. code-block:: c
2142
2143  uint32_t str_offset
2144  uint32_t hash_data_count
2145  HashData[hash_data_count]
2146
2147If "str_offset" is zero, then the bucket contents are done. 99.9% of the
2148hash data chunks contain a single item (no 32 bit hash collision):
2149
2150.. code-block:: none
2151
2152  .------------.
2153  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2154  | 0x00000004 | uint32_t HashData count
2155  | 0x........ | uint32_t HashData[0] DIE offset
2156  | 0x........ | uint32_t HashData[1] DIE offset
2157  | 0x........ | uint32_t HashData[2] DIE offset
2158  | 0x........ | uint32_t HashData[3] DIE offset
2159  | 0x00000000 | uint32_t KeyType (end of hash chain)
2160  `------------'
2161
2162If there are collisions, you will have multiple valid string offsets:
2163
2164.. code-block:: none
2165
2166  .------------.
2167  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2168  | 0x00000004 | uint32_t HashData count
2169  | 0x........ | uint32_t HashData[0] DIE offset
2170  | 0x........ | uint32_t HashData[1] DIE offset
2171  | 0x........ | uint32_t HashData[2] DIE offset
2172  | 0x........ | uint32_t HashData[3] DIE offset
2173  | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2174  | 0x00000002 | uint32_t HashData count
2175  | 0x........ | uint32_t HashData[0] DIE offset
2176  | 0x........ | uint32_t HashData[1] DIE offset
2177  | 0x00000000 | uint32_t KeyType (end of hash chain)
2178  `------------'
2179
2180Current testing with real world C++ binaries has shown that there is around 1
218132 bit hash collision per 100,000 name entries.
2182
2183Contents
2184^^^^^^^^
2185
2186As we said, we want to strictly define exactly what is included in the
2187different tables.  For DWARF, we have 3 tables: "``.apple_names``",
2188"``.apple_types``", and "``.apple_namespaces``".
2189
2190"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2191``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2192``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2193``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``.  It also contains
2194``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2195static variables).  All global and static variables should be included,
2196including those scoped within functions and classes.  For example using the
2197following code:
2198
2199.. code-block:: c
2200
2201  static int var = 0;
2202
2203  void f ()
2204  {
2205    static int var = 0;
2206  }
2207
2208Both of the static ``var`` variables would be included in the table.  All
2209functions should emit both their full names and their basenames.  For C or C++,
2210the full name is the mangled name (if available) which is usually in the
2211``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2212function basename.  If global or static variables have a mangled name in a
2213``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2214simple name found in the ``DW_AT_name`` attribute.
2215
2216"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2217tag is one of:
2218
2219* DW_TAG_array_type
2220* DW_TAG_class_type
2221* DW_TAG_enumeration_type
2222* DW_TAG_pointer_type
2223* DW_TAG_reference_type
2224* DW_TAG_string_type
2225* DW_TAG_structure_type
2226* DW_TAG_subroutine_type
2227* DW_TAG_typedef
2228* DW_TAG_union_type
2229* DW_TAG_ptr_to_member_type
2230* DW_TAG_set_type
2231* DW_TAG_subrange_type
2232* DW_TAG_base_type
2233* DW_TAG_const_type
2234* DW_TAG_constant
2235* DW_TAG_file_type
2236* DW_TAG_namelist
2237* DW_TAG_packed_type
2238* DW_TAG_volatile_type
2239* DW_TAG_restrict_type
2240* DW_TAG_interface_type
2241* DW_TAG_unspecified_type
2242* DW_TAG_shared_type
2243
2244Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2245not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2246value).  For example, using the following code:
2247
2248.. code-block:: c
2249
2250  int main ()
2251  {
2252    int *b = 0;
2253    return *b;
2254  }
2255
2256We get a few type DIEs:
2257
2258.. code-block:: none
2259
2260  0x00000067:     TAG_base_type [5]
2261                  AT_encoding( DW_ATE_signed )
2262                  AT_name( "int" )
2263                  AT_byte_size( 0x04 )
2264
2265  0x0000006e:     TAG_pointer_type [6]
2266                  AT_type( {0x00000067} ( int ) )
2267                  AT_byte_size( 0x08 )
2268
2269The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2270
2271"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2272If we run into a namespace that has no name this is an anonymous namespace, and
2273the name should be output as "``(anonymous namespace)``" (without the quotes).
2274Why?  This matches the output of the ``abi::cxa_demangle()`` that is in the
2275standard C++ library that demangles mangled names.
2276
2277
2278Language Extensions and File Format Changes
2279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2280
2281Objective-C Extensions
2282""""""""""""""""""""""
2283
2284"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2285Objective-C class.  The name used in the hash table is the name of the
2286Objective-C class itself.  If the Objective-C class has a category, then an
2287entry is made for both the class name without the category, and for the class
2288name with the category.  So if we have a DIE at offset 0x1234 with a name of
2289method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2290an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2291"``NSString(my_additions)``" that points to 0x1234.  This allows us to quickly
2292track down all Objective-C methods for an Objective-C class when doing
2293expressions.  It is needed because of the dynamic nature of Objective-C where
2294anyone can add methods to a class.  The DWARF for Objective-C methods is also
2295emitted differently from C++ classes where the methods are not usually
2296contained in the class definition, they are scattered about across one or more
2297compile units.  Categories can also be defined in different shared libraries.
2298So we need to be able to quickly find all of the methods and class functions
2299given the Objective-C class name, or quickly find all methods and class
2300functions for a class + category name.  This table does not contain any
2301selector names, it just maps Objective-C class names (or class names +
2302category) to all of the methods and class functions.  The selectors are added
2303as function basenames in the "``.debug_names``" section.
2304
2305In the "``.apple_names``" section for Objective-C functions, the full name is
2306the entire function name with the brackets ("``-[NSString
2307stringWithCString:]``") and the basename is the selector only
2308("``stringWithCString:``").
2309
2310Mach-O Changes
2311""""""""""""""
2312
2313The sections names for the apple hash tables are for non-mach-o files.  For
2314mach-o files, the sections should be contained in the ``__DWARF`` segment with
2315names as follows:
2316
2317* "``.apple_names``" -> "``__apple_names``"
2318* "``.apple_types``" -> "``__apple_types``"
2319* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2320* "``.apple_objc``" -> "``__apple_objc``"
2321
2322