1================================ 2Source Level Debugging with LLVM 3================================ 4 5.. contents:: 6 :local: 7 8Introduction 9============ 10 11This document is the central repository for all information pertaining to debug 12information in LLVM. It describes the :ref:`actual format that the LLVM debug 13information takes <format>`, which is useful for those interested in creating 14front-ends or dealing directly with the information. Further, this document 15provides specific examples of what debug information for C/C++ looks like. 16 17Philosophy behind LLVM debugging information 18-------------------------------------------- 19 20The idea of the LLVM debugging information is to capture how the important 21pieces of the source-language's Abstract Syntax Tree map onto LLVM code. 22Several design aspects have shaped the solution that appears here. The 23important ones are: 24 25* Debugging information should have very little impact on the rest of the 26 compiler. No transformations, analyses, or code generators should need to 27 be modified because of debugging information. 28 29* LLVM optimizations should interact in :ref:`well-defined and easily described 30 ways <intro_debugopt>` with the debugging information. 31 32* Because LLVM is designed to support arbitrary programming languages, 33 LLVM-to-LLVM tools should not need to know anything about the semantics of 34 the source-level-language. 35 36* Source-level languages are often **widely** different from one another. 37 LLVM should not put any restrictions of the flavor of the source-language, 38 and the debugging information should work with any language. 39 40* With code generator support, it should be possible to use an LLVM compiler 41 to compile a program to native machine code and standard debugging 42 formats. This allows compatibility with traditional machine-code level 43 debuggers, like GDB or DBX. 44 45The approach used by the LLVM implementation is to use a small set of 46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping 47between LLVM program objects and the source-level objects. The description of 48the source-level program is maintained in LLVM metadata in an 49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end 50currently uses working draft 7 of the `DWARF 3 standard 51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_). 52 53When a program is being debugged, a debugger interacts with the user and turns 54the stored debug information into source-language specific information. As 55such, a debugger must be aware of the source-language, and is thus tied to a 56specific language or family of languages. 57 58Debug information consumers 59--------------------------- 60 61The role of debug information is to provide meta information normally stripped 62away during the compilation process. This meta information provides an LLVM 63user a relationship between generated code and the original program source 64code. 65 66Currently, debug information is consumed by DwarfDebug to produce dwarf 67information used by the gdb debugger. Other targets could use the same 68information to produce stabs or other debug forms. 69 70It would also be reasonable to use debug information to feed profiling tools 71for analysis of generated code, or, tools for reconstructing the original 72source from generated code. 73 74TODO - expound a bit more. 75 76.. _intro_debugopt: 77 78Debugging optimized code 79------------------------ 80 81An extremely high priority of LLVM debugging information is to make it interact 82well with optimizations and analysis. In particular, the LLVM debug 83information provides the following guarantees: 84 85* LLVM debug information **always provides information to accurately read 86 the source-level state of the program**, regardless of which LLVM 87 optimizations have been run, and without any modification to the 88 optimizations themselves. However, some optimizations may impact the 89 ability to modify the current state of the program with a debugger, such 90 as setting program variables, or calling functions that have been 91 deleted. 92 93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM 94 debugging information, allowing them to update the debugging information 95 as they perform aggressive optimizations. This means that, with effort, 96 the LLVM optimizers could optimize debug code just as well as non-debug 97 code. 98 99* LLVM debug information does not prevent optimizations from 100 happening (for example inlining, basic block reordering/merging/cleanup, 101 tail duplication, etc). 102 103* LLVM debug information is automatically optimized along with the rest of 104 the program, using existing facilities. For example, duplicate 105 information is automatically merged by the linker, and unused information 106 is automatically removed. 107 108Basically, the debug information allows you to compile a program with 109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify 110the program as it executes from a debugger. Compiling a program with 111"``-O3 -g``" gives you full debug information that is always available and 112accurate for reading (e.g., you get accurate stack traces despite tail call 113elimination and inlining), but you might lose the ability to modify the program 114and call functions where were optimized out of the program, or inlined away 115completely. 116 117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test 118optimizer's handling of debugging information. It can be run like this: 119 120.. code-block:: bash 121 122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level 123 % make TEST=dbgopt 124 125This will test impact of debugging information on optimization passes. If 126debugging information influences optimization passes then it will be reported 127as a failure. See :doc:`TestingGuide` for more information on LLVM test 128infrastructure and how to run various tests. 129 130.. _format: 131 132Debugging information format 133============================ 134 135LLVM debugging information has been carefully designed to make it possible for 136the optimizer to optimize the program and debugging information without 137necessarily having to know anything about debugging information. In 138particular, the use of metadata avoids duplicated debugging information from 139the beginning, and the global dead code elimination pass automatically deletes 140debugging information for a function if it decides to delete the function. 141 142To do this, most of the debugging information (descriptors for types, 143variables, functions, source files, etc) is inserted by the language front-end 144in the form of LLVM metadata. 145 146Debug information is designed to be agnostic about the target debugger and 147debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic 148pass to decode the information that represents variables, types, functions, 149namespaces, etc: this allows for arbitrary source-language semantics and 150type-systems to be used, as long as there is a module written for the target 151debugger to interpret the information. 152 153To provide basic functionality, the LLVM debugger does have to make some 154assumptions about the source-level language being debugged, though it keeps 155these to a minimum. The only common features that the LLVM debugger assumes 156exist are :ref:`source files <format_files>`, and :ref:`program objects 157<format_global_variables>`. These abstract objects are used by a debugger to 158form stack traces, show information about local variables, etc. 159 160This section of the documentation first describes the representation aspects 161common to any source-language. :ref:`ccxx_frontend` describes the data layout 162conventions used by the C and C++ front-ends. 163 164Debug information descriptors 165----------------------------- 166 167In consideration of the complexity and volume of debug information, LLVM 168provides a specification for well formed debug descriptors. 169 170Consumers of LLVM debug information expect the descriptors for program objects 171to start in a canonical format, but the descriptors can include additional 172information appended at the end that is source-language specific. All debugging 173information objects start with a tag to indicate what type of object it is. 174The source-language is allowed to define its own objects, by using unreserved 175tag numbers. We recommend using with tags in the range 0x1000 through 0x2000 176(there is a defined ``enum DW_TAG_user_base = 0x1000``.) 177 178The fields of debug descriptors used internally by LLVM are restricted to only 179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and 180``mdnode``. 181 182.. code-block:: llvm 183 184 !1 = metadata !{ 185 i32, ;; A tag 186 ... 187 } 188 189<a name="LLVMDebugVersion">The first field of a descriptor is always an 190``i32`` containing a tag value identifying the content of the descriptor. 191The remaining fields are specific to the descriptor. The values of tags are 192loosely bound to the tag values of DWARF information entries. However, that 193does not restrict the use of the information supplied to DWARF targets. 194 195The details of the various descriptors follow. 196 197Compile unit descriptors 198^^^^^^^^^^^^^^^^^^^^^^^^ 199 200.. code-block:: llvm 201 202 !0 = metadata !{ 203 i32, ;; Tag = 17 (DW_TAG_compile_unit) 204 metadata, ;; Source directory (including trailing slash) & file pair 205 i32, ;; DWARF language identifier (ex. DW_LANG_C89) 206 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)") 207 i1, ;; True if this is optimized. 208 metadata, ;; Flags 209 i32 ;; Runtime version 210 metadata ;; List of enums types 211 metadata ;; List of retained types 212 metadata ;; List of subprograms 213 metadata ;; List of global variables 214 metadata ;; List of imported entities 215 metadata ;; Split debug filename 216 } 217 218These descriptors contain a source language ID for the file (we use the DWARF 2193.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``, 220``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of 221strings for the source file name and the working directory, as well as an 222identifier string for the compiler that produced it. 223 224Compile unit descriptors provide the root context for objects declared in a 225specific compilation unit. File descriptors are defined using this context. 226These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They 227keep track of subprograms, global variables, type information, and imported 228entities (declarations and namespaces). 229 230.. _format_files: 231 232File descriptors 233^^^^^^^^^^^^^^^^ 234 235.. code-block:: llvm 236 237 !0 = metadata !{ 238 i32, ;; Tag = 41 (DW_TAG_file_type) 239 metadata, ;; Source directory (including trailing slash) & file pair 240 } 241 242These descriptors contain information for a file. Global variables and top 243level functions would be defined using this context. File descriptors also 244provide context for source line correspondence. 245 246Each input file is encoded as a separate file descriptor in LLVM debugging 247information output. 248 249.. _format_global_variables: 250 251Global variable descriptors 252^^^^^^^^^^^^^^^^^^^^^^^^^^^ 253 254.. code-block:: llvm 255 256 !1 = metadata !{ 257 i32, ;; Tag = 52 (DW_TAG_variable) 258 i32, ;; Unused field. 259 metadata, ;; Reference to context descriptor 260 metadata, ;; Name 261 metadata, ;; Display name (fully qualified C++ name) 262 metadata, ;; MIPS linkage name (for C++) 263 metadata, ;; Reference to file where defined 264 i32, ;; Line number where defined 265 metadata, ;; Reference to type descriptor 266 i1, ;; True if the global is local to compile unit (static) 267 i1, ;; True if the global is defined in the compile unit (not extern) 268 {}*, ;; Reference to the global variable 269 metadata, ;; The static member declaration, if any 270 } 271 272These descriptors provide debug information about global variables. They 273provide details such as name, type and where the variable is defined. All 274global variables are collected inside the named metadata ``!llvm.dbg.cu``. 275 276.. _format_subprograms: 277 278Subprogram descriptors 279^^^^^^^^^^^^^^^^^^^^^^ 280 281.. code-block:: llvm 282 283 !2 = metadata !{ 284 i32, ;; Tag = 46 (DW_TAG_subprogram) 285 metadata, ;; Source directory (including trailing slash) & file pair 286 metadata, ;; Reference to context descriptor 287 metadata, ;; Name 288 metadata, ;; Display name (fully qualified C++ name) 289 metadata, ;; MIPS linkage name (for C++) 290 i32, ;; Line number where defined 291 metadata, ;; Reference to type descriptor 292 i1, ;; True if the global is local to compile unit (static) 293 i1, ;; True if the global is defined in the compile unit (not extern) 294 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual 295 i32, ;; Index into a virtual function 296 metadata, ;; indicates which base type contains the vtable pointer for the 297 ;; derived class 298 i32, ;; Flags - Artificial, Private, Protected, Explicit, Prototyped. 299 i1, ;; isOptimized 300 {}*, ;; Reference to the LLVM function 301 metadata, ;; Lists function template parameters 302 metadata, ;; Function declaration descriptor 303 metadata, ;; List of function variables 304 i32 ;; Line number where the scope of the subprogram begins 305 } 306 307These descriptors provide debug information about functions, methods and 308subprograms. They provide details such as name, return types and the source 309location where the subprogram is defined. 310 311Block descriptors 312^^^^^^^^^^^^^^^^^ 313 314.. code-block:: llvm 315 316 !3 = metadata !{ 317 i32, ;; Tag = 11 (DW_TAG_lexical_block) 318 metadata, ;; Source directory (including trailing slash) & file pair 319 metadata, ;; Reference to context descriptor 320 i32, ;; Line number 321 i32, ;; Column number 322 i32, ;; DWARF path discriminator value 323 i32 ;; Unique ID to identify blocks from a template function 324 } 325 326This descriptor provides debug information about nested blocks within a 327subprogram. The line number and column numbers are used to dinstinguish two 328lexical blocks at same depth. 329 330.. code-block:: llvm 331 332 !3 = metadata !{ 333 i32, ;; Tag = 11 (DW_TAG_lexical_block) 334 metadata, ;; Source directory (including trailing slash) & file pair 335 metadata ;; Reference to the scope we're annotating with a file change 336 } 337 338This descriptor provides a wrapper around a lexical scope to handle file 339changes in the middle of a lexical block. 340 341.. _format_basic_type: 342 343Basic type descriptors 344^^^^^^^^^^^^^^^^^^^^^^ 345 346.. code-block:: llvm 347 348 !4 = metadata !{ 349 i32, ;; Tag = 36 (DW_TAG_base_type) 350 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 351 metadata, ;; Reference to context 352 metadata, ;; Name (may be "" for anonymous types) 353 i32, ;; Line number where defined (may be 0) 354 i64, ;; Size in bits 355 i64, ;; Alignment in bits 356 i64, ;; Offset in bits 357 i32, ;; Flags 358 i32 ;; DWARF type encoding 359 } 360 361These descriptors define primitive types used in the code. Example ``int``, 362``bool`` and ``float``. The context provides the scope of the type, which is 363usually the top level. Since basic types are not usually user defined the 364context and line number can be left as NULL and 0. The size, alignment and 365offset are expressed in bits and can be 64 bit values. The alignment is used 366to round the offset when embedded in a :ref:`composite type 367<format_composite_type>` (example to keep float doubles on 64 bit boundaries). 368The offset is the bit offset if embedded in a :ref:`composite type 369<format_composite_type>`. 370 371The type encoding provides the details of the type. The values are typically 372one of the following: 373 374.. code-block:: llvm 375 376 DW_ATE_address = 1 377 DW_ATE_boolean = 2 378 DW_ATE_float = 4 379 DW_ATE_signed = 5 380 DW_ATE_signed_char = 6 381 DW_ATE_unsigned = 7 382 DW_ATE_unsigned_char = 8 383 384.. _format_derived_type: 385 386Derived type descriptors 387^^^^^^^^^^^^^^^^^^^^^^^^ 388 389.. code-block:: llvm 390 391 !5 = metadata !{ 392 i32, ;; Tag (see below) 393 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 394 metadata, ;; Reference to context 395 metadata, ;; Name (may be "" for anonymous types) 396 i32, ;; Line number where defined (may be 0) 397 i64, ;; Size in bits 398 i64, ;; Alignment in bits 399 i64, ;; Offset in bits 400 i32, ;; Flags to encode attributes, e.g. private 401 metadata, ;; Reference to type derived from 402 metadata, ;; (optional) Name of the Objective C property associated with 403 ;; Objective-C an ivar, or the type of which this 404 ;; pointer-to-member is pointing to members of. 405 metadata, ;; (optional) Name of the Objective C property getter selector. 406 metadata, ;; (optional) Name of the Objective C property setter selector. 407 i32 ;; (optional) Objective C property attributes. 408 } 409 410These descriptors are used to define types derived from other types. The value 411of the tag varies depending on the meaning. The following are possible tag 412values: 413 414.. code-block:: llvm 415 416 DW_TAG_formal_parameter = 5 417 DW_TAG_member = 13 418 DW_TAG_pointer_type = 15 419 DW_TAG_reference_type = 16 420 DW_TAG_typedef = 22 421 DW_TAG_ptr_to_member_type = 31 422 DW_TAG_const_type = 38 423 DW_TAG_volatile_type = 53 424 DW_TAG_restrict_type = 55 425 426``DW_TAG_member`` is used to define a member of a :ref:`composite type 427<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type 428of the member is the :ref:`derived type <format_derived_type>`. 429``DW_TAG_formal_parameter`` is used to define a member which is a formal 430argument of a subprogram. 431 432``DW_TAG_typedef`` is used to provide a name for the derived type. 433 434``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``, 435``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the 436:ref:`derived type <format_derived_type>`. 437 438:ref:`Derived type <format_derived_type>` location can be determined from the 439context and line number. The size, alignment and offset are expressed in bits 440and can be 64 bit values. The alignment is used to round the offset when 441embedded in a :ref:`composite type <format_composite_type>` (example to keep 442float doubles on 64 bit boundaries.) The offset is the bit offset if embedded 443in a :ref:`composite type <format_composite_type>`. 444 445Note that the ``void *`` type is expressed as a type derived from NULL. 446 447.. _format_composite_type: 448 449Composite type descriptors 450^^^^^^^^^^^^^^^^^^^^^^^^^^ 451 452.. code-block:: llvm 453 454 !6 = metadata !{ 455 i32, ;; Tag (see below) 456 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 457 metadata, ;; Reference to context 458 metadata, ;; Name (may be "" for anonymous types) 459 i32, ;; Line number where defined (may be 0) 460 i64, ;; Size in bits 461 i64, ;; Alignment in bits 462 i64, ;; Offset in bits 463 i32, ;; Flags 464 metadata, ;; Reference to type derived from 465 metadata, ;; Reference to array of member descriptors 466 i32, ;; Runtime languages 467 metadata, ;; Base type containing the vtable pointer for this type 468 metadata, ;; Template parameters 469 metadata ;; A unique identifier for type uniquing purpose (may be null) 470 } 471 472These descriptors are used to define types that are composed of 0 or more 473elements. The value of the tag varies depending on the meaning. The following 474are possible tag values: 475 476.. code-block:: llvm 477 478 DW_TAG_array_type = 1 479 DW_TAG_enumeration_type = 4 480 DW_TAG_structure_type = 19 481 DW_TAG_union_type = 23 482 DW_TAG_subroutine_type = 21 483 DW_TAG_inheritance = 28 484 485The vector flag indicates that an array type is a native packed vector. 486 487The members of array types (tag = ``DW_TAG_array_type``) are 488:ref:`subrange descriptors <format_subrange>`, each 489representing the range of subscripts at that level of indexing. 490 491The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are 492:ref:`enumerator descriptors <format_enumerator>`, each representing the 493definition of enumeration value for the set. All enumeration type descriptors 494are collected inside the named metadata ``!llvm.dbg.cu``. 495 496The members of structure (tag = ``DW_TAG_structure_type``) or union (tag = 497``DW_TAG_union_type``) types are any one of the :ref:`basic 498<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite 499<format_composite_type>` type descriptors, each representing a field member of 500the structure or union. 501 502For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide 503information about base classes, static members and member functions. If a 504member is a :ref:`derived type descriptor <format_derived_type>` and has a tag 505of ``DW_TAG_inheritance``, then the type represents a base class. If the member 506of is a :ref:`global variable descriptor <format_global_variables>` then it 507represents a static member. And, if the member is a :ref:`subprogram 508descriptor <format_subprograms>` then it represents a member function. For 509static members and member functions, ``getName()`` returns the members link or 510the C++ mangled name. ``getDisplayName()`` the simplied version of the name. 511 512The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements 513is the return type for the subroutine. The remaining elements are the formal 514arguments to the subroutine. 515 516:ref:`Composite type <format_composite_type>` location can be determined from 517the context and line number. The size, alignment and offset are expressed in 518bits and can be 64 bit values. The alignment is used to round the offset when 519embedded in a :ref:`composite type <format_composite_type>` (as an example, to 520keep float doubles on 64 bit boundaries). The offset is the bit offset if 521embedded in a :ref:`composite type <format_composite_type>`. 522 523.. _format_subrange: 524 525Subrange descriptors 526^^^^^^^^^^^^^^^^^^^^ 527 528.. code-block:: llvm 529 530 !42 = metadata !{ 531 i32, ;; Tag = 33 (DW_TAG_subrange_type) 532 i64, ;; Low value 533 i64 ;; High value 534 } 535 536These descriptors are used to define ranges of array subscripts for an array 537:ref:`composite type <format_composite_type>`. The low value defines the lower 538bounds typically zero for C/C++. The high value is the upper bounds. Values 539are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High`` 540the array bounds are not included in generated debugging information. 541 542.. _format_enumerator: 543 544Enumerator descriptors 545^^^^^^^^^^^^^^^^^^^^^^ 546 547.. code-block:: llvm 548 549 !6 = metadata !{ 550 i32, ;; Tag = 40 (DW_TAG_enumerator) 551 metadata, ;; Name 552 i64 ;; Value 553 } 554 555These descriptors are used to define members of an enumeration :ref:`composite 556type <format_composite_type>`, it associates the name to the value. 557 558Local variables 559^^^^^^^^^^^^^^^ 560 561.. code-block:: llvm 562 563 !7 = metadata !{ 564 i32, ;; Tag (see below) 565 metadata, ;; Context 566 metadata, ;; Name 567 metadata, ;; Reference to file where defined 568 i32, ;; 24 bit - Line number where defined 569 ;; 8 bit - Argument number. 1 indicates 1st argument. 570 metadata, ;; Reference to the type descriptor 571 i32, ;; flags 572 metadata ;; (optional) Reference to inline location 573 metadata ;; (optional) Reference to a complex expression (see below) 574 } 575 576These descriptors are used to define variables local to a sub program. The 577value of the tag depends on the usage of the variable: 578 579.. code-block:: llvm 580 581 DW_TAG_auto_variable = 256 582 DW_TAG_arg_variable = 257 583 584An auto variable is any variable declared in the body of the function. An 585argument variable is any variable that appears as a formal argument to the 586function. 587 588The context is either the subprogram or block where the variable is defined. 589Name the source variable name. Context and line indicate where the variable 590was defined. Type descriptor defines the declared type of the variable. 591 592.. _format_common_intrinsics: 593 594Debugger intrinsic functions 595^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 596 597LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to 598provide debug information at various points in generated code. 599 600``llvm.dbg.declare`` 601^^^^^^^^^^^^^^^^^^^^ 602 603.. code-block:: llvm 604 605 void %llvm.dbg.declare(metadata, metadata) 606 607This intrinsic provides information about a local element (e.g., variable). 608The first argument is metadata holding the alloca for the variable. The second 609argument is metadata containing a description of the variable. 610 611``llvm.dbg.value`` 612^^^^^^^^^^^^^^^^^^ 613 614.. code-block:: llvm 615 616 void %llvm.dbg.value(metadata, i64, metadata) 617 618This intrinsic provides information when a user source variable is set to a new 619value. The first argument is the new value (wrapped as metadata). The second 620argument is the offset in the user source variable where the new value is 621written. The third argument is metadata containing a description of the user 622source variable. 623 624Object lifetimes and scoping 625============================ 626 627In many languages, the local variables in functions can have their lifetimes or 628scopes limited to a subset of a function. In the C family of languages, for 629example, variables are only live (readable and writable) within the source 630block that they are defined in. In functional languages, values are only 631readable after they have been defined. Though this is a very obvious concept, 632it is non-trivial to model in LLVM, because it has no notion of scoping in this 633sense, and does not want to be tied to a language's scoping rules. 634 635In order to handle this, the LLVM debug format uses the metadata attached to 636llvm instructions to encode line number and scoping information. Consider the 637following C fragment, for example: 638 639.. code-block:: c 640 641 1. void foo() { 642 2. int X = 21; 643 3. int Y = 22; 644 4. { 645 5. int Z = 23; 646 6. Z = X; 647 7. } 648 8. X = Y; 649 9. } 650 651Compiled to LLVM, this function would be represented like this: 652 653.. code-block:: llvm 654 655 define void @foo() #0 { 656 entry: 657 %X = alloca i32, align 4 658 %Y = alloca i32, align 4 659 %Z = alloca i32, align 4 660 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12 661 ; [debug line = 2:7] [debug variable = X] 662 store i32 21, i32* %X, align 4, !dbg !12 663 call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14 664 ; [debug line = 3:7] [debug variable = Y] 665 store i32 22, i32* %Y, align 4, !dbg !14 666 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 667 ; [debug line = 5:9] [debug variable = Z] 668 store i32 23, i32* %Z, align 4, !dbg !17 669 %0 = load i32* %X, align 4, !dbg !18 670 [debug line = 6:5] 671 store i32 %0, i32* %Z, align 4, !dbg !18 672 %1 = load i32* %Y, align 4, !dbg !19 673 [debug line = 8:3] 674 store i32 %1, i32* %X, align 4, !dbg !19 675 ret void, !dbg !20 676 } 677 678 ; Function Attrs: nounwind readnone 679 declare void @llvm.dbg.declare(metadata, metadata) #1 680 681 attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" 682 "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" 683 "no-infs-fp-math"="false" "no-nans-fp-math"="false" 684 "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" 685 "use-soft-float"="false" } 686 attributes #1 = { nounwind readnone } 687 688 !llvm.dbg.cu = !{!0} 689 !llvm.module.flags = !{!8} 690 !llvm.ident = !{!9} 691 692 !0 = metadata !{i32 786449, metadata !1, i32 12, 693 metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)", 694 i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3, 695 metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \ 696 [/private/tmp/foo.c] \ 697 [DW_LANG_C99] 698 !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"} 699 !2 = metadata !{i32 0} 700 !3 = metadata !{metadata !4} 701 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 702 metadata !"foo", metadata !"", i32 1, metadata !6, 703 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false, 704 void ()* @foo, null, null, metadata !2, i32 1} 705 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 706 !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \ 707 [/private/tmp/t.c] 708 !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0, 709 i64 0, i32 0, null, metadata !7, i32 0, null, null, null} 710 ; [ DW_TAG_subroutine_type ] \ 711 [line 0, size 0, align 0, offset 0] [from ] 712 !7 = metadata !{null} 713 !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2} 714 !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"} 715 !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2, 716 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \ 717 [line 2] 718 !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32, 719 i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \ 720 [line 0, size 32, align 32, offset 0, enc DW_ATE_signed] 721 !12 = metadata !{i32 2, i32 0, metadata !4, null} 722 !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3, 723 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \ 724 [line 3] 725 !14 = metadata !{i32 3, i32 0, metadata !4, null} 726 !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5, 727 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \ 728 [line 5] 729 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0, 730 i32 0} \ 731 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c] 732 !17 = metadata !{i32 5, i32 0, metadata !16, null} 733 !18 = metadata !{i32 6, i32 0, metadata !16, null} 734 !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ] 735 !20 = metadata !{i32 9, i32 0, metadata !4, null} 736 737This example illustrates a few important details about LLVM debugging 738information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and 739location information, which are attached to an instruction, are applied 740together to allow a debugger to analyze the relationship between statements, 741variable definitions, and the code used to implement the function. 742 743.. code-block:: llvm 744 745 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12 746 ; [debug line = 2:7] [debug variable = X] 747 748The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the 749variable ``X``. The metadata ``!dbg !12`` attached to the intrinsic provides 750scope information for the variable ``X``. 751 752.. code-block:: llvm 753 754 !12 = metadata !{i32 2, i32 0, metadata !4, null} 755 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 756 metadata !"foo", metadata !"", i32 1, metadata !6, 757 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false, 758 void ()* @foo, null, null, metadata !2, i32 1} 759 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 760 761Here ``!12`` is metadata providing location information. It has four fields: 762line number, column number, scope, and original scope. The original scope 763represents inline location if this instruction is inlined inside a caller, and 764is null otherwise. In this example, scope is encoded by ``!4``, a 765:ref:`subprogram descriptor <format_subprograms>`. This way the location 766information attached to the intrinsics indicates that the variable ``X`` is 767declared at line number 2 at a function level scope in function ``foo``. 768 769Now lets take another example. 770 771.. code-block:: llvm 772 773 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 774 ; [debug line = 5:9] [debug variable = Z] 775 776The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for 777variable ``Z``. The metadata ``!dbg !17`` attached to the intrinsic provides 778scope information for the variable ``Z``. 779 780.. code-block:: llvm 781 782 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0, 783 i32 0} 784 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c] 785 !17 = metadata !{i32 5, i32 0, metadata !16, null} 786 787Here ``!15`` indicates that ``Z`` is declared at line number 5 and 788column number 0 inside of lexical scope ``!16``. The lexical scope itself 789resides inside of subprogram ``!4`` described above. 790 791The scope information attached with each instruction provides a straightforward 792way to find instructions covered by a scope. 793 794.. _ccxx_frontend: 795 796C/C++ front-end specific debug information 797========================================== 798 799The C and C++ front-ends represent information about the program in a format 800that is effectively identical to `DWARF 3.0 801<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information 802content. This allows code generators to trivially support native debuggers by 803generating standard dwarf information, and contains enough information for 804non-dwarf targets to translate it as needed. 805 806This section describes the forms used to represent C and C++ programs. Other 807languages could pattern themselves after this (which itself is tuned to 808representing programs in the same way that DWARF 3 does), or they could choose 809to provide completely different forms if they don't fit into the DWARF model. 810As support for debugging information gets added to the various LLVM 811source-language front-ends, the information used should be documented here. 812 813The following sections provide examples of various C/C++ constructs and the 814debug information that would best describe those constructs. 815 816C/C++ source file information 817----------------------------- 818 819Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the 820directory ``/Users/mine/sources``, the following code: 821 822.. code-block:: c 823 824 #include "MyHeader.h" 825 826 int main(int argc, char *argv[]) { 827 return 0; 828 } 829 830a C/C++ front-end would generate the following descriptors: 831 832.. code-block:: llvm 833 834 ... 835 ;; 836 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp". 837 ;; 838 !0 = metadata !{ 839 i32 786449, ;; Tag 840 metadata !1, ;; File/directory name 841 i32 4, ;; Language Id 842 metadata !"clang version 3.4 ", 843 i1 false, ;; Optimized compile unit 844 metadata !"", ;; Compiler flags 845 i32 0, ;; Runtime version 846 metadata !2, ;; Enumeration types 847 metadata !2, ;; Retained types 848 metadata !3, ;; Subprograms 849 metadata !2, ;; Global variables 850 metadata !2, ;; Imported entities (declarations and namespaces) 851 metadata !"" ;; Split debug filename 852 } 853 854 ;; 855 ;; Define the file for the file "/Users/mine/sources/MySource.cpp". 856 ;; 857 !1 = metadata !{ 858 metadata !"MySource.cpp", 859 metadata !"/Users/mine/sources" 860 } 861 !5 = metadata !{ 862 i32 786473, ;; Tag 863 metadata !1 864 } 865 866 ;; 867 ;; Define the file for the file "/Users/mine/sources/Myheader.h" 868 ;; 869 !14 = metadata !{ 870 i32 786473, ;; Tag 871 metadata !15 872 } 873 !15 = metadata !{ 874 metadata !"./MyHeader.h", 875 metadata !"/Users/mine/sources", 876 } 877 878 ... 879 880``llvm::Instruction`` provides easy access to metadata attached with an 881instruction. One can extract line number information encoded in LLVM IR using 882``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``. 883 884.. code-block:: c++ 885 886 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction 887 DILocation Loc(N); // DILocation is in DebugInfo.h 888 unsigned Line = Loc.getLineNumber(); 889 StringRef File = Loc.getFilename(); 890 StringRef Dir = Loc.getDirectory(); 891 } 892 893C/C++ global variable information 894--------------------------------- 895 896Given an integer global variable declared as follows: 897 898.. code-block:: c 899 900 int MyGlobal = 100; 901 902a C/C++ front-end would generate the following descriptors: 903 904.. code-block:: llvm 905 906 ;; 907 ;; Define the global itself. 908 ;; 909 %MyGlobal = global int 100 910 ... 911 ;; 912 ;; List of debug info of globals 913 ;; 914 !llvm.dbg.cu = !{!0} 915 916 ;; Define the compile unit. 917 !0 = metadata !{ 918 i32 786449, ;; Tag 919 i32 0, ;; Context 920 i32 4, ;; Language 921 metadata !"foo.cpp", ;; File 922 metadata !"/Volumes/Data/tmp", ;; Directory 923 metadata !"clang version 3.1 ", ;; Producer 924 i1 true, ;; Deprecated field 925 i1 false, ;; "isOptimized"? 926 metadata !"", ;; Flags 927 i32 0, ;; Runtime Version 928 metadata !1, ;; Enum Types 929 metadata !1, ;; Retained Types 930 metadata !1, ;; Subprograms 931 metadata !3, ;; Global Variables 932 metadata !1, ;; Imported entities 933 "", ;; Split debug filename 934 } ; [ DW_TAG_compile_unit ] 935 936 ;; The Array of Global Variables 937 !3 = metadata !{ 938 metadata !4 939 } 940 941 ;; 942 ;; Define the global variable itself. 943 ;; 944 !4 = metadata !{ 945 i32 786484, ;; Tag 946 i32 0, ;; Unused 947 null, ;; Unused 948 metadata !"MyGlobal", ;; Name 949 metadata !"MyGlobal", ;; Display Name 950 metadata !"", ;; Linkage Name 951 metadata !6, ;; File 952 i32 1, ;; Line 953 metadata !7, ;; Type 954 i32 0, ;; IsLocalToUnit 955 i32 1, ;; IsDefinition 956 i32* @MyGlobal, ;; LLVM-IR Value 957 null ;; Static member declaration 958 } ; [ DW_TAG_variable ] 959 960 ;; 961 ;; Define the file 962 ;; 963 !5 = metadata !{ 964 metadata !"foo.cpp", ;; File 965 metadata !"/Volumes/Data/tmp", ;; Directory 966 } 967 !6 = metadata !{ 968 i32 786473, ;; Tag 969 metadata !5 ;; Unused 970 } ; [ DW_TAG_file_type ] 971 972 ;; 973 ;; Define the type 974 ;; 975 !7 = metadata !{ 976 i32 786468, ;; Tag 977 null, ;; Unused 978 null, ;; Unused 979 metadata !"int", ;; Name 980 i32 0, ;; Line 981 i64 32, ;; Size in Bits 982 i64 32, ;; Align in Bits 983 i64 0, ;; Offset 984 i32 0, ;; Flags 985 i32 5 ;; Encoding 986 } ; [ DW_TAG_base_type ] 987 988C/C++ function information 989-------------------------- 990 991Given a function declared as follows: 992 993.. code-block:: c 994 995 int main(int argc, char *argv[]) { 996 return 0; 997 } 998 999a C/C++ front-end would generate the following descriptors: 1000 1001.. code-block:: llvm 1002 1003 ;; 1004 ;; Define the anchor for subprograms. 1005 ;; 1006 !6 = metadata !{ 1007 i32 786484, ;; Tag 1008 metadata !1, ;; File 1009 metadata !1, ;; Context 1010 metadata !"main", ;; Name 1011 metadata !"main", ;; Display name 1012 metadata !"main", ;; Linkage name 1013 i32 1, ;; Line number 1014 metadata !4, ;; Type 1015 i1 false, ;; Is local 1016 i1 true, ;; Is definition 1017 i32 0, ;; Virtuality attribute, e.g. pure virtual function 1018 i32 0, ;; Index into virtual table for C++ methods 1019 i32 0, ;; Type that holds virtual table. 1020 i32 0, ;; Flags 1021 i1 false, ;; True if this function is optimized 1022 Function *, ;; Pointer to llvm::Function 1023 null, ;; Function template parameters 1024 null, ;; List of function variables (emitted when optimizing) 1025 1 ;; Line number of the opening '{' of the function 1026 } 1027 ;; 1028 ;; Define the subprogram itself. 1029 ;; 1030 define i32 @main(i32 %argc, i8** %argv) { 1031 ... 1032 } 1033 1034C/C++ basic types 1035----------------- 1036 1037The following are the basic type descriptors for C/C++ core types: 1038 1039bool 1040^^^^ 1041 1042.. code-block:: llvm 1043 1044 !2 = metadata !{ 1045 i32 786468, ;; Tag 1046 null, ;; File 1047 null, ;; Context 1048 metadata !"bool", ;; Name 1049 i32 0, ;; Line number 1050 i64 8, ;; Size in Bits 1051 i64 8, ;; Align in Bits 1052 i64 0, ;; Offset in Bits 1053 i32 0, ;; Flags 1054 i32 2 ;; Encoding 1055 } 1056 1057char 1058^^^^ 1059 1060.. code-block:: llvm 1061 1062 !2 = metadata !{ 1063 i32 786468, ;; Tag 1064 null, ;; File 1065 null, ;; Context 1066 metadata !"char", ;; Name 1067 i32 0, ;; Line number 1068 i64 8, ;; Size in Bits 1069 i64 8, ;; Align in Bits 1070 i64 0, ;; Offset in Bits 1071 i32 0, ;; Flags 1072 i32 6 ;; Encoding 1073 } 1074 1075unsigned char 1076^^^^^^^^^^^^^ 1077 1078.. code-block:: llvm 1079 1080 !2 = metadata !{ 1081 i32 786468, ;; Tag 1082 null, ;; File 1083 null, ;; Context 1084 metadata !"unsigned char", 1085 i32 0, ;; Line number 1086 i64 8, ;; Size in Bits 1087 i64 8, ;; Align in Bits 1088 i64 0, ;; Offset in Bits 1089 i32 0, ;; Flags 1090 i32 8 ;; Encoding 1091 } 1092 1093short 1094^^^^^ 1095 1096.. code-block:: llvm 1097 1098 !2 = metadata !{ 1099 i32 786468, ;; Tag 1100 null, ;; File 1101 null, ;; Context 1102 metadata !"short int", 1103 i32 0, ;; Line number 1104 i64 16, ;; Size in Bits 1105 i64 16, ;; Align in Bits 1106 i64 0, ;; Offset in Bits 1107 i32 0, ;; Flags 1108 i32 5 ;; Encoding 1109 } 1110 1111unsigned short 1112^^^^^^^^^^^^^^ 1113 1114.. code-block:: llvm 1115 1116 !2 = metadata !{ 1117 i32 786468, ;; Tag 1118 null, ;; File 1119 null, ;; Context 1120 metadata !"short unsigned int", 1121 i32 0, ;; Line number 1122 i64 16, ;; Size in Bits 1123 i64 16, ;; Align in Bits 1124 i64 0, ;; Offset in Bits 1125 i32 0, ;; Flags 1126 i32 7 ;; Encoding 1127 } 1128 1129int 1130^^^ 1131 1132.. code-block:: llvm 1133 1134 !2 = metadata !{ 1135 i32 786468, ;; Tag 1136 null, ;; File 1137 null, ;; Context 1138 metadata !"int", ;; Name 1139 i32 0, ;; Line number 1140 i64 32, ;; Size in Bits 1141 i64 32, ;; Align in Bits 1142 i64 0, ;; Offset in Bits 1143 i32 0, ;; Flags 1144 i32 5 ;; Encoding 1145 } 1146 1147unsigned int 1148^^^^^^^^^^^^ 1149 1150.. code-block:: llvm 1151 1152 !2 = metadata !{ 1153 i32 786468, ;; Tag 1154 null, ;; File 1155 null, ;; Context 1156 metadata !"unsigned int", 1157 i32 0, ;; Line number 1158 i64 32, ;; Size in Bits 1159 i64 32, ;; Align in Bits 1160 i64 0, ;; Offset in Bits 1161 i32 0, ;; Flags 1162 i32 7 ;; Encoding 1163 } 1164 1165long long 1166^^^^^^^^^ 1167 1168.. code-block:: llvm 1169 1170 !2 = metadata !{ 1171 i32 786468, ;; Tag 1172 null, ;; File 1173 null, ;; Context 1174 metadata !"long long int", 1175 i32 0, ;; Line number 1176 i64 64, ;; Size in Bits 1177 i64 64, ;; Align in Bits 1178 i64 0, ;; Offset in Bits 1179 i32 0, ;; Flags 1180 i32 5 ;; Encoding 1181 } 1182 1183unsigned long long 1184^^^^^^^^^^^^^^^^^^ 1185 1186.. code-block:: llvm 1187 1188 !2 = metadata !{ 1189 i32 786468, ;; Tag 1190 null, ;; File 1191 null, ;; Context 1192 metadata !"long long unsigned int", 1193 i32 0, ;; Line number 1194 i64 64, ;; Size in Bits 1195 i64 64, ;; Align in Bits 1196 i64 0, ;; Offset in Bits 1197 i32 0, ;; Flags 1198 i32 7 ;; Encoding 1199 } 1200 1201float 1202^^^^^ 1203 1204.. code-block:: llvm 1205 1206 !2 = metadata !{ 1207 i32 786468, ;; Tag 1208 null, ;; File 1209 null, ;; Context 1210 metadata !"float", 1211 i32 0, ;; Line number 1212 i64 32, ;; Size in Bits 1213 i64 32, ;; Align in Bits 1214 i64 0, ;; Offset in Bits 1215 i32 0, ;; Flags 1216 i32 4 ;; Encoding 1217 } 1218 1219double 1220^^^^^^ 1221 1222.. code-block:: llvm 1223 1224 !2 = metadata !{ 1225 i32 786468, ;; Tag 1226 null, ;; File 1227 null, ;; Context 1228 metadata !"double",;; Name 1229 i32 0, ;; Line number 1230 i64 64, ;; Size in Bits 1231 i64 64, ;; Align in Bits 1232 i64 0, ;; Offset in Bits 1233 i32 0, ;; Flags 1234 i32 4 ;; Encoding 1235 } 1236 1237C/C++ derived types 1238------------------- 1239 1240Given the following as an example of C/C++ derived type: 1241 1242.. code-block:: c 1243 1244 typedef const int *IntPtr; 1245 1246a C/C++ front-end would generate the following descriptors: 1247 1248.. code-block:: llvm 1249 1250 ;; 1251 ;; Define the typedef "IntPtr". 1252 ;; 1253 !2 = metadata !{ 1254 i32 786454, ;; Tag 1255 metadata !3, ;; File 1256 metadata !1, ;; Context 1257 metadata !"IntPtr", ;; Name 1258 i32 0, ;; Line number 1259 i64 0, ;; Size in bits 1260 i64 0, ;; Align in bits 1261 i64 0, ;; Offset in bits 1262 i32 0, ;; Flags 1263 metadata !4 ;; Derived From type 1264 } 1265 ;; 1266 ;; Define the pointer type. 1267 ;; 1268 !4 = metadata !{ 1269 i32 786447, ;; Tag 1270 null, ;; File 1271 null, ;; Context 1272 metadata !"", ;; Name 1273 i32 0, ;; Line number 1274 i64 64, ;; Size in bits 1275 i64 64, ;; Align in bits 1276 i64 0, ;; Offset in bits 1277 i32 0, ;; Flags 1278 metadata !5 ;; Derived From type 1279 } 1280 ;; 1281 ;; Define the const type. 1282 ;; 1283 !5 = metadata !{ 1284 i32 786470, ;; Tag 1285 null, ;; File 1286 null, ;; Context 1287 metadata !"", ;; Name 1288 i32 0, ;; Line number 1289 i64 0, ;; Size in bits 1290 i64 0, ;; Align in bits 1291 i64 0, ;; Offset in bits 1292 i32 0, ;; Flags 1293 metadata !6 ;; Derived From type 1294 } 1295 ;; 1296 ;; Define the int type. 1297 ;; 1298 !6 = metadata !{ 1299 i32 786468, ;; Tag 1300 null, ;; File 1301 null, ;; Context 1302 metadata !"int", ;; Name 1303 i32 0, ;; Line number 1304 i64 32, ;; Size in bits 1305 i64 32, ;; Align in bits 1306 i64 0, ;; Offset in bits 1307 i32 0, ;; Flags 1308 i32 5 ;; Encoding 1309 } 1310 1311C/C++ struct/union types 1312------------------------ 1313 1314Given the following as an example of C/C++ struct type: 1315 1316.. code-block:: c 1317 1318 struct Color { 1319 unsigned Red; 1320 unsigned Green; 1321 unsigned Blue; 1322 }; 1323 1324a C/C++ front-end would generate the following descriptors: 1325 1326.. code-block:: llvm 1327 1328 ;; 1329 ;; Define basic type for unsigned int. 1330 ;; 1331 !5 = metadata !{ 1332 i32 786468, ;; Tag 1333 null, ;; File 1334 null, ;; Context 1335 metadata !"unsigned int", 1336 i32 0, ;; Line number 1337 i64 32, ;; Size in Bits 1338 i64 32, ;; Align in Bits 1339 i64 0, ;; Offset in Bits 1340 i32 0, ;; Flags 1341 i32 7 ;; Encoding 1342 } 1343 ;; 1344 ;; Define composite type for struct Color. 1345 ;; 1346 !2 = metadata !{ 1347 i32 786451, ;; Tag 1348 metadata !1, ;; Compile unit 1349 null, ;; Context 1350 metadata !"Color", ;; Name 1351 i32 1, ;; Line number 1352 i64 96, ;; Size in bits 1353 i64 32, ;; Align in bits 1354 i64 0, ;; Offset in bits 1355 i32 0, ;; Flags 1356 null, ;; Derived From 1357 metadata !3, ;; Elements 1358 i32 0, ;; Runtime Language 1359 null, ;; Base type containing the vtable pointer for this type 1360 null ;; Template parameters 1361 } 1362 1363 ;; 1364 ;; Define the Red field. 1365 ;; 1366 !4 = metadata !{ 1367 i32 786445, ;; Tag 1368 metadata !1, ;; File 1369 metadata !1, ;; Context 1370 metadata !"Red", ;; Name 1371 i32 2, ;; Line number 1372 i64 32, ;; Size in bits 1373 i64 32, ;; Align in bits 1374 i64 0, ;; Offset in bits 1375 i32 0, ;; Flags 1376 metadata !5 ;; Derived From type 1377 } 1378 1379 ;; 1380 ;; Define the Green field. 1381 ;; 1382 !6 = metadata !{ 1383 i32 786445, ;; Tag 1384 metadata !1, ;; File 1385 metadata !1, ;; Context 1386 metadata !"Green", ;; Name 1387 i32 3, ;; Line number 1388 i64 32, ;; Size in bits 1389 i64 32, ;; Align in bits 1390 i64 32, ;; Offset in bits 1391 i32 0, ;; Flags 1392 metadata !5 ;; Derived From type 1393 } 1394 1395 ;; 1396 ;; Define the Blue field. 1397 ;; 1398 !7 = metadata !{ 1399 i32 786445, ;; Tag 1400 metadata !1, ;; File 1401 metadata !1, ;; Context 1402 metadata !"Blue", ;; Name 1403 i32 4, ;; Line number 1404 i64 32, ;; Size in bits 1405 i64 32, ;; Align in bits 1406 i64 64, ;; Offset in bits 1407 i32 0, ;; Flags 1408 metadata !5 ;; Derived From type 1409 } 1410 1411 ;; 1412 ;; Define the array of fields used by the composite type Color. 1413 ;; 1414 !3 = metadata !{metadata !4, metadata !6, metadata !7} 1415 1416C/C++ enumeration types 1417----------------------- 1418 1419Given the following as an example of C/C++ enumeration type: 1420 1421.. code-block:: c 1422 1423 enum Trees { 1424 Spruce = 100, 1425 Oak = 200, 1426 Maple = 300 1427 }; 1428 1429a C/C++ front-end would generate the following descriptors: 1430 1431.. code-block:: llvm 1432 1433 ;; 1434 ;; Define composite type for enum Trees 1435 ;; 1436 !2 = metadata !{ 1437 i32 786436, ;; Tag 1438 metadata !1, ;; File 1439 metadata !1, ;; Context 1440 metadata !"Trees", ;; Name 1441 i32 1, ;; Line number 1442 i64 32, ;; Size in bits 1443 i64 32, ;; Align in bits 1444 i64 0, ;; Offset in bits 1445 i32 0, ;; Flags 1446 null, ;; Derived From type 1447 metadata !3, ;; Elements 1448 i32 0 ;; Runtime language 1449 } 1450 1451 ;; 1452 ;; Define the array of enumerators used by composite type Trees. 1453 ;; 1454 !3 = metadata !{metadata !4, metadata !5, metadata !6} 1455 1456 ;; 1457 ;; Define Spruce enumerator. 1458 ;; 1459 !4 = metadata !{i32 786472, metadata !"Spruce", i64 100} 1460 1461 ;; 1462 ;; Define Oak enumerator. 1463 ;; 1464 !5 = metadata !{i32 786472, metadata !"Oak", i64 200} 1465 1466 ;; 1467 ;; Define Maple enumerator. 1468 ;; 1469 !6 = metadata !{i32 786472, metadata !"Maple", i64 300} 1470 1471Debugging information format 1472============================ 1473 1474Debugging Information Extension for Objective C Properties 1475---------------------------------------------------------- 1476 1477Introduction 1478^^^^^^^^^^^^ 1479 1480Objective C provides a simpler way to declare and define accessor methods using 1481declared properties. The language provides features to declare a property and 1482to let compiler synthesize accessor methods. 1483 1484The debugger lets developer inspect Objective C interfaces and their instance 1485variables and class variables. However, the debugger does not know anything 1486about the properties defined in Objective C interfaces. The debugger consumes 1487information generated by compiler in DWARF format. The format does not support 1488encoding of Objective C properties. This proposal describes DWARF extensions to 1489encode Objective C properties, which the debugger can use to let developers 1490inspect Objective C properties. 1491 1492Proposal 1493^^^^^^^^ 1494 1495Objective C properties exist separately from class members. A property can be 1496defined only by "setter" and "getter" selectors, and be calculated anew on each 1497access. Or a property can just be a direct access to some declared ivar. 1498Finally it can have an ivar "automatically synthesized" for it by the compiler, 1499in which case the property can be referred to in user code directly using the 1500standard C dereference syntax as well as through the property "dot" syntax, but 1501there is no entry in the ``@interface`` declaration corresponding to this ivar. 1502 1503To facilitate debugging, these properties we will add a new DWARF TAG into the 1504``DW_TAG_structure_type`` definition for the class to hold the description of a 1505given property, and a set of DWARF attributes that provide said description. 1506The property tag will also contain the name and declared type of the property. 1507 1508If there is a related ivar, there will also be a DWARF property attribute placed 1509in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG 1510for that property. And in the case where the compiler synthesizes the ivar 1511directly, the compiler is expected to generate a ``DW_TAG_member`` for that 1512ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used 1513to access this ivar directly in code, and with the property attribute pointing 1514back to the property it is backing. 1515 1516The following examples will serve as illustration for our discussion: 1517 1518.. code-block:: objc 1519 1520 @interface I1 { 1521 int n2; 1522 } 1523 1524 @property int p1; 1525 @property int p2; 1526 @end 1527 1528 @implementation I1 1529 @synthesize p1; 1530 @synthesize p2 = n2; 1531 @end 1532 1533This produces the following DWARF (this is a "pseudo dwarfdump" output): 1534 1535.. code-block:: none 1536 1537 0x00000100: TAG_structure_type [7] * 1538 AT_APPLE_runtime_class( 0x10 ) 1539 AT_name( "I1" ) 1540 AT_decl_file( "Objc_Property.m" ) 1541 AT_decl_line( 3 ) 1542 1543 0x00000110 TAG_APPLE_property 1544 AT_name ( "p1" ) 1545 AT_type ( {0x00000150} ( int ) ) 1546 1547 0x00000120: TAG_APPLE_property 1548 AT_name ( "p2" ) 1549 AT_type ( {0x00000150} ( int ) ) 1550 1551 0x00000130: TAG_member [8] 1552 AT_name( "_p1" ) 1553 AT_APPLE_property ( {0x00000110} "p1" ) 1554 AT_type( {0x00000150} ( int ) ) 1555 AT_artificial ( 0x1 ) 1556 1557 0x00000140: TAG_member [8] 1558 AT_name( "n2" ) 1559 AT_APPLE_property ( {0x00000120} "p2" ) 1560 AT_type( {0x00000150} ( int ) ) 1561 1562 0x00000150: AT_type( ( int ) ) 1563 1564Note, the current convention is that the name of the ivar for an 1565auto-synthesized property is the name of the property from which it derives 1566with an underscore prepended, as is shown in the example. But we actually 1567don't need to know this convention, since we are given the name of the ivar 1568directly. 1569 1570Also, it is common practice in ObjC to have different property declarations in 1571the @interface and @implementation - e.g. to provide a read-only property in 1572the interface,and a read-write interface in the implementation. In that case, 1573the compiler should emit whichever property declaration will be in force in the 1574current translation unit. 1575 1576Developers can decorate a property with attributes which are encoded using 1577``DW_AT_APPLE_property_attribute``. 1578 1579.. code-block:: objc 1580 1581 @property (readonly, nonatomic) int pr; 1582 1583.. code-block:: none 1584 1585 TAG_APPLE_property [8] 1586 AT_name( "pr" ) 1587 AT_type ( {0x00000147} (int) ) 1588 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic) 1589 1590The setter and getter method names are attached to the property using 1591``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes. 1592 1593.. code-block:: objc 1594 1595 @interface I1 1596 @property (setter=myOwnP3Setter:) int p3; 1597 -(void)myOwnP3Setter:(int)a; 1598 @end 1599 1600 @implementation I1 1601 @synthesize p3; 1602 -(void)myOwnP3Setter:(int)a{ } 1603 @end 1604 1605The DWARF for this would be: 1606 1607.. code-block:: none 1608 1609 0x000003bd: TAG_structure_type [7] * 1610 AT_APPLE_runtime_class( 0x10 ) 1611 AT_name( "I1" ) 1612 AT_decl_file( "Objc_Property.m" ) 1613 AT_decl_line( 3 ) 1614 1615 0x000003cd TAG_APPLE_property 1616 AT_name ( "p3" ) 1617 AT_APPLE_property_setter ( "myOwnP3Setter:" ) 1618 AT_type( {0x00000147} ( int ) ) 1619 1620 0x000003f3: TAG_member [8] 1621 AT_name( "_p3" ) 1622 AT_type ( {0x00000147} ( int ) ) 1623 AT_APPLE_property ( {0x000003cd} ) 1624 AT_artificial ( 0x1 ) 1625 1626New DWARF Tags 1627^^^^^^^^^^^^^^ 1628 1629+-----------------------+--------+ 1630| TAG | Value | 1631+=======================+========+ 1632| DW_TAG_APPLE_property | 0x4200 | 1633+-----------------------+--------+ 1634 1635New DWARF Attributes 1636^^^^^^^^^^^^^^^^^^^^ 1637 1638+--------------------------------+--------+-----------+ 1639| Attribute | Value | Classes | 1640+================================+========+===========+ 1641| DW_AT_APPLE_property | 0x3fed | Reference | 1642+--------------------------------+--------+-----------+ 1643| DW_AT_APPLE_property_getter | 0x3fe9 | String | 1644+--------------------------------+--------+-----------+ 1645| DW_AT_APPLE_property_setter | 0x3fea | String | 1646+--------------------------------+--------+-----------+ 1647| DW_AT_APPLE_property_attribute | 0x3feb | Constant | 1648+--------------------------------+--------+-----------+ 1649 1650New DWARF Constants 1651^^^^^^^^^^^^^^^^^^^ 1652 1653+--------------------------------+-------+ 1654| Name | Value | 1655+================================+=======+ 1656| DW_AT_APPLE_PROPERTY_readonly | 0x1 | 1657+--------------------------------+-------+ 1658| DW_AT_APPLE_PROPERTY_readwrite | 0x2 | 1659+--------------------------------+-------+ 1660| DW_AT_APPLE_PROPERTY_assign | 0x4 | 1661+--------------------------------+-------+ 1662| DW_AT_APPLE_PROPERTY_retain | 0x8 | 1663+--------------------------------+-------+ 1664| DW_AT_APPLE_PROPERTY_copy | 0x10 | 1665+--------------------------------+-------+ 1666| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 | 1667+--------------------------------+-------+ 1668 1669Name Accelerator Tables 1670----------------------- 1671 1672Introduction 1673^^^^^^^^^^^^ 1674 1675The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a 1676debugger needs. The "``pub``" in the section name indicates that the entries 1677in the table are publicly visible names only. This means no static or hidden 1678functions show up in the "``.debug_pubnames``". No static variables or private 1679class variables are in the "``.debug_pubtypes``". Many compilers add different 1680things to these tables, so we can't rely upon the contents between gcc, icc, or 1681clang. 1682 1683The typical query given by users tends not to match up with the contents of 1684these tables. For example, the DWARF spec states that "In the case of the name 1685of a function member or static data member of a C++ structure, class or union, 1686the name presented in the "``.debug_pubnames``" section is not the simple name 1687given by the ``DW_AT_name attribute`` of the referenced debugging information 1688entry, but rather the fully qualified name of the data or function member." 1689So the only names in these tables for complex C++ entries is a fully 1690qualified name. Debugger users tend not to enter their search strings as 1691"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or 1692"``a::b::c``". So the name entered in the name table must be demangled in 1693order to chop it up appropriately and additional names must be manually entered 1694into the table to make it effective as a name lookup table for debuggers to 1695se. 1696 1697All debuggers currently ignore the "``.debug_pubnames``" table as a result of 1698its inconsistent and useless public-only name content making it a waste of 1699space in the object file. These tables, when they are written to disk, are not 1700sorted in any way, leaving every debugger to do its own parsing and sorting. 1701These tables also include an inlined copy of the string values in the table 1702itself making the tables much larger than they need to be on disk, especially 1703for large C++ programs. 1704 1705Can't we just fix the sections by adding all of the names we need to this 1706table? No, because that is not what the tables are defined to contain and we 1707won't know the difference between the old bad tables and the new good tables. 1708At best we could make our own renamed sections that contain all of the data we 1709need. 1710 1711These tables are also insufficient for what a debugger like LLDB needs. LLDB 1712uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then 1713often asked to look for type "``foo``" or namespace "``bar``", or list items in 1714namespace "``baz``". Namespaces are not included in the pubnames or pubtypes 1715tables. Since clang asks a lot of questions when it is parsing an expression, 1716we need to be very fast when looking up names, as it happens a lot. Having new 1717accelerator tables that are optimized for very quick lookups will benefit this 1718type of debugging experience greatly. 1719 1720We would like to generate name lookup tables that can be mapped into memory 1721from disk, and used as is, with little or no up-front parsing. We would also 1722be able to control the exact content of these different tables so they contain 1723exactly what we need. The Name Accelerator Tables were designed to fix these 1724issues. In order to solve these issues we need to: 1725 1726* Have a format that can be mapped into memory from disk and used as is 1727* Lookups should be very fast 1728* Extensible table format so these tables can be made by many producers 1729* Contain all of the names needed for typical lookups out of the box 1730* Strict rules for the contents of tables 1731 1732Table size is important and the accelerator table format should allow the reuse 1733of strings from common string tables so the strings for the names are not 1734duplicated. We also want to make sure the table is ready to be used as-is by 1735simply mapping the table into memory with minimal header parsing. 1736 1737The name lookups need to be fast and optimized for the kinds of lookups that 1738debuggers tend to do. Optimally we would like to touch as few parts of the 1739mapped table as possible when doing a name lookup and be able to quickly find 1740the name entry we are looking for, or discover there are no matches. In the 1741case of debuggers we optimized for lookups that fail most of the time. 1742 1743Each table that is defined should have strict rules on exactly what is in the 1744accelerator tables and documented so clients can rely on the content. 1745 1746Hash Tables 1747^^^^^^^^^^^ 1748 1749Standard Hash Tables 1750"""""""""""""""""""" 1751 1752Typical hash tables have a header, buckets, and each bucket points to the 1753bucket contents: 1754 1755.. code-block:: none 1756 1757 .------------. 1758 | HEADER | 1759 |------------| 1760 | BUCKETS | 1761 |------------| 1762 | DATA | 1763 `------------' 1764 1765The BUCKETS are an array of offsets to DATA for each hash: 1766 1767.. code-block:: none 1768 1769 .------------. 1770 | 0x00001000 | BUCKETS[0] 1771 | 0x00002000 | BUCKETS[1] 1772 | 0x00002200 | BUCKETS[2] 1773 | 0x000034f0 | BUCKETS[3] 1774 | | ... 1775 | 0xXXXXXXXX | BUCKETS[n_buckets] 1776 '------------' 1777 1778So for ``bucket[3]`` in the example above, we have an offset into the table 17790x000034f0 which points to a chain of entries for the bucket. Each bucket must 1780contain a next pointer, full 32 bit hash value, the string itself, and the data 1781for the current string value. 1782 1783.. code-block:: none 1784 1785 .------------. 1786 0x000034f0: | 0x00003500 | next pointer 1787 | 0x12345678 | 32 bit hash 1788 | "erase" | string value 1789 | data[n] | HashData for this bucket 1790 |------------| 1791 0x00003500: | 0x00003550 | next pointer 1792 | 0x29273623 | 32 bit hash 1793 | "dump" | string value 1794 | data[n] | HashData for this bucket 1795 |------------| 1796 0x00003550: | 0x00000000 | next pointer 1797 | 0x82638293 | 32 bit hash 1798 | "main" | string value 1799 | data[n] | HashData for this bucket 1800 `------------' 1801 1802The problem with this layout for debuggers is that we need to optimize for the 1803negative lookup case where the symbol we're searching for is not present. So 1804if we were to lookup "``printf``" in the table above, we would make a 32 hash 1805for "``printf``", it might match ``bucket[3]``. We would need to go to the 1806offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do 1807so, we need to read the next pointer, then read the hash, compare it, and skip 1808to the next bucket. Each time we are skipping many bytes in memory and 1809touching new cache pages just to do the compare on the full 32 bit hash. All 1810of these accesses then tell us that we didn't have a match. 1811 1812Name Hash Tables 1813"""""""""""""""" 1814 1815To solve the issues mentioned above we have structured the hash tables a bit 1816differently: a header, buckets, an array of all unique 32 bit hash values, 1817followed by an array of hash value data offsets, one for each hash value, then 1818the data for all hash values: 1819 1820.. code-block:: none 1821 1822 .-------------. 1823 | HEADER | 1824 |-------------| 1825 | BUCKETS | 1826 |-------------| 1827 | HASHES | 1828 |-------------| 1829 | OFFSETS | 1830 |-------------| 1831 | DATA | 1832 `-------------' 1833 1834The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By 1835making all of the full 32 bit hash values contiguous in memory, we allow 1836ourselves to efficiently check for a match while touching as little memory as 1837possible. Most often checking the 32 bit hash values is as far as the lookup 1838goes. If it does match, it usually is a match with no collisions. So for a 1839table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash 1840values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and 1841``OFFSETS`` as: 1842 1843.. code-block:: none 1844 1845 .-------------------------. 1846 | HEADER.magic | uint32_t 1847 | HEADER.version | uint16_t 1848 | HEADER.hash_function | uint16_t 1849 | HEADER.bucket_count | uint32_t 1850 | HEADER.hashes_count | uint32_t 1851 | HEADER.header_data_len | uint32_t 1852 | HEADER_DATA | HeaderData 1853 |-------------------------| 1854 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes 1855 |-------------------------| 1856 | HASHES | uint32_t[n_hashes] // 32 bit hash values 1857 |-------------------------| 1858 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data 1859 |-------------------------| 1860 | ALL HASH DATA | 1861 `-------------------------' 1862 1863So taking the exact same data from the standard hash example above we end up 1864with: 1865 1866.. code-block:: none 1867 1868 .------------. 1869 | HEADER | 1870 |------------| 1871 | 0 | BUCKETS[0] 1872 | 2 | BUCKETS[1] 1873 | 5 | BUCKETS[2] 1874 | 6 | BUCKETS[3] 1875 | | ... 1876 | ... | BUCKETS[n_buckets] 1877 |------------| 1878 | 0x........ | HASHES[0] 1879 | 0x........ | HASHES[1] 1880 | 0x........ | HASHES[2] 1881 | 0x........ | HASHES[3] 1882 | 0x........ | HASHES[4] 1883 | 0x........ | HASHES[5] 1884 | 0x12345678 | HASHES[6] hash for BUCKETS[3] 1885 | 0x29273623 | HASHES[7] hash for BUCKETS[3] 1886 | 0x82638293 | HASHES[8] hash for BUCKETS[3] 1887 | 0x........ | HASHES[9] 1888 | 0x........ | HASHES[10] 1889 | 0x........ | HASHES[11] 1890 | 0x........ | HASHES[12] 1891 | 0x........ | HASHES[13] 1892 | 0x........ | HASHES[n_hashes] 1893 |------------| 1894 | 0x........ | OFFSETS[0] 1895 | 0x........ | OFFSETS[1] 1896 | 0x........ | OFFSETS[2] 1897 | 0x........ | OFFSETS[3] 1898 | 0x........ | OFFSETS[4] 1899 | 0x........ | OFFSETS[5] 1900 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3] 1901 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3] 1902 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3] 1903 | 0x........ | OFFSETS[9] 1904 | 0x........ | OFFSETS[10] 1905 | 0x........ | OFFSETS[11] 1906 | 0x........ | OFFSETS[12] 1907 | 0x........ | OFFSETS[13] 1908 | 0x........ | OFFSETS[n_hashes] 1909 |------------| 1910 | | 1911 | | 1912 | | 1913 | | 1914 | | 1915 |------------| 1916 0x000034f0: | 0x00001203 | .debug_str ("erase") 1917 | 0x00000004 | A 32 bit array count - number of HashData with name "erase" 1918 | 0x........ | HashData[0] 1919 | 0x........ | HashData[1] 1920 | 0x........ | HashData[2] 1921 | 0x........ | HashData[3] 1922 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1923 |------------| 1924 0x00003500: | 0x00001203 | String offset into .debug_str ("collision") 1925 | 0x00000002 | A 32 bit array count - number of HashData with name "collision" 1926 | 0x........ | HashData[0] 1927 | 0x........ | HashData[1] 1928 | 0x00001203 | String offset into .debug_str ("dump") 1929 | 0x00000003 | A 32 bit array count - number of HashData with name "dump" 1930 | 0x........ | HashData[0] 1931 | 0x........ | HashData[1] 1932 | 0x........ | HashData[2] 1933 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1934 |------------| 1935 0x00003550: | 0x00001203 | String offset into .debug_str ("main") 1936 | 0x00000009 | A 32 bit array count - number of HashData with name "main" 1937 | 0x........ | HashData[0] 1938 | 0x........ | HashData[1] 1939 | 0x........ | HashData[2] 1940 | 0x........ | HashData[3] 1941 | 0x........ | HashData[4] 1942 | 0x........ | HashData[5] 1943 | 0x........ | HashData[6] 1944 | 0x........ | HashData[7] 1945 | 0x........ | HashData[8] 1946 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1947 `------------' 1948 1949So we still have all of the same data, we just organize it more efficiently for 1950debugger lookup. If we repeat the same "``printf``" lookup from above, we 1951would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit 1952hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which 1953is the index into the ``HASHES`` table. We would then compare any consecutive 195432 bit hashes values in the ``HASHES`` array as long as the hashes would be in 1955``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo 1956``n_buckets`` is still 3. In the case of a failed lookup we would access the 1957memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes 1958before we know that we have no match. We don't end up marching through 1959multiple words of memory and we really keep the number of processor data cache 1960lines being accessed as small as possible. 1961 1962The string hash that is used for these lookup tables is the Daniel J. 1963Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a 1964very good hash for all kinds of names in programs with very few hash 1965collisions. 1966 1967Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``. 1968 1969Details 1970^^^^^^^ 1971 1972These name hash tables are designed to be generic where specializations of the 1973table get to define additional data that goes into the header ("``HeaderData``"), 1974how the string value is stored ("``KeyType``") and the content of the data for each 1975hash value. 1976 1977Header Layout 1978""""""""""""" 1979 1980The header has a fixed part, and the specialized part. The exact format of the 1981header is: 1982 1983.. code-block:: c 1984 1985 struct Header 1986 { 1987 uint32_t magic; // 'HASH' magic value to allow endian detection 1988 uint16_t version; // Version number 1989 uint16_t hash_function; // The hash function enumeration that was used 1990 uint32_t bucket_count; // The number of buckets in this hash table 1991 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table 1992 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment 1993 // Specifically the length of the following HeaderData field - this does not 1994 // include the size of the preceding fields 1995 HeaderData header_data; // Implementation specific header data 1996 }; 1997 1998The header starts with a 32 bit "``magic``" value which must be ``'HASH'`` 1999encoded as an ASCII integer. This allows the detection of the start of the 2000hash table and also allows the table's byte order to be determined so the table 2001can be correctly extracted. The "``magic``" value is followed by a 16 bit 2002``version`` number which allows the table to be revised and modified in the 2003future. The current version number is 1. ``hash_function`` is a ``uint16_t`` 2004enumeration that specifies which hash function was used to produce this table. 2005The current values for the hash function enumerations include: 2006 2007.. code-block:: c 2008 2009 enum HashFunctionType 2010 { 2011 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function 2012 }; 2013 2014``bucket_count`` is a 32 bit unsigned integer that represents how many buckets 2015are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit 2016hash values that are in the ``HASHES`` array, and is the same number of offsets 2017are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size 2018in bytes of the ``HeaderData`` that is filled in by specialized versions of 2019this table. 2020 2021Fixed Lookup 2022"""""""""""" 2023 2024The header is followed by the buckets, hashes, offsets, and hash value data. 2025 2026.. code-block:: c 2027 2028 struct FixedTable 2029 { 2030 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below 2031 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table 2032 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above 2033 }; 2034 2035``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The 2036``hashes`` array contains all of the 32 bit hash values for all names in the 2037hash table. Each hash in the ``hashes`` table has an offset in the ``offsets`` 2038array that points to the data for the hash value. 2039 2040This table setup makes it very easy to repurpose these tables to contain 2041different data, while keeping the lookup mechanism the same for all tables. 2042This layout also makes it possible to save the table to disk and map it in 2043later and do very efficient name lookups with little or no parsing. 2044 2045DWARF lookup tables can be implemented in a variety of ways and can store a lot 2046of information for each name. We want to make the DWARF tables extensible and 2047able to store the data efficiently so we have used some of the DWARF features 2048that enable efficient data storage to define exactly what kind of data we store 2049for each name. 2050 2051The ``HeaderData`` contains a definition of the contents of each HashData chunk. 2052We might want to store an offset to all of the debug information entries (DIEs) 2053for each name. To keep things extensible, we create a list of items, or 2054Atoms, that are contained in the data for each name. First comes the type of 2055the data in each atom: 2056 2057.. code-block:: c 2058 2059 enum AtomType 2060 { 2061 eAtomTypeNULL = 0u, 2062 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding 2063 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question 2064 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2 2065 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags 2066 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags 2067 }; 2068 2069The enumeration values and their meanings are: 2070 2071.. code-block:: none 2072 2073 eAtomTypeNULL - a termination atom that specifies the end of the atom list 2074 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name 2075 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE 2076 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is 2077 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...) 2078 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...) 2079 2080Then we allow each atom type to define the atom type and how the data for each 2081atom type data is encoded: 2082 2083.. code-block:: c 2084 2085 struct Atom 2086 { 2087 uint16_t type; // AtomType enum value 2088 uint16_t form; // DWARF DW_FORM_XXX defines 2089 }; 2090 2091The ``form`` type above is from the DWARF specification and defines the exact 2092encoding of the data for the Atom type. See the DWARF specification for the 2093``DW_FORM_`` definitions. 2094 2095.. code-block:: c 2096 2097 struct HeaderData 2098 { 2099 uint32_t die_offset_base; 2100 uint32_t atom_count; 2101 Atoms atoms[atom_count0]; 2102 }; 2103 2104``HeaderData`` defines the base DIE offset that should be added to any atoms 2105that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``, 2106``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines 2107what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large 2108each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data 2109should be interpreted. 2110 2111For the current implementations of the "``.apple_names``" (all functions + 2112globals), the "``.apple_types``" (names of all types that are defined), and 2113the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom`` 2114array to be: 2115 2116.. code-block:: c 2117 2118 HeaderData.atom_count = 1; 2119 HeaderData.atoms[0].type = eAtomTypeDIEOffset; 2120 HeaderData.atoms[0].form = DW_FORM_data4; 2121 2122This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is 2123encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have 2124multiple matching DIEs in a single file, which could come up with an inlined 2125function for instance. Future tables could include more information about the 2126DIE such as flags indicating if the DIE is a function, method, block, 2127or inlined. 2128 2129The KeyType for the DWARF table is a 32 bit string table offset into the 2130".debug_str" table. The ".debug_str" is the string table for the DWARF which 2131may already contain copies of all of the strings. This helps make sure, with 2132help from the compiler, that we reuse the strings between all of the DWARF 2133sections and keeps the hash table size down. Another benefit to having the 2134compiler generate all strings as DW_FORM_strp in the debug info, is that 2135DWARF parsing can be made much faster. 2136 2137After a lookup is made, we get an offset into the hash data. The hash data 2138needs to be able to deal with 32 bit hash collisions, so the chunk of data 2139at the offset in the hash data consists of a triple: 2140 2141.. code-block:: c 2142 2143 uint32_t str_offset 2144 uint32_t hash_data_count 2145 HashData[hash_data_count] 2146 2147If "str_offset" is zero, then the bucket contents are done. 99.9% of the 2148hash data chunks contain a single item (no 32 bit hash collision): 2149 2150.. code-block:: none 2151 2152 .------------. 2153 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2154 | 0x00000004 | uint32_t HashData count 2155 | 0x........ | uint32_t HashData[0] DIE offset 2156 | 0x........ | uint32_t HashData[1] DIE offset 2157 | 0x........ | uint32_t HashData[2] DIE offset 2158 | 0x........ | uint32_t HashData[3] DIE offset 2159 | 0x00000000 | uint32_t KeyType (end of hash chain) 2160 `------------' 2161 2162If there are collisions, you will have multiple valid string offsets: 2163 2164.. code-block:: none 2165 2166 .------------. 2167 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2168 | 0x00000004 | uint32_t HashData count 2169 | 0x........ | uint32_t HashData[0] DIE offset 2170 | 0x........ | uint32_t HashData[1] DIE offset 2171 | 0x........ | uint32_t HashData[2] DIE offset 2172 | 0x........ | uint32_t HashData[3] DIE offset 2173 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print") 2174 | 0x00000002 | uint32_t HashData count 2175 | 0x........ | uint32_t HashData[0] DIE offset 2176 | 0x........ | uint32_t HashData[1] DIE offset 2177 | 0x00000000 | uint32_t KeyType (end of hash chain) 2178 `------------' 2179 2180Current testing with real world C++ binaries has shown that there is around 1 218132 bit hash collision per 100,000 name entries. 2182 2183Contents 2184^^^^^^^^ 2185 2186As we said, we want to strictly define exactly what is included in the 2187different tables. For DWARF, we have 3 tables: "``.apple_names``", 2188"``.apple_types``", and "``.apple_namespaces``". 2189 2190"``.apple_names``" sections should contain an entry for each DWARF DIE whose 2191``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or 2192``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``, 2193``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains 2194``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and 2195static variables). All global and static variables should be included, 2196including those scoped within functions and classes. For example using the 2197following code: 2198 2199.. code-block:: c 2200 2201 static int var = 0; 2202 2203 void f () 2204 { 2205 static int var = 0; 2206 } 2207 2208Both of the static ``var`` variables would be included in the table. All 2209functions should emit both their full names and their basenames. For C or C++, 2210the full name is the mangled name (if available) which is usually in the 2211``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the 2212function basename. If global or static variables have a mangled name in a 2213``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the 2214simple name found in the ``DW_AT_name`` attribute. 2215 2216"``.apple_types``" sections should contain an entry for each DWARF DIE whose 2217tag is one of: 2218 2219* DW_TAG_array_type 2220* DW_TAG_class_type 2221* DW_TAG_enumeration_type 2222* DW_TAG_pointer_type 2223* DW_TAG_reference_type 2224* DW_TAG_string_type 2225* DW_TAG_structure_type 2226* DW_TAG_subroutine_type 2227* DW_TAG_typedef 2228* DW_TAG_union_type 2229* DW_TAG_ptr_to_member_type 2230* DW_TAG_set_type 2231* DW_TAG_subrange_type 2232* DW_TAG_base_type 2233* DW_TAG_const_type 2234* DW_TAG_constant 2235* DW_TAG_file_type 2236* DW_TAG_namelist 2237* DW_TAG_packed_type 2238* DW_TAG_volatile_type 2239* DW_TAG_restrict_type 2240* DW_TAG_interface_type 2241* DW_TAG_unspecified_type 2242* DW_TAG_shared_type 2243 2244Only entries with a ``DW_AT_name`` attribute are included, and the entry must 2245not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero 2246value). For example, using the following code: 2247 2248.. code-block:: c 2249 2250 int main () 2251 { 2252 int *b = 0; 2253 return *b; 2254 } 2255 2256We get a few type DIEs: 2257 2258.. code-block:: none 2259 2260 0x00000067: TAG_base_type [5] 2261 AT_encoding( DW_ATE_signed ) 2262 AT_name( "int" ) 2263 AT_byte_size( 0x04 ) 2264 2265 0x0000006e: TAG_pointer_type [6] 2266 AT_type( {0x00000067} ( int ) ) 2267 AT_byte_size( 0x08 ) 2268 2269The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``. 2270 2271"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs. 2272If we run into a namespace that has no name this is an anonymous namespace, and 2273the name should be output as "``(anonymous namespace)``" (without the quotes). 2274Why? This matches the output of the ``abi::cxa_demangle()`` that is in the 2275standard C++ library that demangles mangled names. 2276 2277 2278Language Extensions and File Format Changes 2279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2280 2281Objective-C Extensions 2282"""""""""""""""""""""" 2283 2284"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an 2285Objective-C class. The name used in the hash table is the name of the 2286Objective-C class itself. If the Objective-C class has a category, then an 2287entry is made for both the class name without the category, and for the class 2288name with the category. So if we have a DIE at offset 0x1234 with a name of 2289method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add 2290an entry for "``NSString``" that points to DIE 0x1234, and an entry for 2291"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly 2292track down all Objective-C methods for an Objective-C class when doing 2293expressions. It is needed because of the dynamic nature of Objective-C where 2294anyone can add methods to a class. The DWARF for Objective-C methods is also 2295emitted differently from C++ classes where the methods are not usually 2296contained in the class definition, they are scattered about across one or more 2297compile units. Categories can also be defined in different shared libraries. 2298So we need to be able to quickly find all of the methods and class functions 2299given the Objective-C class name, or quickly find all methods and class 2300functions for a class + category name. This table does not contain any 2301selector names, it just maps Objective-C class names (or class names + 2302category) to all of the methods and class functions. The selectors are added 2303as function basenames in the "``.debug_names``" section. 2304 2305In the "``.apple_names``" section for Objective-C functions, the full name is 2306the entire function name with the brackets ("``-[NSString 2307stringWithCString:]``") and the basename is the selector only 2308("``stringWithCString:``"). 2309 2310Mach-O Changes 2311"""""""""""""" 2312 2313The sections names for the apple hash tables are for non-mach-o files. For 2314mach-o files, the sections should be contained in the ``__DWARF`` segment with 2315names as follows: 2316 2317* "``.apple_names``" -> "``__apple_names``" 2318* "``.apple_types``" -> "``__apple_types``" 2319* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit) 2320* "``.apple_objc``" -> "``__apple_objc``" 2321 2322