1================================ 2Source Level Debugging with LLVM 3================================ 4 5.. contents:: 6 :local: 7 8Introduction 9============ 10 11This document is the central repository for all information pertaining to debug 12information in LLVM. It describes the :ref:`actual format that the LLVM debug 13information takes <format>`, which is useful for those interested in creating 14front-ends or dealing directly with the information. Further, this document 15provides specific examples of what debug information for C/C++ looks like. 16 17Philosophy behind LLVM debugging information 18-------------------------------------------- 19 20The idea of the LLVM debugging information is to capture how the important 21pieces of the source-language's Abstract Syntax Tree map onto LLVM code. 22Several design aspects have shaped the solution that appears here. The 23important ones are: 24 25* Debugging information should have very little impact on the rest of the 26 compiler. No transformations, analyses, or code generators should need to 27 be modified because of debugging information. 28 29* LLVM optimizations should interact in :ref:`well-defined and easily described 30 ways <intro_debugopt>` with the debugging information. 31 32* Because LLVM is designed to support arbitrary programming languages, 33 LLVM-to-LLVM tools should not need to know anything about the semantics of 34 the source-level-language. 35 36* Source-level languages are often **widely** different from one another. 37 LLVM should not put any restrictions of the flavor of the source-language, 38 and the debugging information should work with any language. 39 40* With code generator support, it should be possible to use an LLVM compiler 41 to compile a program to native machine code and standard debugging 42 formats. This allows compatibility with traditional machine-code level 43 debuggers, like GDB or DBX. 44 45The approach used by the LLVM implementation is to use a small set of 46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping 47between LLVM program objects and the source-level objects. The description of 48the source-level program is maintained in LLVM metadata in an 49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end 50currently uses working draft 7 of the `DWARF 3 standard 51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_). 52 53When a program is being debugged, a debugger interacts with the user and turns 54the stored debug information into source-language specific information. As 55such, a debugger must be aware of the source-language, and is thus tied to a 56specific language or family of languages. 57 58Debug information consumers 59--------------------------- 60 61The role of debug information is to provide meta information normally stripped 62away during the compilation process. This meta information provides an LLVM 63user a relationship between generated code and the original program source 64code. 65 66Currently, debug information is consumed by DwarfDebug to produce dwarf 67information used by the gdb debugger. Other targets could use the same 68information to produce stabs or other debug forms. 69 70It would also be reasonable to use debug information to feed profiling tools 71for analysis of generated code, or, tools for reconstructing the original 72source from generated code. 73 74TODO - expound a bit more. 75 76.. _intro_debugopt: 77 78Debugging optimized code 79------------------------ 80 81An extremely high priority of LLVM debugging information is to make it interact 82well with optimizations and analysis. In particular, the LLVM debug 83information provides the following guarantees: 84 85* LLVM debug information **always provides information to accurately read 86 the source-level state of the program**, regardless of which LLVM 87 optimizations have been run, and without any modification to the 88 optimizations themselves. However, some optimizations may impact the 89 ability to modify the current state of the program with a debugger, such 90 as setting program variables, or calling functions that have been 91 deleted. 92 93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM 94 debugging information, allowing them to update the debugging information 95 as they perform aggressive optimizations. This means that, with effort, 96 the LLVM optimizers could optimize debug code just as well as non-debug 97 code. 98 99* LLVM debug information does not prevent optimizations from 100 happening (for example inlining, basic block reordering/merging/cleanup, 101 tail duplication, etc). 102 103* LLVM debug information is automatically optimized along with the rest of 104 the program, using existing facilities. For example, duplicate 105 information is automatically merged by the linker, and unused information 106 is automatically removed. 107 108Basically, the debug information allows you to compile a program with 109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify 110the program as it executes from a debugger. Compiling a program with 111"``-O3 -g``" gives you full debug information that is always available and 112accurate for reading (e.g., you get accurate stack traces despite tail call 113elimination and inlining), but you might lose the ability to modify the program 114and call functions where were optimized out of the program, or inlined away 115completely. 116 117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test 118optimizer's handling of debugging information. It can be run like this: 119 120.. code-block:: bash 121 122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level 123 % make TEST=dbgopt 124 125This will test impact of debugging information on optimization passes. If 126debugging information influences optimization passes then it will be reported 127as a failure. See :doc:`TestingGuide` for more information on LLVM test 128infrastructure and how to run various tests. 129 130.. _format: 131 132Debugging information format 133============================ 134 135LLVM debugging information has been carefully designed to make it possible for 136the optimizer to optimize the program and debugging information without 137necessarily having to know anything about debugging information. In 138particular, the use of metadata avoids duplicated debugging information from 139the beginning, and the global dead code elimination pass automatically deletes 140debugging information for a function if it decides to delete the function. 141 142To do this, most of the debugging information (descriptors for types, 143variables, functions, source files, etc) is inserted by the language front-end 144in the form of LLVM metadata. 145 146Debug information is designed to be agnostic about the target debugger and 147debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic 148pass to decode the information that represents variables, types, functions, 149namespaces, etc: this allows for arbitrary source-language semantics and 150type-systems to be used, as long as there is a module written for the target 151debugger to interpret the information. 152 153To provide basic functionality, the LLVM debugger does have to make some 154assumptions about the source-level language being debugged, though it keeps 155these to a minimum. The only common features that the LLVM debugger assumes 156exist are :ref:`source files <format_files>`, and :ref:`program objects 157<format_global_variables>`. These abstract objects are used by a debugger to 158form stack traces, show information about local variables, etc. 159 160This section of the documentation first describes the representation aspects 161common to any source-language. :ref:`ccxx_frontend` describes the data layout 162conventions used by the C and C++ front-ends. 163 164Debug information descriptors 165----------------------------- 166 167In consideration of the complexity and volume of debug information, LLVM 168provides a specification for well formed debug descriptors. 169 170Consumers of LLVM debug information expect the descriptors for program objects 171to start in a canonical format, but the descriptors can include additional 172information appended at the end that is source-language specific. All debugging 173information objects start with a tag to indicate what type of object it is. 174The source-language is allowed to define its own objects, by using unreserved 175tag numbers. We recommend using with tags in the range 0x1000 through 0x2000 176(there is a defined ``enum DW_TAG_user_base = 0x1000``.) 177 178The fields of debug descriptors used internally by LLVM are restricted to only 179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and 180``mdnode``. 181 182.. code-block:: llvm 183 184 !1 = metadata !{ 185 i32, ;; A tag 186 ... 187 } 188 189<a name="LLVMDebugVersion">The first field of a descriptor is always an 190``i32`` containing a tag value identifying the content of the descriptor. 191The remaining fields are specific to the descriptor. The values of tags are 192loosely bound to the tag values of DWARF information entries. However, that 193does not restrict the use of the information supplied to DWARF targets. 194 195The details of the various descriptors follow. 196 197Compile unit descriptors 198^^^^^^^^^^^^^^^^^^^^^^^^ 199 200.. code-block:: llvm 201 202 !0 = metadata !{ 203 i32, ;; Tag = 17 (DW_TAG_compile_unit) 204 metadata, ;; Source directory (including trailing slash) & file pair 205 i32, ;; DWARF language identifier (ex. DW_LANG_C89) 206 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)") 207 i1, ;; True if this is optimized. 208 metadata, ;; Flags 209 i32 ;; Runtime version 210 metadata ;; List of enums types 211 metadata ;; List of retained types 212 metadata ;; List of subprograms 213 metadata ;; List of global variables 214 metadata ;; List of imported entities 215 metadata ;; Split debug filename 216 } 217 218These descriptors contain a source language ID for the file (we use the DWARF 2193.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``, 220``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of 221strings for the source file name and the working directory, as well as an 222identifier string for the compiler that produced it. 223 224Compile unit descriptors provide the root context for objects declared in a 225specific compilation unit. File descriptors are defined using this context. 226These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They 227keep track of subprograms, global variables, type information, and imported 228entities (declarations and namespaces). 229 230.. _format_files: 231 232File descriptors 233^^^^^^^^^^^^^^^^ 234 235.. code-block:: llvm 236 237 !0 = metadata !{ 238 i32, ;; Tag = 41 (DW_TAG_file_type) 239 metadata, ;; Source directory (including trailing slash) & file pair 240 } 241 242These descriptors contain information for a file. Global variables and top 243level functions would be defined using this context. File descriptors also 244provide context for source line correspondence. 245 246Each input file is encoded as a separate file descriptor in LLVM debugging 247information output. 248 249.. _format_global_variables: 250 251Global variable descriptors 252^^^^^^^^^^^^^^^^^^^^^^^^^^^ 253 254.. code-block:: llvm 255 256 !1 = metadata !{ 257 i32, ;; Tag = 52 (DW_TAG_variable) 258 i32, ;; Unused field. 259 metadata, ;; Reference to context descriptor 260 metadata, ;; Name 261 metadata, ;; Display name (fully qualified C++ name) 262 metadata, ;; MIPS linkage name (for C++) 263 metadata, ;; Reference to file where defined 264 i32, ;; Line number where defined 265 metadata, ;; Reference to type descriptor 266 i1, ;; True if the global is local to compile unit (static) 267 i1, ;; True if the global is defined in the compile unit (not extern) 268 {}*, ;; Reference to the global variable 269 metadata, ;; The static member declaration, if any 270 } 271 272These descriptors provide debug information about globals variables. They 273provide details such as name, type and where the variable is defined. All 274global variables are collected inside the named metadata ``!llvm.dbg.cu``. 275 276.. _format_subprograms: 277 278Subprogram descriptors 279^^^^^^^^^^^^^^^^^^^^^^ 280 281.. code-block:: llvm 282 283 !2 = metadata !{ 284 i32, ;; Tag = 46 (DW_TAG_subprogram) 285 metadata, ;; Source directory (including trailing slash) & file pair 286 metadata, ;; Reference to context descriptor 287 metadata, ;; Name 288 metadata, ;; Display name (fully qualified C++ name) 289 metadata, ;; MIPS linkage name (for C++) 290 i32, ;; Line number where defined 291 metadata, ;; Reference to type descriptor 292 i1, ;; True if the global is local to compile unit (static) 293 i1, ;; True if the global is defined in the compile unit (not extern) 294 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual 295 i32, ;; Index into a virtual function 296 metadata, ;; indicates which base type contains the vtable pointer for the 297 ;; derived class 298 i32, ;; Flags - Artifical, Private, Protected, Explicit, Prototyped. 299 i1, ;; isOptimized 300 Function * , ;; Pointer to LLVM function 301 metadata, ;; Lists function template parameters 302 metadata, ;; Function declaration descriptor 303 metadata, ;; List of function variables 304 i32 ;; Line number where the scope of the subprogram begins 305 } 306 307These descriptors provide debug information about functions, methods and 308subprograms. They provide details such as name, return types and the source 309location where the subprogram is defined. 310 311Block descriptors 312^^^^^^^^^^^^^^^^^ 313 314.. code-block:: llvm 315 316 !3 = metadata !{ 317 i32, ;; Tag = 11 (DW_TAG_lexical_block) 318 metadata,;; Source directory (including trailing slash) & file pair 319 metadata,;; Reference to context descriptor 320 i32, ;; Line number 321 i32, ;; Column number 322 i32 ;; Unique ID to identify blocks from a template function 323 } 324 325This descriptor provides debug information about nested blocks within a 326subprogram. The line number and column numbers are used to dinstinguish two 327lexical blocks at same depth. 328 329.. code-block:: llvm 330 331 !3 = metadata !{ 332 i32, ;; Tag = 11 (DW_TAG_lexical_block) 333 metadata,;; Source directory (including trailing slash) & file pair 334 metadata ;; Reference to the scope we're annotating with a file change 335 } 336 337This descriptor provides a wrapper around a lexical scope to handle file 338changes in the middle of a lexical block. 339 340.. _format_basic_type: 341 342Basic type descriptors 343^^^^^^^^^^^^^^^^^^^^^^ 344 345.. code-block:: llvm 346 347 !4 = metadata !{ 348 i32, ;; Tag = 36 (DW_TAG_base_type) 349 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 350 metadata, ;; Reference to context 351 metadata, ;; Name (may be "" for anonymous types) 352 i32, ;; Line number where defined (may be 0) 353 i64, ;; Size in bits 354 i64, ;; Alignment in bits 355 i64, ;; Offset in bits 356 i32, ;; Flags 357 i32 ;; DWARF type encoding 358 } 359 360These descriptors define primitive types used in the code. Example ``int``, 361``bool`` and ``float``. The context provides the scope of the type, which is 362usually the top level. Since basic types are not usually user defined the 363context and line number can be left as NULL and 0. The size, alignment and 364offset are expressed in bits and can be 64 bit values. The alignment is used 365to round the offset when embedded in a :ref:`composite type 366<format_composite_type>` (example to keep float doubles on 64 bit boundaries). 367The offset is the bit offset if embedded in a :ref:`composite type 368<format_composite_type>`. 369 370The type encoding provides the details of the type. The values are typically 371one of the following: 372 373.. code-block:: llvm 374 375 DW_ATE_address = 1 376 DW_ATE_boolean = 2 377 DW_ATE_float = 4 378 DW_ATE_signed = 5 379 DW_ATE_signed_char = 6 380 DW_ATE_unsigned = 7 381 DW_ATE_unsigned_char = 8 382 383.. _format_derived_type: 384 385Derived type descriptors 386^^^^^^^^^^^^^^^^^^^^^^^^ 387 388.. code-block:: llvm 389 390 !5 = metadata !{ 391 i32, ;; Tag (see below) 392 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 393 metadata, ;; Reference to context 394 metadata, ;; Name (may be "" for anonymous types) 395 i32, ;; Line number where defined (may be 0) 396 i64, ;; Size in bits 397 i64, ;; Alignment in bits 398 i64, ;; Offset in bits 399 i32, ;; Flags to encode attributes, e.g. private 400 metadata, ;; Reference to type derived from 401 metadata, ;; (optional) Name of the Objective C property associated with 402 ;; Objective-C an ivar, or the type of which this 403 ;; pointer-to-member is pointing to members of. 404 metadata, ;; (optional) Name of the Objective C property getter selector. 405 metadata, ;; (optional) Name of the Objective C property setter selector. 406 i32 ;; (optional) Objective C property attributes. 407 } 408 409These descriptors are used to define types derived from other types. The value 410of the tag varies depending on the meaning. The following are possible tag 411values: 412 413.. code-block:: llvm 414 415 DW_TAG_formal_parameter = 5 416 DW_TAG_member = 13 417 DW_TAG_pointer_type = 15 418 DW_TAG_reference_type = 16 419 DW_TAG_typedef = 22 420 DW_TAG_ptr_to_member_type = 31 421 DW_TAG_const_type = 38 422 DW_TAG_volatile_type = 53 423 DW_TAG_restrict_type = 55 424 425``DW_TAG_member`` is used to define a member of a :ref:`composite type 426<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type 427of the member is the :ref:`derived type <format_derived_type>`. 428``DW_TAG_formal_parameter`` is used to define a member which is a formal 429argument of a subprogram. 430 431``DW_TAG_typedef`` is used to provide a name for the derived type. 432 433``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``, 434``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the 435:ref:`derived type <format_derived_type>`. 436 437:ref:`Derived type <format_derived_type>` location can be determined from the 438context and line number. The size, alignment and offset are expressed in bits 439and can be 64 bit values. The alignment is used to round the offset when 440embedded in a :ref:`composite type <format_composite_type>` (example to keep 441float doubles on 64 bit boundaries.) The offset is the bit offset if embedded 442in a :ref:`composite type <format_composite_type>`. 443 444Note that the ``void *`` type is expressed as a type derived from NULL. 445 446.. _format_composite_type: 447 448Composite type descriptors 449^^^^^^^^^^^^^^^^^^^^^^^^^^ 450 451.. code-block:: llvm 452 453 !6 = metadata !{ 454 i32, ;; Tag (see below) 455 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 456 metadata, ;; Reference to context 457 metadata, ;; Name (may be "" for anonymous types) 458 i32, ;; Line number where defined (may be 0) 459 i64, ;; Size in bits 460 i64, ;; Alignment in bits 461 i64, ;; Offset in bits 462 i32, ;; Flags 463 metadata, ;; Reference to type derived from 464 metadata, ;; Reference to array of member descriptors 465 i32, ;; Runtime languages 466 metadata, ;; Base type containing the vtable pointer for this type 467 metadata, ;; Template parameters 468 metadata ;; A unique identifier for type uniquing purpose (may be null) 469 } 470 471These descriptors are used to define types that are composed of 0 or more 472elements. The value of the tag varies depending on the meaning. The following 473are possible tag values: 474 475.. code-block:: llvm 476 477 DW_TAG_array_type = 1 478 DW_TAG_enumeration_type = 4 479 DW_TAG_structure_type = 19 480 DW_TAG_union_type = 23 481 DW_TAG_subroutine_type = 21 482 DW_TAG_inheritance = 28 483 484The vector flag indicates that an array type is a native packed vector. 485 486The members of array types (tag = ``DW_TAG_array_type``) are 487:ref:`subrange descriptors <format_subrange>`, each 488representing the range of subscripts at that level of indexing. 489 490The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are 491:ref:`enumerator descriptors <format_enumerator>`, each representing the 492definition of enumeration value for the set. All enumeration type descriptors 493are collected inside the named metadata ``!llvm.dbg.cu``. 494 495The members of structure (tag = ``DW_TAG_structure_type``) or union (tag = 496``DW_TAG_union_type``) types are any one of the :ref:`basic 497<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite 498<format_composite_type>` type descriptors, each representing a field member of 499the structure or union. 500 501For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide 502information about base classes, static members and member functions. If a 503member is a :ref:`derived type descriptor <format_derived_type>` and has a tag 504of ``DW_TAG_inheritance``, then the type represents a base class. If the member 505of is a :ref:`global variable descriptor <format_global_variables>` then it 506represents a static member. And, if the member is a :ref:`subprogram 507descriptor <format_subprograms>` then it represents a member function. For 508static members and member functions, ``getName()`` returns the members link or 509the C++ mangled name. ``getDisplayName()`` the simplied version of the name. 510 511The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements 512is the return type for the subroutine. The remaining elements are the formal 513arguments to the subroutine. 514 515:ref:`Composite type <format_composite_type>` location can be determined from 516the context and line number. The size, alignment and offset are expressed in 517bits and can be 64 bit values. The alignment is used to round the offset when 518embedded in a :ref:`composite type <format_composite_type>` (as an example, to 519keep float doubles on 64 bit boundaries). The offset is the bit offset if 520embedded in a :ref:`composite type <format_composite_type>`. 521 522.. _format_subrange: 523 524Subrange descriptors 525^^^^^^^^^^^^^^^^^^^^ 526 527.. code-block:: llvm 528 529 !42 = metadata !{ 530 i32, ;; Tag = 33 (DW_TAG_subrange_type) 531 i64, ;; Low value 532 i64 ;; High value 533 } 534 535These descriptors are used to define ranges of array subscripts for an array 536:ref:`composite type <format_composite_type>`. The low value defines the lower 537bounds typically zero for C/C++. The high value is the upper bounds. Values 538are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High`` 539the array bounds are not included in generated debugging information. 540 541.. _format_enumerator: 542 543Enumerator descriptors 544^^^^^^^^^^^^^^^^^^^^^^ 545 546.. code-block:: llvm 547 548 !6 = metadata !{ 549 i32, ;; Tag = 40 (DW_TAG_enumerator) 550 metadata, ;; Name 551 i64 ;; Value 552 } 553 554These descriptors are used to define members of an enumeration :ref:`composite 555type <format_composite_type>`, it associates the name to the value. 556 557Local variables 558^^^^^^^^^^^^^^^ 559 560.. code-block:: llvm 561 562 !7 = metadata !{ 563 i32, ;; Tag (see below) 564 metadata, ;; Context 565 metadata, ;; Name 566 metadata, ;; Reference to file where defined 567 i32, ;; 24 bit - Line number where defined 568 ;; 8 bit - Argument number. 1 indicates 1st argument. 569 metadata, ;; Type descriptor 570 i32, ;; flags 571 metadata ;; (optional) Reference to inline location 572 } 573 574These descriptors are used to define variables local to a sub program. The 575value of the tag depends on the usage of the variable: 576 577.. code-block:: llvm 578 579 DW_TAG_auto_variable = 256 580 DW_TAG_arg_variable = 257 581 582An auto variable is any variable declared in the body of the function. An 583argument variable is any variable that appears as a formal argument to the 584function. 585 586The context is either the subprogram or block where the variable is defined. 587Name the source variable name. Context and line indicate where the variable 588was defined. Type descriptor defines the declared type of the variable. 589 590.. _format_common_intrinsics: 591 592Debugger intrinsic functions 593^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 594 595LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to 596provide debug information at various points in generated code. 597 598``llvm.dbg.declare`` 599^^^^^^^^^^^^^^^^^^^^ 600 601.. code-block:: llvm 602 603 void %llvm.dbg.declare(metadata, metadata) 604 605This intrinsic provides information about a local element (e.g., variable). 606The first argument is metadata holding the alloca for the variable. The second 607argument is metadata containing a description of the variable. 608 609``llvm.dbg.value`` 610^^^^^^^^^^^^^^^^^^ 611 612.. code-block:: llvm 613 614 void %llvm.dbg.value(metadata, i64, metadata) 615 616This intrinsic provides information when a user source variable is set to a new 617value. The first argument is the new value (wrapped as metadata). The second 618argument is the offset in the user source variable where the new value is 619written. The third argument is metadata containing a description of the user 620source variable. 621 622Object lifetimes and scoping 623============================ 624 625In many languages, the local variables in functions can have their lifetimes or 626scopes limited to a subset of a function. In the C family of languages, for 627example, variables are only live (readable and writable) within the source 628block that they are defined in. In functional languages, values are only 629readable after they have been defined. Though this is a very obvious concept, 630it is non-trivial to model in LLVM, because it has no notion of scoping in this 631sense, and does not want to be tied to a language's scoping rules. 632 633In order to handle this, the LLVM debug format uses the metadata attached to 634llvm instructions to encode line number and scoping information. Consider the 635following C fragment, for example: 636 637.. code-block:: c 638 639 1. void foo() { 640 2. int X = 21; 641 3. int Y = 22; 642 4. { 643 5. int Z = 23; 644 6. Z = X; 645 7. } 646 8. X = Y; 647 9. } 648 649Compiled to LLVM, this function would be represented like this: 650 651.. code-block:: llvm 652 653 define void @_Z3foov() #0 { 654 entry: 655 %X = alloca i32, align 4 ; [#uses=3 type=i32*] 656 %Y = alloca i32, align 4 ; [#uses=2 type=i32*] 657 %Z = alloca i32, align 4 ; [#uses=2 type=i32*] 658 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !8), !dbg !10 659 ; [debug line = 2:7] [debug variable = X] 660 store i32 21, i32* %X, align 4, !dbg !11 ; [debug line = 2:13] 661 call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !12), !dbg !13 662 ; [debug line = 3:7] [debug variable = Y] 663 store i32 22, i32* %Y, align 4, !dbg !14 ; [debug line = 3:13] 664 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 665 ; [debug line = 5:9] [debug variable = Z] 666 store i32 23, i32* %Z, align 4, !dbg !18 ; [debug line = 5:15] 667 %0 = load i32* %X, align 4, !dbg !19 ; [#uses=1 type=i32] \ 668 [debug line = 6:5] 669 store i32 %0, i32* %Z, align 4, !dbg !19 ; [debug line = 6:5] 670 %1 = load i32* %Y, align 4, !dbg !20 ; [#uses=1 type=i32] \ 671 [debug line = 8:3] 672 store i32 %1, i32* %X, align 4, !dbg !20 ; [debug line = 8:3] 673 ret void, !dbg !21 ; [debug line = 9:1] 674 } 675 676 ; [#uses=3] 677 ; Function Attrs: nounwind readnone 678 declare void @llvm.dbg.declare(metadata, metadata) #1 679 680 attributes #0 = { optsize zeroext "less-precise-fpmad"="false" 681 "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="true" 682 "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" 683 "use-soft-float"="false" } 684 attributes #1 = { nounwind readnone } 685 686 !llvm.dbg.cu = !{!0} 687 688 !0 = metadata !{i32 786449, metadata !1, i32 12, 689 metadata !"clang version 3.4 ", i1 false, metadata !"", i32 0, 690 metadata !2, metadata !2, metadata !3, metadata !2, 691 metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \ 692 [/private/tmp/foo.c] \ 693 [DW_LANG_C] 694 !1 = metadata !{metadata !"foo.c", metadata !"/private/tmp"} 695 !2 = metadata !{i32 0} 696 !3 = metadata !{metadata !4} 697 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 698 metadata !"foo", metadata !"_Z3foov", i32 1, metadata !6, 699 i1 false, i1 true, i32 0, i32 0, null, i32 256, i1 false, 700 void ()* @_Z3foov, null, null, metadata !2, i32 1} 701 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 702 !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \ 703 [/private/tmp/foo.c] 704 !6 = metadata !{i32 786453, i32 0, i32 0, metadata !"", i32 0, i64 0, i64 0, 705 i64 0, i32 0, null, metadata !7, i32 0, i32 0} 706 ; [ DW_TAG_subroutine_type ] \ 707 [line 0, size 0, align 0, offset 0] [from ] 708 !7 = metadata !{null} 709 !8 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2, \ 710 metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \ 711 [line 2] 712 !9 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32, \ 713 i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \ 714 [line 0, size 32, align 32, offset 0, enc DW_ATE_signed] 715 !10 = metadata !{i32 2, i32 7, metadata !4, null} 716 !11 = metadata !{i32 2, i32 13, metadata !4, null} 717 !12 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3, \ 718 metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \ 719 [line 3] 720 !13 = metadata !{i32 3, i32 7, metadata !4, null} 721 !14 = metadata !{i32 3, i32 13, metadata !4, null} 722 !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5, \ 723 metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \ 724 [line 5] 725 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 3, i32 0} 726 ; [ DW_TAG_lexical_block ] [/private/tmp/foo.c] 727 !17 = metadata !{i32 5, i32 9, metadata !16, null} 728 !18 = metadata !{i32 5, i32 15, metadata !16, null} 729 !19 = metadata !{i32 6, i32 5, metadata !16, null} 730 !20 = metadata !{i32 8, i32 3, metadata !4, null} 731 !21 = metadata !{i32 9, i32 1, metadata !4, null} 732 733This example illustrates a few important details about LLVM debugging 734information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and 735location information, which are attached to an instruction, are applied 736together to allow a debugger to analyze the relationship between statements, 737variable definitions, and the code used to implement the function. 738 739.. code-block:: llvm 740 741 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !8), !dbg !10 742 ; [debug line = 2:7] [debug variable = X] 743 744The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the 745variable ``X``. The metadata ``!dbg !10`` attached to the intrinsic provides 746scope information for the variable ``X``. 747 748.. code-block:: llvm 749 750 !10 = metadata !{i32 2, i32 7, metadata !4, null} 751 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 752 metadata !"foo", metadata !"_Z3foov", i32 1, metadata !6, 753 i1 false, i1 true, i32 0, i32 0, null, i32 256, i1 false, 754 void ()* @_Z3foov, null, null, metadata !2, i32 1} 755 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 756 757Here ``!10`` is metadata providing location information. It has four fields: 758line number, column number, scope, and original scope. The original scope 759represents inline location if this instruction is inlined inside a caller, and 760is null otherwise. In this example, scope is encoded by ``!4``, a 761:ref:`subprogram descriptor <format_subprograms>`. This way the location 762information attached to the intrinsics indicates that the variable ``X`` is 763declared at line number 2 at a function level scope in function ``foo``. 764 765Now lets take another example. 766 767.. code-block:: llvm 768 769 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 770 ; [debug line = 5:9] [debug variable = Z] 771 772The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for 773variable ``Z``. The metadata ``!dbg !17`` attached to the intrinsic provides 774scope information for the variable ``Z``. 775 776.. code-block:: llvm 777 778 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 3, i32 0} 779 ; [ DW_TAG_lexical_block ] [/private/tmp/foo.c] 780 !17 = metadata !{i32 5, i32 9, metadata !16, null} 781 782Here ``!15`` indicates that ``Z`` is declared at line number 5 and 783column number 9 inside of lexical scope ``!16``. The lexical scope itself 784resides inside of subprogram ``!4`` described above. 785 786The scope information attached with each instruction provides a straightforward 787way to find instructions covered by a scope. 788 789.. _ccxx_frontend: 790 791C/C++ front-end specific debug information 792========================================== 793 794The C and C++ front-ends represent information about the program in a format 795that is effectively identical to `DWARF 3.0 796<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information 797content. This allows code generators to trivially support native debuggers by 798generating standard dwarf information, and contains enough information for 799non-dwarf targets to translate it as needed. 800 801This section describes the forms used to represent C and C++ programs. Other 802languages could pattern themselves after this (which itself is tuned to 803representing programs in the same way that DWARF 3 does), or they could choose 804to provide completely different forms if they don't fit into the DWARF model. 805As support for debugging information gets added to the various LLVM 806source-language front-ends, the information used should be documented here. 807 808The following sections provide examples of various C/C++ constructs and the 809debug information that would best describe those constructs. 810 811C/C++ source file information 812----------------------------- 813 814Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the 815directory ``/Users/mine/sources``, the following code: 816 817.. code-block:: c 818 819 #include "MyHeader.h" 820 821 int main(int argc, char *argv[]) { 822 return 0; 823 } 824 825a C/C++ front-end would generate the following descriptors: 826 827.. code-block:: llvm 828 829 ... 830 ;; 831 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp". 832 ;; 833 !0 = metadata !{ 834 i32 786449, ;; Tag 835 metadata !1, ;; File/directory name 836 i32 4, ;; Language Id 837 metadata !"clang version 3.4 ", 838 i1 false, ;; Optimized compile unit 839 metadata !"", ;; Compiler flags 840 i32 0, ;; Runtime version 841 metadata !2, ;; Enumeration types 842 metadata !2, ;; Retained types 843 metadata !3, ;; Subprograms 844 metadata !2, ;; Global variables 845 metadata !2, ;; Imported entities (declarations and namespaces) 846 metadata !"" ;; Split debug filename 847 } 848 849 ;; 850 ;; Define the file for the file "/Users/mine/sources/MySource.cpp". 851 ;; 852 !1 = metadata !{ 853 metadata !"MySource.cpp", 854 metadata !"/Users/mine/sources" 855 } 856 !5 = metadata !{ 857 i32 786473, ;; Tag 858 metadata !1 859 } 860 861 ;; 862 ;; Define the file for the file "/Users/mine/sources/Myheader.h" 863 ;; 864 !14 = metadata !{ 865 i32 786473, ;; Tag 866 metadata !15 867 } 868 !15 = metadata !{ 869 metadata !"./MyHeader.h", 870 metadata !"/Users/mine/sources", 871 } 872 873 ... 874 875``llvm::Instruction`` provides easy access to metadata attached with an 876instruction. One can extract line number information encoded in LLVM IR using 877``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``. 878 879.. code-block:: c++ 880 881 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction 882 DILocation Loc(N); // DILocation is in DebugInfo.h 883 unsigned Line = Loc.getLineNumber(); 884 StringRef File = Loc.getFilename(); 885 StringRef Dir = Loc.getDirectory(); 886 } 887 888C/C++ global variable information 889--------------------------------- 890 891Given an integer global variable declared as follows: 892 893.. code-block:: c 894 895 int MyGlobal = 100; 896 897a C/C++ front-end would generate the following descriptors: 898 899.. code-block:: llvm 900 901 ;; 902 ;; Define the global itself. 903 ;; 904 %MyGlobal = global int 100 905 ... 906 ;; 907 ;; List of debug info of globals 908 ;; 909 !llvm.dbg.cu = !{!0} 910 911 ;; Define the compile unit. 912 !0 = metadata !{ 913 i32 786449, ;; Tag 914 i32 0, ;; Context 915 i32 4, ;; Language 916 metadata !"foo.cpp", ;; File 917 metadata !"/Volumes/Data/tmp", ;; Directory 918 metadata !"clang version 3.1 ", ;; Producer 919 i1 true, ;; Deprecated field 920 i1 false, ;; "isOptimized"? 921 metadata !"", ;; Flags 922 i32 0, ;; Runtime Version 923 metadata !1, ;; Enum Types 924 metadata !1, ;; Retained Types 925 metadata !1, ;; Subprograms 926 metadata !3, ;; Global Variables 927 metadata !1, ;; Imported entities 928 "", ;; Split debug filename 929 } ; [ DW_TAG_compile_unit ] 930 931 ;; The Array of Global Variables 932 !3 = metadata !{ 933 metadata !4 934 } 935 936 ;; 937 ;; Define the global variable itself. 938 ;; 939 !4 = metadata !{ 940 i32 786484, ;; Tag 941 i32 0, ;; Unused 942 null, ;; Unused 943 metadata !"MyGlobal", ;; Name 944 metadata !"MyGlobal", ;; Display Name 945 metadata !"", ;; Linkage Name 946 metadata !6, ;; File 947 i32 1, ;; Line 948 metadata !7, ;; Type 949 i32 0, ;; IsLocalToUnit 950 i32 1, ;; IsDefinition 951 i32* @MyGlobal, ;; LLVM-IR Value 952 null ;; Static member declaration 953 } ; [ DW_TAG_variable ] 954 955 ;; 956 ;; Define the file 957 ;; 958 !5 = metadata !{ 959 metadata !"foo.cpp", ;; File 960 metadata !"/Volumes/Data/tmp", ;; Directory 961 } 962 !6 = metadata !{ 963 i32 786473, ;; Tag 964 metadata !5 ;; Unused 965 } ; [ DW_TAG_file_type ] 966 967 ;; 968 ;; Define the type 969 ;; 970 !7 = metadata !{ 971 i32 786468, ;; Tag 972 null, ;; Unused 973 null, ;; Unused 974 metadata !"int", ;; Name 975 i32 0, ;; Line 976 i64 32, ;; Size in Bits 977 i64 32, ;; Align in Bits 978 i64 0, ;; Offset 979 i32 0, ;; Flags 980 i32 5 ;; Encoding 981 } ; [ DW_TAG_base_type ] 982 983C/C++ function information 984-------------------------- 985 986Given a function declared as follows: 987 988.. code-block:: c 989 990 int main(int argc, char *argv[]) { 991 return 0; 992 } 993 994a C/C++ front-end would generate the following descriptors: 995 996.. code-block:: llvm 997 998 ;; 999 ;; Define the anchor for subprograms. 1000 ;; 1001 !6 = metadata !{ 1002 i32 786484, ;; Tag 1003 metadata !1, ;; File 1004 metadata !1, ;; Context 1005 metadata !"main", ;; Name 1006 metadata !"main", ;; Display name 1007 metadata !"main", ;; Linkage name 1008 i32 1, ;; Line number 1009 metadata !4, ;; Type 1010 i1 false, ;; Is local 1011 i1 true, ;; Is definition 1012 i32 0, ;; Virtuality attribute, e.g. pure virtual function 1013 i32 0, ;; Index into virtual table for C++ methods 1014 i32 0, ;; Type that holds virtual table. 1015 i32 0, ;; Flags 1016 i1 false, ;; True if this function is optimized 1017 Function *, ;; Pointer to llvm::Function 1018 null, ;; Function template parameters 1019 null, ;; List of function variables (emitted when optimizing) 1020 1 ;; Line number of the opening '{' of the function 1021 } 1022 ;; 1023 ;; Define the subprogram itself. 1024 ;; 1025 define i32 @main(i32 %argc, i8** %argv) { 1026 ... 1027 } 1028 1029C/C++ basic types 1030----------------- 1031 1032The following are the basic type descriptors for C/C++ core types: 1033 1034bool 1035^^^^ 1036 1037.. code-block:: llvm 1038 1039 !2 = metadata !{ 1040 i32 786468, ;; Tag 1041 null, ;; File 1042 null, ;; Context 1043 metadata !"bool", ;; Name 1044 i32 0, ;; Line number 1045 i64 8, ;; Size in Bits 1046 i64 8, ;; Align in Bits 1047 i64 0, ;; Offset in Bits 1048 i32 0, ;; Flags 1049 i32 2 ;; Encoding 1050 } 1051 1052char 1053^^^^ 1054 1055.. code-block:: llvm 1056 1057 !2 = metadata !{ 1058 i32 786468, ;; Tag 1059 null, ;; File 1060 null, ;; Context 1061 metadata !"char", ;; Name 1062 i32 0, ;; Line number 1063 i64 8, ;; Size in Bits 1064 i64 8, ;; Align in Bits 1065 i64 0, ;; Offset in Bits 1066 i32 0, ;; Flags 1067 i32 6 ;; Encoding 1068 } 1069 1070unsigned char 1071^^^^^^^^^^^^^ 1072 1073.. code-block:: llvm 1074 1075 !2 = metadata !{ 1076 i32 786468, ;; Tag 1077 null, ;; File 1078 null, ;; Context 1079 metadata !"unsigned char", 1080 i32 0, ;; Line number 1081 i64 8, ;; Size in Bits 1082 i64 8, ;; Align in Bits 1083 i64 0, ;; Offset in Bits 1084 i32 0, ;; Flags 1085 i32 8 ;; Encoding 1086 } 1087 1088short 1089^^^^^ 1090 1091.. code-block:: llvm 1092 1093 !2 = metadata !{ 1094 i32 786468, ;; Tag 1095 null, ;; File 1096 null, ;; Context 1097 metadata !"short int", 1098 i32 0, ;; Line number 1099 i64 16, ;; Size in Bits 1100 i64 16, ;; Align in Bits 1101 i64 0, ;; Offset in Bits 1102 i32 0, ;; Flags 1103 i32 5 ;; Encoding 1104 } 1105 1106unsigned short 1107^^^^^^^^^^^^^^ 1108 1109.. code-block:: llvm 1110 1111 !2 = metadata !{ 1112 i32 786468, ;; Tag 1113 null, ;; File 1114 null, ;; Context 1115 metadata !"short unsigned int", 1116 i32 0, ;; Line number 1117 i64 16, ;; Size in Bits 1118 i64 16, ;; Align in Bits 1119 i64 0, ;; Offset in Bits 1120 i32 0, ;; Flags 1121 i32 7 ;; Encoding 1122 } 1123 1124int 1125^^^ 1126 1127.. code-block:: llvm 1128 1129 !2 = metadata !{ 1130 i32 786468, ;; Tag 1131 null, ;; File 1132 null, ;; Context 1133 metadata !"int", ;; Name 1134 i32 0, ;; Line number 1135 i64 32, ;; Size in Bits 1136 i64 32, ;; Align in Bits 1137 i64 0, ;; Offset in Bits 1138 i32 0, ;; Flags 1139 i32 5 ;; Encoding 1140 } 1141 1142unsigned int 1143^^^^^^^^^^^^ 1144 1145.. code-block:: llvm 1146 1147 !2 = metadata !{ 1148 i32 786468, ;; Tag 1149 null, ;; File 1150 null, ;; Context 1151 metadata !"unsigned int", 1152 i32 0, ;; Line number 1153 i64 32, ;; Size in Bits 1154 i64 32, ;; Align in Bits 1155 i64 0, ;; Offset in Bits 1156 i32 0, ;; Flags 1157 i32 7 ;; Encoding 1158 } 1159 1160long long 1161^^^^^^^^^ 1162 1163.. code-block:: llvm 1164 1165 !2 = metadata !{ 1166 i32 786468, ;; Tag 1167 null, ;; File 1168 null, ;; Context 1169 metadata !"long long int", 1170 i32 0, ;; Line number 1171 i64 64, ;; Size in Bits 1172 i64 64, ;; Align in Bits 1173 i64 0, ;; Offset in Bits 1174 i32 0, ;; Flags 1175 i32 5 ;; Encoding 1176 } 1177 1178unsigned long long 1179^^^^^^^^^^^^^^^^^^ 1180 1181.. code-block:: llvm 1182 1183 !2 = metadata !{ 1184 i32 786468, ;; Tag 1185 null, ;; File 1186 null, ;; Context 1187 metadata !"long long unsigned int", 1188 i32 0, ;; Line number 1189 i64 64, ;; Size in Bits 1190 i64 64, ;; Align in Bits 1191 i64 0, ;; Offset in Bits 1192 i32 0, ;; Flags 1193 i32 7 ;; Encoding 1194 } 1195 1196float 1197^^^^^ 1198 1199.. code-block:: llvm 1200 1201 !2 = metadata !{ 1202 i32 786468, ;; Tag 1203 null, ;; File 1204 null, ;; Context 1205 metadata !"float", 1206 i32 0, ;; Line number 1207 i64 32, ;; Size in Bits 1208 i64 32, ;; Align in Bits 1209 i64 0, ;; Offset in Bits 1210 i32 0, ;; Flags 1211 i32 4 ;; Encoding 1212 } 1213 1214double 1215^^^^^^ 1216 1217.. code-block:: llvm 1218 1219 !2 = metadata !{ 1220 i32 786468, ;; Tag 1221 null, ;; File 1222 null, ;; Context 1223 metadata !"double",;; Name 1224 i32 0, ;; Line number 1225 i64 64, ;; Size in Bits 1226 i64 64, ;; Align in Bits 1227 i64 0, ;; Offset in Bits 1228 i32 0, ;; Flags 1229 i32 4 ;; Encoding 1230 } 1231 1232C/C++ derived types 1233------------------- 1234 1235Given the following as an example of C/C++ derived type: 1236 1237.. code-block:: c 1238 1239 typedef const int *IntPtr; 1240 1241a C/C++ front-end would generate the following descriptors: 1242 1243.. code-block:: llvm 1244 1245 ;; 1246 ;; Define the typedef "IntPtr". 1247 ;; 1248 !2 = metadata !{ 1249 i32 786454, ;; Tag 1250 metadata !3, ;; File 1251 metadata !1, ;; Context 1252 metadata !"IntPtr", ;; Name 1253 i32 0, ;; Line number 1254 i64 0, ;; Size in bits 1255 i64 0, ;; Align in bits 1256 i64 0, ;; Offset in bits 1257 i32 0, ;; Flags 1258 metadata !4 ;; Derived From type 1259 } 1260 ;; 1261 ;; Define the pointer type. 1262 ;; 1263 !4 = metadata !{ 1264 i32 786447, ;; Tag 1265 null, ;; File 1266 null, ;; Context 1267 metadata !"", ;; Name 1268 i32 0, ;; Line number 1269 i64 64, ;; Size in bits 1270 i64 64, ;; Align in bits 1271 i64 0, ;; Offset in bits 1272 i32 0, ;; Flags 1273 metadata !5 ;; Derived From type 1274 } 1275 ;; 1276 ;; Define the const type. 1277 ;; 1278 !5 = metadata !{ 1279 i32 786470, ;; Tag 1280 null, ;; File 1281 null, ;; Context 1282 metadata !"", ;; Name 1283 i32 0, ;; Line number 1284 i64 0, ;; Size in bits 1285 i64 0, ;; Align in bits 1286 i64 0, ;; Offset in bits 1287 i32 0, ;; Flags 1288 metadata !6 ;; Derived From type 1289 } 1290 ;; 1291 ;; Define the int type. 1292 ;; 1293 !6 = metadata !{ 1294 i32 786468, ;; Tag 1295 null, ;; File 1296 null, ;; Context 1297 metadata !"int", ;; Name 1298 i32 0, ;; Line number 1299 i64 32, ;; Size in bits 1300 i64 32, ;; Align in bits 1301 i64 0, ;; Offset in bits 1302 i32 0, ;; Flags 1303 i32 5 ;; Encoding 1304 } 1305 1306C/C++ struct/union types 1307------------------------ 1308 1309Given the following as an example of C/C++ struct type: 1310 1311.. code-block:: c 1312 1313 struct Color { 1314 unsigned Red; 1315 unsigned Green; 1316 unsigned Blue; 1317 }; 1318 1319a C/C++ front-end would generate the following descriptors: 1320 1321.. code-block:: llvm 1322 1323 ;; 1324 ;; Define basic type for unsigned int. 1325 ;; 1326 !5 = metadata !{ 1327 i32 786468, ;; Tag 1328 null, ;; File 1329 null, ;; Context 1330 metadata !"unsigned int", 1331 i32 0, ;; Line number 1332 i64 32, ;; Size in Bits 1333 i64 32, ;; Align in Bits 1334 i64 0, ;; Offset in Bits 1335 i32 0, ;; Flags 1336 i32 7 ;; Encoding 1337 } 1338 ;; 1339 ;; Define composite type for struct Color. 1340 ;; 1341 !2 = metadata !{ 1342 i32 786451, ;; Tag 1343 metadata !1, ;; Compile unit 1344 null, ;; Context 1345 metadata !"Color", ;; Name 1346 i32 1, ;; Line number 1347 i64 96, ;; Size in bits 1348 i64 32, ;; Align in bits 1349 i64 0, ;; Offset in bits 1350 i32 0, ;; Flags 1351 null, ;; Derived From 1352 metadata !3, ;; Elements 1353 i32 0, ;; Runtime Language 1354 null, ;; Base type containing the vtable pointer for this type 1355 null ;; Template parameters 1356 } 1357 1358 ;; 1359 ;; Define the Red field. 1360 ;; 1361 !4 = metadata !{ 1362 i32 786445, ;; Tag 1363 metadata !1, ;; File 1364 metadata !1, ;; Context 1365 metadata !"Red", ;; Name 1366 i32 2, ;; Line number 1367 i64 32, ;; Size in bits 1368 i64 32, ;; Align in bits 1369 i64 0, ;; Offset in bits 1370 i32 0, ;; Flags 1371 metadata !5 ;; Derived From type 1372 } 1373 1374 ;; 1375 ;; Define the Green field. 1376 ;; 1377 !6 = metadata !{ 1378 i32 786445, ;; Tag 1379 metadata !1, ;; File 1380 metadata !1, ;; Context 1381 metadata !"Green", ;; Name 1382 i32 3, ;; Line number 1383 i64 32, ;; Size in bits 1384 i64 32, ;; Align in bits 1385 i64 32, ;; Offset in bits 1386 i32 0, ;; Flags 1387 metadata !5 ;; Derived From type 1388 } 1389 1390 ;; 1391 ;; Define the Blue field. 1392 ;; 1393 !7 = metadata !{ 1394 i32 786445, ;; Tag 1395 metadata !1, ;; File 1396 metadata !1, ;; Context 1397 metadata !"Blue", ;; Name 1398 i32 4, ;; Line number 1399 i64 32, ;; Size in bits 1400 i64 32, ;; Align in bits 1401 i64 64, ;; Offset in bits 1402 i32 0, ;; Flags 1403 metadata !5 ;; Derived From type 1404 } 1405 1406 ;; 1407 ;; Define the array of fields used by the composite type Color. 1408 ;; 1409 !3 = metadata !{metadata !4, metadata !6, metadata !7} 1410 1411C/C++ enumeration types 1412----------------------- 1413 1414Given the following as an example of C/C++ enumeration type: 1415 1416.. code-block:: c 1417 1418 enum Trees { 1419 Spruce = 100, 1420 Oak = 200, 1421 Maple = 300 1422 }; 1423 1424a C/C++ front-end would generate the following descriptors: 1425 1426.. code-block:: llvm 1427 1428 ;; 1429 ;; Define composite type for enum Trees 1430 ;; 1431 !2 = metadata !{ 1432 i32 786436, ;; Tag 1433 metadata !1, ;; File 1434 metadata !1, ;; Context 1435 metadata !"Trees", ;; Name 1436 i32 1, ;; Line number 1437 i64 32, ;; Size in bits 1438 i64 32, ;; Align in bits 1439 i64 0, ;; Offset in bits 1440 i32 0, ;; Flags 1441 null, ;; Derived From type 1442 metadata !3, ;; Elements 1443 i32 0 ;; Runtime language 1444 } 1445 1446 ;; 1447 ;; Define the array of enumerators used by composite type Trees. 1448 ;; 1449 !3 = metadata !{metadata !4, metadata !5, metadata !6} 1450 1451 ;; 1452 ;; Define Spruce enumerator. 1453 ;; 1454 !4 = metadata !{i32 786472, metadata !"Spruce", i64 100} 1455 1456 ;; 1457 ;; Define Oak enumerator. 1458 ;; 1459 !5 = metadata !{i32 786472, metadata !"Oak", i64 200} 1460 1461 ;; 1462 ;; Define Maple enumerator. 1463 ;; 1464 !6 = metadata !{i32 786472, metadata !"Maple", i64 300} 1465 1466Debugging information format 1467============================ 1468 1469Debugging Information Extension for Objective C Properties 1470---------------------------------------------------------- 1471 1472Introduction 1473^^^^^^^^^^^^ 1474 1475Objective C provides a simpler way to declare and define accessor methods using 1476declared properties. The language provides features to declare a property and 1477to let compiler synthesize accessor methods. 1478 1479The debugger lets developer inspect Objective C interfaces and their instance 1480variables and class variables. However, the debugger does not know anything 1481about the properties defined in Objective C interfaces. The debugger consumes 1482information generated by compiler in DWARF format. The format does not support 1483encoding of Objective C properties. This proposal describes DWARF extensions to 1484encode Objective C properties, which the debugger can use to let developers 1485inspect Objective C properties. 1486 1487Proposal 1488^^^^^^^^ 1489 1490Objective C properties exist separately from class members. A property can be 1491defined only by "setter" and "getter" selectors, and be calculated anew on each 1492access. Or a property can just be a direct access to some declared ivar. 1493Finally it can have an ivar "automatically synthesized" for it by the compiler, 1494in which case the property can be referred to in user code directly using the 1495standard C dereference syntax as well as through the property "dot" syntax, but 1496there is no entry in the ``@interface`` declaration corresponding to this ivar. 1497 1498To facilitate debugging, these properties we will add a new DWARF TAG into the 1499``DW_TAG_structure_type`` definition for the class to hold the description of a 1500given property, and a set of DWARF attributes that provide said description. 1501The property tag will also contain the name and declared type of the property. 1502 1503If there is a related ivar, there will also be a DWARF property attribute placed 1504in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG 1505for that property. And in the case where the compiler synthesizes the ivar 1506directly, the compiler is expected to generate a ``DW_TAG_member`` for that 1507ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used 1508to access this ivar directly in code, and with the property attribute pointing 1509back to the property it is backing. 1510 1511The following examples will serve as illustration for our discussion: 1512 1513.. code-block:: objc 1514 1515 @interface I1 { 1516 int n2; 1517 } 1518 1519 @property int p1; 1520 @property int p2; 1521 @end 1522 1523 @implementation I1 1524 @synthesize p1; 1525 @synthesize p2 = n2; 1526 @end 1527 1528This produces the following DWARF (this is a "pseudo dwarfdump" output): 1529 1530.. code-block:: none 1531 1532 0x00000100: TAG_structure_type [7] * 1533 AT_APPLE_runtime_class( 0x10 ) 1534 AT_name( "I1" ) 1535 AT_decl_file( "Objc_Property.m" ) 1536 AT_decl_line( 3 ) 1537 1538 0x00000110 TAG_APPLE_property 1539 AT_name ( "p1" ) 1540 AT_type ( {0x00000150} ( int ) ) 1541 1542 0x00000120: TAG_APPLE_property 1543 AT_name ( "p2" ) 1544 AT_type ( {0x00000150} ( int ) ) 1545 1546 0x00000130: TAG_member [8] 1547 AT_name( "_p1" ) 1548 AT_APPLE_property ( {0x00000110} "p1" ) 1549 AT_type( {0x00000150} ( int ) ) 1550 AT_artificial ( 0x1 ) 1551 1552 0x00000140: TAG_member [8] 1553 AT_name( "n2" ) 1554 AT_APPLE_property ( {0x00000120} "p2" ) 1555 AT_type( {0x00000150} ( int ) ) 1556 1557 0x00000150: AT_type( ( int ) ) 1558 1559Note, the current convention is that the name of the ivar for an 1560auto-synthesized property is the name of the property from which it derives 1561with an underscore prepended, as is shown in the example. But we actually 1562don't need to know this convention, since we are given the name of the ivar 1563directly. 1564 1565Also, it is common practice in ObjC to have different property declarations in 1566the @interface and @implementation - e.g. to provide a read-only property in 1567the interface,and a read-write interface in the implementation. In that case, 1568the compiler should emit whichever property declaration will be in force in the 1569current translation unit. 1570 1571Developers can decorate a property with attributes which are encoded using 1572``DW_AT_APPLE_property_attribute``. 1573 1574.. code-block:: objc 1575 1576 @property (readonly, nonatomic) int pr; 1577 1578.. code-block:: none 1579 1580 TAG_APPLE_property [8] 1581 AT_name( "pr" ) 1582 AT_type ( {0x00000147} (int) ) 1583 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic) 1584 1585The setter and getter method names are attached to the property using 1586``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes. 1587 1588.. code-block:: objc 1589 1590 @interface I1 1591 @property (setter=myOwnP3Setter:) int p3; 1592 -(void)myOwnP3Setter:(int)a; 1593 @end 1594 1595 @implementation I1 1596 @synthesize p3; 1597 -(void)myOwnP3Setter:(int)a{ } 1598 @end 1599 1600The DWARF for this would be: 1601 1602.. code-block:: none 1603 1604 0x000003bd: TAG_structure_type [7] * 1605 AT_APPLE_runtime_class( 0x10 ) 1606 AT_name( "I1" ) 1607 AT_decl_file( "Objc_Property.m" ) 1608 AT_decl_line( 3 ) 1609 1610 0x000003cd TAG_APPLE_property 1611 AT_name ( "p3" ) 1612 AT_APPLE_property_setter ( "myOwnP3Setter:" ) 1613 AT_type( {0x00000147} ( int ) ) 1614 1615 0x000003f3: TAG_member [8] 1616 AT_name( "_p3" ) 1617 AT_type ( {0x00000147} ( int ) ) 1618 AT_APPLE_property ( {0x000003cd} ) 1619 AT_artificial ( 0x1 ) 1620 1621New DWARF Tags 1622^^^^^^^^^^^^^^ 1623 1624+-----------------------+--------+ 1625| TAG | Value | 1626+=======================+========+ 1627| DW_TAG_APPLE_property | 0x4200 | 1628+-----------------------+--------+ 1629 1630New DWARF Attributes 1631^^^^^^^^^^^^^^^^^^^^ 1632 1633+--------------------------------+--------+-----------+ 1634| Attribute | Value | Classes | 1635+================================+========+===========+ 1636| DW_AT_APPLE_property | 0x3fed | Reference | 1637+--------------------------------+--------+-----------+ 1638| DW_AT_APPLE_property_getter | 0x3fe9 | String | 1639+--------------------------------+--------+-----------+ 1640| DW_AT_APPLE_property_setter | 0x3fea | String | 1641+--------------------------------+--------+-----------+ 1642| DW_AT_APPLE_property_attribute | 0x3feb | Constant | 1643+--------------------------------+--------+-----------+ 1644 1645New DWARF Constants 1646^^^^^^^^^^^^^^^^^^^ 1647 1648+--------------------------------+-------+ 1649| Name | Value | 1650+================================+=======+ 1651| DW_AT_APPLE_PROPERTY_readonly | 0x1 | 1652+--------------------------------+-------+ 1653| DW_AT_APPLE_PROPERTY_readwrite | 0x2 | 1654+--------------------------------+-------+ 1655| DW_AT_APPLE_PROPERTY_assign | 0x4 | 1656+--------------------------------+-------+ 1657| DW_AT_APPLE_PROPERTY_retain | 0x8 | 1658+--------------------------------+-------+ 1659| DW_AT_APPLE_PROPERTY_copy | 0x10 | 1660+--------------------------------+-------+ 1661| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 | 1662+--------------------------------+-------+ 1663 1664Name Accelerator Tables 1665----------------------- 1666 1667Introduction 1668^^^^^^^^^^^^ 1669 1670The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a 1671debugger needs. The "``pub``" in the section name indicates that the entries 1672in the table are publicly visible names only. This means no static or hidden 1673functions show up in the "``.debug_pubnames``". No static variables or private 1674class variables are in the "``.debug_pubtypes``". Many compilers add different 1675things to these tables, so we can't rely upon the contents between gcc, icc, or 1676clang. 1677 1678The typical query given by users tends not to match up with the contents of 1679these tables. For example, the DWARF spec states that "In the case of the name 1680of a function member or static data member of a C++ structure, class or union, 1681the name presented in the "``.debug_pubnames``" section is not the simple name 1682given by the ``DW_AT_name attribute`` of the referenced debugging information 1683entry, but rather the fully qualified name of the data or function member." 1684So the only names in these tables for complex C++ entries is a fully 1685qualified name. Debugger users tend not to enter their search strings as 1686"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or 1687"``a::b::c``". So the name entered in the name table must be demangled in 1688order to chop it up appropriately and additional names must be manually entered 1689into the table to make it effective as a name lookup table for debuggers to 1690se. 1691 1692All debuggers currently ignore the "``.debug_pubnames``" table as a result of 1693its inconsistent and useless public-only name content making it a waste of 1694space in the object file. These tables, when they are written to disk, are not 1695sorted in any way, leaving every debugger to do its own parsing and sorting. 1696These tables also include an inlined copy of the string values in the table 1697itself making the tables much larger than they need to be on disk, especially 1698for large C++ programs. 1699 1700Can't we just fix the sections by adding all of the names we need to this 1701table? No, because that is not what the tables are defined to contain and we 1702won't know the difference between the old bad tables and the new good tables. 1703At best we could make our own renamed sections that contain all of the data we 1704need. 1705 1706These tables are also insufficient for what a debugger like LLDB needs. LLDB 1707uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then 1708often asked to look for type "``foo``" or namespace "``bar``", or list items in 1709namespace "``baz``". Namespaces are not included in the pubnames or pubtypes 1710tables. Since clang asks a lot of questions when it is parsing an expression, 1711we need to be very fast when looking up names, as it happens a lot. Having new 1712accelerator tables that are optimized for very quick lookups will benefit this 1713type of debugging experience greatly. 1714 1715We would like to generate name lookup tables that can be mapped into memory 1716from disk, and used as is, with little or no up-front parsing. We would also 1717be able to control the exact content of these different tables so they contain 1718exactly what we need. The Name Accelerator Tables were designed to fix these 1719issues. In order to solve these issues we need to: 1720 1721* Have a format that can be mapped into memory from disk and used as is 1722* Lookups should be very fast 1723* Extensible table format so these tables can be made by many producers 1724* Contain all of the names needed for typical lookups out of the box 1725* Strict rules for the contents of tables 1726 1727Table size is important and the accelerator table format should allow the reuse 1728of strings from common string tables so the strings for the names are not 1729duplicated. We also want to make sure the table is ready to be used as-is by 1730simply mapping the table into memory with minimal header parsing. 1731 1732The name lookups need to be fast and optimized for the kinds of lookups that 1733debuggers tend to do. Optimally we would like to touch as few parts of the 1734mapped table as possible when doing a name lookup and be able to quickly find 1735the name entry we are looking for, or discover there are no matches. In the 1736case of debuggers we optimized for lookups that fail most of the time. 1737 1738Each table that is defined should have strict rules on exactly what is in the 1739accelerator tables and documented so clients can rely on the content. 1740 1741Hash Tables 1742^^^^^^^^^^^ 1743 1744Standard Hash Tables 1745"""""""""""""""""""" 1746 1747Typical hash tables have a header, buckets, and each bucket points to the 1748bucket contents: 1749 1750.. code-block:: none 1751 1752 .------------. 1753 | HEADER | 1754 |------------| 1755 | BUCKETS | 1756 |------------| 1757 | DATA | 1758 `------------' 1759 1760The BUCKETS are an array of offsets to DATA for each hash: 1761 1762.. code-block:: none 1763 1764 .------------. 1765 | 0x00001000 | BUCKETS[0] 1766 | 0x00002000 | BUCKETS[1] 1767 | 0x00002200 | BUCKETS[2] 1768 | 0x000034f0 | BUCKETS[3] 1769 | | ... 1770 | 0xXXXXXXXX | BUCKETS[n_buckets] 1771 '------------' 1772 1773So for ``bucket[3]`` in the example above, we have an offset into the table 17740x000034f0 which points to a chain of entries for the bucket. Each bucket must 1775contain a next pointer, full 32 bit hash value, the string itself, and the data 1776for the current string value. 1777 1778.. code-block:: none 1779 1780 .------------. 1781 0x000034f0: | 0x00003500 | next pointer 1782 | 0x12345678 | 32 bit hash 1783 | "erase" | string value 1784 | data[n] | HashData for this bucket 1785 |------------| 1786 0x00003500: | 0x00003550 | next pointer 1787 | 0x29273623 | 32 bit hash 1788 | "dump" | string value 1789 | data[n] | HashData for this bucket 1790 |------------| 1791 0x00003550: | 0x00000000 | next pointer 1792 | 0x82638293 | 32 bit hash 1793 | "main" | string value 1794 | data[n] | HashData for this bucket 1795 `------------' 1796 1797The problem with this layout for debuggers is that we need to optimize for the 1798negative lookup case where the symbol we're searching for is not present. So 1799if we were to lookup "``printf``" in the table above, we would make a 32 hash 1800for "``printf``", it might match ``bucket[3]``. We would need to go to the 1801offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do 1802so, we need to read the next pointer, then read the hash, compare it, and skip 1803to the next bucket. Each time we are skipping many bytes in memory and 1804touching new cache pages just to do the compare on the full 32 bit hash. All 1805of these accesses then tell us that we didn't have a match. 1806 1807Name Hash Tables 1808"""""""""""""""" 1809 1810To solve the issues mentioned above we have structured the hash tables a bit 1811differently: a header, buckets, an array of all unique 32 bit hash values, 1812followed by an array of hash value data offsets, one for each hash value, then 1813the data for all hash values: 1814 1815.. code-block:: none 1816 1817 .-------------. 1818 | HEADER | 1819 |-------------| 1820 | BUCKETS | 1821 |-------------| 1822 | HASHES | 1823 |-------------| 1824 | OFFSETS | 1825 |-------------| 1826 | DATA | 1827 `-------------' 1828 1829The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By 1830making all of the full 32 bit hash values contiguous in memory, we allow 1831ourselves to efficiently check for a match while touching as little memory as 1832possible. Most often checking the 32 bit hash values is as far as the lookup 1833goes. If it does match, it usually is a match with no collisions. So for a 1834table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash 1835values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and 1836``OFFSETS`` as: 1837 1838.. code-block:: none 1839 1840 .-------------------------. 1841 | HEADER.magic | uint32_t 1842 | HEADER.version | uint16_t 1843 | HEADER.hash_function | uint16_t 1844 | HEADER.bucket_count | uint32_t 1845 | HEADER.hashes_count | uint32_t 1846 | HEADER.header_data_len | uint32_t 1847 | HEADER_DATA | HeaderData 1848 |-------------------------| 1849 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes 1850 |-------------------------| 1851 | HASHES | uint32_t[n_hashes] // 32 bit hash values 1852 |-------------------------| 1853 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data 1854 |-------------------------| 1855 | ALL HASH DATA | 1856 `-------------------------' 1857 1858So taking the exact same data from the standard hash example above we end up 1859with: 1860 1861.. code-block:: none 1862 1863 .------------. 1864 | HEADER | 1865 |------------| 1866 | 0 | BUCKETS[0] 1867 | 2 | BUCKETS[1] 1868 | 5 | BUCKETS[2] 1869 | 6 | BUCKETS[3] 1870 | | ... 1871 | ... | BUCKETS[n_buckets] 1872 |------------| 1873 | 0x........ | HASHES[0] 1874 | 0x........ | HASHES[1] 1875 | 0x........ | HASHES[2] 1876 | 0x........ | HASHES[3] 1877 | 0x........ | HASHES[4] 1878 | 0x........ | HASHES[5] 1879 | 0x12345678 | HASHES[6] hash for BUCKETS[3] 1880 | 0x29273623 | HASHES[7] hash for BUCKETS[3] 1881 | 0x82638293 | HASHES[8] hash for BUCKETS[3] 1882 | 0x........ | HASHES[9] 1883 | 0x........ | HASHES[10] 1884 | 0x........ | HASHES[11] 1885 | 0x........ | HASHES[12] 1886 | 0x........ | HASHES[13] 1887 | 0x........ | HASHES[n_hashes] 1888 |------------| 1889 | 0x........ | OFFSETS[0] 1890 | 0x........ | OFFSETS[1] 1891 | 0x........ | OFFSETS[2] 1892 | 0x........ | OFFSETS[3] 1893 | 0x........ | OFFSETS[4] 1894 | 0x........ | OFFSETS[5] 1895 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3] 1896 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3] 1897 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3] 1898 | 0x........ | OFFSETS[9] 1899 | 0x........ | OFFSETS[10] 1900 | 0x........ | OFFSETS[11] 1901 | 0x........ | OFFSETS[12] 1902 | 0x........ | OFFSETS[13] 1903 | 0x........ | OFFSETS[n_hashes] 1904 |------------| 1905 | | 1906 | | 1907 | | 1908 | | 1909 | | 1910 |------------| 1911 0x000034f0: | 0x00001203 | .debug_str ("erase") 1912 | 0x00000004 | A 32 bit array count - number of HashData with name "erase" 1913 | 0x........ | HashData[0] 1914 | 0x........ | HashData[1] 1915 | 0x........ | HashData[2] 1916 | 0x........ | HashData[3] 1917 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1918 |------------| 1919 0x00003500: | 0x00001203 | String offset into .debug_str ("collision") 1920 | 0x00000002 | A 32 bit array count - number of HashData with name "collision" 1921 | 0x........ | HashData[0] 1922 | 0x........ | HashData[1] 1923 | 0x00001203 | String offset into .debug_str ("dump") 1924 | 0x00000003 | A 32 bit array count - number of HashData with name "dump" 1925 | 0x........ | HashData[0] 1926 | 0x........ | HashData[1] 1927 | 0x........ | HashData[2] 1928 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1929 |------------| 1930 0x00003550: | 0x00001203 | String offset into .debug_str ("main") 1931 | 0x00000009 | A 32 bit array count - number of HashData with name "main" 1932 | 0x........ | HashData[0] 1933 | 0x........ | HashData[1] 1934 | 0x........ | HashData[2] 1935 | 0x........ | HashData[3] 1936 | 0x........ | HashData[4] 1937 | 0x........ | HashData[5] 1938 | 0x........ | HashData[6] 1939 | 0x........ | HashData[7] 1940 | 0x........ | HashData[8] 1941 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1942 `------------' 1943 1944So we still have all of the same data, we just organize it more efficiently for 1945debugger lookup. If we repeat the same "``printf``" lookup from above, we 1946would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit 1947hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which 1948is the index into the ``HASHES`` table. We would then compare any consecutive 194932 bit hashes values in the ``HASHES`` array as long as the hashes would be in 1950``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo 1951``n_buckets`` is still 3. In the case of a failed lookup we would access the 1952memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes 1953before we know that we have no match. We don't end up marching through 1954multiple words of memory and we really keep the number of processor data cache 1955lines being accessed as small as possible. 1956 1957The string hash that is used for these lookup tables is the Daniel J. 1958Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a 1959very good hash for all kinds of names in programs with very few hash 1960collisions. 1961 1962Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``. 1963 1964Details 1965^^^^^^^ 1966 1967These name hash tables are designed to be generic where specializations of the 1968table get to define additional data that goes into the header ("``HeaderData``"), 1969how the string value is stored ("``KeyType``") and the content of the data for each 1970hash value. 1971 1972Header Layout 1973""""""""""""" 1974 1975The header has a fixed part, and the specialized part. The exact format of the 1976header is: 1977 1978.. code-block:: c 1979 1980 struct Header 1981 { 1982 uint32_t magic; // 'HASH' magic value to allow endian detection 1983 uint16_t version; // Version number 1984 uint16_t hash_function; // The hash function enumeration that was used 1985 uint32_t bucket_count; // The number of buckets in this hash table 1986 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table 1987 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment 1988 // Specifically the length of the following HeaderData field - this does not 1989 // include the size of the preceding fields 1990 HeaderData header_data; // Implementation specific header data 1991 }; 1992 1993The header starts with a 32 bit "``magic``" value which must be ``'HASH'`` 1994encoded as an ASCII integer. This allows the detection of the start of the 1995hash table and also allows the table's byte order to be determined so the table 1996can be correctly extracted. The "``magic``" value is followed by a 16 bit 1997``version`` number which allows the table to be revised and modified in the 1998future. The current version number is 1. ``hash_function`` is a ``uint16_t`` 1999enumeration that specifies which hash function was used to produce this table. 2000The current values for the hash function enumerations include: 2001 2002.. code-block:: c 2003 2004 enum HashFunctionType 2005 { 2006 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function 2007 }; 2008 2009``bucket_count`` is a 32 bit unsigned integer that represents how many buckets 2010are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit 2011hash values that are in the ``HASHES`` array, and is the same number of offsets 2012are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size 2013in bytes of the ``HeaderData`` that is filled in by specialized versions of 2014this table. 2015 2016Fixed Lookup 2017"""""""""""" 2018 2019The header is followed by the buckets, hashes, offsets, and hash value data. 2020 2021.. code-block:: c 2022 2023 struct FixedTable 2024 { 2025 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below 2026 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table 2027 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above 2028 }; 2029 2030``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The 2031``hashes`` array contains all of the 32 bit hash values for all names in the 2032hash table. Each hash in the ``hashes`` table has an offset in the ``offsets`` 2033array that points to the data for the hash value. 2034 2035This table setup makes it very easy to repurpose these tables to contain 2036different data, while keeping the lookup mechanism the same for all tables. 2037This layout also makes it possible to save the table to disk and map it in 2038later and do very efficient name lookups with little or no parsing. 2039 2040DWARF lookup tables can be implemented in a variety of ways and can store a lot 2041of information for each name. We want to make the DWARF tables extensible and 2042able to store the data efficiently so we have used some of the DWARF features 2043that enable efficient data storage to define exactly what kind of data we store 2044for each name. 2045 2046The ``HeaderData`` contains a definition of the contents of each HashData chunk. 2047We might want to store an offset to all of the debug information entries (DIEs) 2048for each name. To keep things extensible, we create a list of items, or 2049Atoms, that are contained in the data for each name. First comes the type of 2050the data in each atom: 2051 2052.. code-block:: c 2053 2054 enum AtomType 2055 { 2056 eAtomTypeNULL = 0u, 2057 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding 2058 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question 2059 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2 2060 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags 2061 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags 2062 }; 2063 2064The enumeration values and their meanings are: 2065 2066.. code-block:: none 2067 2068 eAtomTypeNULL - a termination atom that specifies the end of the atom list 2069 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name 2070 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE 2071 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is 2072 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...) 2073 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...) 2074 2075Then we allow each atom type to define the atom type and how the data for each 2076atom type data is encoded: 2077 2078.. code-block:: c 2079 2080 struct Atom 2081 { 2082 uint16_t type; // AtomType enum value 2083 uint16_t form; // DWARF DW_FORM_XXX defines 2084 }; 2085 2086The ``form`` type above is from the DWARF specification and defines the exact 2087encoding of the data for the Atom type. See the DWARF specification for the 2088``DW_FORM_`` definitions. 2089 2090.. code-block:: c 2091 2092 struct HeaderData 2093 { 2094 uint32_t die_offset_base; 2095 uint32_t atom_count; 2096 Atoms atoms[atom_count0]; 2097 }; 2098 2099``HeaderData`` defines the base DIE offset that should be added to any atoms 2100that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``, 2101``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines 2102what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large 2103each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data 2104should be interpreted. 2105 2106For the current implementations of the "``.apple_names``" (all functions + 2107globals), the "``.apple_types``" (names of all types that are defined), and 2108the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom`` 2109array to be: 2110 2111.. code-block:: c 2112 2113 HeaderData.atom_count = 1; 2114 HeaderData.atoms[0].type = eAtomTypeDIEOffset; 2115 HeaderData.atoms[0].form = DW_FORM_data4; 2116 2117This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is 2118encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have 2119multiple matching DIEs in a single file, which could come up with an inlined 2120function for instance. Future tables could include more information about the 2121DIE such as flags indicating if the DIE is a function, method, block, 2122or inlined. 2123 2124The KeyType for the DWARF table is a 32 bit string table offset into the 2125".debug_str" table. The ".debug_str" is the string table for the DWARF which 2126may already contain copies of all of the strings. This helps make sure, with 2127help from the compiler, that we reuse the strings between all of the DWARF 2128sections and keeps the hash table size down. Another benefit to having the 2129compiler generate all strings as DW_FORM_strp in the debug info, is that 2130DWARF parsing can be made much faster. 2131 2132After a lookup is made, we get an offset into the hash data. The hash data 2133needs to be able to deal with 32 bit hash collisions, so the chunk of data 2134at the offset in the hash data consists of a triple: 2135 2136.. code-block:: c 2137 2138 uint32_t str_offset 2139 uint32_t hash_data_count 2140 HashData[hash_data_count] 2141 2142If "str_offset" is zero, then the bucket contents are done. 99.9% of the 2143hash data chunks contain a single item (no 32 bit hash collision): 2144 2145.. code-block:: none 2146 2147 .------------. 2148 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2149 | 0x00000004 | uint32_t HashData count 2150 | 0x........ | uint32_t HashData[0] DIE offset 2151 | 0x........ | uint32_t HashData[1] DIE offset 2152 | 0x........ | uint32_t HashData[2] DIE offset 2153 | 0x........ | uint32_t HashData[3] DIE offset 2154 | 0x00000000 | uint32_t KeyType (end of hash chain) 2155 `------------' 2156 2157If there are collisions, you will have multiple valid string offsets: 2158 2159.. code-block:: none 2160 2161 .------------. 2162 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2163 | 0x00000004 | uint32_t HashData count 2164 | 0x........ | uint32_t HashData[0] DIE offset 2165 | 0x........ | uint32_t HashData[1] DIE offset 2166 | 0x........ | uint32_t HashData[2] DIE offset 2167 | 0x........ | uint32_t HashData[3] DIE offset 2168 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print") 2169 | 0x00000002 | uint32_t HashData count 2170 | 0x........ | uint32_t HashData[0] DIE offset 2171 | 0x........ | uint32_t HashData[1] DIE offset 2172 | 0x00000000 | uint32_t KeyType (end of hash chain) 2173 `------------' 2174 2175Current testing with real world C++ binaries has shown that there is around 1 217632 bit hash collision per 100,000 name entries. 2177 2178Contents 2179^^^^^^^^ 2180 2181As we said, we want to strictly define exactly what is included in the 2182different tables. For DWARF, we have 3 tables: "``.apple_names``", 2183"``.apple_types``", and "``.apple_namespaces``". 2184 2185"``.apple_names``" sections should contain an entry for each DWARF DIE whose 2186``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or 2187``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``, 2188``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains 2189``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and 2190static variables). All global and static variables should be included, 2191including those scoped within functions and classes. For example using the 2192following code: 2193 2194.. code-block:: c 2195 2196 static int var = 0; 2197 2198 void f () 2199 { 2200 static int var = 0; 2201 } 2202 2203Both of the static ``var`` variables would be included in the table. All 2204functions should emit both their full names and their basenames. For C or C++, 2205the full name is the mangled name (if available) which is usually in the 2206``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the 2207function basename. If global or static variables have a mangled name in a 2208``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the 2209simple name found in the ``DW_AT_name`` attribute. 2210 2211"``.apple_types``" sections should contain an entry for each DWARF DIE whose 2212tag is one of: 2213 2214* DW_TAG_array_type 2215* DW_TAG_class_type 2216* DW_TAG_enumeration_type 2217* DW_TAG_pointer_type 2218* DW_TAG_reference_type 2219* DW_TAG_string_type 2220* DW_TAG_structure_type 2221* DW_TAG_subroutine_type 2222* DW_TAG_typedef 2223* DW_TAG_union_type 2224* DW_TAG_ptr_to_member_type 2225* DW_TAG_set_type 2226* DW_TAG_subrange_type 2227* DW_TAG_base_type 2228* DW_TAG_const_type 2229* DW_TAG_constant 2230* DW_TAG_file_type 2231* DW_TAG_namelist 2232* DW_TAG_packed_type 2233* DW_TAG_volatile_type 2234* DW_TAG_restrict_type 2235* DW_TAG_interface_type 2236* DW_TAG_unspecified_type 2237* DW_TAG_shared_type 2238 2239Only entries with a ``DW_AT_name`` attribute are included, and the entry must 2240not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero 2241value). For example, using the following code: 2242 2243.. code-block:: c 2244 2245 int main () 2246 { 2247 int *b = 0; 2248 return *b; 2249 } 2250 2251We get a few type DIEs: 2252 2253.. code-block:: none 2254 2255 0x00000067: TAG_base_type [5] 2256 AT_encoding( DW_ATE_signed ) 2257 AT_name( "int" ) 2258 AT_byte_size( 0x04 ) 2259 2260 0x0000006e: TAG_pointer_type [6] 2261 AT_type( {0x00000067} ( int ) ) 2262 AT_byte_size( 0x08 ) 2263 2264The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``. 2265 2266"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs. 2267If we run into a namespace that has no name this is an anonymous namespace, and 2268the name should be output as "``(anonymous namespace)``" (without the quotes). 2269Why? This matches the output of the ``abi::cxa_demangle()`` that is in the 2270standard C++ library that demangles mangled names. 2271 2272 2273Language Extensions and File Format Changes 2274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2275 2276Objective-C Extensions 2277"""""""""""""""""""""" 2278 2279"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an 2280Objective-C class. The name used in the hash table is the name of the 2281Objective-C class itself. If the Objective-C class has a category, then an 2282entry is made for both the class name without the category, and for the class 2283name with the category. So if we have a DIE at offset 0x1234 with a name of 2284method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add 2285an entry for "``NSString``" that points to DIE 0x1234, and an entry for 2286"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly 2287track down all Objective-C methods for an Objective-C class when doing 2288expressions. It is needed because of the dynamic nature of Objective-C where 2289anyone can add methods to a class. The DWARF for Objective-C methods is also 2290emitted differently from C++ classes where the methods are not usually 2291contained in the class definition, they are scattered about across one or more 2292compile units. Categories can also be defined in different shared libraries. 2293So we need to be able to quickly find all of the methods and class functions 2294given the Objective-C class name, or quickly find all methods and class 2295functions for a class + category name. This table does not contain any 2296selector names, it just maps Objective-C class names (or class names + 2297category) to all of the methods and class functions. The selectors are added 2298as function basenames in the "``.debug_names``" section. 2299 2300In the "``.apple_names``" section for Objective-C functions, the full name is 2301the entire function name with the brackets ("``-[NSString 2302stringWithCString:]``") and the basename is the selector only 2303("``stringWithCString:``"). 2304 2305Mach-O Changes 2306"""""""""""""" 2307 2308The sections names for the apple hash tables are for non mach-o files. For 2309mach-o files, the sections should be contained in the ``__DWARF`` segment with 2310names as follows: 2311 2312* "``.apple_names``" -> "``__apple_names``" 2313* "``.apple_types``" -> "``__apple_types``" 2314* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit) 2315* "``.apple_objc``" -> "``__apple_objc``" 2316 2317