1================================
2Source Level Debugging with LLVM
3================================
4
5.. contents::
6   :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM.  It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information.  Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here.  The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26  compiler.  No transformations, analyses, or code generators should need to
27  be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30  ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33  LLVM-to-LLVM tools should not need to know anything about the semantics of
34  the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37  LLVM should not put any restrictions of the flavor of the source-language,
38  and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41  to compile a program to native machine code and standard debugging
42  formats.  This allows compatibility with traditional machine-code level
43  debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects.  The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information.  As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process.  This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger.  Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis.  In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86  the source-level state of the program**, regardless of which LLVM
87  optimizations have been run, and without any modification to the
88  optimizations themselves.  However, some optimizations may impact the
89  ability to modify the current state of the program with a debugger, such
90  as setting program variables, or calling functions that have been
91  deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94  debugging information, allowing them to update the debugging information
95  as they perform aggressive optimizations.  This means that, with effort,
96  the LLVM optimizers could optimize debug code just as well as non-debug
97  code.
98
99* LLVM debug information does not prevent optimizations from
100  happening (for example inlining, basic block reordering/merging/cleanup,
101  tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104  the program, using existing facilities.  For example, duplicate
105  information is automatically merged by the linker, and unused information
106  is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger.  Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information.  It can be run like this:
119
120.. code-block:: bash
121
122  % cd llvm/projects/test-suite/MultiSource/Benchmarks  # or some other level
123  % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes.  If
126debugging information influences optimization passes then it will be reported
127as a failure.  See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information.  In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc).  It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum.  The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`.  These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language.  :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
172information appended at the end that is source-language specific.  All debugging
173information objects start with a tag to indicate what type of object it is.
174The source-language is allowed to define its own objects, by using unreserved
175tag numbers.  We recommend using with tags in the range 0x1000 through 0x2000
176(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
177
178The fields of debug descriptors used internally by LLVM are restricted to only
179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
180``mdnode``.
181
182.. code-block:: llvm
183
184  !1 = metadata !{
185    i32,   ;; A tag
186    ...
187  }
188
189<a name="LLVMDebugVersion">The first field of a descriptor is always an
190``i32`` containing a tag value identifying the content of the descriptor.
191The remaining fields are specific to the descriptor.  The values of tags are
192loosely bound to the tag values of DWARF information entries.  However, that
193does not restrict the use of the information supplied to DWARF targets.
194
195The details of the various descriptors follow.
196
197Compile unit descriptors
198^^^^^^^^^^^^^^^^^^^^^^^^
199
200.. code-block:: llvm
201
202  !0 = metadata !{
203    i32,       ;; Tag = 17 (DW_TAG_compile_unit)
204    metadata,  ;; Source directory (including trailing slash) & file pair
205    i32,       ;; DWARF language identifier (ex. DW_LANG_C89)
206    metadata   ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
207    i1,        ;; True if this is optimized.
208    metadata,  ;; Flags
209    i32        ;; Runtime version
210    metadata   ;; List of enums types
211    metadata   ;; List of retained types
212    metadata   ;; List of subprograms
213    metadata   ;; List of global variables
214    metadata   ;; List of imported entities
215    metadata   ;; Split debug filename
216  }
217
218These descriptors contain a source language ID for the file (we use the DWARF
2193.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
220``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of
221strings for the source file name and the working directory, as well as an
222identifier string for the compiler that produced it.
223
224Compile unit descriptors provide the root context for objects declared in a
225specific compilation unit.  File descriptors are defined using this context.
226These descriptors are collected by a named metadata ``!llvm.dbg.cu``.  They
227keep track of subprograms, global variables, type information, and imported
228entities (declarations and namespaces).
229
230.. _format_files:
231
232File descriptors
233^^^^^^^^^^^^^^^^
234
235.. code-block:: llvm
236
237  !0 = metadata !{
238    i32,       ;; Tag = 41 (DW_TAG_file_type)
239    metadata,  ;; Source directory (including trailing slash) & file pair
240  }
241
242These descriptors contain information for a file.  Global variables and top
243level functions would be defined using this context.  File descriptors also
244provide context for source line correspondence.
245
246Each input file is encoded as a separate file descriptor in LLVM debugging
247information output.
248
249.. _format_global_variables:
250
251Global variable descriptors
252^^^^^^^^^^^^^^^^^^^^^^^^^^^
253
254.. code-block:: llvm
255
256  !1 = metadata !{
257    i32,      ;; Tag = 52 (DW_TAG_variable)
258    i32,      ;; Unused field.
259    metadata, ;; Reference to context descriptor
260    metadata, ;; Name
261    metadata, ;; Display name (fully qualified C++ name)
262    metadata, ;; MIPS linkage name (for C++)
263    metadata, ;; Reference to file where defined
264    i32,      ;; Line number where defined
265    metadata, ;; Reference to type descriptor
266    i1,       ;; True if the global is local to compile unit (static)
267    i1,       ;; True if the global is defined in the compile unit (not extern)
268    {}*,      ;; Reference to the global variable
269    metadata, ;; The static member declaration, if any
270  }
271
272These descriptors provide debug information about globals variables.  They
273provide details such as name, type and where the variable is defined.  All
274global variables are collected inside the named metadata ``!llvm.dbg.cu``.
275
276.. _format_subprograms:
277
278Subprogram descriptors
279^^^^^^^^^^^^^^^^^^^^^^
280
281.. code-block:: llvm
282
283  !2 = metadata !{
284    i32,      ;; Tag = 46 (DW_TAG_subprogram)
285    metadata, ;; Source directory (including trailing slash) & file pair
286    metadata, ;; Reference to context descriptor
287    metadata, ;; Name
288    metadata, ;; Display name (fully qualified C++ name)
289    metadata, ;; MIPS linkage name (for C++)
290    i32,      ;; Line number where defined
291    metadata, ;; Reference to type descriptor
292    i1,       ;; True if the global is local to compile unit (static)
293    i1,       ;; True if the global is defined in the compile unit (not extern)
294    i32,      ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
295    i32,      ;; Index into a virtual function
296    metadata, ;; indicates which base type contains the vtable pointer for the
297              ;; derived class
298    i32,      ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
299    i1,       ;; isOptimized
300    Function * , ;; Pointer to LLVM function
301    metadata, ;; Lists function template parameters
302    metadata, ;; Function declaration descriptor
303    metadata, ;; List of function variables
304    i32       ;; Line number where the scope of the subprogram begins
305  }
306
307These descriptors provide debug information about functions, methods and
308subprograms.  They provide details such as name, return types and the source
309location where the subprogram is defined.
310
311Block descriptors
312^^^^^^^^^^^^^^^^^
313
314.. code-block:: llvm
315
316  !3 = metadata !{
317    i32,     ;; Tag = 11 (DW_TAG_lexical_block)
318    metadata,;; Source directory (including trailing slash) & file pair
319    metadata,;; Reference to context descriptor
320    i32,     ;; Line number
321    i32,     ;; Column number
322    i32      ;; Unique ID to identify blocks from a template function
323  }
324
325This descriptor provides debug information about nested blocks within a
326subprogram.  The line number and column numbers are used to dinstinguish two
327lexical blocks at same depth.
328
329.. code-block:: llvm
330
331  !3 = metadata !{
332    i32,     ;; Tag = 11 (DW_TAG_lexical_block)
333    metadata,;; Source directory (including trailing slash) & file pair
334    metadata ;; Reference to the scope we're annotating with a file change
335  }
336
337This descriptor provides a wrapper around a lexical scope to handle file
338changes in the middle of a lexical block.
339
340.. _format_basic_type:
341
342Basic type descriptors
343^^^^^^^^^^^^^^^^^^^^^^
344
345.. code-block:: llvm
346
347  !4 = metadata !{
348    i32,      ;; Tag = 36 (DW_TAG_base_type)
349    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
350    metadata, ;; Reference to context
351    metadata, ;; Name (may be "" for anonymous types)
352    i32,      ;; Line number where defined (may be 0)
353    i64,      ;; Size in bits
354    i64,      ;; Alignment in bits
355    i64,      ;; Offset in bits
356    i32,      ;; Flags
357    i32       ;; DWARF type encoding
358  }
359
360These descriptors define primitive types used in the code.  Example ``int``,
361``bool`` and ``float``.  The context provides the scope of the type, which is
362usually the top level.  Since basic types are not usually user defined the
363context and line number can be left as NULL and 0.  The size, alignment and
364offset are expressed in bits and can be 64 bit values.  The alignment is used
365to round the offset when embedded in a :ref:`composite type
366<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
367The offset is the bit offset if embedded in a :ref:`composite type
368<format_composite_type>`.
369
370The type encoding provides the details of the type.  The values are typically
371one of the following:
372
373.. code-block:: llvm
374
375  DW_ATE_address       = 1
376  DW_ATE_boolean       = 2
377  DW_ATE_float         = 4
378  DW_ATE_signed        = 5
379  DW_ATE_signed_char   = 6
380  DW_ATE_unsigned      = 7
381  DW_ATE_unsigned_char = 8
382
383.. _format_derived_type:
384
385Derived type descriptors
386^^^^^^^^^^^^^^^^^^^^^^^^
387
388.. code-block:: llvm
389
390  !5 = metadata !{
391    i32,      ;; Tag (see below)
392    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
393    metadata, ;; Reference to context
394    metadata, ;; Name (may be "" for anonymous types)
395    i32,      ;; Line number where defined (may be 0)
396    i64,      ;; Size in bits
397    i64,      ;; Alignment in bits
398    i64,      ;; Offset in bits
399    i32,      ;; Flags to encode attributes, e.g. private
400    metadata, ;; Reference to type derived from
401    metadata, ;; (optional) Name of the Objective C property associated with
402              ;; Objective-C an ivar, or the type of which this
403              ;; pointer-to-member is pointing to members of.
404    metadata, ;; (optional) Name of the Objective C property getter selector.
405    metadata, ;; (optional) Name of the Objective C property setter selector.
406    i32       ;; (optional) Objective C property attributes.
407  }
408
409These descriptors are used to define types derived from other types.  The value
410of the tag varies depending on the meaning.  The following are possible tag
411values:
412
413.. code-block:: llvm
414
415  DW_TAG_formal_parameter   = 5
416  DW_TAG_member             = 13
417  DW_TAG_pointer_type       = 15
418  DW_TAG_reference_type     = 16
419  DW_TAG_typedef            = 22
420  DW_TAG_ptr_to_member_type = 31
421  DW_TAG_const_type         = 38
422  DW_TAG_volatile_type      = 53
423  DW_TAG_restrict_type      = 55
424
425``DW_TAG_member`` is used to define a member of a :ref:`composite type
426<format_composite_type>` or :ref:`subprogram <format_subprograms>`.  The type
427of the member is the :ref:`derived type <format_derived_type>`.
428``DW_TAG_formal_parameter`` is used to define a member which is a formal
429argument of a subprogram.
430
431``DW_TAG_typedef`` is used to provide a name for the derived type.
432
433``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
434``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
435:ref:`derived type <format_derived_type>`.
436
437:ref:`Derived type <format_derived_type>` location can be determined from the
438context and line number.  The size, alignment and offset are expressed in bits
439and can be 64 bit values.  The alignment is used to round the offset when
440embedded in a :ref:`composite type <format_composite_type>`  (example to keep
441float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
442in a :ref:`composite type <format_composite_type>`.
443
444Note that the ``void *`` type is expressed as a type derived from NULL.
445
446.. _format_composite_type:
447
448Composite type descriptors
449^^^^^^^^^^^^^^^^^^^^^^^^^^
450
451.. code-block:: llvm
452
453  !6 = metadata !{
454    i32,      ;; Tag (see below)
455    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
456    metadata, ;; Reference to context
457    metadata, ;; Name (may be "" for anonymous types)
458    i32,      ;; Line number where defined (may be 0)
459    i64,      ;; Size in bits
460    i64,      ;; Alignment in bits
461    i64,      ;; Offset in bits
462    i32,      ;; Flags
463    metadata, ;; Reference to type derived from
464    metadata, ;; Reference to array of member descriptors
465    i32,      ;; Runtime languages
466    metadata, ;; Base type containing the vtable pointer for this type
467    metadata, ;; Template parameters
468    metadata  ;; A unique identifier for type uniquing purpose (may be null)
469  }
470
471These descriptors are used to define types that are composed of 0 or more
472elements.  The value of the tag varies depending on the meaning.  The following
473are possible tag values:
474
475.. code-block:: llvm
476
477  DW_TAG_array_type       = 1
478  DW_TAG_enumeration_type = 4
479  DW_TAG_structure_type   = 19
480  DW_TAG_union_type       = 23
481  DW_TAG_subroutine_type  = 21
482  DW_TAG_inheritance      = 28
483
484The vector flag indicates that an array type is a native packed vector.
485
486The members of array types (tag = ``DW_TAG_array_type``) are
487:ref:`subrange descriptors <format_subrange>`, each
488representing the range of subscripts at that level of indexing.
489
490The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
491:ref:`enumerator descriptors <format_enumerator>`, each representing the
492definition of enumeration value for the set.  All enumeration type descriptors
493are collected inside the named metadata ``!llvm.dbg.cu``.
494
495The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
496``DW_TAG_union_type``) types are any one of the :ref:`basic
497<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
498<format_composite_type>` type descriptors, each representing a field member of
499the structure or union.
500
501For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
502information about base classes, static members and member functions.  If a
503member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
504of ``DW_TAG_inheritance``, then the type represents a base class.  If the member
505of is a :ref:`global variable descriptor <format_global_variables>` then it
506represents a static member.  And, if the member is a :ref:`subprogram
507descriptor <format_subprograms>` then it represents a member function.  For
508static members and member functions, ``getName()`` returns the members link or
509the C++ mangled name.  ``getDisplayName()`` the simplied version of the name.
510
511The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
512is the return type for the subroutine.  The remaining elements are the formal
513arguments to the subroutine.
514
515:ref:`Composite type <format_composite_type>` location can be determined from
516the context and line number.  The size, alignment and offset are expressed in
517bits and can be 64 bit values.  The alignment is used to round the offset when
518embedded in a :ref:`composite type <format_composite_type>` (as an example, to
519keep float doubles on 64 bit boundaries).  The offset is the bit offset if
520embedded in a :ref:`composite type <format_composite_type>`.
521
522.. _format_subrange:
523
524Subrange descriptors
525^^^^^^^^^^^^^^^^^^^^
526
527.. code-block:: llvm
528
529  !42 = metadata !{
530    i32,    ;; Tag = 33 (DW_TAG_subrange_type)
531    i64,    ;; Low value
532    i64     ;; High value
533  }
534
535These descriptors are used to define ranges of array subscripts for an array
536:ref:`composite type <format_composite_type>`.  The low value defines the lower
537bounds typically zero for C/C++.  The high value is the upper bounds.  Values
538are 64 bit.  ``High - Low + 1`` is the size of the array.  If ``Low > High``
539the array bounds are not included in generated debugging information.
540
541.. _format_enumerator:
542
543Enumerator descriptors
544^^^^^^^^^^^^^^^^^^^^^^
545
546.. code-block:: llvm
547
548  !6 = metadata !{
549    i32,      ;; Tag = 40 (DW_TAG_enumerator)
550    metadata, ;; Name
551    i64       ;; Value
552  }
553
554These descriptors are used to define members of an enumeration :ref:`composite
555type <format_composite_type>`, it associates the name to the value.
556
557Local variables
558^^^^^^^^^^^^^^^
559
560.. code-block:: llvm
561
562  !7 = metadata !{
563    i32,      ;; Tag (see below)
564    metadata, ;; Context
565    metadata, ;; Name
566    metadata, ;; Reference to file where defined
567    i32,      ;; 24 bit - Line number where defined
568              ;; 8 bit - Argument number. 1 indicates 1st argument.
569    metadata, ;; Type descriptor
570    i32,      ;; flags
571    metadata  ;; (optional) Reference to inline location
572  }
573
574These descriptors are used to define variables local to a sub program.  The
575value of the tag depends on the usage of the variable:
576
577.. code-block:: llvm
578
579  DW_TAG_auto_variable   = 256
580  DW_TAG_arg_variable    = 257
581
582An auto variable is any variable declared in the body of the function.  An
583argument variable is any variable that appears as a formal argument to the
584function.
585
586The context is either the subprogram or block where the variable is defined.
587Name the source variable name.  Context and line indicate where the variable
588was defined.  Type descriptor defines the declared type of the variable.
589
590.. _format_common_intrinsics:
591
592Debugger intrinsic functions
593^^^^^^^^^^^^^^^^^^^^^^^^^^^^
594
595LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
596provide debug information at various points in generated code.
597
598``llvm.dbg.declare``
599^^^^^^^^^^^^^^^^^^^^
600
601.. code-block:: llvm
602
603  void %llvm.dbg.declare(metadata, metadata)
604
605This intrinsic provides information about a local element (e.g., variable).
606The first argument is metadata holding the alloca for the variable.  The second
607argument is metadata containing a description of the variable.
608
609``llvm.dbg.value``
610^^^^^^^^^^^^^^^^^^
611
612.. code-block:: llvm
613
614  void %llvm.dbg.value(metadata, i64, metadata)
615
616This intrinsic provides information when a user source variable is set to a new
617value.  The first argument is the new value (wrapped as metadata).  The second
618argument is the offset in the user source variable where the new value is
619written.  The third argument is metadata containing a description of the user
620source variable.
621
622Object lifetimes and scoping
623============================
624
625In many languages, the local variables in functions can have their lifetimes or
626scopes limited to a subset of a function.  In the C family of languages, for
627example, variables are only live (readable and writable) within the source
628block that they are defined in.  In functional languages, values are only
629readable after they have been defined.  Though this is a very obvious concept,
630it is non-trivial to model in LLVM, because it has no notion of scoping in this
631sense, and does not want to be tied to a language's scoping rules.
632
633In order to handle this, the LLVM debug format uses the metadata attached to
634llvm instructions to encode line number and scoping information.  Consider the
635following C fragment, for example:
636
637.. code-block:: c
638
639  1.  void foo() {
640  2.    int X = 21;
641  3.    int Y = 22;
642  4.    {
643  5.      int Z = 23;
644  6.      Z = X;
645  7.    }
646  8.    X = Y;
647  9.  }
648
649Compiled to LLVM, this function would be represented like this:
650
651.. code-block:: llvm
652
653  define void @_Z3foov() #0 {
654  entry:
655    %X = alloca i32, align 4                        ; [#uses=3 type=i32*]
656    %Y = alloca i32, align 4                        ; [#uses=2 type=i32*]
657    %Z = alloca i32, align 4                        ; [#uses=2 type=i32*]
658    call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !8), !dbg !10
659      ; [debug line = 2:7] [debug variable = X]
660    store i32 21, i32* %X, align 4, !dbg !11        ; [debug line = 2:13]
661    call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !12), !dbg !13
662      ; [debug line = 3:7] [debug variable = Y]
663    store i32 22, i32* %Y, align 4, !dbg !14        ; [debug line = 3:13]
664    call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
665      ; [debug line = 5:9] [debug variable = Z]
666    store i32 23, i32* %Z, align 4, !dbg !18        ; [debug line = 5:15]
667    %0 = load i32* %X, align 4, !dbg !19            ; [#uses=1 type=i32] \
668      [debug line = 6:5]
669    store i32 %0, i32* %Z, align 4, !dbg !19        ; [debug line = 6:5]
670    %1 = load i32* %Y, align 4, !dbg !20            ; [#uses=1 type=i32] \
671      [debug line = 8:3]
672    store i32 %1, i32* %X, align 4, !dbg !20        ; [debug line = 8:3]
673    ret void, !dbg !21                              ; [debug line = 9:1]
674  }
675
676  ; [#uses=3]
677  ; Function Attrs: nounwind readnone
678  declare void @llvm.dbg.declare(metadata, metadata) #1
679
680  attributes #0 = { optsize zeroext "less-precise-fpmad"="false"
681    "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="true"
682    "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false"
683    "use-soft-float"="false" }
684  attributes #1 = { nounwind readnone }
685
686  !llvm.dbg.cu = !{!0}
687
688  !0 = metadata !{i32 786449, metadata !1, i32 12,
689                  metadata !"clang version 3.4 ", i1 false, metadata !"", i32 0,
690                  metadata !2, metadata !2, metadata !3, metadata !2,
691                  metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \
692                    [/private/tmp/foo.c] \
693                    [DW_LANG_C]
694  !1 = metadata !{metadata !"foo.c", metadata !"/private/tmp"}
695  !2 = metadata !{i32 0}
696  !3 = metadata !{metadata !4}
697  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
698                  metadata !"foo", metadata !"_Z3foov", i32 1, metadata !6,
699                  i1 false, i1 true, i32 0, i32 0, null, i32 256, i1 false,
700                  void ()* @_Z3foov, null, null, metadata !2, i32 1}
701                  ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
702  !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \
703                    [/private/tmp/foo.c]
704  !6 = metadata !{i32 786453, i32 0, i32 0, metadata !"", i32 0, i64 0, i64 0,
705                  i64 0, i32 0, null, metadata !7, i32 0, i32 0}
706                  ; [ DW_TAG_subroutine_type ] \
707                    [line 0, size 0, align 0, offset 0] [from ]
708  !7 = metadata !{null}
709  !8 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2, \
710                  metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \
711                    [line 2]
712  !9 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32, \
713                  i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \
714                    [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
715  !10 = metadata !{i32 2, i32 7, metadata !4, null}
716  !11 = metadata !{i32 2, i32 13, metadata !4, null}
717  !12 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3, \
718                   metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \
719                     [line 3]
720  !13 = metadata !{i32 3, i32 7, metadata !4, null}
721  !14 = metadata !{i32 3, i32 13, metadata !4, null}
722  !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5, \
723                   metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \
724                     [line 5]
725  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 3, i32 0}
726                   ; [ DW_TAG_lexical_block ] [/private/tmp/foo.c]
727  !17 = metadata !{i32 5, i32 9, metadata !16, null}
728  !18 = metadata !{i32 5, i32 15, metadata !16, null}
729  !19 = metadata !{i32 6, i32 5, metadata !16, null}
730  !20 = metadata !{i32 8, i32 3, metadata !4, null}
731  !21 = metadata !{i32 9, i32 1, metadata !4, null}
732
733This example illustrates a few important details about LLVM debugging
734information.  In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
735location information, which are attached to an instruction, are applied
736together to allow a debugger to analyze the relationship between statements,
737variable definitions, and the code used to implement the function.
738
739.. code-block:: llvm
740
741  call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !8), !dbg !10
742    ; [debug line = 2:7] [debug variable = X]
743
744The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
745variable ``X``.  The metadata ``!dbg !10`` attached to the intrinsic provides
746scope information for the variable ``X``.
747
748.. code-block:: llvm
749
750  !10 = metadata !{i32 2, i32 7, metadata !4, null}
751  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
752                  metadata !"foo", metadata !"_Z3foov", i32 1, metadata !6,
753                  i1 false, i1 true, i32 0, i32 0, null, i32 256, i1 false,
754                  void ()* @_Z3foov, null, null, metadata !2, i32 1}
755                  ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
756
757Here ``!10`` is metadata providing location information.  It has four fields:
758line number, column number, scope, and original scope.  The original scope
759represents inline location if this instruction is inlined inside a caller, and
760is null otherwise.  In this example, scope is encoded by ``!4``, a
761:ref:`subprogram descriptor <format_subprograms>`.  This way the location
762information attached to the intrinsics indicates that the variable ``X`` is
763declared at line number 2 at a function level scope in function ``foo``.
764
765Now lets take another example.
766
767.. code-block:: llvm
768
769  call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
770    ; [debug line = 5:9] [debug variable = Z]
771
772The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
773variable ``Z``.  The metadata ``!dbg !17`` attached to the intrinsic provides
774scope information for the variable ``Z``.
775
776.. code-block:: llvm
777
778  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 3, i32 0}
779                   ; [ DW_TAG_lexical_block ] [/private/tmp/foo.c]
780  !17 = metadata !{i32 5, i32 9, metadata !16, null}
781
782Here ``!15`` indicates that ``Z`` is declared at line number 5 and
783column number 9 inside of lexical scope ``!16``.  The lexical scope itself
784resides inside of subprogram ``!4`` described above.
785
786The scope information attached with each instruction provides a straightforward
787way to find instructions covered by a scope.
788
789.. _ccxx_frontend:
790
791C/C++ front-end specific debug information
792==========================================
793
794The C and C++ front-ends represent information about the program in a format
795that is effectively identical to `DWARF 3.0
796<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
797content.  This allows code generators to trivially support native debuggers by
798generating standard dwarf information, and contains enough information for
799non-dwarf targets to translate it as needed.
800
801This section describes the forms used to represent C and C++ programs.  Other
802languages could pattern themselves after this (which itself is tuned to
803representing programs in the same way that DWARF 3 does), or they could choose
804to provide completely different forms if they don't fit into the DWARF model.
805As support for debugging information gets added to the various LLVM
806source-language front-ends, the information used should be documented here.
807
808The following sections provide examples of various C/C++ constructs and the
809debug information that would best describe those constructs.
810
811C/C++ source file information
812-----------------------------
813
814Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
815directory ``/Users/mine/sources``, the following code:
816
817.. code-block:: c
818
819  #include "MyHeader.h"
820
821  int main(int argc, char *argv[]) {
822    return 0;
823  }
824
825a C/C++ front-end would generate the following descriptors:
826
827.. code-block:: llvm
828
829  ...
830  ;;
831  ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
832  ;;
833  !0 = metadata !{
834    i32 786449,   ;; Tag
835    metadata !1,  ;; File/directory name
836    i32 4,        ;; Language Id
837    metadata !"clang version 3.4 ",
838    i1 false,     ;; Optimized compile unit
839    metadata !"", ;; Compiler flags
840    i32 0,        ;; Runtime version
841    metadata !2,  ;; Enumeration types
842    metadata !2,  ;; Retained types
843    metadata !3,  ;; Subprograms
844    metadata !2,  ;; Global variables
845    metadata !2,  ;; Imported entities (declarations and namespaces)
846    metadata !""  ;; Split debug filename
847  }
848
849  ;;
850  ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
851  ;;
852  !1 = metadata !{
853    metadata !"MySource.cpp",
854    metadata !"/Users/mine/sources"
855  }
856  !5 = metadata !{
857    i32 786473, ;; Tag
858    metadata !1
859  }
860
861  ;;
862  ;; Define the file for the file "/Users/mine/sources/Myheader.h"
863  ;;
864  !14 = metadata !{
865    i32 786473, ;; Tag
866    metadata !15
867  }
868  !15 = metadata !{
869    metadata !"./MyHeader.h",
870    metadata !"/Users/mine/sources",
871  }
872
873  ...
874
875``llvm::Instruction`` provides easy access to metadata attached with an
876instruction.  One can extract line number information encoded in LLVM IR using
877``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
878
879.. code-block:: c++
880
881  if (MDNode *N = I->getMetadata("dbg")) {  // Here I is an LLVM instruction
882    DILocation Loc(N);                      // DILocation is in DebugInfo.h
883    unsigned Line = Loc.getLineNumber();
884    StringRef File = Loc.getFilename();
885    StringRef Dir = Loc.getDirectory();
886  }
887
888C/C++ global variable information
889---------------------------------
890
891Given an integer global variable declared as follows:
892
893.. code-block:: c
894
895  int MyGlobal = 100;
896
897a C/C++ front-end would generate the following descriptors:
898
899.. code-block:: llvm
900
901  ;;
902  ;; Define the global itself.
903  ;;
904  %MyGlobal = global int 100
905  ...
906  ;;
907  ;; List of debug info of globals
908  ;;
909  !llvm.dbg.cu = !{!0}
910
911  ;; Define the compile unit.
912  !0 = metadata !{
913    i32 786449,                       ;; Tag
914    i32 0,                            ;; Context
915    i32 4,                            ;; Language
916    metadata !"foo.cpp",              ;; File
917    metadata !"/Volumes/Data/tmp",    ;; Directory
918    metadata !"clang version 3.1 ",   ;; Producer
919    i1 true,                          ;; Deprecated field
920    i1 false,                         ;; "isOptimized"?
921    metadata !"",                     ;; Flags
922    i32 0,                            ;; Runtime Version
923    metadata !1,                      ;; Enum Types
924    metadata !1,                      ;; Retained Types
925    metadata !1,                      ;; Subprograms
926    metadata !3,                      ;; Global Variables
927    metadata !1,                      ;; Imported entities
928    "",                               ;; Split debug filename
929  } ; [ DW_TAG_compile_unit ]
930
931  ;; The Array of Global Variables
932  !3 = metadata !{
933    metadata !4
934  }
935
936  ;;
937  ;; Define the global variable itself.
938  ;;
939  !4 = metadata !{
940    i32 786484,                        ;; Tag
941    i32 0,                             ;; Unused
942    null,                              ;; Unused
943    metadata !"MyGlobal",              ;; Name
944    metadata !"MyGlobal",              ;; Display Name
945    metadata !"",                      ;; Linkage Name
946    metadata !6,                       ;; File
947    i32 1,                             ;; Line
948    metadata !7,                       ;; Type
949    i32 0,                             ;; IsLocalToUnit
950    i32 1,                             ;; IsDefinition
951    i32* @MyGlobal,                    ;; LLVM-IR Value
952    null                               ;; Static member declaration
953  } ; [ DW_TAG_variable ]
954
955  ;;
956  ;; Define the file
957  ;;
958  !5 = metadata !{
959    metadata !"foo.cpp",               ;; File
960    metadata !"/Volumes/Data/tmp",     ;; Directory
961  }
962  !6 = metadata !{
963    i32 786473,                        ;; Tag
964    metadata !5                        ;; Unused
965  } ; [ DW_TAG_file_type ]
966
967  ;;
968  ;; Define the type
969  ;;
970  !7 = metadata !{
971    i32 786468,                         ;; Tag
972    null,                               ;; Unused
973    null,                               ;; Unused
974    metadata !"int",                    ;; Name
975    i32 0,                              ;; Line
976    i64 32,                             ;; Size in Bits
977    i64 32,                             ;; Align in Bits
978    i64 0,                              ;; Offset
979    i32 0,                              ;; Flags
980    i32 5                               ;; Encoding
981  } ; [ DW_TAG_base_type ]
982
983C/C++ function information
984--------------------------
985
986Given a function declared as follows:
987
988.. code-block:: c
989
990  int main(int argc, char *argv[]) {
991    return 0;
992  }
993
994a C/C++ front-end would generate the following descriptors:
995
996.. code-block:: llvm
997
998  ;;
999  ;; Define the anchor for subprograms.
1000  ;;
1001  !6 = metadata !{
1002    i32 786484,        ;; Tag
1003    metadata !1,       ;; File
1004    metadata !1,       ;; Context
1005    metadata !"main",  ;; Name
1006    metadata !"main",  ;; Display name
1007    metadata !"main",  ;; Linkage name
1008    i32 1,             ;; Line number
1009    metadata !4,       ;; Type
1010    i1 false,          ;; Is local
1011    i1 true,           ;; Is definition
1012    i32 0,             ;; Virtuality attribute, e.g. pure virtual function
1013    i32 0,             ;; Index into virtual table for C++ methods
1014    i32 0,             ;; Type that holds virtual table.
1015    i32 0,             ;; Flags
1016    i1 false,          ;; True if this function is optimized
1017    Function *,        ;; Pointer to llvm::Function
1018    null,              ;; Function template parameters
1019    null,              ;; List of function variables (emitted when optimizing)
1020    1                  ;; Line number of the opening '{' of the function
1021  }
1022  ;;
1023  ;; Define the subprogram itself.
1024  ;;
1025  define i32 @main(i32 %argc, i8** %argv) {
1026  ...
1027  }
1028
1029C/C++ basic types
1030-----------------
1031
1032The following are the basic type descriptors for C/C++ core types:
1033
1034bool
1035^^^^
1036
1037.. code-block:: llvm
1038
1039  !2 = metadata !{
1040    i32 786468,        ;; Tag
1041    null,              ;; File
1042    null,              ;; Context
1043    metadata !"bool",  ;; Name
1044    i32 0,             ;; Line number
1045    i64 8,             ;; Size in Bits
1046    i64 8,             ;; Align in Bits
1047    i64 0,             ;; Offset in Bits
1048    i32 0,             ;; Flags
1049    i32 2              ;; Encoding
1050  }
1051
1052char
1053^^^^
1054
1055.. code-block:: llvm
1056
1057  !2 = metadata !{
1058    i32 786468,        ;; Tag
1059    null,              ;; File
1060    null,              ;; Context
1061    metadata !"char",  ;; Name
1062    i32 0,             ;; Line number
1063    i64 8,             ;; Size in Bits
1064    i64 8,             ;; Align in Bits
1065    i64 0,             ;; Offset in Bits
1066    i32 0,             ;; Flags
1067    i32 6              ;; Encoding
1068  }
1069
1070unsigned char
1071^^^^^^^^^^^^^
1072
1073.. code-block:: llvm
1074
1075  !2 = metadata !{
1076    i32 786468,        ;; Tag
1077    null,              ;; File
1078    null,              ;; Context
1079    metadata !"unsigned char",
1080    i32 0,             ;; Line number
1081    i64 8,             ;; Size in Bits
1082    i64 8,             ;; Align in Bits
1083    i64 0,             ;; Offset in Bits
1084    i32 0,             ;; Flags
1085    i32 8              ;; Encoding
1086  }
1087
1088short
1089^^^^^
1090
1091.. code-block:: llvm
1092
1093  !2 = metadata !{
1094    i32 786468,        ;; Tag
1095    null,              ;; File
1096    null,              ;; Context
1097    metadata !"short int",
1098    i32 0,             ;; Line number
1099    i64 16,            ;; Size in Bits
1100    i64 16,            ;; Align in Bits
1101    i64 0,             ;; Offset in Bits
1102    i32 0,             ;; Flags
1103    i32 5              ;; Encoding
1104  }
1105
1106unsigned short
1107^^^^^^^^^^^^^^
1108
1109.. code-block:: llvm
1110
1111  !2 = metadata !{
1112    i32 786468,        ;; Tag
1113    null,              ;; File
1114    null,              ;; Context
1115    metadata !"short unsigned int",
1116    i32 0,             ;; Line number
1117    i64 16,            ;; Size in Bits
1118    i64 16,            ;; Align in Bits
1119    i64 0,             ;; Offset in Bits
1120    i32 0,             ;; Flags
1121    i32 7              ;; Encoding
1122  }
1123
1124int
1125^^^
1126
1127.. code-block:: llvm
1128
1129  !2 = metadata !{
1130    i32 786468,        ;; Tag
1131    null,              ;; File
1132    null,              ;; Context
1133    metadata !"int",   ;; Name
1134    i32 0,             ;; Line number
1135    i64 32,            ;; Size in Bits
1136    i64 32,            ;; Align in Bits
1137    i64 0,             ;; Offset in Bits
1138    i32 0,             ;; Flags
1139    i32 5              ;; Encoding
1140  }
1141
1142unsigned int
1143^^^^^^^^^^^^
1144
1145.. code-block:: llvm
1146
1147  !2 = metadata !{
1148    i32 786468,        ;; Tag
1149    null,              ;; File
1150    null,              ;; Context
1151    metadata !"unsigned int",
1152    i32 0,             ;; Line number
1153    i64 32,            ;; Size in Bits
1154    i64 32,            ;; Align in Bits
1155    i64 0,             ;; Offset in Bits
1156    i32 0,             ;; Flags
1157    i32 7              ;; Encoding
1158  }
1159
1160long long
1161^^^^^^^^^
1162
1163.. code-block:: llvm
1164
1165  !2 = metadata !{
1166    i32 786468,        ;; Tag
1167    null,              ;; File
1168    null,              ;; Context
1169    metadata !"long long int",
1170    i32 0,             ;; Line number
1171    i64 64,            ;; Size in Bits
1172    i64 64,            ;; Align in Bits
1173    i64 0,             ;; Offset in Bits
1174    i32 0,             ;; Flags
1175    i32 5              ;; Encoding
1176  }
1177
1178unsigned long long
1179^^^^^^^^^^^^^^^^^^
1180
1181.. code-block:: llvm
1182
1183  !2 = metadata !{
1184    i32 786468,        ;; Tag
1185    null,              ;; File
1186    null,              ;; Context
1187    metadata !"long long unsigned int",
1188    i32 0,             ;; Line number
1189    i64 64,            ;; Size in Bits
1190    i64 64,            ;; Align in Bits
1191    i64 0,             ;; Offset in Bits
1192    i32 0,             ;; Flags
1193    i32 7              ;; Encoding
1194  }
1195
1196float
1197^^^^^
1198
1199.. code-block:: llvm
1200
1201  !2 = metadata !{
1202    i32 786468,        ;; Tag
1203    null,              ;; File
1204    null,              ;; Context
1205    metadata !"float",
1206    i32 0,             ;; Line number
1207    i64 32,            ;; Size in Bits
1208    i64 32,            ;; Align in Bits
1209    i64 0,             ;; Offset in Bits
1210    i32 0,             ;; Flags
1211    i32 4              ;; Encoding
1212  }
1213
1214double
1215^^^^^^
1216
1217.. code-block:: llvm
1218
1219  !2 = metadata !{
1220    i32 786468,        ;; Tag
1221    null,              ;; File
1222    null,              ;; Context
1223    metadata !"double",;; Name
1224    i32 0,             ;; Line number
1225    i64 64,            ;; Size in Bits
1226    i64 64,            ;; Align in Bits
1227    i64 0,             ;; Offset in Bits
1228    i32 0,             ;; Flags
1229    i32 4              ;; Encoding
1230  }
1231
1232C/C++ derived types
1233-------------------
1234
1235Given the following as an example of C/C++ derived type:
1236
1237.. code-block:: c
1238
1239  typedef const int *IntPtr;
1240
1241a C/C++ front-end would generate the following descriptors:
1242
1243.. code-block:: llvm
1244
1245  ;;
1246  ;; Define the typedef "IntPtr".
1247  ;;
1248  !2 = metadata !{
1249    i32 786454,          ;; Tag
1250    metadata !3,         ;; File
1251    metadata !1,         ;; Context
1252    metadata !"IntPtr",  ;; Name
1253    i32 0,               ;; Line number
1254    i64 0,               ;; Size in bits
1255    i64 0,               ;; Align in bits
1256    i64 0,               ;; Offset in bits
1257    i32 0,               ;; Flags
1258    metadata !4          ;; Derived From type
1259  }
1260  ;;
1261  ;; Define the pointer type.
1262  ;;
1263  !4 = metadata !{
1264    i32 786447,          ;; Tag
1265    null,                ;; File
1266    null,                ;; Context
1267    metadata !"",        ;; Name
1268    i32 0,               ;; Line number
1269    i64 64,              ;; Size in bits
1270    i64 64,              ;; Align in bits
1271    i64 0,               ;; Offset in bits
1272    i32 0,               ;; Flags
1273    metadata !5          ;; Derived From type
1274  }
1275  ;;
1276  ;; Define the const type.
1277  ;;
1278  !5 = metadata !{
1279    i32 786470,          ;; Tag
1280    null,                ;; File
1281    null,                ;; Context
1282    metadata !"",        ;; Name
1283    i32 0,               ;; Line number
1284    i64 0,               ;; Size in bits
1285    i64 0,               ;; Align in bits
1286    i64 0,               ;; Offset in bits
1287    i32 0,               ;; Flags
1288    metadata !6          ;; Derived From type
1289  }
1290  ;;
1291  ;; Define the int type.
1292  ;;
1293  !6 = metadata !{
1294    i32 786468,          ;; Tag
1295    null,                ;; File
1296    null,                ;; Context
1297    metadata !"int",     ;; Name
1298    i32 0,               ;; Line number
1299    i64 32,              ;; Size in bits
1300    i64 32,              ;; Align in bits
1301    i64 0,               ;; Offset in bits
1302    i32 0,               ;; Flags
1303    i32 5                ;; Encoding
1304  }
1305
1306C/C++ struct/union types
1307------------------------
1308
1309Given the following as an example of C/C++ struct type:
1310
1311.. code-block:: c
1312
1313  struct Color {
1314    unsigned Red;
1315    unsigned Green;
1316    unsigned Blue;
1317  };
1318
1319a C/C++ front-end would generate the following descriptors:
1320
1321.. code-block:: llvm
1322
1323  ;;
1324  ;; Define basic type for unsigned int.
1325  ;;
1326  !5 = metadata !{
1327    i32 786468,        ;; Tag
1328    null,              ;; File
1329    null,              ;; Context
1330    metadata !"unsigned int",
1331    i32 0,             ;; Line number
1332    i64 32,            ;; Size in Bits
1333    i64 32,            ;; Align in Bits
1334    i64 0,             ;; Offset in Bits
1335    i32 0,             ;; Flags
1336    i32 7              ;; Encoding
1337  }
1338  ;;
1339  ;; Define composite type for struct Color.
1340  ;;
1341  !2 = metadata !{
1342    i32 786451,        ;; Tag
1343    metadata !1,       ;; Compile unit
1344    null,              ;; Context
1345    metadata !"Color", ;; Name
1346    i32 1,             ;; Line number
1347    i64 96,            ;; Size in bits
1348    i64 32,            ;; Align in bits
1349    i64 0,             ;; Offset in bits
1350    i32 0,             ;; Flags
1351    null,              ;; Derived From
1352    metadata !3,       ;; Elements
1353    i32 0,             ;; Runtime Language
1354    null,              ;; Base type containing the vtable pointer for this type
1355    null               ;; Template parameters
1356  }
1357
1358  ;;
1359  ;; Define the Red field.
1360  ;;
1361  !4 = metadata !{
1362    i32 786445,        ;; Tag
1363    metadata !1,       ;; File
1364    metadata !1,       ;; Context
1365    metadata !"Red",   ;; Name
1366    i32 2,             ;; Line number
1367    i64 32,            ;; Size in bits
1368    i64 32,            ;; Align in bits
1369    i64 0,             ;; Offset in bits
1370    i32 0,             ;; Flags
1371    metadata !5        ;; Derived From type
1372  }
1373
1374  ;;
1375  ;; Define the Green field.
1376  ;;
1377  !6 = metadata !{
1378    i32 786445,        ;; Tag
1379    metadata !1,       ;; File
1380    metadata !1,       ;; Context
1381    metadata !"Green", ;; Name
1382    i32 3,             ;; Line number
1383    i64 32,            ;; Size in bits
1384    i64 32,            ;; Align in bits
1385    i64 32,             ;; Offset in bits
1386    i32 0,             ;; Flags
1387    metadata !5        ;; Derived From type
1388  }
1389
1390  ;;
1391  ;; Define the Blue field.
1392  ;;
1393  !7 = metadata !{
1394    i32 786445,        ;; Tag
1395    metadata !1,       ;; File
1396    metadata !1,       ;; Context
1397    metadata !"Blue",  ;; Name
1398    i32 4,             ;; Line number
1399    i64 32,            ;; Size in bits
1400    i64 32,            ;; Align in bits
1401    i64 64,             ;; Offset in bits
1402    i32 0,             ;; Flags
1403    metadata !5        ;; Derived From type
1404  }
1405
1406  ;;
1407  ;; Define the array of fields used by the composite type Color.
1408  ;;
1409  !3 = metadata !{metadata !4, metadata !6, metadata !7}
1410
1411C/C++ enumeration types
1412-----------------------
1413
1414Given the following as an example of C/C++ enumeration type:
1415
1416.. code-block:: c
1417
1418  enum Trees {
1419    Spruce = 100,
1420    Oak = 200,
1421    Maple = 300
1422  };
1423
1424a C/C++ front-end would generate the following descriptors:
1425
1426.. code-block:: llvm
1427
1428  ;;
1429  ;; Define composite type for enum Trees
1430  ;;
1431  !2 = metadata !{
1432    i32 786436,        ;; Tag
1433    metadata !1,       ;; File
1434    metadata !1,       ;; Context
1435    metadata !"Trees", ;; Name
1436    i32 1,             ;; Line number
1437    i64 32,            ;; Size in bits
1438    i64 32,            ;; Align in bits
1439    i64 0,             ;; Offset in bits
1440    i32 0,             ;; Flags
1441    null,              ;; Derived From type
1442    metadata !3,       ;; Elements
1443    i32 0              ;; Runtime language
1444  }
1445
1446  ;;
1447  ;; Define the array of enumerators used by composite type Trees.
1448  ;;
1449  !3 = metadata !{metadata !4, metadata !5, metadata !6}
1450
1451  ;;
1452  ;; Define Spruce enumerator.
1453  ;;
1454  !4 = metadata !{i32 786472, metadata !"Spruce", i64 100}
1455
1456  ;;
1457  ;; Define Oak enumerator.
1458  ;;
1459  !5 = metadata !{i32 786472, metadata !"Oak", i64 200}
1460
1461  ;;
1462  ;; Define Maple enumerator.
1463  ;;
1464  !6 = metadata !{i32 786472, metadata !"Maple", i64 300}
1465
1466Debugging information format
1467============================
1468
1469Debugging Information Extension for Objective C Properties
1470----------------------------------------------------------
1471
1472Introduction
1473^^^^^^^^^^^^
1474
1475Objective C provides a simpler way to declare and define accessor methods using
1476declared properties.  The language provides features to declare a property and
1477to let compiler synthesize accessor methods.
1478
1479The debugger lets developer inspect Objective C interfaces and their instance
1480variables and class variables.  However, the debugger does not know anything
1481about the properties defined in Objective C interfaces.  The debugger consumes
1482information generated by compiler in DWARF format.  The format does not support
1483encoding of Objective C properties.  This proposal describes DWARF extensions to
1484encode Objective C properties, which the debugger can use to let developers
1485inspect Objective C properties.
1486
1487Proposal
1488^^^^^^^^
1489
1490Objective C properties exist separately from class members.  A property can be
1491defined only by "setter" and "getter" selectors, and be calculated anew on each
1492access.  Or a property can just be a direct access to some declared ivar.
1493Finally it can have an ivar "automatically synthesized" for it by the compiler,
1494in which case the property can be referred to in user code directly using the
1495standard C dereference syntax as well as through the property "dot" syntax, but
1496there is no entry in the ``@interface`` declaration corresponding to this ivar.
1497
1498To facilitate debugging, these properties we will add a new DWARF TAG into the
1499``DW_TAG_structure_type`` definition for the class to hold the description of a
1500given property, and a set of DWARF attributes that provide said description.
1501The property tag will also contain the name and declared type of the property.
1502
1503If there is a related ivar, there will also be a DWARF property attribute placed
1504in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1505for that property.  And in the case where the compiler synthesizes the ivar
1506directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1507ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1508to access this ivar directly in code, and with the property attribute pointing
1509back to the property it is backing.
1510
1511The following examples will serve as illustration for our discussion:
1512
1513.. code-block:: objc
1514
1515  @interface I1 {
1516    int n2;
1517  }
1518
1519  @property int p1;
1520  @property int p2;
1521  @end
1522
1523  @implementation I1
1524  @synthesize p1;
1525  @synthesize p2 = n2;
1526  @end
1527
1528This produces the following DWARF (this is a "pseudo dwarfdump" output):
1529
1530.. code-block:: none
1531
1532  0x00000100:  TAG_structure_type [7] *
1533                 AT_APPLE_runtime_class( 0x10 )
1534                 AT_name( "I1" )
1535                 AT_decl_file( "Objc_Property.m" )
1536                 AT_decl_line( 3 )
1537
1538  0x00000110    TAG_APPLE_property
1539                  AT_name ( "p1" )
1540                  AT_type ( {0x00000150} ( int ) )
1541
1542  0x00000120:   TAG_APPLE_property
1543                  AT_name ( "p2" )
1544                  AT_type ( {0x00000150} ( int ) )
1545
1546  0x00000130:   TAG_member [8]
1547                  AT_name( "_p1" )
1548                  AT_APPLE_property ( {0x00000110} "p1" )
1549                  AT_type( {0x00000150} ( int ) )
1550                  AT_artificial ( 0x1 )
1551
1552  0x00000140:    TAG_member [8]
1553                   AT_name( "n2" )
1554                   AT_APPLE_property ( {0x00000120} "p2" )
1555                   AT_type( {0x00000150} ( int ) )
1556
1557  0x00000150:  AT_type( ( int ) )
1558
1559Note, the current convention is that the name of the ivar for an
1560auto-synthesized property is the name of the property from which it derives
1561with an underscore prepended, as is shown in the example.  But we actually
1562don't need to know this convention, since we are given the name of the ivar
1563directly.
1564
1565Also, it is common practice in ObjC to have different property declarations in
1566the @interface and @implementation - e.g. to provide a read-only property in
1567the interface,and a read-write interface in the implementation.  In that case,
1568the compiler should emit whichever property declaration will be in force in the
1569current translation unit.
1570
1571Developers can decorate a property with attributes which are encoded using
1572``DW_AT_APPLE_property_attribute``.
1573
1574.. code-block:: objc
1575
1576  @property (readonly, nonatomic) int pr;
1577
1578.. code-block:: none
1579
1580  TAG_APPLE_property [8]
1581    AT_name( "pr" )
1582    AT_type ( {0x00000147} (int) )
1583    AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1584
1585The setter and getter method names are attached to the property using
1586``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1587
1588.. code-block:: objc
1589
1590  @interface I1
1591  @property (setter=myOwnP3Setter:) int p3;
1592  -(void)myOwnP3Setter:(int)a;
1593  @end
1594
1595  @implementation I1
1596  @synthesize p3;
1597  -(void)myOwnP3Setter:(int)a{ }
1598  @end
1599
1600The DWARF for this would be:
1601
1602.. code-block:: none
1603
1604  0x000003bd: TAG_structure_type [7] *
1605                AT_APPLE_runtime_class( 0x10 )
1606                AT_name( "I1" )
1607                AT_decl_file( "Objc_Property.m" )
1608                AT_decl_line( 3 )
1609
1610  0x000003cd      TAG_APPLE_property
1611                    AT_name ( "p3" )
1612                    AT_APPLE_property_setter ( "myOwnP3Setter:" )
1613                    AT_type( {0x00000147} ( int ) )
1614
1615  0x000003f3:     TAG_member [8]
1616                    AT_name( "_p3" )
1617                    AT_type ( {0x00000147} ( int ) )
1618                    AT_APPLE_property ( {0x000003cd} )
1619                    AT_artificial ( 0x1 )
1620
1621New DWARF Tags
1622^^^^^^^^^^^^^^
1623
1624+-----------------------+--------+
1625| TAG                   | Value  |
1626+=======================+========+
1627| DW_TAG_APPLE_property | 0x4200 |
1628+-----------------------+--------+
1629
1630New DWARF Attributes
1631^^^^^^^^^^^^^^^^^^^^
1632
1633+--------------------------------+--------+-----------+
1634| Attribute                      | Value  | Classes   |
1635+================================+========+===========+
1636| DW_AT_APPLE_property           | 0x3fed | Reference |
1637+--------------------------------+--------+-----------+
1638| DW_AT_APPLE_property_getter    | 0x3fe9 | String    |
1639+--------------------------------+--------+-----------+
1640| DW_AT_APPLE_property_setter    | 0x3fea | String    |
1641+--------------------------------+--------+-----------+
1642| DW_AT_APPLE_property_attribute | 0x3feb | Constant  |
1643+--------------------------------+--------+-----------+
1644
1645New DWARF Constants
1646^^^^^^^^^^^^^^^^^^^
1647
1648+--------------------------------+-------+
1649| Name                           | Value |
1650+================================+=======+
1651| DW_AT_APPLE_PROPERTY_readonly  | 0x1   |
1652+--------------------------------+-------+
1653| DW_AT_APPLE_PROPERTY_readwrite | 0x2   |
1654+--------------------------------+-------+
1655| DW_AT_APPLE_PROPERTY_assign    | 0x4   |
1656+--------------------------------+-------+
1657| DW_AT_APPLE_PROPERTY_retain    | 0x8   |
1658+--------------------------------+-------+
1659| DW_AT_APPLE_PROPERTY_copy      | 0x10  |
1660+--------------------------------+-------+
1661| DW_AT_APPLE_PROPERTY_nonatomic | 0x20  |
1662+--------------------------------+-------+
1663
1664Name Accelerator Tables
1665-----------------------
1666
1667Introduction
1668^^^^^^^^^^^^
1669
1670The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1671debugger needs.  The "``pub``" in the section name indicates that the entries
1672in the table are publicly visible names only.  This means no static or hidden
1673functions show up in the "``.debug_pubnames``".  No static variables or private
1674class variables are in the "``.debug_pubtypes``".  Many compilers add different
1675things to these tables, so we can't rely upon the contents between gcc, icc, or
1676clang.
1677
1678The typical query given by users tends not to match up with the contents of
1679these tables.  For example, the DWARF spec states that "In the case of the name
1680of a function member or static data member of a C++ structure, class or union,
1681the name presented in the "``.debug_pubnames``" section is not the simple name
1682given by the ``DW_AT_name attribute`` of the referenced debugging information
1683entry, but rather the fully qualified name of the data or function member."
1684So the only names in these tables for complex C++ entries is a fully
1685qualified name.  Debugger users tend not to enter their search strings as
1686"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1687"``a::b::c``".  So the name entered in the name table must be demangled in
1688order to chop it up appropriately and additional names must be manually entered
1689into the table to make it effective as a name lookup table for debuggers to
1690se.
1691
1692All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1693its inconsistent and useless public-only name content making it a waste of
1694space in the object file.  These tables, when they are written to disk, are not
1695sorted in any way, leaving every debugger to do its own parsing and sorting.
1696These tables also include an inlined copy of the string values in the table
1697itself making the tables much larger than they need to be on disk, especially
1698for large C++ programs.
1699
1700Can't we just fix the sections by adding all of the names we need to this
1701table? No, because that is not what the tables are defined to contain and we
1702won't know the difference between the old bad tables and the new good tables.
1703At best we could make our own renamed sections that contain all of the data we
1704need.
1705
1706These tables are also insufficient for what a debugger like LLDB needs.  LLDB
1707uses clang for its expression parsing where LLDB acts as a PCH.  LLDB is then
1708often asked to look for type "``foo``" or namespace "``bar``", or list items in
1709namespace "``baz``".  Namespaces are not included in the pubnames or pubtypes
1710tables.  Since clang asks a lot of questions when it is parsing an expression,
1711we need to be very fast when looking up names, as it happens a lot.  Having new
1712accelerator tables that are optimized for very quick lookups will benefit this
1713type of debugging experience greatly.
1714
1715We would like to generate name lookup tables that can be mapped into memory
1716from disk, and used as is, with little or no up-front parsing.  We would also
1717be able to control the exact content of these different tables so they contain
1718exactly what we need.  The Name Accelerator Tables were designed to fix these
1719issues.  In order to solve these issues we need to:
1720
1721* Have a format that can be mapped into memory from disk and used as is
1722* Lookups should be very fast
1723* Extensible table format so these tables can be made by many producers
1724* Contain all of the names needed for typical lookups out of the box
1725* Strict rules for the contents of tables
1726
1727Table size is important and the accelerator table format should allow the reuse
1728of strings from common string tables so the strings for the names are not
1729duplicated.  We also want to make sure the table is ready to be used as-is by
1730simply mapping the table into memory with minimal header parsing.
1731
1732The name lookups need to be fast and optimized for the kinds of lookups that
1733debuggers tend to do.  Optimally we would like to touch as few parts of the
1734mapped table as possible when doing a name lookup and be able to quickly find
1735the name entry we are looking for, or discover there are no matches.  In the
1736case of debuggers we optimized for lookups that fail most of the time.
1737
1738Each table that is defined should have strict rules on exactly what is in the
1739accelerator tables and documented so clients can rely on the content.
1740
1741Hash Tables
1742^^^^^^^^^^^
1743
1744Standard Hash Tables
1745""""""""""""""""""""
1746
1747Typical hash tables have a header, buckets, and each bucket points to the
1748bucket contents:
1749
1750.. code-block:: none
1751
1752  .------------.
1753  |  HEADER    |
1754  |------------|
1755  |  BUCKETS   |
1756  |------------|
1757  |  DATA      |
1758  `------------'
1759
1760The BUCKETS are an array of offsets to DATA for each hash:
1761
1762.. code-block:: none
1763
1764  .------------.
1765  | 0x00001000 | BUCKETS[0]
1766  | 0x00002000 | BUCKETS[1]
1767  | 0x00002200 | BUCKETS[2]
1768  | 0x000034f0 | BUCKETS[3]
1769  |            | ...
1770  | 0xXXXXXXXX | BUCKETS[n_buckets]
1771  '------------'
1772
1773So for ``bucket[3]`` in the example above, we have an offset into the table
17740x000034f0 which points to a chain of entries for the bucket.  Each bucket must
1775contain a next pointer, full 32 bit hash value, the string itself, and the data
1776for the current string value.
1777
1778.. code-block:: none
1779
1780              .------------.
1781  0x000034f0: | 0x00003500 | next pointer
1782              | 0x12345678 | 32 bit hash
1783              | "erase"    | string value
1784              | data[n]    | HashData for this bucket
1785              |------------|
1786  0x00003500: | 0x00003550 | next pointer
1787              | 0x29273623 | 32 bit hash
1788              | "dump"     | string value
1789              | data[n]    | HashData for this bucket
1790              |------------|
1791  0x00003550: | 0x00000000 | next pointer
1792              | 0x82638293 | 32 bit hash
1793              | "main"     | string value
1794              | data[n]    | HashData for this bucket
1795              `------------'
1796
1797The problem with this layout for debuggers is that we need to optimize for the
1798negative lookup case where the symbol we're searching for is not present.  So
1799if we were to lookup "``printf``" in the table above, we would make a 32 hash
1800for "``printf``", it might match ``bucket[3]``.  We would need to go to the
1801offset 0x000034f0 and start looking to see if our 32 bit hash matches.  To do
1802so, we need to read the next pointer, then read the hash, compare it, and skip
1803to the next bucket.  Each time we are skipping many bytes in memory and
1804touching new cache pages just to do the compare on the full 32 bit hash.  All
1805of these accesses then tell us that we didn't have a match.
1806
1807Name Hash Tables
1808""""""""""""""""
1809
1810To solve the issues mentioned above we have structured the hash tables a bit
1811differently: a header, buckets, an array of all unique 32 bit hash values,
1812followed by an array of hash value data offsets, one for each hash value, then
1813the data for all hash values:
1814
1815.. code-block:: none
1816
1817  .-------------.
1818  |  HEADER     |
1819  |-------------|
1820  |  BUCKETS    |
1821  |-------------|
1822  |  HASHES     |
1823  |-------------|
1824  |  OFFSETS    |
1825  |-------------|
1826  |  DATA       |
1827  `-------------'
1828
1829The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array.  By
1830making all of the full 32 bit hash values contiguous in memory, we allow
1831ourselves to efficiently check for a match while touching as little memory as
1832possible.  Most often checking the 32 bit hash values is as far as the lookup
1833goes.  If it does match, it usually is a match with no collisions.  So for a
1834table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1835values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1836``OFFSETS`` as:
1837
1838.. code-block:: none
1839
1840  .-------------------------.
1841  |  HEADER.magic           | uint32_t
1842  |  HEADER.version         | uint16_t
1843  |  HEADER.hash_function   | uint16_t
1844  |  HEADER.bucket_count    | uint32_t
1845  |  HEADER.hashes_count    | uint32_t
1846  |  HEADER.header_data_len | uint32_t
1847  |  HEADER_DATA            | HeaderData
1848  |-------------------------|
1849  |  BUCKETS                | uint32_t[n_buckets] // 32 bit hash indexes
1850  |-------------------------|
1851  |  HASHES                 | uint32_t[n_hashes] // 32 bit hash values
1852  |-------------------------|
1853  |  OFFSETS                | uint32_t[n_hashes] // 32 bit offsets to hash value data
1854  |-------------------------|
1855  |  ALL HASH DATA          |
1856  `-------------------------'
1857
1858So taking the exact same data from the standard hash example above we end up
1859with:
1860
1861.. code-block:: none
1862
1863              .------------.
1864              | HEADER     |
1865              |------------|
1866              |          0 | BUCKETS[0]
1867              |          2 | BUCKETS[1]
1868              |          5 | BUCKETS[2]
1869              |          6 | BUCKETS[3]
1870              |            | ...
1871              |        ... | BUCKETS[n_buckets]
1872              |------------|
1873              | 0x........ | HASHES[0]
1874              | 0x........ | HASHES[1]
1875              | 0x........ | HASHES[2]
1876              | 0x........ | HASHES[3]
1877              | 0x........ | HASHES[4]
1878              | 0x........ | HASHES[5]
1879              | 0x12345678 | HASHES[6]    hash for BUCKETS[3]
1880              | 0x29273623 | HASHES[7]    hash for BUCKETS[3]
1881              | 0x82638293 | HASHES[8]    hash for BUCKETS[3]
1882              | 0x........ | HASHES[9]
1883              | 0x........ | HASHES[10]
1884              | 0x........ | HASHES[11]
1885              | 0x........ | HASHES[12]
1886              | 0x........ | HASHES[13]
1887              | 0x........ | HASHES[n_hashes]
1888              |------------|
1889              | 0x........ | OFFSETS[0]
1890              | 0x........ | OFFSETS[1]
1891              | 0x........ | OFFSETS[2]
1892              | 0x........ | OFFSETS[3]
1893              | 0x........ | OFFSETS[4]
1894              | 0x........ | OFFSETS[5]
1895              | 0x000034f0 | OFFSETS[6]   offset for BUCKETS[3]
1896              | 0x00003500 | OFFSETS[7]   offset for BUCKETS[3]
1897              | 0x00003550 | OFFSETS[8]   offset for BUCKETS[3]
1898              | 0x........ | OFFSETS[9]
1899              | 0x........ | OFFSETS[10]
1900              | 0x........ | OFFSETS[11]
1901              | 0x........ | OFFSETS[12]
1902              | 0x........ | OFFSETS[13]
1903              | 0x........ | OFFSETS[n_hashes]
1904              |------------|
1905              |            |
1906              |            |
1907              |            |
1908              |            |
1909              |            |
1910              |------------|
1911  0x000034f0: | 0x00001203 | .debug_str ("erase")
1912              | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1913              | 0x........ | HashData[0]
1914              | 0x........ | HashData[1]
1915              | 0x........ | HashData[2]
1916              | 0x........ | HashData[3]
1917              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1918              |------------|
1919  0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1920              | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1921              | 0x........ | HashData[0]
1922              | 0x........ | HashData[1]
1923              | 0x00001203 | String offset into .debug_str ("dump")
1924              | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1925              | 0x........ | HashData[0]
1926              | 0x........ | HashData[1]
1927              | 0x........ | HashData[2]
1928              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1929              |------------|
1930  0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1931              | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1932              | 0x........ | HashData[0]
1933              | 0x........ | HashData[1]
1934              | 0x........ | HashData[2]
1935              | 0x........ | HashData[3]
1936              | 0x........ | HashData[4]
1937              | 0x........ | HashData[5]
1938              | 0x........ | HashData[6]
1939              | 0x........ | HashData[7]
1940              | 0x........ | HashData[8]
1941              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1942              `------------'
1943
1944So we still have all of the same data, we just organize it more efficiently for
1945debugger lookup.  If we repeat the same "``printf``" lookup from above, we
1946would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1947hash value and modulo it by ``n_buckets``.  ``BUCKETS[3]`` contains "6" which
1948is the index into the ``HASHES`` table.  We would then compare any consecutive
194932 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1950``BUCKETS[3]``.  We do this by verifying that each subsequent hash value modulo
1951``n_buckets`` is still 3.  In the case of a failed lookup we would access the
1952memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1953before we know that we have no match.  We don't end up marching through
1954multiple words of memory and we really keep the number of processor data cache
1955lines being accessed as small as possible.
1956
1957The string hash that is used for these lookup tables is the Daniel J.
1958Bernstein hash which is also used in the ELF ``GNU_HASH`` sections.  It is a
1959very good hash for all kinds of names in programs with very few hash
1960collisions.
1961
1962Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1963
1964Details
1965^^^^^^^
1966
1967These name hash tables are designed to be generic where specializations of the
1968table get to define additional data that goes into the header ("``HeaderData``"),
1969how the string value is stored ("``KeyType``") and the content of the data for each
1970hash value.
1971
1972Header Layout
1973"""""""""""""
1974
1975The header has a fixed part, and the specialized part.  The exact format of the
1976header is:
1977
1978.. code-block:: c
1979
1980  struct Header
1981  {
1982    uint32_t   magic;           // 'HASH' magic value to allow endian detection
1983    uint16_t   version;         // Version number
1984    uint16_t   hash_function;   // The hash function enumeration that was used
1985    uint32_t   bucket_count;    // The number of buckets in this hash table
1986    uint32_t   hashes_count;    // The total number of unique hash values and hash data offsets in this table
1987    uint32_t   header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1988                                // Specifically the length of the following HeaderData field - this does not
1989                                // include the size of the preceding fields
1990    HeaderData header_data;     // Implementation specific header data
1991  };
1992
1993The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1994encoded as an ASCII integer.  This allows the detection of the start of the
1995hash table and also allows the table's byte order to be determined so the table
1996can be correctly extracted.  The "``magic``" value is followed by a 16 bit
1997``version`` number which allows the table to be revised and modified in the
1998future.  The current version number is 1. ``hash_function`` is a ``uint16_t``
1999enumeration that specifies which hash function was used to produce this table.
2000The current values for the hash function enumerations include:
2001
2002.. code-block:: c
2003
2004  enum HashFunctionType
2005  {
2006    eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
2007  };
2008
2009``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
2010are in the ``BUCKETS`` array.  ``hashes_count`` is the number of unique 32 bit
2011hash values that are in the ``HASHES`` array, and is the same number of offsets
2012are contained in the ``OFFSETS`` array.  ``header_data_len`` specifies the size
2013in bytes of the ``HeaderData`` that is filled in by specialized versions of
2014this table.
2015
2016Fixed Lookup
2017""""""""""""
2018
2019The header is followed by the buckets, hashes, offsets, and hash value data.
2020
2021.. code-block:: c
2022
2023  struct FixedTable
2024  {
2025    uint32_t buckets[Header.bucket_count];  // An array of hash indexes into the "hashes[]" array below
2026    uint32_t hashes [Header.hashes_count];  // Every unique 32 bit hash for the entire table is in this table
2027    uint32_t offsets[Header.hashes_count];  // An offset that corresponds to each item in the "hashes[]" array above
2028  };
2029
2030``buckets`` is an array of 32 bit indexes into the ``hashes`` array.  The
2031``hashes`` array contains all of the 32 bit hash values for all names in the
2032hash table.  Each hash in the ``hashes`` table has an offset in the ``offsets``
2033array that points to the data for the hash value.
2034
2035This table setup makes it very easy to repurpose these tables to contain
2036different data, while keeping the lookup mechanism the same for all tables.
2037This layout also makes it possible to save the table to disk and map it in
2038later and do very efficient name lookups with little or no parsing.
2039
2040DWARF lookup tables can be implemented in a variety of ways and can store a lot
2041of information for each name.  We want to make the DWARF tables extensible and
2042able to store the data efficiently so we have used some of the DWARF features
2043that enable efficient data storage to define exactly what kind of data we store
2044for each name.
2045
2046The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2047We might want to store an offset to all of the debug information entries (DIEs)
2048for each name.  To keep things extensible, we create a list of items, or
2049Atoms, that are contained in the data for each name.  First comes the type of
2050the data in each atom:
2051
2052.. code-block:: c
2053
2054  enum AtomType
2055  {
2056    eAtomTypeNULL       = 0u,
2057    eAtomTypeDIEOffset  = 1u,   // DIE offset, check form for encoding
2058    eAtomTypeCUOffset   = 2u,   // DIE offset of the compiler unit header that contains the item in question
2059    eAtomTypeTag        = 3u,   // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2060    eAtomTypeNameFlags  = 4u,   // Flags from enum NameFlags
2061    eAtomTypeTypeFlags  = 5u,   // Flags from enum TypeFlags
2062  };
2063
2064The enumeration values and their meanings are:
2065
2066.. code-block:: none
2067
2068  eAtomTypeNULL       - a termination atom that specifies the end of the atom list
2069  eAtomTypeDIEOffset  - an offset into the .debug_info section for the DWARF DIE for this name
2070  eAtomTypeCUOffset   - an offset into the .debug_info section for the CU that contains the DIE
2071  eAtomTypeDIETag     - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2072  eAtomTypeNameFlags  - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2073  eAtomTypeTypeFlags  - Flags for types (isCXXClass, isObjCClass, ...)
2074
2075Then we allow each atom type to define the atom type and how the data for each
2076atom type data is encoded:
2077
2078.. code-block:: c
2079
2080  struct Atom
2081  {
2082    uint16_t type;  // AtomType enum value
2083    uint16_t form;  // DWARF DW_FORM_XXX defines
2084  };
2085
2086The ``form`` type above is from the DWARF specification and defines the exact
2087encoding of the data for the Atom type.  See the DWARF specification for the
2088``DW_FORM_`` definitions.
2089
2090.. code-block:: c
2091
2092  struct HeaderData
2093  {
2094    uint32_t die_offset_base;
2095    uint32_t atom_count;
2096    Atoms    atoms[atom_count0];
2097  };
2098
2099``HeaderData`` defines the base DIE offset that should be added to any atoms
2100that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2101``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``.  It also defines
2102what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2103each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2104should be interpreted.
2105
2106For the current implementations of the "``.apple_names``" (all functions +
2107globals), the "``.apple_types``" (names of all types that are defined), and
2108the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2109array to be:
2110
2111.. code-block:: c
2112
2113  HeaderData.atom_count = 1;
2114  HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2115  HeaderData.atoms[0].form = DW_FORM_data4;
2116
2117This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
2118encoded as a 32 bit value (DW_FORM_data4).  This allows a single name to have
2119multiple matching DIEs in a single file, which could come up with an inlined
2120function for instance.  Future tables could include more information about the
2121DIE such as flags indicating if the DIE is a function, method, block,
2122or inlined.
2123
2124The KeyType for the DWARF table is a 32 bit string table offset into the
2125".debug_str" table.  The ".debug_str" is the string table for the DWARF which
2126may already contain copies of all of the strings.  This helps make sure, with
2127help from the compiler, that we reuse the strings between all of the DWARF
2128sections and keeps the hash table size down.  Another benefit to having the
2129compiler generate all strings as DW_FORM_strp in the debug info, is that
2130DWARF parsing can be made much faster.
2131
2132After a lookup is made, we get an offset into the hash data.  The hash data
2133needs to be able to deal with 32 bit hash collisions, so the chunk of data
2134at the offset in the hash data consists of a triple:
2135
2136.. code-block:: c
2137
2138  uint32_t str_offset
2139  uint32_t hash_data_count
2140  HashData[hash_data_count]
2141
2142If "str_offset" is zero, then the bucket contents are done. 99.9% of the
2143hash data chunks contain a single item (no 32 bit hash collision):
2144
2145.. code-block:: none
2146
2147  .------------.
2148  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2149  | 0x00000004 | uint32_t HashData count
2150  | 0x........ | uint32_t HashData[0] DIE offset
2151  | 0x........ | uint32_t HashData[1] DIE offset
2152  | 0x........ | uint32_t HashData[2] DIE offset
2153  | 0x........ | uint32_t HashData[3] DIE offset
2154  | 0x00000000 | uint32_t KeyType (end of hash chain)
2155  `------------'
2156
2157If there are collisions, you will have multiple valid string offsets:
2158
2159.. code-block:: none
2160
2161  .------------.
2162  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2163  | 0x00000004 | uint32_t HashData count
2164  | 0x........ | uint32_t HashData[0] DIE offset
2165  | 0x........ | uint32_t HashData[1] DIE offset
2166  | 0x........ | uint32_t HashData[2] DIE offset
2167  | 0x........ | uint32_t HashData[3] DIE offset
2168  | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2169  | 0x00000002 | uint32_t HashData count
2170  | 0x........ | uint32_t HashData[0] DIE offset
2171  | 0x........ | uint32_t HashData[1] DIE offset
2172  | 0x00000000 | uint32_t KeyType (end of hash chain)
2173  `------------'
2174
2175Current testing with real world C++ binaries has shown that there is around 1
217632 bit hash collision per 100,000 name entries.
2177
2178Contents
2179^^^^^^^^
2180
2181As we said, we want to strictly define exactly what is included in the
2182different tables.  For DWARF, we have 3 tables: "``.apple_names``",
2183"``.apple_types``", and "``.apple_namespaces``".
2184
2185"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2186``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2187``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2188``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``.  It also contains
2189``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2190static variables).  All global and static variables should be included,
2191including those scoped within functions and classes.  For example using the
2192following code:
2193
2194.. code-block:: c
2195
2196  static int var = 0;
2197
2198  void f ()
2199  {
2200    static int var = 0;
2201  }
2202
2203Both of the static ``var`` variables would be included in the table.  All
2204functions should emit both their full names and their basenames.  For C or C++,
2205the full name is the mangled name (if available) which is usually in the
2206``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2207function basename.  If global or static variables have a mangled name in a
2208``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2209simple name found in the ``DW_AT_name`` attribute.
2210
2211"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2212tag is one of:
2213
2214* DW_TAG_array_type
2215* DW_TAG_class_type
2216* DW_TAG_enumeration_type
2217* DW_TAG_pointer_type
2218* DW_TAG_reference_type
2219* DW_TAG_string_type
2220* DW_TAG_structure_type
2221* DW_TAG_subroutine_type
2222* DW_TAG_typedef
2223* DW_TAG_union_type
2224* DW_TAG_ptr_to_member_type
2225* DW_TAG_set_type
2226* DW_TAG_subrange_type
2227* DW_TAG_base_type
2228* DW_TAG_const_type
2229* DW_TAG_constant
2230* DW_TAG_file_type
2231* DW_TAG_namelist
2232* DW_TAG_packed_type
2233* DW_TAG_volatile_type
2234* DW_TAG_restrict_type
2235* DW_TAG_interface_type
2236* DW_TAG_unspecified_type
2237* DW_TAG_shared_type
2238
2239Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2240not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2241value).  For example, using the following code:
2242
2243.. code-block:: c
2244
2245  int main ()
2246  {
2247    int *b = 0;
2248    return *b;
2249  }
2250
2251We get a few type DIEs:
2252
2253.. code-block:: none
2254
2255  0x00000067:     TAG_base_type [5]
2256                  AT_encoding( DW_ATE_signed )
2257                  AT_name( "int" )
2258                  AT_byte_size( 0x04 )
2259
2260  0x0000006e:     TAG_pointer_type [6]
2261                  AT_type( {0x00000067} ( int ) )
2262                  AT_byte_size( 0x08 )
2263
2264The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2265
2266"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2267If we run into a namespace that has no name this is an anonymous namespace, and
2268the name should be output as "``(anonymous namespace)``" (without the quotes).
2269Why?  This matches the output of the ``abi::cxa_demangle()`` that is in the
2270standard C++ library that demangles mangled names.
2271
2272
2273Language Extensions and File Format Changes
2274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2275
2276Objective-C Extensions
2277""""""""""""""""""""""
2278
2279"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2280Objective-C class.  The name used in the hash table is the name of the
2281Objective-C class itself.  If the Objective-C class has a category, then an
2282entry is made for both the class name without the category, and for the class
2283name with the category.  So if we have a DIE at offset 0x1234 with a name of
2284method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2285an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2286"``NSString(my_additions)``" that points to 0x1234.  This allows us to quickly
2287track down all Objective-C methods for an Objective-C class when doing
2288expressions.  It is needed because of the dynamic nature of Objective-C where
2289anyone can add methods to a class.  The DWARF for Objective-C methods is also
2290emitted differently from C++ classes where the methods are not usually
2291contained in the class definition, they are scattered about across one or more
2292compile units.  Categories can also be defined in different shared libraries.
2293So we need to be able to quickly find all of the methods and class functions
2294given the Objective-C class name, or quickly find all methods and class
2295functions for a class + category name.  This table does not contain any
2296selector names, it just maps Objective-C class names (or class names +
2297category) to all of the methods and class functions.  The selectors are added
2298as function basenames in the "``.debug_names``" section.
2299
2300In the "``.apple_names``" section for Objective-C functions, the full name is
2301the entire function name with the brackets ("``-[NSString
2302stringWithCString:]``") and the basename is the selector only
2303("``stringWithCString:``").
2304
2305Mach-O Changes
2306""""""""""""""
2307
2308The sections names for the apple hash tables are for non mach-o files.  For
2309mach-o files, the sections should be contained in the ``__DWARF`` segment with
2310names as follows:
2311
2312* "``.apple_names``" -> "``__apple_names``"
2313* "``.apple_types``" -> "``__apple_types``"
2314* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2315* "``.apple_objc``" -> "``__apple_objc``"
2316
2317