1================================ 2Source Level Debugging with LLVM 3================================ 4 5.. contents:: 6 :local: 7 8Introduction 9============ 10 11This document is the central repository for all information pertaining to debug 12information in LLVM. It describes the :ref:`actual format that the LLVM debug 13information takes <format>`, which is useful for those interested in creating 14front-ends or dealing directly with the information. Further, this document 15provides specific examples of what debug information for C/C++ looks like. 16 17Philosophy behind LLVM debugging information 18-------------------------------------------- 19 20The idea of the LLVM debugging information is to capture how the important 21pieces of the source-language's Abstract Syntax Tree map onto LLVM code. 22Several design aspects have shaped the solution that appears here. The 23important ones are: 24 25* Debugging information should have very little impact on the rest of the 26 compiler. No transformations, analyses, or code generators should need to 27 be modified because of debugging information. 28 29* LLVM optimizations should interact in :ref:`well-defined and easily described 30 ways <intro_debugopt>` with the debugging information. 31 32* Because LLVM is designed to support arbitrary programming languages, 33 LLVM-to-LLVM tools should not need to know anything about the semantics of 34 the source-level-language. 35 36* Source-level languages are often **widely** different from one another. 37 LLVM should not put any restrictions of the flavor of the source-language, 38 and the debugging information should work with any language. 39 40* With code generator support, it should be possible to use an LLVM compiler 41 to compile a program to native machine code and standard debugging 42 formats. This allows compatibility with traditional machine-code level 43 debuggers, like GDB or DBX. 44 45The approach used by the LLVM implementation is to use a small set of 46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping 47between LLVM program objects and the source-level objects. The description of 48the source-level program is maintained in LLVM metadata in an 49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end 50currently uses working draft 7 of the `DWARF 3 standard 51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_). 52 53When a program is being debugged, a debugger interacts with the user and turns 54the stored debug information into source-language specific information. As 55such, a debugger must be aware of the source-language, and is thus tied to a 56specific language or family of languages. 57 58Debug information consumers 59--------------------------- 60 61The role of debug information is to provide meta information normally stripped 62away during the compilation process. This meta information provides an LLVM 63user a relationship between generated code and the original program source 64code. 65 66Currently, debug information is consumed by DwarfDebug to produce dwarf 67information used by the gdb debugger. Other targets could use the same 68information to produce stabs or other debug forms. 69 70It would also be reasonable to use debug information to feed profiling tools 71for analysis of generated code, or, tools for reconstructing the original 72source from generated code. 73 74TODO - expound a bit more. 75 76.. _intro_debugopt: 77 78Debugging optimized code 79------------------------ 80 81An extremely high priority of LLVM debugging information is to make it interact 82well with optimizations and analysis. In particular, the LLVM debug 83information provides the following guarantees: 84 85* LLVM debug information **always provides information to accurately read 86 the source-level state of the program**, regardless of which LLVM 87 optimizations have been run, and without any modification to the 88 optimizations themselves. However, some optimizations may impact the 89 ability to modify the current state of the program with a debugger, such 90 as setting program variables, or calling functions that have been 91 deleted. 92 93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM 94 debugging information, allowing them to update the debugging information 95 as they perform aggressive optimizations. This means that, with effort, 96 the LLVM optimizers could optimize debug code just as well as non-debug 97 code. 98 99* LLVM debug information does not prevent optimizations from 100 happening (for example inlining, basic block reordering/merging/cleanup, 101 tail duplication, etc). 102 103* LLVM debug information is automatically optimized along with the rest of 104 the program, using existing facilities. For example, duplicate 105 information is automatically merged by the linker, and unused information 106 is automatically removed. 107 108Basically, the debug information allows you to compile a program with 109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify 110the program as it executes from a debugger. Compiling a program with 111"``-O3 -g``" gives you full debug information that is always available and 112accurate for reading (e.g., you get accurate stack traces despite tail call 113elimination and inlining), but you might lose the ability to modify the program 114and call functions where were optimized out of the program, or inlined away 115completely. 116 117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test 118optimizer's handling of debugging information. It can be run like this: 119 120.. code-block:: bash 121 122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level 123 % make TEST=dbgopt 124 125This will test impact of debugging information on optimization passes. If 126debugging information influences optimization passes then it will be reported 127as a failure. See :doc:`TestingGuide` for more information on LLVM test 128infrastructure and how to run various tests. 129 130.. _format: 131 132Debugging information format 133============================ 134 135LLVM debugging information has been carefully designed to make it possible for 136the optimizer to optimize the program and debugging information without 137necessarily having to know anything about debugging information. In 138particular, the use of metadata avoids duplicated debugging information from 139the beginning, and the global dead code elimination pass automatically deletes 140debugging information for a function if it decides to delete the function. 141 142To do this, most of the debugging information (descriptors for types, 143variables, functions, source files, etc) is inserted by the language front-end 144in the form of LLVM metadata. 145 146Debug information is designed to be agnostic about the target debugger and 147debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic 148pass to decode the information that represents variables, types, functions, 149namespaces, etc: this allows for arbitrary source-language semantics and 150type-systems to be used, as long as there is a module written for the target 151debugger to interpret the information. 152 153To provide basic functionality, the LLVM debugger does have to make some 154assumptions about the source-level language being debugged, though it keeps 155these to a minimum. The only common features that the LLVM debugger assumes 156exist are :ref:`source files <format_files>`, and :ref:`program objects 157<format_global_variables>`. These abstract objects are used by a debugger to 158form stack traces, show information about local variables, etc. 159 160This section of the documentation first describes the representation aspects 161common to any source-language. :ref:`ccxx_frontend` describes the data layout 162conventions used by the C and C++ front-ends. 163 164Debug information descriptors 165----------------------------- 166 167In consideration of the complexity and volume of debug information, LLVM 168provides a specification for well formed debug descriptors. 169 170Consumers of LLVM debug information expect the descriptors for program objects 171to start in a canonical format, but the descriptors can include additional 172information appended at the end that is source-language specific. All debugging 173information objects start with a tag to indicate what type of object it is. 174The source-language is allowed to define its own objects, by using unreserved 175tag numbers. We recommend using with tags in the range 0x1000 through 0x2000 176(there is a defined ``enum DW_TAG_user_base = 0x1000``.) 177 178The fields of debug descriptors used internally by LLVM are restricted to only 179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and 180``mdnode``. 181 182.. code-block:: llvm 183 184 !1 = metadata !{ 185 i32, ;; A tag 186 ... 187 } 188 189<a name="LLVMDebugVersion">The first field of a descriptor is always an 190``i32`` containing a tag value identifying the content of the descriptor. 191The remaining fields are specific to the descriptor. The values of tags are 192loosely bound to the tag values of DWARF information entries. However, that 193does not restrict the use of the information supplied to DWARF targets. 194 195The details of the various descriptors follow. 196 197Compile unit descriptors 198^^^^^^^^^^^^^^^^^^^^^^^^ 199 200.. code-block:: llvm 201 202 !0 = metadata !{ 203 i32, ;; Tag = 17 (DW_TAG_compile_unit) 204 metadata, ;; Source directory (including trailing slash) & file pair 205 i32, ;; DWARF language identifier (ex. DW_LANG_C89) 206 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)") 207 i1, ;; True if this is optimized. 208 metadata, ;; Flags 209 i32 ;; Runtime version 210 metadata ;; List of enums types 211 metadata ;; List of retained types 212 metadata ;; List of subprograms 213 metadata ;; List of global variables 214 metadata ;; List of imported entities 215 metadata ;; Split debug filename 216 i32 ;; Debug info emission kind (1 = Full Debug Info, 2 = Line Tables Only) 217 } 218 219These descriptors contain a source language ID for the file (we use the DWARF 2203.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``, 221``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of 222strings for the source file name and the working directory, as well as an 223identifier string for the compiler that produced it. 224 225Compile unit descriptors provide the root context for objects declared in a 226specific compilation unit. File descriptors are defined using this context. 227These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They 228keep track of subprograms, global variables, type information, and imported 229entities (declarations and namespaces). 230 231.. _format_files: 232 233File descriptors 234^^^^^^^^^^^^^^^^ 235 236.. code-block:: llvm 237 238 !0 = metadata !{ 239 i32, ;; Tag = 41 (DW_TAG_file_type) 240 metadata, ;; Source directory (including trailing slash) & file pair 241 } 242 243These descriptors contain information for a file. Global variables and top 244level functions would be defined using this context. File descriptors also 245provide context for source line correspondence. 246 247Each input file is encoded as a separate file descriptor in LLVM debugging 248information output. 249 250.. _format_global_variables: 251 252Global variable descriptors 253^^^^^^^^^^^^^^^^^^^^^^^^^^^ 254 255.. code-block:: llvm 256 257 !1 = metadata !{ 258 i32, ;; Tag = 52 (DW_TAG_variable) 259 i32, ;; Unused field. 260 metadata, ;; Reference to context descriptor 261 metadata, ;; Name 262 metadata, ;; Display name (fully qualified C++ name) 263 metadata, ;; MIPS linkage name (for C++) 264 metadata, ;; Reference to file where defined 265 i32, ;; Line number where defined 266 metadata, ;; Reference to type descriptor 267 i1, ;; True if the global is local to compile unit (static) 268 i1, ;; True if the global is defined in the compile unit (not extern) 269 {}*, ;; Reference to the global variable 270 metadata, ;; The static member declaration, if any 271 } 272 273These descriptors provide debug information about global variables. They 274provide details such as name, type and where the variable is defined. All 275global variables are collected inside the named metadata ``!llvm.dbg.cu``. 276 277.. _format_subprograms: 278 279Subprogram descriptors 280^^^^^^^^^^^^^^^^^^^^^^ 281 282.. code-block:: llvm 283 284 !2 = metadata !{ 285 i32, ;; Tag = 46 (DW_TAG_subprogram) 286 metadata, ;; Source directory (including trailing slash) & file pair 287 metadata, ;; Reference to context descriptor 288 metadata, ;; Name 289 metadata, ;; Display name (fully qualified C++ name) 290 metadata, ;; MIPS linkage name (for C++) 291 i32, ;; Line number where defined 292 metadata, ;; Reference to type descriptor 293 i1, ;; True if the global is local to compile unit (static) 294 i1, ;; True if the global is defined in the compile unit (not extern) 295 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual 296 i32, ;; Index into a virtual function 297 metadata, ;; indicates which base type contains the vtable pointer for the 298 ;; derived class 299 i32, ;; Flags - Artificial, Private, Protected, Explicit, Prototyped. 300 i1, ;; isOptimized 301 {}*, ;; Reference to the LLVM function 302 metadata, ;; Lists function template parameters 303 metadata, ;; Function declaration descriptor 304 metadata, ;; List of function variables 305 i32 ;; Line number where the scope of the subprogram begins 306 } 307 308These descriptors provide debug information about functions, methods and 309subprograms. They provide details such as name, return types and the source 310location where the subprogram is defined. 311 312Block descriptors 313^^^^^^^^^^^^^^^^^ 314 315.. code-block:: llvm 316 317 !3 = metadata !{ 318 i32, ;; Tag = 11 (DW_TAG_lexical_block) 319 metadata, ;; Source directory (including trailing slash) & file pair 320 metadata, ;; Reference to context descriptor 321 i32, ;; Line number 322 i32, ;; Column number 323 i32 ;; Unique ID to identify blocks from a template function 324 } 325 326This descriptor provides debug information about nested blocks within a 327subprogram. The line number and column numbers are used to dinstinguish two 328lexical blocks at same depth. 329 330.. code-block:: llvm 331 332 !3 = metadata !{ 333 i32, ;; Tag = 11 (DW_TAG_lexical_block) 334 metadata, ;; Source directory (including trailing slash) & file pair 335 metadata ;; Reference to the scope we're annotating with a file change 336 i32, ;; DWARF path discriminator value 337 } 338 339This descriptor provides a wrapper around a lexical scope to handle file 340changes in the middle of a lexical block. 341 342.. _format_basic_type: 343 344Basic type descriptors 345^^^^^^^^^^^^^^^^^^^^^^ 346 347.. code-block:: llvm 348 349 !4 = metadata !{ 350 i32, ;; Tag = 36 (DW_TAG_base_type) 351 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 352 metadata, ;; Reference to context 353 metadata, ;; Name (may be "" for anonymous types) 354 i32, ;; Line number where defined (may be 0) 355 i64, ;; Size in bits 356 i64, ;; Alignment in bits 357 i64, ;; Offset in bits 358 i32, ;; Flags 359 i32 ;; DWARF type encoding 360 } 361 362These descriptors define primitive types used in the code. Example ``int``, 363``bool`` and ``float``. The context provides the scope of the type, which is 364usually the top level. Since basic types are not usually user defined the 365context and line number can be left as NULL and 0. The size, alignment and 366offset are expressed in bits and can be 64 bit values. The alignment is used 367to round the offset when embedded in a :ref:`composite type 368<format_composite_type>` (example to keep float doubles on 64 bit boundaries). 369The offset is the bit offset if embedded in a :ref:`composite type 370<format_composite_type>`. 371 372The type encoding provides the details of the type. The values are typically 373one of the following: 374 375.. code-block:: llvm 376 377 DW_ATE_address = 1 378 DW_ATE_boolean = 2 379 DW_ATE_float = 4 380 DW_ATE_signed = 5 381 DW_ATE_signed_char = 6 382 DW_ATE_unsigned = 7 383 DW_ATE_unsigned_char = 8 384 385.. _format_derived_type: 386 387Derived type descriptors 388^^^^^^^^^^^^^^^^^^^^^^^^ 389 390.. code-block:: llvm 391 392 !5 = metadata !{ 393 i32, ;; Tag (see below) 394 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 395 metadata, ;; Reference to context 396 metadata, ;; Name (may be "" for anonymous types) 397 i32, ;; Line number where defined (may be 0) 398 i64, ;; Size in bits 399 i64, ;; Alignment in bits 400 i64, ;; Offset in bits 401 i32, ;; Flags to encode attributes, e.g. private 402 metadata, ;; Reference to type derived from 403 metadata, ;; (optional) Name of the Objective C property associated with 404 ;; Objective-C an ivar, or the type of which this 405 ;; pointer-to-member is pointing to members of. 406 metadata, ;; (optional) Name of the Objective C property getter selector. 407 metadata, ;; (optional) Name of the Objective C property setter selector. 408 i32 ;; (optional) Objective C property attributes. 409 } 410 411These descriptors are used to define types derived from other types. The value 412of the tag varies depending on the meaning. The following are possible tag 413values: 414 415.. code-block:: llvm 416 417 DW_TAG_formal_parameter = 5 418 DW_TAG_member = 13 419 DW_TAG_pointer_type = 15 420 DW_TAG_reference_type = 16 421 DW_TAG_typedef = 22 422 DW_TAG_ptr_to_member_type = 31 423 DW_TAG_const_type = 38 424 DW_TAG_volatile_type = 53 425 DW_TAG_restrict_type = 55 426 427``DW_TAG_member`` is used to define a member of a :ref:`composite type 428<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type 429of the member is the :ref:`derived type <format_derived_type>`. 430``DW_TAG_formal_parameter`` is used to define a member which is a formal 431argument of a subprogram. 432 433``DW_TAG_typedef`` is used to provide a name for the derived type. 434 435``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``, 436``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the 437:ref:`derived type <format_derived_type>`. 438 439:ref:`Derived type <format_derived_type>` location can be determined from the 440context and line number. The size, alignment and offset are expressed in bits 441and can be 64 bit values. The alignment is used to round the offset when 442embedded in a :ref:`composite type <format_composite_type>` (example to keep 443float doubles on 64 bit boundaries.) The offset is the bit offset if embedded 444in a :ref:`composite type <format_composite_type>`. 445 446Note that the ``void *`` type is expressed as a type derived from NULL. 447 448.. _format_composite_type: 449 450Composite type descriptors 451^^^^^^^^^^^^^^^^^^^^^^^^^^ 452 453.. code-block:: llvm 454 455 !6 = metadata !{ 456 i32, ;; Tag (see below) 457 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 458 metadata, ;; Reference to context 459 metadata, ;; Name (may be "" for anonymous types) 460 i32, ;; Line number where defined (may be 0) 461 i64, ;; Size in bits 462 i64, ;; Alignment in bits 463 i64, ;; Offset in bits 464 i32, ;; Flags 465 metadata, ;; Reference to type derived from 466 metadata, ;; Reference to array of member descriptors 467 i32, ;; Runtime languages 468 metadata, ;; Base type containing the vtable pointer for this type 469 metadata, ;; Template parameters 470 metadata ;; A unique identifier for type uniquing purpose (may be null) 471 } 472 473These descriptors are used to define types that are composed of 0 or more 474elements. The value of the tag varies depending on the meaning. The following 475are possible tag values: 476 477.. code-block:: llvm 478 479 DW_TAG_array_type = 1 480 DW_TAG_enumeration_type = 4 481 DW_TAG_structure_type = 19 482 DW_TAG_union_type = 23 483 DW_TAG_subroutine_type = 21 484 DW_TAG_inheritance = 28 485 486The vector flag indicates that an array type is a native packed vector. 487 488The members of array types (tag = ``DW_TAG_array_type``) are 489:ref:`subrange descriptors <format_subrange>`, each 490representing the range of subscripts at that level of indexing. 491 492The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are 493:ref:`enumerator descriptors <format_enumerator>`, each representing the 494definition of enumeration value for the set. All enumeration type descriptors 495are collected inside the named metadata ``!llvm.dbg.cu``. 496 497The members of structure (tag = ``DW_TAG_structure_type``) or union (tag = 498``DW_TAG_union_type``) types are any one of the :ref:`basic 499<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite 500<format_composite_type>` type descriptors, each representing a field member of 501the structure or union. 502 503For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide 504information about base classes, static members and member functions. If a 505member is a :ref:`derived type descriptor <format_derived_type>` and has a tag 506of ``DW_TAG_inheritance``, then the type represents a base class. If the member 507of is a :ref:`global variable descriptor <format_global_variables>` then it 508represents a static member. And, if the member is a :ref:`subprogram 509descriptor <format_subprograms>` then it represents a member function. For 510static members and member functions, ``getName()`` returns the members link or 511the C++ mangled name. ``getDisplayName()`` the simplied version of the name. 512 513The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements 514is the return type for the subroutine. The remaining elements are the formal 515arguments to the subroutine. 516 517:ref:`Composite type <format_composite_type>` location can be determined from 518the context and line number. The size, alignment and offset are expressed in 519bits and can be 64 bit values. The alignment is used to round the offset when 520embedded in a :ref:`composite type <format_composite_type>` (as an example, to 521keep float doubles on 64 bit boundaries). The offset is the bit offset if 522embedded in a :ref:`composite type <format_composite_type>`. 523 524.. _format_subrange: 525 526Subrange descriptors 527^^^^^^^^^^^^^^^^^^^^ 528 529.. code-block:: llvm 530 531 !42 = metadata !{ 532 i32, ;; Tag = 33 (DW_TAG_subrange_type) 533 i64, ;; Low value 534 i64 ;; High value 535 } 536 537These descriptors are used to define ranges of array subscripts for an array 538:ref:`composite type <format_composite_type>`. The low value defines the lower 539bounds typically zero for C/C++. The high value is the upper bounds. Values 540are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High`` 541the array bounds are not included in generated debugging information. 542 543.. _format_enumerator: 544 545Enumerator descriptors 546^^^^^^^^^^^^^^^^^^^^^^ 547 548.. code-block:: llvm 549 550 !6 = metadata !{ 551 i32, ;; Tag = 40 (DW_TAG_enumerator) 552 metadata, ;; Name 553 i64 ;; Value 554 } 555 556These descriptors are used to define members of an enumeration :ref:`composite 557type <format_composite_type>`, it associates the name to the value. 558 559Local variables 560^^^^^^^^^^^^^^^ 561 562.. code-block:: llvm 563 564 !7 = metadata !{ 565 i32, ;; Tag (see below) 566 metadata, ;; Context 567 metadata, ;; Name 568 metadata, ;; Reference to file where defined 569 i32, ;; 24 bit - Line number where defined 570 ;; 8 bit - Argument number. 1 indicates 1st argument. 571 metadata, ;; Reference to the type descriptor 572 i32, ;; flags 573 metadata ;; (optional) Reference to inline location 574 metadata ;; (optional) Reference to a complex expression (see below) 575 } 576 577These descriptors are used to define variables local to a sub program. The 578value of the tag depends on the usage of the variable: 579 580.. code-block:: llvm 581 582 DW_TAG_auto_variable = 256 583 DW_TAG_arg_variable = 257 584 585An auto variable is any variable declared in the body of the function. An 586argument variable is any variable that appears as a formal argument to the 587function. 588 589The context is either the subprogram or block where the variable is defined. 590Name the source variable name. Context and line indicate where the variable 591was defined. Type descriptor defines the declared type of the variable. 592 593The ``OpPiece`` operator is used for (typically larger aggregate) 594variables that are fragmented across several locations. It takes two 595i32 arguments, an offset and a size in bytes to describe which piece 596of the variable is at this location. 597 598 599.. _format_common_intrinsics: 600 601Debugger intrinsic functions 602^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 603 604LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to 605provide debug information at various points in generated code. 606 607``llvm.dbg.declare`` 608^^^^^^^^^^^^^^^^^^^^ 609 610.. code-block:: llvm 611 612 void %llvm.dbg.declare(metadata, metadata) 613 614This intrinsic provides information about a local element (e.g., variable). 615The first argument is metadata holding the alloca for the variable. The second 616argument is metadata containing a description of the variable. 617 618``llvm.dbg.value`` 619^^^^^^^^^^^^^^^^^^ 620 621.. code-block:: llvm 622 623 void %llvm.dbg.value(metadata, i64, metadata) 624 625This intrinsic provides information when a user source variable is set to a new 626value. The first argument is the new value (wrapped as metadata). The second 627argument is the offset in the user source variable where the new value is 628written. The third argument is metadata containing a description of the user 629source variable. 630 631Object lifetimes and scoping 632============================ 633 634In many languages, the local variables in functions can have their lifetimes or 635scopes limited to a subset of a function. In the C family of languages, for 636example, variables are only live (readable and writable) within the source 637block that they are defined in. In functional languages, values are only 638readable after they have been defined. Though this is a very obvious concept, 639it is non-trivial to model in LLVM, because it has no notion of scoping in this 640sense, and does not want to be tied to a language's scoping rules. 641 642In order to handle this, the LLVM debug format uses the metadata attached to 643llvm instructions to encode line number and scoping information. Consider the 644following C fragment, for example: 645 646.. code-block:: c 647 648 1. void foo() { 649 2. int X = 21; 650 3. int Y = 22; 651 4. { 652 5. int Z = 23; 653 6. Z = X; 654 7. } 655 8. X = Y; 656 9. } 657 658Compiled to LLVM, this function would be represented like this: 659 660.. code-block:: llvm 661 662 define void @foo() #0 { 663 entry: 664 %X = alloca i32, align 4 665 %Y = alloca i32, align 4 666 %Z = alloca i32, align 4 667 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12 668 ; [debug line = 2:7] [debug variable = X] 669 store i32 21, i32* %X, align 4, !dbg !12 670 call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14 671 ; [debug line = 3:7] [debug variable = Y] 672 store i32 22, i32* %Y, align 4, !dbg !14 673 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 674 ; [debug line = 5:9] [debug variable = Z] 675 store i32 23, i32* %Z, align 4, !dbg !17 676 %0 = load i32* %X, align 4, !dbg !18 677 [debug line = 6:5] 678 store i32 %0, i32* %Z, align 4, !dbg !18 679 %1 = load i32* %Y, align 4, !dbg !19 680 [debug line = 8:3] 681 store i32 %1, i32* %X, align 4, !dbg !19 682 ret void, !dbg !20 683 } 684 685 ; Function Attrs: nounwind readnone 686 declare void @llvm.dbg.declare(metadata, metadata) #1 687 688 attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" 689 "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" 690 "no-infs-fp-math"="false" "no-nans-fp-math"="false" 691 "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" 692 "use-soft-float"="false" } 693 attributes #1 = { nounwind readnone } 694 695 !llvm.dbg.cu = !{!0} 696 !llvm.module.flags = !{!8} 697 !llvm.ident = !{!9} 698 699 !0 = metadata !{i32 786449, metadata !1, i32 12, 700 metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)", 701 i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3, 702 metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \ 703 [/private/tmp/foo.c] \ 704 [DW_LANG_C99] 705 !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"} 706 !2 = metadata !{i32 0} 707 !3 = metadata !{metadata !4} 708 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 709 metadata !"foo", metadata !"", i32 1, metadata !6, 710 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false, 711 void ()* @foo, null, null, metadata !2, i32 1} 712 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 713 !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \ 714 [/private/tmp/t.c] 715 !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0, 716 i64 0, i32 0, null, metadata !7, i32 0, null, null, null} 717 ; [ DW_TAG_subroutine_type ] \ 718 [line 0, size 0, align 0, offset 0] [from ] 719 !7 = metadata !{null} 720 !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2} 721 !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"} 722 !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2, 723 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \ 724 [line 2] 725 !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32, 726 i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \ 727 [line 0, size 32, align 32, offset 0, enc DW_ATE_signed] 728 !12 = metadata !{i32 2, i32 0, metadata !4, null} 729 !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3, 730 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \ 731 [line 3] 732 !14 = metadata !{i32 3, i32 0, metadata !4, null} 733 !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5, 734 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \ 735 [line 5] 736 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \ 737 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c] 738 !17 = metadata !{i32 5, i32 0, metadata !16, null} 739 !18 = metadata !{i32 6, i32 0, metadata !16, null} 740 !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ] 741 !20 = metadata !{i32 9, i32 0, metadata !4, null} 742 743This example illustrates a few important details about LLVM debugging 744information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and 745location information, which are attached to an instruction, are applied 746together to allow a debugger to analyze the relationship between statements, 747variable definitions, and the code used to implement the function. 748 749.. code-block:: llvm 750 751 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12 752 ; [debug line = 2:7] [debug variable = X] 753 754The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the 755variable ``X``. The metadata ``!dbg !12`` attached to the intrinsic provides 756scope information for the variable ``X``. 757 758.. code-block:: llvm 759 760 !12 = metadata !{i32 2, i32 0, metadata !4, null} 761 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 762 metadata !"foo", metadata !"", i32 1, metadata !6, 763 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false, 764 void ()* @foo, null, null, metadata !2, i32 1} 765 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 766 767Here ``!12`` is metadata providing location information. It has four fields: 768line number, column number, scope, and original scope. The original scope 769represents inline location if this instruction is inlined inside a caller, and 770is null otherwise. In this example, scope is encoded by ``!4``, a 771:ref:`subprogram descriptor <format_subprograms>`. This way the location 772information attached to the intrinsics indicates that the variable ``X`` is 773declared at line number 2 at a function level scope in function ``foo``. 774 775Now lets take another example. 776 777.. code-block:: llvm 778 779 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 780 ; [debug line = 5:9] [debug variable = Z] 781 782The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for 783variable ``Z``. The metadata ``!dbg !17`` attached to the intrinsic provides 784scope information for the variable ``Z``. 785 786.. code-block:: llvm 787 788 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \ 789 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c] 790 !17 = metadata !{i32 5, i32 0, metadata !16, null} 791 792Here ``!15`` indicates that ``Z`` is declared at line number 5 and 793column number 0 inside of lexical scope ``!16``. The lexical scope itself 794resides inside of subprogram ``!4`` described above. 795 796The scope information attached with each instruction provides a straightforward 797way to find instructions covered by a scope. 798 799.. _ccxx_frontend: 800 801C/C++ front-end specific debug information 802========================================== 803 804The C and C++ front-ends represent information about the program in a format 805that is effectively identical to `DWARF 3.0 806<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information 807content. This allows code generators to trivially support native debuggers by 808generating standard dwarf information, and contains enough information for 809non-dwarf targets to translate it as needed. 810 811This section describes the forms used to represent C and C++ programs. Other 812languages could pattern themselves after this (which itself is tuned to 813representing programs in the same way that DWARF 3 does), or they could choose 814to provide completely different forms if they don't fit into the DWARF model. 815As support for debugging information gets added to the various LLVM 816source-language front-ends, the information used should be documented here. 817 818The following sections provide examples of various C/C++ constructs and the 819debug information that would best describe those constructs. 820 821C/C++ source file information 822----------------------------- 823 824Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the 825directory ``/Users/mine/sources``, the following code: 826 827.. code-block:: c 828 829 #include "MyHeader.h" 830 831 int main(int argc, char *argv[]) { 832 return 0; 833 } 834 835a C/C++ front-end would generate the following descriptors: 836 837.. code-block:: llvm 838 839 ... 840 ;; 841 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp". 842 ;; 843 !0 = metadata !{ 844 i32 786449, ;; Tag 845 metadata !1, ;; File/directory name 846 i32 4, ;; Language Id 847 metadata !"clang version 3.4 ", 848 i1 false, ;; Optimized compile unit 849 metadata !"", ;; Compiler flags 850 i32 0, ;; Runtime version 851 metadata !2, ;; Enumeration types 852 metadata !2, ;; Retained types 853 metadata !3, ;; Subprograms 854 metadata !2, ;; Global variables 855 metadata !2, ;; Imported entities (declarations and namespaces) 856 metadata !"" ;; Split debug filename 857 1, ;; Full debug info 858 } 859 860 ;; 861 ;; Define the file for the file "/Users/mine/sources/MySource.cpp". 862 ;; 863 !1 = metadata !{ 864 metadata !"MySource.cpp", 865 metadata !"/Users/mine/sources" 866 } 867 !5 = metadata !{ 868 i32 786473, ;; Tag 869 metadata !1 870 } 871 872 ;; 873 ;; Define the file for the file "/Users/mine/sources/Myheader.h" 874 ;; 875 !14 = metadata !{ 876 i32 786473, ;; Tag 877 metadata !15 878 } 879 !15 = metadata !{ 880 metadata !"./MyHeader.h", 881 metadata !"/Users/mine/sources", 882 } 883 884 ... 885 886``llvm::Instruction`` provides easy access to metadata attached with an 887instruction. One can extract line number information encoded in LLVM IR using 888``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``. 889 890.. code-block:: c++ 891 892 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction 893 DILocation Loc(N); // DILocation is in DebugInfo.h 894 unsigned Line = Loc.getLineNumber(); 895 StringRef File = Loc.getFilename(); 896 StringRef Dir = Loc.getDirectory(); 897 } 898 899C/C++ global variable information 900--------------------------------- 901 902Given an integer global variable declared as follows: 903 904.. code-block:: c 905 906 int MyGlobal = 100; 907 908a C/C++ front-end would generate the following descriptors: 909 910.. code-block:: llvm 911 912 ;; 913 ;; Define the global itself. 914 ;; 915 %MyGlobal = global int 100 916 ... 917 ;; 918 ;; List of debug info of globals 919 ;; 920 !llvm.dbg.cu = !{!0} 921 922 ;; Define the compile unit. 923 !0 = metadata !{ 924 i32 786449, ;; Tag 925 i32 0, ;; Context 926 i32 4, ;; Language 927 metadata !"foo.cpp", ;; File 928 metadata !"/Volumes/Data/tmp", ;; Directory 929 metadata !"clang version 3.1 ", ;; Producer 930 i1 true, ;; Deprecated field 931 i1 false, ;; "isOptimized"? 932 metadata !"", ;; Flags 933 i32 0, ;; Runtime Version 934 metadata !1, ;; Enum Types 935 metadata !1, ;; Retained Types 936 metadata !1, ;; Subprograms 937 metadata !3, ;; Global Variables 938 metadata !1, ;; Imported entities 939 "", ;; Split debug filename 940 1, ;; Full debug info 941 } ; [ DW_TAG_compile_unit ] 942 943 ;; The Array of Global Variables 944 !3 = metadata !{ 945 metadata !4 946 } 947 948 ;; 949 ;; Define the global variable itself. 950 ;; 951 !4 = metadata !{ 952 i32 786484, ;; Tag 953 i32 0, ;; Unused 954 null, ;; Unused 955 metadata !"MyGlobal", ;; Name 956 metadata !"MyGlobal", ;; Display Name 957 metadata !"", ;; Linkage Name 958 metadata !6, ;; File 959 i32 1, ;; Line 960 metadata !7, ;; Type 961 i32 0, ;; IsLocalToUnit 962 i32 1, ;; IsDefinition 963 i32* @MyGlobal, ;; LLVM-IR Value 964 null ;; Static member declaration 965 } ; [ DW_TAG_variable ] 966 967 ;; 968 ;; Define the file 969 ;; 970 !5 = metadata !{ 971 metadata !"foo.cpp", ;; File 972 metadata !"/Volumes/Data/tmp", ;; Directory 973 } 974 !6 = metadata !{ 975 i32 786473, ;; Tag 976 metadata !5 ;; Unused 977 } ; [ DW_TAG_file_type ] 978 979 ;; 980 ;; Define the type 981 ;; 982 !7 = metadata !{ 983 i32 786468, ;; Tag 984 null, ;; Unused 985 null, ;; Unused 986 metadata !"int", ;; Name 987 i32 0, ;; Line 988 i64 32, ;; Size in Bits 989 i64 32, ;; Align in Bits 990 i64 0, ;; Offset 991 i32 0, ;; Flags 992 i32 5 ;; Encoding 993 } ; [ DW_TAG_base_type ] 994 995C/C++ function information 996-------------------------- 997 998Given a function declared as follows: 999 1000.. code-block:: c 1001 1002 int main(int argc, char *argv[]) { 1003 return 0; 1004 } 1005 1006a C/C++ front-end would generate the following descriptors: 1007 1008.. code-block:: llvm 1009 1010 ;; 1011 ;; Define the anchor for subprograms. 1012 ;; 1013 !6 = metadata !{ 1014 i32 786484, ;; Tag 1015 metadata !1, ;; File 1016 metadata !1, ;; Context 1017 metadata !"main", ;; Name 1018 metadata !"main", ;; Display name 1019 metadata !"main", ;; Linkage name 1020 i32 1, ;; Line number 1021 metadata !4, ;; Type 1022 i1 false, ;; Is local 1023 i1 true, ;; Is definition 1024 i32 0, ;; Virtuality attribute, e.g. pure virtual function 1025 i32 0, ;; Index into virtual table for C++ methods 1026 i32 0, ;; Type that holds virtual table. 1027 i32 0, ;; Flags 1028 i1 false, ;; True if this function is optimized 1029 Function *, ;; Pointer to llvm::Function 1030 null, ;; Function template parameters 1031 null, ;; List of function variables (emitted when optimizing) 1032 1 ;; Line number of the opening '{' of the function 1033 } 1034 ;; 1035 ;; Define the subprogram itself. 1036 ;; 1037 define i32 @main(i32 %argc, i8** %argv) { 1038 ... 1039 } 1040 1041C/C++ basic types 1042----------------- 1043 1044The following are the basic type descriptors for C/C++ core types: 1045 1046bool 1047^^^^ 1048 1049.. code-block:: llvm 1050 1051 !2 = metadata !{ 1052 i32 786468, ;; Tag 1053 null, ;; File 1054 null, ;; Context 1055 metadata !"bool", ;; Name 1056 i32 0, ;; Line number 1057 i64 8, ;; Size in Bits 1058 i64 8, ;; Align in Bits 1059 i64 0, ;; Offset in Bits 1060 i32 0, ;; Flags 1061 i32 2 ;; Encoding 1062 } 1063 1064char 1065^^^^ 1066 1067.. code-block:: llvm 1068 1069 !2 = metadata !{ 1070 i32 786468, ;; Tag 1071 null, ;; File 1072 null, ;; Context 1073 metadata !"char", ;; Name 1074 i32 0, ;; Line number 1075 i64 8, ;; Size in Bits 1076 i64 8, ;; Align in Bits 1077 i64 0, ;; Offset in Bits 1078 i32 0, ;; Flags 1079 i32 6 ;; Encoding 1080 } 1081 1082unsigned char 1083^^^^^^^^^^^^^ 1084 1085.. code-block:: llvm 1086 1087 !2 = metadata !{ 1088 i32 786468, ;; Tag 1089 null, ;; File 1090 null, ;; Context 1091 metadata !"unsigned char", 1092 i32 0, ;; Line number 1093 i64 8, ;; Size in Bits 1094 i64 8, ;; Align in Bits 1095 i64 0, ;; Offset in Bits 1096 i32 0, ;; Flags 1097 i32 8 ;; Encoding 1098 } 1099 1100short 1101^^^^^ 1102 1103.. code-block:: llvm 1104 1105 !2 = metadata !{ 1106 i32 786468, ;; Tag 1107 null, ;; File 1108 null, ;; Context 1109 metadata !"short int", 1110 i32 0, ;; Line number 1111 i64 16, ;; Size in Bits 1112 i64 16, ;; Align in Bits 1113 i64 0, ;; Offset in Bits 1114 i32 0, ;; Flags 1115 i32 5 ;; Encoding 1116 } 1117 1118unsigned short 1119^^^^^^^^^^^^^^ 1120 1121.. code-block:: llvm 1122 1123 !2 = metadata !{ 1124 i32 786468, ;; Tag 1125 null, ;; File 1126 null, ;; Context 1127 metadata !"short unsigned int", 1128 i32 0, ;; Line number 1129 i64 16, ;; Size in Bits 1130 i64 16, ;; Align in Bits 1131 i64 0, ;; Offset in Bits 1132 i32 0, ;; Flags 1133 i32 7 ;; Encoding 1134 } 1135 1136int 1137^^^ 1138 1139.. code-block:: llvm 1140 1141 !2 = metadata !{ 1142 i32 786468, ;; Tag 1143 null, ;; File 1144 null, ;; Context 1145 metadata !"int", ;; Name 1146 i32 0, ;; Line number 1147 i64 32, ;; Size in Bits 1148 i64 32, ;; Align in Bits 1149 i64 0, ;; Offset in Bits 1150 i32 0, ;; Flags 1151 i32 5 ;; Encoding 1152 } 1153 1154unsigned int 1155^^^^^^^^^^^^ 1156 1157.. code-block:: llvm 1158 1159 !2 = metadata !{ 1160 i32 786468, ;; Tag 1161 null, ;; File 1162 null, ;; Context 1163 metadata !"unsigned int", 1164 i32 0, ;; Line number 1165 i64 32, ;; Size in Bits 1166 i64 32, ;; Align in Bits 1167 i64 0, ;; Offset in Bits 1168 i32 0, ;; Flags 1169 i32 7 ;; Encoding 1170 } 1171 1172long long 1173^^^^^^^^^ 1174 1175.. code-block:: llvm 1176 1177 !2 = metadata !{ 1178 i32 786468, ;; Tag 1179 null, ;; File 1180 null, ;; Context 1181 metadata !"long long int", 1182 i32 0, ;; Line number 1183 i64 64, ;; Size in Bits 1184 i64 64, ;; Align in Bits 1185 i64 0, ;; Offset in Bits 1186 i32 0, ;; Flags 1187 i32 5 ;; Encoding 1188 } 1189 1190unsigned long long 1191^^^^^^^^^^^^^^^^^^ 1192 1193.. code-block:: llvm 1194 1195 !2 = metadata !{ 1196 i32 786468, ;; Tag 1197 null, ;; File 1198 null, ;; Context 1199 metadata !"long long unsigned int", 1200 i32 0, ;; Line number 1201 i64 64, ;; Size in Bits 1202 i64 64, ;; Align in Bits 1203 i64 0, ;; Offset in Bits 1204 i32 0, ;; Flags 1205 i32 7 ;; Encoding 1206 } 1207 1208float 1209^^^^^ 1210 1211.. code-block:: llvm 1212 1213 !2 = metadata !{ 1214 i32 786468, ;; Tag 1215 null, ;; File 1216 null, ;; Context 1217 metadata !"float", 1218 i32 0, ;; Line number 1219 i64 32, ;; Size in Bits 1220 i64 32, ;; Align in Bits 1221 i64 0, ;; Offset in Bits 1222 i32 0, ;; Flags 1223 i32 4 ;; Encoding 1224 } 1225 1226double 1227^^^^^^ 1228 1229.. code-block:: llvm 1230 1231 !2 = metadata !{ 1232 i32 786468, ;; Tag 1233 null, ;; File 1234 null, ;; Context 1235 metadata !"double",;; Name 1236 i32 0, ;; Line number 1237 i64 64, ;; Size in Bits 1238 i64 64, ;; Align in Bits 1239 i64 0, ;; Offset in Bits 1240 i32 0, ;; Flags 1241 i32 4 ;; Encoding 1242 } 1243 1244C/C++ derived types 1245------------------- 1246 1247Given the following as an example of C/C++ derived type: 1248 1249.. code-block:: c 1250 1251 typedef const int *IntPtr; 1252 1253a C/C++ front-end would generate the following descriptors: 1254 1255.. code-block:: llvm 1256 1257 ;; 1258 ;; Define the typedef "IntPtr". 1259 ;; 1260 !2 = metadata !{ 1261 i32 786454, ;; Tag 1262 metadata !3, ;; File 1263 metadata !1, ;; Context 1264 metadata !"IntPtr", ;; Name 1265 i32 0, ;; Line number 1266 i64 0, ;; Size in bits 1267 i64 0, ;; Align in bits 1268 i64 0, ;; Offset in bits 1269 i32 0, ;; Flags 1270 metadata !4 ;; Derived From type 1271 } 1272 ;; 1273 ;; Define the pointer type. 1274 ;; 1275 !4 = metadata !{ 1276 i32 786447, ;; Tag 1277 null, ;; File 1278 null, ;; Context 1279 metadata !"", ;; Name 1280 i32 0, ;; Line number 1281 i64 64, ;; Size in bits 1282 i64 64, ;; Align in bits 1283 i64 0, ;; Offset in bits 1284 i32 0, ;; Flags 1285 metadata !5 ;; Derived From type 1286 } 1287 ;; 1288 ;; Define the const type. 1289 ;; 1290 !5 = metadata !{ 1291 i32 786470, ;; Tag 1292 null, ;; File 1293 null, ;; Context 1294 metadata !"", ;; Name 1295 i32 0, ;; Line number 1296 i64 0, ;; Size in bits 1297 i64 0, ;; Align in bits 1298 i64 0, ;; Offset in bits 1299 i32 0, ;; Flags 1300 metadata !6 ;; Derived From type 1301 } 1302 ;; 1303 ;; Define the int type. 1304 ;; 1305 !6 = metadata !{ 1306 i32 786468, ;; Tag 1307 null, ;; File 1308 null, ;; Context 1309 metadata !"int", ;; Name 1310 i32 0, ;; Line number 1311 i64 32, ;; Size in bits 1312 i64 32, ;; Align in bits 1313 i64 0, ;; Offset in bits 1314 i32 0, ;; Flags 1315 i32 5 ;; Encoding 1316 } 1317 1318C/C++ struct/union types 1319------------------------ 1320 1321Given the following as an example of C/C++ struct type: 1322 1323.. code-block:: c 1324 1325 struct Color { 1326 unsigned Red; 1327 unsigned Green; 1328 unsigned Blue; 1329 }; 1330 1331a C/C++ front-end would generate the following descriptors: 1332 1333.. code-block:: llvm 1334 1335 ;; 1336 ;; Define basic type for unsigned int. 1337 ;; 1338 !5 = metadata !{ 1339 i32 786468, ;; Tag 1340 null, ;; File 1341 null, ;; Context 1342 metadata !"unsigned int", 1343 i32 0, ;; Line number 1344 i64 32, ;; Size in Bits 1345 i64 32, ;; Align in Bits 1346 i64 0, ;; Offset in Bits 1347 i32 0, ;; Flags 1348 i32 7 ;; Encoding 1349 } 1350 ;; 1351 ;; Define composite type for struct Color. 1352 ;; 1353 !2 = metadata !{ 1354 i32 786451, ;; Tag 1355 metadata !1, ;; Compile unit 1356 null, ;; Context 1357 metadata !"Color", ;; Name 1358 i32 1, ;; Line number 1359 i64 96, ;; Size in bits 1360 i64 32, ;; Align in bits 1361 i64 0, ;; Offset in bits 1362 i32 0, ;; Flags 1363 null, ;; Derived From 1364 metadata !3, ;; Elements 1365 i32 0, ;; Runtime Language 1366 null, ;; Base type containing the vtable pointer for this type 1367 null ;; Template parameters 1368 } 1369 1370 ;; 1371 ;; Define the Red field. 1372 ;; 1373 !4 = metadata !{ 1374 i32 786445, ;; Tag 1375 metadata !1, ;; File 1376 metadata !1, ;; Context 1377 metadata !"Red", ;; Name 1378 i32 2, ;; Line number 1379 i64 32, ;; Size in bits 1380 i64 32, ;; Align in bits 1381 i64 0, ;; Offset in bits 1382 i32 0, ;; Flags 1383 metadata !5 ;; Derived From type 1384 } 1385 1386 ;; 1387 ;; Define the Green field. 1388 ;; 1389 !6 = metadata !{ 1390 i32 786445, ;; Tag 1391 metadata !1, ;; File 1392 metadata !1, ;; Context 1393 metadata !"Green", ;; Name 1394 i32 3, ;; Line number 1395 i64 32, ;; Size in bits 1396 i64 32, ;; Align in bits 1397 i64 32, ;; Offset in bits 1398 i32 0, ;; Flags 1399 metadata !5 ;; Derived From type 1400 } 1401 1402 ;; 1403 ;; Define the Blue field. 1404 ;; 1405 !7 = metadata !{ 1406 i32 786445, ;; Tag 1407 metadata !1, ;; File 1408 metadata !1, ;; Context 1409 metadata !"Blue", ;; Name 1410 i32 4, ;; Line number 1411 i64 32, ;; Size in bits 1412 i64 32, ;; Align in bits 1413 i64 64, ;; Offset in bits 1414 i32 0, ;; Flags 1415 metadata !5 ;; Derived From type 1416 } 1417 1418 ;; 1419 ;; Define the array of fields used by the composite type Color. 1420 ;; 1421 !3 = metadata !{metadata !4, metadata !6, metadata !7} 1422 1423C/C++ enumeration types 1424----------------------- 1425 1426Given the following as an example of C/C++ enumeration type: 1427 1428.. code-block:: c 1429 1430 enum Trees { 1431 Spruce = 100, 1432 Oak = 200, 1433 Maple = 300 1434 }; 1435 1436a C/C++ front-end would generate the following descriptors: 1437 1438.. code-block:: llvm 1439 1440 ;; 1441 ;; Define composite type for enum Trees 1442 ;; 1443 !2 = metadata !{ 1444 i32 786436, ;; Tag 1445 metadata !1, ;; File 1446 metadata !1, ;; Context 1447 metadata !"Trees", ;; Name 1448 i32 1, ;; Line number 1449 i64 32, ;; Size in bits 1450 i64 32, ;; Align in bits 1451 i64 0, ;; Offset in bits 1452 i32 0, ;; Flags 1453 null, ;; Derived From type 1454 metadata !3, ;; Elements 1455 i32 0 ;; Runtime language 1456 } 1457 1458 ;; 1459 ;; Define the array of enumerators used by composite type Trees. 1460 ;; 1461 !3 = metadata !{metadata !4, metadata !5, metadata !6} 1462 1463 ;; 1464 ;; Define Spruce enumerator. 1465 ;; 1466 !4 = metadata !{i32 786472, metadata !"Spruce", i64 100} 1467 1468 ;; 1469 ;; Define Oak enumerator. 1470 ;; 1471 !5 = metadata !{i32 786472, metadata !"Oak", i64 200} 1472 1473 ;; 1474 ;; Define Maple enumerator. 1475 ;; 1476 !6 = metadata !{i32 786472, metadata !"Maple", i64 300} 1477 1478Debugging information format 1479============================ 1480 1481Debugging Information Extension for Objective C Properties 1482---------------------------------------------------------- 1483 1484Introduction 1485^^^^^^^^^^^^ 1486 1487Objective C provides a simpler way to declare and define accessor methods using 1488declared properties. The language provides features to declare a property and 1489to let compiler synthesize accessor methods. 1490 1491The debugger lets developer inspect Objective C interfaces and their instance 1492variables and class variables. However, the debugger does not know anything 1493about the properties defined in Objective C interfaces. The debugger consumes 1494information generated by compiler in DWARF format. The format does not support 1495encoding of Objective C properties. This proposal describes DWARF extensions to 1496encode Objective C properties, which the debugger can use to let developers 1497inspect Objective C properties. 1498 1499Proposal 1500^^^^^^^^ 1501 1502Objective C properties exist separately from class members. A property can be 1503defined only by "setter" and "getter" selectors, and be calculated anew on each 1504access. Or a property can just be a direct access to some declared ivar. 1505Finally it can have an ivar "automatically synthesized" for it by the compiler, 1506in which case the property can be referred to in user code directly using the 1507standard C dereference syntax as well as through the property "dot" syntax, but 1508there is no entry in the ``@interface`` declaration corresponding to this ivar. 1509 1510To facilitate debugging, these properties we will add a new DWARF TAG into the 1511``DW_TAG_structure_type`` definition for the class to hold the description of a 1512given property, and a set of DWARF attributes that provide said description. 1513The property tag will also contain the name and declared type of the property. 1514 1515If there is a related ivar, there will also be a DWARF property attribute placed 1516in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG 1517for that property. And in the case where the compiler synthesizes the ivar 1518directly, the compiler is expected to generate a ``DW_TAG_member`` for that 1519ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used 1520to access this ivar directly in code, and with the property attribute pointing 1521back to the property it is backing. 1522 1523The following examples will serve as illustration for our discussion: 1524 1525.. code-block:: objc 1526 1527 @interface I1 { 1528 int n2; 1529 } 1530 1531 @property int p1; 1532 @property int p2; 1533 @end 1534 1535 @implementation I1 1536 @synthesize p1; 1537 @synthesize p2 = n2; 1538 @end 1539 1540This produces the following DWARF (this is a "pseudo dwarfdump" output): 1541 1542.. code-block:: none 1543 1544 0x00000100: TAG_structure_type [7] * 1545 AT_APPLE_runtime_class( 0x10 ) 1546 AT_name( "I1" ) 1547 AT_decl_file( "Objc_Property.m" ) 1548 AT_decl_line( 3 ) 1549 1550 0x00000110 TAG_APPLE_property 1551 AT_name ( "p1" ) 1552 AT_type ( {0x00000150} ( int ) ) 1553 1554 0x00000120: TAG_APPLE_property 1555 AT_name ( "p2" ) 1556 AT_type ( {0x00000150} ( int ) ) 1557 1558 0x00000130: TAG_member [8] 1559 AT_name( "_p1" ) 1560 AT_APPLE_property ( {0x00000110} "p1" ) 1561 AT_type( {0x00000150} ( int ) ) 1562 AT_artificial ( 0x1 ) 1563 1564 0x00000140: TAG_member [8] 1565 AT_name( "n2" ) 1566 AT_APPLE_property ( {0x00000120} "p2" ) 1567 AT_type( {0x00000150} ( int ) ) 1568 1569 0x00000150: AT_type( ( int ) ) 1570 1571Note, the current convention is that the name of the ivar for an 1572auto-synthesized property is the name of the property from which it derives 1573with an underscore prepended, as is shown in the example. But we actually 1574don't need to know this convention, since we are given the name of the ivar 1575directly. 1576 1577Also, it is common practice in ObjC to have different property declarations in 1578the @interface and @implementation - e.g. to provide a read-only property in 1579the interface,and a read-write interface in the implementation. In that case, 1580the compiler should emit whichever property declaration will be in force in the 1581current translation unit. 1582 1583Developers can decorate a property with attributes which are encoded using 1584``DW_AT_APPLE_property_attribute``. 1585 1586.. code-block:: objc 1587 1588 @property (readonly, nonatomic) int pr; 1589 1590.. code-block:: none 1591 1592 TAG_APPLE_property [8] 1593 AT_name( "pr" ) 1594 AT_type ( {0x00000147} (int) ) 1595 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic) 1596 1597The setter and getter method names are attached to the property using 1598``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes. 1599 1600.. code-block:: objc 1601 1602 @interface I1 1603 @property (setter=myOwnP3Setter:) int p3; 1604 -(void)myOwnP3Setter:(int)a; 1605 @end 1606 1607 @implementation I1 1608 @synthesize p3; 1609 -(void)myOwnP3Setter:(int)a{ } 1610 @end 1611 1612The DWARF for this would be: 1613 1614.. code-block:: none 1615 1616 0x000003bd: TAG_structure_type [7] * 1617 AT_APPLE_runtime_class( 0x10 ) 1618 AT_name( "I1" ) 1619 AT_decl_file( "Objc_Property.m" ) 1620 AT_decl_line( 3 ) 1621 1622 0x000003cd TAG_APPLE_property 1623 AT_name ( "p3" ) 1624 AT_APPLE_property_setter ( "myOwnP3Setter:" ) 1625 AT_type( {0x00000147} ( int ) ) 1626 1627 0x000003f3: TAG_member [8] 1628 AT_name( "_p3" ) 1629 AT_type ( {0x00000147} ( int ) ) 1630 AT_APPLE_property ( {0x000003cd} ) 1631 AT_artificial ( 0x1 ) 1632 1633New DWARF Tags 1634^^^^^^^^^^^^^^ 1635 1636+-----------------------+--------+ 1637| TAG | Value | 1638+=======================+========+ 1639| DW_TAG_APPLE_property | 0x4200 | 1640+-----------------------+--------+ 1641 1642New DWARF Attributes 1643^^^^^^^^^^^^^^^^^^^^ 1644 1645+--------------------------------+--------+-----------+ 1646| Attribute | Value | Classes | 1647+================================+========+===========+ 1648| DW_AT_APPLE_property | 0x3fed | Reference | 1649+--------------------------------+--------+-----------+ 1650| DW_AT_APPLE_property_getter | 0x3fe9 | String | 1651+--------------------------------+--------+-----------+ 1652| DW_AT_APPLE_property_setter | 0x3fea | String | 1653+--------------------------------+--------+-----------+ 1654| DW_AT_APPLE_property_attribute | 0x3feb | Constant | 1655+--------------------------------+--------+-----------+ 1656 1657New DWARF Constants 1658^^^^^^^^^^^^^^^^^^^ 1659 1660+--------------------------------+-------+ 1661| Name | Value | 1662+================================+=======+ 1663| DW_AT_APPLE_PROPERTY_readonly | 0x1 | 1664+--------------------------------+-------+ 1665| DW_AT_APPLE_PROPERTY_readwrite | 0x2 | 1666+--------------------------------+-------+ 1667| DW_AT_APPLE_PROPERTY_assign | 0x4 | 1668+--------------------------------+-------+ 1669| DW_AT_APPLE_PROPERTY_retain | 0x8 | 1670+--------------------------------+-------+ 1671| DW_AT_APPLE_PROPERTY_copy | 0x10 | 1672+--------------------------------+-------+ 1673| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 | 1674+--------------------------------+-------+ 1675 1676Name Accelerator Tables 1677----------------------- 1678 1679Introduction 1680^^^^^^^^^^^^ 1681 1682The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a 1683debugger needs. The "``pub``" in the section name indicates that the entries 1684in the table are publicly visible names only. This means no static or hidden 1685functions show up in the "``.debug_pubnames``". No static variables or private 1686class variables are in the "``.debug_pubtypes``". Many compilers add different 1687things to these tables, so we can't rely upon the contents between gcc, icc, or 1688clang. 1689 1690The typical query given by users tends not to match up with the contents of 1691these tables. For example, the DWARF spec states that "In the case of the name 1692of a function member or static data member of a C++ structure, class or union, 1693the name presented in the "``.debug_pubnames``" section is not the simple name 1694given by the ``DW_AT_name attribute`` of the referenced debugging information 1695entry, but rather the fully qualified name of the data or function member." 1696So the only names in these tables for complex C++ entries is a fully 1697qualified name. Debugger users tend not to enter their search strings as 1698"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or 1699"``a::b::c``". So the name entered in the name table must be demangled in 1700order to chop it up appropriately and additional names must be manually entered 1701into the table to make it effective as a name lookup table for debuggers to 1702se. 1703 1704All debuggers currently ignore the "``.debug_pubnames``" table as a result of 1705its inconsistent and useless public-only name content making it a waste of 1706space in the object file. These tables, when they are written to disk, are not 1707sorted in any way, leaving every debugger to do its own parsing and sorting. 1708These tables also include an inlined copy of the string values in the table 1709itself making the tables much larger than they need to be on disk, especially 1710for large C++ programs. 1711 1712Can't we just fix the sections by adding all of the names we need to this 1713table? No, because that is not what the tables are defined to contain and we 1714won't know the difference between the old bad tables and the new good tables. 1715At best we could make our own renamed sections that contain all of the data we 1716need. 1717 1718These tables are also insufficient for what a debugger like LLDB needs. LLDB 1719uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then 1720often asked to look for type "``foo``" or namespace "``bar``", or list items in 1721namespace "``baz``". Namespaces are not included in the pubnames or pubtypes 1722tables. Since clang asks a lot of questions when it is parsing an expression, 1723we need to be very fast when looking up names, as it happens a lot. Having new 1724accelerator tables that are optimized for very quick lookups will benefit this 1725type of debugging experience greatly. 1726 1727We would like to generate name lookup tables that can be mapped into memory 1728from disk, and used as is, with little or no up-front parsing. We would also 1729be able to control the exact content of these different tables so they contain 1730exactly what we need. The Name Accelerator Tables were designed to fix these 1731issues. In order to solve these issues we need to: 1732 1733* Have a format that can be mapped into memory from disk and used as is 1734* Lookups should be very fast 1735* Extensible table format so these tables can be made by many producers 1736* Contain all of the names needed for typical lookups out of the box 1737* Strict rules for the contents of tables 1738 1739Table size is important and the accelerator table format should allow the reuse 1740of strings from common string tables so the strings for the names are not 1741duplicated. We also want to make sure the table is ready to be used as-is by 1742simply mapping the table into memory with minimal header parsing. 1743 1744The name lookups need to be fast and optimized for the kinds of lookups that 1745debuggers tend to do. Optimally we would like to touch as few parts of the 1746mapped table as possible when doing a name lookup and be able to quickly find 1747the name entry we are looking for, or discover there are no matches. In the 1748case of debuggers we optimized for lookups that fail most of the time. 1749 1750Each table that is defined should have strict rules on exactly what is in the 1751accelerator tables and documented so clients can rely on the content. 1752 1753Hash Tables 1754^^^^^^^^^^^ 1755 1756Standard Hash Tables 1757"""""""""""""""""""" 1758 1759Typical hash tables have a header, buckets, and each bucket points to the 1760bucket contents: 1761 1762.. code-block:: none 1763 1764 .------------. 1765 | HEADER | 1766 |------------| 1767 | BUCKETS | 1768 |------------| 1769 | DATA | 1770 `------------' 1771 1772The BUCKETS are an array of offsets to DATA for each hash: 1773 1774.. code-block:: none 1775 1776 .------------. 1777 | 0x00001000 | BUCKETS[0] 1778 | 0x00002000 | BUCKETS[1] 1779 | 0x00002200 | BUCKETS[2] 1780 | 0x000034f0 | BUCKETS[3] 1781 | | ... 1782 | 0xXXXXXXXX | BUCKETS[n_buckets] 1783 '------------' 1784 1785So for ``bucket[3]`` in the example above, we have an offset into the table 17860x000034f0 which points to a chain of entries for the bucket. Each bucket must 1787contain a next pointer, full 32 bit hash value, the string itself, and the data 1788for the current string value. 1789 1790.. code-block:: none 1791 1792 .------------. 1793 0x000034f0: | 0x00003500 | next pointer 1794 | 0x12345678 | 32 bit hash 1795 | "erase" | string value 1796 | data[n] | HashData for this bucket 1797 |------------| 1798 0x00003500: | 0x00003550 | next pointer 1799 | 0x29273623 | 32 bit hash 1800 | "dump" | string value 1801 | data[n] | HashData for this bucket 1802 |------------| 1803 0x00003550: | 0x00000000 | next pointer 1804 | 0x82638293 | 32 bit hash 1805 | "main" | string value 1806 | data[n] | HashData for this bucket 1807 `------------' 1808 1809The problem with this layout for debuggers is that we need to optimize for the 1810negative lookup case where the symbol we're searching for is not present. So 1811if we were to lookup "``printf``" in the table above, we would make a 32 hash 1812for "``printf``", it might match ``bucket[3]``. We would need to go to the 1813offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do 1814so, we need to read the next pointer, then read the hash, compare it, and skip 1815to the next bucket. Each time we are skipping many bytes in memory and 1816touching new cache pages just to do the compare on the full 32 bit hash. All 1817of these accesses then tell us that we didn't have a match. 1818 1819Name Hash Tables 1820"""""""""""""""" 1821 1822To solve the issues mentioned above we have structured the hash tables a bit 1823differently: a header, buckets, an array of all unique 32 bit hash values, 1824followed by an array of hash value data offsets, one for each hash value, then 1825the data for all hash values: 1826 1827.. code-block:: none 1828 1829 .-------------. 1830 | HEADER | 1831 |-------------| 1832 | BUCKETS | 1833 |-------------| 1834 | HASHES | 1835 |-------------| 1836 | OFFSETS | 1837 |-------------| 1838 | DATA | 1839 `-------------' 1840 1841The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By 1842making all of the full 32 bit hash values contiguous in memory, we allow 1843ourselves to efficiently check for a match while touching as little memory as 1844possible. Most often checking the 32 bit hash values is as far as the lookup 1845goes. If it does match, it usually is a match with no collisions. So for a 1846table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash 1847values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and 1848``OFFSETS`` as: 1849 1850.. code-block:: none 1851 1852 .-------------------------. 1853 | HEADER.magic | uint32_t 1854 | HEADER.version | uint16_t 1855 | HEADER.hash_function | uint16_t 1856 | HEADER.bucket_count | uint32_t 1857 | HEADER.hashes_count | uint32_t 1858 | HEADER.header_data_len | uint32_t 1859 | HEADER_DATA | HeaderData 1860 |-------------------------| 1861 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes 1862 |-------------------------| 1863 | HASHES | uint32_t[n_hashes] // 32 bit hash values 1864 |-------------------------| 1865 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data 1866 |-------------------------| 1867 | ALL HASH DATA | 1868 `-------------------------' 1869 1870So taking the exact same data from the standard hash example above we end up 1871with: 1872 1873.. code-block:: none 1874 1875 .------------. 1876 | HEADER | 1877 |------------| 1878 | 0 | BUCKETS[0] 1879 | 2 | BUCKETS[1] 1880 | 5 | BUCKETS[2] 1881 | 6 | BUCKETS[3] 1882 | | ... 1883 | ... | BUCKETS[n_buckets] 1884 |------------| 1885 | 0x........ | HASHES[0] 1886 | 0x........ | HASHES[1] 1887 | 0x........ | HASHES[2] 1888 | 0x........ | HASHES[3] 1889 | 0x........ | HASHES[4] 1890 | 0x........ | HASHES[5] 1891 | 0x12345678 | HASHES[6] hash for BUCKETS[3] 1892 | 0x29273623 | HASHES[7] hash for BUCKETS[3] 1893 | 0x82638293 | HASHES[8] hash for BUCKETS[3] 1894 | 0x........ | HASHES[9] 1895 | 0x........ | HASHES[10] 1896 | 0x........ | HASHES[11] 1897 | 0x........ | HASHES[12] 1898 | 0x........ | HASHES[13] 1899 | 0x........ | HASHES[n_hashes] 1900 |------------| 1901 | 0x........ | OFFSETS[0] 1902 | 0x........ | OFFSETS[1] 1903 | 0x........ | OFFSETS[2] 1904 | 0x........ | OFFSETS[3] 1905 | 0x........ | OFFSETS[4] 1906 | 0x........ | OFFSETS[5] 1907 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3] 1908 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3] 1909 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3] 1910 | 0x........ | OFFSETS[9] 1911 | 0x........ | OFFSETS[10] 1912 | 0x........ | OFFSETS[11] 1913 | 0x........ | OFFSETS[12] 1914 | 0x........ | OFFSETS[13] 1915 | 0x........ | OFFSETS[n_hashes] 1916 |------------| 1917 | | 1918 | | 1919 | | 1920 | | 1921 | | 1922 |------------| 1923 0x000034f0: | 0x00001203 | .debug_str ("erase") 1924 | 0x00000004 | A 32 bit array count - number of HashData with name "erase" 1925 | 0x........ | HashData[0] 1926 | 0x........ | HashData[1] 1927 | 0x........ | HashData[2] 1928 | 0x........ | HashData[3] 1929 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1930 |------------| 1931 0x00003500: | 0x00001203 | String offset into .debug_str ("collision") 1932 | 0x00000002 | A 32 bit array count - number of HashData with name "collision" 1933 | 0x........ | HashData[0] 1934 | 0x........ | HashData[1] 1935 | 0x00001203 | String offset into .debug_str ("dump") 1936 | 0x00000003 | A 32 bit array count - number of HashData with name "dump" 1937 | 0x........ | HashData[0] 1938 | 0x........ | HashData[1] 1939 | 0x........ | HashData[2] 1940 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1941 |------------| 1942 0x00003550: | 0x00001203 | String offset into .debug_str ("main") 1943 | 0x00000009 | A 32 bit array count - number of HashData with name "main" 1944 | 0x........ | HashData[0] 1945 | 0x........ | HashData[1] 1946 | 0x........ | HashData[2] 1947 | 0x........ | HashData[3] 1948 | 0x........ | HashData[4] 1949 | 0x........ | HashData[5] 1950 | 0x........ | HashData[6] 1951 | 0x........ | HashData[7] 1952 | 0x........ | HashData[8] 1953 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1954 `------------' 1955 1956So we still have all of the same data, we just organize it more efficiently for 1957debugger lookup. If we repeat the same "``printf``" lookup from above, we 1958would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit 1959hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which 1960is the index into the ``HASHES`` table. We would then compare any consecutive 196132 bit hashes values in the ``HASHES`` array as long as the hashes would be in 1962``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo 1963``n_buckets`` is still 3. In the case of a failed lookup we would access the 1964memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes 1965before we know that we have no match. We don't end up marching through 1966multiple words of memory and we really keep the number of processor data cache 1967lines being accessed as small as possible. 1968 1969The string hash that is used for these lookup tables is the Daniel J. 1970Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a 1971very good hash for all kinds of names in programs with very few hash 1972collisions. 1973 1974Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``. 1975 1976Details 1977^^^^^^^ 1978 1979These name hash tables are designed to be generic where specializations of the 1980table get to define additional data that goes into the header ("``HeaderData``"), 1981how the string value is stored ("``KeyType``") and the content of the data for each 1982hash value. 1983 1984Header Layout 1985""""""""""""" 1986 1987The header has a fixed part, and the specialized part. The exact format of the 1988header is: 1989 1990.. code-block:: c 1991 1992 struct Header 1993 { 1994 uint32_t magic; // 'HASH' magic value to allow endian detection 1995 uint16_t version; // Version number 1996 uint16_t hash_function; // The hash function enumeration that was used 1997 uint32_t bucket_count; // The number of buckets in this hash table 1998 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table 1999 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment 2000 // Specifically the length of the following HeaderData field - this does not 2001 // include the size of the preceding fields 2002 HeaderData header_data; // Implementation specific header data 2003 }; 2004 2005The header starts with a 32 bit "``magic``" value which must be ``'HASH'`` 2006encoded as an ASCII integer. This allows the detection of the start of the 2007hash table and also allows the table's byte order to be determined so the table 2008can be correctly extracted. The "``magic``" value is followed by a 16 bit 2009``version`` number which allows the table to be revised and modified in the 2010future. The current version number is 1. ``hash_function`` is a ``uint16_t`` 2011enumeration that specifies which hash function was used to produce this table. 2012The current values for the hash function enumerations include: 2013 2014.. code-block:: c 2015 2016 enum HashFunctionType 2017 { 2018 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function 2019 }; 2020 2021``bucket_count`` is a 32 bit unsigned integer that represents how many buckets 2022are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit 2023hash values that are in the ``HASHES`` array, and is the same number of offsets 2024are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size 2025in bytes of the ``HeaderData`` that is filled in by specialized versions of 2026this table. 2027 2028Fixed Lookup 2029"""""""""""" 2030 2031The header is followed by the buckets, hashes, offsets, and hash value data. 2032 2033.. code-block:: c 2034 2035 struct FixedTable 2036 { 2037 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below 2038 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table 2039 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above 2040 }; 2041 2042``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The 2043``hashes`` array contains all of the 32 bit hash values for all names in the 2044hash table. Each hash in the ``hashes`` table has an offset in the ``offsets`` 2045array that points to the data for the hash value. 2046 2047This table setup makes it very easy to repurpose these tables to contain 2048different data, while keeping the lookup mechanism the same for all tables. 2049This layout also makes it possible to save the table to disk and map it in 2050later and do very efficient name lookups with little or no parsing. 2051 2052DWARF lookup tables can be implemented in a variety of ways and can store a lot 2053of information for each name. We want to make the DWARF tables extensible and 2054able to store the data efficiently so we have used some of the DWARF features 2055that enable efficient data storage to define exactly what kind of data we store 2056for each name. 2057 2058The ``HeaderData`` contains a definition of the contents of each HashData chunk. 2059We might want to store an offset to all of the debug information entries (DIEs) 2060for each name. To keep things extensible, we create a list of items, or 2061Atoms, that are contained in the data for each name. First comes the type of 2062the data in each atom: 2063 2064.. code-block:: c 2065 2066 enum AtomType 2067 { 2068 eAtomTypeNULL = 0u, 2069 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding 2070 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question 2071 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2 2072 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags 2073 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags 2074 }; 2075 2076The enumeration values and their meanings are: 2077 2078.. code-block:: none 2079 2080 eAtomTypeNULL - a termination atom that specifies the end of the atom list 2081 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name 2082 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE 2083 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is 2084 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...) 2085 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...) 2086 2087Then we allow each atom type to define the atom type and how the data for each 2088atom type data is encoded: 2089 2090.. code-block:: c 2091 2092 struct Atom 2093 { 2094 uint16_t type; // AtomType enum value 2095 uint16_t form; // DWARF DW_FORM_XXX defines 2096 }; 2097 2098The ``form`` type above is from the DWARF specification and defines the exact 2099encoding of the data for the Atom type. See the DWARF specification for the 2100``DW_FORM_`` definitions. 2101 2102.. code-block:: c 2103 2104 struct HeaderData 2105 { 2106 uint32_t die_offset_base; 2107 uint32_t atom_count; 2108 Atoms atoms[atom_count0]; 2109 }; 2110 2111``HeaderData`` defines the base DIE offset that should be added to any atoms 2112that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``, 2113``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines 2114what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large 2115each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data 2116should be interpreted. 2117 2118For the current implementations of the "``.apple_names``" (all functions + 2119globals), the "``.apple_types``" (names of all types that are defined), and 2120the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom`` 2121array to be: 2122 2123.. code-block:: c 2124 2125 HeaderData.atom_count = 1; 2126 HeaderData.atoms[0].type = eAtomTypeDIEOffset; 2127 HeaderData.atoms[0].form = DW_FORM_data4; 2128 2129This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is 2130encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have 2131multiple matching DIEs in a single file, which could come up with an inlined 2132function for instance. Future tables could include more information about the 2133DIE such as flags indicating if the DIE is a function, method, block, 2134or inlined. 2135 2136The KeyType for the DWARF table is a 32 bit string table offset into the 2137".debug_str" table. The ".debug_str" is the string table for the DWARF which 2138may already contain copies of all of the strings. This helps make sure, with 2139help from the compiler, that we reuse the strings between all of the DWARF 2140sections and keeps the hash table size down. Another benefit to having the 2141compiler generate all strings as DW_FORM_strp in the debug info, is that 2142DWARF parsing can be made much faster. 2143 2144After a lookup is made, we get an offset into the hash data. The hash data 2145needs to be able to deal with 32 bit hash collisions, so the chunk of data 2146at the offset in the hash data consists of a triple: 2147 2148.. code-block:: c 2149 2150 uint32_t str_offset 2151 uint32_t hash_data_count 2152 HashData[hash_data_count] 2153 2154If "str_offset" is zero, then the bucket contents are done. 99.9% of the 2155hash data chunks contain a single item (no 32 bit hash collision): 2156 2157.. code-block:: none 2158 2159 .------------. 2160 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2161 | 0x00000004 | uint32_t HashData count 2162 | 0x........ | uint32_t HashData[0] DIE offset 2163 | 0x........ | uint32_t HashData[1] DIE offset 2164 | 0x........ | uint32_t HashData[2] DIE offset 2165 | 0x........ | uint32_t HashData[3] DIE offset 2166 | 0x00000000 | uint32_t KeyType (end of hash chain) 2167 `------------' 2168 2169If there are collisions, you will have multiple valid string offsets: 2170 2171.. code-block:: none 2172 2173 .------------. 2174 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2175 | 0x00000004 | uint32_t HashData count 2176 | 0x........ | uint32_t HashData[0] DIE offset 2177 | 0x........ | uint32_t HashData[1] DIE offset 2178 | 0x........ | uint32_t HashData[2] DIE offset 2179 | 0x........ | uint32_t HashData[3] DIE offset 2180 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print") 2181 | 0x00000002 | uint32_t HashData count 2182 | 0x........ | uint32_t HashData[0] DIE offset 2183 | 0x........ | uint32_t HashData[1] DIE offset 2184 | 0x00000000 | uint32_t KeyType (end of hash chain) 2185 `------------' 2186 2187Current testing with real world C++ binaries has shown that there is around 1 218832 bit hash collision per 100,000 name entries. 2189 2190Contents 2191^^^^^^^^ 2192 2193As we said, we want to strictly define exactly what is included in the 2194different tables. For DWARF, we have 3 tables: "``.apple_names``", 2195"``.apple_types``", and "``.apple_namespaces``". 2196 2197"``.apple_names``" sections should contain an entry for each DWARF DIE whose 2198``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or 2199``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``, 2200``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains 2201``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and 2202static variables). All global and static variables should be included, 2203including those scoped within functions and classes. For example using the 2204following code: 2205 2206.. code-block:: c 2207 2208 static int var = 0; 2209 2210 void f () 2211 { 2212 static int var = 0; 2213 } 2214 2215Both of the static ``var`` variables would be included in the table. All 2216functions should emit both their full names and their basenames. For C or C++, 2217the full name is the mangled name (if available) which is usually in the 2218``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the 2219function basename. If global or static variables have a mangled name in a 2220``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the 2221simple name found in the ``DW_AT_name`` attribute. 2222 2223"``.apple_types``" sections should contain an entry for each DWARF DIE whose 2224tag is one of: 2225 2226* DW_TAG_array_type 2227* DW_TAG_class_type 2228* DW_TAG_enumeration_type 2229* DW_TAG_pointer_type 2230* DW_TAG_reference_type 2231* DW_TAG_string_type 2232* DW_TAG_structure_type 2233* DW_TAG_subroutine_type 2234* DW_TAG_typedef 2235* DW_TAG_union_type 2236* DW_TAG_ptr_to_member_type 2237* DW_TAG_set_type 2238* DW_TAG_subrange_type 2239* DW_TAG_base_type 2240* DW_TAG_const_type 2241* DW_TAG_constant 2242* DW_TAG_file_type 2243* DW_TAG_namelist 2244* DW_TAG_packed_type 2245* DW_TAG_volatile_type 2246* DW_TAG_restrict_type 2247* DW_TAG_interface_type 2248* DW_TAG_unspecified_type 2249* DW_TAG_shared_type 2250 2251Only entries with a ``DW_AT_name`` attribute are included, and the entry must 2252not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero 2253value). For example, using the following code: 2254 2255.. code-block:: c 2256 2257 int main () 2258 { 2259 int *b = 0; 2260 return *b; 2261 } 2262 2263We get a few type DIEs: 2264 2265.. code-block:: none 2266 2267 0x00000067: TAG_base_type [5] 2268 AT_encoding( DW_ATE_signed ) 2269 AT_name( "int" ) 2270 AT_byte_size( 0x04 ) 2271 2272 0x0000006e: TAG_pointer_type [6] 2273 AT_type( {0x00000067} ( int ) ) 2274 AT_byte_size( 0x08 ) 2275 2276The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``. 2277 2278"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs. 2279If we run into a namespace that has no name this is an anonymous namespace, and 2280the name should be output as "``(anonymous namespace)``" (without the quotes). 2281Why? This matches the output of the ``abi::cxa_demangle()`` that is in the 2282standard C++ library that demangles mangled names. 2283 2284 2285Language Extensions and File Format Changes 2286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2287 2288Objective-C Extensions 2289"""""""""""""""""""""" 2290 2291"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an 2292Objective-C class. The name used in the hash table is the name of the 2293Objective-C class itself. If the Objective-C class has a category, then an 2294entry is made for both the class name without the category, and for the class 2295name with the category. So if we have a DIE at offset 0x1234 with a name of 2296method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add 2297an entry for "``NSString``" that points to DIE 0x1234, and an entry for 2298"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly 2299track down all Objective-C methods for an Objective-C class when doing 2300expressions. It is needed because of the dynamic nature of Objective-C where 2301anyone can add methods to a class. The DWARF for Objective-C methods is also 2302emitted differently from C++ classes where the methods are not usually 2303contained in the class definition, they are scattered about across one or more 2304compile units. Categories can also be defined in different shared libraries. 2305So we need to be able to quickly find all of the methods and class functions 2306given the Objective-C class name, or quickly find all methods and class 2307functions for a class + category name. This table does not contain any 2308selector names, it just maps Objective-C class names (or class names + 2309category) to all of the methods and class functions. The selectors are added 2310as function basenames in the "``.debug_names``" section. 2311 2312In the "``.apple_names``" section for Objective-C functions, the full name is 2313the entire function name with the brackets ("``-[NSString 2314stringWithCString:]``") and the basename is the selector only 2315("``stringWithCString:``"). 2316 2317Mach-O Changes 2318"""""""""""""" 2319 2320The sections names for the apple hash tables are for non-mach-o files. For 2321mach-o files, the sections should be contained in the ``__DWARF`` segment with 2322names as follows: 2323 2324* "``.apple_names``" -> "``__apple_names``" 2325* "``.apple_types``" -> "``__apple_types``" 2326* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit) 2327* "``.apple_objc``" -> "``__apple_objc``" 2328 2329