1================================
2Source Level Debugging with LLVM
3================================
4
5.. contents::
6   :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM.  It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information.  Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here.  The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26  compiler.  No transformations, analyses, or code generators should need to
27  be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30  ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33  LLVM-to-LLVM tools should not need to know anything about the semantics of
34  the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37  LLVM should not put any restrictions of the flavor of the source-language,
38  and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41  to compile a program to native machine code and standard debugging
42  formats.  This allows compatibility with traditional machine-code level
43  debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects.  The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information.  As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process.  This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger.  Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis.  In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86  the source-level state of the program**, regardless of which LLVM
87  optimizations have been run, and without any modification to the
88  optimizations themselves.  However, some optimizations may impact the
89  ability to modify the current state of the program with a debugger, such
90  as setting program variables, or calling functions that have been
91  deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94  debugging information, allowing them to update the debugging information
95  as they perform aggressive optimizations.  This means that, with effort,
96  the LLVM optimizers could optimize debug code just as well as non-debug
97  code.
98
99* LLVM debug information does not prevent optimizations from
100  happening (for example inlining, basic block reordering/merging/cleanup,
101  tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104  the program, using existing facilities.  For example, duplicate
105  information is automatically merged by the linker, and unused information
106  is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger.  Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information.  It can be run like this:
119
120.. code-block:: bash
121
122  % cd llvm/projects/test-suite/MultiSource/Benchmarks  # or some other level
123  % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes.  If
126debugging information influences optimization passes then it will be reported
127as a failure.  See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information.  In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc).  It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum.  The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`.  These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language.  :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
172information appended at the end that is source-language specific.  All debugging
173information objects start with a tag to indicate what type of object it is.
174The source-language is allowed to define its own objects, by using unreserved
175tag numbers.  We recommend using with tags in the range 0x1000 through 0x2000
176(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
177
178The fields of debug descriptors used internally by LLVM are restricted to only
179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
180``mdnode``.
181
182.. code-block:: llvm
183
184  !1 = metadata !{
185    i32,   ;; A tag
186    ...
187  }
188
189<a name="LLVMDebugVersion">The first field of a descriptor is always an
190``i32`` containing a tag value identifying the content of the descriptor.
191The remaining fields are specific to the descriptor.  The values of tags are
192loosely bound to the tag values of DWARF information entries.  However, that
193does not restrict the use of the information supplied to DWARF targets.
194
195The details of the various descriptors follow.
196
197Compile unit descriptors
198^^^^^^^^^^^^^^^^^^^^^^^^
199
200.. code-block:: llvm
201
202  !0 = metadata !{
203    i32,       ;; Tag = 17 (DW_TAG_compile_unit)
204    metadata,  ;; Source directory (including trailing slash) & file pair
205    i32,       ;; DWARF language identifier (ex. DW_LANG_C89)
206    metadata   ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
207    i1,        ;; True if this is optimized.
208    metadata,  ;; Flags
209    i32        ;; Runtime version
210    metadata   ;; List of enums types
211    metadata   ;; List of retained types
212    metadata   ;; List of subprograms
213    metadata   ;; List of global variables
214    metadata   ;; List of imported entities
215    metadata   ;; Split debug filename
216    i32        ;; Debug info emission kind (1 = Full Debug Info, 2 = Line Tables Only)
217  }
218
219These descriptors contain a source language ID for the file (we use the DWARF
2203.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
221``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of
222strings for the source file name and the working directory, as well as an
223identifier string for the compiler that produced it.
224
225Compile unit descriptors provide the root context for objects declared in a
226specific compilation unit.  File descriptors are defined using this context.
227These descriptors are collected by a named metadata ``!llvm.dbg.cu``.  They
228keep track of subprograms, global variables, type information, and imported
229entities (declarations and namespaces).
230
231.. _format_files:
232
233File descriptors
234^^^^^^^^^^^^^^^^
235
236.. code-block:: llvm
237
238  !0 = metadata !{
239    i32,      ;; Tag = 41 (DW_TAG_file_type)
240    metadata, ;; Source directory (including trailing slash) & file pair
241  }
242
243These descriptors contain information for a file.  Global variables and top
244level functions would be defined using this context.  File descriptors also
245provide context for source line correspondence.
246
247Each input file is encoded as a separate file descriptor in LLVM debugging
248information output.
249
250.. _format_global_variables:
251
252Global variable descriptors
253^^^^^^^^^^^^^^^^^^^^^^^^^^^
254
255.. code-block:: llvm
256
257  !1 = metadata !{
258    i32,      ;; Tag = 52 (DW_TAG_variable)
259    i32,      ;; Unused field.
260    metadata, ;; Reference to context descriptor
261    metadata, ;; Name
262    metadata, ;; Display name (fully qualified C++ name)
263    metadata, ;; MIPS linkage name (for C++)
264    metadata, ;; Reference to file where defined
265    i32,      ;; Line number where defined
266    metadata, ;; Reference to type descriptor
267    i1,       ;; True if the global is local to compile unit (static)
268    i1,       ;; True if the global is defined in the compile unit (not extern)
269    {}*,      ;; Reference to the global variable
270    metadata, ;; The static member declaration, if any
271  }
272
273These descriptors provide debug information about global variables.  They
274provide details such as name, type and where the variable is defined.  All
275global variables are collected inside the named metadata ``!llvm.dbg.cu``.
276
277.. _format_subprograms:
278
279Subprogram descriptors
280^^^^^^^^^^^^^^^^^^^^^^
281
282.. code-block:: llvm
283
284  !2 = metadata !{
285    i32,      ;; Tag = 46 (DW_TAG_subprogram)
286    metadata, ;; Source directory (including trailing slash) & file pair
287    metadata, ;; Reference to context descriptor
288    metadata, ;; Name
289    metadata, ;; Display name (fully qualified C++ name)
290    metadata, ;; MIPS linkage name (for C++)
291    i32,      ;; Line number where defined
292    metadata, ;; Reference to type descriptor
293    i1,       ;; True if the global is local to compile unit (static)
294    i1,       ;; True if the global is defined in the compile unit (not extern)
295    i32,      ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
296    i32,      ;; Index into a virtual function
297    metadata, ;; indicates which base type contains the vtable pointer for the
298              ;; derived class
299    i32,      ;; Flags - Artificial, Private, Protected, Explicit, Prototyped.
300    i1,       ;; isOptimized
301    {}*,      ;; Reference to the LLVM function
302    metadata, ;; Lists function template parameters
303    metadata, ;; Function declaration descriptor
304    metadata, ;; List of function variables
305    i32       ;; Line number where the scope of the subprogram begins
306  }
307
308These descriptors provide debug information about functions, methods and
309subprograms.  They provide details such as name, return types and the source
310location where the subprogram is defined.
311
312Block descriptors
313^^^^^^^^^^^^^^^^^
314
315.. code-block:: llvm
316
317  !3 = metadata !{
318    i32,      ;; Tag = 11 (DW_TAG_lexical_block)
319    metadata, ;; Source directory (including trailing slash) & file pair
320    metadata, ;; Reference to context descriptor
321    i32,      ;; Line number
322    i32,      ;; Column number
323    i32       ;; Unique ID to identify blocks from a template function
324  }
325
326This descriptor provides debug information about nested blocks within a
327subprogram.  The line number and column numbers are used to dinstinguish two
328lexical blocks at same depth.
329
330.. code-block:: llvm
331
332  !3 = metadata !{
333    i32,      ;; Tag = 11 (DW_TAG_lexical_block)
334    metadata, ;; Source directory (including trailing slash) & file pair
335    metadata  ;; Reference to the scope we're annotating with a file change
336    i32,      ;; DWARF path discriminator value
337  }
338
339This descriptor provides a wrapper around a lexical scope to handle file
340changes in the middle of a lexical block.
341
342.. _format_basic_type:
343
344Basic type descriptors
345^^^^^^^^^^^^^^^^^^^^^^
346
347.. code-block:: llvm
348
349  !4 = metadata !{
350    i32,      ;; Tag = 36 (DW_TAG_base_type)
351    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
352    metadata, ;; Reference to context
353    metadata, ;; Name (may be "" for anonymous types)
354    i32,      ;; Line number where defined (may be 0)
355    i64,      ;; Size in bits
356    i64,      ;; Alignment in bits
357    i64,      ;; Offset in bits
358    i32,      ;; Flags
359    i32       ;; DWARF type encoding
360  }
361
362These descriptors define primitive types used in the code.  Example ``int``,
363``bool`` and ``float``.  The context provides the scope of the type, which is
364usually the top level.  Since basic types are not usually user defined the
365context and line number can be left as NULL and 0.  The size, alignment and
366offset are expressed in bits and can be 64 bit values.  The alignment is used
367to round the offset when embedded in a :ref:`composite type
368<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
369The offset is the bit offset if embedded in a :ref:`composite type
370<format_composite_type>`.
371
372The type encoding provides the details of the type.  The values are typically
373one of the following:
374
375.. code-block:: llvm
376
377  DW_ATE_address       = 1
378  DW_ATE_boolean       = 2
379  DW_ATE_float         = 4
380  DW_ATE_signed        = 5
381  DW_ATE_signed_char   = 6
382  DW_ATE_unsigned      = 7
383  DW_ATE_unsigned_char = 8
384
385.. _format_derived_type:
386
387Derived type descriptors
388^^^^^^^^^^^^^^^^^^^^^^^^
389
390.. code-block:: llvm
391
392  !5 = metadata !{
393    i32,      ;; Tag (see below)
394    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
395    metadata, ;; Reference to context
396    metadata, ;; Name (may be "" for anonymous types)
397    i32,      ;; Line number where defined (may be 0)
398    i64,      ;; Size in bits
399    i64,      ;; Alignment in bits
400    i64,      ;; Offset in bits
401    i32,      ;; Flags to encode attributes, e.g. private
402    metadata, ;; Reference to type derived from
403    metadata, ;; (optional) Name of the Objective C property associated with
404              ;; Objective-C an ivar, or the type of which this
405              ;; pointer-to-member is pointing to members of.
406    metadata, ;; (optional) Name of the Objective C property getter selector.
407    metadata, ;; (optional) Name of the Objective C property setter selector.
408    i32       ;; (optional) Objective C property attributes.
409  }
410
411These descriptors are used to define types derived from other types.  The value
412of the tag varies depending on the meaning.  The following are possible tag
413values:
414
415.. code-block:: llvm
416
417  DW_TAG_formal_parameter   = 5
418  DW_TAG_member             = 13
419  DW_TAG_pointer_type       = 15
420  DW_TAG_reference_type     = 16
421  DW_TAG_typedef            = 22
422  DW_TAG_ptr_to_member_type = 31
423  DW_TAG_const_type         = 38
424  DW_TAG_volatile_type      = 53
425  DW_TAG_restrict_type      = 55
426
427``DW_TAG_member`` is used to define a member of a :ref:`composite type
428<format_composite_type>` or :ref:`subprogram <format_subprograms>`.  The type
429of the member is the :ref:`derived type <format_derived_type>`.
430``DW_TAG_formal_parameter`` is used to define a member which is a formal
431argument of a subprogram.
432
433``DW_TAG_typedef`` is used to provide a name for the derived type.
434
435``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
436``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
437:ref:`derived type <format_derived_type>`.
438
439:ref:`Derived type <format_derived_type>` location can be determined from the
440context and line number.  The size, alignment and offset are expressed in bits
441and can be 64 bit values.  The alignment is used to round the offset when
442embedded in a :ref:`composite type <format_composite_type>`  (example to keep
443float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
444in a :ref:`composite type <format_composite_type>`.
445
446Note that the ``void *`` type is expressed as a type derived from NULL.
447
448.. _format_composite_type:
449
450Composite type descriptors
451^^^^^^^^^^^^^^^^^^^^^^^^^^
452
453.. code-block:: llvm
454
455  !6 = metadata !{
456    i32,      ;; Tag (see below)
457    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
458    metadata, ;; Reference to context
459    metadata, ;; Name (may be "" for anonymous types)
460    i32,      ;; Line number where defined (may be 0)
461    i64,      ;; Size in bits
462    i64,      ;; Alignment in bits
463    i64,      ;; Offset in bits
464    i32,      ;; Flags
465    metadata, ;; Reference to type derived from
466    metadata, ;; Reference to array of member descriptors
467    i32,      ;; Runtime languages
468    metadata, ;; Base type containing the vtable pointer for this type
469    metadata, ;; Template parameters
470    metadata  ;; A unique identifier for type uniquing purpose (may be null)
471  }
472
473These descriptors are used to define types that are composed of 0 or more
474elements.  The value of the tag varies depending on the meaning.  The following
475are possible tag values:
476
477.. code-block:: llvm
478
479  DW_TAG_array_type       = 1
480  DW_TAG_enumeration_type = 4
481  DW_TAG_structure_type   = 19
482  DW_TAG_union_type       = 23
483  DW_TAG_subroutine_type  = 21
484  DW_TAG_inheritance      = 28
485
486The vector flag indicates that an array type is a native packed vector.
487
488The members of array types (tag = ``DW_TAG_array_type``) are
489:ref:`subrange descriptors <format_subrange>`, each
490representing the range of subscripts at that level of indexing.
491
492The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
493:ref:`enumerator descriptors <format_enumerator>`, each representing the
494definition of enumeration value for the set.  All enumeration type descriptors
495are collected inside the named metadata ``!llvm.dbg.cu``.
496
497The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
498``DW_TAG_union_type``) types are any one of the :ref:`basic
499<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
500<format_composite_type>` type descriptors, each representing a field member of
501the structure or union.
502
503For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
504information about base classes, static members and member functions.  If a
505member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
506of ``DW_TAG_inheritance``, then the type represents a base class.  If the member
507of is a :ref:`global variable descriptor <format_global_variables>` then it
508represents a static member.  And, if the member is a :ref:`subprogram
509descriptor <format_subprograms>` then it represents a member function.  For
510static members and member functions, ``getName()`` returns the members link or
511the C++ mangled name.  ``getDisplayName()`` the simplied version of the name.
512
513The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
514is the return type for the subroutine.  The remaining elements are the formal
515arguments to the subroutine.
516
517:ref:`Composite type <format_composite_type>` location can be determined from
518the context and line number.  The size, alignment and offset are expressed in
519bits and can be 64 bit values.  The alignment is used to round the offset when
520embedded in a :ref:`composite type <format_composite_type>` (as an example, to
521keep float doubles on 64 bit boundaries).  The offset is the bit offset if
522embedded in a :ref:`composite type <format_composite_type>`.
523
524.. _format_subrange:
525
526Subrange descriptors
527^^^^^^^^^^^^^^^^^^^^
528
529.. code-block:: llvm
530
531  !42 = metadata !{
532    i32,      ;; Tag = 33 (DW_TAG_subrange_type)
533    i64,      ;; Low value
534    i64       ;; High value
535  }
536
537These descriptors are used to define ranges of array subscripts for an array
538:ref:`composite type <format_composite_type>`.  The low value defines the lower
539bounds typically zero for C/C++.  The high value is the upper bounds.  Values
540are 64 bit.  ``High - Low + 1`` is the size of the array.  If ``Low > High``
541the array bounds are not included in generated debugging information.
542
543.. _format_enumerator:
544
545Enumerator descriptors
546^^^^^^^^^^^^^^^^^^^^^^
547
548.. code-block:: llvm
549
550  !6 = metadata !{
551    i32,      ;; Tag = 40 (DW_TAG_enumerator)
552    metadata, ;; Name
553    i64       ;; Value
554  }
555
556These descriptors are used to define members of an enumeration :ref:`composite
557type <format_composite_type>`, it associates the name to the value.
558
559Local variables
560^^^^^^^^^^^^^^^
561
562.. code-block:: llvm
563
564  !7 = metadata !{
565    i32,      ;; Tag (see below)
566    metadata, ;; Context
567    metadata, ;; Name
568    metadata, ;; Reference to file where defined
569    i32,      ;; 24 bit - Line number where defined
570              ;; 8 bit - Argument number. 1 indicates 1st argument.
571    metadata, ;; Reference to the type descriptor
572    i32,      ;; flags
573    metadata  ;; (optional) Reference to inline location
574    metadata  ;; (optional) Reference to a complex expression (see below)
575  }
576
577These descriptors are used to define variables local to a sub program.  The
578value of the tag depends on the usage of the variable:
579
580.. code-block:: llvm
581
582  DW_TAG_auto_variable   = 256
583  DW_TAG_arg_variable    = 257
584
585An auto variable is any variable declared in the body of the function.  An
586argument variable is any variable that appears as a formal argument to the
587function.
588
589The context is either the subprogram or block where the variable is defined.
590Name the source variable name.  Context and line indicate where the variable
591was defined.  Type descriptor defines the declared type of the variable.
592
593The ``OpPiece`` operator is used for (typically larger aggregate)
594variables that are fragmented across several locations. It takes two
595i32 arguments, an offset and a size in bytes to describe which piece
596of the variable is at this location.
597
598
599.. _format_common_intrinsics:
600
601Debugger intrinsic functions
602^^^^^^^^^^^^^^^^^^^^^^^^^^^^
603
604LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
605provide debug information at various points in generated code.
606
607``llvm.dbg.declare``
608^^^^^^^^^^^^^^^^^^^^
609
610.. code-block:: llvm
611
612  void %llvm.dbg.declare(metadata, metadata)
613
614This intrinsic provides information about a local element (e.g., variable).
615The first argument is metadata holding the alloca for the variable.  The second
616argument is metadata containing a description of the variable.
617
618``llvm.dbg.value``
619^^^^^^^^^^^^^^^^^^
620
621.. code-block:: llvm
622
623  void %llvm.dbg.value(metadata, i64, metadata)
624
625This intrinsic provides information when a user source variable is set to a new
626value.  The first argument is the new value (wrapped as metadata).  The second
627argument is the offset in the user source variable where the new value is
628written.  The third argument is metadata containing a description of the user
629source variable.
630
631Object lifetimes and scoping
632============================
633
634In many languages, the local variables in functions can have their lifetimes or
635scopes limited to a subset of a function.  In the C family of languages, for
636example, variables are only live (readable and writable) within the source
637block that they are defined in.  In functional languages, values are only
638readable after they have been defined.  Though this is a very obvious concept,
639it is non-trivial to model in LLVM, because it has no notion of scoping in this
640sense, and does not want to be tied to a language's scoping rules.
641
642In order to handle this, the LLVM debug format uses the metadata attached to
643llvm instructions to encode line number and scoping information.  Consider the
644following C fragment, for example:
645
646.. code-block:: c
647
648  1.  void foo() {
649  2.    int X = 21;
650  3.    int Y = 22;
651  4.    {
652  5.      int Z = 23;
653  6.      Z = X;
654  7.    }
655  8.    X = Y;
656  9.  }
657
658Compiled to LLVM, this function would be represented like this:
659
660.. code-block:: llvm
661
662  define void @foo() #0 {
663  entry:
664   %X = alloca i32, align 4
665    %Y = alloca i32, align 4
666    %Z = alloca i32, align 4
667    call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
668      ; [debug line = 2:7] [debug variable = X]
669    store i32 21, i32* %X, align 4, !dbg !12
670    call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14
671      ; [debug line = 3:7] [debug variable = Y]
672    store i32 22, i32* %Y, align 4, !dbg !14
673    call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
674      ; [debug line = 5:9] [debug variable = Z]
675    store i32 23, i32* %Z, align 4, !dbg !17
676    %0 = load i32* %X, align 4, !dbg !18
677      [debug line = 6:5]
678    store i32 %0, i32* %Z, align 4, !dbg !18
679    %1 = load i32* %Y, align 4, !dbg !19
680      [debug line = 8:3]
681    store i32 %1, i32* %X, align 4, !dbg !19
682    ret void, !dbg !20
683  }
684
685  ; Function Attrs: nounwind readnone
686  declare void @llvm.dbg.declare(metadata, metadata) #1
687
688  attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false"
689    "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"
690    "no-infs-fp-math"="false" "no-nans-fp-math"="false"
691    "stack-protector-buffer-size"="8" "unsafe-fp-math"="false"
692    "use-soft-float"="false" }
693  attributes #1 = { nounwind readnone }
694
695  !llvm.dbg.cu = !{!0}
696  !llvm.module.flags = !{!8}
697  !llvm.ident = !{!9}
698
699  !0 = metadata !{i32 786449, metadata !1, i32 12,
700                  metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)",
701                  i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3,
702                  metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \
703                    [/private/tmp/foo.c] \
704                    [DW_LANG_C99]
705  !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"}
706  !2 = metadata !{i32 0}
707  !3 = metadata !{metadata !4}
708  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
709                  metadata !"foo", metadata !"", i32 1, metadata !6,
710                  i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
711                  void ()* @foo, null, null, metadata !2, i32 1}
712                  ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
713  !5 = metadata !{i32 786473, metadata !1}  ; [ DW_TAG_file_type ] \
714                    [/private/tmp/t.c]
715  !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0,
716                  i64 0, i32 0, null, metadata !7, i32 0, null, null, null}
717                  ; [ DW_TAG_subroutine_type ] \
718                    [line 0, size 0, align 0, offset 0] [from ]
719  !7 = metadata !{null}
720  !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2}
721  !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"}
722  !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2,
723                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \
724                     [line 2]
725  !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32,
726                   i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \
727                     [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
728  !12 = metadata !{i32 2, i32 0, metadata !4, null}
729  !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3,
730                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \
731                     [line 3]
732  !14 = metadata !{i32 3, i32 0, metadata !4, null}
733  !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5,
734                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \
735                     [line 5]
736  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \
737                   ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
738  !17 = metadata !{i32 5, i32 0, metadata !16, null}
739  !18 = metadata !{i32 6, i32 0, metadata !16, null}
740  !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ]
741  !20 = metadata !{i32 9, i32 0, metadata !4, null}
742
743This example illustrates a few important details about LLVM debugging
744information.  In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
745location information, which are attached to an instruction, are applied
746together to allow a debugger to analyze the relationship between statements,
747variable definitions, and the code used to implement the function.
748
749.. code-block:: llvm
750
751  call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
752    ; [debug line = 2:7] [debug variable = X]
753
754The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
755variable ``X``.  The metadata ``!dbg !12`` attached to the intrinsic provides
756scope information for the variable ``X``.
757
758.. code-block:: llvm
759
760  !12 = metadata !{i32 2, i32 0, metadata !4, null}
761  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
762                  metadata !"foo", metadata !"", i32 1, metadata !6,
763                  i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
764                  void ()* @foo, null, null, metadata !2, i32 1}
765                    ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
766
767Here ``!12`` is metadata providing location information.  It has four fields:
768line number, column number, scope, and original scope.  The original scope
769represents inline location if this instruction is inlined inside a caller, and
770is null otherwise.  In this example, scope is encoded by ``!4``, a
771:ref:`subprogram descriptor <format_subprograms>`.  This way the location
772information attached to the intrinsics indicates that the variable ``X`` is
773declared at line number 2 at a function level scope in function ``foo``.
774
775Now lets take another example.
776
777.. code-block:: llvm
778
779  call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
780    ; [debug line = 5:9] [debug variable = Z]
781
782The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
783variable ``Z``.  The metadata ``!dbg !17`` attached to the intrinsic provides
784scope information for the variable ``Z``.
785
786.. code-block:: llvm
787
788  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \
789                   ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
790  !17 = metadata !{i32 5, i32 0, metadata !16, null}
791
792Here ``!15`` indicates that ``Z`` is declared at line number 5 and
793column number 0 inside of lexical scope ``!16``.  The lexical scope itself
794resides inside of subprogram ``!4`` described above.
795
796The scope information attached with each instruction provides a straightforward
797way to find instructions covered by a scope.
798
799.. _ccxx_frontend:
800
801C/C++ front-end specific debug information
802==========================================
803
804The C and C++ front-ends represent information about the program in a format
805that is effectively identical to `DWARF 3.0
806<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
807content.  This allows code generators to trivially support native debuggers by
808generating standard dwarf information, and contains enough information for
809non-dwarf targets to translate it as needed.
810
811This section describes the forms used to represent C and C++ programs.  Other
812languages could pattern themselves after this (which itself is tuned to
813representing programs in the same way that DWARF 3 does), or they could choose
814to provide completely different forms if they don't fit into the DWARF model.
815As support for debugging information gets added to the various LLVM
816source-language front-ends, the information used should be documented here.
817
818The following sections provide examples of various C/C++ constructs and the
819debug information that would best describe those constructs.
820
821C/C++ source file information
822-----------------------------
823
824Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
825directory ``/Users/mine/sources``, the following code:
826
827.. code-block:: c
828
829  #include "MyHeader.h"
830
831  int main(int argc, char *argv[]) {
832    return 0;
833  }
834
835a C/C++ front-end would generate the following descriptors:
836
837.. code-block:: llvm
838
839  ...
840  ;;
841  ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
842  ;;
843  !0 = metadata !{
844    i32 786449,   ;; Tag
845    metadata !1,  ;; File/directory name
846    i32 4,        ;; Language Id
847    metadata !"clang version 3.4 ",
848    i1 false,     ;; Optimized compile unit
849    metadata !"", ;; Compiler flags
850    i32 0,        ;; Runtime version
851    metadata !2,  ;; Enumeration types
852    metadata !2,  ;; Retained types
853    metadata !3,  ;; Subprograms
854    metadata !2,  ;; Global variables
855    metadata !2,  ;; Imported entities (declarations and namespaces)
856    metadata !""  ;; Split debug filename
857    1,            ;; Full debug info
858  }
859
860  ;;
861  ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
862  ;;
863  !1 = metadata !{
864    metadata !"MySource.cpp",
865    metadata !"/Users/mine/sources"
866  }
867  !5 = metadata !{
868    i32 786473, ;; Tag
869    metadata !1
870  }
871
872  ;;
873  ;; Define the file for the file "/Users/mine/sources/Myheader.h"
874  ;;
875  !14 = metadata !{
876    i32 786473, ;; Tag
877    metadata !15
878  }
879  !15 = metadata !{
880    metadata !"./MyHeader.h",
881    metadata !"/Users/mine/sources",
882  }
883
884  ...
885
886``llvm::Instruction`` provides easy access to metadata attached with an
887instruction.  One can extract line number information encoded in LLVM IR using
888``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
889
890.. code-block:: c++
891
892  if (MDNode *N = I->getMetadata("dbg")) {  // Here I is an LLVM instruction
893    DILocation Loc(N);                      // DILocation is in DebugInfo.h
894    unsigned Line = Loc.getLineNumber();
895    StringRef File = Loc.getFilename();
896    StringRef Dir = Loc.getDirectory();
897  }
898
899C/C++ global variable information
900---------------------------------
901
902Given an integer global variable declared as follows:
903
904.. code-block:: c
905
906  int MyGlobal = 100;
907
908a C/C++ front-end would generate the following descriptors:
909
910.. code-block:: llvm
911
912  ;;
913  ;; Define the global itself.
914  ;;
915  %MyGlobal = global int 100
916  ...
917  ;;
918  ;; List of debug info of globals
919  ;;
920  !llvm.dbg.cu = !{!0}
921
922  ;; Define the compile unit.
923  !0 = metadata !{
924    i32 786449,                       ;; Tag
925    i32 0,                            ;; Context
926    i32 4,                            ;; Language
927    metadata !"foo.cpp",              ;; File
928    metadata !"/Volumes/Data/tmp",    ;; Directory
929    metadata !"clang version 3.1 ",   ;; Producer
930    i1 true,                          ;; Deprecated field
931    i1 false,                         ;; "isOptimized"?
932    metadata !"",                     ;; Flags
933    i32 0,                            ;; Runtime Version
934    metadata !1,                      ;; Enum Types
935    metadata !1,                      ;; Retained Types
936    metadata !1,                      ;; Subprograms
937    metadata !3,                      ;; Global Variables
938    metadata !1,                      ;; Imported entities
939    "",                               ;; Split debug filename
940    1,                                ;; Full debug info
941  } ; [ DW_TAG_compile_unit ]
942
943  ;; The Array of Global Variables
944  !3 = metadata !{
945    metadata !4
946  }
947
948  ;;
949  ;; Define the global variable itself.
950  ;;
951  !4 = metadata !{
952    i32 786484,                        ;; Tag
953    i32 0,                             ;; Unused
954    null,                              ;; Unused
955    metadata !"MyGlobal",              ;; Name
956    metadata !"MyGlobal",              ;; Display Name
957    metadata !"",                      ;; Linkage Name
958    metadata !6,                       ;; File
959    i32 1,                             ;; Line
960    metadata !7,                       ;; Type
961    i32 0,                             ;; IsLocalToUnit
962    i32 1,                             ;; IsDefinition
963    i32* @MyGlobal,                    ;; LLVM-IR Value
964    null                               ;; Static member declaration
965  } ; [ DW_TAG_variable ]
966
967  ;;
968  ;; Define the file
969  ;;
970  !5 = metadata !{
971    metadata !"foo.cpp",               ;; File
972    metadata !"/Volumes/Data/tmp",     ;; Directory
973  }
974  !6 = metadata !{
975    i32 786473,                        ;; Tag
976    metadata !5                        ;; Unused
977  } ; [ DW_TAG_file_type ]
978
979  ;;
980  ;; Define the type
981  ;;
982  !7 = metadata !{
983    i32 786468,                         ;; Tag
984    null,                               ;; Unused
985    null,                               ;; Unused
986    metadata !"int",                    ;; Name
987    i32 0,                              ;; Line
988    i64 32,                             ;; Size in Bits
989    i64 32,                             ;; Align in Bits
990    i64 0,                              ;; Offset
991    i32 0,                              ;; Flags
992    i32 5                               ;; Encoding
993  } ; [ DW_TAG_base_type ]
994
995C/C++ function information
996--------------------------
997
998Given a function declared as follows:
999
1000.. code-block:: c
1001
1002  int main(int argc, char *argv[]) {
1003    return 0;
1004  }
1005
1006a C/C++ front-end would generate the following descriptors:
1007
1008.. code-block:: llvm
1009
1010  ;;
1011  ;; Define the anchor for subprograms.
1012  ;;
1013  !6 = metadata !{
1014    i32 786484,        ;; Tag
1015    metadata !1,       ;; File
1016    metadata !1,       ;; Context
1017    metadata !"main",  ;; Name
1018    metadata !"main",  ;; Display name
1019    metadata !"main",  ;; Linkage name
1020    i32 1,             ;; Line number
1021    metadata !4,       ;; Type
1022    i1 false,          ;; Is local
1023    i1 true,           ;; Is definition
1024    i32 0,             ;; Virtuality attribute, e.g. pure virtual function
1025    i32 0,             ;; Index into virtual table for C++ methods
1026    i32 0,             ;; Type that holds virtual table.
1027    i32 0,             ;; Flags
1028    i1 false,          ;; True if this function is optimized
1029    Function *,        ;; Pointer to llvm::Function
1030    null,              ;; Function template parameters
1031    null,              ;; List of function variables (emitted when optimizing)
1032    1                  ;; Line number of the opening '{' of the function
1033  }
1034  ;;
1035  ;; Define the subprogram itself.
1036  ;;
1037  define i32 @main(i32 %argc, i8** %argv) {
1038  ...
1039  }
1040
1041C/C++ basic types
1042-----------------
1043
1044The following are the basic type descriptors for C/C++ core types:
1045
1046bool
1047^^^^
1048
1049.. code-block:: llvm
1050
1051  !2 = metadata !{
1052    i32 786468,        ;; Tag
1053    null,              ;; File
1054    null,              ;; Context
1055    metadata !"bool",  ;; Name
1056    i32 0,             ;; Line number
1057    i64 8,             ;; Size in Bits
1058    i64 8,             ;; Align in Bits
1059    i64 0,             ;; Offset in Bits
1060    i32 0,             ;; Flags
1061    i32 2              ;; Encoding
1062  }
1063
1064char
1065^^^^
1066
1067.. code-block:: llvm
1068
1069  !2 = metadata !{
1070    i32 786468,        ;; Tag
1071    null,              ;; File
1072    null,              ;; Context
1073    metadata !"char",  ;; Name
1074    i32 0,             ;; Line number
1075    i64 8,             ;; Size in Bits
1076    i64 8,             ;; Align in Bits
1077    i64 0,             ;; Offset in Bits
1078    i32 0,             ;; Flags
1079    i32 6              ;; Encoding
1080  }
1081
1082unsigned char
1083^^^^^^^^^^^^^
1084
1085.. code-block:: llvm
1086
1087  !2 = metadata !{
1088    i32 786468,        ;; Tag
1089    null,              ;; File
1090    null,              ;; Context
1091    metadata !"unsigned char",
1092    i32 0,             ;; Line number
1093    i64 8,             ;; Size in Bits
1094    i64 8,             ;; Align in Bits
1095    i64 0,             ;; Offset in Bits
1096    i32 0,             ;; Flags
1097    i32 8              ;; Encoding
1098  }
1099
1100short
1101^^^^^
1102
1103.. code-block:: llvm
1104
1105  !2 = metadata !{
1106    i32 786468,        ;; Tag
1107    null,              ;; File
1108    null,              ;; Context
1109    metadata !"short int",
1110    i32 0,             ;; Line number
1111    i64 16,            ;; Size in Bits
1112    i64 16,            ;; Align in Bits
1113    i64 0,             ;; Offset in Bits
1114    i32 0,             ;; Flags
1115    i32 5              ;; Encoding
1116  }
1117
1118unsigned short
1119^^^^^^^^^^^^^^
1120
1121.. code-block:: llvm
1122
1123  !2 = metadata !{
1124    i32 786468,        ;; Tag
1125    null,              ;; File
1126    null,              ;; Context
1127    metadata !"short unsigned int",
1128    i32 0,             ;; Line number
1129    i64 16,            ;; Size in Bits
1130    i64 16,            ;; Align in Bits
1131    i64 0,             ;; Offset in Bits
1132    i32 0,             ;; Flags
1133    i32 7              ;; Encoding
1134  }
1135
1136int
1137^^^
1138
1139.. code-block:: llvm
1140
1141  !2 = metadata !{
1142    i32 786468,        ;; Tag
1143    null,              ;; File
1144    null,              ;; Context
1145    metadata !"int",   ;; Name
1146    i32 0,             ;; Line number
1147    i64 32,            ;; Size in Bits
1148    i64 32,            ;; Align in Bits
1149    i64 0,             ;; Offset in Bits
1150    i32 0,             ;; Flags
1151    i32 5              ;; Encoding
1152  }
1153
1154unsigned int
1155^^^^^^^^^^^^
1156
1157.. code-block:: llvm
1158
1159  !2 = metadata !{
1160    i32 786468,        ;; Tag
1161    null,              ;; File
1162    null,              ;; Context
1163    metadata !"unsigned int",
1164    i32 0,             ;; Line number
1165    i64 32,            ;; Size in Bits
1166    i64 32,            ;; Align in Bits
1167    i64 0,             ;; Offset in Bits
1168    i32 0,             ;; Flags
1169    i32 7              ;; Encoding
1170  }
1171
1172long long
1173^^^^^^^^^
1174
1175.. code-block:: llvm
1176
1177  !2 = metadata !{
1178    i32 786468,        ;; Tag
1179    null,              ;; File
1180    null,              ;; Context
1181    metadata !"long long int",
1182    i32 0,             ;; Line number
1183    i64 64,            ;; Size in Bits
1184    i64 64,            ;; Align in Bits
1185    i64 0,             ;; Offset in Bits
1186    i32 0,             ;; Flags
1187    i32 5              ;; Encoding
1188  }
1189
1190unsigned long long
1191^^^^^^^^^^^^^^^^^^
1192
1193.. code-block:: llvm
1194
1195  !2 = metadata !{
1196    i32 786468,        ;; Tag
1197    null,              ;; File
1198    null,              ;; Context
1199    metadata !"long long unsigned int",
1200    i32 0,             ;; Line number
1201    i64 64,            ;; Size in Bits
1202    i64 64,            ;; Align in Bits
1203    i64 0,             ;; Offset in Bits
1204    i32 0,             ;; Flags
1205    i32 7              ;; Encoding
1206  }
1207
1208float
1209^^^^^
1210
1211.. code-block:: llvm
1212
1213  !2 = metadata !{
1214    i32 786468,        ;; Tag
1215    null,              ;; File
1216    null,              ;; Context
1217    metadata !"float",
1218    i32 0,             ;; Line number
1219    i64 32,            ;; Size in Bits
1220    i64 32,            ;; Align in Bits
1221    i64 0,             ;; Offset in Bits
1222    i32 0,             ;; Flags
1223    i32 4              ;; Encoding
1224  }
1225
1226double
1227^^^^^^
1228
1229.. code-block:: llvm
1230
1231  !2 = metadata !{
1232    i32 786468,        ;; Tag
1233    null,              ;; File
1234    null,              ;; Context
1235    metadata !"double",;; Name
1236    i32 0,             ;; Line number
1237    i64 64,            ;; Size in Bits
1238    i64 64,            ;; Align in Bits
1239    i64 0,             ;; Offset in Bits
1240    i32 0,             ;; Flags
1241    i32 4              ;; Encoding
1242  }
1243
1244C/C++ derived types
1245-------------------
1246
1247Given the following as an example of C/C++ derived type:
1248
1249.. code-block:: c
1250
1251  typedef const int *IntPtr;
1252
1253a C/C++ front-end would generate the following descriptors:
1254
1255.. code-block:: llvm
1256
1257  ;;
1258  ;; Define the typedef "IntPtr".
1259  ;;
1260  !2 = metadata !{
1261    i32 786454,          ;; Tag
1262    metadata !3,         ;; File
1263    metadata !1,         ;; Context
1264    metadata !"IntPtr",  ;; Name
1265    i32 0,               ;; Line number
1266    i64 0,               ;; Size in bits
1267    i64 0,               ;; Align in bits
1268    i64 0,               ;; Offset in bits
1269    i32 0,               ;; Flags
1270    metadata !4          ;; Derived From type
1271  }
1272  ;;
1273  ;; Define the pointer type.
1274  ;;
1275  !4 = metadata !{
1276    i32 786447,          ;; Tag
1277    null,                ;; File
1278    null,                ;; Context
1279    metadata !"",        ;; Name
1280    i32 0,               ;; Line number
1281    i64 64,              ;; Size in bits
1282    i64 64,              ;; Align in bits
1283    i64 0,               ;; Offset in bits
1284    i32 0,               ;; Flags
1285    metadata !5          ;; Derived From type
1286  }
1287  ;;
1288  ;; Define the const type.
1289  ;;
1290  !5 = metadata !{
1291    i32 786470,          ;; Tag
1292    null,                ;; File
1293    null,                ;; Context
1294    metadata !"",        ;; Name
1295    i32 0,               ;; Line number
1296    i64 0,               ;; Size in bits
1297    i64 0,               ;; Align in bits
1298    i64 0,               ;; Offset in bits
1299    i32 0,               ;; Flags
1300    metadata !6          ;; Derived From type
1301  }
1302  ;;
1303  ;; Define the int type.
1304  ;;
1305  !6 = metadata !{
1306    i32 786468,          ;; Tag
1307    null,                ;; File
1308    null,                ;; Context
1309    metadata !"int",     ;; Name
1310    i32 0,               ;; Line number
1311    i64 32,              ;; Size in bits
1312    i64 32,              ;; Align in bits
1313    i64 0,               ;; Offset in bits
1314    i32 0,               ;; Flags
1315    i32 5                ;; Encoding
1316  }
1317
1318C/C++ struct/union types
1319------------------------
1320
1321Given the following as an example of C/C++ struct type:
1322
1323.. code-block:: c
1324
1325  struct Color {
1326    unsigned Red;
1327    unsigned Green;
1328    unsigned Blue;
1329  };
1330
1331a C/C++ front-end would generate the following descriptors:
1332
1333.. code-block:: llvm
1334
1335  ;;
1336  ;; Define basic type for unsigned int.
1337  ;;
1338  !5 = metadata !{
1339    i32 786468,        ;; Tag
1340    null,              ;; File
1341    null,              ;; Context
1342    metadata !"unsigned int",
1343    i32 0,             ;; Line number
1344    i64 32,            ;; Size in Bits
1345    i64 32,            ;; Align in Bits
1346    i64 0,             ;; Offset in Bits
1347    i32 0,             ;; Flags
1348    i32 7              ;; Encoding
1349  }
1350  ;;
1351  ;; Define composite type for struct Color.
1352  ;;
1353  !2 = metadata !{
1354    i32 786451,        ;; Tag
1355    metadata !1,       ;; Compile unit
1356    null,              ;; Context
1357    metadata !"Color", ;; Name
1358    i32 1,             ;; Line number
1359    i64 96,            ;; Size in bits
1360    i64 32,            ;; Align in bits
1361    i64 0,             ;; Offset in bits
1362    i32 0,             ;; Flags
1363    null,              ;; Derived From
1364    metadata !3,       ;; Elements
1365    i32 0,             ;; Runtime Language
1366    null,              ;; Base type containing the vtable pointer for this type
1367    null               ;; Template parameters
1368  }
1369
1370  ;;
1371  ;; Define the Red field.
1372  ;;
1373  !4 = metadata !{
1374    i32 786445,        ;; Tag
1375    metadata !1,       ;; File
1376    metadata !1,       ;; Context
1377    metadata !"Red",   ;; Name
1378    i32 2,             ;; Line number
1379    i64 32,            ;; Size in bits
1380    i64 32,            ;; Align in bits
1381    i64 0,             ;; Offset in bits
1382    i32 0,             ;; Flags
1383    metadata !5        ;; Derived From type
1384  }
1385
1386  ;;
1387  ;; Define the Green field.
1388  ;;
1389  !6 = metadata !{
1390    i32 786445,        ;; Tag
1391    metadata !1,       ;; File
1392    metadata !1,       ;; Context
1393    metadata !"Green", ;; Name
1394    i32 3,             ;; Line number
1395    i64 32,            ;; Size in bits
1396    i64 32,            ;; Align in bits
1397    i64 32,             ;; Offset in bits
1398    i32 0,             ;; Flags
1399    metadata !5        ;; Derived From type
1400  }
1401
1402  ;;
1403  ;; Define the Blue field.
1404  ;;
1405  !7 = metadata !{
1406    i32 786445,        ;; Tag
1407    metadata !1,       ;; File
1408    metadata !1,       ;; Context
1409    metadata !"Blue",  ;; Name
1410    i32 4,             ;; Line number
1411    i64 32,            ;; Size in bits
1412    i64 32,            ;; Align in bits
1413    i64 64,             ;; Offset in bits
1414    i32 0,             ;; Flags
1415    metadata !5        ;; Derived From type
1416  }
1417
1418  ;;
1419  ;; Define the array of fields used by the composite type Color.
1420  ;;
1421  !3 = metadata !{metadata !4, metadata !6, metadata !7}
1422
1423C/C++ enumeration types
1424-----------------------
1425
1426Given the following as an example of C/C++ enumeration type:
1427
1428.. code-block:: c
1429
1430  enum Trees {
1431    Spruce = 100,
1432    Oak = 200,
1433    Maple = 300
1434  };
1435
1436a C/C++ front-end would generate the following descriptors:
1437
1438.. code-block:: llvm
1439
1440  ;;
1441  ;; Define composite type for enum Trees
1442  ;;
1443  !2 = metadata !{
1444    i32 786436,        ;; Tag
1445    metadata !1,       ;; File
1446    metadata !1,       ;; Context
1447    metadata !"Trees", ;; Name
1448    i32 1,             ;; Line number
1449    i64 32,            ;; Size in bits
1450    i64 32,            ;; Align in bits
1451    i64 0,             ;; Offset in bits
1452    i32 0,             ;; Flags
1453    null,              ;; Derived From type
1454    metadata !3,       ;; Elements
1455    i32 0              ;; Runtime language
1456  }
1457
1458  ;;
1459  ;; Define the array of enumerators used by composite type Trees.
1460  ;;
1461  !3 = metadata !{metadata !4, metadata !5, metadata !6}
1462
1463  ;;
1464  ;; Define Spruce enumerator.
1465  ;;
1466  !4 = metadata !{i32 786472, metadata !"Spruce", i64 100}
1467
1468  ;;
1469  ;; Define Oak enumerator.
1470  ;;
1471  !5 = metadata !{i32 786472, metadata !"Oak", i64 200}
1472
1473  ;;
1474  ;; Define Maple enumerator.
1475  ;;
1476  !6 = metadata !{i32 786472, metadata !"Maple", i64 300}
1477
1478Debugging information format
1479============================
1480
1481Debugging Information Extension for Objective C Properties
1482----------------------------------------------------------
1483
1484Introduction
1485^^^^^^^^^^^^
1486
1487Objective C provides a simpler way to declare and define accessor methods using
1488declared properties.  The language provides features to declare a property and
1489to let compiler synthesize accessor methods.
1490
1491The debugger lets developer inspect Objective C interfaces and their instance
1492variables and class variables.  However, the debugger does not know anything
1493about the properties defined in Objective C interfaces.  The debugger consumes
1494information generated by compiler in DWARF format.  The format does not support
1495encoding of Objective C properties.  This proposal describes DWARF extensions to
1496encode Objective C properties, which the debugger can use to let developers
1497inspect Objective C properties.
1498
1499Proposal
1500^^^^^^^^
1501
1502Objective C properties exist separately from class members.  A property can be
1503defined only by "setter" and "getter" selectors, and be calculated anew on each
1504access.  Or a property can just be a direct access to some declared ivar.
1505Finally it can have an ivar "automatically synthesized" for it by the compiler,
1506in which case the property can be referred to in user code directly using the
1507standard C dereference syntax as well as through the property "dot" syntax, but
1508there is no entry in the ``@interface`` declaration corresponding to this ivar.
1509
1510To facilitate debugging, these properties we will add a new DWARF TAG into the
1511``DW_TAG_structure_type`` definition for the class to hold the description of a
1512given property, and a set of DWARF attributes that provide said description.
1513The property tag will also contain the name and declared type of the property.
1514
1515If there is a related ivar, there will also be a DWARF property attribute placed
1516in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1517for that property.  And in the case where the compiler synthesizes the ivar
1518directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1519ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1520to access this ivar directly in code, and with the property attribute pointing
1521back to the property it is backing.
1522
1523The following examples will serve as illustration for our discussion:
1524
1525.. code-block:: objc
1526
1527  @interface I1 {
1528    int n2;
1529  }
1530
1531  @property int p1;
1532  @property int p2;
1533  @end
1534
1535  @implementation I1
1536  @synthesize p1;
1537  @synthesize p2 = n2;
1538  @end
1539
1540This produces the following DWARF (this is a "pseudo dwarfdump" output):
1541
1542.. code-block:: none
1543
1544  0x00000100:  TAG_structure_type [7] *
1545                 AT_APPLE_runtime_class( 0x10 )
1546                 AT_name( "I1" )
1547                 AT_decl_file( "Objc_Property.m" )
1548                 AT_decl_line( 3 )
1549
1550  0x00000110    TAG_APPLE_property
1551                  AT_name ( "p1" )
1552                  AT_type ( {0x00000150} ( int ) )
1553
1554  0x00000120:   TAG_APPLE_property
1555                  AT_name ( "p2" )
1556                  AT_type ( {0x00000150} ( int ) )
1557
1558  0x00000130:   TAG_member [8]
1559                  AT_name( "_p1" )
1560                  AT_APPLE_property ( {0x00000110} "p1" )
1561                  AT_type( {0x00000150} ( int ) )
1562                  AT_artificial ( 0x1 )
1563
1564  0x00000140:    TAG_member [8]
1565                   AT_name( "n2" )
1566                   AT_APPLE_property ( {0x00000120} "p2" )
1567                   AT_type( {0x00000150} ( int ) )
1568
1569  0x00000150:  AT_type( ( int ) )
1570
1571Note, the current convention is that the name of the ivar for an
1572auto-synthesized property is the name of the property from which it derives
1573with an underscore prepended, as is shown in the example.  But we actually
1574don't need to know this convention, since we are given the name of the ivar
1575directly.
1576
1577Also, it is common practice in ObjC to have different property declarations in
1578the @interface and @implementation - e.g. to provide a read-only property in
1579the interface,and a read-write interface in the implementation.  In that case,
1580the compiler should emit whichever property declaration will be in force in the
1581current translation unit.
1582
1583Developers can decorate a property with attributes which are encoded using
1584``DW_AT_APPLE_property_attribute``.
1585
1586.. code-block:: objc
1587
1588  @property (readonly, nonatomic) int pr;
1589
1590.. code-block:: none
1591
1592  TAG_APPLE_property [8]
1593    AT_name( "pr" )
1594    AT_type ( {0x00000147} (int) )
1595    AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1596
1597The setter and getter method names are attached to the property using
1598``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1599
1600.. code-block:: objc
1601
1602  @interface I1
1603  @property (setter=myOwnP3Setter:) int p3;
1604  -(void)myOwnP3Setter:(int)a;
1605  @end
1606
1607  @implementation I1
1608  @synthesize p3;
1609  -(void)myOwnP3Setter:(int)a{ }
1610  @end
1611
1612The DWARF for this would be:
1613
1614.. code-block:: none
1615
1616  0x000003bd: TAG_structure_type [7] *
1617                AT_APPLE_runtime_class( 0x10 )
1618                AT_name( "I1" )
1619                AT_decl_file( "Objc_Property.m" )
1620                AT_decl_line( 3 )
1621
1622  0x000003cd      TAG_APPLE_property
1623                    AT_name ( "p3" )
1624                    AT_APPLE_property_setter ( "myOwnP3Setter:" )
1625                    AT_type( {0x00000147} ( int ) )
1626
1627  0x000003f3:     TAG_member [8]
1628                    AT_name( "_p3" )
1629                    AT_type ( {0x00000147} ( int ) )
1630                    AT_APPLE_property ( {0x000003cd} )
1631                    AT_artificial ( 0x1 )
1632
1633New DWARF Tags
1634^^^^^^^^^^^^^^
1635
1636+-----------------------+--------+
1637| TAG                   | Value  |
1638+=======================+========+
1639| DW_TAG_APPLE_property | 0x4200 |
1640+-----------------------+--------+
1641
1642New DWARF Attributes
1643^^^^^^^^^^^^^^^^^^^^
1644
1645+--------------------------------+--------+-----------+
1646| Attribute                      | Value  | Classes   |
1647+================================+========+===========+
1648| DW_AT_APPLE_property           | 0x3fed | Reference |
1649+--------------------------------+--------+-----------+
1650| DW_AT_APPLE_property_getter    | 0x3fe9 | String    |
1651+--------------------------------+--------+-----------+
1652| DW_AT_APPLE_property_setter    | 0x3fea | String    |
1653+--------------------------------+--------+-----------+
1654| DW_AT_APPLE_property_attribute | 0x3feb | Constant  |
1655+--------------------------------+--------+-----------+
1656
1657New DWARF Constants
1658^^^^^^^^^^^^^^^^^^^
1659
1660+--------------------------------+-------+
1661| Name                           | Value |
1662+================================+=======+
1663| DW_AT_APPLE_PROPERTY_readonly  | 0x1   |
1664+--------------------------------+-------+
1665| DW_AT_APPLE_PROPERTY_readwrite | 0x2   |
1666+--------------------------------+-------+
1667| DW_AT_APPLE_PROPERTY_assign    | 0x4   |
1668+--------------------------------+-------+
1669| DW_AT_APPLE_PROPERTY_retain    | 0x8   |
1670+--------------------------------+-------+
1671| DW_AT_APPLE_PROPERTY_copy      | 0x10  |
1672+--------------------------------+-------+
1673| DW_AT_APPLE_PROPERTY_nonatomic | 0x20  |
1674+--------------------------------+-------+
1675
1676Name Accelerator Tables
1677-----------------------
1678
1679Introduction
1680^^^^^^^^^^^^
1681
1682The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1683debugger needs.  The "``pub``" in the section name indicates that the entries
1684in the table are publicly visible names only.  This means no static or hidden
1685functions show up in the "``.debug_pubnames``".  No static variables or private
1686class variables are in the "``.debug_pubtypes``".  Many compilers add different
1687things to these tables, so we can't rely upon the contents between gcc, icc, or
1688clang.
1689
1690The typical query given by users tends not to match up with the contents of
1691these tables.  For example, the DWARF spec states that "In the case of the name
1692of a function member or static data member of a C++ structure, class or union,
1693the name presented in the "``.debug_pubnames``" section is not the simple name
1694given by the ``DW_AT_name attribute`` of the referenced debugging information
1695entry, but rather the fully qualified name of the data or function member."
1696So the only names in these tables for complex C++ entries is a fully
1697qualified name.  Debugger users tend not to enter their search strings as
1698"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1699"``a::b::c``".  So the name entered in the name table must be demangled in
1700order to chop it up appropriately and additional names must be manually entered
1701into the table to make it effective as a name lookup table for debuggers to
1702se.
1703
1704All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1705its inconsistent and useless public-only name content making it a waste of
1706space in the object file.  These tables, when they are written to disk, are not
1707sorted in any way, leaving every debugger to do its own parsing and sorting.
1708These tables also include an inlined copy of the string values in the table
1709itself making the tables much larger than they need to be on disk, especially
1710for large C++ programs.
1711
1712Can't we just fix the sections by adding all of the names we need to this
1713table? No, because that is not what the tables are defined to contain and we
1714won't know the difference between the old bad tables and the new good tables.
1715At best we could make our own renamed sections that contain all of the data we
1716need.
1717
1718These tables are also insufficient for what a debugger like LLDB needs.  LLDB
1719uses clang for its expression parsing where LLDB acts as a PCH.  LLDB is then
1720often asked to look for type "``foo``" or namespace "``bar``", or list items in
1721namespace "``baz``".  Namespaces are not included in the pubnames or pubtypes
1722tables.  Since clang asks a lot of questions when it is parsing an expression,
1723we need to be very fast when looking up names, as it happens a lot.  Having new
1724accelerator tables that are optimized for very quick lookups will benefit this
1725type of debugging experience greatly.
1726
1727We would like to generate name lookup tables that can be mapped into memory
1728from disk, and used as is, with little or no up-front parsing.  We would also
1729be able to control the exact content of these different tables so they contain
1730exactly what we need.  The Name Accelerator Tables were designed to fix these
1731issues.  In order to solve these issues we need to:
1732
1733* Have a format that can be mapped into memory from disk and used as is
1734* Lookups should be very fast
1735* Extensible table format so these tables can be made by many producers
1736* Contain all of the names needed for typical lookups out of the box
1737* Strict rules for the contents of tables
1738
1739Table size is important and the accelerator table format should allow the reuse
1740of strings from common string tables so the strings for the names are not
1741duplicated.  We also want to make sure the table is ready to be used as-is by
1742simply mapping the table into memory with minimal header parsing.
1743
1744The name lookups need to be fast and optimized for the kinds of lookups that
1745debuggers tend to do.  Optimally we would like to touch as few parts of the
1746mapped table as possible when doing a name lookup and be able to quickly find
1747the name entry we are looking for, or discover there are no matches.  In the
1748case of debuggers we optimized for lookups that fail most of the time.
1749
1750Each table that is defined should have strict rules on exactly what is in the
1751accelerator tables and documented so clients can rely on the content.
1752
1753Hash Tables
1754^^^^^^^^^^^
1755
1756Standard Hash Tables
1757""""""""""""""""""""
1758
1759Typical hash tables have a header, buckets, and each bucket points to the
1760bucket contents:
1761
1762.. code-block:: none
1763
1764  .------------.
1765  |  HEADER    |
1766  |------------|
1767  |  BUCKETS   |
1768  |------------|
1769  |  DATA      |
1770  `------------'
1771
1772The BUCKETS are an array of offsets to DATA for each hash:
1773
1774.. code-block:: none
1775
1776  .------------.
1777  | 0x00001000 | BUCKETS[0]
1778  | 0x00002000 | BUCKETS[1]
1779  | 0x00002200 | BUCKETS[2]
1780  | 0x000034f0 | BUCKETS[3]
1781  |            | ...
1782  | 0xXXXXXXXX | BUCKETS[n_buckets]
1783  '------------'
1784
1785So for ``bucket[3]`` in the example above, we have an offset into the table
17860x000034f0 which points to a chain of entries for the bucket.  Each bucket must
1787contain a next pointer, full 32 bit hash value, the string itself, and the data
1788for the current string value.
1789
1790.. code-block:: none
1791
1792              .------------.
1793  0x000034f0: | 0x00003500 | next pointer
1794              | 0x12345678 | 32 bit hash
1795              | "erase"    | string value
1796              | data[n]    | HashData for this bucket
1797              |------------|
1798  0x00003500: | 0x00003550 | next pointer
1799              | 0x29273623 | 32 bit hash
1800              | "dump"     | string value
1801              | data[n]    | HashData for this bucket
1802              |------------|
1803  0x00003550: | 0x00000000 | next pointer
1804              | 0x82638293 | 32 bit hash
1805              | "main"     | string value
1806              | data[n]    | HashData for this bucket
1807              `------------'
1808
1809The problem with this layout for debuggers is that we need to optimize for the
1810negative lookup case where the symbol we're searching for is not present.  So
1811if we were to lookup "``printf``" in the table above, we would make a 32 hash
1812for "``printf``", it might match ``bucket[3]``.  We would need to go to the
1813offset 0x000034f0 and start looking to see if our 32 bit hash matches.  To do
1814so, we need to read the next pointer, then read the hash, compare it, and skip
1815to the next bucket.  Each time we are skipping many bytes in memory and
1816touching new cache pages just to do the compare on the full 32 bit hash.  All
1817of these accesses then tell us that we didn't have a match.
1818
1819Name Hash Tables
1820""""""""""""""""
1821
1822To solve the issues mentioned above we have structured the hash tables a bit
1823differently: a header, buckets, an array of all unique 32 bit hash values,
1824followed by an array of hash value data offsets, one for each hash value, then
1825the data for all hash values:
1826
1827.. code-block:: none
1828
1829  .-------------.
1830  |  HEADER     |
1831  |-------------|
1832  |  BUCKETS    |
1833  |-------------|
1834  |  HASHES     |
1835  |-------------|
1836  |  OFFSETS    |
1837  |-------------|
1838  |  DATA       |
1839  `-------------'
1840
1841The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array.  By
1842making all of the full 32 bit hash values contiguous in memory, we allow
1843ourselves to efficiently check for a match while touching as little memory as
1844possible.  Most often checking the 32 bit hash values is as far as the lookup
1845goes.  If it does match, it usually is a match with no collisions.  So for a
1846table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1847values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1848``OFFSETS`` as:
1849
1850.. code-block:: none
1851
1852  .-------------------------.
1853  |  HEADER.magic           | uint32_t
1854  |  HEADER.version         | uint16_t
1855  |  HEADER.hash_function   | uint16_t
1856  |  HEADER.bucket_count    | uint32_t
1857  |  HEADER.hashes_count    | uint32_t
1858  |  HEADER.header_data_len | uint32_t
1859  |  HEADER_DATA            | HeaderData
1860  |-------------------------|
1861  |  BUCKETS                | uint32_t[n_buckets] // 32 bit hash indexes
1862  |-------------------------|
1863  |  HASHES                 | uint32_t[n_hashes] // 32 bit hash values
1864  |-------------------------|
1865  |  OFFSETS                | uint32_t[n_hashes] // 32 bit offsets to hash value data
1866  |-------------------------|
1867  |  ALL HASH DATA          |
1868  `-------------------------'
1869
1870So taking the exact same data from the standard hash example above we end up
1871with:
1872
1873.. code-block:: none
1874
1875              .------------.
1876              | HEADER     |
1877              |------------|
1878              |          0 | BUCKETS[0]
1879              |          2 | BUCKETS[1]
1880              |          5 | BUCKETS[2]
1881              |          6 | BUCKETS[3]
1882              |            | ...
1883              |        ... | BUCKETS[n_buckets]
1884              |------------|
1885              | 0x........ | HASHES[0]
1886              | 0x........ | HASHES[1]
1887              | 0x........ | HASHES[2]
1888              | 0x........ | HASHES[3]
1889              | 0x........ | HASHES[4]
1890              | 0x........ | HASHES[5]
1891              | 0x12345678 | HASHES[6]    hash for BUCKETS[3]
1892              | 0x29273623 | HASHES[7]    hash for BUCKETS[3]
1893              | 0x82638293 | HASHES[8]    hash for BUCKETS[3]
1894              | 0x........ | HASHES[9]
1895              | 0x........ | HASHES[10]
1896              | 0x........ | HASHES[11]
1897              | 0x........ | HASHES[12]
1898              | 0x........ | HASHES[13]
1899              | 0x........ | HASHES[n_hashes]
1900              |------------|
1901              | 0x........ | OFFSETS[0]
1902              | 0x........ | OFFSETS[1]
1903              | 0x........ | OFFSETS[2]
1904              | 0x........ | OFFSETS[3]
1905              | 0x........ | OFFSETS[4]
1906              | 0x........ | OFFSETS[5]
1907              | 0x000034f0 | OFFSETS[6]   offset for BUCKETS[3]
1908              | 0x00003500 | OFFSETS[7]   offset for BUCKETS[3]
1909              | 0x00003550 | OFFSETS[8]   offset for BUCKETS[3]
1910              | 0x........ | OFFSETS[9]
1911              | 0x........ | OFFSETS[10]
1912              | 0x........ | OFFSETS[11]
1913              | 0x........ | OFFSETS[12]
1914              | 0x........ | OFFSETS[13]
1915              | 0x........ | OFFSETS[n_hashes]
1916              |------------|
1917              |            |
1918              |            |
1919              |            |
1920              |            |
1921              |            |
1922              |------------|
1923  0x000034f0: | 0x00001203 | .debug_str ("erase")
1924              | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1925              | 0x........ | HashData[0]
1926              | 0x........ | HashData[1]
1927              | 0x........ | HashData[2]
1928              | 0x........ | HashData[3]
1929              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1930              |------------|
1931  0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1932              | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1933              | 0x........ | HashData[0]
1934              | 0x........ | HashData[1]
1935              | 0x00001203 | String offset into .debug_str ("dump")
1936              | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1937              | 0x........ | HashData[0]
1938              | 0x........ | HashData[1]
1939              | 0x........ | HashData[2]
1940              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1941              |------------|
1942  0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1943              | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1944              | 0x........ | HashData[0]
1945              | 0x........ | HashData[1]
1946              | 0x........ | HashData[2]
1947              | 0x........ | HashData[3]
1948              | 0x........ | HashData[4]
1949              | 0x........ | HashData[5]
1950              | 0x........ | HashData[6]
1951              | 0x........ | HashData[7]
1952              | 0x........ | HashData[8]
1953              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1954              `------------'
1955
1956So we still have all of the same data, we just organize it more efficiently for
1957debugger lookup.  If we repeat the same "``printf``" lookup from above, we
1958would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1959hash value and modulo it by ``n_buckets``.  ``BUCKETS[3]`` contains "6" which
1960is the index into the ``HASHES`` table.  We would then compare any consecutive
196132 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1962``BUCKETS[3]``.  We do this by verifying that each subsequent hash value modulo
1963``n_buckets`` is still 3.  In the case of a failed lookup we would access the
1964memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1965before we know that we have no match.  We don't end up marching through
1966multiple words of memory and we really keep the number of processor data cache
1967lines being accessed as small as possible.
1968
1969The string hash that is used for these lookup tables is the Daniel J.
1970Bernstein hash which is also used in the ELF ``GNU_HASH`` sections.  It is a
1971very good hash for all kinds of names in programs with very few hash
1972collisions.
1973
1974Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1975
1976Details
1977^^^^^^^
1978
1979These name hash tables are designed to be generic where specializations of the
1980table get to define additional data that goes into the header ("``HeaderData``"),
1981how the string value is stored ("``KeyType``") and the content of the data for each
1982hash value.
1983
1984Header Layout
1985"""""""""""""
1986
1987The header has a fixed part, and the specialized part.  The exact format of the
1988header is:
1989
1990.. code-block:: c
1991
1992  struct Header
1993  {
1994    uint32_t   magic;           // 'HASH' magic value to allow endian detection
1995    uint16_t   version;         // Version number
1996    uint16_t   hash_function;   // The hash function enumeration that was used
1997    uint32_t   bucket_count;    // The number of buckets in this hash table
1998    uint32_t   hashes_count;    // The total number of unique hash values and hash data offsets in this table
1999    uint32_t   header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
2000                                // Specifically the length of the following HeaderData field - this does not
2001                                // include the size of the preceding fields
2002    HeaderData header_data;     // Implementation specific header data
2003  };
2004
2005The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
2006encoded as an ASCII integer.  This allows the detection of the start of the
2007hash table and also allows the table's byte order to be determined so the table
2008can be correctly extracted.  The "``magic``" value is followed by a 16 bit
2009``version`` number which allows the table to be revised and modified in the
2010future.  The current version number is 1. ``hash_function`` is a ``uint16_t``
2011enumeration that specifies which hash function was used to produce this table.
2012The current values for the hash function enumerations include:
2013
2014.. code-block:: c
2015
2016  enum HashFunctionType
2017  {
2018    eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
2019  };
2020
2021``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
2022are in the ``BUCKETS`` array.  ``hashes_count`` is the number of unique 32 bit
2023hash values that are in the ``HASHES`` array, and is the same number of offsets
2024are contained in the ``OFFSETS`` array.  ``header_data_len`` specifies the size
2025in bytes of the ``HeaderData`` that is filled in by specialized versions of
2026this table.
2027
2028Fixed Lookup
2029""""""""""""
2030
2031The header is followed by the buckets, hashes, offsets, and hash value data.
2032
2033.. code-block:: c
2034
2035  struct FixedTable
2036  {
2037    uint32_t buckets[Header.bucket_count];  // An array of hash indexes into the "hashes[]" array below
2038    uint32_t hashes [Header.hashes_count];  // Every unique 32 bit hash for the entire table is in this table
2039    uint32_t offsets[Header.hashes_count];  // An offset that corresponds to each item in the "hashes[]" array above
2040  };
2041
2042``buckets`` is an array of 32 bit indexes into the ``hashes`` array.  The
2043``hashes`` array contains all of the 32 bit hash values for all names in the
2044hash table.  Each hash in the ``hashes`` table has an offset in the ``offsets``
2045array that points to the data for the hash value.
2046
2047This table setup makes it very easy to repurpose these tables to contain
2048different data, while keeping the lookup mechanism the same for all tables.
2049This layout also makes it possible to save the table to disk and map it in
2050later and do very efficient name lookups with little or no parsing.
2051
2052DWARF lookup tables can be implemented in a variety of ways and can store a lot
2053of information for each name.  We want to make the DWARF tables extensible and
2054able to store the data efficiently so we have used some of the DWARF features
2055that enable efficient data storage to define exactly what kind of data we store
2056for each name.
2057
2058The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2059We might want to store an offset to all of the debug information entries (DIEs)
2060for each name.  To keep things extensible, we create a list of items, or
2061Atoms, that are contained in the data for each name.  First comes the type of
2062the data in each atom:
2063
2064.. code-block:: c
2065
2066  enum AtomType
2067  {
2068    eAtomTypeNULL       = 0u,
2069    eAtomTypeDIEOffset  = 1u,   // DIE offset, check form for encoding
2070    eAtomTypeCUOffset   = 2u,   // DIE offset of the compiler unit header that contains the item in question
2071    eAtomTypeTag        = 3u,   // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2072    eAtomTypeNameFlags  = 4u,   // Flags from enum NameFlags
2073    eAtomTypeTypeFlags  = 5u,   // Flags from enum TypeFlags
2074  };
2075
2076The enumeration values and their meanings are:
2077
2078.. code-block:: none
2079
2080  eAtomTypeNULL       - a termination atom that specifies the end of the atom list
2081  eAtomTypeDIEOffset  - an offset into the .debug_info section for the DWARF DIE for this name
2082  eAtomTypeCUOffset   - an offset into the .debug_info section for the CU that contains the DIE
2083  eAtomTypeDIETag     - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2084  eAtomTypeNameFlags  - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2085  eAtomTypeTypeFlags  - Flags for types (isCXXClass, isObjCClass, ...)
2086
2087Then we allow each atom type to define the atom type and how the data for each
2088atom type data is encoded:
2089
2090.. code-block:: c
2091
2092  struct Atom
2093  {
2094    uint16_t type;  // AtomType enum value
2095    uint16_t form;  // DWARF DW_FORM_XXX defines
2096  };
2097
2098The ``form`` type above is from the DWARF specification and defines the exact
2099encoding of the data for the Atom type.  See the DWARF specification for the
2100``DW_FORM_`` definitions.
2101
2102.. code-block:: c
2103
2104  struct HeaderData
2105  {
2106    uint32_t die_offset_base;
2107    uint32_t atom_count;
2108    Atoms    atoms[atom_count0];
2109  };
2110
2111``HeaderData`` defines the base DIE offset that should be added to any atoms
2112that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2113``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``.  It also defines
2114what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2115each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2116should be interpreted.
2117
2118For the current implementations of the "``.apple_names``" (all functions +
2119globals), the "``.apple_types``" (names of all types that are defined), and
2120the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2121array to be:
2122
2123.. code-block:: c
2124
2125  HeaderData.atom_count = 1;
2126  HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2127  HeaderData.atoms[0].form = DW_FORM_data4;
2128
2129This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
2130encoded as a 32 bit value (DW_FORM_data4).  This allows a single name to have
2131multiple matching DIEs in a single file, which could come up with an inlined
2132function for instance.  Future tables could include more information about the
2133DIE such as flags indicating if the DIE is a function, method, block,
2134or inlined.
2135
2136The KeyType for the DWARF table is a 32 bit string table offset into the
2137".debug_str" table.  The ".debug_str" is the string table for the DWARF which
2138may already contain copies of all of the strings.  This helps make sure, with
2139help from the compiler, that we reuse the strings between all of the DWARF
2140sections and keeps the hash table size down.  Another benefit to having the
2141compiler generate all strings as DW_FORM_strp in the debug info, is that
2142DWARF parsing can be made much faster.
2143
2144After a lookup is made, we get an offset into the hash data.  The hash data
2145needs to be able to deal with 32 bit hash collisions, so the chunk of data
2146at the offset in the hash data consists of a triple:
2147
2148.. code-block:: c
2149
2150  uint32_t str_offset
2151  uint32_t hash_data_count
2152  HashData[hash_data_count]
2153
2154If "str_offset" is zero, then the bucket contents are done. 99.9% of the
2155hash data chunks contain a single item (no 32 bit hash collision):
2156
2157.. code-block:: none
2158
2159  .------------.
2160  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2161  | 0x00000004 | uint32_t HashData count
2162  | 0x........ | uint32_t HashData[0] DIE offset
2163  | 0x........ | uint32_t HashData[1] DIE offset
2164  | 0x........ | uint32_t HashData[2] DIE offset
2165  | 0x........ | uint32_t HashData[3] DIE offset
2166  | 0x00000000 | uint32_t KeyType (end of hash chain)
2167  `------------'
2168
2169If there are collisions, you will have multiple valid string offsets:
2170
2171.. code-block:: none
2172
2173  .------------.
2174  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2175  | 0x00000004 | uint32_t HashData count
2176  | 0x........ | uint32_t HashData[0] DIE offset
2177  | 0x........ | uint32_t HashData[1] DIE offset
2178  | 0x........ | uint32_t HashData[2] DIE offset
2179  | 0x........ | uint32_t HashData[3] DIE offset
2180  | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2181  | 0x00000002 | uint32_t HashData count
2182  | 0x........ | uint32_t HashData[0] DIE offset
2183  | 0x........ | uint32_t HashData[1] DIE offset
2184  | 0x00000000 | uint32_t KeyType (end of hash chain)
2185  `------------'
2186
2187Current testing with real world C++ binaries has shown that there is around 1
218832 bit hash collision per 100,000 name entries.
2189
2190Contents
2191^^^^^^^^
2192
2193As we said, we want to strictly define exactly what is included in the
2194different tables.  For DWARF, we have 3 tables: "``.apple_names``",
2195"``.apple_types``", and "``.apple_namespaces``".
2196
2197"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2198``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2199``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2200``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``.  It also contains
2201``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2202static variables).  All global and static variables should be included,
2203including those scoped within functions and classes.  For example using the
2204following code:
2205
2206.. code-block:: c
2207
2208  static int var = 0;
2209
2210  void f ()
2211  {
2212    static int var = 0;
2213  }
2214
2215Both of the static ``var`` variables would be included in the table.  All
2216functions should emit both their full names and their basenames.  For C or C++,
2217the full name is the mangled name (if available) which is usually in the
2218``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2219function basename.  If global or static variables have a mangled name in a
2220``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2221simple name found in the ``DW_AT_name`` attribute.
2222
2223"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2224tag is one of:
2225
2226* DW_TAG_array_type
2227* DW_TAG_class_type
2228* DW_TAG_enumeration_type
2229* DW_TAG_pointer_type
2230* DW_TAG_reference_type
2231* DW_TAG_string_type
2232* DW_TAG_structure_type
2233* DW_TAG_subroutine_type
2234* DW_TAG_typedef
2235* DW_TAG_union_type
2236* DW_TAG_ptr_to_member_type
2237* DW_TAG_set_type
2238* DW_TAG_subrange_type
2239* DW_TAG_base_type
2240* DW_TAG_const_type
2241* DW_TAG_constant
2242* DW_TAG_file_type
2243* DW_TAG_namelist
2244* DW_TAG_packed_type
2245* DW_TAG_volatile_type
2246* DW_TAG_restrict_type
2247* DW_TAG_interface_type
2248* DW_TAG_unspecified_type
2249* DW_TAG_shared_type
2250
2251Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2252not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2253value).  For example, using the following code:
2254
2255.. code-block:: c
2256
2257  int main ()
2258  {
2259    int *b = 0;
2260    return *b;
2261  }
2262
2263We get a few type DIEs:
2264
2265.. code-block:: none
2266
2267  0x00000067:     TAG_base_type [5]
2268                  AT_encoding( DW_ATE_signed )
2269                  AT_name( "int" )
2270                  AT_byte_size( 0x04 )
2271
2272  0x0000006e:     TAG_pointer_type [6]
2273                  AT_type( {0x00000067} ( int ) )
2274                  AT_byte_size( 0x08 )
2275
2276The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2277
2278"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2279If we run into a namespace that has no name this is an anonymous namespace, and
2280the name should be output as "``(anonymous namespace)``" (without the quotes).
2281Why?  This matches the output of the ``abi::cxa_demangle()`` that is in the
2282standard C++ library that demangles mangled names.
2283
2284
2285Language Extensions and File Format Changes
2286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2287
2288Objective-C Extensions
2289""""""""""""""""""""""
2290
2291"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2292Objective-C class.  The name used in the hash table is the name of the
2293Objective-C class itself.  If the Objective-C class has a category, then an
2294entry is made for both the class name without the category, and for the class
2295name with the category.  So if we have a DIE at offset 0x1234 with a name of
2296method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2297an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2298"``NSString(my_additions)``" that points to 0x1234.  This allows us to quickly
2299track down all Objective-C methods for an Objective-C class when doing
2300expressions.  It is needed because of the dynamic nature of Objective-C where
2301anyone can add methods to a class.  The DWARF for Objective-C methods is also
2302emitted differently from C++ classes where the methods are not usually
2303contained in the class definition, they are scattered about across one or more
2304compile units.  Categories can also be defined in different shared libraries.
2305So we need to be able to quickly find all of the methods and class functions
2306given the Objective-C class name, or quickly find all methods and class
2307functions for a class + category name.  This table does not contain any
2308selector names, it just maps Objective-C class names (or class names +
2309category) to all of the methods and class functions.  The selectors are added
2310as function basenames in the "``.debug_names``" section.
2311
2312In the "``.apple_names``" section for Objective-C functions, the full name is
2313the entire function name with the brackets ("``-[NSString
2314stringWithCString:]``") and the basename is the selector only
2315("``stringWithCString:``").
2316
2317Mach-O Changes
2318""""""""""""""
2319
2320The sections names for the apple hash tables are for non-mach-o files.  For
2321mach-o files, the sections should be contained in the ``__DWARF`` segment with
2322names as follows:
2323
2324* "``.apple_names``" -> "``__apple_names``"
2325* "``.apple_types``" -> "``__apple_types``"
2326* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2327* "``.apple_objc``" -> "``__apple_objc``"
2328
2329