1================================ 2Source Level Debugging with LLVM 3================================ 4 5.. contents:: 6 :local: 7 8Introduction 9============ 10 11This document is the central repository for all information pertaining to debug 12information in LLVM. It describes the :ref:`actual format that the LLVM debug 13information takes <format>`, which is useful for those interested in creating 14front-ends or dealing directly with the information. Further, this document 15provides specific examples of what debug information for C/C++ looks like. 16 17Philosophy behind LLVM debugging information 18-------------------------------------------- 19 20The idea of the LLVM debugging information is to capture how the important 21pieces of the source-language's Abstract Syntax Tree map onto LLVM code. 22Several design aspects have shaped the solution that appears here. The 23important ones are: 24 25* Debugging information should have very little impact on the rest of the 26 compiler. No transformations, analyses, or code generators should need to 27 be modified because of debugging information. 28 29* LLVM optimizations should interact in :ref:`well-defined and easily described 30 ways <intro_debugopt>` with the debugging information. 31 32* Because LLVM is designed to support arbitrary programming languages, 33 LLVM-to-LLVM tools should not need to know anything about the semantics of 34 the source-level-language. 35 36* Source-level languages are often **widely** different from one another. 37 LLVM should not put any restrictions of the flavor of the source-language, 38 and the debugging information should work with any language. 39 40* With code generator support, it should be possible to use an LLVM compiler 41 to compile a program to native machine code and standard debugging 42 formats. This allows compatibility with traditional machine-code level 43 debuggers, like GDB or DBX. 44 45The approach used by the LLVM implementation is to use a small set of 46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping 47between LLVM program objects and the source-level objects. The description of 48the source-level program is maintained in LLVM metadata in an 49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end 50currently uses working draft 7 of the `DWARF 3 standard 51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_). 52 53When a program is being debugged, a debugger interacts with the user and turns 54the stored debug information into source-language specific information. As 55such, a debugger must be aware of the source-language, and is thus tied to a 56specific language or family of languages. 57 58Debug information consumers 59--------------------------- 60 61The role of debug information is to provide meta information normally stripped 62away during the compilation process. This meta information provides an LLVM 63user a relationship between generated code and the original program source 64code. 65 66Currently, debug information is consumed by DwarfDebug to produce dwarf 67information used by the gdb debugger. Other targets could use the same 68information to produce stabs or other debug forms. 69 70It would also be reasonable to use debug information to feed profiling tools 71for analysis of generated code, or, tools for reconstructing the original 72source from generated code. 73 74TODO - expound a bit more. 75 76.. _intro_debugopt: 77 78Debugging optimized code 79------------------------ 80 81An extremely high priority of LLVM debugging information is to make it interact 82well with optimizations and analysis. In particular, the LLVM debug 83information provides the following guarantees: 84 85* LLVM debug information **always provides information to accurately read 86 the source-level state of the program**, regardless of which LLVM 87 optimizations have been run, and without any modification to the 88 optimizations themselves. However, some optimizations may impact the 89 ability to modify the current state of the program with a debugger, such 90 as setting program variables, or calling functions that have been 91 deleted. 92 93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM 94 debugging information, allowing them to update the debugging information 95 as they perform aggressive optimizations. This means that, with effort, 96 the LLVM optimizers could optimize debug code just as well as non-debug 97 code. 98 99* LLVM debug information does not prevent optimizations from 100 happening (for example inlining, basic block reordering/merging/cleanup, 101 tail duplication, etc). 102 103* LLVM debug information is automatically optimized along with the rest of 104 the program, using existing facilities. For example, duplicate 105 information is automatically merged by the linker, and unused information 106 is automatically removed. 107 108Basically, the debug information allows you to compile a program with 109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify 110the program as it executes from a debugger. Compiling a program with 111"``-O3 -g``" gives you full debug information that is always available and 112accurate for reading (e.g., you get accurate stack traces despite tail call 113elimination and inlining), but you might lose the ability to modify the program 114and call functions where were optimized out of the program, or inlined away 115completely. 116 117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test 118optimizer's handling of debugging information. It can be run like this: 119 120.. code-block:: bash 121 122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level 123 % make TEST=dbgopt 124 125This will test impact of debugging information on optimization passes. If 126debugging information influences optimization passes then it will be reported 127as a failure. See :doc:`TestingGuide` for more information on LLVM test 128infrastructure and how to run various tests. 129 130.. _format: 131 132Debugging information format 133============================ 134 135LLVM debugging information has been carefully designed to make it possible for 136the optimizer to optimize the program and debugging information without 137necessarily having to know anything about debugging information. In 138particular, the use of metadata avoids duplicated debugging information from 139the beginning, and the global dead code elimination pass automatically deletes 140debugging information for a function if it decides to delete the function. 141 142To do this, most of the debugging information (descriptors for types, 143variables, functions, source files, etc) is inserted by the language front-end 144in the form of LLVM metadata. 145 146Debug information is designed to be agnostic about the target debugger and 147debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic 148pass to decode the information that represents variables, types, functions, 149namespaces, etc: this allows for arbitrary source-language semantics and 150type-systems to be used, as long as there is a module written for the target 151debugger to interpret the information. 152 153To provide basic functionality, the LLVM debugger does have to make some 154assumptions about the source-level language being debugged, though it keeps 155these to a minimum. The only common features that the LLVM debugger assumes 156exist are :ref:`source files <format_files>`, and :ref:`program objects 157<format_global_variables>`. These abstract objects are used by a debugger to 158form stack traces, show information about local variables, etc. 159 160This section of the documentation first describes the representation aspects 161common to any source-language. :ref:`ccxx_frontend` describes the data layout 162conventions used by the C and C++ front-ends. 163 164Debug information descriptors 165----------------------------- 166 167In consideration of the complexity and volume of debug information, LLVM 168provides a specification for well formed debug descriptors. 169 170Consumers of LLVM debug information expect the descriptors for program objects 171to start in a canonical format, but the descriptors can include additional 172information appended at the end that is source-language specific. All debugging 173information objects start with a tag to indicate what type of object it is. 174The source-language is allowed to define its own objects, by using unreserved 175tag numbers. We recommend using with tags in the range 0x1000 through 0x2000 176(there is a defined ``enum DW_TAG_user_base = 0x1000``.) 177 178The fields of debug descriptors used internally by LLVM are restricted to only 179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and 180``mdnode``. 181 182.. code-block:: llvm 183 184 !1 = metadata !{ 185 i32, ;; A tag 186 ... 187 } 188 189<a name="LLVMDebugVersion">The first field of a descriptor is always an 190``i32`` containing a tag value identifying the content of the descriptor. 191The remaining fields are specific to the descriptor. The values of tags are 192loosely bound to the tag values of DWARF information entries. However, that 193does not restrict the use of the information supplied to DWARF targets. 194 195The details of the various descriptors follow. 196 197Compile unit descriptors 198^^^^^^^^^^^^^^^^^^^^^^^^ 199 200.. code-block:: llvm 201 202 !0 = metadata !{ 203 i32, ;; Tag = 17 (DW_TAG_compile_unit) 204 metadata, ;; Source directory (including trailing slash) & file pair 205 i32, ;; DWARF language identifier (ex. DW_LANG_C89) 206 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)") 207 i1, ;; True if this is optimized. 208 metadata, ;; Flags 209 i32 ;; Runtime version 210 metadata ;; List of enums types 211 metadata ;; List of retained types 212 metadata ;; List of subprograms 213 metadata ;; List of global variables 214 metadata ;; List of imported entities 215 metadata ;; Split debug filename 216 } 217 218These descriptors contain a source language ID for the file (we use the DWARF 2193.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``, 220``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of 221strings for the source file name and the working directory, as well as an 222identifier string for the compiler that produced it. 223 224Compile unit descriptors provide the root context for objects declared in a 225specific compilation unit. File descriptors are defined using this context. 226These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They 227keep track of subprograms, global variables, type information, and imported 228entities (declarations and namespaces). 229 230.. _format_files: 231 232File descriptors 233^^^^^^^^^^^^^^^^ 234 235.. code-block:: llvm 236 237 !0 = metadata !{ 238 i32, ;; Tag = 41 (DW_TAG_file_type) 239 metadata, ;; Source directory (including trailing slash) & file pair 240 } 241 242These descriptors contain information for a file. Global variables and top 243level functions would be defined using this context. File descriptors also 244provide context for source line correspondence. 245 246Each input file is encoded as a separate file descriptor in LLVM debugging 247information output. 248 249.. _format_global_variables: 250 251Global variable descriptors 252^^^^^^^^^^^^^^^^^^^^^^^^^^^ 253 254.. code-block:: llvm 255 256 !1 = metadata !{ 257 i32, ;; Tag = 52 (DW_TAG_variable) 258 i32, ;; Unused field. 259 metadata, ;; Reference to context descriptor 260 metadata, ;; Name 261 metadata, ;; Display name (fully qualified C++ name) 262 metadata, ;; MIPS linkage name (for C++) 263 metadata, ;; Reference to file where defined 264 i32, ;; Line number where defined 265 metadata, ;; Reference to type descriptor 266 i1, ;; True if the global is local to compile unit (static) 267 i1, ;; True if the global is defined in the compile unit (not extern) 268 {}*, ;; Reference to the global variable 269 metadata, ;; The static member declaration, if any 270 } 271 272These descriptors provide debug information about globals variables. They 273provide details such as name, type and where the variable is defined. All 274global variables are collected inside the named metadata ``!llvm.dbg.cu``. 275 276.. _format_subprograms: 277 278Subprogram descriptors 279^^^^^^^^^^^^^^^^^^^^^^ 280 281.. code-block:: llvm 282 283 !2 = metadata !{ 284 i32, ;; Tag = 46 (DW_TAG_subprogram) 285 metadata, ;; Source directory (including trailing slash) & file pair 286 metadata, ;; Reference to context descriptor 287 metadata, ;; Name 288 metadata, ;; Display name (fully qualified C++ name) 289 metadata, ;; MIPS linkage name (for C++) 290 i32, ;; Line number where defined 291 metadata, ;; Reference to type descriptor 292 i1, ;; True if the global is local to compile unit (static) 293 i1, ;; True if the global is defined in the compile unit (not extern) 294 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual 295 i32, ;; Index into a virtual function 296 metadata, ;; indicates which base type contains the vtable pointer for the 297 ;; derived class 298 i32, ;; Flags - Artificial, Private, Protected, Explicit, Prototyped. 299 i1, ;; isOptimized 300 Function * , ;; Pointer to LLVM function 301 metadata, ;; Lists function template parameters 302 metadata, ;; Function declaration descriptor 303 metadata, ;; List of function variables 304 i32 ;; Line number where the scope of the subprogram begins 305 } 306 307These descriptors provide debug information about functions, methods and 308subprograms. They provide details such as name, return types and the source 309location where the subprogram is defined. 310 311Block descriptors 312^^^^^^^^^^^^^^^^^ 313 314.. code-block:: llvm 315 316 !3 = metadata !{ 317 i32, ;; Tag = 11 (DW_TAG_lexical_block) 318 metadata,;; Source directory (including trailing slash) & file pair 319 metadata,;; Reference to context descriptor 320 i32, ;; Line number 321 i32, ;; Column number 322 i32 ;; Unique ID to identify blocks from a template function 323 } 324 325This descriptor provides debug information about nested blocks within a 326subprogram. The line number and column numbers are used to dinstinguish two 327lexical blocks at same depth. 328 329.. code-block:: llvm 330 331 !3 = metadata !{ 332 i32, ;; Tag = 11 (DW_TAG_lexical_block) 333 metadata,;; Source directory (including trailing slash) & file pair 334 metadata ;; Reference to the scope we're annotating with a file change 335 } 336 337This descriptor provides a wrapper around a lexical scope to handle file 338changes in the middle of a lexical block. 339 340.. _format_basic_type: 341 342Basic type descriptors 343^^^^^^^^^^^^^^^^^^^^^^ 344 345.. code-block:: llvm 346 347 !4 = metadata !{ 348 i32, ;; Tag = 36 (DW_TAG_base_type) 349 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 350 metadata, ;; Reference to context 351 metadata, ;; Name (may be "" for anonymous types) 352 i32, ;; Line number where defined (may be 0) 353 i64, ;; Size in bits 354 i64, ;; Alignment in bits 355 i64, ;; Offset in bits 356 i32, ;; Flags 357 i32 ;; DWARF type encoding 358 } 359 360These descriptors define primitive types used in the code. Example ``int``, 361``bool`` and ``float``. The context provides the scope of the type, which is 362usually the top level. Since basic types are not usually user defined the 363context and line number can be left as NULL and 0. The size, alignment and 364offset are expressed in bits and can be 64 bit values. The alignment is used 365to round the offset when embedded in a :ref:`composite type 366<format_composite_type>` (example to keep float doubles on 64 bit boundaries). 367The offset is the bit offset if embedded in a :ref:`composite type 368<format_composite_type>`. 369 370The type encoding provides the details of the type. The values are typically 371one of the following: 372 373.. code-block:: llvm 374 375 DW_ATE_address = 1 376 DW_ATE_boolean = 2 377 DW_ATE_float = 4 378 DW_ATE_signed = 5 379 DW_ATE_signed_char = 6 380 DW_ATE_unsigned = 7 381 DW_ATE_unsigned_char = 8 382 383.. _format_derived_type: 384 385Derived type descriptors 386^^^^^^^^^^^^^^^^^^^^^^^^ 387 388.. code-block:: llvm 389 390 !5 = metadata !{ 391 i32, ;; Tag (see below) 392 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 393 metadata, ;; Reference to context 394 metadata, ;; Name (may be "" for anonymous types) 395 i32, ;; Line number where defined (may be 0) 396 i64, ;; Size in bits 397 i64, ;; Alignment in bits 398 i64, ;; Offset in bits 399 i32, ;; Flags to encode attributes, e.g. private 400 metadata, ;; Reference to type derived from 401 metadata, ;; (optional) Name of the Objective C property associated with 402 ;; Objective-C an ivar, or the type of which this 403 ;; pointer-to-member is pointing to members of. 404 metadata, ;; (optional) Name of the Objective C property getter selector. 405 metadata, ;; (optional) Name of the Objective C property setter selector. 406 i32 ;; (optional) Objective C property attributes. 407 } 408 409These descriptors are used to define types derived from other types. The value 410of the tag varies depending on the meaning. The following are possible tag 411values: 412 413.. code-block:: llvm 414 415 DW_TAG_formal_parameter = 5 416 DW_TAG_member = 13 417 DW_TAG_pointer_type = 15 418 DW_TAG_reference_type = 16 419 DW_TAG_typedef = 22 420 DW_TAG_ptr_to_member_type = 31 421 DW_TAG_const_type = 38 422 DW_TAG_volatile_type = 53 423 DW_TAG_restrict_type = 55 424 425``DW_TAG_member`` is used to define a member of a :ref:`composite type 426<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type 427of the member is the :ref:`derived type <format_derived_type>`. 428``DW_TAG_formal_parameter`` is used to define a member which is a formal 429argument of a subprogram. 430 431``DW_TAG_typedef`` is used to provide a name for the derived type. 432 433``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``, 434``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the 435:ref:`derived type <format_derived_type>`. 436 437:ref:`Derived type <format_derived_type>` location can be determined from the 438context and line number. The size, alignment and offset are expressed in bits 439and can be 64 bit values. The alignment is used to round the offset when 440embedded in a :ref:`composite type <format_composite_type>` (example to keep 441float doubles on 64 bit boundaries.) The offset is the bit offset if embedded 442in a :ref:`composite type <format_composite_type>`. 443 444Note that the ``void *`` type is expressed as a type derived from NULL. 445 446.. _format_composite_type: 447 448Composite type descriptors 449^^^^^^^^^^^^^^^^^^^^^^^^^^ 450 451.. code-block:: llvm 452 453 !6 = metadata !{ 454 i32, ;; Tag (see below) 455 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 456 metadata, ;; Reference to context 457 metadata, ;; Name (may be "" for anonymous types) 458 i32, ;; Line number where defined (may be 0) 459 i64, ;; Size in bits 460 i64, ;; Alignment in bits 461 i64, ;; Offset in bits 462 i32, ;; Flags 463 metadata, ;; Reference to type derived from 464 metadata, ;; Reference to array of member descriptors 465 i32, ;; Runtime languages 466 metadata, ;; Base type containing the vtable pointer for this type 467 metadata, ;; Template parameters 468 metadata ;; A unique identifier for type uniquing purpose (may be null) 469 } 470 471These descriptors are used to define types that are composed of 0 or more 472elements. The value of the tag varies depending on the meaning. The following 473are possible tag values: 474 475.. code-block:: llvm 476 477 DW_TAG_array_type = 1 478 DW_TAG_enumeration_type = 4 479 DW_TAG_structure_type = 19 480 DW_TAG_union_type = 23 481 DW_TAG_subroutine_type = 21 482 DW_TAG_inheritance = 28 483 484The vector flag indicates that an array type is a native packed vector. 485 486The members of array types (tag = ``DW_TAG_array_type``) are 487:ref:`subrange descriptors <format_subrange>`, each 488representing the range of subscripts at that level of indexing. 489 490The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are 491:ref:`enumerator descriptors <format_enumerator>`, each representing the 492definition of enumeration value for the set. All enumeration type descriptors 493are collected inside the named metadata ``!llvm.dbg.cu``. 494 495The members of structure (tag = ``DW_TAG_structure_type``) or union (tag = 496``DW_TAG_union_type``) types are any one of the :ref:`basic 497<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite 498<format_composite_type>` type descriptors, each representing a field member of 499the structure or union. 500 501For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide 502information about base classes, static members and member functions. If a 503member is a :ref:`derived type descriptor <format_derived_type>` and has a tag 504of ``DW_TAG_inheritance``, then the type represents a base class. If the member 505of is a :ref:`global variable descriptor <format_global_variables>` then it 506represents a static member. And, if the member is a :ref:`subprogram 507descriptor <format_subprograms>` then it represents a member function. For 508static members and member functions, ``getName()`` returns the members link or 509the C++ mangled name. ``getDisplayName()`` the simplied version of the name. 510 511The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements 512is the return type for the subroutine. The remaining elements are the formal 513arguments to the subroutine. 514 515:ref:`Composite type <format_composite_type>` location can be determined from 516the context and line number. The size, alignment and offset are expressed in 517bits and can be 64 bit values. The alignment is used to round the offset when 518embedded in a :ref:`composite type <format_composite_type>` (as an example, to 519keep float doubles on 64 bit boundaries). The offset is the bit offset if 520embedded in a :ref:`composite type <format_composite_type>`. 521 522.. _format_subrange: 523 524Subrange descriptors 525^^^^^^^^^^^^^^^^^^^^ 526 527.. code-block:: llvm 528 529 !42 = metadata !{ 530 i32, ;; Tag = 33 (DW_TAG_subrange_type) 531 i64, ;; Low value 532 i64 ;; High value 533 } 534 535These descriptors are used to define ranges of array subscripts for an array 536:ref:`composite type <format_composite_type>`. The low value defines the lower 537bounds typically zero for C/C++. The high value is the upper bounds. Values 538are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High`` 539the array bounds are not included in generated debugging information. 540 541.. _format_enumerator: 542 543Enumerator descriptors 544^^^^^^^^^^^^^^^^^^^^^^ 545 546.. code-block:: llvm 547 548 !6 = metadata !{ 549 i32, ;; Tag = 40 (DW_TAG_enumerator) 550 metadata, ;; Name 551 i64 ;; Value 552 } 553 554These descriptors are used to define members of an enumeration :ref:`composite 555type <format_composite_type>`, it associates the name to the value. 556 557Local variables 558^^^^^^^^^^^^^^^ 559 560.. code-block:: llvm 561 562 !7 = metadata !{ 563 i32, ;; Tag (see below) 564 metadata, ;; Context 565 metadata, ;; Name 566 metadata, ;; Reference to file where defined 567 i32, ;; 24 bit - Line number where defined 568 ;; 8 bit - Argument number. 1 indicates 1st argument. 569 metadata, ;; Type descriptor 570 i32, ;; flags 571 metadata ;; (optional) Reference to inline location 572 } 573 574These descriptors are used to define variables local to a sub program. The 575value of the tag depends on the usage of the variable: 576 577.. code-block:: llvm 578 579 DW_TAG_auto_variable = 256 580 DW_TAG_arg_variable = 257 581 582An auto variable is any variable declared in the body of the function. An 583argument variable is any variable that appears as a formal argument to the 584function. 585 586The context is either the subprogram or block where the variable is defined. 587Name the source variable name. Context and line indicate where the variable 588was defined. Type descriptor defines the declared type of the variable. 589 590.. _format_common_intrinsics: 591 592Debugger intrinsic functions 593^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 594 595LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to 596provide debug information at various points in generated code. 597 598``llvm.dbg.declare`` 599^^^^^^^^^^^^^^^^^^^^ 600 601.. code-block:: llvm 602 603 void %llvm.dbg.declare(metadata, metadata) 604 605This intrinsic provides information about a local element (e.g., variable). 606The first argument is metadata holding the alloca for the variable. The second 607argument is metadata containing a description of the variable. 608 609``llvm.dbg.value`` 610^^^^^^^^^^^^^^^^^^ 611 612.. code-block:: llvm 613 614 void %llvm.dbg.value(metadata, i64, metadata) 615 616This intrinsic provides information when a user source variable is set to a new 617value. The first argument is the new value (wrapped as metadata). The second 618argument is the offset in the user source variable where the new value is 619written. The third argument is metadata containing a description of the user 620source variable. 621 622Object lifetimes and scoping 623============================ 624 625In many languages, the local variables in functions can have their lifetimes or 626scopes limited to a subset of a function. In the C family of languages, for 627example, variables are only live (readable and writable) within the source 628block that they are defined in. In functional languages, values are only 629readable after they have been defined. Though this is a very obvious concept, 630it is non-trivial to model in LLVM, because it has no notion of scoping in this 631sense, and does not want to be tied to a language's scoping rules. 632 633In order to handle this, the LLVM debug format uses the metadata attached to 634llvm instructions to encode line number and scoping information. Consider the 635following C fragment, for example: 636 637.. code-block:: c 638 639 1. void foo() { 640 2. int X = 21; 641 3. int Y = 22; 642 4. { 643 5. int Z = 23; 644 6. Z = X; 645 7. } 646 8. X = Y; 647 9. } 648 649Compiled to LLVM, this function would be represented like this: 650 651.. code-block:: llvm 652 653 define void @foo() #0 { 654 entry: 655 %X = alloca i32, align 4 656 %Y = alloca i32, align 4 657 %Z = alloca i32, align 4 658 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12 659 ; [debug line = 2:7] [debug variable = X] 660 store i32 21, i32* %X, align 4, !dbg !12 661 call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14 662 ; [debug line = 3:7] [debug variable = Y] 663 store i32 22, i32* %Y, align 4, !dbg !14 664 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 665 ; [debug line = 5:9] [debug variable = Z] 666 store i32 23, i32* %Z, align 4, !dbg !17 667 %0 = load i32* %X, align 4, !dbg !18 668 [debug line = 6:5] 669 store i32 %0, i32* %Z, align 4, !dbg !18 670 %1 = load i32* %Y, align 4, !dbg !19 671 [debug line = 8:3] 672 store i32 %1, i32* %X, align 4, !dbg !19 673 ret void, !dbg !20 674 } 675 676 ; Function Attrs: nounwind readnone 677 declare void @llvm.dbg.declare(metadata, metadata) #1 678 679 attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" 680 "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" 681 "no-infs-fp-math"="false" "no-nans-fp-math"="false" 682 "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" 683 "use-soft-float"="false" } 684 attributes #1 = { nounwind readnone } 685 686 !llvm.dbg.cu = !{!0} 687 !llvm.module.flags = !{!8} 688 !llvm.ident = !{!9} 689 690 !0 = metadata !{i32 786449, metadata !1, i32 12, 691 metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)", 692 i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3, 693 metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \ 694 [/private/tmp/foo.c] \ 695 [DW_LANG_C99] 696 !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"} 697 !2 = metadata !{i32 0} 698 !3 = metadata !{metadata !4} 699 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 700 metadata !"foo", metadata !"", i32 1, metadata !6, 701 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false, 702 void ()* @foo, null, null, metadata !2, i32 1} 703 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 704 !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \ 705 [/private/tmp/t.c] 706 !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0, 707 i64 0, i32 0, null, metadata !7, i32 0, null, null, null} 708 ; [ DW_TAG_subroutine_type ] \ 709 [line 0, size 0, align 0, offset 0] [from ] 710 !7 = metadata !{null} 711 !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2} 712 !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"} 713 !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2, 714 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \ 715 [line 2] 716 !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32, 717 i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \ 718 [line 0, size 32, align 32, offset 0, enc DW_ATE_signed] 719 !12 = metadata !{i32 2, i32 0, metadata !4, null} 720 !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3, 721 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \ 722 [line 3] 723 !14 = metadata !{i32 3, i32 0, metadata !4, null} 724 !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5, 725 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \ 726 [line 5] 727 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \ 728 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c] 729 !17 = metadata !{i32 5, i32 0, metadata !16, null} 730 !18 = metadata !{i32 6, i32 0, metadata !16, null} 731 !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ] 732 !20 = metadata !{i32 9, i32 0, metadata !4, null} 733 734This example illustrates a few important details about LLVM debugging 735information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and 736location information, which are attached to an instruction, are applied 737together to allow a debugger to analyze the relationship between statements, 738variable definitions, and the code used to implement the function. 739 740.. code-block:: llvm 741 742 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12 743 ; [debug line = 2:7] [debug variable = X] 744 745The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the 746variable ``X``. The metadata ``!dbg !12`` attached to the intrinsic provides 747scope information for the variable ``X``. 748 749.. code-block:: llvm 750 751 !12 = metadata !{i32 2, i32 0, metadata !4, null} 752 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 753 metadata !"foo", metadata !"", i32 1, metadata !6, 754 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false, 755 void ()* @foo, null, null, metadata !2, i32 1} 756 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 757 758Here ``!12`` is metadata providing location information. It has four fields: 759line number, column number, scope, and original scope. The original scope 760represents inline location if this instruction is inlined inside a caller, and 761is null otherwise. In this example, scope is encoded by ``!4``, a 762:ref:`subprogram descriptor <format_subprograms>`. This way the location 763information attached to the intrinsics indicates that the variable ``X`` is 764declared at line number 2 at a function level scope in function ``foo``. 765 766Now lets take another example. 767 768.. code-block:: llvm 769 770 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 771 ; [debug line = 5:9] [debug variable = Z] 772 773The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for 774variable ``Z``. The metadata ``!dbg !17`` attached to the intrinsic provides 775scope information for the variable ``Z``. 776 777.. code-block:: llvm 778 779 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} 780 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c] 781 !17 = metadata !{i32 5, i32 0, metadata !16, null} 782 783Here ``!15`` indicates that ``Z`` is declared at line number 5 and 784column number 0 inside of lexical scope ``!16``. The lexical scope itself 785resides inside of subprogram ``!4`` described above. 786 787The scope information attached with each instruction provides a straightforward 788way to find instructions covered by a scope. 789 790.. _ccxx_frontend: 791 792C/C++ front-end specific debug information 793========================================== 794 795The C and C++ front-ends represent information about the program in a format 796that is effectively identical to `DWARF 3.0 797<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information 798content. This allows code generators to trivially support native debuggers by 799generating standard dwarf information, and contains enough information for 800non-dwarf targets to translate it as needed. 801 802This section describes the forms used to represent C and C++ programs. Other 803languages could pattern themselves after this (which itself is tuned to 804representing programs in the same way that DWARF 3 does), or they could choose 805to provide completely different forms if they don't fit into the DWARF model. 806As support for debugging information gets added to the various LLVM 807source-language front-ends, the information used should be documented here. 808 809The following sections provide examples of various C/C++ constructs and the 810debug information that would best describe those constructs. 811 812C/C++ source file information 813----------------------------- 814 815Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the 816directory ``/Users/mine/sources``, the following code: 817 818.. code-block:: c 819 820 #include "MyHeader.h" 821 822 int main(int argc, char *argv[]) { 823 return 0; 824 } 825 826a C/C++ front-end would generate the following descriptors: 827 828.. code-block:: llvm 829 830 ... 831 ;; 832 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp". 833 ;; 834 !0 = metadata !{ 835 i32 786449, ;; Tag 836 metadata !1, ;; File/directory name 837 i32 4, ;; Language Id 838 metadata !"clang version 3.4 ", 839 i1 false, ;; Optimized compile unit 840 metadata !"", ;; Compiler flags 841 i32 0, ;; Runtime version 842 metadata !2, ;; Enumeration types 843 metadata !2, ;; Retained types 844 metadata !3, ;; Subprograms 845 metadata !2, ;; Global variables 846 metadata !2, ;; Imported entities (declarations and namespaces) 847 metadata !"" ;; Split debug filename 848 } 849 850 ;; 851 ;; Define the file for the file "/Users/mine/sources/MySource.cpp". 852 ;; 853 !1 = metadata !{ 854 metadata !"MySource.cpp", 855 metadata !"/Users/mine/sources" 856 } 857 !5 = metadata !{ 858 i32 786473, ;; Tag 859 metadata !1 860 } 861 862 ;; 863 ;; Define the file for the file "/Users/mine/sources/Myheader.h" 864 ;; 865 !14 = metadata !{ 866 i32 786473, ;; Tag 867 metadata !15 868 } 869 !15 = metadata !{ 870 metadata !"./MyHeader.h", 871 metadata !"/Users/mine/sources", 872 } 873 874 ... 875 876``llvm::Instruction`` provides easy access to metadata attached with an 877instruction. One can extract line number information encoded in LLVM IR using 878``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``. 879 880.. code-block:: c++ 881 882 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction 883 DILocation Loc(N); // DILocation is in DebugInfo.h 884 unsigned Line = Loc.getLineNumber(); 885 StringRef File = Loc.getFilename(); 886 StringRef Dir = Loc.getDirectory(); 887 } 888 889C/C++ global variable information 890--------------------------------- 891 892Given an integer global variable declared as follows: 893 894.. code-block:: c 895 896 int MyGlobal = 100; 897 898a C/C++ front-end would generate the following descriptors: 899 900.. code-block:: llvm 901 902 ;; 903 ;; Define the global itself. 904 ;; 905 %MyGlobal = global int 100 906 ... 907 ;; 908 ;; List of debug info of globals 909 ;; 910 !llvm.dbg.cu = !{!0} 911 912 ;; Define the compile unit. 913 !0 = metadata !{ 914 i32 786449, ;; Tag 915 i32 0, ;; Context 916 i32 4, ;; Language 917 metadata !"foo.cpp", ;; File 918 metadata !"/Volumes/Data/tmp", ;; Directory 919 metadata !"clang version 3.1 ", ;; Producer 920 i1 true, ;; Deprecated field 921 i1 false, ;; "isOptimized"? 922 metadata !"", ;; Flags 923 i32 0, ;; Runtime Version 924 metadata !1, ;; Enum Types 925 metadata !1, ;; Retained Types 926 metadata !1, ;; Subprograms 927 metadata !3, ;; Global Variables 928 metadata !1, ;; Imported entities 929 "", ;; Split debug filename 930 } ; [ DW_TAG_compile_unit ] 931 932 ;; The Array of Global Variables 933 !3 = metadata !{ 934 metadata !4 935 } 936 937 ;; 938 ;; Define the global variable itself. 939 ;; 940 !4 = metadata !{ 941 i32 786484, ;; Tag 942 i32 0, ;; Unused 943 null, ;; Unused 944 metadata !"MyGlobal", ;; Name 945 metadata !"MyGlobal", ;; Display Name 946 metadata !"", ;; Linkage Name 947 metadata !6, ;; File 948 i32 1, ;; Line 949 metadata !7, ;; Type 950 i32 0, ;; IsLocalToUnit 951 i32 1, ;; IsDefinition 952 i32* @MyGlobal, ;; LLVM-IR Value 953 null ;; Static member declaration 954 } ; [ DW_TAG_variable ] 955 956 ;; 957 ;; Define the file 958 ;; 959 !5 = metadata !{ 960 metadata !"foo.cpp", ;; File 961 metadata !"/Volumes/Data/tmp", ;; Directory 962 } 963 !6 = metadata !{ 964 i32 786473, ;; Tag 965 metadata !5 ;; Unused 966 } ; [ DW_TAG_file_type ] 967 968 ;; 969 ;; Define the type 970 ;; 971 !7 = metadata !{ 972 i32 786468, ;; Tag 973 null, ;; Unused 974 null, ;; Unused 975 metadata !"int", ;; Name 976 i32 0, ;; Line 977 i64 32, ;; Size in Bits 978 i64 32, ;; Align in Bits 979 i64 0, ;; Offset 980 i32 0, ;; Flags 981 i32 5 ;; Encoding 982 } ; [ DW_TAG_base_type ] 983 984C/C++ function information 985-------------------------- 986 987Given a function declared as follows: 988 989.. code-block:: c 990 991 int main(int argc, char *argv[]) { 992 return 0; 993 } 994 995a C/C++ front-end would generate the following descriptors: 996 997.. code-block:: llvm 998 999 ;; 1000 ;; Define the anchor for subprograms. 1001 ;; 1002 !6 = metadata !{ 1003 i32 786484, ;; Tag 1004 metadata !1, ;; File 1005 metadata !1, ;; Context 1006 metadata !"main", ;; Name 1007 metadata !"main", ;; Display name 1008 metadata !"main", ;; Linkage name 1009 i32 1, ;; Line number 1010 metadata !4, ;; Type 1011 i1 false, ;; Is local 1012 i1 true, ;; Is definition 1013 i32 0, ;; Virtuality attribute, e.g. pure virtual function 1014 i32 0, ;; Index into virtual table for C++ methods 1015 i32 0, ;; Type that holds virtual table. 1016 i32 0, ;; Flags 1017 i1 false, ;; True if this function is optimized 1018 Function *, ;; Pointer to llvm::Function 1019 null, ;; Function template parameters 1020 null, ;; List of function variables (emitted when optimizing) 1021 1 ;; Line number of the opening '{' of the function 1022 } 1023 ;; 1024 ;; Define the subprogram itself. 1025 ;; 1026 define i32 @main(i32 %argc, i8** %argv) { 1027 ... 1028 } 1029 1030C/C++ basic types 1031----------------- 1032 1033The following are the basic type descriptors for C/C++ core types: 1034 1035bool 1036^^^^ 1037 1038.. code-block:: llvm 1039 1040 !2 = metadata !{ 1041 i32 786468, ;; Tag 1042 null, ;; File 1043 null, ;; Context 1044 metadata !"bool", ;; Name 1045 i32 0, ;; Line number 1046 i64 8, ;; Size in Bits 1047 i64 8, ;; Align in Bits 1048 i64 0, ;; Offset in Bits 1049 i32 0, ;; Flags 1050 i32 2 ;; Encoding 1051 } 1052 1053char 1054^^^^ 1055 1056.. code-block:: llvm 1057 1058 !2 = metadata !{ 1059 i32 786468, ;; Tag 1060 null, ;; File 1061 null, ;; Context 1062 metadata !"char", ;; Name 1063 i32 0, ;; Line number 1064 i64 8, ;; Size in Bits 1065 i64 8, ;; Align in Bits 1066 i64 0, ;; Offset in Bits 1067 i32 0, ;; Flags 1068 i32 6 ;; Encoding 1069 } 1070 1071unsigned char 1072^^^^^^^^^^^^^ 1073 1074.. code-block:: llvm 1075 1076 !2 = metadata !{ 1077 i32 786468, ;; Tag 1078 null, ;; File 1079 null, ;; Context 1080 metadata !"unsigned char", 1081 i32 0, ;; Line number 1082 i64 8, ;; Size in Bits 1083 i64 8, ;; Align in Bits 1084 i64 0, ;; Offset in Bits 1085 i32 0, ;; Flags 1086 i32 8 ;; Encoding 1087 } 1088 1089short 1090^^^^^ 1091 1092.. code-block:: llvm 1093 1094 !2 = metadata !{ 1095 i32 786468, ;; Tag 1096 null, ;; File 1097 null, ;; Context 1098 metadata !"short int", 1099 i32 0, ;; Line number 1100 i64 16, ;; Size in Bits 1101 i64 16, ;; Align in Bits 1102 i64 0, ;; Offset in Bits 1103 i32 0, ;; Flags 1104 i32 5 ;; Encoding 1105 } 1106 1107unsigned short 1108^^^^^^^^^^^^^^ 1109 1110.. code-block:: llvm 1111 1112 !2 = metadata !{ 1113 i32 786468, ;; Tag 1114 null, ;; File 1115 null, ;; Context 1116 metadata !"short unsigned int", 1117 i32 0, ;; Line number 1118 i64 16, ;; Size in Bits 1119 i64 16, ;; Align in Bits 1120 i64 0, ;; Offset in Bits 1121 i32 0, ;; Flags 1122 i32 7 ;; Encoding 1123 } 1124 1125int 1126^^^ 1127 1128.. code-block:: llvm 1129 1130 !2 = metadata !{ 1131 i32 786468, ;; Tag 1132 null, ;; File 1133 null, ;; Context 1134 metadata !"int", ;; Name 1135 i32 0, ;; Line number 1136 i64 32, ;; Size in Bits 1137 i64 32, ;; Align in Bits 1138 i64 0, ;; Offset in Bits 1139 i32 0, ;; Flags 1140 i32 5 ;; Encoding 1141 } 1142 1143unsigned int 1144^^^^^^^^^^^^ 1145 1146.. code-block:: llvm 1147 1148 !2 = metadata !{ 1149 i32 786468, ;; Tag 1150 null, ;; File 1151 null, ;; Context 1152 metadata !"unsigned int", 1153 i32 0, ;; Line number 1154 i64 32, ;; Size in Bits 1155 i64 32, ;; Align in Bits 1156 i64 0, ;; Offset in Bits 1157 i32 0, ;; Flags 1158 i32 7 ;; Encoding 1159 } 1160 1161long long 1162^^^^^^^^^ 1163 1164.. code-block:: llvm 1165 1166 !2 = metadata !{ 1167 i32 786468, ;; Tag 1168 null, ;; File 1169 null, ;; Context 1170 metadata !"long long int", 1171 i32 0, ;; Line number 1172 i64 64, ;; Size in Bits 1173 i64 64, ;; Align in Bits 1174 i64 0, ;; Offset in Bits 1175 i32 0, ;; Flags 1176 i32 5 ;; Encoding 1177 } 1178 1179unsigned long long 1180^^^^^^^^^^^^^^^^^^ 1181 1182.. code-block:: llvm 1183 1184 !2 = metadata !{ 1185 i32 786468, ;; Tag 1186 null, ;; File 1187 null, ;; Context 1188 metadata !"long long unsigned int", 1189 i32 0, ;; Line number 1190 i64 64, ;; Size in Bits 1191 i64 64, ;; Align in Bits 1192 i64 0, ;; Offset in Bits 1193 i32 0, ;; Flags 1194 i32 7 ;; Encoding 1195 } 1196 1197float 1198^^^^^ 1199 1200.. code-block:: llvm 1201 1202 !2 = metadata !{ 1203 i32 786468, ;; Tag 1204 null, ;; File 1205 null, ;; Context 1206 metadata !"float", 1207 i32 0, ;; Line number 1208 i64 32, ;; Size in Bits 1209 i64 32, ;; Align in Bits 1210 i64 0, ;; Offset in Bits 1211 i32 0, ;; Flags 1212 i32 4 ;; Encoding 1213 } 1214 1215double 1216^^^^^^ 1217 1218.. code-block:: llvm 1219 1220 !2 = metadata !{ 1221 i32 786468, ;; Tag 1222 null, ;; File 1223 null, ;; Context 1224 metadata !"double",;; Name 1225 i32 0, ;; Line number 1226 i64 64, ;; Size in Bits 1227 i64 64, ;; Align in Bits 1228 i64 0, ;; Offset in Bits 1229 i32 0, ;; Flags 1230 i32 4 ;; Encoding 1231 } 1232 1233C/C++ derived types 1234------------------- 1235 1236Given the following as an example of C/C++ derived type: 1237 1238.. code-block:: c 1239 1240 typedef const int *IntPtr; 1241 1242a C/C++ front-end would generate the following descriptors: 1243 1244.. code-block:: llvm 1245 1246 ;; 1247 ;; Define the typedef "IntPtr". 1248 ;; 1249 !2 = metadata !{ 1250 i32 786454, ;; Tag 1251 metadata !3, ;; File 1252 metadata !1, ;; Context 1253 metadata !"IntPtr", ;; Name 1254 i32 0, ;; Line number 1255 i64 0, ;; Size in bits 1256 i64 0, ;; Align in bits 1257 i64 0, ;; Offset in bits 1258 i32 0, ;; Flags 1259 metadata !4 ;; Derived From type 1260 } 1261 ;; 1262 ;; Define the pointer type. 1263 ;; 1264 !4 = metadata !{ 1265 i32 786447, ;; Tag 1266 null, ;; File 1267 null, ;; Context 1268 metadata !"", ;; Name 1269 i32 0, ;; Line number 1270 i64 64, ;; Size in bits 1271 i64 64, ;; Align in bits 1272 i64 0, ;; Offset in bits 1273 i32 0, ;; Flags 1274 metadata !5 ;; Derived From type 1275 } 1276 ;; 1277 ;; Define the const type. 1278 ;; 1279 !5 = metadata !{ 1280 i32 786470, ;; Tag 1281 null, ;; File 1282 null, ;; Context 1283 metadata !"", ;; Name 1284 i32 0, ;; Line number 1285 i64 0, ;; Size in bits 1286 i64 0, ;; Align in bits 1287 i64 0, ;; Offset in bits 1288 i32 0, ;; Flags 1289 metadata !6 ;; Derived From type 1290 } 1291 ;; 1292 ;; Define the int type. 1293 ;; 1294 !6 = metadata !{ 1295 i32 786468, ;; Tag 1296 null, ;; File 1297 null, ;; Context 1298 metadata !"int", ;; Name 1299 i32 0, ;; Line number 1300 i64 32, ;; Size in bits 1301 i64 32, ;; Align in bits 1302 i64 0, ;; Offset in bits 1303 i32 0, ;; Flags 1304 i32 5 ;; Encoding 1305 } 1306 1307C/C++ struct/union types 1308------------------------ 1309 1310Given the following as an example of C/C++ struct type: 1311 1312.. code-block:: c 1313 1314 struct Color { 1315 unsigned Red; 1316 unsigned Green; 1317 unsigned Blue; 1318 }; 1319 1320a C/C++ front-end would generate the following descriptors: 1321 1322.. code-block:: llvm 1323 1324 ;; 1325 ;; Define basic type for unsigned int. 1326 ;; 1327 !5 = metadata !{ 1328 i32 786468, ;; Tag 1329 null, ;; File 1330 null, ;; Context 1331 metadata !"unsigned int", 1332 i32 0, ;; Line number 1333 i64 32, ;; Size in Bits 1334 i64 32, ;; Align in Bits 1335 i64 0, ;; Offset in Bits 1336 i32 0, ;; Flags 1337 i32 7 ;; Encoding 1338 } 1339 ;; 1340 ;; Define composite type for struct Color. 1341 ;; 1342 !2 = metadata !{ 1343 i32 786451, ;; Tag 1344 metadata !1, ;; Compile unit 1345 null, ;; Context 1346 metadata !"Color", ;; Name 1347 i32 1, ;; Line number 1348 i64 96, ;; Size in bits 1349 i64 32, ;; Align in bits 1350 i64 0, ;; Offset in bits 1351 i32 0, ;; Flags 1352 null, ;; Derived From 1353 metadata !3, ;; Elements 1354 i32 0, ;; Runtime Language 1355 null, ;; Base type containing the vtable pointer for this type 1356 null ;; Template parameters 1357 } 1358 1359 ;; 1360 ;; Define the Red field. 1361 ;; 1362 !4 = metadata !{ 1363 i32 786445, ;; Tag 1364 metadata !1, ;; File 1365 metadata !1, ;; Context 1366 metadata !"Red", ;; Name 1367 i32 2, ;; Line number 1368 i64 32, ;; Size in bits 1369 i64 32, ;; Align in bits 1370 i64 0, ;; Offset in bits 1371 i32 0, ;; Flags 1372 metadata !5 ;; Derived From type 1373 } 1374 1375 ;; 1376 ;; Define the Green field. 1377 ;; 1378 !6 = metadata !{ 1379 i32 786445, ;; Tag 1380 metadata !1, ;; File 1381 metadata !1, ;; Context 1382 metadata !"Green", ;; Name 1383 i32 3, ;; Line number 1384 i64 32, ;; Size in bits 1385 i64 32, ;; Align in bits 1386 i64 32, ;; Offset in bits 1387 i32 0, ;; Flags 1388 metadata !5 ;; Derived From type 1389 } 1390 1391 ;; 1392 ;; Define the Blue field. 1393 ;; 1394 !7 = metadata !{ 1395 i32 786445, ;; Tag 1396 metadata !1, ;; File 1397 metadata !1, ;; Context 1398 metadata !"Blue", ;; Name 1399 i32 4, ;; Line number 1400 i64 32, ;; Size in bits 1401 i64 32, ;; Align in bits 1402 i64 64, ;; Offset in bits 1403 i32 0, ;; Flags 1404 metadata !5 ;; Derived From type 1405 } 1406 1407 ;; 1408 ;; Define the array of fields used by the composite type Color. 1409 ;; 1410 !3 = metadata !{metadata !4, metadata !6, metadata !7} 1411 1412C/C++ enumeration types 1413----------------------- 1414 1415Given the following as an example of C/C++ enumeration type: 1416 1417.. code-block:: c 1418 1419 enum Trees { 1420 Spruce = 100, 1421 Oak = 200, 1422 Maple = 300 1423 }; 1424 1425a C/C++ front-end would generate the following descriptors: 1426 1427.. code-block:: llvm 1428 1429 ;; 1430 ;; Define composite type for enum Trees 1431 ;; 1432 !2 = metadata !{ 1433 i32 786436, ;; Tag 1434 metadata !1, ;; File 1435 metadata !1, ;; Context 1436 metadata !"Trees", ;; Name 1437 i32 1, ;; Line number 1438 i64 32, ;; Size in bits 1439 i64 32, ;; Align in bits 1440 i64 0, ;; Offset in bits 1441 i32 0, ;; Flags 1442 null, ;; Derived From type 1443 metadata !3, ;; Elements 1444 i32 0 ;; Runtime language 1445 } 1446 1447 ;; 1448 ;; Define the array of enumerators used by composite type Trees. 1449 ;; 1450 !3 = metadata !{metadata !4, metadata !5, metadata !6} 1451 1452 ;; 1453 ;; Define Spruce enumerator. 1454 ;; 1455 !4 = metadata !{i32 786472, metadata !"Spruce", i64 100} 1456 1457 ;; 1458 ;; Define Oak enumerator. 1459 ;; 1460 !5 = metadata !{i32 786472, metadata !"Oak", i64 200} 1461 1462 ;; 1463 ;; Define Maple enumerator. 1464 ;; 1465 !6 = metadata !{i32 786472, metadata !"Maple", i64 300} 1466 1467Debugging information format 1468============================ 1469 1470Debugging Information Extension for Objective C Properties 1471---------------------------------------------------------- 1472 1473Introduction 1474^^^^^^^^^^^^ 1475 1476Objective C provides a simpler way to declare and define accessor methods using 1477declared properties. The language provides features to declare a property and 1478to let compiler synthesize accessor methods. 1479 1480The debugger lets developer inspect Objective C interfaces and their instance 1481variables and class variables. However, the debugger does not know anything 1482about the properties defined in Objective C interfaces. The debugger consumes 1483information generated by compiler in DWARF format. The format does not support 1484encoding of Objective C properties. This proposal describes DWARF extensions to 1485encode Objective C properties, which the debugger can use to let developers 1486inspect Objective C properties. 1487 1488Proposal 1489^^^^^^^^ 1490 1491Objective C properties exist separately from class members. A property can be 1492defined only by "setter" and "getter" selectors, and be calculated anew on each 1493access. Or a property can just be a direct access to some declared ivar. 1494Finally it can have an ivar "automatically synthesized" for it by the compiler, 1495in which case the property can be referred to in user code directly using the 1496standard C dereference syntax as well as through the property "dot" syntax, but 1497there is no entry in the ``@interface`` declaration corresponding to this ivar. 1498 1499To facilitate debugging, these properties we will add a new DWARF TAG into the 1500``DW_TAG_structure_type`` definition for the class to hold the description of a 1501given property, and a set of DWARF attributes that provide said description. 1502The property tag will also contain the name and declared type of the property. 1503 1504If there is a related ivar, there will also be a DWARF property attribute placed 1505in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG 1506for that property. And in the case where the compiler synthesizes the ivar 1507directly, the compiler is expected to generate a ``DW_TAG_member`` for that 1508ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used 1509to access this ivar directly in code, and with the property attribute pointing 1510back to the property it is backing. 1511 1512The following examples will serve as illustration for our discussion: 1513 1514.. code-block:: objc 1515 1516 @interface I1 { 1517 int n2; 1518 } 1519 1520 @property int p1; 1521 @property int p2; 1522 @end 1523 1524 @implementation I1 1525 @synthesize p1; 1526 @synthesize p2 = n2; 1527 @end 1528 1529This produces the following DWARF (this is a "pseudo dwarfdump" output): 1530 1531.. code-block:: none 1532 1533 0x00000100: TAG_structure_type [7] * 1534 AT_APPLE_runtime_class( 0x10 ) 1535 AT_name( "I1" ) 1536 AT_decl_file( "Objc_Property.m" ) 1537 AT_decl_line( 3 ) 1538 1539 0x00000110 TAG_APPLE_property 1540 AT_name ( "p1" ) 1541 AT_type ( {0x00000150} ( int ) ) 1542 1543 0x00000120: TAG_APPLE_property 1544 AT_name ( "p2" ) 1545 AT_type ( {0x00000150} ( int ) ) 1546 1547 0x00000130: TAG_member [8] 1548 AT_name( "_p1" ) 1549 AT_APPLE_property ( {0x00000110} "p1" ) 1550 AT_type( {0x00000150} ( int ) ) 1551 AT_artificial ( 0x1 ) 1552 1553 0x00000140: TAG_member [8] 1554 AT_name( "n2" ) 1555 AT_APPLE_property ( {0x00000120} "p2" ) 1556 AT_type( {0x00000150} ( int ) ) 1557 1558 0x00000150: AT_type( ( int ) ) 1559 1560Note, the current convention is that the name of the ivar for an 1561auto-synthesized property is the name of the property from which it derives 1562with an underscore prepended, as is shown in the example. But we actually 1563don't need to know this convention, since we are given the name of the ivar 1564directly. 1565 1566Also, it is common practice in ObjC to have different property declarations in 1567the @interface and @implementation - e.g. to provide a read-only property in 1568the interface,and a read-write interface in the implementation. In that case, 1569the compiler should emit whichever property declaration will be in force in the 1570current translation unit. 1571 1572Developers can decorate a property with attributes which are encoded using 1573``DW_AT_APPLE_property_attribute``. 1574 1575.. code-block:: objc 1576 1577 @property (readonly, nonatomic) int pr; 1578 1579.. code-block:: none 1580 1581 TAG_APPLE_property [8] 1582 AT_name( "pr" ) 1583 AT_type ( {0x00000147} (int) ) 1584 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic) 1585 1586The setter and getter method names are attached to the property using 1587``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes. 1588 1589.. code-block:: objc 1590 1591 @interface I1 1592 @property (setter=myOwnP3Setter:) int p3; 1593 -(void)myOwnP3Setter:(int)a; 1594 @end 1595 1596 @implementation I1 1597 @synthesize p3; 1598 -(void)myOwnP3Setter:(int)a{ } 1599 @end 1600 1601The DWARF for this would be: 1602 1603.. code-block:: none 1604 1605 0x000003bd: TAG_structure_type [7] * 1606 AT_APPLE_runtime_class( 0x10 ) 1607 AT_name( "I1" ) 1608 AT_decl_file( "Objc_Property.m" ) 1609 AT_decl_line( 3 ) 1610 1611 0x000003cd TAG_APPLE_property 1612 AT_name ( "p3" ) 1613 AT_APPLE_property_setter ( "myOwnP3Setter:" ) 1614 AT_type( {0x00000147} ( int ) ) 1615 1616 0x000003f3: TAG_member [8] 1617 AT_name( "_p3" ) 1618 AT_type ( {0x00000147} ( int ) ) 1619 AT_APPLE_property ( {0x000003cd} ) 1620 AT_artificial ( 0x1 ) 1621 1622New DWARF Tags 1623^^^^^^^^^^^^^^ 1624 1625+-----------------------+--------+ 1626| TAG | Value | 1627+=======================+========+ 1628| DW_TAG_APPLE_property | 0x4200 | 1629+-----------------------+--------+ 1630 1631New DWARF Attributes 1632^^^^^^^^^^^^^^^^^^^^ 1633 1634+--------------------------------+--------+-----------+ 1635| Attribute | Value | Classes | 1636+================================+========+===========+ 1637| DW_AT_APPLE_property | 0x3fed | Reference | 1638+--------------------------------+--------+-----------+ 1639| DW_AT_APPLE_property_getter | 0x3fe9 | String | 1640+--------------------------------+--------+-----------+ 1641| DW_AT_APPLE_property_setter | 0x3fea | String | 1642+--------------------------------+--------+-----------+ 1643| DW_AT_APPLE_property_attribute | 0x3feb | Constant | 1644+--------------------------------+--------+-----------+ 1645 1646New DWARF Constants 1647^^^^^^^^^^^^^^^^^^^ 1648 1649+--------------------------------+-------+ 1650| Name | Value | 1651+================================+=======+ 1652| DW_AT_APPLE_PROPERTY_readonly | 0x1 | 1653+--------------------------------+-------+ 1654| DW_AT_APPLE_PROPERTY_readwrite | 0x2 | 1655+--------------------------------+-------+ 1656| DW_AT_APPLE_PROPERTY_assign | 0x4 | 1657+--------------------------------+-------+ 1658| DW_AT_APPLE_PROPERTY_retain | 0x8 | 1659+--------------------------------+-------+ 1660| DW_AT_APPLE_PROPERTY_copy | 0x10 | 1661+--------------------------------+-------+ 1662| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 | 1663+--------------------------------+-------+ 1664 1665Name Accelerator Tables 1666----------------------- 1667 1668Introduction 1669^^^^^^^^^^^^ 1670 1671The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a 1672debugger needs. The "``pub``" in the section name indicates that the entries 1673in the table are publicly visible names only. This means no static or hidden 1674functions show up in the "``.debug_pubnames``". No static variables or private 1675class variables are in the "``.debug_pubtypes``". Many compilers add different 1676things to these tables, so we can't rely upon the contents between gcc, icc, or 1677clang. 1678 1679The typical query given by users tends not to match up with the contents of 1680these tables. For example, the DWARF spec states that "In the case of the name 1681of a function member or static data member of a C++ structure, class or union, 1682the name presented in the "``.debug_pubnames``" section is not the simple name 1683given by the ``DW_AT_name attribute`` of the referenced debugging information 1684entry, but rather the fully qualified name of the data or function member." 1685So the only names in these tables for complex C++ entries is a fully 1686qualified name. Debugger users tend not to enter their search strings as 1687"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or 1688"``a::b::c``". So the name entered in the name table must be demangled in 1689order to chop it up appropriately and additional names must be manually entered 1690into the table to make it effective as a name lookup table for debuggers to 1691se. 1692 1693All debuggers currently ignore the "``.debug_pubnames``" table as a result of 1694its inconsistent and useless public-only name content making it a waste of 1695space in the object file. These tables, when they are written to disk, are not 1696sorted in any way, leaving every debugger to do its own parsing and sorting. 1697These tables also include an inlined copy of the string values in the table 1698itself making the tables much larger than they need to be on disk, especially 1699for large C++ programs. 1700 1701Can't we just fix the sections by adding all of the names we need to this 1702table? No, because that is not what the tables are defined to contain and we 1703won't know the difference between the old bad tables and the new good tables. 1704At best we could make our own renamed sections that contain all of the data we 1705need. 1706 1707These tables are also insufficient for what a debugger like LLDB needs. LLDB 1708uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then 1709often asked to look for type "``foo``" or namespace "``bar``", or list items in 1710namespace "``baz``". Namespaces are not included in the pubnames or pubtypes 1711tables. Since clang asks a lot of questions when it is parsing an expression, 1712we need to be very fast when looking up names, as it happens a lot. Having new 1713accelerator tables that are optimized for very quick lookups will benefit this 1714type of debugging experience greatly. 1715 1716We would like to generate name lookup tables that can be mapped into memory 1717from disk, and used as is, with little or no up-front parsing. We would also 1718be able to control the exact content of these different tables so they contain 1719exactly what we need. The Name Accelerator Tables were designed to fix these 1720issues. In order to solve these issues we need to: 1721 1722* Have a format that can be mapped into memory from disk and used as is 1723* Lookups should be very fast 1724* Extensible table format so these tables can be made by many producers 1725* Contain all of the names needed for typical lookups out of the box 1726* Strict rules for the contents of tables 1727 1728Table size is important and the accelerator table format should allow the reuse 1729of strings from common string tables so the strings for the names are not 1730duplicated. We also want to make sure the table is ready to be used as-is by 1731simply mapping the table into memory with minimal header parsing. 1732 1733The name lookups need to be fast and optimized for the kinds of lookups that 1734debuggers tend to do. Optimally we would like to touch as few parts of the 1735mapped table as possible when doing a name lookup and be able to quickly find 1736the name entry we are looking for, or discover there are no matches. In the 1737case of debuggers we optimized for lookups that fail most of the time. 1738 1739Each table that is defined should have strict rules on exactly what is in the 1740accelerator tables and documented so clients can rely on the content. 1741 1742Hash Tables 1743^^^^^^^^^^^ 1744 1745Standard Hash Tables 1746"""""""""""""""""""" 1747 1748Typical hash tables have a header, buckets, and each bucket points to the 1749bucket contents: 1750 1751.. code-block:: none 1752 1753 .------------. 1754 | HEADER | 1755 |------------| 1756 | BUCKETS | 1757 |------------| 1758 | DATA | 1759 `------------' 1760 1761The BUCKETS are an array of offsets to DATA for each hash: 1762 1763.. code-block:: none 1764 1765 .------------. 1766 | 0x00001000 | BUCKETS[0] 1767 | 0x00002000 | BUCKETS[1] 1768 | 0x00002200 | BUCKETS[2] 1769 | 0x000034f0 | BUCKETS[3] 1770 | | ... 1771 | 0xXXXXXXXX | BUCKETS[n_buckets] 1772 '------------' 1773 1774So for ``bucket[3]`` in the example above, we have an offset into the table 17750x000034f0 which points to a chain of entries for the bucket. Each bucket must 1776contain a next pointer, full 32 bit hash value, the string itself, and the data 1777for the current string value. 1778 1779.. code-block:: none 1780 1781 .------------. 1782 0x000034f0: | 0x00003500 | next pointer 1783 | 0x12345678 | 32 bit hash 1784 | "erase" | string value 1785 | data[n] | HashData for this bucket 1786 |------------| 1787 0x00003500: | 0x00003550 | next pointer 1788 | 0x29273623 | 32 bit hash 1789 | "dump" | string value 1790 | data[n] | HashData for this bucket 1791 |------------| 1792 0x00003550: | 0x00000000 | next pointer 1793 | 0x82638293 | 32 bit hash 1794 | "main" | string value 1795 | data[n] | HashData for this bucket 1796 `------------' 1797 1798The problem with this layout for debuggers is that we need to optimize for the 1799negative lookup case where the symbol we're searching for is not present. So 1800if we were to lookup "``printf``" in the table above, we would make a 32 hash 1801for "``printf``", it might match ``bucket[3]``. We would need to go to the 1802offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do 1803so, we need to read the next pointer, then read the hash, compare it, and skip 1804to the next bucket. Each time we are skipping many bytes in memory and 1805touching new cache pages just to do the compare on the full 32 bit hash. All 1806of these accesses then tell us that we didn't have a match. 1807 1808Name Hash Tables 1809"""""""""""""""" 1810 1811To solve the issues mentioned above we have structured the hash tables a bit 1812differently: a header, buckets, an array of all unique 32 bit hash values, 1813followed by an array of hash value data offsets, one for each hash value, then 1814the data for all hash values: 1815 1816.. code-block:: none 1817 1818 .-------------. 1819 | HEADER | 1820 |-------------| 1821 | BUCKETS | 1822 |-------------| 1823 | HASHES | 1824 |-------------| 1825 | OFFSETS | 1826 |-------------| 1827 | DATA | 1828 `-------------' 1829 1830The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By 1831making all of the full 32 bit hash values contiguous in memory, we allow 1832ourselves to efficiently check for a match while touching as little memory as 1833possible. Most often checking the 32 bit hash values is as far as the lookup 1834goes. If it does match, it usually is a match with no collisions. So for a 1835table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash 1836values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and 1837``OFFSETS`` as: 1838 1839.. code-block:: none 1840 1841 .-------------------------. 1842 | HEADER.magic | uint32_t 1843 | HEADER.version | uint16_t 1844 | HEADER.hash_function | uint16_t 1845 | HEADER.bucket_count | uint32_t 1846 | HEADER.hashes_count | uint32_t 1847 | HEADER.header_data_len | uint32_t 1848 | HEADER_DATA | HeaderData 1849 |-------------------------| 1850 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes 1851 |-------------------------| 1852 | HASHES | uint32_t[n_hashes] // 32 bit hash values 1853 |-------------------------| 1854 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data 1855 |-------------------------| 1856 | ALL HASH DATA | 1857 `-------------------------' 1858 1859So taking the exact same data from the standard hash example above we end up 1860with: 1861 1862.. code-block:: none 1863 1864 .------------. 1865 | HEADER | 1866 |------------| 1867 | 0 | BUCKETS[0] 1868 | 2 | BUCKETS[1] 1869 | 5 | BUCKETS[2] 1870 | 6 | BUCKETS[3] 1871 | | ... 1872 | ... | BUCKETS[n_buckets] 1873 |------------| 1874 | 0x........ | HASHES[0] 1875 | 0x........ | HASHES[1] 1876 | 0x........ | HASHES[2] 1877 | 0x........ | HASHES[3] 1878 | 0x........ | HASHES[4] 1879 | 0x........ | HASHES[5] 1880 | 0x12345678 | HASHES[6] hash for BUCKETS[3] 1881 | 0x29273623 | HASHES[7] hash for BUCKETS[3] 1882 | 0x82638293 | HASHES[8] hash for BUCKETS[3] 1883 | 0x........ | HASHES[9] 1884 | 0x........ | HASHES[10] 1885 | 0x........ | HASHES[11] 1886 | 0x........ | HASHES[12] 1887 | 0x........ | HASHES[13] 1888 | 0x........ | HASHES[n_hashes] 1889 |------------| 1890 | 0x........ | OFFSETS[0] 1891 | 0x........ | OFFSETS[1] 1892 | 0x........ | OFFSETS[2] 1893 | 0x........ | OFFSETS[3] 1894 | 0x........ | OFFSETS[4] 1895 | 0x........ | OFFSETS[5] 1896 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3] 1897 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3] 1898 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3] 1899 | 0x........ | OFFSETS[9] 1900 | 0x........ | OFFSETS[10] 1901 | 0x........ | OFFSETS[11] 1902 | 0x........ | OFFSETS[12] 1903 | 0x........ | OFFSETS[13] 1904 | 0x........ | OFFSETS[n_hashes] 1905 |------------| 1906 | | 1907 | | 1908 | | 1909 | | 1910 | | 1911 |------------| 1912 0x000034f0: | 0x00001203 | .debug_str ("erase") 1913 | 0x00000004 | A 32 bit array count - number of HashData with name "erase" 1914 | 0x........ | HashData[0] 1915 | 0x........ | HashData[1] 1916 | 0x........ | HashData[2] 1917 | 0x........ | HashData[3] 1918 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1919 |------------| 1920 0x00003500: | 0x00001203 | String offset into .debug_str ("collision") 1921 | 0x00000002 | A 32 bit array count - number of HashData with name "collision" 1922 | 0x........ | HashData[0] 1923 | 0x........ | HashData[1] 1924 | 0x00001203 | String offset into .debug_str ("dump") 1925 | 0x00000003 | A 32 bit array count - number of HashData with name "dump" 1926 | 0x........ | HashData[0] 1927 | 0x........ | HashData[1] 1928 | 0x........ | HashData[2] 1929 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1930 |------------| 1931 0x00003550: | 0x00001203 | String offset into .debug_str ("main") 1932 | 0x00000009 | A 32 bit array count - number of HashData with name "main" 1933 | 0x........ | HashData[0] 1934 | 0x........ | HashData[1] 1935 | 0x........ | HashData[2] 1936 | 0x........ | HashData[3] 1937 | 0x........ | HashData[4] 1938 | 0x........ | HashData[5] 1939 | 0x........ | HashData[6] 1940 | 0x........ | HashData[7] 1941 | 0x........ | HashData[8] 1942 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1943 `------------' 1944 1945So we still have all of the same data, we just organize it more efficiently for 1946debugger lookup. If we repeat the same "``printf``" lookup from above, we 1947would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit 1948hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which 1949is the index into the ``HASHES`` table. We would then compare any consecutive 195032 bit hashes values in the ``HASHES`` array as long as the hashes would be in 1951``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo 1952``n_buckets`` is still 3. In the case of a failed lookup we would access the 1953memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes 1954before we know that we have no match. We don't end up marching through 1955multiple words of memory and we really keep the number of processor data cache 1956lines being accessed as small as possible. 1957 1958The string hash that is used for these lookup tables is the Daniel J. 1959Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a 1960very good hash for all kinds of names in programs with very few hash 1961collisions. 1962 1963Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``. 1964 1965Details 1966^^^^^^^ 1967 1968These name hash tables are designed to be generic where specializations of the 1969table get to define additional data that goes into the header ("``HeaderData``"), 1970how the string value is stored ("``KeyType``") and the content of the data for each 1971hash value. 1972 1973Header Layout 1974""""""""""""" 1975 1976The header has a fixed part, and the specialized part. The exact format of the 1977header is: 1978 1979.. code-block:: c 1980 1981 struct Header 1982 { 1983 uint32_t magic; // 'HASH' magic value to allow endian detection 1984 uint16_t version; // Version number 1985 uint16_t hash_function; // The hash function enumeration that was used 1986 uint32_t bucket_count; // The number of buckets in this hash table 1987 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table 1988 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment 1989 // Specifically the length of the following HeaderData field - this does not 1990 // include the size of the preceding fields 1991 HeaderData header_data; // Implementation specific header data 1992 }; 1993 1994The header starts with a 32 bit "``magic``" value which must be ``'HASH'`` 1995encoded as an ASCII integer. This allows the detection of the start of the 1996hash table and also allows the table's byte order to be determined so the table 1997can be correctly extracted. The "``magic``" value is followed by a 16 bit 1998``version`` number which allows the table to be revised and modified in the 1999future. The current version number is 1. ``hash_function`` is a ``uint16_t`` 2000enumeration that specifies which hash function was used to produce this table. 2001The current values for the hash function enumerations include: 2002 2003.. code-block:: c 2004 2005 enum HashFunctionType 2006 { 2007 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function 2008 }; 2009 2010``bucket_count`` is a 32 bit unsigned integer that represents how many buckets 2011are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit 2012hash values that are in the ``HASHES`` array, and is the same number of offsets 2013are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size 2014in bytes of the ``HeaderData`` that is filled in by specialized versions of 2015this table. 2016 2017Fixed Lookup 2018"""""""""""" 2019 2020The header is followed by the buckets, hashes, offsets, and hash value data. 2021 2022.. code-block:: c 2023 2024 struct FixedTable 2025 { 2026 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below 2027 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table 2028 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above 2029 }; 2030 2031``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The 2032``hashes`` array contains all of the 32 bit hash values for all names in the 2033hash table. Each hash in the ``hashes`` table has an offset in the ``offsets`` 2034array that points to the data for the hash value. 2035 2036This table setup makes it very easy to repurpose these tables to contain 2037different data, while keeping the lookup mechanism the same for all tables. 2038This layout also makes it possible to save the table to disk and map it in 2039later and do very efficient name lookups with little or no parsing. 2040 2041DWARF lookup tables can be implemented in a variety of ways and can store a lot 2042of information for each name. We want to make the DWARF tables extensible and 2043able to store the data efficiently so we have used some of the DWARF features 2044that enable efficient data storage to define exactly what kind of data we store 2045for each name. 2046 2047The ``HeaderData`` contains a definition of the contents of each HashData chunk. 2048We might want to store an offset to all of the debug information entries (DIEs) 2049for each name. To keep things extensible, we create a list of items, or 2050Atoms, that are contained in the data for each name. First comes the type of 2051the data in each atom: 2052 2053.. code-block:: c 2054 2055 enum AtomType 2056 { 2057 eAtomTypeNULL = 0u, 2058 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding 2059 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question 2060 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2 2061 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags 2062 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags 2063 }; 2064 2065The enumeration values and their meanings are: 2066 2067.. code-block:: none 2068 2069 eAtomTypeNULL - a termination atom that specifies the end of the atom list 2070 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name 2071 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE 2072 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is 2073 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...) 2074 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...) 2075 2076Then we allow each atom type to define the atom type and how the data for each 2077atom type data is encoded: 2078 2079.. code-block:: c 2080 2081 struct Atom 2082 { 2083 uint16_t type; // AtomType enum value 2084 uint16_t form; // DWARF DW_FORM_XXX defines 2085 }; 2086 2087The ``form`` type above is from the DWARF specification and defines the exact 2088encoding of the data for the Atom type. See the DWARF specification for the 2089``DW_FORM_`` definitions. 2090 2091.. code-block:: c 2092 2093 struct HeaderData 2094 { 2095 uint32_t die_offset_base; 2096 uint32_t atom_count; 2097 Atoms atoms[atom_count0]; 2098 }; 2099 2100``HeaderData`` defines the base DIE offset that should be added to any atoms 2101that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``, 2102``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines 2103what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large 2104each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data 2105should be interpreted. 2106 2107For the current implementations of the "``.apple_names``" (all functions + 2108globals), the "``.apple_types``" (names of all types that are defined), and 2109the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom`` 2110array to be: 2111 2112.. code-block:: c 2113 2114 HeaderData.atom_count = 1; 2115 HeaderData.atoms[0].type = eAtomTypeDIEOffset; 2116 HeaderData.atoms[0].form = DW_FORM_data4; 2117 2118This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is 2119encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have 2120multiple matching DIEs in a single file, which could come up with an inlined 2121function for instance. Future tables could include more information about the 2122DIE such as flags indicating if the DIE is a function, method, block, 2123or inlined. 2124 2125The KeyType for the DWARF table is a 32 bit string table offset into the 2126".debug_str" table. The ".debug_str" is the string table for the DWARF which 2127may already contain copies of all of the strings. This helps make sure, with 2128help from the compiler, that we reuse the strings between all of the DWARF 2129sections and keeps the hash table size down. Another benefit to having the 2130compiler generate all strings as DW_FORM_strp in the debug info, is that 2131DWARF parsing can be made much faster. 2132 2133After a lookup is made, we get an offset into the hash data. The hash data 2134needs to be able to deal with 32 bit hash collisions, so the chunk of data 2135at the offset in the hash data consists of a triple: 2136 2137.. code-block:: c 2138 2139 uint32_t str_offset 2140 uint32_t hash_data_count 2141 HashData[hash_data_count] 2142 2143If "str_offset" is zero, then the bucket contents are done. 99.9% of the 2144hash data chunks contain a single item (no 32 bit hash collision): 2145 2146.. code-block:: none 2147 2148 .------------. 2149 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2150 | 0x00000004 | uint32_t HashData count 2151 | 0x........ | uint32_t HashData[0] DIE offset 2152 | 0x........ | uint32_t HashData[1] DIE offset 2153 | 0x........ | uint32_t HashData[2] DIE offset 2154 | 0x........ | uint32_t HashData[3] DIE offset 2155 | 0x00000000 | uint32_t KeyType (end of hash chain) 2156 `------------' 2157 2158If there are collisions, you will have multiple valid string offsets: 2159 2160.. code-block:: none 2161 2162 .------------. 2163 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2164 | 0x00000004 | uint32_t HashData count 2165 | 0x........ | uint32_t HashData[0] DIE offset 2166 | 0x........ | uint32_t HashData[1] DIE offset 2167 | 0x........ | uint32_t HashData[2] DIE offset 2168 | 0x........ | uint32_t HashData[3] DIE offset 2169 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print") 2170 | 0x00000002 | uint32_t HashData count 2171 | 0x........ | uint32_t HashData[0] DIE offset 2172 | 0x........ | uint32_t HashData[1] DIE offset 2173 | 0x00000000 | uint32_t KeyType (end of hash chain) 2174 `------------' 2175 2176Current testing with real world C++ binaries has shown that there is around 1 217732 bit hash collision per 100,000 name entries. 2178 2179Contents 2180^^^^^^^^ 2181 2182As we said, we want to strictly define exactly what is included in the 2183different tables. For DWARF, we have 3 tables: "``.apple_names``", 2184"``.apple_types``", and "``.apple_namespaces``". 2185 2186"``.apple_names``" sections should contain an entry for each DWARF DIE whose 2187``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or 2188``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``, 2189``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains 2190``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and 2191static variables). All global and static variables should be included, 2192including those scoped within functions and classes. For example using the 2193following code: 2194 2195.. code-block:: c 2196 2197 static int var = 0; 2198 2199 void f () 2200 { 2201 static int var = 0; 2202 } 2203 2204Both of the static ``var`` variables would be included in the table. All 2205functions should emit both their full names and their basenames. For C or C++, 2206the full name is the mangled name (if available) which is usually in the 2207``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the 2208function basename. If global or static variables have a mangled name in a 2209``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the 2210simple name found in the ``DW_AT_name`` attribute. 2211 2212"``.apple_types``" sections should contain an entry for each DWARF DIE whose 2213tag is one of: 2214 2215* DW_TAG_array_type 2216* DW_TAG_class_type 2217* DW_TAG_enumeration_type 2218* DW_TAG_pointer_type 2219* DW_TAG_reference_type 2220* DW_TAG_string_type 2221* DW_TAG_structure_type 2222* DW_TAG_subroutine_type 2223* DW_TAG_typedef 2224* DW_TAG_union_type 2225* DW_TAG_ptr_to_member_type 2226* DW_TAG_set_type 2227* DW_TAG_subrange_type 2228* DW_TAG_base_type 2229* DW_TAG_const_type 2230* DW_TAG_constant 2231* DW_TAG_file_type 2232* DW_TAG_namelist 2233* DW_TAG_packed_type 2234* DW_TAG_volatile_type 2235* DW_TAG_restrict_type 2236* DW_TAG_interface_type 2237* DW_TAG_unspecified_type 2238* DW_TAG_shared_type 2239 2240Only entries with a ``DW_AT_name`` attribute are included, and the entry must 2241not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero 2242value). For example, using the following code: 2243 2244.. code-block:: c 2245 2246 int main () 2247 { 2248 int *b = 0; 2249 return *b; 2250 } 2251 2252We get a few type DIEs: 2253 2254.. code-block:: none 2255 2256 0x00000067: TAG_base_type [5] 2257 AT_encoding( DW_ATE_signed ) 2258 AT_name( "int" ) 2259 AT_byte_size( 0x04 ) 2260 2261 0x0000006e: TAG_pointer_type [6] 2262 AT_type( {0x00000067} ( int ) ) 2263 AT_byte_size( 0x08 ) 2264 2265The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``. 2266 2267"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs. 2268If we run into a namespace that has no name this is an anonymous namespace, and 2269the name should be output as "``(anonymous namespace)``" (without the quotes). 2270Why? This matches the output of the ``abi::cxa_demangle()`` that is in the 2271standard C++ library that demangles mangled names. 2272 2273 2274Language Extensions and File Format Changes 2275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2276 2277Objective-C Extensions 2278"""""""""""""""""""""" 2279 2280"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an 2281Objective-C class. The name used in the hash table is the name of the 2282Objective-C class itself. If the Objective-C class has a category, then an 2283entry is made for both the class name without the category, and for the class 2284name with the category. So if we have a DIE at offset 0x1234 with a name of 2285method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add 2286an entry for "``NSString``" that points to DIE 0x1234, and an entry for 2287"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly 2288track down all Objective-C methods for an Objective-C class when doing 2289expressions. It is needed because of the dynamic nature of Objective-C where 2290anyone can add methods to a class. The DWARF for Objective-C methods is also 2291emitted differently from C++ classes where the methods are not usually 2292contained in the class definition, they are scattered about across one or more 2293compile units. Categories can also be defined in different shared libraries. 2294So we need to be able to quickly find all of the methods and class functions 2295given the Objective-C class name, or quickly find all methods and class 2296functions for a class + category name. This table does not contain any 2297selector names, it just maps Objective-C class names (or class names + 2298category) to all of the methods and class functions. The selectors are added 2299as function basenames in the "``.debug_names``" section. 2300 2301In the "``.apple_names``" section for Objective-C functions, the full name is 2302the entire function name with the brackets ("``-[NSString 2303stringWithCString:]``") and the basename is the selector only 2304("``stringWithCString:``"). 2305 2306Mach-O Changes 2307"""""""""""""" 2308 2309The sections names for the apple hash tables are for non-mach-o files. For 2310mach-o files, the sections should be contained in the ``__DWARF`` segment with 2311names as follows: 2312 2313* "``.apple_names``" -> "``__apple_names``" 2314* "``.apple_types``" -> "``__apple_types``" 2315* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit) 2316* "``.apple_objc``" -> "``__apple_objc``" 2317 2318