1================================
2Source Level Debugging with LLVM
3================================
4
5.. contents::
6   :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM.  It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information.  Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here.  The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26  compiler.  No transformations, analyses, or code generators should need to
27  be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30  ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33  LLVM-to-LLVM tools should not need to know anything about the semantics of
34  the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37  LLVM should not put any restrictions of the flavor of the source-language,
38  and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41  to compile a program to native machine code and standard debugging
42  formats.  This allows compatibility with traditional machine-code level
43  debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects.  The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information.  As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process.  This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger.  Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis.  In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86  the source-level state of the program**, regardless of which LLVM
87  optimizations have been run, and without any modification to the
88  optimizations themselves.  However, some optimizations may impact the
89  ability to modify the current state of the program with a debugger, such
90  as setting program variables, or calling functions that have been
91  deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94  debugging information, allowing them to update the debugging information
95  as they perform aggressive optimizations.  This means that, with effort,
96  the LLVM optimizers could optimize debug code just as well as non-debug
97  code.
98
99* LLVM debug information does not prevent optimizations from
100  happening (for example inlining, basic block reordering/merging/cleanup,
101  tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104  the program, using existing facilities.  For example, duplicate
105  information is automatically merged by the linker, and unused information
106  is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger.  Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information.  It can be run like this:
119
120.. code-block:: bash
121
122  % cd llvm/projects/test-suite/MultiSource/Benchmarks  # or some other level
123  % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes.  If
126debugging information influences optimization passes then it will be reported
127as a failure.  See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information.  In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc).  It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum.  The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`.  These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language.  :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
172information appended at the end that is source-language specific.  All debugging
173information objects start with a tag to indicate what type of object it is.
174The source-language is allowed to define its own objects, by using unreserved
175tag numbers.  We recommend using with tags in the range 0x1000 through 0x2000
176(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
177
178The fields of debug descriptors used internally by LLVM are restricted to only
179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
180``mdnode``.
181
182.. code-block:: llvm
183
184  !1 = metadata !{
185    i32,   ;; A tag
186    ...
187  }
188
189<a name="LLVMDebugVersion">The first field of a descriptor is always an
190``i32`` containing a tag value identifying the content of the descriptor.
191The remaining fields are specific to the descriptor.  The values of tags are
192loosely bound to the tag values of DWARF information entries.  However, that
193does not restrict the use of the information supplied to DWARF targets.
194
195The details of the various descriptors follow.
196
197Compile unit descriptors
198^^^^^^^^^^^^^^^^^^^^^^^^
199
200.. code-block:: llvm
201
202  !0 = metadata !{
203    i32,       ;; Tag = 17 (DW_TAG_compile_unit)
204    metadata,  ;; Source directory (including trailing slash) & file pair
205    i32,       ;; DWARF language identifier (ex. DW_LANG_C89)
206    metadata   ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
207    i1,        ;; True if this is optimized.
208    metadata,  ;; Flags
209    i32        ;; Runtime version
210    metadata   ;; List of enums types
211    metadata   ;; List of retained types
212    metadata   ;; List of subprograms
213    metadata   ;; List of global variables
214    metadata   ;; List of imported entities
215    metadata   ;; Split debug filename
216    i32        ;; Debug info emission kind (1 = Full Debug Info, 2 = Line Tables Only)
217  }
218
219These descriptors contain a source language ID for the file (we use the DWARF
2203.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
221``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of
222strings for the source file name and the working directory, as well as an
223identifier string for the compiler that produced it.
224
225Compile unit descriptors provide the root context for objects declared in a
226specific compilation unit.  File descriptors are defined using this context.
227These descriptors are collected by a named metadata ``!llvm.dbg.cu``.  They
228keep track of subprograms, global variables, type information, and imported
229entities (declarations and namespaces).
230
231.. _format_files:
232
233File descriptors
234^^^^^^^^^^^^^^^^
235
236.. code-block:: llvm
237
238  !0 = metadata !{
239    i32,      ;; Tag = 41 (DW_TAG_file_type)
240    metadata, ;; Source directory (including trailing slash) & file pair
241  }
242
243These descriptors contain information for a file.  Global variables and top
244level functions would be defined using this context.  File descriptors also
245provide context for source line correspondence.
246
247Each input file is encoded as a separate file descriptor in LLVM debugging
248information output.
249
250.. _format_global_variables:
251
252Global variable descriptors
253^^^^^^^^^^^^^^^^^^^^^^^^^^^
254
255.. code-block:: llvm
256
257  !1 = metadata !{
258    i32,      ;; Tag = 52 (DW_TAG_variable)
259    i32,      ;; Unused field.
260    metadata, ;; Reference to context descriptor
261    metadata, ;; Name
262    metadata, ;; Display name (fully qualified C++ name)
263    metadata, ;; MIPS linkage name (for C++)
264    metadata, ;; Reference to file where defined
265    i32,      ;; Line number where defined
266    metadata, ;; Reference to type descriptor
267    i1,       ;; True if the global is local to compile unit (static)
268    i1,       ;; True if the global is defined in the compile unit (not extern)
269    {}*,      ;; Reference to the global variable
270    metadata, ;; The static member declaration, if any
271  }
272
273These descriptors provide debug information about global variables.  They
274provide details such as name, type and where the variable is defined.  All
275global variables are collected inside the named metadata ``!llvm.dbg.cu``.
276
277.. _format_subprograms:
278
279Subprogram descriptors
280^^^^^^^^^^^^^^^^^^^^^^
281
282.. code-block:: llvm
283
284  !2 = metadata !{
285    i32,      ;; Tag = 46 (DW_TAG_subprogram)
286    metadata, ;; Source directory (including trailing slash) & file pair
287    metadata, ;; Reference to context descriptor
288    metadata, ;; Name
289    metadata, ;; Display name (fully qualified C++ name)
290    metadata, ;; MIPS linkage name (for C++)
291    i32,      ;; Line number where defined
292    metadata, ;; Reference to type descriptor
293    i1,       ;; True if the global is local to compile unit (static)
294    i1,       ;; True if the global is defined in the compile unit (not extern)
295    i32,      ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
296    i32,      ;; Index into a virtual function
297    metadata, ;; indicates which base type contains the vtable pointer for the
298              ;; derived class
299    i32,      ;; Flags - Artificial, Private, Protected, Explicit, Prototyped.
300    i1,       ;; isOptimized
301    {}*,      ;; Reference to the LLVM function
302    metadata, ;; Lists function template parameters
303    metadata, ;; Function declaration descriptor
304    metadata, ;; List of function variables
305    i32       ;; Line number where the scope of the subprogram begins
306  }
307
308These descriptors provide debug information about functions, methods and
309subprograms.  They provide details such as name, return types and the source
310location where the subprogram is defined.
311
312Block descriptors
313^^^^^^^^^^^^^^^^^
314
315.. code-block:: llvm
316
317  !3 = metadata !{
318    i32,      ;; Tag = 11 (DW_TAG_lexical_block)
319    metadata, ;; Source directory (including trailing slash) & file pair
320    metadata, ;; Reference to context descriptor
321    i32,      ;; Line number
322    i32,      ;; Column number
323    i32,      ;; DWARF path discriminator value
324    i32       ;; Unique ID to identify blocks from a template function
325  }
326
327This descriptor provides debug information about nested blocks within a
328subprogram.  The line number and column numbers are used to dinstinguish two
329lexical blocks at same depth.
330
331.. code-block:: llvm
332
333  !3 = metadata !{
334    i32,      ;; Tag = 11 (DW_TAG_lexical_block)
335    metadata, ;; Source directory (including trailing slash) & file pair
336    metadata  ;; Reference to the scope we're annotating with a file change
337  }
338
339This descriptor provides a wrapper around a lexical scope to handle file
340changes in the middle of a lexical block.
341
342.. _format_basic_type:
343
344Basic type descriptors
345^^^^^^^^^^^^^^^^^^^^^^
346
347.. code-block:: llvm
348
349  !4 = metadata !{
350    i32,      ;; Tag = 36 (DW_TAG_base_type)
351    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
352    metadata, ;; Reference to context
353    metadata, ;; Name (may be "" for anonymous types)
354    i32,      ;; Line number where defined (may be 0)
355    i64,      ;; Size in bits
356    i64,      ;; Alignment in bits
357    i64,      ;; Offset in bits
358    i32,      ;; Flags
359    i32       ;; DWARF type encoding
360  }
361
362These descriptors define primitive types used in the code.  Example ``int``,
363``bool`` and ``float``.  The context provides the scope of the type, which is
364usually the top level.  Since basic types are not usually user defined the
365context and line number can be left as NULL and 0.  The size, alignment and
366offset are expressed in bits and can be 64 bit values.  The alignment is used
367to round the offset when embedded in a :ref:`composite type
368<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
369The offset is the bit offset if embedded in a :ref:`composite type
370<format_composite_type>`.
371
372The type encoding provides the details of the type.  The values are typically
373one of the following:
374
375.. code-block:: llvm
376
377  DW_ATE_address       = 1
378  DW_ATE_boolean       = 2
379  DW_ATE_float         = 4
380  DW_ATE_signed        = 5
381  DW_ATE_signed_char   = 6
382  DW_ATE_unsigned      = 7
383  DW_ATE_unsigned_char = 8
384
385.. _format_derived_type:
386
387Derived type descriptors
388^^^^^^^^^^^^^^^^^^^^^^^^
389
390.. code-block:: llvm
391
392  !5 = metadata !{
393    i32,      ;; Tag (see below)
394    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
395    metadata, ;; Reference to context
396    metadata, ;; Name (may be "" for anonymous types)
397    i32,      ;; Line number where defined (may be 0)
398    i64,      ;; Size in bits
399    i64,      ;; Alignment in bits
400    i64,      ;; Offset in bits
401    i32,      ;; Flags to encode attributes, e.g. private
402    metadata, ;; Reference to type derived from
403    metadata, ;; (optional) Name of the Objective C property associated with
404              ;; Objective-C an ivar, or the type of which this
405              ;; pointer-to-member is pointing to members of.
406    metadata, ;; (optional) Name of the Objective C property getter selector.
407    metadata, ;; (optional) Name of the Objective C property setter selector.
408    i32       ;; (optional) Objective C property attributes.
409  }
410
411These descriptors are used to define types derived from other types.  The value
412of the tag varies depending on the meaning.  The following are possible tag
413values:
414
415.. code-block:: llvm
416
417  DW_TAG_formal_parameter   = 5
418  DW_TAG_member             = 13
419  DW_TAG_pointer_type       = 15
420  DW_TAG_reference_type     = 16
421  DW_TAG_typedef            = 22
422  DW_TAG_ptr_to_member_type = 31
423  DW_TAG_const_type         = 38
424  DW_TAG_volatile_type      = 53
425  DW_TAG_restrict_type      = 55
426
427``DW_TAG_member`` is used to define a member of a :ref:`composite type
428<format_composite_type>` or :ref:`subprogram <format_subprograms>`.  The type
429of the member is the :ref:`derived type <format_derived_type>`.
430``DW_TAG_formal_parameter`` is used to define a member which is a formal
431argument of a subprogram.
432
433``DW_TAG_typedef`` is used to provide a name for the derived type.
434
435``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
436``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
437:ref:`derived type <format_derived_type>`.
438
439:ref:`Derived type <format_derived_type>` location can be determined from the
440context and line number.  The size, alignment and offset are expressed in bits
441and can be 64 bit values.  The alignment is used to round the offset when
442embedded in a :ref:`composite type <format_composite_type>`  (example to keep
443float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
444in a :ref:`composite type <format_composite_type>`.
445
446Note that the ``void *`` type is expressed as a type derived from NULL.
447
448.. _format_composite_type:
449
450Composite type descriptors
451^^^^^^^^^^^^^^^^^^^^^^^^^^
452
453.. code-block:: llvm
454
455  !6 = metadata !{
456    i32,      ;; Tag (see below)
457    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
458    metadata, ;; Reference to context
459    metadata, ;; Name (may be "" for anonymous types)
460    i32,      ;; Line number where defined (may be 0)
461    i64,      ;; Size in bits
462    i64,      ;; Alignment in bits
463    i64,      ;; Offset in bits
464    i32,      ;; Flags
465    metadata, ;; Reference to type derived from
466    metadata, ;; Reference to array of member descriptors
467    i32,      ;; Runtime languages
468    metadata, ;; Base type containing the vtable pointer for this type
469    metadata, ;; Template parameters
470    metadata  ;; A unique identifier for type uniquing purpose (may be null)
471  }
472
473These descriptors are used to define types that are composed of 0 or more
474elements.  The value of the tag varies depending on the meaning.  The following
475are possible tag values:
476
477.. code-block:: llvm
478
479  DW_TAG_array_type       = 1
480  DW_TAG_enumeration_type = 4
481  DW_TAG_structure_type   = 19
482  DW_TAG_union_type       = 23
483  DW_TAG_subroutine_type  = 21
484  DW_TAG_inheritance      = 28
485
486The vector flag indicates that an array type is a native packed vector.
487
488The members of array types (tag = ``DW_TAG_array_type``) are
489:ref:`subrange descriptors <format_subrange>`, each
490representing the range of subscripts at that level of indexing.
491
492The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
493:ref:`enumerator descriptors <format_enumerator>`, each representing the
494definition of enumeration value for the set.  All enumeration type descriptors
495are collected inside the named metadata ``!llvm.dbg.cu``.
496
497The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
498``DW_TAG_union_type``) types are any one of the :ref:`basic
499<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
500<format_composite_type>` type descriptors, each representing a field member of
501the structure or union.
502
503For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
504information about base classes, static members and member functions.  If a
505member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
506of ``DW_TAG_inheritance``, then the type represents a base class.  If the member
507of is a :ref:`global variable descriptor <format_global_variables>` then it
508represents a static member.  And, if the member is a :ref:`subprogram
509descriptor <format_subprograms>` then it represents a member function.  For
510static members and member functions, ``getName()`` returns the members link or
511the C++ mangled name.  ``getDisplayName()`` the simplied version of the name.
512
513The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
514is the return type for the subroutine.  The remaining elements are the formal
515arguments to the subroutine.
516
517:ref:`Composite type <format_composite_type>` location can be determined from
518the context and line number.  The size, alignment and offset are expressed in
519bits and can be 64 bit values.  The alignment is used to round the offset when
520embedded in a :ref:`composite type <format_composite_type>` (as an example, to
521keep float doubles on 64 bit boundaries).  The offset is the bit offset if
522embedded in a :ref:`composite type <format_composite_type>`.
523
524.. _format_subrange:
525
526Subrange descriptors
527^^^^^^^^^^^^^^^^^^^^
528
529.. code-block:: llvm
530
531  !42 = metadata !{
532    i32,      ;; Tag = 33 (DW_TAG_subrange_type)
533    i64,      ;; Low value
534    i64       ;; High value
535  }
536
537These descriptors are used to define ranges of array subscripts for an array
538:ref:`composite type <format_composite_type>`.  The low value defines the lower
539bounds typically zero for C/C++.  The high value is the upper bounds.  Values
540are 64 bit.  ``High - Low + 1`` is the size of the array.  If ``Low > High``
541the array bounds are not included in generated debugging information.
542
543.. _format_enumerator:
544
545Enumerator descriptors
546^^^^^^^^^^^^^^^^^^^^^^
547
548.. code-block:: llvm
549
550  !6 = metadata !{
551    i32,      ;; Tag = 40 (DW_TAG_enumerator)
552    metadata, ;; Name
553    i64       ;; Value
554  }
555
556These descriptors are used to define members of an enumeration :ref:`composite
557type <format_composite_type>`, it associates the name to the value.
558
559Local variables
560^^^^^^^^^^^^^^^
561
562.. code-block:: llvm
563
564  !7 = metadata !{
565    i32,      ;; Tag (see below)
566    metadata, ;; Context
567    metadata, ;; Name
568    metadata, ;; Reference to file where defined
569    i32,      ;; 24 bit - Line number where defined
570              ;; 8 bit - Argument number. 1 indicates 1st argument.
571    metadata, ;; Reference to the type descriptor
572    i32,      ;; flags
573    metadata  ;; (optional) Reference to inline location
574    metadata  ;; (optional) Reference to a complex expression (see below)
575  }
576
577These descriptors are used to define variables local to a sub program.  The
578value of the tag depends on the usage of the variable:
579
580.. code-block:: llvm
581
582  DW_TAG_auto_variable   = 256
583  DW_TAG_arg_variable    = 257
584
585An auto variable is any variable declared in the body of the function.  An
586argument variable is any variable that appears as a formal argument to the
587function.
588
589The context is either the subprogram or block where the variable is defined.
590Name the source variable name.  Context and line indicate where the variable
591was defined.  Type descriptor defines the declared type of the variable.
592
593The ``OpPiece`` operator is used for (typically larger aggregate)
594variables that are fragmented across several locations. It takes two
595i32 arguments, an offset and a size in bytes to describe which piece
596of the variable is at this location.
597
598
599.. _format_common_intrinsics:
600
601Debugger intrinsic functions
602^^^^^^^^^^^^^^^^^^^^^^^^^^^^
603
604LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
605provide debug information at various points in generated code.
606
607``llvm.dbg.declare``
608^^^^^^^^^^^^^^^^^^^^
609
610.. code-block:: llvm
611
612  void %llvm.dbg.declare(metadata, metadata)
613
614This intrinsic provides information about a local element (e.g., variable).
615The first argument is metadata holding the alloca for the variable.  The second
616argument is metadata containing a description of the variable.
617
618``llvm.dbg.value``
619^^^^^^^^^^^^^^^^^^
620
621.. code-block:: llvm
622
623  void %llvm.dbg.value(metadata, i64, metadata)
624
625This intrinsic provides information when a user source variable is set to a new
626value.  The first argument is the new value (wrapped as metadata).  The second
627argument is the offset in the user source variable where the new value is
628written.  The third argument is metadata containing a description of the user
629source variable.
630
631Object lifetimes and scoping
632============================
633
634In many languages, the local variables in functions can have their lifetimes or
635scopes limited to a subset of a function.  In the C family of languages, for
636example, variables are only live (readable and writable) within the source
637block that they are defined in.  In functional languages, values are only
638readable after they have been defined.  Though this is a very obvious concept,
639it is non-trivial to model in LLVM, because it has no notion of scoping in this
640sense, and does not want to be tied to a language's scoping rules.
641
642In order to handle this, the LLVM debug format uses the metadata attached to
643llvm instructions to encode line number and scoping information.  Consider the
644following C fragment, for example:
645
646.. code-block:: c
647
648  1.  void foo() {
649  2.    int X = 21;
650  3.    int Y = 22;
651  4.    {
652  5.      int Z = 23;
653  6.      Z = X;
654  7.    }
655  8.    X = Y;
656  9.  }
657
658Compiled to LLVM, this function would be represented like this:
659
660.. code-block:: llvm
661
662  define void @foo() #0 {
663  entry:
664   %X = alloca i32, align 4
665    %Y = alloca i32, align 4
666    %Z = alloca i32, align 4
667    call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
668      ; [debug line = 2:7] [debug variable = X]
669    store i32 21, i32* %X, align 4, !dbg !12
670    call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14
671      ; [debug line = 3:7] [debug variable = Y]
672    store i32 22, i32* %Y, align 4, !dbg !14
673    call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
674      ; [debug line = 5:9] [debug variable = Z]
675    store i32 23, i32* %Z, align 4, !dbg !17
676    %0 = load i32* %X, align 4, !dbg !18
677      [debug line = 6:5]
678    store i32 %0, i32* %Z, align 4, !dbg !18
679    %1 = load i32* %Y, align 4, !dbg !19
680      [debug line = 8:3]
681    store i32 %1, i32* %X, align 4, !dbg !19
682    ret void, !dbg !20
683  }
684
685  ; Function Attrs: nounwind readnone
686  declare void @llvm.dbg.declare(metadata, metadata) #1
687
688  attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false"
689    "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"
690    "no-infs-fp-math"="false" "no-nans-fp-math"="false"
691    "stack-protector-buffer-size"="8" "unsafe-fp-math"="false"
692    "use-soft-float"="false" }
693  attributes #1 = { nounwind readnone }
694
695  !llvm.dbg.cu = !{!0}
696  !llvm.module.flags = !{!8}
697  !llvm.ident = !{!9}
698
699  !0 = metadata !{i32 786449, metadata !1, i32 12,
700                  metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)",
701                  i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3,
702                  metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \
703                    [/private/tmp/foo.c] \
704                    [DW_LANG_C99]
705  !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"}
706  !2 = metadata !{i32 0}
707  !3 = metadata !{metadata !4}
708  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
709                  metadata !"foo", metadata !"", i32 1, metadata !6,
710                  i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
711                  void ()* @foo, null, null, metadata !2, i32 1}
712                  ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
713  !5 = metadata !{i32 786473, metadata !1}  ; [ DW_TAG_file_type ] \
714                    [/private/tmp/t.c]
715  !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0,
716                  i64 0, i32 0, null, metadata !7, i32 0, null, null, null}
717                  ; [ DW_TAG_subroutine_type ] \
718                    [line 0, size 0, align 0, offset 0] [from ]
719  !7 = metadata !{null}
720  !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2}
721  !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"}
722  !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2,
723                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \
724                     [line 2]
725  !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32,
726                   i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \
727                     [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
728  !12 = metadata !{i32 2, i32 0, metadata !4, null}
729  !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3,
730                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \
731                     [line 3]
732  !14 = metadata !{i32 3, i32 0, metadata !4, null}
733  !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5,
734                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \
735                     [line 5]
736  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0,
737                   i32 0} \
738                   ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
739  !17 = metadata !{i32 5, i32 0, metadata !16, null}
740  !18 = metadata !{i32 6, i32 0, metadata !16, null}
741  !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ]
742  !20 = metadata !{i32 9, i32 0, metadata !4, null}
743
744This example illustrates a few important details about LLVM debugging
745information.  In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
746location information, which are attached to an instruction, are applied
747together to allow a debugger to analyze the relationship between statements,
748variable definitions, and the code used to implement the function.
749
750.. code-block:: llvm
751
752  call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
753    ; [debug line = 2:7] [debug variable = X]
754
755The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
756variable ``X``.  The metadata ``!dbg !12`` attached to the intrinsic provides
757scope information for the variable ``X``.
758
759.. code-block:: llvm
760
761  !12 = metadata !{i32 2, i32 0, metadata !4, null}
762  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
763                  metadata !"foo", metadata !"", i32 1, metadata !6,
764                  i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
765                  void ()* @foo, null, null, metadata !2, i32 1}
766                    ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
767
768Here ``!12`` is metadata providing location information.  It has four fields:
769line number, column number, scope, and original scope.  The original scope
770represents inline location if this instruction is inlined inside a caller, and
771is null otherwise.  In this example, scope is encoded by ``!4``, a
772:ref:`subprogram descriptor <format_subprograms>`.  This way the location
773information attached to the intrinsics indicates that the variable ``X`` is
774declared at line number 2 at a function level scope in function ``foo``.
775
776Now lets take another example.
777
778.. code-block:: llvm
779
780  call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
781    ; [debug line = 5:9] [debug variable = Z]
782
783The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
784variable ``Z``.  The metadata ``!dbg !17`` attached to the intrinsic provides
785scope information for the variable ``Z``.
786
787.. code-block:: llvm
788
789  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0,
790                   i32 0}
791                   ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
792  !17 = metadata !{i32 5, i32 0, metadata !16, null}
793
794Here ``!15`` indicates that ``Z`` is declared at line number 5 and
795column number 0 inside of lexical scope ``!16``.  The lexical scope itself
796resides inside of subprogram ``!4`` described above.
797
798The scope information attached with each instruction provides a straightforward
799way to find instructions covered by a scope.
800
801.. _ccxx_frontend:
802
803C/C++ front-end specific debug information
804==========================================
805
806The C and C++ front-ends represent information about the program in a format
807that is effectively identical to `DWARF 3.0
808<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
809content.  This allows code generators to trivially support native debuggers by
810generating standard dwarf information, and contains enough information for
811non-dwarf targets to translate it as needed.
812
813This section describes the forms used to represent C and C++ programs.  Other
814languages could pattern themselves after this (which itself is tuned to
815representing programs in the same way that DWARF 3 does), or they could choose
816to provide completely different forms if they don't fit into the DWARF model.
817As support for debugging information gets added to the various LLVM
818source-language front-ends, the information used should be documented here.
819
820The following sections provide examples of various C/C++ constructs and the
821debug information that would best describe those constructs.
822
823C/C++ source file information
824-----------------------------
825
826Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
827directory ``/Users/mine/sources``, the following code:
828
829.. code-block:: c
830
831  #include "MyHeader.h"
832
833  int main(int argc, char *argv[]) {
834    return 0;
835  }
836
837a C/C++ front-end would generate the following descriptors:
838
839.. code-block:: llvm
840
841  ...
842  ;;
843  ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
844  ;;
845  !0 = metadata !{
846    i32 786449,   ;; Tag
847    metadata !1,  ;; File/directory name
848    i32 4,        ;; Language Id
849    metadata !"clang version 3.4 ",
850    i1 false,     ;; Optimized compile unit
851    metadata !"", ;; Compiler flags
852    i32 0,        ;; Runtime version
853    metadata !2,  ;; Enumeration types
854    metadata !2,  ;; Retained types
855    metadata !3,  ;; Subprograms
856    metadata !2,  ;; Global variables
857    metadata !2,  ;; Imported entities (declarations and namespaces)
858    metadata !""  ;; Split debug filename
859    1,            ;; Full debug info
860  }
861
862  ;;
863  ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
864  ;;
865  !1 = metadata !{
866    metadata !"MySource.cpp",
867    metadata !"/Users/mine/sources"
868  }
869  !5 = metadata !{
870    i32 786473, ;; Tag
871    metadata !1
872  }
873
874  ;;
875  ;; Define the file for the file "/Users/mine/sources/Myheader.h"
876  ;;
877  !14 = metadata !{
878    i32 786473, ;; Tag
879    metadata !15
880  }
881  !15 = metadata !{
882    metadata !"./MyHeader.h",
883    metadata !"/Users/mine/sources",
884  }
885
886  ...
887
888``llvm::Instruction`` provides easy access to metadata attached with an
889instruction.  One can extract line number information encoded in LLVM IR using
890``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
891
892.. code-block:: c++
893
894  if (MDNode *N = I->getMetadata("dbg")) {  // Here I is an LLVM instruction
895    DILocation Loc(N);                      // DILocation is in DebugInfo.h
896    unsigned Line = Loc.getLineNumber();
897    StringRef File = Loc.getFilename();
898    StringRef Dir = Loc.getDirectory();
899  }
900
901C/C++ global variable information
902---------------------------------
903
904Given an integer global variable declared as follows:
905
906.. code-block:: c
907
908  int MyGlobal = 100;
909
910a C/C++ front-end would generate the following descriptors:
911
912.. code-block:: llvm
913
914  ;;
915  ;; Define the global itself.
916  ;;
917  %MyGlobal = global int 100
918  ...
919  ;;
920  ;; List of debug info of globals
921  ;;
922  !llvm.dbg.cu = !{!0}
923
924  ;; Define the compile unit.
925  !0 = metadata !{
926    i32 786449,                       ;; Tag
927    i32 0,                            ;; Context
928    i32 4,                            ;; Language
929    metadata !"foo.cpp",              ;; File
930    metadata !"/Volumes/Data/tmp",    ;; Directory
931    metadata !"clang version 3.1 ",   ;; Producer
932    i1 true,                          ;; Deprecated field
933    i1 false,                         ;; "isOptimized"?
934    metadata !"",                     ;; Flags
935    i32 0,                            ;; Runtime Version
936    metadata !1,                      ;; Enum Types
937    metadata !1,                      ;; Retained Types
938    metadata !1,                      ;; Subprograms
939    metadata !3,                      ;; Global Variables
940    metadata !1,                      ;; Imported entities
941    "",                               ;; Split debug filename
942    1,                                ;; Full debug info
943  } ; [ DW_TAG_compile_unit ]
944
945  ;; The Array of Global Variables
946  !3 = metadata !{
947    metadata !4
948  }
949
950  ;;
951  ;; Define the global variable itself.
952  ;;
953  !4 = metadata !{
954    i32 786484,                        ;; Tag
955    i32 0,                             ;; Unused
956    null,                              ;; Unused
957    metadata !"MyGlobal",              ;; Name
958    metadata !"MyGlobal",              ;; Display Name
959    metadata !"",                      ;; Linkage Name
960    metadata !6,                       ;; File
961    i32 1,                             ;; Line
962    metadata !7,                       ;; Type
963    i32 0,                             ;; IsLocalToUnit
964    i32 1,                             ;; IsDefinition
965    i32* @MyGlobal,                    ;; LLVM-IR Value
966    null                               ;; Static member declaration
967  } ; [ DW_TAG_variable ]
968
969  ;;
970  ;; Define the file
971  ;;
972  !5 = metadata !{
973    metadata !"foo.cpp",               ;; File
974    metadata !"/Volumes/Data/tmp",     ;; Directory
975  }
976  !6 = metadata !{
977    i32 786473,                        ;; Tag
978    metadata !5                        ;; Unused
979  } ; [ DW_TAG_file_type ]
980
981  ;;
982  ;; Define the type
983  ;;
984  !7 = metadata !{
985    i32 786468,                         ;; Tag
986    null,                               ;; Unused
987    null,                               ;; Unused
988    metadata !"int",                    ;; Name
989    i32 0,                              ;; Line
990    i64 32,                             ;; Size in Bits
991    i64 32,                             ;; Align in Bits
992    i64 0,                              ;; Offset
993    i32 0,                              ;; Flags
994    i32 5                               ;; Encoding
995  } ; [ DW_TAG_base_type ]
996
997C/C++ function information
998--------------------------
999
1000Given a function declared as follows:
1001
1002.. code-block:: c
1003
1004  int main(int argc, char *argv[]) {
1005    return 0;
1006  }
1007
1008a C/C++ front-end would generate the following descriptors:
1009
1010.. code-block:: llvm
1011
1012  ;;
1013  ;; Define the anchor for subprograms.
1014  ;;
1015  !6 = metadata !{
1016    i32 786484,        ;; Tag
1017    metadata !1,       ;; File
1018    metadata !1,       ;; Context
1019    metadata !"main",  ;; Name
1020    metadata !"main",  ;; Display name
1021    metadata !"main",  ;; Linkage name
1022    i32 1,             ;; Line number
1023    metadata !4,       ;; Type
1024    i1 false,          ;; Is local
1025    i1 true,           ;; Is definition
1026    i32 0,             ;; Virtuality attribute, e.g. pure virtual function
1027    i32 0,             ;; Index into virtual table for C++ methods
1028    i32 0,             ;; Type that holds virtual table.
1029    i32 0,             ;; Flags
1030    i1 false,          ;; True if this function is optimized
1031    Function *,        ;; Pointer to llvm::Function
1032    null,              ;; Function template parameters
1033    null,              ;; List of function variables (emitted when optimizing)
1034    1                  ;; Line number of the opening '{' of the function
1035  }
1036  ;;
1037  ;; Define the subprogram itself.
1038  ;;
1039  define i32 @main(i32 %argc, i8** %argv) {
1040  ...
1041  }
1042
1043C/C++ basic types
1044-----------------
1045
1046The following are the basic type descriptors for C/C++ core types:
1047
1048bool
1049^^^^
1050
1051.. code-block:: llvm
1052
1053  !2 = metadata !{
1054    i32 786468,        ;; Tag
1055    null,              ;; File
1056    null,              ;; Context
1057    metadata !"bool",  ;; Name
1058    i32 0,             ;; Line number
1059    i64 8,             ;; Size in Bits
1060    i64 8,             ;; Align in Bits
1061    i64 0,             ;; Offset in Bits
1062    i32 0,             ;; Flags
1063    i32 2              ;; Encoding
1064  }
1065
1066char
1067^^^^
1068
1069.. code-block:: llvm
1070
1071  !2 = metadata !{
1072    i32 786468,        ;; Tag
1073    null,              ;; File
1074    null,              ;; Context
1075    metadata !"char",  ;; Name
1076    i32 0,             ;; Line number
1077    i64 8,             ;; Size in Bits
1078    i64 8,             ;; Align in Bits
1079    i64 0,             ;; Offset in Bits
1080    i32 0,             ;; Flags
1081    i32 6              ;; Encoding
1082  }
1083
1084unsigned char
1085^^^^^^^^^^^^^
1086
1087.. code-block:: llvm
1088
1089  !2 = metadata !{
1090    i32 786468,        ;; Tag
1091    null,              ;; File
1092    null,              ;; Context
1093    metadata !"unsigned char",
1094    i32 0,             ;; Line number
1095    i64 8,             ;; Size in Bits
1096    i64 8,             ;; Align in Bits
1097    i64 0,             ;; Offset in Bits
1098    i32 0,             ;; Flags
1099    i32 8              ;; Encoding
1100  }
1101
1102short
1103^^^^^
1104
1105.. code-block:: llvm
1106
1107  !2 = metadata !{
1108    i32 786468,        ;; Tag
1109    null,              ;; File
1110    null,              ;; Context
1111    metadata !"short int",
1112    i32 0,             ;; Line number
1113    i64 16,            ;; Size in Bits
1114    i64 16,            ;; Align in Bits
1115    i64 0,             ;; Offset in Bits
1116    i32 0,             ;; Flags
1117    i32 5              ;; Encoding
1118  }
1119
1120unsigned short
1121^^^^^^^^^^^^^^
1122
1123.. code-block:: llvm
1124
1125  !2 = metadata !{
1126    i32 786468,        ;; Tag
1127    null,              ;; File
1128    null,              ;; Context
1129    metadata !"short unsigned int",
1130    i32 0,             ;; Line number
1131    i64 16,            ;; Size in Bits
1132    i64 16,            ;; Align in Bits
1133    i64 0,             ;; Offset in Bits
1134    i32 0,             ;; Flags
1135    i32 7              ;; Encoding
1136  }
1137
1138int
1139^^^
1140
1141.. code-block:: llvm
1142
1143  !2 = metadata !{
1144    i32 786468,        ;; Tag
1145    null,              ;; File
1146    null,              ;; Context
1147    metadata !"int",   ;; Name
1148    i32 0,             ;; Line number
1149    i64 32,            ;; Size in Bits
1150    i64 32,            ;; Align in Bits
1151    i64 0,             ;; Offset in Bits
1152    i32 0,             ;; Flags
1153    i32 5              ;; Encoding
1154  }
1155
1156unsigned int
1157^^^^^^^^^^^^
1158
1159.. code-block:: llvm
1160
1161  !2 = metadata !{
1162    i32 786468,        ;; Tag
1163    null,              ;; File
1164    null,              ;; Context
1165    metadata !"unsigned int",
1166    i32 0,             ;; Line number
1167    i64 32,            ;; Size in Bits
1168    i64 32,            ;; Align in Bits
1169    i64 0,             ;; Offset in Bits
1170    i32 0,             ;; Flags
1171    i32 7              ;; Encoding
1172  }
1173
1174long long
1175^^^^^^^^^
1176
1177.. code-block:: llvm
1178
1179  !2 = metadata !{
1180    i32 786468,        ;; Tag
1181    null,              ;; File
1182    null,              ;; Context
1183    metadata !"long long int",
1184    i32 0,             ;; Line number
1185    i64 64,            ;; Size in Bits
1186    i64 64,            ;; Align in Bits
1187    i64 0,             ;; Offset in Bits
1188    i32 0,             ;; Flags
1189    i32 5              ;; Encoding
1190  }
1191
1192unsigned long long
1193^^^^^^^^^^^^^^^^^^
1194
1195.. code-block:: llvm
1196
1197  !2 = metadata !{
1198    i32 786468,        ;; Tag
1199    null,              ;; File
1200    null,              ;; Context
1201    metadata !"long long unsigned int",
1202    i32 0,             ;; Line number
1203    i64 64,            ;; Size in Bits
1204    i64 64,            ;; Align in Bits
1205    i64 0,             ;; Offset in Bits
1206    i32 0,             ;; Flags
1207    i32 7              ;; Encoding
1208  }
1209
1210float
1211^^^^^
1212
1213.. code-block:: llvm
1214
1215  !2 = metadata !{
1216    i32 786468,        ;; Tag
1217    null,              ;; File
1218    null,              ;; Context
1219    metadata !"float",
1220    i32 0,             ;; Line number
1221    i64 32,            ;; Size in Bits
1222    i64 32,            ;; Align in Bits
1223    i64 0,             ;; Offset in Bits
1224    i32 0,             ;; Flags
1225    i32 4              ;; Encoding
1226  }
1227
1228double
1229^^^^^^
1230
1231.. code-block:: llvm
1232
1233  !2 = metadata !{
1234    i32 786468,        ;; Tag
1235    null,              ;; File
1236    null,              ;; Context
1237    metadata !"double",;; Name
1238    i32 0,             ;; Line number
1239    i64 64,            ;; Size in Bits
1240    i64 64,            ;; Align in Bits
1241    i64 0,             ;; Offset in Bits
1242    i32 0,             ;; Flags
1243    i32 4              ;; Encoding
1244  }
1245
1246C/C++ derived types
1247-------------------
1248
1249Given the following as an example of C/C++ derived type:
1250
1251.. code-block:: c
1252
1253  typedef const int *IntPtr;
1254
1255a C/C++ front-end would generate the following descriptors:
1256
1257.. code-block:: llvm
1258
1259  ;;
1260  ;; Define the typedef "IntPtr".
1261  ;;
1262  !2 = metadata !{
1263    i32 786454,          ;; Tag
1264    metadata !3,         ;; File
1265    metadata !1,         ;; Context
1266    metadata !"IntPtr",  ;; Name
1267    i32 0,               ;; Line number
1268    i64 0,               ;; Size in bits
1269    i64 0,               ;; Align in bits
1270    i64 0,               ;; Offset in bits
1271    i32 0,               ;; Flags
1272    metadata !4          ;; Derived From type
1273  }
1274  ;;
1275  ;; Define the pointer type.
1276  ;;
1277  !4 = metadata !{
1278    i32 786447,          ;; Tag
1279    null,                ;; File
1280    null,                ;; Context
1281    metadata !"",        ;; Name
1282    i32 0,               ;; Line number
1283    i64 64,              ;; Size in bits
1284    i64 64,              ;; Align in bits
1285    i64 0,               ;; Offset in bits
1286    i32 0,               ;; Flags
1287    metadata !5          ;; Derived From type
1288  }
1289  ;;
1290  ;; Define the const type.
1291  ;;
1292  !5 = metadata !{
1293    i32 786470,          ;; Tag
1294    null,                ;; File
1295    null,                ;; Context
1296    metadata !"",        ;; Name
1297    i32 0,               ;; Line number
1298    i64 0,               ;; Size in bits
1299    i64 0,               ;; Align in bits
1300    i64 0,               ;; Offset in bits
1301    i32 0,               ;; Flags
1302    metadata !6          ;; Derived From type
1303  }
1304  ;;
1305  ;; Define the int type.
1306  ;;
1307  !6 = metadata !{
1308    i32 786468,          ;; Tag
1309    null,                ;; File
1310    null,                ;; Context
1311    metadata !"int",     ;; Name
1312    i32 0,               ;; Line number
1313    i64 32,              ;; Size in bits
1314    i64 32,              ;; Align in bits
1315    i64 0,               ;; Offset in bits
1316    i32 0,               ;; Flags
1317    i32 5                ;; Encoding
1318  }
1319
1320C/C++ struct/union types
1321------------------------
1322
1323Given the following as an example of C/C++ struct type:
1324
1325.. code-block:: c
1326
1327  struct Color {
1328    unsigned Red;
1329    unsigned Green;
1330    unsigned Blue;
1331  };
1332
1333a C/C++ front-end would generate the following descriptors:
1334
1335.. code-block:: llvm
1336
1337  ;;
1338  ;; Define basic type for unsigned int.
1339  ;;
1340  !5 = metadata !{
1341    i32 786468,        ;; Tag
1342    null,              ;; File
1343    null,              ;; Context
1344    metadata !"unsigned int",
1345    i32 0,             ;; Line number
1346    i64 32,            ;; Size in Bits
1347    i64 32,            ;; Align in Bits
1348    i64 0,             ;; Offset in Bits
1349    i32 0,             ;; Flags
1350    i32 7              ;; Encoding
1351  }
1352  ;;
1353  ;; Define composite type for struct Color.
1354  ;;
1355  !2 = metadata !{
1356    i32 786451,        ;; Tag
1357    metadata !1,       ;; Compile unit
1358    null,              ;; Context
1359    metadata !"Color", ;; Name
1360    i32 1,             ;; Line number
1361    i64 96,            ;; Size in bits
1362    i64 32,            ;; Align in bits
1363    i64 0,             ;; Offset in bits
1364    i32 0,             ;; Flags
1365    null,              ;; Derived From
1366    metadata !3,       ;; Elements
1367    i32 0,             ;; Runtime Language
1368    null,              ;; Base type containing the vtable pointer for this type
1369    null               ;; Template parameters
1370  }
1371
1372  ;;
1373  ;; Define the Red field.
1374  ;;
1375  !4 = metadata !{
1376    i32 786445,        ;; Tag
1377    metadata !1,       ;; File
1378    metadata !1,       ;; Context
1379    metadata !"Red",   ;; Name
1380    i32 2,             ;; Line number
1381    i64 32,            ;; Size in bits
1382    i64 32,            ;; Align in bits
1383    i64 0,             ;; Offset in bits
1384    i32 0,             ;; Flags
1385    metadata !5        ;; Derived From type
1386  }
1387
1388  ;;
1389  ;; Define the Green field.
1390  ;;
1391  !6 = metadata !{
1392    i32 786445,        ;; Tag
1393    metadata !1,       ;; File
1394    metadata !1,       ;; Context
1395    metadata !"Green", ;; Name
1396    i32 3,             ;; Line number
1397    i64 32,            ;; Size in bits
1398    i64 32,            ;; Align in bits
1399    i64 32,             ;; Offset in bits
1400    i32 0,             ;; Flags
1401    metadata !5        ;; Derived From type
1402  }
1403
1404  ;;
1405  ;; Define the Blue field.
1406  ;;
1407  !7 = metadata !{
1408    i32 786445,        ;; Tag
1409    metadata !1,       ;; File
1410    metadata !1,       ;; Context
1411    metadata !"Blue",  ;; Name
1412    i32 4,             ;; Line number
1413    i64 32,            ;; Size in bits
1414    i64 32,            ;; Align in bits
1415    i64 64,             ;; Offset in bits
1416    i32 0,             ;; Flags
1417    metadata !5        ;; Derived From type
1418  }
1419
1420  ;;
1421  ;; Define the array of fields used by the composite type Color.
1422  ;;
1423  !3 = metadata !{metadata !4, metadata !6, metadata !7}
1424
1425C/C++ enumeration types
1426-----------------------
1427
1428Given the following as an example of C/C++ enumeration type:
1429
1430.. code-block:: c
1431
1432  enum Trees {
1433    Spruce = 100,
1434    Oak = 200,
1435    Maple = 300
1436  };
1437
1438a C/C++ front-end would generate the following descriptors:
1439
1440.. code-block:: llvm
1441
1442  ;;
1443  ;; Define composite type for enum Trees
1444  ;;
1445  !2 = metadata !{
1446    i32 786436,        ;; Tag
1447    metadata !1,       ;; File
1448    metadata !1,       ;; Context
1449    metadata !"Trees", ;; Name
1450    i32 1,             ;; Line number
1451    i64 32,            ;; Size in bits
1452    i64 32,            ;; Align in bits
1453    i64 0,             ;; Offset in bits
1454    i32 0,             ;; Flags
1455    null,              ;; Derived From type
1456    metadata !3,       ;; Elements
1457    i32 0              ;; Runtime language
1458  }
1459
1460  ;;
1461  ;; Define the array of enumerators used by composite type Trees.
1462  ;;
1463  !3 = metadata !{metadata !4, metadata !5, metadata !6}
1464
1465  ;;
1466  ;; Define Spruce enumerator.
1467  ;;
1468  !4 = metadata !{i32 786472, metadata !"Spruce", i64 100}
1469
1470  ;;
1471  ;; Define Oak enumerator.
1472  ;;
1473  !5 = metadata !{i32 786472, metadata !"Oak", i64 200}
1474
1475  ;;
1476  ;; Define Maple enumerator.
1477  ;;
1478  !6 = metadata !{i32 786472, metadata !"Maple", i64 300}
1479
1480Debugging information format
1481============================
1482
1483Debugging Information Extension for Objective C Properties
1484----------------------------------------------------------
1485
1486Introduction
1487^^^^^^^^^^^^
1488
1489Objective C provides a simpler way to declare and define accessor methods using
1490declared properties.  The language provides features to declare a property and
1491to let compiler synthesize accessor methods.
1492
1493The debugger lets developer inspect Objective C interfaces and their instance
1494variables and class variables.  However, the debugger does not know anything
1495about the properties defined in Objective C interfaces.  The debugger consumes
1496information generated by compiler in DWARF format.  The format does not support
1497encoding of Objective C properties.  This proposal describes DWARF extensions to
1498encode Objective C properties, which the debugger can use to let developers
1499inspect Objective C properties.
1500
1501Proposal
1502^^^^^^^^
1503
1504Objective C properties exist separately from class members.  A property can be
1505defined only by "setter" and "getter" selectors, and be calculated anew on each
1506access.  Or a property can just be a direct access to some declared ivar.
1507Finally it can have an ivar "automatically synthesized" for it by the compiler,
1508in which case the property can be referred to in user code directly using the
1509standard C dereference syntax as well as through the property "dot" syntax, but
1510there is no entry in the ``@interface`` declaration corresponding to this ivar.
1511
1512To facilitate debugging, these properties we will add a new DWARF TAG into the
1513``DW_TAG_structure_type`` definition for the class to hold the description of a
1514given property, and a set of DWARF attributes that provide said description.
1515The property tag will also contain the name and declared type of the property.
1516
1517If there is a related ivar, there will also be a DWARF property attribute placed
1518in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1519for that property.  And in the case where the compiler synthesizes the ivar
1520directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1521ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1522to access this ivar directly in code, and with the property attribute pointing
1523back to the property it is backing.
1524
1525The following examples will serve as illustration for our discussion:
1526
1527.. code-block:: objc
1528
1529  @interface I1 {
1530    int n2;
1531  }
1532
1533  @property int p1;
1534  @property int p2;
1535  @end
1536
1537  @implementation I1
1538  @synthesize p1;
1539  @synthesize p2 = n2;
1540  @end
1541
1542This produces the following DWARF (this is a "pseudo dwarfdump" output):
1543
1544.. code-block:: none
1545
1546  0x00000100:  TAG_structure_type [7] *
1547                 AT_APPLE_runtime_class( 0x10 )
1548                 AT_name( "I1" )
1549                 AT_decl_file( "Objc_Property.m" )
1550                 AT_decl_line( 3 )
1551
1552  0x00000110    TAG_APPLE_property
1553                  AT_name ( "p1" )
1554                  AT_type ( {0x00000150} ( int ) )
1555
1556  0x00000120:   TAG_APPLE_property
1557                  AT_name ( "p2" )
1558                  AT_type ( {0x00000150} ( int ) )
1559
1560  0x00000130:   TAG_member [8]
1561                  AT_name( "_p1" )
1562                  AT_APPLE_property ( {0x00000110} "p1" )
1563                  AT_type( {0x00000150} ( int ) )
1564                  AT_artificial ( 0x1 )
1565
1566  0x00000140:    TAG_member [8]
1567                   AT_name( "n2" )
1568                   AT_APPLE_property ( {0x00000120} "p2" )
1569                   AT_type( {0x00000150} ( int ) )
1570
1571  0x00000150:  AT_type( ( int ) )
1572
1573Note, the current convention is that the name of the ivar for an
1574auto-synthesized property is the name of the property from which it derives
1575with an underscore prepended, as is shown in the example.  But we actually
1576don't need to know this convention, since we are given the name of the ivar
1577directly.
1578
1579Also, it is common practice in ObjC to have different property declarations in
1580the @interface and @implementation - e.g. to provide a read-only property in
1581the interface,and a read-write interface in the implementation.  In that case,
1582the compiler should emit whichever property declaration will be in force in the
1583current translation unit.
1584
1585Developers can decorate a property with attributes which are encoded using
1586``DW_AT_APPLE_property_attribute``.
1587
1588.. code-block:: objc
1589
1590  @property (readonly, nonatomic) int pr;
1591
1592.. code-block:: none
1593
1594  TAG_APPLE_property [8]
1595    AT_name( "pr" )
1596    AT_type ( {0x00000147} (int) )
1597    AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1598
1599The setter and getter method names are attached to the property using
1600``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1601
1602.. code-block:: objc
1603
1604  @interface I1
1605  @property (setter=myOwnP3Setter:) int p3;
1606  -(void)myOwnP3Setter:(int)a;
1607  @end
1608
1609  @implementation I1
1610  @synthesize p3;
1611  -(void)myOwnP3Setter:(int)a{ }
1612  @end
1613
1614The DWARF for this would be:
1615
1616.. code-block:: none
1617
1618  0x000003bd: TAG_structure_type [7] *
1619                AT_APPLE_runtime_class( 0x10 )
1620                AT_name( "I1" )
1621                AT_decl_file( "Objc_Property.m" )
1622                AT_decl_line( 3 )
1623
1624  0x000003cd      TAG_APPLE_property
1625                    AT_name ( "p3" )
1626                    AT_APPLE_property_setter ( "myOwnP3Setter:" )
1627                    AT_type( {0x00000147} ( int ) )
1628
1629  0x000003f3:     TAG_member [8]
1630                    AT_name( "_p3" )
1631                    AT_type ( {0x00000147} ( int ) )
1632                    AT_APPLE_property ( {0x000003cd} )
1633                    AT_artificial ( 0x1 )
1634
1635New DWARF Tags
1636^^^^^^^^^^^^^^
1637
1638+-----------------------+--------+
1639| TAG                   | Value  |
1640+=======================+========+
1641| DW_TAG_APPLE_property | 0x4200 |
1642+-----------------------+--------+
1643
1644New DWARF Attributes
1645^^^^^^^^^^^^^^^^^^^^
1646
1647+--------------------------------+--------+-----------+
1648| Attribute                      | Value  | Classes   |
1649+================================+========+===========+
1650| DW_AT_APPLE_property           | 0x3fed | Reference |
1651+--------------------------------+--------+-----------+
1652| DW_AT_APPLE_property_getter    | 0x3fe9 | String    |
1653+--------------------------------+--------+-----------+
1654| DW_AT_APPLE_property_setter    | 0x3fea | String    |
1655+--------------------------------+--------+-----------+
1656| DW_AT_APPLE_property_attribute | 0x3feb | Constant  |
1657+--------------------------------+--------+-----------+
1658
1659New DWARF Constants
1660^^^^^^^^^^^^^^^^^^^
1661
1662+--------------------------------+-------+
1663| Name                           | Value |
1664+================================+=======+
1665| DW_AT_APPLE_PROPERTY_readonly  | 0x1   |
1666+--------------------------------+-------+
1667| DW_AT_APPLE_PROPERTY_readwrite | 0x2   |
1668+--------------------------------+-------+
1669| DW_AT_APPLE_PROPERTY_assign    | 0x4   |
1670+--------------------------------+-------+
1671| DW_AT_APPLE_PROPERTY_retain    | 0x8   |
1672+--------------------------------+-------+
1673| DW_AT_APPLE_PROPERTY_copy      | 0x10  |
1674+--------------------------------+-------+
1675| DW_AT_APPLE_PROPERTY_nonatomic | 0x20  |
1676+--------------------------------+-------+
1677
1678Name Accelerator Tables
1679-----------------------
1680
1681Introduction
1682^^^^^^^^^^^^
1683
1684The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1685debugger needs.  The "``pub``" in the section name indicates that the entries
1686in the table are publicly visible names only.  This means no static or hidden
1687functions show up in the "``.debug_pubnames``".  No static variables or private
1688class variables are in the "``.debug_pubtypes``".  Many compilers add different
1689things to these tables, so we can't rely upon the contents between gcc, icc, or
1690clang.
1691
1692The typical query given by users tends not to match up with the contents of
1693these tables.  For example, the DWARF spec states that "In the case of the name
1694of a function member or static data member of a C++ structure, class or union,
1695the name presented in the "``.debug_pubnames``" section is not the simple name
1696given by the ``DW_AT_name attribute`` of the referenced debugging information
1697entry, but rather the fully qualified name of the data or function member."
1698So the only names in these tables for complex C++ entries is a fully
1699qualified name.  Debugger users tend not to enter their search strings as
1700"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1701"``a::b::c``".  So the name entered in the name table must be demangled in
1702order to chop it up appropriately and additional names must be manually entered
1703into the table to make it effective as a name lookup table for debuggers to
1704se.
1705
1706All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1707its inconsistent and useless public-only name content making it a waste of
1708space in the object file.  These tables, when they are written to disk, are not
1709sorted in any way, leaving every debugger to do its own parsing and sorting.
1710These tables also include an inlined copy of the string values in the table
1711itself making the tables much larger than they need to be on disk, especially
1712for large C++ programs.
1713
1714Can't we just fix the sections by adding all of the names we need to this
1715table? No, because that is not what the tables are defined to contain and we
1716won't know the difference between the old bad tables and the new good tables.
1717At best we could make our own renamed sections that contain all of the data we
1718need.
1719
1720These tables are also insufficient for what a debugger like LLDB needs.  LLDB
1721uses clang for its expression parsing where LLDB acts as a PCH.  LLDB is then
1722often asked to look for type "``foo``" or namespace "``bar``", or list items in
1723namespace "``baz``".  Namespaces are not included in the pubnames or pubtypes
1724tables.  Since clang asks a lot of questions when it is parsing an expression,
1725we need to be very fast when looking up names, as it happens a lot.  Having new
1726accelerator tables that are optimized for very quick lookups will benefit this
1727type of debugging experience greatly.
1728
1729We would like to generate name lookup tables that can be mapped into memory
1730from disk, and used as is, with little or no up-front parsing.  We would also
1731be able to control the exact content of these different tables so they contain
1732exactly what we need.  The Name Accelerator Tables were designed to fix these
1733issues.  In order to solve these issues we need to:
1734
1735* Have a format that can be mapped into memory from disk and used as is
1736* Lookups should be very fast
1737* Extensible table format so these tables can be made by many producers
1738* Contain all of the names needed for typical lookups out of the box
1739* Strict rules for the contents of tables
1740
1741Table size is important and the accelerator table format should allow the reuse
1742of strings from common string tables so the strings for the names are not
1743duplicated.  We also want to make sure the table is ready to be used as-is by
1744simply mapping the table into memory with minimal header parsing.
1745
1746The name lookups need to be fast and optimized for the kinds of lookups that
1747debuggers tend to do.  Optimally we would like to touch as few parts of the
1748mapped table as possible when doing a name lookup and be able to quickly find
1749the name entry we are looking for, or discover there are no matches.  In the
1750case of debuggers we optimized for lookups that fail most of the time.
1751
1752Each table that is defined should have strict rules on exactly what is in the
1753accelerator tables and documented so clients can rely on the content.
1754
1755Hash Tables
1756^^^^^^^^^^^
1757
1758Standard Hash Tables
1759""""""""""""""""""""
1760
1761Typical hash tables have a header, buckets, and each bucket points to the
1762bucket contents:
1763
1764.. code-block:: none
1765
1766  .------------.
1767  |  HEADER    |
1768  |------------|
1769  |  BUCKETS   |
1770  |------------|
1771  |  DATA      |
1772  `------------'
1773
1774The BUCKETS are an array of offsets to DATA for each hash:
1775
1776.. code-block:: none
1777
1778  .------------.
1779  | 0x00001000 | BUCKETS[0]
1780  | 0x00002000 | BUCKETS[1]
1781  | 0x00002200 | BUCKETS[2]
1782  | 0x000034f0 | BUCKETS[3]
1783  |            | ...
1784  | 0xXXXXXXXX | BUCKETS[n_buckets]
1785  '------------'
1786
1787So for ``bucket[3]`` in the example above, we have an offset into the table
17880x000034f0 which points to a chain of entries for the bucket.  Each bucket must
1789contain a next pointer, full 32 bit hash value, the string itself, and the data
1790for the current string value.
1791
1792.. code-block:: none
1793
1794              .------------.
1795  0x000034f0: | 0x00003500 | next pointer
1796              | 0x12345678 | 32 bit hash
1797              | "erase"    | string value
1798              | data[n]    | HashData for this bucket
1799              |------------|
1800  0x00003500: | 0x00003550 | next pointer
1801              | 0x29273623 | 32 bit hash
1802              | "dump"     | string value
1803              | data[n]    | HashData for this bucket
1804              |------------|
1805  0x00003550: | 0x00000000 | next pointer
1806              | 0x82638293 | 32 bit hash
1807              | "main"     | string value
1808              | data[n]    | HashData for this bucket
1809              `------------'
1810
1811The problem with this layout for debuggers is that we need to optimize for the
1812negative lookup case where the symbol we're searching for is not present.  So
1813if we were to lookup "``printf``" in the table above, we would make a 32 hash
1814for "``printf``", it might match ``bucket[3]``.  We would need to go to the
1815offset 0x000034f0 and start looking to see if our 32 bit hash matches.  To do
1816so, we need to read the next pointer, then read the hash, compare it, and skip
1817to the next bucket.  Each time we are skipping many bytes in memory and
1818touching new cache pages just to do the compare on the full 32 bit hash.  All
1819of these accesses then tell us that we didn't have a match.
1820
1821Name Hash Tables
1822""""""""""""""""
1823
1824To solve the issues mentioned above we have structured the hash tables a bit
1825differently: a header, buckets, an array of all unique 32 bit hash values,
1826followed by an array of hash value data offsets, one for each hash value, then
1827the data for all hash values:
1828
1829.. code-block:: none
1830
1831  .-------------.
1832  |  HEADER     |
1833  |-------------|
1834  |  BUCKETS    |
1835  |-------------|
1836  |  HASHES     |
1837  |-------------|
1838  |  OFFSETS    |
1839  |-------------|
1840  |  DATA       |
1841  `-------------'
1842
1843The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array.  By
1844making all of the full 32 bit hash values contiguous in memory, we allow
1845ourselves to efficiently check for a match while touching as little memory as
1846possible.  Most often checking the 32 bit hash values is as far as the lookup
1847goes.  If it does match, it usually is a match with no collisions.  So for a
1848table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1849values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1850``OFFSETS`` as:
1851
1852.. code-block:: none
1853
1854  .-------------------------.
1855  |  HEADER.magic           | uint32_t
1856  |  HEADER.version         | uint16_t
1857  |  HEADER.hash_function   | uint16_t
1858  |  HEADER.bucket_count    | uint32_t
1859  |  HEADER.hashes_count    | uint32_t
1860  |  HEADER.header_data_len | uint32_t
1861  |  HEADER_DATA            | HeaderData
1862  |-------------------------|
1863  |  BUCKETS                | uint32_t[n_buckets] // 32 bit hash indexes
1864  |-------------------------|
1865  |  HASHES                 | uint32_t[n_hashes] // 32 bit hash values
1866  |-------------------------|
1867  |  OFFSETS                | uint32_t[n_hashes] // 32 bit offsets to hash value data
1868  |-------------------------|
1869  |  ALL HASH DATA          |
1870  `-------------------------'
1871
1872So taking the exact same data from the standard hash example above we end up
1873with:
1874
1875.. code-block:: none
1876
1877              .------------.
1878              | HEADER     |
1879              |------------|
1880              |          0 | BUCKETS[0]
1881              |          2 | BUCKETS[1]
1882              |          5 | BUCKETS[2]
1883              |          6 | BUCKETS[3]
1884              |            | ...
1885              |        ... | BUCKETS[n_buckets]
1886              |------------|
1887              | 0x........ | HASHES[0]
1888              | 0x........ | HASHES[1]
1889              | 0x........ | HASHES[2]
1890              | 0x........ | HASHES[3]
1891              | 0x........ | HASHES[4]
1892              | 0x........ | HASHES[5]
1893              | 0x12345678 | HASHES[6]    hash for BUCKETS[3]
1894              | 0x29273623 | HASHES[7]    hash for BUCKETS[3]
1895              | 0x82638293 | HASHES[8]    hash for BUCKETS[3]
1896              | 0x........ | HASHES[9]
1897              | 0x........ | HASHES[10]
1898              | 0x........ | HASHES[11]
1899              | 0x........ | HASHES[12]
1900              | 0x........ | HASHES[13]
1901              | 0x........ | HASHES[n_hashes]
1902              |------------|
1903              | 0x........ | OFFSETS[0]
1904              | 0x........ | OFFSETS[1]
1905              | 0x........ | OFFSETS[2]
1906              | 0x........ | OFFSETS[3]
1907              | 0x........ | OFFSETS[4]
1908              | 0x........ | OFFSETS[5]
1909              | 0x000034f0 | OFFSETS[6]   offset for BUCKETS[3]
1910              | 0x00003500 | OFFSETS[7]   offset for BUCKETS[3]
1911              | 0x00003550 | OFFSETS[8]   offset for BUCKETS[3]
1912              | 0x........ | OFFSETS[9]
1913              | 0x........ | OFFSETS[10]
1914              | 0x........ | OFFSETS[11]
1915              | 0x........ | OFFSETS[12]
1916              | 0x........ | OFFSETS[13]
1917              | 0x........ | OFFSETS[n_hashes]
1918              |------------|
1919              |            |
1920              |            |
1921              |            |
1922              |            |
1923              |            |
1924              |------------|
1925  0x000034f0: | 0x00001203 | .debug_str ("erase")
1926              | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1927              | 0x........ | HashData[0]
1928              | 0x........ | HashData[1]
1929              | 0x........ | HashData[2]
1930              | 0x........ | HashData[3]
1931              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1932              |------------|
1933  0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1934              | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1935              | 0x........ | HashData[0]
1936              | 0x........ | HashData[1]
1937              | 0x00001203 | String offset into .debug_str ("dump")
1938              | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1939              | 0x........ | HashData[0]
1940              | 0x........ | HashData[1]
1941              | 0x........ | HashData[2]
1942              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1943              |------------|
1944  0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1945              | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1946              | 0x........ | HashData[0]
1947              | 0x........ | HashData[1]
1948              | 0x........ | HashData[2]
1949              | 0x........ | HashData[3]
1950              | 0x........ | HashData[4]
1951              | 0x........ | HashData[5]
1952              | 0x........ | HashData[6]
1953              | 0x........ | HashData[7]
1954              | 0x........ | HashData[8]
1955              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1956              `------------'
1957
1958So we still have all of the same data, we just organize it more efficiently for
1959debugger lookup.  If we repeat the same "``printf``" lookup from above, we
1960would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1961hash value and modulo it by ``n_buckets``.  ``BUCKETS[3]`` contains "6" which
1962is the index into the ``HASHES`` table.  We would then compare any consecutive
196332 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1964``BUCKETS[3]``.  We do this by verifying that each subsequent hash value modulo
1965``n_buckets`` is still 3.  In the case of a failed lookup we would access the
1966memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1967before we know that we have no match.  We don't end up marching through
1968multiple words of memory and we really keep the number of processor data cache
1969lines being accessed as small as possible.
1970
1971The string hash that is used for these lookup tables is the Daniel J.
1972Bernstein hash which is also used in the ELF ``GNU_HASH`` sections.  It is a
1973very good hash for all kinds of names in programs with very few hash
1974collisions.
1975
1976Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1977
1978Details
1979^^^^^^^
1980
1981These name hash tables are designed to be generic where specializations of the
1982table get to define additional data that goes into the header ("``HeaderData``"),
1983how the string value is stored ("``KeyType``") and the content of the data for each
1984hash value.
1985
1986Header Layout
1987"""""""""""""
1988
1989The header has a fixed part, and the specialized part.  The exact format of the
1990header is:
1991
1992.. code-block:: c
1993
1994  struct Header
1995  {
1996    uint32_t   magic;           // 'HASH' magic value to allow endian detection
1997    uint16_t   version;         // Version number
1998    uint16_t   hash_function;   // The hash function enumeration that was used
1999    uint32_t   bucket_count;    // The number of buckets in this hash table
2000    uint32_t   hashes_count;    // The total number of unique hash values and hash data offsets in this table
2001    uint32_t   header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
2002                                // Specifically the length of the following HeaderData field - this does not
2003                                // include the size of the preceding fields
2004    HeaderData header_data;     // Implementation specific header data
2005  };
2006
2007The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
2008encoded as an ASCII integer.  This allows the detection of the start of the
2009hash table and also allows the table's byte order to be determined so the table
2010can be correctly extracted.  The "``magic``" value is followed by a 16 bit
2011``version`` number which allows the table to be revised and modified in the
2012future.  The current version number is 1. ``hash_function`` is a ``uint16_t``
2013enumeration that specifies which hash function was used to produce this table.
2014The current values for the hash function enumerations include:
2015
2016.. code-block:: c
2017
2018  enum HashFunctionType
2019  {
2020    eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
2021  };
2022
2023``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
2024are in the ``BUCKETS`` array.  ``hashes_count`` is the number of unique 32 bit
2025hash values that are in the ``HASHES`` array, and is the same number of offsets
2026are contained in the ``OFFSETS`` array.  ``header_data_len`` specifies the size
2027in bytes of the ``HeaderData`` that is filled in by specialized versions of
2028this table.
2029
2030Fixed Lookup
2031""""""""""""
2032
2033The header is followed by the buckets, hashes, offsets, and hash value data.
2034
2035.. code-block:: c
2036
2037  struct FixedTable
2038  {
2039    uint32_t buckets[Header.bucket_count];  // An array of hash indexes into the "hashes[]" array below
2040    uint32_t hashes [Header.hashes_count];  // Every unique 32 bit hash for the entire table is in this table
2041    uint32_t offsets[Header.hashes_count];  // An offset that corresponds to each item in the "hashes[]" array above
2042  };
2043
2044``buckets`` is an array of 32 bit indexes into the ``hashes`` array.  The
2045``hashes`` array contains all of the 32 bit hash values for all names in the
2046hash table.  Each hash in the ``hashes`` table has an offset in the ``offsets``
2047array that points to the data for the hash value.
2048
2049This table setup makes it very easy to repurpose these tables to contain
2050different data, while keeping the lookup mechanism the same for all tables.
2051This layout also makes it possible to save the table to disk and map it in
2052later and do very efficient name lookups with little or no parsing.
2053
2054DWARF lookup tables can be implemented in a variety of ways and can store a lot
2055of information for each name.  We want to make the DWARF tables extensible and
2056able to store the data efficiently so we have used some of the DWARF features
2057that enable efficient data storage to define exactly what kind of data we store
2058for each name.
2059
2060The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2061We might want to store an offset to all of the debug information entries (DIEs)
2062for each name.  To keep things extensible, we create a list of items, or
2063Atoms, that are contained in the data for each name.  First comes the type of
2064the data in each atom:
2065
2066.. code-block:: c
2067
2068  enum AtomType
2069  {
2070    eAtomTypeNULL       = 0u,
2071    eAtomTypeDIEOffset  = 1u,   // DIE offset, check form for encoding
2072    eAtomTypeCUOffset   = 2u,   // DIE offset of the compiler unit header that contains the item in question
2073    eAtomTypeTag        = 3u,   // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2074    eAtomTypeNameFlags  = 4u,   // Flags from enum NameFlags
2075    eAtomTypeTypeFlags  = 5u,   // Flags from enum TypeFlags
2076  };
2077
2078The enumeration values and their meanings are:
2079
2080.. code-block:: none
2081
2082  eAtomTypeNULL       - a termination atom that specifies the end of the atom list
2083  eAtomTypeDIEOffset  - an offset into the .debug_info section for the DWARF DIE for this name
2084  eAtomTypeCUOffset   - an offset into the .debug_info section for the CU that contains the DIE
2085  eAtomTypeDIETag     - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2086  eAtomTypeNameFlags  - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2087  eAtomTypeTypeFlags  - Flags for types (isCXXClass, isObjCClass, ...)
2088
2089Then we allow each atom type to define the atom type and how the data for each
2090atom type data is encoded:
2091
2092.. code-block:: c
2093
2094  struct Atom
2095  {
2096    uint16_t type;  // AtomType enum value
2097    uint16_t form;  // DWARF DW_FORM_XXX defines
2098  };
2099
2100The ``form`` type above is from the DWARF specification and defines the exact
2101encoding of the data for the Atom type.  See the DWARF specification for the
2102``DW_FORM_`` definitions.
2103
2104.. code-block:: c
2105
2106  struct HeaderData
2107  {
2108    uint32_t die_offset_base;
2109    uint32_t atom_count;
2110    Atoms    atoms[atom_count0];
2111  };
2112
2113``HeaderData`` defines the base DIE offset that should be added to any atoms
2114that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2115``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``.  It also defines
2116what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2117each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2118should be interpreted.
2119
2120For the current implementations of the "``.apple_names``" (all functions +
2121globals), the "``.apple_types``" (names of all types that are defined), and
2122the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2123array to be:
2124
2125.. code-block:: c
2126
2127  HeaderData.atom_count = 1;
2128  HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2129  HeaderData.atoms[0].form = DW_FORM_data4;
2130
2131This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
2132encoded as a 32 bit value (DW_FORM_data4).  This allows a single name to have
2133multiple matching DIEs in a single file, which could come up with an inlined
2134function for instance.  Future tables could include more information about the
2135DIE such as flags indicating if the DIE is a function, method, block,
2136or inlined.
2137
2138The KeyType for the DWARF table is a 32 bit string table offset into the
2139".debug_str" table.  The ".debug_str" is the string table for the DWARF which
2140may already contain copies of all of the strings.  This helps make sure, with
2141help from the compiler, that we reuse the strings between all of the DWARF
2142sections and keeps the hash table size down.  Another benefit to having the
2143compiler generate all strings as DW_FORM_strp in the debug info, is that
2144DWARF parsing can be made much faster.
2145
2146After a lookup is made, we get an offset into the hash data.  The hash data
2147needs to be able to deal with 32 bit hash collisions, so the chunk of data
2148at the offset in the hash data consists of a triple:
2149
2150.. code-block:: c
2151
2152  uint32_t str_offset
2153  uint32_t hash_data_count
2154  HashData[hash_data_count]
2155
2156If "str_offset" is zero, then the bucket contents are done. 99.9% of the
2157hash data chunks contain a single item (no 32 bit hash collision):
2158
2159.. code-block:: none
2160
2161  .------------.
2162  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2163  | 0x00000004 | uint32_t HashData count
2164  | 0x........ | uint32_t HashData[0] DIE offset
2165  | 0x........ | uint32_t HashData[1] DIE offset
2166  | 0x........ | uint32_t HashData[2] DIE offset
2167  | 0x........ | uint32_t HashData[3] DIE offset
2168  | 0x00000000 | uint32_t KeyType (end of hash chain)
2169  `------------'
2170
2171If there are collisions, you will have multiple valid string offsets:
2172
2173.. code-block:: none
2174
2175  .------------.
2176  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2177  | 0x00000004 | uint32_t HashData count
2178  | 0x........ | uint32_t HashData[0] DIE offset
2179  | 0x........ | uint32_t HashData[1] DIE offset
2180  | 0x........ | uint32_t HashData[2] DIE offset
2181  | 0x........ | uint32_t HashData[3] DIE offset
2182  | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2183  | 0x00000002 | uint32_t HashData count
2184  | 0x........ | uint32_t HashData[0] DIE offset
2185  | 0x........ | uint32_t HashData[1] DIE offset
2186  | 0x00000000 | uint32_t KeyType (end of hash chain)
2187  `------------'
2188
2189Current testing with real world C++ binaries has shown that there is around 1
219032 bit hash collision per 100,000 name entries.
2191
2192Contents
2193^^^^^^^^
2194
2195As we said, we want to strictly define exactly what is included in the
2196different tables.  For DWARF, we have 3 tables: "``.apple_names``",
2197"``.apple_types``", and "``.apple_namespaces``".
2198
2199"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2200``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2201``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2202``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``.  It also contains
2203``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2204static variables).  All global and static variables should be included,
2205including those scoped within functions and classes.  For example using the
2206following code:
2207
2208.. code-block:: c
2209
2210  static int var = 0;
2211
2212  void f ()
2213  {
2214    static int var = 0;
2215  }
2216
2217Both of the static ``var`` variables would be included in the table.  All
2218functions should emit both their full names and their basenames.  For C or C++,
2219the full name is the mangled name (if available) which is usually in the
2220``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2221function basename.  If global or static variables have a mangled name in a
2222``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2223simple name found in the ``DW_AT_name`` attribute.
2224
2225"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2226tag is one of:
2227
2228* DW_TAG_array_type
2229* DW_TAG_class_type
2230* DW_TAG_enumeration_type
2231* DW_TAG_pointer_type
2232* DW_TAG_reference_type
2233* DW_TAG_string_type
2234* DW_TAG_structure_type
2235* DW_TAG_subroutine_type
2236* DW_TAG_typedef
2237* DW_TAG_union_type
2238* DW_TAG_ptr_to_member_type
2239* DW_TAG_set_type
2240* DW_TAG_subrange_type
2241* DW_TAG_base_type
2242* DW_TAG_const_type
2243* DW_TAG_constant
2244* DW_TAG_file_type
2245* DW_TAG_namelist
2246* DW_TAG_packed_type
2247* DW_TAG_volatile_type
2248* DW_TAG_restrict_type
2249* DW_TAG_interface_type
2250* DW_TAG_unspecified_type
2251* DW_TAG_shared_type
2252
2253Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2254not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2255value).  For example, using the following code:
2256
2257.. code-block:: c
2258
2259  int main ()
2260  {
2261    int *b = 0;
2262    return *b;
2263  }
2264
2265We get a few type DIEs:
2266
2267.. code-block:: none
2268
2269  0x00000067:     TAG_base_type [5]
2270                  AT_encoding( DW_ATE_signed )
2271                  AT_name( "int" )
2272                  AT_byte_size( 0x04 )
2273
2274  0x0000006e:     TAG_pointer_type [6]
2275                  AT_type( {0x00000067} ( int ) )
2276                  AT_byte_size( 0x08 )
2277
2278The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2279
2280"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2281If we run into a namespace that has no name this is an anonymous namespace, and
2282the name should be output as "``(anonymous namespace)``" (without the quotes).
2283Why?  This matches the output of the ``abi::cxa_demangle()`` that is in the
2284standard C++ library that demangles mangled names.
2285
2286
2287Language Extensions and File Format Changes
2288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2289
2290Objective-C Extensions
2291""""""""""""""""""""""
2292
2293"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2294Objective-C class.  The name used in the hash table is the name of the
2295Objective-C class itself.  If the Objective-C class has a category, then an
2296entry is made for both the class name without the category, and for the class
2297name with the category.  So if we have a DIE at offset 0x1234 with a name of
2298method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2299an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2300"``NSString(my_additions)``" that points to 0x1234.  This allows us to quickly
2301track down all Objective-C methods for an Objective-C class when doing
2302expressions.  It is needed because of the dynamic nature of Objective-C where
2303anyone can add methods to a class.  The DWARF for Objective-C methods is also
2304emitted differently from C++ classes where the methods are not usually
2305contained in the class definition, they are scattered about across one or more
2306compile units.  Categories can also be defined in different shared libraries.
2307So we need to be able to quickly find all of the methods and class functions
2308given the Objective-C class name, or quickly find all methods and class
2309functions for a class + category name.  This table does not contain any
2310selector names, it just maps Objective-C class names (or class names +
2311category) to all of the methods and class functions.  The selectors are added
2312as function basenames in the "``.debug_names``" section.
2313
2314In the "``.apple_names``" section for Objective-C functions, the full name is
2315the entire function name with the brackets ("``-[NSString
2316stringWithCString:]``") and the basename is the selector only
2317("``stringWithCString:``").
2318
2319Mach-O Changes
2320""""""""""""""
2321
2322The sections names for the apple hash tables are for non-mach-o files.  For
2323mach-o files, the sections should be contained in the ``__DWARF`` segment with
2324names as follows:
2325
2326* "``.apple_names``" -> "``__apple_names``"
2327* "``.apple_types``" -> "``__apple_types``"
2328* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2329* "``.apple_objc``" -> "``__apple_objc``"
2330
2331