1================================ 2Source Level Debugging with LLVM 3================================ 4 5.. contents:: 6 :local: 7 8Introduction 9============ 10 11This document is the central repository for all information pertaining to debug 12information in LLVM. It describes the :ref:`actual format that the LLVM debug 13information takes <format>`, which is useful for those interested in creating 14front-ends or dealing directly with the information. Further, this document 15provides specific examples of what debug information for C/C++ looks like. 16 17Philosophy behind LLVM debugging information 18-------------------------------------------- 19 20The idea of the LLVM debugging information is to capture how the important 21pieces of the source-language's Abstract Syntax Tree map onto LLVM code. 22Several design aspects have shaped the solution that appears here. The 23important ones are: 24 25* Debugging information should have very little impact on the rest of the 26 compiler. No transformations, analyses, or code generators should need to 27 be modified because of debugging information. 28 29* LLVM optimizations should interact in :ref:`well-defined and easily described 30 ways <intro_debugopt>` with the debugging information. 31 32* Because LLVM is designed to support arbitrary programming languages, 33 LLVM-to-LLVM tools should not need to know anything about the semantics of 34 the source-level-language. 35 36* Source-level languages are often **widely** different from one another. 37 LLVM should not put any restrictions of the flavor of the source-language, 38 and the debugging information should work with any language. 39 40* With code generator support, it should be possible to use an LLVM compiler 41 to compile a program to native machine code and standard debugging 42 formats. This allows compatibility with traditional machine-code level 43 debuggers, like GDB or DBX. 44 45The approach used by the LLVM implementation is to use a small set of 46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping 47between LLVM program objects and the source-level objects. The description of 48the source-level program is maintained in LLVM metadata in an 49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end 50currently uses working draft 7 of the `DWARF 3 standard 51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_). 52 53When a program is being debugged, a debugger interacts with the user and turns 54the stored debug information into source-language specific information. As 55such, a debugger must be aware of the source-language, and is thus tied to a 56specific language or family of languages. 57 58Debug information consumers 59--------------------------- 60 61The role of debug information is to provide meta information normally stripped 62away during the compilation process. This meta information provides an LLVM 63user a relationship between generated code and the original program source 64code. 65 66Currently, debug information is consumed by DwarfDebug to produce dwarf 67information used by the gdb debugger. Other targets could use the same 68information to produce stabs or other debug forms. 69 70It would also be reasonable to use debug information to feed profiling tools 71for analysis of generated code, or, tools for reconstructing the original 72source from generated code. 73 74TODO - expound a bit more. 75 76.. _intro_debugopt: 77 78Debugging optimized code 79------------------------ 80 81An extremely high priority of LLVM debugging information is to make it interact 82well with optimizations and analysis. In particular, the LLVM debug 83information provides the following guarantees: 84 85* LLVM debug information **always provides information to accurately read 86 the source-level state of the program**, regardless of which LLVM 87 optimizations have been run, and without any modification to the 88 optimizations themselves. However, some optimizations may impact the 89 ability to modify the current state of the program with a debugger, such 90 as setting program variables, or calling functions that have been 91 deleted. 92 93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM 94 debugging information, allowing them to update the debugging information 95 as they perform aggressive optimizations. This means that, with effort, 96 the LLVM optimizers could optimize debug code just as well as non-debug 97 code. 98 99* LLVM debug information does not prevent optimizations from 100 happening (for example inlining, basic block reordering/merging/cleanup, 101 tail duplication, etc). 102 103* LLVM debug information is automatically optimized along with the rest of 104 the program, using existing facilities. For example, duplicate 105 information is automatically merged by the linker, and unused information 106 is automatically removed. 107 108Basically, the debug information allows you to compile a program with 109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify 110the program as it executes from a debugger. Compiling a program with 111"``-O3 -g``" gives you full debug information that is always available and 112accurate for reading (e.g., you get accurate stack traces despite tail call 113elimination and inlining), but you might lose the ability to modify the program 114and call functions where were optimized out of the program, or inlined away 115completely. 116 117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test 118optimizer's handling of debugging information. It can be run like this: 119 120.. code-block:: bash 121 122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level 123 % make TEST=dbgopt 124 125This will test impact of debugging information on optimization passes. If 126debugging information influences optimization passes then it will be reported 127as a failure. See :doc:`TestingGuide` for more information on LLVM test 128infrastructure and how to run various tests. 129 130.. _format: 131 132Debugging information format 133============================ 134 135LLVM debugging information has been carefully designed to make it possible for 136the optimizer to optimize the program and debugging information without 137necessarily having to know anything about debugging information. In 138particular, the use of metadata avoids duplicated debugging information from 139the beginning, and the global dead code elimination pass automatically deletes 140debugging information for a function if it decides to delete the function. 141 142To do this, most of the debugging information (descriptors for types, 143variables, functions, source files, etc) is inserted by the language front-end 144in the form of LLVM metadata. 145 146Debug information is designed to be agnostic about the target debugger and 147debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic 148pass to decode the information that represents variables, types, functions, 149namespaces, etc: this allows for arbitrary source-language semantics and 150type-systems to be used, as long as there is a module written for the target 151debugger to interpret the information. 152 153To provide basic functionality, the LLVM debugger does have to make some 154assumptions about the source-level language being debugged, though it keeps 155these to a minimum. The only common features that the LLVM debugger assumes 156exist are :ref:`source files <format_files>`, and :ref:`program objects 157<format_global_variables>`. These abstract objects are used by a debugger to 158form stack traces, show information about local variables, etc. 159 160This section of the documentation first describes the representation aspects 161common to any source-language. :ref:`ccxx_frontend` describes the data layout 162conventions used by the C and C++ front-ends. 163 164Debug information descriptors 165----------------------------- 166 167In consideration of the complexity and volume of debug information, LLVM 168provides a specification for well formed debug descriptors. 169 170Consumers of LLVM debug information expect the descriptors for program objects 171to start in a canonical format, but the descriptors can include additional 172information appended at the end that is source-language specific. All debugging 173information objects start with a tag to indicate what type of object it is. 174The source-language is allowed to define its own objects, by using unreserved 175tag numbers. We recommend using with tags in the range 0x1000 through 0x2000 176(there is a defined ``enum DW_TAG_user_base = 0x1000``.) 177 178The fields of debug descriptors used internally by LLVM are restricted to only 179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and 180``mdnode``. 181 182.. code-block:: llvm 183 184 !1 = metadata !{ 185 i32, ;; A tag 186 ... 187 } 188 189<a name="LLVMDebugVersion">The first field of a descriptor is always an 190``i32`` containing a tag value identifying the content of the descriptor. 191The remaining fields are specific to the descriptor. The values of tags are 192loosely bound to the tag values of DWARF information entries. However, that 193does not restrict the use of the information supplied to DWARF targets. 194 195The details of the various descriptors follow. 196 197Compile unit descriptors 198^^^^^^^^^^^^^^^^^^^^^^^^ 199 200.. code-block:: llvm 201 202 !0 = metadata !{ 203 i32, ;; Tag = 17 (DW_TAG_compile_unit) 204 metadata, ;; Source directory (including trailing slash) & file pair 205 i32, ;; DWARF language identifier (ex. DW_LANG_C89) 206 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)") 207 i1, ;; True if this is optimized. 208 metadata, ;; Flags 209 i32 ;; Runtime version 210 metadata ;; List of enums types 211 metadata ;; List of retained types 212 metadata ;; List of subprograms 213 metadata ;; List of global variables 214 metadata ;; List of imported entities 215 metadata ;; Split debug filename 216 i32 ;; Debug info emission kind (1 = Full Debug Info, 2 = Line Tables Only) 217 } 218 219These descriptors contain a source language ID for the file (we use the DWARF 2203.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``, 221``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of 222strings for the source file name and the working directory, as well as an 223identifier string for the compiler that produced it. 224 225Compile unit descriptors provide the root context for objects declared in a 226specific compilation unit. File descriptors are defined using this context. 227These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They 228keep track of subprograms, global variables, type information, and imported 229entities (declarations and namespaces). 230 231.. _format_files: 232 233File descriptors 234^^^^^^^^^^^^^^^^ 235 236.. code-block:: llvm 237 238 !0 = metadata !{ 239 i32, ;; Tag = 41 (DW_TAG_file_type) 240 metadata, ;; Source directory (including trailing slash) & file pair 241 } 242 243These descriptors contain information for a file. Global variables and top 244level functions would be defined using this context. File descriptors also 245provide context for source line correspondence. 246 247Each input file is encoded as a separate file descriptor in LLVM debugging 248information output. 249 250.. _format_global_variables: 251 252Global variable descriptors 253^^^^^^^^^^^^^^^^^^^^^^^^^^^ 254 255.. code-block:: llvm 256 257 !1 = metadata !{ 258 i32, ;; Tag = 52 (DW_TAG_variable) 259 i32, ;; Unused field. 260 metadata, ;; Reference to context descriptor 261 metadata, ;; Name 262 metadata, ;; Display name (fully qualified C++ name) 263 metadata, ;; MIPS linkage name (for C++) 264 metadata, ;; Reference to file where defined 265 i32, ;; Line number where defined 266 metadata, ;; Reference to type descriptor 267 i1, ;; True if the global is local to compile unit (static) 268 i1, ;; True if the global is defined in the compile unit (not extern) 269 {}*, ;; Reference to the global variable 270 metadata, ;; The static member declaration, if any 271 } 272 273These descriptors provide debug information about global variables. They 274provide details such as name, type and where the variable is defined. All 275global variables are collected inside the named metadata ``!llvm.dbg.cu``. 276 277.. _format_subprograms: 278 279Subprogram descriptors 280^^^^^^^^^^^^^^^^^^^^^^ 281 282.. code-block:: llvm 283 284 !2 = metadata !{ 285 i32, ;; Tag = 46 (DW_TAG_subprogram) 286 metadata, ;; Source directory (including trailing slash) & file pair 287 metadata, ;; Reference to context descriptor 288 metadata, ;; Name 289 metadata, ;; Display name (fully qualified C++ name) 290 metadata, ;; MIPS linkage name (for C++) 291 i32, ;; Line number where defined 292 metadata, ;; Reference to type descriptor 293 i1, ;; True if the global is local to compile unit (static) 294 i1, ;; True if the global is defined in the compile unit (not extern) 295 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual 296 i32, ;; Index into a virtual function 297 metadata, ;; indicates which base type contains the vtable pointer for the 298 ;; derived class 299 i32, ;; Flags - Artificial, Private, Protected, Explicit, Prototyped. 300 i1, ;; isOptimized 301 {}*, ;; Reference to the LLVM function 302 metadata, ;; Lists function template parameters 303 metadata, ;; Function declaration descriptor 304 metadata, ;; List of function variables 305 i32 ;; Line number where the scope of the subprogram begins 306 } 307 308These descriptors provide debug information about functions, methods and 309subprograms. They provide details such as name, return types and the source 310location where the subprogram is defined. 311 312Block descriptors 313^^^^^^^^^^^^^^^^^ 314 315.. code-block:: llvm 316 317 !3 = metadata !{ 318 i32, ;; Tag = 11 (DW_TAG_lexical_block) 319 metadata, ;; Source directory (including trailing slash) & file pair 320 metadata, ;; Reference to context descriptor 321 i32, ;; Line number 322 i32, ;; Column number 323 i32, ;; DWARF path discriminator value 324 i32 ;; Unique ID to identify blocks from a template function 325 } 326 327This descriptor provides debug information about nested blocks within a 328subprogram. The line number and column numbers are used to dinstinguish two 329lexical blocks at same depth. 330 331.. code-block:: llvm 332 333 !3 = metadata !{ 334 i32, ;; Tag = 11 (DW_TAG_lexical_block) 335 metadata, ;; Source directory (including trailing slash) & file pair 336 metadata ;; Reference to the scope we're annotating with a file change 337 } 338 339This descriptor provides a wrapper around a lexical scope to handle file 340changes in the middle of a lexical block. 341 342.. _format_basic_type: 343 344Basic type descriptors 345^^^^^^^^^^^^^^^^^^^^^^ 346 347.. code-block:: llvm 348 349 !4 = metadata !{ 350 i32, ;; Tag = 36 (DW_TAG_base_type) 351 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 352 metadata, ;; Reference to context 353 metadata, ;; Name (may be "" for anonymous types) 354 i32, ;; Line number where defined (may be 0) 355 i64, ;; Size in bits 356 i64, ;; Alignment in bits 357 i64, ;; Offset in bits 358 i32, ;; Flags 359 i32 ;; DWARF type encoding 360 } 361 362These descriptors define primitive types used in the code. Example ``int``, 363``bool`` and ``float``. The context provides the scope of the type, which is 364usually the top level. Since basic types are not usually user defined the 365context and line number can be left as NULL and 0. The size, alignment and 366offset are expressed in bits and can be 64 bit values. The alignment is used 367to round the offset when embedded in a :ref:`composite type 368<format_composite_type>` (example to keep float doubles on 64 bit boundaries). 369The offset is the bit offset if embedded in a :ref:`composite type 370<format_composite_type>`. 371 372The type encoding provides the details of the type. The values are typically 373one of the following: 374 375.. code-block:: llvm 376 377 DW_ATE_address = 1 378 DW_ATE_boolean = 2 379 DW_ATE_float = 4 380 DW_ATE_signed = 5 381 DW_ATE_signed_char = 6 382 DW_ATE_unsigned = 7 383 DW_ATE_unsigned_char = 8 384 385.. _format_derived_type: 386 387Derived type descriptors 388^^^^^^^^^^^^^^^^^^^^^^^^ 389 390.. code-block:: llvm 391 392 !5 = metadata !{ 393 i32, ;; Tag (see below) 394 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 395 metadata, ;; Reference to context 396 metadata, ;; Name (may be "" for anonymous types) 397 i32, ;; Line number where defined (may be 0) 398 i64, ;; Size in bits 399 i64, ;; Alignment in bits 400 i64, ;; Offset in bits 401 i32, ;; Flags to encode attributes, e.g. private 402 metadata, ;; Reference to type derived from 403 metadata, ;; (optional) Name of the Objective C property associated with 404 ;; Objective-C an ivar, or the type of which this 405 ;; pointer-to-member is pointing to members of. 406 metadata, ;; (optional) Name of the Objective C property getter selector. 407 metadata, ;; (optional) Name of the Objective C property setter selector. 408 i32 ;; (optional) Objective C property attributes. 409 } 410 411These descriptors are used to define types derived from other types. The value 412of the tag varies depending on the meaning. The following are possible tag 413values: 414 415.. code-block:: llvm 416 417 DW_TAG_formal_parameter = 5 418 DW_TAG_member = 13 419 DW_TAG_pointer_type = 15 420 DW_TAG_reference_type = 16 421 DW_TAG_typedef = 22 422 DW_TAG_ptr_to_member_type = 31 423 DW_TAG_const_type = 38 424 DW_TAG_volatile_type = 53 425 DW_TAG_restrict_type = 55 426 427``DW_TAG_member`` is used to define a member of a :ref:`composite type 428<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type 429of the member is the :ref:`derived type <format_derived_type>`. 430``DW_TAG_formal_parameter`` is used to define a member which is a formal 431argument of a subprogram. 432 433``DW_TAG_typedef`` is used to provide a name for the derived type. 434 435``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``, 436``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the 437:ref:`derived type <format_derived_type>`. 438 439:ref:`Derived type <format_derived_type>` location can be determined from the 440context and line number. The size, alignment and offset are expressed in bits 441and can be 64 bit values. The alignment is used to round the offset when 442embedded in a :ref:`composite type <format_composite_type>` (example to keep 443float doubles on 64 bit boundaries.) The offset is the bit offset if embedded 444in a :ref:`composite type <format_composite_type>`. 445 446Note that the ``void *`` type is expressed as a type derived from NULL. 447 448.. _format_composite_type: 449 450Composite type descriptors 451^^^^^^^^^^^^^^^^^^^^^^^^^^ 452 453.. code-block:: llvm 454 455 !6 = metadata !{ 456 i32, ;; Tag (see below) 457 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 458 metadata, ;; Reference to context 459 metadata, ;; Name (may be "" for anonymous types) 460 i32, ;; Line number where defined (may be 0) 461 i64, ;; Size in bits 462 i64, ;; Alignment in bits 463 i64, ;; Offset in bits 464 i32, ;; Flags 465 metadata, ;; Reference to type derived from 466 metadata, ;; Reference to array of member descriptors 467 i32, ;; Runtime languages 468 metadata, ;; Base type containing the vtable pointer for this type 469 metadata, ;; Template parameters 470 metadata ;; A unique identifier for type uniquing purpose (may be null) 471 } 472 473These descriptors are used to define types that are composed of 0 or more 474elements. The value of the tag varies depending on the meaning. The following 475are possible tag values: 476 477.. code-block:: llvm 478 479 DW_TAG_array_type = 1 480 DW_TAG_enumeration_type = 4 481 DW_TAG_structure_type = 19 482 DW_TAG_union_type = 23 483 DW_TAG_subroutine_type = 21 484 DW_TAG_inheritance = 28 485 486The vector flag indicates that an array type is a native packed vector. 487 488The members of array types (tag = ``DW_TAG_array_type``) are 489:ref:`subrange descriptors <format_subrange>`, each 490representing the range of subscripts at that level of indexing. 491 492The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are 493:ref:`enumerator descriptors <format_enumerator>`, each representing the 494definition of enumeration value for the set. All enumeration type descriptors 495are collected inside the named metadata ``!llvm.dbg.cu``. 496 497The members of structure (tag = ``DW_TAG_structure_type``) or union (tag = 498``DW_TAG_union_type``) types are any one of the :ref:`basic 499<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite 500<format_composite_type>` type descriptors, each representing a field member of 501the structure or union. 502 503For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide 504information about base classes, static members and member functions. If a 505member is a :ref:`derived type descriptor <format_derived_type>` and has a tag 506of ``DW_TAG_inheritance``, then the type represents a base class. If the member 507of is a :ref:`global variable descriptor <format_global_variables>` then it 508represents a static member. And, if the member is a :ref:`subprogram 509descriptor <format_subprograms>` then it represents a member function. For 510static members and member functions, ``getName()`` returns the members link or 511the C++ mangled name. ``getDisplayName()`` the simplied version of the name. 512 513The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements 514is the return type for the subroutine. The remaining elements are the formal 515arguments to the subroutine. 516 517:ref:`Composite type <format_composite_type>` location can be determined from 518the context and line number. The size, alignment and offset are expressed in 519bits and can be 64 bit values. The alignment is used to round the offset when 520embedded in a :ref:`composite type <format_composite_type>` (as an example, to 521keep float doubles on 64 bit boundaries). The offset is the bit offset if 522embedded in a :ref:`composite type <format_composite_type>`. 523 524.. _format_subrange: 525 526Subrange descriptors 527^^^^^^^^^^^^^^^^^^^^ 528 529.. code-block:: llvm 530 531 !42 = metadata !{ 532 i32, ;; Tag = 33 (DW_TAG_subrange_type) 533 i64, ;; Low value 534 i64 ;; High value 535 } 536 537These descriptors are used to define ranges of array subscripts for an array 538:ref:`composite type <format_composite_type>`. The low value defines the lower 539bounds typically zero for C/C++. The high value is the upper bounds. Values 540are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High`` 541the array bounds are not included in generated debugging information. 542 543.. _format_enumerator: 544 545Enumerator descriptors 546^^^^^^^^^^^^^^^^^^^^^^ 547 548.. code-block:: llvm 549 550 !6 = metadata !{ 551 i32, ;; Tag = 40 (DW_TAG_enumerator) 552 metadata, ;; Name 553 i64 ;; Value 554 } 555 556These descriptors are used to define members of an enumeration :ref:`composite 557type <format_composite_type>`, it associates the name to the value. 558 559Local variables 560^^^^^^^^^^^^^^^ 561 562.. code-block:: llvm 563 564 !7 = metadata !{ 565 i32, ;; Tag (see below) 566 metadata, ;; Context 567 metadata, ;; Name 568 metadata, ;; Reference to file where defined 569 i32, ;; 24 bit - Line number where defined 570 ;; 8 bit - Argument number. 1 indicates 1st argument. 571 metadata, ;; Reference to the type descriptor 572 i32, ;; flags 573 metadata ;; (optional) Reference to inline location 574 metadata ;; (optional) Reference to a complex expression (see below) 575 } 576 577These descriptors are used to define variables local to a sub program. The 578value of the tag depends on the usage of the variable: 579 580.. code-block:: llvm 581 582 DW_TAG_auto_variable = 256 583 DW_TAG_arg_variable = 257 584 585An auto variable is any variable declared in the body of the function. An 586argument variable is any variable that appears as a formal argument to the 587function. 588 589The context is either the subprogram or block where the variable is defined. 590Name the source variable name. Context and line indicate where the variable 591was defined. Type descriptor defines the declared type of the variable. 592 593The ``OpPiece`` operator is used for (typically larger aggregate) 594variables that are fragmented across several locations. It takes two 595i32 arguments, an offset and a size in bytes to describe which piece 596of the variable is at this location. 597 598 599.. _format_common_intrinsics: 600 601Debugger intrinsic functions 602^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 603 604LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to 605provide debug information at various points in generated code. 606 607``llvm.dbg.declare`` 608^^^^^^^^^^^^^^^^^^^^ 609 610.. code-block:: llvm 611 612 void %llvm.dbg.declare(metadata, metadata) 613 614This intrinsic provides information about a local element (e.g., variable). 615The first argument is metadata holding the alloca for the variable. The second 616argument is metadata containing a description of the variable. 617 618``llvm.dbg.value`` 619^^^^^^^^^^^^^^^^^^ 620 621.. code-block:: llvm 622 623 void %llvm.dbg.value(metadata, i64, metadata) 624 625This intrinsic provides information when a user source variable is set to a new 626value. The first argument is the new value (wrapped as metadata). The second 627argument is the offset in the user source variable where the new value is 628written. The third argument is metadata containing a description of the user 629source variable. 630 631Object lifetimes and scoping 632============================ 633 634In many languages, the local variables in functions can have their lifetimes or 635scopes limited to a subset of a function. In the C family of languages, for 636example, variables are only live (readable and writable) within the source 637block that they are defined in. In functional languages, values are only 638readable after they have been defined. Though this is a very obvious concept, 639it is non-trivial to model in LLVM, because it has no notion of scoping in this 640sense, and does not want to be tied to a language's scoping rules. 641 642In order to handle this, the LLVM debug format uses the metadata attached to 643llvm instructions to encode line number and scoping information. Consider the 644following C fragment, for example: 645 646.. code-block:: c 647 648 1. void foo() { 649 2. int X = 21; 650 3. int Y = 22; 651 4. { 652 5. int Z = 23; 653 6. Z = X; 654 7. } 655 8. X = Y; 656 9. } 657 658Compiled to LLVM, this function would be represented like this: 659 660.. code-block:: llvm 661 662 define void @foo() #0 { 663 entry: 664 %X = alloca i32, align 4 665 %Y = alloca i32, align 4 666 %Z = alloca i32, align 4 667 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12 668 ; [debug line = 2:7] [debug variable = X] 669 store i32 21, i32* %X, align 4, !dbg !12 670 call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14 671 ; [debug line = 3:7] [debug variable = Y] 672 store i32 22, i32* %Y, align 4, !dbg !14 673 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 674 ; [debug line = 5:9] [debug variable = Z] 675 store i32 23, i32* %Z, align 4, !dbg !17 676 %0 = load i32* %X, align 4, !dbg !18 677 [debug line = 6:5] 678 store i32 %0, i32* %Z, align 4, !dbg !18 679 %1 = load i32* %Y, align 4, !dbg !19 680 [debug line = 8:3] 681 store i32 %1, i32* %X, align 4, !dbg !19 682 ret void, !dbg !20 683 } 684 685 ; Function Attrs: nounwind readnone 686 declare void @llvm.dbg.declare(metadata, metadata) #1 687 688 attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" 689 "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" 690 "no-infs-fp-math"="false" "no-nans-fp-math"="false" 691 "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" 692 "use-soft-float"="false" } 693 attributes #1 = { nounwind readnone } 694 695 !llvm.dbg.cu = !{!0} 696 !llvm.module.flags = !{!8} 697 !llvm.ident = !{!9} 698 699 !0 = metadata !{i32 786449, metadata !1, i32 12, 700 metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)", 701 i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3, 702 metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \ 703 [/private/tmp/foo.c] \ 704 [DW_LANG_C99] 705 !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"} 706 !2 = metadata !{i32 0} 707 !3 = metadata !{metadata !4} 708 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 709 metadata !"foo", metadata !"", i32 1, metadata !6, 710 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false, 711 void ()* @foo, null, null, metadata !2, i32 1} 712 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 713 !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \ 714 [/private/tmp/t.c] 715 !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0, 716 i64 0, i32 0, null, metadata !7, i32 0, null, null, null} 717 ; [ DW_TAG_subroutine_type ] \ 718 [line 0, size 0, align 0, offset 0] [from ] 719 !7 = metadata !{null} 720 !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2} 721 !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"} 722 !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2, 723 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \ 724 [line 2] 725 !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32, 726 i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \ 727 [line 0, size 32, align 32, offset 0, enc DW_ATE_signed] 728 !12 = metadata !{i32 2, i32 0, metadata !4, null} 729 !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3, 730 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \ 731 [line 3] 732 !14 = metadata !{i32 3, i32 0, metadata !4, null} 733 !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5, 734 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \ 735 [line 5] 736 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0, 737 i32 0} \ 738 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c] 739 !17 = metadata !{i32 5, i32 0, metadata !16, null} 740 !18 = metadata !{i32 6, i32 0, metadata !16, null} 741 !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ] 742 !20 = metadata !{i32 9, i32 0, metadata !4, null} 743 744This example illustrates a few important details about LLVM debugging 745information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and 746location information, which are attached to an instruction, are applied 747together to allow a debugger to analyze the relationship between statements, 748variable definitions, and the code used to implement the function. 749 750.. code-block:: llvm 751 752 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12 753 ; [debug line = 2:7] [debug variable = X] 754 755The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the 756variable ``X``. The metadata ``!dbg !12`` attached to the intrinsic provides 757scope information for the variable ``X``. 758 759.. code-block:: llvm 760 761 !12 = metadata !{i32 2, i32 0, metadata !4, null} 762 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 763 metadata !"foo", metadata !"", i32 1, metadata !6, 764 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false, 765 void ()* @foo, null, null, metadata !2, i32 1} 766 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 767 768Here ``!12`` is metadata providing location information. It has four fields: 769line number, column number, scope, and original scope. The original scope 770represents inline location if this instruction is inlined inside a caller, and 771is null otherwise. In this example, scope is encoded by ``!4``, a 772:ref:`subprogram descriptor <format_subprograms>`. This way the location 773information attached to the intrinsics indicates that the variable ``X`` is 774declared at line number 2 at a function level scope in function ``foo``. 775 776Now lets take another example. 777 778.. code-block:: llvm 779 780 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 781 ; [debug line = 5:9] [debug variable = Z] 782 783The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for 784variable ``Z``. The metadata ``!dbg !17`` attached to the intrinsic provides 785scope information for the variable ``Z``. 786 787.. code-block:: llvm 788 789 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0, 790 i32 0} 791 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c] 792 !17 = metadata !{i32 5, i32 0, metadata !16, null} 793 794Here ``!15`` indicates that ``Z`` is declared at line number 5 and 795column number 0 inside of lexical scope ``!16``. The lexical scope itself 796resides inside of subprogram ``!4`` described above. 797 798The scope information attached with each instruction provides a straightforward 799way to find instructions covered by a scope. 800 801.. _ccxx_frontend: 802 803C/C++ front-end specific debug information 804========================================== 805 806The C and C++ front-ends represent information about the program in a format 807that is effectively identical to `DWARF 3.0 808<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information 809content. This allows code generators to trivially support native debuggers by 810generating standard dwarf information, and contains enough information for 811non-dwarf targets to translate it as needed. 812 813This section describes the forms used to represent C and C++ programs. Other 814languages could pattern themselves after this (which itself is tuned to 815representing programs in the same way that DWARF 3 does), or they could choose 816to provide completely different forms if they don't fit into the DWARF model. 817As support for debugging information gets added to the various LLVM 818source-language front-ends, the information used should be documented here. 819 820The following sections provide examples of various C/C++ constructs and the 821debug information that would best describe those constructs. 822 823C/C++ source file information 824----------------------------- 825 826Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the 827directory ``/Users/mine/sources``, the following code: 828 829.. code-block:: c 830 831 #include "MyHeader.h" 832 833 int main(int argc, char *argv[]) { 834 return 0; 835 } 836 837a C/C++ front-end would generate the following descriptors: 838 839.. code-block:: llvm 840 841 ... 842 ;; 843 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp". 844 ;; 845 !0 = metadata !{ 846 i32 786449, ;; Tag 847 metadata !1, ;; File/directory name 848 i32 4, ;; Language Id 849 metadata !"clang version 3.4 ", 850 i1 false, ;; Optimized compile unit 851 metadata !"", ;; Compiler flags 852 i32 0, ;; Runtime version 853 metadata !2, ;; Enumeration types 854 metadata !2, ;; Retained types 855 metadata !3, ;; Subprograms 856 metadata !2, ;; Global variables 857 metadata !2, ;; Imported entities (declarations and namespaces) 858 metadata !"" ;; Split debug filename 859 1, ;; Full debug info 860 } 861 862 ;; 863 ;; Define the file for the file "/Users/mine/sources/MySource.cpp". 864 ;; 865 !1 = metadata !{ 866 metadata !"MySource.cpp", 867 metadata !"/Users/mine/sources" 868 } 869 !5 = metadata !{ 870 i32 786473, ;; Tag 871 metadata !1 872 } 873 874 ;; 875 ;; Define the file for the file "/Users/mine/sources/Myheader.h" 876 ;; 877 !14 = metadata !{ 878 i32 786473, ;; Tag 879 metadata !15 880 } 881 !15 = metadata !{ 882 metadata !"./MyHeader.h", 883 metadata !"/Users/mine/sources", 884 } 885 886 ... 887 888``llvm::Instruction`` provides easy access to metadata attached with an 889instruction. One can extract line number information encoded in LLVM IR using 890``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``. 891 892.. code-block:: c++ 893 894 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction 895 DILocation Loc(N); // DILocation is in DebugInfo.h 896 unsigned Line = Loc.getLineNumber(); 897 StringRef File = Loc.getFilename(); 898 StringRef Dir = Loc.getDirectory(); 899 } 900 901C/C++ global variable information 902--------------------------------- 903 904Given an integer global variable declared as follows: 905 906.. code-block:: c 907 908 int MyGlobal = 100; 909 910a C/C++ front-end would generate the following descriptors: 911 912.. code-block:: llvm 913 914 ;; 915 ;; Define the global itself. 916 ;; 917 %MyGlobal = global int 100 918 ... 919 ;; 920 ;; List of debug info of globals 921 ;; 922 !llvm.dbg.cu = !{!0} 923 924 ;; Define the compile unit. 925 !0 = metadata !{ 926 i32 786449, ;; Tag 927 i32 0, ;; Context 928 i32 4, ;; Language 929 metadata !"foo.cpp", ;; File 930 metadata !"/Volumes/Data/tmp", ;; Directory 931 metadata !"clang version 3.1 ", ;; Producer 932 i1 true, ;; Deprecated field 933 i1 false, ;; "isOptimized"? 934 metadata !"", ;; Flags 935 i32 0, ;; Runtime Version 936 metadata !1, ;; Enum Types 937 metadata !1, ;; Retained Types 938 metadata !1, ;; Subprograms 939 metadata !3, ;; Global Variables 940 metadata !1, ;; Imported entities 941 "", ;; Split debug filename 942 1, ;; Full debug info 943 } ; [ DW_TAG_compile_unit ] 944 945 ;; The Array of Global Variables 946 !3 = metadata !{ 947 metadata !4 948 } 949 950 ;; 951 ;; Define the global variable itself. 952 ;; 953 !4 = metadata !{ 954 i32 786484, ;; Tag 955 i32 0, ;; Unused 956 null, ;; Unused 957 metadata !"MyGlobal", ;; Name 958 metadata !"MyGlobal", ;; Display Name 959 metadata !"", ;; Linkage Name 960 metadata !6, ;; File 961 i32 1, ;; Line 962 metadata !7, ;; Type 963 i32 0, ;; IsLocalToUnit 964 i32 1, ;; IsDefinition 965 i32* @MyGlobal, ;; LLVM-IR Value 966 null ;; Static member declaration 967 } ; [ DW_TAG_variable ] 968 969 ;; 970 ;; Define the file 971 ;; 972 !5 = metadata !{ 973 metadata !"foo.cpp", ;; File 974 metadata !"/Volumes/Data/tmp", ;; Directory 975 } 976 !6 = metadata !{ 977 i32 786473, ;; Tag 978 metadata !5 ;; Unused 979 } ; [ DW_TAG_file_type ] 980 981 ;; 982 ;; Define the type 983 ;; 984 !7 = metadata !{ 985 i32 786468, ;; Tag 986 null, ;; Unused 987 null, ;; Unused 988 metadata !"int", ;; Name 989 i32 0, ;; Line 990 i64 32, ;; Size in Bits 991 i64 32, ;; Align in Bits 992 i64 0, ;; Offset 993 i32 0, ;; Flags 994 i32 5 ;; Encoding 995 } ; [ DW_TAG_base_type ] 996 997C/C++ function information 998-------------------------- 999 1000Given a function declared as follows: 1001 1002.. code-block:: c 1003 1004 int main(int argc, char *argv[]) { 1005 return 0; 1006 } 1007 1008a C/C++ front-end would generate the following descriptors: 1009 1010.. code-block:: llvm 1011 1012 ;; 1013 ;; Define the anchor for subprograms. 1014 ;; 1015 !6 = metadata !{ 1016 i32 786484, ;; Tag 1017 metadata !1, ;; File 1018 metadata !1, ;; Context 1019 metadata !"main", ;; Name 1020 metadata !"main", ;; Display name 1021 metadata !"main", ;; Linkage name 1022 i32 1, ;; Line number 1023 metadata !4, ;; Type 1024 i1 false, ;; Is local 1025 i1 true, ;; Is definition 1026 i32 0, ;; Virtuality attribute, e.g. pure virtual function 1027 i32 0, ;; Index into virtual table for C++ methods 1028 i32 0, ;; Type that holds virtual table. 1029 i32 0, ;; Flags 1030 i1 false, ;; True if this function is optimized 1031 Function *, ;; Pointer to llvm::Function 1032 null, ;; Function template parameters 1033 null, ;; List of function variables (emitted when optimizing) 1034 1 ;; Line number of the opening '{' of the function 1035 } 1036 ;; 1037 ;; Define the subprogram itself. 1038 ;; 1039 define i32 @main(i32 %argc, i8** %argv) { 1040 ... 1041 } 1042 1043C/C++ basic types 1044----------------- 1045 1046The following are the basic type descriptors for C/C++ core types: 1047 1048bool 1049^^^^ 1050 1051.. code-block:: llvm 1052 1053 !2 = metadata !{ 1054 i32 786468, ;; Tag 1055 null, ;; File 1056 null, ;; Context 1057 metadata !"bool", ;; Name 1058 i32 0, ;; Line number 1059 i64 8, ;; Size in Bits 1060 i64 8, ;; Align in Bits 1061 i64 0, ;; Offset in Bits 1062 i32 0, ;; Flags 1063 i32 2 ;; Encoding 1064 } 1065 1066char 1067^^^^ 1068 1069.. code-block:: llvm 1070 1071 !2 = metadata !{ 1072 i32 786468, ;; Tag 1073 null, ;; File 1074 null, ;; Context 1075 metadata !"char", ;; Name 1076 i32 0, ;; Line number 1077 i64 8, ;; Size in Bits 1078 i64 8, ;; Align in Bits 1079 i64 0, ;; Offset in Bits 1080 i32 0, ;; Flags 1081 i32 6 ;; Encoding 1082 } 1083 1084unsigned char 1085^^^^^^^^^^^^^ 1086 1087.. code-block:: llvm 1088 1089 !2 = metadata !{ 1090 i32 786468, ;; Tag 1091 null, ;; File 1092 null, ;; Context 1093 metadata !"unsigned char", 1094 i32 0, ;; Line number 1095 i64 8, ;; Size in Bits 1096 i64 8, ;; Align in Bits 1097 i64 0, ;; Offset in Bits 1098 i32 0, ;; Flags 1099 i32 8 ;; Encoding 1100 } 1101 1102short 1103^^^^^ 1104 1105.. code-block:: llvm 1106 1107 !2 = metadata !{ 1108 i32 786468, ;; Tag 1109 null, ;; File 1110 null, ;; Context 1111 metadata !"short int", 1112 i32 0, ;; Line number 1113 i64 16, ;; Size in Bits 1114 i64 16, ;; Align in Bits 1115 i64 0, ;; Offset in Bits 1116 i32 0, ;; Flags 1117 i32 5 ;; Encoding 1118 } 1119 1120unsigned short 1121^^^^^^^^^^^^^^ 1122 1123.. code-block:: llvm 1124 1125 !2 = metadata !{ 1126 i32 786468, ;; Tag 1127 null, ;; File 1128 null, ;; Context 1129 metadata !"short unsigned int", 1130 i32 0, ;; Line number 1131 i64 16, ;; Size in Bits 1132 i64 16, ;; Align in Bits 1133 i64 0, ;; Offset in Bits 1134 i32 0, ;; Flags 1135 i32 7 ;; Encoding 1136 } 1137 1138int 1139^^^ 1140 1141.. code-block:: llvm 1142 1143 !2 = metadata !{ 1144 i32 786468, ;; Tag 1145 null, ;; File 1146 null, ;; Context 1147 metadata !"int", ;; Name 1148 i32 0, ;; Line number 1149 i64 32, ;; Size in Bits 1150 i64 32, ;; Align in Bits 1151 i64 0, ;; Offset in Bits 1152 i32 0, ;; Flags 1153 i32 5 ;; Encoding 1154 } 1155 1156unsigned int 1157^^^^^^^^^^^^ 1158 1159.. code-block:: llvm 1160 1161 !2 = metadata !{ 1162 i32 786468, ;; Tag 1163 null, ;; File 1164 null, ;; Context 1165 metadata !"unsigned int", 1166 i32 0, ;; Line number 1167 i64 32, ;; Size in Bits 1168 i64 32, ;; Align in Bits 1169 i64 0, ;; Offset in Bits 1170 i32 0, ;; Flags 1171 i32 7 ;; Encoding 1172 } 1173 1174long long 1175^^^^^^^^^ 1176 1177.. code-block:: llvm 1178 1179 !2 = metadata !{ 1180 i32 786468, ;; Tag 1181 null, ;; File 1182 null, ;; Context 1183 metadata !"long long int", 1184 i32 0, ;; Line number 1185 i64 64, ;; Size in Bits 1186 i64 64, ;; Align in Bits 1187 i64 0, ;; Offset in Bits 1188 i32 0, ;; Flags 1189 i32 5 ;; Encoding 1190 } 1191 1192unsigned long long 1193^^^^^^^^^^^^^^^^^^ 1194 1195.. code-block:: llvm 1196 1197 !2 = metadata !{ 1198 i32 786468, ;; Tag 1199 null, ;; File 1200 null, ;; Context 1201 metadata !"long long unsigned int", 1202 i32 0, ;; Line number 1203 i64 64, ;; Size in Bits 1204 i64 64, ;; Align in Bits 1205 i64 0, ;; Offset in Bits 1206 i32 0, ;; Flags 1207 i32 7 ;; Encoding 1208 } 1209 1210float 1211^^^^^ 1212 1213.. code-block:: llvm 1214 1215 !2 = metadata !{ 1216 i32 786468, ;; Tag 1217 null, ;; File 1218 null, ;; Context 1219 metadata !"float", 1220 i32 0, ;; Line number 1221 i64 32, ;; Size in Bits 1222 i64 32, ;; Align in Bits 1223 i64 0, ;; Offset in Bits 1224 i32 0, ;; Flags 1225 i32 4 ;; Encoding 1226 } 1227 1228double 1229^^^^^^ 1230 1231.. code-block:: llvm 1232 1233 !2 = metadata !{ 1234 i32 786468, ;; Tag 1235 null, ;; File 1236 null, ;; Context 1237 metadata !"double",;; Name 1238 i32 0, ;; Line number 1239 i64 64, ;; Size in Bits 1240 i64 64, ;; Align in Bits 1241 i64 0, ;; Offset in Bits 1242 i32 0, ;; Flags 1243 i32 4 ;; Encoding 1244 } 1245 1246C/C++ derived types 1247------------------- 1248 1249Given the following as an example of C/C++ derived type: 1250 1251.. code-block:: c 1252 1253 typedef const int *IntPtr; 1254 1255a C/C++ front-end would generate the following descriptors: 1256 1257.. code-block:: llvm 1258 1259 ;; 1260 ;; Define the typedef "IntPtr". 1261 ;; 1262 !2 = metadata !{ 1263 i32 786454, ;; Tag 1264 metadata !3, ;; File 1265 metadata !1, ;; Context 1266 metadata !"IntPtr", ;; Name 1267 i32 0, ;; Line number 1268 i64 0, ;; Size in bits 1269 i64 0, ;; Align in bits 1270 i64 0, ;; Offset in bits 1271 i32 0, ;; Flags 1272 metadata !4 ;; Derived From type 1273 } 1274 ;; 1275 ;; Define the pointer type. 1276 ;; 1277 !4 = metadata !{ 1278 i32 786447, ;; Tag 1279 null, ;; File 1280 null, ;; Context 1281 metadata !"", ;; Name 1282 i32 0, ;; Line number 1283 i64 64, ;; Size in bits 1284 i64 64, ;; Align in bits 1285 i64 0, ;; Offset in bits 1286 i32 0, ;; Flags 1287 metadata !5 ;; Derived From type 1288 } 1289 ;; 1290 ;; Define the const type. 1291 ;; 1292 !5 = metadata !{ 1293 i32 786470, ;; Tag 1294 null, ;; File 1295 null, ;; Context 1296 metadata !"", ;; Name 1297 i32 0, ;; Line number 1298 i64 0, ;; Size in bits 1299 i64 0, ;; Align in bits 1300 i64 0, ;; Offset in bits 1301 i32 0, ;; Flags 1302 metadata !6 ;; Derived From type 1303 } 1304 ;; 1305 ;; Define the int type. 1306 ;; 1307 !6 = metadata !{ 1308 i32 786468, ;; Tag 1309 null, ;; File 1310 null, ;; Context 1311 metadata !"int", ;; Name 1312 i32 0, ;; Line number 1313 i64 32, ;; Size in bits 1314 i64 32, ;; Align in bits 1315 i64 0, ;; Offset in bits 1316 i32 0, ;; Flags 1317 i32 5 ;; Encoding 1318 } 1319 1320C/C++ struct/union types 1321------------------------ 1322 1323Given the following as an example of C/C++ struct type: 1324 1325.. code-block:: c 1326 1327 struct Color { 1328 unsigned Red; 1329 unsigned Green; 1330 unsigned Blue; 1331 }; 1332 1333a C/C++ front-end would generate the following descriptors: 1334 1335.. code-block:: llvm 1336 1337 ;; 1338 ;; Define basic type for unsigned int. 1339 ;; 1340 !5 = metadata !{ 1341 i32 786468, ;; Tag 1342 null, ;; File 1343 null, ;; Context 1344 metadata !"unsigned int", 1345 i32 0, ;; Line number 1346 i64 32, ;; Size in Bits 1347 i64 32, ;; Align in Bits 1348 i64 0, ;; Offset in Bits 1349 i32 0, ;; Flags 1350 i32 7 ;; Encoding 1351 } 1352 ;; 1353 ;; Define composite type for struct Color. 1354 ;; 1355 !2 = metadata !{ 1356 i32 786451, ;; Tag 1357 metadata !1, ;; Compile unit 1358 null, ;; Context 1359 metadata !"Color", ;; Name 1360 i32 1, ;; Line number 1361 i64 96, ;; Size in bits 1362 i64 32, ;; Align in bits 1363 i64 0, ;; Offset in bits 1364 i32 0, ;; Flags 1365 null, ;; Derived From 1366 metadata !3, ;; Elements 1367 i32 0, ;; Runtime Language 1368 null, ;; Base type containing the vtable pointer for this type 1369 null ;; Template parameters 1370 } 1371 1372 ;; 1373 ;; Define the Red field. 1374 ;; 1375 !4 = metadata !{ 1376 i32 786445, ;; Tag 1377 metadata !1, ;; File 1378 metadata !1, ;; Context 1379 metadata !"Red", ;; Name 1380 i32 2, ;; Line number 1381 i64 32, ;; Size in bits 1382 i64 32, ;; Align in bits 1383 i64 0, ;; Offset in bits 1384 i32 0, ;; Flags 1385 metadata !5 ;; Derived From type 1386 } 1387 1388 ;; 1389 ;; Define the Green field. 1390 ;; 1391 !6 = metadata !{ 1392 i32 786445, ;; Tag 1393 metadata !1, ;; File 1394 metadata !1, ;; Context 1395 metadata !"Green", ;; Name 1396 i32 3, ;; Line number 1397 i64 32, ;; Size in bits 1398 i64 32, ;; Align in bits 1399 i64 32, ;; Offset in bits 1400 i32 0, ;; Flags 1401 metadata !5 ;; Derived From type 1402 } 1403 1404 ;; 1405 ;; Define the Blue field. 1406 ;; 1407 !7 = metadata !{ 1408 i32 786445, ;; Tag 1409 metadata !1, ;; File 1410 metadata !1, ;; Context 1411 metadata !"Blue", ;; Name 1412 i32 4, ;; Line number 1413 i64 32, ;; Size in bits 1414 i64 32, ;; Align in bits 1415 i64 64, ;; Offset in bits 1416 i32 0, ;; Flags 1417 metadata !5 ;; Derived From type 1418 } 1419 1420 ;; 1421 ;; Define the array of fields used by the composite type Color. 1422 ;; 1423 !3 = metadata !{metadata !4, metadata !6, metadata !7} 1424 1425C/C++ enumeration types 1426----------------------- 1427 1428Given the following as an example of C/C++ enumeration type: 1429 1430.. code-block:: c 1431 1432 enum Trees { 1433 Spruce = 100, 1434 Oak = 200, 1435 Maple = 300 1436 }; 1437 1438a C/C++ front-end would generate the following descriptors: 1439 1440.. code-block:: llvm 1441 1442 ;; 1443 ;; Define composite type for enum Trees 1444 ;; 1445 !2 = metadata !{ 1446 i32 786436, ;; Tag 1447 metadata !1, ;; File 1448 metadata !1, ;; Context 1449 metadata !"Trees", ;; Name 1450 i32 1, ;; Line number 1451 i64 32, ;; Size in bits 1452 i64 32, ;; Align in bits 1453 i64 0, ;; Offset in bits 1454 i32 0, ;; Flags 1455 null, ;; Derived From type 1456 metadata !3, ;; Elements 1457 i32 0 ;; Runtime language 1458 } 1459 1460 ;; 1461 ;; Define the array of enumerators used by composite type Trees. 1462 ;; 1463 !3 = metadata !{metadata !4, metadata !5, metadata !6} 1464 1465 ;; 1466 ;; Define Spruce enumerator. 1467 ;; 1468 !4 = metadata !{i32 786472, metadata !"Spruce", i64 100} 1469 1470 ;; 1471 ;; Define Oak enumerator. 1472 ;; 1473 !5 = metadata !{i32 786472, metadata !"Oak", i64 200} 1474 1475 ;; 1476 ;; Define Maple enumerator. 1477 ;; 1478 !6 = metadata !{i32 786472, metadata !"Maple", i64 300} 1479 1480Debugging information format 1481============================ 1482 1483Debugging Information Extension for Objective C Properties 1484---------------------------------------------------------- 1485 1486Introduction 1487^^^^^^^^^^^^ 1488 1489Objective C provides a simpler way to declare and define accessor methods using 1490declared properties. The language provides features to declare a property and 1491to let compiler synthesize accessor methods. 1492 1493The debugger lets developer inspect Objective C interfaces and their instance 1494variables and class variables. However, the debugger does not know anything 1495about the properties defined in Objective C interfaces. The debugger consumes 1496information generated by compiler in DWARF format. The format does not support 1497encoding of Objective C properties. This proposal describes DWARF extensions to 1498encode Objective C properties, which the debugger can use to let developers 1499inspect Objective C properties. 1500 1501Proposal 1502^^^^^^^^ 1503 1504Objective C properties exist separately from class members. A property can be 1505defined only by "setter" and "getter" selectors, and be calculated anew on each 1506access. Or a property can just be a direct access to some declared ivar. 1507Finally it can have an ivar "automatically synthesized" for it by the compiler, 1508in which case the property can be referred to in user code directly using the 1509standard C dereference syntax as well as through the property "dot" syntax, but 1510there is no entry in the ``@interface`` declaration corresponding to this ivar. 1511 1512To facilitate debugging, these properties we will add a new DWARF TAG into the 1513``DW_TAG_structure_type`` definition for the class to hold the description of a 1514given property, and a set of DWARF attributes that provide said description. 1515The property tag will also contain the name and declared type of the property. 1516 1517If there is a related ivar, there will also be a DWARF property attribute placed 1518in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG 1519for that property. And in the case where the compiler synthesizes the ivar 1520directly, the compiler is expected to generate a ``DW_TAG_member`` for that 1521ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used 1522to access this ivar directly in code, and with the property attribute pointing 1523back to the property it is backing. 1524 1525The following examples will serve as illustration for our discussion: 1526 1527.. code-block:: objc 1528 1529 @interface I1 { 1530 int n2; 1531 } 1532 1533 @property int p1; 1534 @property int p2; 1535 @end 1536 1537 @implementation I1 1538 @synthesize p1; 1539 @synthesize p2 = n2; 1540 @end 1541 1542This produces the following DWARF (this is a "pseudo dwarfdump" output): 1543 1544.. code-block:: none 1545 1546 0x00000100: TAG_structure_type [7] * 1547 AT_APPLE_runtime_class( 0x10 ) 1548 AT_name( "I1" ) 1549 AT_decl_file( "Objc_Property.m" ) 1550 AT_decl_line( 3 ) 1551 1552 0x00000110 TAG_APPLE_property 1553 AT_name ( "p1" ) 1554 AT_type ( {0x00000150} ( int ) ) 1555 1556 0x00000120: TAG_APPLE_property 1557 AT_name ( "p2" ) 1558 AT_type ( {0x00000150} ( int ) ) 1559 1560 0x00000130: TAG_member [8] 1561 AT_name( "_p1" ) 1562 AT_APPLE_property ( {0x00000110} "p1" ) 1563 AT_type( {0x00000150} ( int ) ) 1564 AT_artificial ( 0x1 ) 1565 1566 0x00000140: TAG_member [8] 1567 AT_name( "n2" ) 1568 AT_APPLE_property ( {0x00000120} "p2" ) 1569 AT_type( {0x00000150} ( int ) ) 1570 1571 0x00000150: AT_type( ( int ) ) 1572 1573Note, the current convention is that the name of the ivar for an 1574auto-synthesized property is the name of the property from which it derives 1575with an underscore prepended, as is shown in the example. But we actually 1576don't need to know this convention, since we are given the name of the ivar 1577directly. 1578 1579Also, it is common practice in ObjC to have different property declarations in 1580the @interface and @implementation - e.g. to provide a read-only property in 1581the interface,and a read-write interface in the implementation. In that case, 1582the compiler should emit whichever property declaration will be in force in the 1583current translation unit. 1584 1585Developers can decorate a property with attributes which are encoded using 1586``DW_AT_APPLE_property_attribute``. 1587 1588.. code-block:: objc 1589 1590 @property (readonly, nonatomic) int pr; 1591 1592.. code-block:: none 1593 1594 TAG_APPLE_property [8] 1595 AT_name( "pr" ) 1596 AT_type ( {0x00000147} (int) ) 1597 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic) 1598 1599The setter and getter method names are attached to the property using 1600``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes. 1601 1602.. code-block:: objc 1603 1604 @interface I1 1605 @property (setter=myOwnP3Setter:) int p3; 1606 -(void)myOwnP3Setter:(int)a; 1607 @end 1608 1609 @implementation I1 1610 @synthesize p3; 1611 -(void)myOwnP3Setter:(int)a{ } 1612 @end 1613 1614The DWARF for this would be: 1615 1616.. code-block:: none 1617 1618 0x000003bd: TAG_structure_type [7] * 1619 AT_APPLE_runtime_class( 0x10 ) 1620 AT_name( "I1" ) 1621 AT_decl_file( "Objc_Property.m" ) 1622 AT_decl_line( 3 ) 1623 1624 0x000003cd TAG_APPLE_property 1625 AT_name ( "p3" ) 1626 AT_APPLE_property_setter ( "myOwnP3Setter:" ) 1627 AT_type( {0x00000147} ( int ) ) 1628 1629 0x000003f3: TAG_member [8] 1630 AT_name( "_p3" ) 1631 AT_type ( {0x00000147} ( int ) ) 1632 AT_APPLE_property ( {0x000003cd} ) 1633 AT_artificial ( 0x1 ) 1634 1635New DWARF Tags 1636^^^^^^^^^^^^^^ 1637 1638+-----------------------+--------+ 1639| TAG | Value | 1640+=======================+========+ 1641| DW_TAG_APPLE_property | 0x4200 | 1642+-----------------------+--------+ 1643 1644New DWARF Attributes 1645^^^^^^^^^^^^^^^^^^^^ 1646 1647+--------------------------------+--------+-----------+ 1648| Attribute | Value | Classes | 1649+================================+========+===========+ 1650| DW_AT_APPLE_property | 0x3fed | Reference | 1651+--------------------------------+--------+-----------+ 1652| DW_AT_APPLE_property_getter | 0x3fe9 | String | 1653+--------------------------------+--------+-----------+ 1654| DW_AT_APPLE_property_setter | 0x3fea | String | 1655+--------------------------------+--------+-----------+ 1656| DW_AT_APPLE_property_attribute | 0x3feb | Constant | 1657+--------------------------------+--------+-----------+ 1658 1659New DWARF Constants 1660^^^^^^^^^^^^^^^^^^^ 1661 1662+--------------------------------+-------+ 1663| Name | Value | 1664+================================+=======+ 1665| DW_AT_APPLE_PROPERTY_readonly | 0x1 | 1666+--------------------------------+-------+ 1667| DW_AT_APPLE_PROPERTY_readwrite | 0x2 | 1668+--------------------------------+-------+ 1669| DW_AT_APPLE_PROPERTY_assign | 0x4 | 1670+--------------------------------+-------+ 1671| DW_AT_APPLE_PROPERTY_retain | 0x8 | 1672+--------------------------------+-------+ 1673| DW_AT_APPLE_PROPERTY_copy | 0x10 | 1674+--------------------------------+-------+ 1675| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 | 1676+--------------------------------+-------+ 1677 1678Name Accelerator Tables 1679----------------------- 1680 1681Introduction 1682^^^^^^^^^^^^ 1683 1684The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a 1685debugger needs. The "``pub``" in the section name indicates that the entries 1686in the table are publicly visible names only. This means no static or hidden 1687functions show up in the "``.debug_pubnames``". No static variables or private 1688class variables are in the "``.debug_pubtypes``". Many compilers add different 1689things to these tables, so we can't rely upon the contents between gcc, icc, or 1690clang. 1691 1692The typical query given by users tends not to match up with the contents of 1693these tables. For example, the DWARF spec states that "In the case of the name 1694of a function member or static data member of a C++ structure, class or union, 1695the name presented in the "``.debug_pubnames``" section is not the simple name 1696given by the ``DW_AT_name attribute`` of the referenced debugging information 1697entry, but rather the fully qualified name of the data or function member." 1698So the only names in these tables for complex C++ entries is a fully 1699qualified name. Debugger users tend not to enter their search strings as 1700"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or 1701"``a::b::c``". So the name entered in the name table must be demangled in 1702order to chop it up appropriately and additional names must be manually entered 1703into the table to make it effective as a name lookup table for debuggers to 1704se. 1705 1706All debuggers currently ignore the "``.debug_pubnames``" table as a result of 1707its inconsistent and useless public-only name content making it a waste of 1708space in the object file. These tables, when they are written to disk, are not 1709sorted in any way, leaving every debugger to do its own parsing and sorting. 1710These tables also include an inlined copy of the string values in the table 1711itself making the tables much larger than they need to be on disk, especially 1712for large C++ programs. 1713 1714Can't we just fix the sections by adding all of the names we need to this 1715table? No, because that is not what the tables are defined to contain and we 1716won't know the difference between the old bad tables and the new good tables. 1717At best we could make our own renamed sections that contain all of the data we 1718need. 1719 1720These tables are also insufficient for what a debugger like LLDB needs. LLDB 1721uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then 1722often asked to look for type "``foo``" or namespace "``bar``", or list items in 1723namespace "``baz``". Namespaces are not included in the pubnames or pubtypes 1724tables. Since clang asks a lot of questions when it is parsing an expression, 1725we need to be very fast when looking up names, as it happens a lot. Having new 1726accelerator tables that are optimized for very quick lookups will benefit this 1727type of debugging experience greatly. 1728 1729We would like to generate name lookup tables that can be mapped into memory 1730from disk, and used as is, with little or no up-front parsing. We would also 1731be able to control the exact content of these different tables so they contain 1732exactly what we need. The Name Accelerator Tables were designed to fix these 1733issues. In order to solve these issues we need to: 1734 1735* Have a format that can be mapped into memory from disk and used as is 1736* Lookups should be very fast 1737* Extensible table format so these tables can be made by many producers 1738* Contain all of the names needed for typical lookups out of the box 1739* Strict rules for the contents of tables 1740 1741Table size is important and the accelerator table format should allow the reuse 1742of strings from common string tables so the strings for the names are not 1743duplicated. We also want to make sure the table is ready to be used as-is by 1744simply mapping the table into memory with minimal header parsing. 1745 1746The name lookups need to be fast and optimized for the kinds of lookups that 1747debuggers tend to do. Optimally we would like to touch as few parts of the 1748mapped table as possible when doing a name lookup and be able to quickly find 1749the name entry we are looking for, or discover there are no matches. In the 1750case of debuggers we optimized for lookups that fail most of the time. 1751 1752Each table that is defined should have strict rules on exactly what is in the 1753accelerator tables and documented so clients can rely on the content. 1754 1755Hash Tables 1756^^^^^^^^^^^ 1757 1758Standard Hash Tables 1759"""""""""""""""""""" 1760 1761Typical hash tables have a header, buckets, and each bucket points to the 1762bucket contents: 1763 1764.. code-block:: none 1765 1766 .------------. 1767 | HEADER | 1768 |------------| 1769 | BUCKETS | 1770 |------------| 1771 | DATA | 1772 `------------' 1773 1774The BUCKETS are an array of offsets to DATA for each hash: 1775 1776.. code-block:: none 1777 1778 .------------. 1779 | 0x00001000 | BUCKETS[0] 1780 | 0x00002000 | BUCKETS[1] 1781 | 0x00002200 | BUCKETS[2] 1782 | 0x000034f0 | BUCKETS[3] 1783 | | ... 1784 | 0xXXXXXXXX | BUCKETS[n_buckets] 1785 '------------' 1786 1787So for ``bucket[3]`` in the example above, we have an offset into the table 17880x000034f0 which points to a chain of entries for the bucket. Each bucket must 1789contain a next pointer, full 32 bit hash value, the string itself, and the data 1790for the current string value. 1791 1792.. code-block:: none 1793 1794 .------------. 1795 0x000034f0: | 0x00003500 | next pointer 1796 | 0x12345678 | 32 bit hash 1797 | "erase" | string value 1798 | data[n] | HashData for this bucket 1799 |------------| 1800 0x00003500: | 0x00003550 | next pointer 1801 | 0x29273623 | 32 bit hash 1802 | "dump" | string value 1803 | data[n] | HashData for this bucket 1804 |------------| 1805 0x00003550: | 0x00000000 | next pointer 1806 | 0x82638293 | 32 bit hash 1807 | "main" | string value 1808 | data[n] | HashData for this bucket 1809 `------------' 1810 1811The problem with this layout for debuggers is that we need to optimize for the 1812negative lookup case where the symbol we're searching for is not present. So 1813if we were to lookup "``printf``" in the table above, we would make a 32 hash 1814for "``printf``", it might match ``bucket[3]``. We would need to go to the 1815offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do 1816so, we need to read the next pointer, then read the hash, compare it, and skip 1817to the next bucket. Each time we are skipping many bytes in memory and 1818touching new cache pages just to do the compare on the full 32 bit hash. All 1819of these accesses then tell us that we didn't have a match. 1820 1821Name Hash Tables 1822"""""""""""""""" 1823 1824To solve the issues mentioned above we have structured the hash tables a bit 1825differently: a header, buckets, an array of all unique 32 bit hash values, 1826followed by an array of hash value data offsets, one for each hash value, then 1827the data for all hash values: 1828 1829.. code-block:: none 1830 1831 .-------------. 1832 | HEADER | 1833 |-------------| 1834 | BUCKETS | 1835 |-------------| 1836 | HASHES | 1837 |-------------| 1838 | OFFSETS | 1839 |-------------| 1840 | DATA | 1841 `-------------' 1842 1843The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By 1844making all of the full 32 bit hash values contiguous in memory, we allow 1845ourselves to efficiently check for a match while touching as little memory as 1846possible. Most often checking the 32 bit hash values is as far as the lookup 1847goes. If it does match, it usually is a match with no collisions. So for a 1848table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash 1849values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and 1850``OFFSETS`` as: 1851 1852.. code-block:: none 1853 1854 .-------------------------. 1855 | HEADER.magic | uint32_t 1856 | HEADER.version | uint16_t 1857 | HEADER.hash_function | uint16_t 1858 | HEADER.bucket_count | uint32_t 1859 | HEADER.hashes_count | uint32_t 1860 | HEADER.header_data_len | uint32_t 1861 | HEADER_DATA | HeaderData 1862 |-------------------------| 1863 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes 1864 |-------------------------| 1865 | HASHES | uint32_t[n_hashes] // 32 bit hash values 1866 |-------------------------| 1867 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data 1868 |-------------------------| 1869 | ALL HASH DATA | 1870 `-------------------------' 1871 1872So taking the exact same data from the standard hash example above we end up 1873with: 1874 1875.. code-block:: none 1876 1877 .------------. 1878 | HEADER | 1879 |------------| 1880 | 0 | BUCKETS[0] 1881 | 2 | BUCKETS[1] 1882 | 5 | BUCKETS[2] 1883 | 6 | BUCKETS[3] 1884 | | ... 1885 | ... | BUCKETS[n_buckets] 1886 |------------| 1887 | 0x........ | HASHES[0] 1888 | 0x........ | HASHES[1] 1889 | 0x........ | HASHES[2] 1890 | 0x........ | HASHES[3] 1891 | 0x........ | HASHES[4] 1892 | 0x........ | HASHES[5] 1893 | 0x12345678 | HASHES[6] hash for BUCKETS[3] 1894 | 0x29273623 | HASHES[7] hash for BUCKETS[3] 1895 | 0x82638293 | HASHES[8] hash for BUCKETS[3] 1896 | 0x........ | HASHES[9] 1897 | 0x........ | HASHES[10] 1898 | 0x........ | HASHES[11] 1899 | 0x........ | HASHES[12] 1900 | 0x........ | HASHES[13] 1901 | 0x........ | HASHES[n_hashes] 1902 |------------| 1903 | 0x........ | OFFSETS[0] 1904 | 0x........ | OFFSETS[1] 1905 | 0x........ | OFFSETS[2] 1906 | 0x........ | OFFSETS[3] 1907 | 0x........ | OFFSETS[4] 1908 | 0x........ | OFFSETS[5] 1909 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3] 1910 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3] 1911 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3] 1912 | 0x........ | OFFSETS[9] 1913 | 0x........ | OFFSETS[10] 1914 | 0x........ | OFFSETS[11] 1915 | 0x........ | OFFSETS[12] 1916 | 0x........ | OFFSETS[13] 1917 | 0x........ | OFFSETS[n_hashes] 1918 |------------| 1919 | | 1920 | | 1921 | | 1922 | | 1923 | | 1924 |------------| 1925 0x000034f0: | 0x00001203 | .debug_str ("erase") 1926 | 0x00000004 | A 32 bit array count - number of HashData with name "erase" 1927 | 0x........ | HashData[0] 1928 | 0x........ | HashData[1] 1929 | 0x........ | HashData[2] 1930 | 0x........ | HashData[3] 1931 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1932 |------------| 1933 0x00003500: | 0x00001203 | String offset into .debug_str ("collision") 1934 | 0x00000002 | A 32 bit array count - number of HashData with name "collision" 1935 | 0x........ | HashData[0] 1936 | 0x........ | HashData[1] 1937 | 0x00001203 | String offset into .debug_str ("dump") 1938 | 0x00000003 | A 32 bit array count - number of HashData with name "dump" 1939 | 0x........ | HashData[0] 1940 | 0x........ | HashData[1] 1941 | 0x........ | HashData[2] 1942 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1943 |------------| 1944 0x00003550: | 0x00001203 | String offset into .debug_str ("main") 1945 | 0x00000009 | A 32 bit array count - number of HashData with name "main" 1946 | 0x........ | HashData[0] 1947 | 0x........ | HashData[1] 1948 | 0x........ | HashData[2] 1949 | 0x........ | HashData[3] 1950 | 0x........ | HashData[4] 1951 | 0x........ | HashData[5] 1952 | 0x........ | HashData[6] 1953 | 0x........ | HashData[7] 1954 | 0x........ | HashData[8] 1955 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1956 `------------' 1957 1958So we still have all of the same data, we just organize it more efficiently for 1959debugger lookup. If we repeat the same "``printf``" lookup from above, we 1960would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit 1961hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which 1962is the index into the ``HASHES`` table. We would then compare any consecutive 196332 bit hashes values in the ``HASHES`` array as long as the hashes would be in 1964``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo 1965``n_buckets`` is still 3. In the case of a failed lookup we would access the 1966memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes 1967before we know that we have no match. We don't end up marching through 1968multiple words of memory and we really keep the number of processor data cache 1969lines being accessed as small as possible. 1970 1971The string hash that is used for these lookup tables is the Daniel J. 1972Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a 1973very good hash for all kinds of names in programs with very few hash 1974collisions. 1975 1976Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``. 1977 1978Details 1979^^^^^^^ 1980 1981These name hash tables are designed to be generic where specializations of the 1982table get to define additional data that goes into the header ("``HeaderData``"), 1983how the string value is stored ("``KeyType``") and the content of the data for each 1984hash value. 1985 1986Header Layout 1987""""""""""""" 1988 1989The header has a fixed part, and the specialized part. The exact format of the 1990header is: 1991 1992.. code-block:: c 1993 1994 struct Header 1995 { 1996 uint32_t magic; // 'HASH' magic value to allow endian detection 1997 uint16_t version; // Version number 1998 uint16_t hash_function; // The hash function enumeration that was used 1999 uint32_t bucket_count; // The number of buckets in this hash table 2000 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table 2001 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment 2002 // Specifically the length of the following HeaderData field - this does not 2003 // include the size of the preceding fields 2004 HeaderData header_data; // Implementation specific header data 2005 }; 2006 2007The header starts with a 32 bit "``magic``" value which must be ``'HASH'`` 2008encoded as an ASCII integer. This allows the detection of the start of the 2009hash table and also allows the table's byte order to be determined so the table 2010can be correctly extracted. The "``magic``" value is followed by a 16 bit 2011``version`` number which allows the table to be revised and modified in the 2012future. The current version number is 1. ``hash_function`` is a ``uint16_t`` 2013enumeration that specifies which hash function was used to produce this table. 2014The current values for the hash function enumerations include: 2015 2016.. code-block:: c 2017 2018 enum HashFunctionType 2019 { 2020 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function 2021 }; 2022 2023``bucket_count`` is a 32 bit unsigned integer that represents how many buckets 2024are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit 2025hash values that are in the ``HASHES`` array, and is the same number of offsets 2026are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size 2027in bytes of the ``HeaderData`` that is filled in by specialized versions of 2028this table. 2029 2030Fixed Lookup 2031"""""""""""" 2032 2033The header is followed by the buckets, hashes, offsets, and hash value data. 2034 2035.. code-block:: c 2036 2037 struct FixedTable 2038 { 2039 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below 2040 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table 2041 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above 2042 }; 2043 2044``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The 2045``hashes`` array contains all of the 32 bit hash values for all names in the 2046hash table. Each hash in the ``hashes`` table has an offset in the ``offsets`` 2047array that points to the data for the hash value. 2048 2049This table setup makes it very easy to repurpose these tables to contain 2050different data, while keeping the lookup mechanism the same for all tables. 2051This layout also makes it possible to save the table to disk and map it in 2052later and do very efficient name lookups with little or no parsing. 2053 2054DWARF lookup tables can be implemented in a variety of ways and can store a lot 2055of information for each name. We want to make the DWARF tables extensible and 2056able to store the data efficiently so we have used some of the DWARF features 2057that enable efficient data storage to define exactly what kind of data we store 2058for each name. 2059 2060The ``HeaderData`` contains a definition of the contents of each HashData chunk. 2061We might want to store an offset to all of the debug information entries (DIEs) 2062for each name. To keep things extensible, we create a list of items, or 2063Atoms, that are contained in the data for each name. First comes the type of 2064the data in each atom: 2065 2066.. code-block:: c 2067 2068 enum AtomType 2069 { 2070 eAtomTypeNULL = 0u, 2071 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding 2072 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question 2073 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2 2074 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags 2075 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags 2076 }; 2077 2078The enumeration values and their meanings are: 2079 2080.. code-block:: none 2081 2082 eAtomTypeNULL - a termination atom that specifies the end of the atom list 2083 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name 2084 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE 2085 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is 2086 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...) 2087 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...) 2088 2089Then we allow each atom type to define the atom type and how the data for each 2090atom type data is encoded: 2091 2092.. code-block:: c 2093 2094 struct Atom 2095 { 2096 uint16_t type; // AtomType enum value 2097 uint16_t form; // DWARF DW_FORM_XXX defines 2098 }; 2099 2100The ``form`` type above is from the DWARF specification and defines the exact 2101encoding of the data for the Atom type. See the DWARF specification for the 2102``DW_FORM_`` definitions. 2103 2104.. code-block:: c 2105 2106 struct HeaderData 2107 { 2108 uint32_t die_offset_base; 2109 uint32_t atom_count; 2110 Atoms atoms[atom_count0]; 2111 }; 2112 2113``HeaderData`` defines the base DIE offset that should be added to any atoms 2114that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``, 2115``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines 2116what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large 2117each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data 2118should be interpreted. 2119 2120For the current implementations of the "``.apple_names``" (all functions + 2121globals), the "``.apple_types``" (names of all types that are defined), and 2122the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom`` 2123array to be: 2124 2125.. code-block:: c 2126 2127 HeaderData.atom_count = 1; 2128 HeaderData.atoms[0].type = eAtomTypeDIEOffset; 2129 HeaderData.atoms[0].form = DW_FORM_data4; 2130 2131This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is 2132encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have 2133multiple matching DIEs in a single file, which could come up with an inlined 2134function for instance. Future tables could include more information about the 2135DIE such as flags indicating if the DIE is a function, method, block, 2136or inlined. 2137 2138The KeyType for the DWARF table is a 32 bit string table offset into the 2139".debug_str" table. The ".debug_str" is the string table for the DWARF which 2140may already contain copies of all of the strings. This helps make sure, with 2141help from the compiler, that we reuse the strings between all of the DWARF 2142sections and keeps the hash table size down. Another benefit to having the 2143compiler generate all strings as DW_FORM_strp in the debug info, is that 2144DWARF parsing can be made much faster. 2145 2146After a lookup is made, we get an offset into the hash data. The hash data 2147needs to be able to deal with 32 bit hash collisions, so the chunk of data 2148at the offset in the hash data consists of a triple: 2149 2150.. code-block:: c 2151 2152 uint32_t str_offset 2153 uint32_t hash_data_count 2154 HashData[hash_data_count] 2155 2156If "str_offset" is zero, then the bucket contents are done. 99.9% of the 2157hash data chunks contain a single item (no 32 bit hash collision): 2158 2159.. code-block:: none 2160 2161 .------------. 2162 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2163 | 0x00000004 | uint32_t HashData count 2164 | 0x........ | uint32_t HashData[0] DIE offset 2165 | 0x........ | uint32_t HashData[1] DIE offset 2166 | 0x........ | uint32_t HashData[2] DIE offset 2167 | 0x........ | uint32_t HashData[3] DIE offset 2168 | 0x00000000 | uint32_t KeyType (end of hash chain) 2169 `------------' 2170 2171If there are collisions, you will have multiple valid string offsets: 2172 2173.. code-block:: none 2174 2175 .------------. 2176 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2177 | 0x00000004 | uint32_t HashData count 2178 | 0x........ | uint32_t HashData[0] DIE offset 2179 | 0x........ | uint32_t HashData[1] DIE offset 2180 | 0x........ | uint32_t HashData[2] DIE offset 2181 | 0x........ | uint32_t HashData[3] DIE offset 2182 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print") 2183 | 0x00000002 | uint32_t HashData count 2184 | 0x........ | uint32_t HashData[0] DIE offset 2185 | 0x........ | uint32_t HashData[1] DIE offset 2186 | 0x00000000 | uint32_t KeyType (end of hash chain) 2187 `------------' 2188 2189Current testing with real world C++ binaries has shown that there is around 1 219032 bit hash collision per 100,000 name entries. 2191 2192Contents 2193^^^^^^^^ 2194 2195As we said, we want to strictly define exactly what is included in the 2196different tables. For DWARF, we have 3 tables: "``.apple_names``", 2197"``.apple_types``", and "``.apple_namespaces``". 2198 2199"``.apple_names``" sections should contain an entry for each DWARF DIE whose 2200``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or 2201``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``, 2202``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains 2203``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and 2204static variables). All global and static variables should be included, 2205including those scoped within functions and classes. For example using the 2206following code: 2207 2208.. code-block:: c 2209 2210 static int var = 0; 2211 2212 void f () 2213 { 2214 static int var = 0; 2215 } 2216 2217Both of the static ``var`` variables would be included in the table. All 2218functions should emit both their full names and their basenames. For C or C++, 2219the full name is the mangled name (if available) which is usually in the 2220``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the 2221function basename. If global or static variables have a mangled name in a 2222``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the 2223simple name found in the ``DW_AT_name`` attribute. 2224 2225"``.apple_types``" sections should contain an entry for each DWARF DIE whose 2226tag is one of: 2227 2228* DW_TAG_array_type 2229* DW_TAG_class_type 2230* DW_TAG_enumeration_type 2231* DW_TAG_pointer_type 2232* DW_TAG_reference_type 2233* DW_TAG_string_type 2234* DW_TAG_structure_type 2235* DW_TAG_subroutine_type 2236* DW_TAG_typedef 2237* DW_TAG_union_type 2238* DW_TAG_ptr_to_member_type 2239* DW_TAG_set_type 2240* DW_TAG_subrange_type 2241* DW_TAG_base_type 2242* DW_TAG_const_type 2243* DW_TAG_constant 2244* DW_TAG_file_type 2245* DW_TAG_namelist 2246* DW_TAG_packed_type 2247* DW_TAG_volatile_type 2248* DW_TAG_restrict_type 2249* DW_TAG_interface_type 2250* DW_TAG_unspecified_type 2251* DW_TAG_shared_type 2252 2253Only entries with a ``DW_AT_name`` attribute are included, and the entry must 2254not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero 2255value). For example, using the following code: 2256 2257.. code-block:: c 2258 2259 int main () 2260 { 2261 int *b = 0; 2262 return *b; 2263 } 2264 2265We get a few type DIEs: 2266 2267.. code-block:: none 2268 2269 0x00000067: TAG_base_type [5] 2270 AT_encoding( DW_ATE_signed ) 2271 AT_name( "int" ) 2272 AT_byte_size( 0x04 ) 2273 2274 0x0000006e: TAG_pointer_type [6] 2275 AT_type( {0x00000067} ( int ) ) 2276 AT_byte_size( 0x08 ) 2277 2278The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``. 2279 2280"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs. 2281If we run into a namespace that has no name this is an anonymous namespace, and 2282the name should be output as "``(anonymous namespace)``" (without the quotes). 2283Why? This matches the output of the ``abi::cxa_demangle()`` that is in the 2284standard C++ library that demangles mangled names. 2285 2286 2287Language Extensions and File Format Changes 2288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2289 2290Objective-C Extensions 2291"""""""""""""""""""""" 2292 2293"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an 2294Objective-C class. The name used in the hash table is the name of the 2295Objective-C class itself. If the Objective-C class has a category, then an 2296entry is made for both the class name without the category, and for the class 2297name with the category. So if we have a DIE at offset 0x1234 with a name of 2298method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add 2299an entry for "``NSString``" that points to DIE 0x1234, and an entry for 2300"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly 2301track down all Objective-C methods for an Objective-C class when doing 2302expressions. It is needed because of the dynamic nature of Objective-C where 2303anyone can add methods to a class. The DWARF for Objective-C methods is also 2304emitted differently from C++ classes where the methods are not usually 2305contained in the class definition, they are scattered about across one or more 2306compile units. Categories can also be defined in different shared libraries. 2307So we need to be able to quickly find all of the methods and class functions 2308given the Objective-C class name, or quickly find all methods and class 2309functions for a class + category name. This table does not contain any 2310selector names, it just maps Objective-C class names (or class names + 2311category) to all of the methods and class functions. The selectors are added 2312as function basenames in the "``.debug_names``" section. 2313 2314In the "``.apple_names``" section for Objective-C functions, the full name is 2315the entire function name with the brackets ("``-[NSString 2316stringWithCString:]``") and the basename is the selector only 2317("``stringWithCString:``"). 2318 2319Mach-O Changes 2320"""""""""""""" 2321 2322The sections names for the apple hash tables are for non-mach-o files. For 2323mach-o files, the sections should be contained in the ``__DWARF`` segment with 2324names as follows: 2325 2326* "``.apple_names``" -> "``__apple_names``" 2327* "``.apple_types``" -> "``__apple_types``" 2328* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit) 2329* "``.apple_objc``" -> "``__apple_objc``" 2330 2331