1.. role:: raw-html(raw)
2   :format: html
3
4========================
5LLVM Bitcode File Format
6========================
7
8.. contents::
9   :local:
10
11Abstract
12========
13
14This document describes the LLVM bitstream file format and the encoding of the
15LLVM IR into it.
16
17Overview
18========
19
20What is commonly known as the LLVM bitcode file format (also, sometimes
21anachronistically known as bytecode) is actually two things: a `bitstream
22container format`_ and an `encoding of LLVM IR`_ into the container format.
23
24The bitstream format is an abstract encoding of structured data, very similar to
25XML in some ways.  Like XML, bitstream files contain tags, and nested
26structures, and you can parse the file without having to understand the tags.
27Unlike XML, the bitstream format is a binary encoding, and unlike XML it
28provides a mechanism for the file to self-describe "abbreviations", which are
29effectively size optimizations for the content.
30
31LLVM IR files may be optionally embedded into a `wrapper`_ structure, or in a
32`native object file`_. Both of these mechanisms make it easy to embed extra
33data along with LLVM IR files.
34
35This document first describes the LLVM bitstream format, describes the wrapper
36format, then describes the record structure used by LLVM IR files.
37
38.. _bitstream container format:
39
40Bitstream Format
41================
42
43The bitstream format is literally a stream of bits, with a very simple
44structure.  This structure consists of the following concepts:
45
46* A "`magic number`_" that identifies the contents of the stream.
47
48* Encoding `primitives`_ like variable bit-rate integers.
49
50* `Blocks`_, which define nested content.
51
52* `Data Records`_, which describe entities within the file.
53
54* Abbreviations, which specify compression optimizations for the file.
55
56Note that the :doc:`llvm-bcanalyzer <CommandGuide/llvm-bcanalyzer>` tool can be
57used to dump and inspect arbitrary bitstreams, which is very useful for
58understanding the encoding.
59
60.. _magic number:
61
62Magic Numbers
63-------------
64
65The first four bytes of a bitstream are used as an application-specific magic
66number.  Generic bitcode tools may look at the first four bytes to determine
67whether the stream is a known stream type.  However, these tools should *not*
68determine whether a bitstream is valid based on its magic number alone.  New
69application-specific bitstream formats are being developed all the time; tools
70should not reject them just because they have a hitherto unseen magic number.
71
72.. _primitives:
73
74Primitives
75----------
76
77A bitstream literally consists of a stream of bits, which are read in order
78starting with the least significant bit of each byte.  The stream is made up of
79a number of primitive values that encode a stream of unsigned integer values.
80These integers are encoded in two ways: either as `Fixed Width Integers`_ or as
81`Variable Width Integers`_.
82
83.. _Fixed Width Integers:
84.. _fixed-width value:
85
86Fixed Width Integers
87^^^^^^^^^^^^^^^^^^^^
88
89Fixed-width integer values have their low bits emitted directly to the file.
90For example, a 3-bit integer value encodes 1 as 001.  Fixed width integers are
91used when there are a well-known number of options for a field.  For example,
92boolean values are usually encoded with a 1-bit wide integer.
93
94.. _Variable Width Integers:
95.. _Variable Width Integer:
96.. _variable-width value:
97
98Variable Width Integers
99^^^^^^^^^^^^^^^^^^^^^^^
100
101Variable-width integer (VBR) values encode values of arbitrary size, optimizing
102for the case where the values are small.  Given a 4-bit VBR field, any 3-bit
103value (0 through 7) is encoded directly, with the high bit set to zero.  Values
104larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all
105but the last set the high bit.
106
107For example, the value 30 (0x1E) is encoded as 62 (0b0011'1110) when emitted as
108a vbr4 value.  The first set of four bits starting from the least significant
109indicates the value 6 (110) with a continuation piece (indicated by a high bit
110of 1).  The next set of four bits indicates a value of 24 (011 << 3) with no
111continuation.  The sum (6+24) yields the value 30.
112
113.. _char6-encoded value:
114
1156-bit characters
116^^^^^^^^^^^^^^^^
117
1186-bit characters encode common characters into a fixed 6-bit field.  They
119represent the following characters with the following 6-bit values:
120
121::
122
123  'a' .. 'z' ---  0 .. 25
124  'A' .. 'Z' --- 26 .. 51
125  '0' .. '9' --- 52 .. 61
126         '.' --- 62
127         '_' --- 63
128
129This encoding is only suitable for encoding characters and strings that consist
130only of the above characters.  It is completely incapable of encoding characters
131not in the set.
132
133Word Alignment
134^^^^^^^^^^^^^^
135
136Occasionally, it is useful to emit zero bits until the bitstream is a multiple
137of 32 bits.  This ensures that the bit position in the stream can be represented
138as a multiple of 32-bit words.
139
140Abbreviation IDs
141----------------
142
143A bitstream is a sequential series of `Blocks`_ and `Data Records`_.  Both of
144these start with an abbreviation ID encoded as a fixed-bitwidth field.  The
145width is specified by the current block, as described below.  The value of the
146abbreviation ID specifies either a builtin ID (which have special meanings,
147defined below) or one of the abbreviation IDs defined for the current block by
148the stream itself.
149
150The set of builtin abbrev IDs is:
151
152* 0 - `END_BLOCK`_ --- This abbrev ID marks the end of the current block.
153
154* 1 - `ENTER_SUBBLOCK`_ --- This abbrev ID marks the beginning of a new
155  block.
156
157* 2 - `DEFINE_ABBREV`_ --- This defines a new abbreviation.
158
159* 3 - `UNABBREV_RECORD`_ --- This ID specifies the definition of an
160  unabbreviated record.
161
162Abbreviation IDs 4 and above are defined by the stream itself, and specify an
163`abbreviated record encoding`_.
164
165.. _Blocks:
166
167Blocks
168------
169
170Blocks in a bitstream denote nested regions of the stream, and are identified by
171a content-specific id number (for example, LLVM IR uses an ID of 12 to represent
172function bodies).  Block IDs 0-7 are reserved for `standard blocks`_ whose
173meaning is defined by Bitcode; block IDs 8 and greater are application
174specific. Nested blocks capture the hierarchical structure of the data encoded
175in it, and various properties are associated with blocks as the file is parsed.
176Block definitions allow the reader to efficiently skip blocks in constant time
177if the reader wants a summary of blocks, or if it wants to efficiently skip data
178it does not understand.  The LLVM IR reader uses this mechanism to skip function
179bodies, lazily reading them on demand.
180
181When reading and encoding the stream, several properties are maintained for the
182block.  In particular, each block maintains:
183
184#. A current abbrev id width.  This value starts at 2 at the beginning of the
185   stream, and is set every time a block record is entered.  The block entry
186   specifies the abbrev id width for the body of the block.
187
188#. A set of abbreviations.  Abbreviations may be defined within a block, in
189   which case they are only defined in that block (neither subblocks nor
190   enclosing blocks see the abbreviation).  Abbreviations can also be defined
191   inside a `BLOCKINFO`_ block, in which case they are defined in all blocks
192   that match the ID that the ``BLOCKINFO`` block is describing.
193
194As sub blocks are entered, these properties are saved and the new sub-block has
195its own set of abbreviations, and its own abbrev id width.  When a sub-block is
196popped, the saved values are restored.
197
198.. _ENTER_SUBBLOCK:
199
200ENTER_SUBBLOCK Encoding
201^^^^^^^^^^^^^^^^^^^^^^^
202
203:raw-html:`<tt>`
204[ENTER_SUBBLOCK, blockid\ :sub:`vbr8`, newabbrevlen\ :sub:`vbr4`, <align32bits>, blocklen_32]
205:raw-html:`</tt>`
206
207The ``ENTER_SUBBLOCK`` abbreviation ID specifies the start of a new block
208record.  The ``blockid`` value is encoded as an 8-bit VBR identifier, and
209indicates the type of block being entered, which can be a `standard block`_ or
210an application-specific block.  The ``newabbrevlen`` value is a 4-bit VBR, which
211specifies the abbrev id width for the sub-block.  The ``blocklen`` value is a
21232-bit aligned value that specifies the size of the subblock in 32-bit
213words. This value allows the reader to skip over the entire block in one jump.
214
215.. _END_BLOCK:
216
217END_BLOCK Encoding
218^^^^^^^^^^^^^^^^^^
219
220``[END_BLOCK, <align32bits>]``
221
222The ``END_BLOCK`` abbreviation ID specifies the end of the current block record.
223Its end is aligned to 32-bits to ensure that the size of the block is an even
224multiple of 32-bits.
225
226.. _Data Records:
227
228Data Records
229------------
230
231Data records consist of a record code and a number of (up to) 64-bit integer
232values.  The interpretation of the code and values is application specific and
233may vary between different block types.  Records can be encoded either using an
234unabbrev record, or with an abbreviation.  In the LLVM IR format, for example,
235there is a record which encodes the target triple of a module.  The code is
236``MODULE_CODE_TRIPLE``, and the values of the record are the ASCII codes for the
237characters in the string.
238
239.. _UNABBREV_RECORD:
240
241UNABBREV_RECORD Encoding
242^^^^^^^^^^^^^^^^^^^^^^^^
243
244:raw-html:`<tt>`
245[UNABBREV_RECORD, code\ :sub:`vbr6`, numops\ :sub:`vbr6`, op0\ :sub:`vbr6`, op1\ :sub:`vbr6`, ...]
246:raw-html:`</tt>`
247
248An ``UNABBREV_RECORD`` provides a default fallback encoding, which is both
249completely general and extremely inefficient.  It can describe an arbitrary
250record by emitting the code and operands as VBRs.
251
252For example, emitting an LLVM IR target triple as an unabbreviated record
253requires emitting the ``UNABBREV_RECORD`` abbrevid, a vbr6 for the
254``MODULE_CODE_TRIPLE`` code, a vbr6 for the length of the string, which is equal
255to the number of operands, and a vbr6 for each character.  Because there are no
256letters with values less than 32, each letter would need to be emitted as at
257least a two-part VBR, which means that each letter would require at least 12
258bits.  This is not an efficient encoding, but it is fully general.
259
260.. _abbreviated record encoding:
261
262Abbreviated Record Encoding
263^^^^^^^^^^^^^^^^^^^^^^^^^^^
264
265``[<abbrevid>, fields...]``
266
267An abbreviated record is an abbreviation id followed by a set of fields that are
268encoded according to the `abbreviation definition`_.  This allows records to be
269encoded significantly more densely than records encoded with the
270`UNABBREV_RECORD`_ type, and allows the abbreviation types to be specified in
271the stream itself, which allows the files to be completely self describing.  The
272actual encoding of abbreviations is defined below.
273
274The record code, which is the first field of an abbreviated record, may be
275encoded in the abbreviation definition (as a literal operand) or supplied in the
276abbreviated record (as a Fixed or VBR operand value).
277
278.. _abbreviation definition:
279
280Abbreviations
281-------------
282
283Abbreviations are an important form of compression for bitstreams.  The idea is
284to specify a dense encoding for a class of records once, then use that encoding
285to emit many records.  It takes space to emit the encoding into the file, but
286the space is recouped (hopefully plus some) when the records that use it are
287emitted.
288
289Abbreviations can be determined dynamically per client, per file. Because the
290abbreviations are stored in the bitstream itself, different streams of the same
291format can contain different sets of abbreviations according to the needs of the
292specific stream.  As a concrete example, LLVM IR files usually emit an
293abbreviation for binary operators.  If a specific LLVM module contained no or
294few binary operators, the abbreviation does not need to be emitted.
295
296.. _DEFINE_ABBREV:
297
298DEFINE_ABBREV Encoding
299^^^^^^^^^^^^^^^^^^^^^^
300
301:raw-html:`<tt>`
302[DEFINE_ABBREV, numabbrevops\ :sub:`vbr5`, abbrevop0, abbrevop1, ...]
303:raw-html:`</tt>`
304
305A ``DEFINE_ABBREV`` record adds an abbreviation to the list of currently defined
306abbreviations in the scope of this block.  This definition only exists inside
307this immediate block --- it is not visible in subblocks or enclosing blocks.
308Abbreviations are implicitly assigned IDs sequentially starting from 4 (the
309first application-defined abbreviation ID).  Any abbreviations defined in a
310``BLOCKINFO`` record for the particular block type receive IDs first, in order,
311followed by any abbreviations defined within the block itself.  Abbreviated data
312records reference this ID to indicate what abbreviation they are invoking.
313
314An abbreviation definition consists of the ``DEFINE_ABBREV`` abbrevid followed
315by a VBR that specifies the number of abbrev operands, then the abbrev operands
316themselves.  Abbreviation operands come in three forms.  They all start with a
317single bit that indicates whether the abbrev operand is a literal operand (when
318the bit is 1) or an encoding operand (when the bit is 0).
319
320#. Literal operands --- :raw-html:`<tt>` [1\ :sub:`1`, litvalue\
321   :sub:`vbr8`] :raw-html:`</tt>` --- Literal operands specify that the value in
322   the result is always a single specific value.  This specific value is emitted
323   as a vbr8 after the bit indicating that it is a literal operand.
324
325#. Encoding info without data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
326   :sub:`3`] :raw-html:`</tt>` --- Operand encodings that do not have extra data
327   are just emitted as their code.
328
329#. Encoding info with data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
330   :sub:`3`, value\ :sub:`vbr5`] :raw-html:`</tt>` --- Operand encodings that do
331   have extra data are emitted as their code, followed by the extra data.
332
333The possible operand encodings are:
334
335* Fixed (code 1): The field should be emitted as a `fixed-width value`_, whose
336  width is specified by the operand's extra data.
337
338* VBR (code 2): The field should be emitted as a `variable-width value`_, whose
339  width is specified by the operand's extra data.
340
341* Array (code 3): This field is an array of values.  The array operand has no
342  extra data, but expects another operand to follow it, indicating the element
343  type of the array.  When reading an array in an abbreviated record, the first
344  integer is a vbr6 that indicates the array length, followed by the encoded
345  elements of the array.  An array may only occur as the last operand of an
346  abbreviation (except for the one final operand that gives the array's
347  type).
348
349* Char6 (code 4): This field should be emitted as a `char6-encoded value`_.
350  This operand type takes no extra data. Char6 encoding is normally used as an
351  array element type.
352
353* Blob (code 5): This field is emitted as a vbr6, followed by padding to a
354  32-bit boundary (for alignment) and an array of 8-bit objects.  The array of
355  bytes is further followed by tail padding to ensure that its total length is a
356  multiple of 4 bytes.  This makes it very efficient for the reader to decode
357  the data without having to make a copy of it: it can use a pointer to the data
358  in the mapped in file and poke directly at it.  A blob may only occur as the
359  last operand of an abbreviation.
360
361For example, target triples in LLVM modules are encoded as a record of the form
362``[TRIPLE, 'a', 'b', 'c', 'd']``.  Consider if the bitstream emitted the
363following abbrev entry:
364
365::
366
367  [0, Fixed, 4]
368  [0, Array]
369  [0, Char6]
370
371When emitting a record with this abbreviation, the above entry would be emitted
372as:
373
374:raw-html:`<tt><blockquote>`
375[4\ :sub:`abbrevwidth`, 2\ :sub:`4`, 4\ :sub:`vbr6`, 0\ :sub:`6`, 1\ :sub:`6`, 2\ :sub:`6`, 3\ :sub:`6`]
376:raw-html:`</blockquote></tt>`
377
378These values are:
379
380#. The first value, 4, is the abbreviation ID for this abbreviation.
381
382#. The second value, 2, is the record code for ``TRIPLE`` records within LLVM IR
383   file ``MODULE_BLOCK`` blocks.
384
385#. The third value, 4, is the length of the array.
386
387#. The rest of the values are the char6 encoded values for ``"abcd"``.
388
389With this abbreviation, the triple is emitted with only 37 bits (assuming a
390abbrev id width of 3).  Without the abbreviation, significantly more space would
391be required to emit the target triple.  Also, because the ``TRIPLE`` value is
392not emitted as a literal in the abbreviation, the abbreviation can also be used
393for any other string value.
394
395.. _standard blocks:
396.. _standard block:
397
398Standard Blocks
399---------------
400
401In addition to the basic block structure and record encodings, the bitstream
402also defines specific built-in block types.  These block types specify how the
403stream is to be decoded or other metadata.  In the future, new standard blocks
404may be added.  Block IDs 0-7 are reserved for standard blocks.
405
406.. _BLOCKINFO:
407
408#0 - BLOCKINFO Block
409^^^^^^^^^^^^^^^^^^^^
410
411The ``BLOCKINFO`` block allows the description of metadata for other blocks.
412The currently specified records are:
413
414::
415
416  [SETBID (#1), blockid]
417  [DEFINE_ABBREV, ...]
418  [BLOCKNAME, ...name...]
419  [SETRECORDNAME, RecordID, ...name...]
420
421The ``SETBID`` record (code 1) indicates which block ID is being described.
422``SETBID`` records can occur multiple times throughout the block to change which
423block ID is being described.  There must be a ``SETBID`` record prior to any
424other records.
425
426Standard ``DEFINE_ABBREV`` records can occur inside ``BLOCKINFO`` blocks, but
427unlike their occurrence in normal blocks, the abbreviation is defined for blocks
428matching the block ID we are describing, *not* the ``BLOCKINFO`` block
429itself.  The abbreviations defined in ``BLOCKINFO`` blocks receive abbreviation
430IDs as described in `DEFINE_ABBREV`_.
431
432The ``BLOCKNAME`` record (code 2) can optionally occur in this block.  The
433elements of the record are the bytes of the string name of the block.
434llvm-bcanalyzer can use this to dump out bitcode files symbolically.
435
436The ``SETRECORDNAME`` record (code 3) can also optionally occur in this block.
437The first operand value is a record ID number, and the rest of the elements of
438the record are the bytes for the string name of the record.  llvm-bcanalyzer can
439use this to dump out bitcode files symbolically.
440
441Note that although the data in ``BLOCKINFO`` blocks is described as "metadata,"
442the abbreviations they contain are essential for parsing records from the
443corresponding blocks.  It is not safe to skip them.
444
445.. _wrapper:
446
447Bitcode Wrapper Format
448======================
449
450Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper
451structure.  This structure contains a simple header that indicates the offset
452and size of the embedded BC file.  This allows additional information to be
453stored alongside the BC file.  The structure of this file header is:
454
455:raw-html:`<tt><blockquote>`
456[Magic\ :sub:`32`, Version\ :sub:`32`, Offset\ :sub:`32`, Size\ :sub:`32`, CPUType\ :sub:`32`]
457:raw-html:`</blockquote></tt>`
458
459Each of the fields are 32-bit fields stored in little endian form (as with the
460rest of the bitcode file fields).  The Magic number is always ``0x0B17C0DE`` and
461the version is currently always ``0``.  The Offset field is the offset in bytes
462to the start of the bitcode stream in the file, and the Size field is the size
463in bytes of the stream. CPUType is a target-specific value that can be used to
464encode the CPU of the target.
465
466.. _native object file:
467
468Native Object File Wrapper Format
469=================================
470
471Bitcode files for LLVM IR may also be wrapped in a native object file
472(i.e. ELF, COFF, Mach-O).  The bitcode must be stored in a section of the object
473file named ``__LLVM,__bitcode`` for MachO and ``.llvmbc`` for the other object
474formats.  This wrapper format is useful for accommodating LTO in compilation
475pipelines where intermediate objects must be native object files which contain
476metadata in other sections.
477
478Not all tools support this format.
479
480.. _encoding of LLVM IR:
481
482LLVM IR Encoding
483================
484
485LLVM IR is encoded into a bitstream by defining blocks and records.  It uses
486blocks for things like constant pools, functions, symbol tables, etc.  It uses
487records for things like instructions, global variable descriptors, type
488descriptions, etc.  This document does not describe the set of abbreviations
489that the writer uses, as these are fully self-described in the file, and the
490reader is not allowed to build in any knowledge of this.
491
492Basics
493------
494
495LLVM IR Magic Number
496^^^^^^^^^^^^^^^^^^^^
497
498The magic number for LLVM IR files is:
499
500:raw-html:`<tt><blockquote>`
501['B'\ :sub:`8`, 'C'\ :sub:`8`, 0x0\ :sub:`4`, 0xC\ :sub:`4`, 0xE\ :sub:`4`, 0xD\ :sub:`4`]
502:raw-html:`</blockquote></tt>`
503
504.. _Signed VBRs:
505
506Signed VBRs
507^^^^^^^^^^^
508
509`Variable Width Integer`_ encoding is an efficient way to encode arbitrary sized
510unsigned values, but is an extremely inefficient for encoding signed values, as
511signed values are otherwise treated as maximally large unsigned values.
512
513As such, signed VBR values of a specific width are emitted as follows:
514
515* Positive values are emitted as VBRs of the specified width, but with their
516  value shifted left by one.
517
518* Negative values are emitted as VBRs of the specified width, but the negated
519  value is shifted left by one, and the low bit is set.
520
521With this encoding, small positive and small negative values can both be emitted
522efficiently. Signed VBR encoding is used in ``CST_CODE_INTEGER`` and
523``CST_CODE_WIDE_INTEGER`` records within ``CONSTANTS_BLOCK`` blocks.
524It is also used for phi instruction operands in `MODULE_CODE_VERSION`_ 1.
525
526LLVM IR Blocks
527^^^^^^^^^^^^^^
528
529LLVM IR is defined with the following blocks:
530
531* 8 --- `MODULE_BLOCK`_ --- This is the top-level block that contains the entire
532  module, and describes a variety of per-module information.
533
534* 9 --- `PARAMATTR_BLOCK`_ --- This enumerates the parameter attributes.
535
536* 10 --- `PARAMATTR_GROUP_BLOCK`_ --- This describes the attribute group table.
537
538* 11 --- `CONSTANTS_BLOCK`_ --- This describes constants for a module or
539  function.
540
541* 12 --- `FUNCTION_BLOCK`_ --- This describes a function body.
542
543* 14 --- `VALUE_SYMTAB_BLOCK`_ --- This describes a value symbol table.
544
545* 15 --- `METADATA_BLOCK`_ --- This describes metadata items.
546
547* 16 --- `METADATA_ATTACHMENT`_ --- This contains records associating metadata
548  with function instruction values.
549
550* 17 --- `TYPE_BLOCK`_ --- This describes all of the types in the module.
551
552* 23 --- `STRTAB_BLOCK`_ --- The bitcode file's string table.
553
554.. _MODULE_BLOCK:
555
556MODULE_BLOCK Contents
557---------------------
558
559The ``MODULE_BLOCK`` block (id 8) is the top-level block for LLVM bitcode files,
560and each module in a bitcode file must contain exactly one. A bitcode file with
561multi-module bitcode is valid. In addition to records (described below)
562containing information about the module, a ``MODULE_BLOCK`` block may contain
563the following sub-blocks:
564
565* `BLOCKINFO`_
566* `PARAMATTR_BLOCK`_
567* `PARAMATTR_GROUP_BLOCK`_
568* `TYPE_BLOCK`_
569* `VALUE_SYMTAB_BLOCK`_
570* `CONSTANTS_BLOCK`_
571* `FUNCTION_BLOCK`_
572* `METADATA_BLOCK`_
573
574.. _MODULE_CODE_VERSION:
575
576MODULE_CODE_VERSION Record
577^^^^^^^^^^^^^^^^^^^^^^^^^^
578
579``[VERSION, version#]``
580
581The ``VERSION`` record (code 1) contains a single value indicating the format
582version. Versions 0, 1 and 2 are supported at this time. The difference between
583version 0 and 1 is in the encoding of instruction operands in
584each `FUNCTION_BLOCK`_.
585
586In version 0, each value defined by an instruction is assigned an ID
587unique to the function. Function-level value IDs are assigned starting from
588``NumModuleValues`` since they share the same namespace as module-level
589values. The value enumerator resets after each function. When a value is
590an operand of an instruction, the value ID is used to represent the operand.
591For large functions or large modules, these operand values can be large.
592
593The encoding in version 1 attempts to avoid large operand values
594in common cases. Instead of using the value ID directly, operands are
595encoded as relative to the current instruction. Thus, if an operand
596is the value defined by the previous instruction, the operand
597will be encoded as 1.
598
599For example, instead of
600
601.. code-block:: none
602
603  #n = load #n-1
604  #n+1 = icmp eq #n, #const0
605  br #n+1, label #(bb1), label #(bb2)
606
607version 1 will encode the instructions as
608
609.. code-block:: none
610
611  #n = load #1
612  #n+1 = icmp eq #1, (#n+1)-#const0
613  br #1, label #(bb1), label #(bb2)
614
615Note in the example that operands which are constants also use
616the relative encoding, while operands like basic block labels
617do not use the relative encoding.
618
619Forward references will result in a negative value.
620This can be inefficient, as operands are normally encoded
621as unsigned VBRs. However, forward references are rare, except in the
622case of phi instructions. For phi instructions, operands are encoded as
623`Signed VBRs`_ to deal with forward references.
624
625In version 2, the meaning of module records ``FUNCTION``, ``GLOBALVAR``,
626``ALIAS``, ``IFUNC`` and ``COMDAT`` change such that the first two operands
627specify an offset and size of a string in a string table (see `STRTAB_BLOCK
628Contents`_), the function name is removed from the ``FNENTRY`` record in the
629value symbol table, and the top-level ``VALUE_SYMTAB_BLOCK`` may only contain
630``FNENTRY`` records.
631
632MODULE_CODE_TRIPLE Record
633^^^^^^^^^^^^^^^^^^^^^^^^^
634
635``[TRIPLE, ...string...]``
636
637The ``TRIPLE`` record (code 2) contains a variable number of values representing
638the bytes of the ``target triple`` specification string.
639
640MODULE_CODE_DATALAYOUT Record
641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
642
643``[DATALAYOUT, ...string...]``
644
645The ``DATALAYOUT`` record (code 3) contains a variable number of values
646representing the bytes of the ``target datalayout`` specification string.
647
648MODULE_CODE_ASM Record
649^^^^^^^^^^^^^^^^^^^^^^
650
651``[ASM, ...string...]``
652
653The ``ASM`` record (code 4) contains a variable number of values representing
654the bytes of ``module asm`` strings, with individual assembly blocks separated
655by newline (ASCII 10) characters.
656
657.. _MODULE_CODE_SECTIONNAME:
658
659MODULE_CODE_SECTIONNAME Record
660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
661
662``[SECTIONNAME, ...string...]``
663
664The ``SECTIONNAME`` record (code 5) contains a variable number of values
665representing the bytes of a single section name string. There should be one
666``SECTIONNAME`` record for each section name referenced (e.g., in global
667variable or function ``section`` attributes) within the module. These records
668can be referenced by the 1-based index in the *section* fields of ``GLOBALVAR``
669or ``FUNCTION`` records.
670
671MODULE_CODE_DEPLIB Record
672^^^^^^^^^^^^^^^^^^^^^^^^^
673
674``[DEPLIB, ...string...]``
675
676The ``DEPLIB`` record (code 6) contains a variable number of values representing
677the bytes of a single dependent library name string, one of the libraries
678mentioned in a ``deplibs`` declaration.  There should be one ``DEPLIB`` record
679for each library name referenced.
680
681MODULE_CODE_GLOBALVAR Record
682^^^^^^^^^^^^^^^^^^^^^^^^^^^^
683
684``[GLOBALVAR, strtab offset, strtab size, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal, unnamed_addr, externally_initialized, dllstorageclass, comdat, attributes, preemptionspecifier]``
685
686The ``GLOBALVAR`` record (code 7) marks the declaration or definition of a
687global variable. The operand fields are:
688
689* *strtab offset*, *strtab size*: Specifies the name of the global variable.
690  See `STRTAB_BLOCK Contents`_.
691
692* *pointer type*: The type index of the pointer type used to point to this
693  global variable
694
695* *isconst*: Non-zero if the variable is treated as constant within the module,
696  or zero if it is not
697
698* *initid*: If non-zero, the value index of the initializer for this variable,
699  plus 1.
700
701.. _linkage type:
702
703* *linkage*: An encoding of the linkage type for this variable:
704
705  * ``external``: code 0
706  * ``weak``: code 1
707  * ``appending``: code 2
708  * ``internal``: code 3
709  * ``linkonce``: code 4
710  * ``dllimport``: code 5
711  * ``dllexport``: code 6
712  * ``extern_weak``: code 7
713  * ``common``: code 8
714  * ``private``: code 9
715  * ``weak_odr``: code 10
716  * ``linkonce_odr``: code 11
717  * ``available_externally``: code 12
718  * deprecated : code 13
719  * deprecated : code 14
720
721* alignment*: The logarithm base 2 of the variable's requested alignment, plus 1
722
723* *section*: If non-zero, the 1-based section index in the table of
724  `MODULE_CODE_SECTIONNAME`_ entries.
725
726.. _visibility:
727
728* *visibility*: If present, an encoding of the visibility of this variable:
729
730  * ``default``: code 0
731  * ``hidden``: code 1
732  * ``protected``: code 2
733
734.. _bcthreadlocal:
735
736* *threadlocal*: If present, an encoding of the thread local storage mode of the
737  variable:
738
739  * ``not thread local``: code 0
740  * ``thread local; default TLS model``: code 1
741  * ``localdynamic``: code 2
742  * ``initialexec``: code 3
743  * ``localexec``: code 4
744
745.. _bcunnamedaddr:
746
747* *unnamed_addr*: If present, an encoding of the ``unnamed_addr`` attribute of this
748  variable:
749
750  * not ``unnamed_addr``: code 0
751  * ``unnamed_addr``: code 1
752  * ``local_unnamed_addr``: code 2
753
754.. _bcdllstorageclass:
755
756* *dllstorageclass*: If present, an encoding of the DLL storage class of this variable:
757
758  * ``default``: code 0
759  * ``dllimport``: code 1
760  * ``dllexport``: code 2
761
762* *comdat*: An encoding of the COMDAT of this function
763
764* *attributes*: If nonzero, the 1-based index into the table of AttributeLists.
765
766.. _bcpreemptionspecifier:
767
768* *preemptionspecifier*: If present, an encoding of the runtime preemption specifier of this variable:
769
770  * ``dso_preemptable``: code 0
771  * ``dso_local``: code 1
772
773.. _FUNCTION:
774
775MODULE_CODE_FUNCTION Record
776^^^^^^^^^^^^^^^^^^^^^^^^^^^
777
778``[FUNCTION, strtab offset, strtab size, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata, personalityfn, preemptionspecifier]``
779
780The ``FUNCTION`` record (code 8) marks the declaration or definition of a
781function. The operand fields are:
782
783* *strtab offset*, *strtab size*: Specifies the name of the function.
784  See `STRTAB_BLOCK Contents`_.
785
786* *type*: The type index of the function type describing this function
787
788* *callingconv*: The calling convention number:
789  * ``ccc``: code 0
790  * ``fastcc``: code 8
791  * ``coldcc``: code 9
792  * ``webkit_jscc``: code 12
793  * ``anyregcc``: code 13
794  * ``preserve_mostcc``: code 14
795  * ``preserve_allcc``: code 15
796  * ``swiftcc`` : code 16
797  * ``cxx_fast_tlscc``: code 17
798  * ``tailcc`` : code 18
799  * ``cfguard_checkcc`` : code 19
800  * ``swifttailcc`` : code 20
801  * ``x86_stdcallcc``: code 64
802  * ``x86_fastcallcc``: code 65
803  * ``arm_apcscc``: code 66
804  * ``arm_aapcscc``: code 67
805  * ``arm_aapcs_vfpcc``: code 68
806
807* isproto*: Non-zero if this entry represents a declaration rather than a
808  definition
809
810* *linkage*: An encoding of the `linkage type`_ for this function
811
812* *paramattr*: If nonzero, the 1-based parameter attribute index into the table
813  of `PARAMATTR_CODE_ENTRY`_ entries.
814
815* *alignment*: The logarithm base 2 of the function's requested alignment, plus
816  1
817
818* *section*: If non-zero, the 1-based section index in the table of
819  `MODULE_CODE_SECTIONNAME`_ entries.
820
821* *visibility*: An encoding of the `visibility`_ of this function
822
823* *gc*: If present and nonzero, the 1-based garbage collector index in the table
824  of `MODULE_CODE_GCNAME`_ entries.
825
826* *unnamed_addr*: If present, an encoding of the
827  :ref:`unnamed_addr<bcunnamedaddr>` attribute of this function
828
829* *prologuedata*: If non-zero, the value index of the prologue data for this function,
830  plus 1.
831
832* *dllstorageclass*: An encoding of the
833  :ref:`dllstorageclass<bcdllstorageclass>` of this function
834
835* *comdat*: An encoding of the COMDAT of this function
836
837* *prefixdata*: If non-zero, the value index of the prefix data for this function,
838  plus 1.
839
840* *personalityfn*: If non-zero, the value index of the personality function for this function,
841  plus 1.
842
843* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>`  of this function.
844
845MODULE_CODE_ALIAS Record
846^^^^^^^^^^^^^^^^^^^^^^^^
847
848``[ALIAS, strtab offset, strtab size, alias type, aliasee val#, linkage, visibility, dllstorageclass, threadlocal, unnamed_addr, preemptionspecifier]``
849
850The ``ALIAS`` record (code 9) marks the definition of an alias. The operand
851fields are
852
853* *strtab offset*, *strtab size*: Specifies the name of the alias.
854  See `STRTAB_BLOCK Contents`_.
855
856* *alias type*: The type index of the alias
857
858* *aliasee val#*: The value index of the aliased value
859
860* *linkage*: An encoding of the `linkage type`_ for this alias
861
862* *visibility*: If present, an encoding of the `visibility`_ of the alias
863
864* *dllstorageclass*: If present, an encoding of the
865  :ref:`dllstorageclass<bcdllstorageclass>` of the alias
866
867* *threadlocal*: If present, an encoding of the
868  :ref:`thread local property<bcthreadlocal>` of the alias
869
870* *unnamed_addr*: If present, an encoding of the
871  :ref:`unnamed_addr<bcunnamedaddr>` attribute of this alias
872
873* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>`  of this alias.
874
875.. _MODULE_CODE_GCNAME:
876
877MODULE_CODE_GCNAME Record
878^^^^^^^^^^^^^^^^^^^^^^^^^
879
880``[GCNAME, ...string...]``
881
882The ``GCNAME`` record (code 11) contains a variable number of values
883representing the bytes of a single garbage collector name string. There should
884be one ``GCNAME`` record for each garbage collector name referenced in function
885``gc`` attributes within the module. These records can be referenced by 1-based
886index in the *gc* fields of ``FUNCTION`` records.
887
888.. _PARAMATTR_BLOCK:
889
890PARAMATTR_BLOCK Contents
891------------------------
892
893The ``PARAMATTR_BLOCK`` block (id 9) contains a table of entries describing the
894attributes of function parameters. These entries are referenced by 1-based index
895in the *paramattr* field of module block `FUNCTION`_ records, or within the
896*attr* field of function block ``INST_INVOKE`` and ``INST_CALL`` records.
897
898Entries within ``PARAMATTR_BLOCK`` are constructed to ensure that each is unique
899(i.e., no two indices represent equivalent attribute lists).
900
901.. _PARAMATTR_CODE_ENTRY:
902
903PARAMATTR_CODE_ENTRY Record
904^^^^^^^^^^^^^^^^^^^^^^^^^^^
905
906``[ENTRY, attrgrp0, attrgrp1, ...]``
907
908The ``ENTRY`` record (code 2) contains a variable number of values describing a
909unique set of function parameter attributes. Each *attrgrp* value is used as a
910key with which to look up an entry in the attribute group table described
911in the ``PARAMATTR_GROUP_BLOCK`` block.
912
913.. _PARAMATTR_CODE_ENTRY_OLD:
914
915PARAMATTR_CODE_ENTRY_OLD Record
916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
917
918.. note::
919  This is a legacy encoding for attributes, produced by LLVM versions 3.2 and
920  earlier. It is guaranteed to be understood by the current LLVM version, as
921  specified in the :ref:`IR backwards compatibility` policy.
922
923``[ENTRY, paramidx0, attr0, paramidx1, attr1...]``
924
925The ``ENTRY`` record (code 1) contains an even number of values describing a
926unique set of function parameter attributes. Each *paramidx* value indicates
927which set of attributes is represented, with 0 representing the return value
928attributes, 0xFFFFFFFF representing function attributes, and other values
929representing 1-based function parameters. Each *attr* value is a bitmap with the
930following interpretation:
931
932* bit 0: ``zeroext``
933* bit 1: ``signext``
934* bit 2: ``noreturn``
935* bit 3: ``inreg``
936* bit 4: ``sret``
937* bit 5: ``nounwind``
938* bit 6: ``noalias``
939* bit 7: ``byval``
940* bit 8: ``nest``
941* bit 9: ``readnone``
942* bit 10: ``readonly``
943* bit 11: ``noinline``
944* bit 12: ``alwaysinline``
945* bit 13: ``optsize``
946* bit 14: ``ssp``
947* bit 15: ``sspreq``
948* bits 16-31: ``align n``
949* bit 32: ``nocapture``
950* bit 33: ``noredzone``
951* bit 34: ``noimplicitfloat``
952* bit 35: ``naked``
953* bit 36: ``inlinehint``
954* bits 37-39: ``alignstack n``, represented as the logarithm
955  base 2 of the requested alignment, plus 1
956
957.. _PARAMATTR_GROUP_BLOCK:
958
959PARAMATTR_GROUP_BLOCK Contents
960------------------------------
961
962The ``PARAMATTR_GROUP_BLOCK`` block (id 10) contains a table of entries
963describing the attribute groups present in the module. These entries can be
964referenced within ``PARAMATTR_CODE_ENTRY`` entries.
965
966.. _PARAMATTR_GRP_CODE_ENTRY:
967
968PARAMATTR_GRP_CODE_ENTRY Record
969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
970
971``[ENTRY, grpid, paramidx, attr0, attr1, ...]``
972
973The ``ENTRY`` record (code 3) contains *grpid* and *paramidx* values, followed
974by a variable number of values describing a unique group of attributes. The
975*grpid* value is a unique key for the attribute group, which can be referenced
976within ``PARAMATTR_CODE_ENTRY`` entries. The *paramidx* value indicates which
977set of attributes is represented, with 0 representing the return value
978attributes, 0xFFFFFFFF representing function attributes, and other values
979representing 1-based function parameters.
980
981Each *attr* is itself represented as a variable number of values:
982
983``kind, key [, ...], [value [, ...]]``
984
985Each attribute is either a well-known LLVM attribute (possibly with an integer
986value associated with it), or an arbitrary string (possibly with an arbitrary
987string value associated with it). The *kind* value is an integer code
988distinguishing between these possibilities:
989
990* code 0: well-known attribute
991* code 1: well-known attribute with an integer value
992* code 3: string attribute
993* code 4: string attribute with a string value
994
995For well-known attributes (code 0 or 1), the *key* value is an integer code
996identifying the attribute. For attributes with an integer argument (code 1),
997the *value* value indicates the argument.
998
999For string attributes (code 3 or 4), the *key* value is actually a variable
1000number of values representing the bytes of a null-terminated string. For
1001attributes with a string argument (code 4), the *value* value is similarly a
1002variable number of values representing the bytes of a null-terminated string.
1003
1004The integer codes are mapped to well-known attributes as follows.
1005
1006* code 1: ``align(<n>)``
1007* code 2: ``alwaysinline``
1008* code 3: ``byval``
1009* code 4: ``inlinehint``
1010* code 5: ``inreg``
1011* code 6: ``minsize``
1012* code 7: ``naked``
1013* code 8: ``nest``
1014* code 9: ``noalias``
1015* code 10: ``nobuiltin``
1016* code 11: ``nocapture``
1017* code 12: ``nodeduplicate``
1018* code 13: ``noimplicitfloat``
1019* code 14: ``noinline``
1020* code 15: ``nonlazybind``
1021* code 16: ``noredzone``
1022* code 17: ``noreturn``
1023* code 18: ``nounwind``
1024* code 19: ``optsize``
1025* code 20: ``readnone``
1026* code 21: ``readonly``
1027* code 22: ``returned``
1028* code 23: ``returns_twice``
1029* code 24: ``signext``
1030* code 25: ``alignstack(<n>)``
1031* code 26: ``ssp``
1032* code 27: ``sspreq``
1033* code 28: ``sspstrong``
1034* code 29: ``sret``
1035* code 30: ``sanitize_address``
1036* code 31: ``sanitize_thread``
1037* code 32: ``sanitize_memory``
1038* code 33: ``uwtable``
1039* code 34: ``zeroext``
1040* code 35: ``builtin``
1041* code 36: ``cold``
1042* code 37: ``optnone``
1043* code 38: ``inalloca``
1044* code 39: ``nonnull``
1045* code 40: ``jumptable``
1046* code 41: ``dereferenceable(<n>)``
1047* code 42: ``dereferenceable_or_null(<n>)``
1048* code 43: ``convergent``
1049* code 44: ``safestack``
1050* code 45: ``argmemonly``
1051* code 46: ``swiftself``
1052* code 47: ``swifterror``
1053* code 48: ``norecurse``
1054* code 49: ``inaccessiblememonly``
1055* code 50: ``inaccessiblememonly_or_argmemonly``
1056* code 51: ``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1057* code 52: ``writeonly``
1058* code 53: ``speculatable``
1059* code 54: ``strictfp``
1060* code 55: ``sanitize_hwaddress``
1061* code 56: ``nocf_check``
1062* code 57: ``optforfuzzing``
1063* code 58: ``shadowcallstack``
1064* code 59: ``speculative_load_hardening``
1065* code 60: ``immarg``
1066* code 61: ``willreturn``
1067* code 62: ``nofree``
1068* code 63: ``nosync``
1069* code 64: ``sanitize_memtag``
1070* code 65: ``preallocated``
1071* code 66: ``no_merge``
1072* code 67: ``null_pointer_is_valid``
1073* code 68: ``noundef``
1074* code 69: ``byref``
1075* code 70: ``mustprogress``
1076* code 74: ``vscale_range(<Min>[, <Max>])``
1077* code 75: ``swiftasync``
1078* code 76: ``nosanitize_coverage``
1079* code 77: ``elementtype``
1080* code 78: ``disable_sanitizer_instrumentation``
1081
1082.. note::
1083  The ``allocsize`` attribute has a special encoding for its arguments. Its two
1084  arguments, which are 32-bit integers, are packed into one 64-bit integer value
1085  (i.e. ``(EltSizeParam << 32) | NumEltsParam``), with ``NumEltsParam`` taking on
1086  the sentinel value -1 if it is not specified.
1087
1088.. note::
1089  The ``vscale_range`` attribute has a special encoding for its arguments. Its two
1090  arguments, which are 32-bit integers, are packed into one 64-bit integer value
1091  (i.e. ``(Min << 32) | Max``), with ``Max`` taking on the value of ``Min`` if
1092  it is not specified.
1093
1094.. _TYPE_BLOCK:
1095
1096TYPE_BLOCK Contents
1097-------------------
1098
1099The ``TYPE_BLOCK`` block (id 17) contains records which constitute a table of
1100type operator entries used to represent types referenced within an LLVM
1101module. Each record (with the exception of `NUMENTRY`_) generates a single type
1102table entry, which may be referenced by 0-based index from instructions,
1103constants, metadata, type symbol table entries, or other type operator records.
1104
1105Entries within ``TYPE_BLOCK`` are constructed to ensure that each entry is
1106unique (i.e., no two indices represent structurally equivalent types).
1107
1108.. _TYPE_CODE_NUMENTRY:
1109.. _NUMENTRY:
1110
1111TYPE_CODE_NUMENTRY Record
1112^^^^^^^^^^^^^^^^^^^^^^^^^
1113
1114``[NUMENTRY, numentries]``
1115
1116The ``NUMENTRY`` record (code 1) contains a single value which indicates the
1117total number of type code entries in the type table of the module. If present,
1118``NUMENTRY`` should be the first record in the block.
1119
1120TYPE_CODE_VOID Record
1121^^^^^^^^^^^^^^^^^^^^^
1122
1123``[VOID]``
1124
1125The ``VOID`` record (code 2) adds a ``void`` type to the type table.
1126
1127TYPE_CODE_HALF Record
1128^^^^^^^^^^^^^^^^^^^^^
1129
1130``[HALF]``
1131
1132The ``HALF`` record (code 10) adds a ``half`` (16-bit floating point) type to
1133the type table.
1134
1135TYPE_CODE_BFLOAT Record
1136^^^^^^^^^^^^^^^^^^^^^^^
1137
1138``[BFLOAT]``
1139
1140The ``BFLOAT`` record (code 23) adds a ``bfloat`` (16-bit brain floating point)
1141type to the type table.
1142
1143TYPE_CODE_FLOAT Record
1144^^^^^^^^^^^^^^^^^^^^^^
1145
1146``[FLOAT]``
1147
1148The ``FLOAT`` record (code 3) adds a ``float`` (32-bit floating point) type to
1149the type table.
1150
1151TYPE_CODE_DOUBLE Record
1152^^^^^^^^^^^^^^^^^^^^^^^
1153
1154``[DOUBLE]``
1155
1156The ``DOUBLE`` record (code 4) adds a ``double`` (64-bit floating point) type to
1157the type table.
1158
1159TYPE_CODE_LABEL Record
1160^^^^^^^^^^^^^^^^^^^^^^
1161
1162``[LABEL]``
1163
1164The ``LABEL`` record (code 5) adds a ``label`` type to the type table.
1165
1166TYPE_CODE_OPAQUE Record
1167^^^^^^^^^^^^^^^^^^^^^^^
1168
1169``[OPAQUE]``
1170
1171The ``OPAQUE`` record (code 6) adds an ``opaque`` type to the type table, with
1172a name defined by a previously encountered ``STRUCT_NAME`` record. Note that
1173distinct ``opaque`` types are not unified.
1174
1175TYPE_CODE_INTEGER Record
1176^^^^^^^^^^^^^^^^^^^^^^^^
1177
1178``[INTEGER, width]``
1179
1180The ``INTEGER`` record (code 7) adds an integer type to the type table. The
1181single *width* field indicates the width of the integer type.
1182
1183TYPE_CODE_POINTER Record
1184^^^^^^^^^^^^^^^^^^^^^^^^
1185
1186``[POINTER, pointee type, address space]``
1187
1188The ``POINTER`` record (code 8) adds a pointer type to the type table. The
1189operand fields are
1190
1191* *pointee type*: The type index of the pointed-to type
1192
1193* *address space*: If supplied, the target-specific numbered address space where
1194  the pointed-to object resides. Otherwise, the default address space is zero.
1195
1196TYPE_CODE_FUNCTION_OLD Record
1197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1198
1199.. note::
1200  This is a legacy encoding for functions, produced by LLVM versions 3.0 and
1201  earlier. It is guaranteed to be understood by the current LLVM version, as
1202  specified in the :ref:`IR backwards compatibility` policy.
1203
1204``[FUNCTION_OLD, vararg, ignored, retty, ...paramty... ]``
1205
1206The ``FUNCTION_OLD`` record (code 9) adds a function type to the type table.
1207The operand fields are
1208
1209* *vararg*: Non-zero if the type represents a varargs function
1210
1211* *ignored*: This value field is present for backward compatibility only, and is
1212  ignored
1213
1214* *retty*: The type index of the function's return type
1215
1216* *paramty*: Zero or more type indices representing the parameter types of the
1217  function
1218
1219TYPE_CODE_ARRAY Record
1220^^^^^^^^^^^^^^^^^^^^^^
1221
1222``[ARRAY, numelts, eltty]``
1223
1224The ``ARRAY`` record (code 11) adds an array type to the type table.  The
1225operand fields are
1226
1227* *numelts*: The number of elements in arrays of this type
1228
1229* *eltty*: The type index of the array element type
1230
1231TYPE_CODE_VECTOR Record
1232^^^^^^^^^^^^^^^^^^^^^^^
1233
1234``[VECTOR, numelts, eltty]``
1235
1236The ``VECTOR`` record (code 12) adds a vector type to the type table.  The
1237operand fields are
1238
1239* *numelts*: The number of elements in vectors of this type
1240
1241* *eltty*: The type index of the vector element type
1242
1243TYPE_CODE_X86_FP80 Record
1244^^^^^^^^^^^^^^^^^^^^^^^^^
1245
1246``[X86_FP80]``
1247
1248The ``X86_FP80`` record (code 13) adds an ``x86_fp80`` (80-bit floating point)
1249type to the type table.
1250
1251TYPE_CODE_FP128 Record
1252^^^^^^^^^^^^^^^^^^^^^^
1253
1254``[FP128]``
1255
1256The ``FP128`` record (code 14) adds an ``fp128`` (128-bit floating point) type
1257to the type table.
1258
1259TYPE_CODE_PPC_FP128 Record
1260^^^^^^^^^^^^^^^^^^^^^^^^^^
1261
1262``[PPC_FP128]``
1263
1264The ``PPC_FP128`` record (code 15) adds a ``ppc_fp128`` (128-bit floating point)
1265type to the type table.
1266
1267TYPE_CODE_METADATA Record
1268^^^^^^^^^^^^^^^^^^^^^^^^^
1269
1270``[METADATA]``
1271
1272The ``METADATA`` record (code 16) adds a ``metadata`` type to the type table.
1273
1274TYPE_CODE_X86_MMX Record
1275^^^^^^^^^^^^^^^^^^^^^^^^
1276
1277``[X86_MMX]``
1278
1279The ``X86_MMX`` record (code 17) adds an ``x86_mmx`` type to the type table.
1280
1281TYPE_CODE_STRUCT_ANON Record
1282^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1283
1284``[STRUCT_ANON, ispacked, ...eltty...]``
1285
1286The ``STRUCT_ANON`` record (code 18) adds a literal struct type to the type
1287table. The operand fields are
1288
1289* *ispacked*: Non-zero if the type represents a packed structure
1290
1291* *eltty*: Zero or more type indices representing the element types of the
1292  structure
1293
1294TYPE_CODE_STRUCT_NAME Record
1295^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1296
1297``[STRUCT_NAME, ...string...]``
1298
1299The ``STRUCT_NAME`` record (code 19) contains a variable number of values
1300representing the bytes of a struct name. The next ``OPAQUE`` or
1301``STRUCT_NAMED`` record will use this name.
1302
1303TYPE_CODE_STRUCT_NAMED Record
1304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1305
1306``[STRUCT_NAMED, ispacked, ...eltty...]``
1307
1308The ``STRUCT_NAMED`` record (code 20) adds an identified struct type to the
1309type table, with a name defined by a previously encountered ``STRUCT_NAME``
1310record. The operand fields are
1311
1312* *ispacked*: Non-zero if the type represents a packed structure
1313
1314* *eltty*: Zero or more type indices representing the element types of the
1315  structure
1316
1317TYPE_CODE_FUNCTION Record
1318^^^^^^^^^^^^^^^^^^^^^^^^^
1319
1320``[FUNCTION, vararg, retty, ...paramty... ]``
1321
1322The ``FUNCTION`` record (code 21) adds a function type to the type table. The
1323operand fields are
1324
1325* *vararg*: Non-zero if the type represents a varargs function
1326
1327* *retty*: The type index of the function's return type
1328
1329* *paramty*: Zero or more type indices representing the parameter types of the
1330  function
1331
1332TYPE_CODE_X86_AMX Record
1333^^^^^^^^^^^^^^^^^^^^^^^^
1334
1335``[X86_AMX]``
1336
1337The ``X86_AMX`` record (code 24) adds an ``x86_amx`` type to the type table.
1338
1339.. _CONSTANTS_BLOCK:
1340
1341CONSTANTS_BLOCK Contents
1342------------------------
1343
1344The ``CONSTANTS_BLOCK`` block (id 11) ...
1345
1346.. _FUNCTION_BLOCK:
1347
1348FUNCTION_BLOCK Contents
1349-----------------------
1350
1351The ``FUNCTION_BLOCK`` block (id 12) ...
1352
1353In addition to the record types described below, a ``FUNCTION_BLOCK`` block may
1354contain the following sub-blocks:
1355
1356* `CONSTANTS_BLOCK`_
1357* `VALUE_SYMTAB_BLOCK`_
1358* `METADATA_ATTACHMENT`_
1359
1360.. _VALUE_SYMTAB_BLOCK:
1361
1362VALUE_SYMTAB_BLOCK Contents
1363---------------------------
1364
1365The ``VALUE_SYMTAB_BLOCK`` block (id 14) ...
1366
1367.. _METADATA_BLOCK:
1368
1369METADATA_BLOCK Contents
1370-----------------------
1371
1372The ``METADATA_BLOCK`` block (id 15) ...
1373
1374.. _METADATA_ATTACHMENT:
1375
1376METADATA_ATTACHMENT Contents
1377----------------------------
1378
1379The ``METADATA_ATTACHMENT`` block (id 16) ...
1380
1381.. _STRTAB_BLOCK:
1382
1383STRTAB_BLOCK Contents
1384---------------------
1385
1386The ``STRTAB`` block (id 23) contains a single record (``STRTAB_BLOB``, id 1)
1387with a single blob operand containing the bitcode file's string table.
1388
1389Strings in the string table are not null terminated. A record's *strtab
1390offset* and *strtab size* operands specify the byte offset and size of a
1391string within the string table.
1392
1393The string table is used by all preceding blocks in the bitcode file that are
1394not succeeded by another intervening ``STRTAB`` block. Normally a bitcode
1395file will have a single string table, but it may have more than one if it
1396was created by binary concatenation of multiple bitcode files.
1397