1.. role:: raw-html(raw) 2 :format: html 3 4======================== 5LLVM Bitcode File Format 6======================== 7 8.. contents:: 9 :local: 10 11Abstract 12======== 13 14This document describes the LLVM bitstream file format and the encoding of the 15LLVM IR into it. 16 17Overview 18======== 19 20What is commonly known as the LLVM bitcode file format (also, sometimes 21anachronistically known as bytecode) is actually two things: a `bitstream 22container format`_ and an `encoding of LLVM IR`_ into the container format. 23 24The bitstream format is an abstract encoding of structured data, very similar to 25XML in some ways. Like XML, bitstream files contain tags, and nested 26structures, and you can parse the file without having to understand the tags. 27Unlike XML, the bitstream format is a binary encoding, and unlike XML it 28provides a mechanism for the file to self-describe "abbreviations", which are 29effectively size optimizations for the content. 30 31LLVM IR files may be optionally embedded into a `wrapper`_ structure, or in a 32`native object file`_. Both of these mechanisms make it easy to embed extra 33data along with LLVM IR files. 34 35This document first describes the LLVM bitstream format, describes the wrapper 36format, then describes the record structure used by LLVM IR files. 37 38.. _bitstream container format: 39 40Bitstream Format 41================ 42 43The bitstream format is literally a stream of bits, with a very simple 44structure. This structure consists of the following concepts: 45 46* A "`magic number`_" that identifies the contents of the stream. 47 48* Encoding `primitives`_ like variable bit-rate integers. 49 50* `Blocks`_, which define nested content. 51 52* `Data Records`_, which describe entities within the file. 53 54* Abbreviations, which specify compression optimizations for the file. 55 56Note that the :doc:`llvm-bcanalyzer <CommandGuide/llvm-bcanalyzer>` tool can be 57used to dump and inspect arbitrary bitstreams, which is very useful for 58understanding the encoding. 59 60.. _magic number: 61 62Magic Numbers 63------------- 64 65The first four bytes of a bitstream are used as an application-specific magic 66number. Generic bitcode tools may look at the first four bytes to determine 67whether the stream is a known stream type. However, these tools should *not* 68determine whether a bitstream is valid based on its magic number alone. New 69application-specific bitstream formats are being developed all the time; tools 70should not reject them just because they have a hitherto unseen magic number. 71 72.. _primitives: 73 74Primitives 75---------- 76 77A bitstream literally consists of a stream of bits, which are read in order 78starting with the least significant bit of each byte. The stream is made up of 79a number of primitive values that encode a stream of unsigned integer values. 80These integers are encoded in two ways: either as `Fixed Width Integers`_ or as 81`Variable Width Integers`_. 82 83.. _Fixed Width Integers: 84.. _fixed-width value: 85 86Fixed Width Integers 87^^^^^^^^^^^^^^^^^^^^ 88 89Fixed-width integer values have their low bits emitted directly to the file. 90For example, a 3-bit integer value encodes 1 as 001. Fixed width integers are 91used when there are a well-known number of options for a field. For example, 92boolean values are usually encoded with a 1-bit wide integer. 93 94.. _Variable Width Integers: 95.. _Variable Width Integer: 96.. _variable-width value: 97 98Variable Width Integers 99^^^^^^^^^^^^^^^^^^^^^^^ 100 101Variable-width integer (VBR) values encode values of arbitrary size, optimizing 102for the case where the values are small. Given a 4-bit VBR field, any 3-bit 103value (0 through 7) is encoded directly, with the high bit set to zero. Values 104larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all 105but the last set the high bit. 106 107For example, the value 30 (0x1E) is encoded as 62 (0b0011'1110) when emitted as 108a vbr4 value. The first set of four bits starting from the least significant 109indicates the value 6 (110) with a continuation piece (indicated by a high bit 110of 1). The next set of four bits indicates a value of 24 (011 << 3) with no 111continuation. The sum (6+24) yields the value 30. 112 113.. _char6-encoded value: 114 1156-bit characters 116^^^^^^^^^^^^^^^^ 117 1186-bit characters encode common characters into a fixed 6-bit field. They 119represent the following characters with the following 6-bit values: 120 121:: 122 123 'a' .. 'z' --- 0 .. 25 124 'A' .. 'Z' --- 26 .. 51 125 '0' .. '9' --- 52 .. 61 126 '.' --- 62 127 '_' --- 63 128 129This encoding is only suitable for encoding characters and strings that consist 130only of the above characters. It is completely incapable of encoding characters 131not in the set. 132 133Word Alignment 134^^^^^^^^^^^^^^ 135 136Occasionally, it is useful to emit zero bits until the bitstream is a multiple 137of 32 bits. This ensures that the bit position in the stream can be represented 138as a multiple of 32-bit words. 139 140Abbreviation IDs 141---------------- 142 143A bitstream is a sequential series of `Blocks`_ and `Data Records`_. Both of 144these start with an abbreviation ID encoded as a fixed-bitwidth field. The 145width is specified by the current block, as described below. The value of the 146abbreviation ID specifies either a builtin ID (which have special meanings, 147defined below) or one of the abbreviation IDs defined for the current block by 148the stream itself. 149 150The set of builtin abbrev IDs is: 151 152* 0 - `END_BLOCK`_ --- This abbrev ID marks the end of the current block. 153 154* 1 - `ENTER_SUBBLOCK`_ --- This abbrev ID marks the beginning of a new 155 block. 156 157* 2 - `DEFINE_ABBREV`_ --- This defines a new abbreviation. 158 159* 3 - `UNABBREV_RECORD`_ --- This ID specifies the definition of an 160 unabbreviated record. 161 162Abbreviation IDs 4 and above are defined by the stream itself, and specify an 163`abbreviated record encoding`_. 164 165.. _Blocks: 166 167Blocks 168------ 169 170Blocks in a bitstream denote nested regions of the stream, and are identified by 171a content-specific id number (for example, LLVM IR uses an ID of 12 to represent 172function bodies). Block IDs 0-7 are reserved for `standard blocks`_ whose 173meaning is defined by Bitcode; block IDs 8 and greater are application 174specific. Nested blocks capture the hierarchical structure of the data encoded 175in it, and various properties are associated with blocks as the file is parsed. 176Block definitions allow the reader to efficiently skip blocks in constant time 177if the reader wants a summary of blocks, or if it wants to efficiently skip data 178it does not understand. The LLVM IR reader uses this mechanism to skip function 179bodies, lazily reading them on demand. 180 181When reading and encoding the stream, several properties are maintained for the 182block. In particular, each block maintains: 183 184#. A current abbrev id width. This value starts at 2 at the beginning of the 185 stream, and is set every time a block record is entered. The block entry 186 specifies the abbrev id width for the body of the block. 187 188#. A set of abbreviations. Abbreviations may be defined within a block, in 189 which case they are only defined in that block (neither subblocks nor 190 enclosing blocks see the abbreviation). Abbreviations can also be defined 191 inside a `BLOCKINFO`_ block, in which case they are defined in all blocks 192 that match the ID that the ``BLOCKINFO`` block is describing. 193 194As sub blocks are entered, these properties are saved and the new sub-block has 195its own set of abbreviations, and its own abbrev id width. When a sub-block is 196popped, the saved values are restored. 197 198.. _ENTER_SUBBLOCK: 199 200ENTER_SUBBLOCK Encoding 201^^^^^^^^^^^^^^^^^^^^^^^ 202 203:raw-html:`<tt>` 204[ENTER_SUBBLOCK, blockid\ :sub:`vbr8`, newabbrevlen\ :sub:`vbr4`, <align32bits>, blocklen_32] 205:raw-html:`</tt>` 206 207The ``ENTER_SUBBLOCK`` abbreviation ID specifies the start of a new block 208record. The ``blockid`` value is encoded as an 8-bit VBR identifier, and 209indicates the type of block being entered, which can be a `standard block`_ or 210an application-specific block. The ``newabbrevlen`` value is a 4-bit VBR, which 211specifies the abbrev id width for the sub-block. The ``blocklen`` value is a 21232-bit aligned value that specifies the size of the subblock in 32-bit 213words. This value allows the reader to skip over the entire block in one jump. 214 215.. _END_BLOCK: 216 217END_BLOCK Encoding 218^^^^^^^^^^^^^^^^^^ 219 220``[END_BLOCK, <align32bits>]`` 221 222The ``END_BLOCK`` abbreviation ID specifies the end of the current block record. 223Its end is aligned to 32-bits to ensure that the size of the block is an even 224multiple of 32-bits. 225 226.. _Data Records: 227 228Data Records 229------------ 230 231Data records consist of a record code and a number of (up to) 64-bit integer 232values. The interpretation of the code and values is application specific and 233may vary between different block types. Records can be encoded either using an 234unabbrev record, or with an abbreviation. In the LLVM IR format, for example, 235there is a record which encodes the target triple of a module. The code is 236``MODULE_CODE_TRIPLE``, and the values of the record are the ASCII codes for the 237characters in the string. 238 239.. _UNABBREV_RECORD: 240 241UNABBREV_RECORD Encoding 242^^^^^^^^^^^^^^^^^^^^^^^^ 243 244:raw-html:`<tt>` 245[UNABBREV_RECORD, code\ :sub:`vbr6`, numops\ :sub:`vbr6`, op0\ :sub:`vbr6`, op1\ :sub:`vbr6`, ...] 246:raw-html:`</tt>` 247 248An ``UNABBREV_RECORD`` provides a default fallback encoding, which is both 249completely general and extremely inefficient. It can describe an arbitrary 250record by emitting the code and operands as VBRs. 251 252For example, emitting an LLVM IR target triple as an unabbreviated record 253requires emitting the ``UNABBREV_RECORD`` abbrevid, a vbr6 for the 254``MODULE_CODE_TRIPLE`` code, a vbr6 for the length of the string, which is equal 255to the number of operands, and a vbr6 for each character. Because there are no 256letters with values less than 32, each letter would need to be emitted as at 257least a two-part VBR, which means that each letter would require at least 12 258bits. This is not an efficient encoding, but it is fully general. 259 260.. _abbreviated record encoding: 261 262Abbreviated Record Encoding 263^^^^^^^^^^^^^^^^^^^^^^^^^^^ 264 265``[<abbrevid>, fields...]`` 266 267An abbreviated record is an abbreviation id followed by a set of fields that are 268encoded according to the `abbreviation definition`_. This allows records to be 269encoded significantly more densely than records encoded with the 270`UNABBREV_RECORD`_ type, and allows the abbreviation types to be specified in 271the stream itself, which allows the files to be completely self describing. The 272actual encoding of abbreviations is defined below. 273 274The record code, which is the first field of an abbreviated record, may be 275encoded in the abbreviation definition (as a literal operand) or supplied in the 276abbreviated record (as a Fixed or VBR operand value). 277 278.. _abbreviation definition: 279 280Abbreviations 281------------- 282 283Abbreviations are an important form of compression for bitstreams. The idea is 284to specify a dense encoding for a class of records once, then use that encoding 285to emit many records. It takes space to emit the encoding into the file, but 286the space is recouped (hopefully plus some) when the records that use it are 287emitted. 288 289Abbreviations can be determined dynamically per client, per file. Because the 290abbreviations are stored in the bitstream itself, different streams of the same 291format can contain different sets of abbreviations according to the needs of the 292specific stream. As a concrete example, LLVM IR files usually emit an 293abbreviation for binary operators. If a specific LLVM module contained no or 294few binary operators, the abbreviation does not need to be emitted. 295 296.. _DEFINE_ABBREV: 297 298DEFINE_ABBREV Encoding 299^^^^^^^^^^^^^^^^^^^^^^ 300 301:raw-html:`<tt>` 302[DEFINE_ABBREV, numabbrevops\ :sub:`vbr5`, abbrevop0, abbrevop1, ...] 303:raw-html:`</tt>` 304 305A ``DEFINE_ABBREV`` record adds an abbreviation to the list of currently defined 306abbreviations in the scope of this block. This definition only exists inside 307this immediate block --- it is not visible in subblocks or enclosing blocks. 308Abbreviations are implicitly assigned IDs sequentially starting from 4 (the 309first application-defined abbreviation ID). Any abbreviations defined in a 310``BLOCKINFO`` record for the particular block type receive IDs first, in order, 311followed by any abbreviations defined within the block itself. Abbreviated data 312records reference this ID to indicate what abbreviation they are invoking. 313 314An abbreviation definition consists of the ``DEFINE_ABBREV`` abbrevid followed 315by a VBR that specifies the number of abbrev operands, then the abbrev operands 316themselves. Abbreviation operands come in three forms. They all start with a 317single bit that indicates whether the abbrev operand is a literal operand (when 318the bit is 1) or an encoding operand (when the bit is 0). 319 320#. Literal operands --- :raw-html:`<tt>` [1\ :sub:`1`, litvalue\ 321 :sub:`vbr8`] :raw-html:`</tt>` --- Literal operands specify that the value in 322 the result is always a single specific value. This specific value is emitted 323 as a vbr8 after the bit indicating that it is a literal operand. 324 325#. Encoding info without data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\ 326 :sub:`3`] :raw-html:`</tt>` --- Operand encodings that do not have extra data 327 are just emitted as their code. 328 329#. Encoding info with data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\ 330 :sub:`3`, value\ :sub:`vbr5`] :raw-html:`</tt>` --- Operand encodings that do 331 have extra data are emitted as their code, followed by the extra data. 332 333The possible operand encodings are: 334 335* Fixed (code 1): The field should be emitted as a `fixed-width value`_, whose 336 width is specified by the operand's extra data. 337 338* VBR (code 2): The field should be emitted as a `variable-width value`_, whose 339 width is specified by the operand's extra data. 340 341* Array (code 3): This field is an array of values. The array operand has no 342 extra data, but expects another operand to follow it, indicating the element 343 type of the array. When reading an array in an abbreviated record, the first 344 integer is a vbr6 that indicates the array length, followed by the encoded 345 elements of the array. An array may only occur as the last operand of an 346 abbreviation (except for the one final operand that gives the array's 347 type). 348 349* Char6 (code 4): This field should be emitted as a `char6-encoded value`_. 350 This operand type takes no extra data. Char6 encoding is normally used as an 351 array element type. 352 353* Blob (code 5): This field is emitted as a vbr6, followed by padding to a 354 32-bit boundary (for alignment) and an array of 8-bit objects. The array of 355 bytes is further followed by tail padding to ensure that its total length is a 356 multiple of 4 bytes. This makes it very efficient for the reader to decode 357 the data without having to make a copy of it: it can use a pointer to the data 358 in the mapped in file and poke directly at it. A blob may only occur as the 359 last operand of an abbreviation. 360 361For example, target triples in LLVM modules are encoded as a record of the form 362``[TRIPLE, 'a', 'b', 'c', 'd']``. Consider if the bitstream emitted the 363following abbrev entry: 364 365:: 366 367 [0, Fixed, 4] 368 [0, Array] 369 [0, Char6] 370 371When emitting a record with this abbreviation, the above entry would be emitted 372as: 373 374:raw-html:`<tt><blockquote>` 375[4\ :sub:`abbrevwidth`, 2\ :sub:`4`, 4\ :sub:`vbr6`, 0\ :sub:`6`, 1\ :sub:`6`, 2\ :sub:`6`, 3\ :sub:`6`] 376:raw-html:`</blockquote></tt>` 377 378These values are: 379 380#. The first value, 4, is the abbreviation ID for this abbreviation. 381 382#. The second value, 2, is the record code for ``TRIPLE`` records within LLVM IR 383 file ``MODULE_BLOCK`` blocks. 384 385#. The third value, 4, is the length of the array. 386 387#. The rest of the values are the char6 encoded values for ``"abcd"``. 388 389With this abbreviation, the triple is emitted with only 37 bits (assuming a 390abbrev id width of 3). Without the abbreviation, significantly more space would 391be required to emit the target triple. Also, because the ``TRIPLE`` value is 392not emitted as a literal in the abbreviation, the abbreviation can also be used 393for any other string value. 394 395.. _standard blocks: 396.. _standard block: 397 398Standard Blocks 399--------------- 400 401In addition to the basic block structure and record encodings, the bitstream 402also defines specific built-in block types. These block types specify how the 403stream is to be decoded or other metadata. In the future, new standard blocks 404may be added. Block IDs 0-7 are reserved for standard blocks. 405 406.. _BLOCKINFO: 407 408#0 - BLOCKINFO Block 409^^^^^^^^^^^^^^^^^^^^ 410 411The ``BLOCKINFO`` block allows the description of metadata for other blocks. 412The currently specified records are: 413 414:: 415 416 [SETBID (#1), blockid] 417 [DEFINE_ABBREV, ...] 418 [BLOCKNAME, ...name...] 419 [SETRECORDNAME, RecordID, ...name...] 420 421The ``SETBID`` record (code 1) indicates which block ID is being described. 422``SETBID`` records can occur multiple times throughout the block to change which 423block ID is being described. There must be a ``SETBID`` record prior to any 424other records. 425 426Standard ``DEFINE_ABBREV`` records can occur inside ``BLOCKINFO`` blocks, but 427unlike their occurrence in normal blocks, the abbreviation is defined for blocks 428matching the block ID we are describing, *not* the ``BLOCKINFO`` block 429itself. The abbreviations defined in ``BLOCKINFO`` blocks receive abbreviation 430IDs as described in `DEFINE_ABBREV`_. 431 432The ``BLOCKNAME`` record (code 2) can optionally occur in this block. The 433elements of the record are the bytes of the string name of the block. 434llvm-bcanalyzer can use this to dump out bitcode files symbolically. 435 436The ``SETRECORDNAME`` record (code 3) can also optionally occur in this block. 437The first operand value is a record ID number, and the rest of the elements of 438the record are the bytes for the string name of the record. llvm-bcanalyzer can 439use this to dump out bitcode files symbolically. 440 441Note that although the data in ``BLOCKINFO`` blocks is described as "metadata," 442the abbreviations they contain are essential for parsing records from the 443corresponding blocks. It is not safe to skip them. 444 445.. _wrapper: 446 447Bitcode Wrapper Format 448====================== 449 450Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper 451structure. This structure contains a simple header that indicates the offset 452and size of the embedded BC file. This allows additional information to be 453stored alongside the BC file. The structure of this file header is: 454 455:raw-html:`<tt><blockquote>` 456[Magic\ :sub:`32`, Version\ :sub:`32`, Offset\ :sub:`32`, Size\ :sub:`32`, CPUType\ :sub:`32`] 457:raw-html:`</blockquote></tt>` 458 459Each of the fields are 32-bit fields stored in little endian form (as with the 460rest of the bitcode file fields). The Magic number is always ``0x0B17C0DE`` and 461the version is currently always ``0``. The Offset field is the offset in bytes 462to the start of the bitcode stream in the file, and the Size field is the size 463in bytes of the stream. CPUType is a target-specific value that can be used to 464encode the CPU of the target. 465 466.. _native object file: 467 468Native Object File Wrapper Format 469================================= 470 471Bitcode files for LLVM IR may also be wrapped in a native object file 472(i.e. ELF, COFF, Mach-O). The bitcode must be stored in a section of the object 473file named ``__LLVM,__bitcode`` for MachO and ``.llvmbc`` for the other object 474formats. This wrapper format is useful for accommodating LTO in compilation 475pipelines where intermediate objects must be native object files which contain 476metadata in other sections. 477 478Not all tools support this format. 479 480.. _encoding of LLVM IR: 481 482LLVM IR Encoding 483================ 484 485LLVM IR is encoded into a bitstream by defining blocks and records. It uses 486blocks for things like constant pools, functions, symbol tables, etc. It uses 487records for things like instructions, global variable descriptors, type 488descriptions, etc. This document does not describe the set of abbreviations 489that the writer uses, as these are fully self-described in the file, and the 490reader is not allowed to build in any knowledge of this. 491 492Basics 493------ 494 495LLVM IR Magic Number 496^^^^^^^^^^^^^^^^^^^^ 497 498The magic number for LLVM IR files is: 499 500:raw-html:`<tt><blockquote>` 501['B'\ :sub:`8`, 'C'\ :sub:`8`, 0x0\ :sub:`4`, 0xC\ :sub:`4`, 0xE\ :sub:`4`, 0xD\ :sub:`4`] 502:raw-html:`</blockquote></tt>` 503 504.. _Signed VBRs: 505 506Signed VBRs 507^^^^^^^^^^^ 508 509`Variable Width Integer`_ encoding is an efficient way to encode arbitrary sized 510unsigned values, but is an extremely inefficient for encoding signed values, as 511signed values are otherwise treated as maximally large unsigned values. 512 513As such, signed VBR values of a specific width are emitted as follows: 514 515* Positive values are emitted as VBRs of the specified width, but with their 516 value shifted left by one. 517 518* Negative values are emitted as VBRs of the specified width, but the negated 519 value is shifted left by one, and the low bit is set. 520 521With this encoding, small positive and small negative values can both be emitted 522efficiently. Signed VBR encoding is used in ``CST_CODE_INTEGER`` and 523``CST_CODE_WIDE_INTEGER`` records within ``CONSTANTS_BLOCK`` blocks. 524It is also used for phi instruction operands in `MODULE_CODE_VERSION`_ 1. 525 526LLVM IR Blocks 527^^^^^^^^^^^^^^ 528 529LLVM IR is defined with the following blocks: 530 531* 8 --- `MODULE_BLOCK`_ --- This is the top-level block that contains the entire 532 module, and describes a variety of per-module information. 533 534* 9 --- `PARAMATTR_BLOCK`_ --- This enumerates the parameter attributes. 535 536* 10 --- `PARAMATTR_GROUP_BLOCK`_ --- This describes the attribute group table. 537 538* 11 --- `CONSTANTS_BLOCK`_ --- This describes constants for a module or 539 function. 540 541* 12 --- `FUNCTION_BLOCK`_ --- This describes a function body. 542 543* 14 --- `VALUE_SYMTAB_BLOCK`_ --- This describes a value symbol table. 544 545* 15 --- `METADATA_BLOCK`_ --- This describes metadata items. 546 547* 16 --- `METADATA_ATTACHMENT`_ --- This contains records associating metadata 548 with function instruction values. 549 550* 17 --- `TYPE_BLOCK`_ --- This describes all of the types in the module. 551 552* 23 --- `STRTAB_BLOCK`_ --- The bitcode file's string table. 553 554.. _MODULE_BLOCK: 555 556MODULE_BLOCK Contents 557--------------------- 558 559The ``MODULE_BLOCK`` block (id 8) is the top-level block for LLVM bitcode files, 560and each module in a bitcode file must contain exactly one. A bitcode file with 561multi-module bitcode is valid. In addition to records (described below) 562containing information about the module, a ``MODULE_BLOCK`` block may contain 563the following sub-blocks: 564 565* `BLOCKINFO`_ 566* `PARAMATTR_BLOCK`_ 567* `PARAMATTR_GROUP_BLOCK`_ 568* `TYPE_BLOCK`_ 569* `VALUE_SYMTAB_BLOCK`_ 570* `CONSTANTS_BLOCK`_ 571* `FUNCTION_BLOCK`_ 572* `METADATA_BLOCK`_ 573 574.. _MODULE_CODE_VERSION: 575 576MODULE_CODE_VERSION Record 577^^^^^^^^^^^^^^^^^^^^^^^^^^ 578 579``[VERSION, version#]`` 580 581The ``VERSION`` record (code 1) contains a single value indicating the format 582version. Versions 0, 1 and 2 are supported at this time. The difference between 583version 0 and 1 is in the encoding of instruction operands in 584each `FUNCTION_BLOCK`_. 585 586In version 0, each value defined by an instruction is assigned an ID 587unique to the function. Function-level value IDs are assigned starting from 588``NumModuleValues`` since they share the same namespace as module-level 589values. The value enumerator resets after each function. When a value is 590an operand of an instruction, the value ID is used to represent the operand. 591For large functions or large modules, these operand values can be large. 592 593The encoding in version 1 attempts to avoid large operand values 594in common cases. Instead of using the value ID directly, operands are 595encoded as relative to the current instruction. Thus, if an operand 596is the value defined by the previous instruction, the operand 597will be encoded as 1. 598 599For example, instead of 600 601.. code-block:: none 602 603 #n = load #n-1 604 #n+1 = icmp eq #n, #const0 605 br #n+1, label #(bb1), label #(bb2) 606 607version 1 will encode the instructions as 608 609.. code-block:: none 610 611 #n = load #1 612 #n+1 = icmp eq #1, (#n+1)-#const0 613 br #1, label #(bb1), label #(bb2) 614 615Note in the example that operands which are constants also use 616the relative encoding, while operands like basic block labels 617do not use the relative encoding. 618 619Forward references will result in a negative value. 620This can be inefficient, as operands are normally encoded 621as unsigned VBRs. However, forward references are rare, except in the 622case of phi instructions. For phi instructions, operands are encoded as 623`Signed VBRs`_ to deal with forward references. 624 625In version 2, the meaning of module records ``FUNCTION``, ``GLOBALVAR``, 626``ALIAS``, ``IFUNC`` and ``COMDAT`` change such that the first two operands 627specify an offset and size of a string in a string table (see `STRTAB_BLOCK 628Contents`_), the function name is removed from the ``FNENTRY`` record in the 629value symbol table, and the top-level ``VALUE_SYMTAB_BLOCK`` may only contain 630``FNENTRY`` records. 631 632MODULE_CODE_TRIPLE Record 633^^^^^^^^^^^^^^^^^^^^^^^^^ 634 635``[TRIPLE, ...string...]`` 636 637The ``TRIPLE`` record (code 2) contains a variable number of values representing 638the bytes of the ``target triple`` specification string. 639 640MODULE_CODE_DATALAYOUT Record 641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 642 643``[DATALAYOUT, ...string...]`` 644 645The ``DATALAYOUT`` record (code 3) contains a variable number of values 646representing the bytes of the ``target datalayout`` specification string. 647 648MODULE_CODE_ASM Record 649^^^^^^^^^^^^^^^^^^^^^^ 650 651``[ASM, ...string...]`` 652 653The ``ASM`` record (code 4) contains a variable number of values representing 654the bytes of ``module asm`` strings, with individual assembly blocks separated 655by newline (ASCII 10) characters. 656 657.. _MODULE_CODE_SECTIONNAME: 658 659MODULE_CODE_SECTIONNAME Record 660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 661 662``[SECTIONNAME, ...string...]`` 663 664The ``SECTIONNAME`` record (code 5) contains a variable number of values 665representing the bytes of a single section name string. There should be one 666``SECTIONNAME`` record for each section name referenced (e.g., in global 667variable or function ``section`` attributes) within the module. These records 668can be referenced by the 1-based index in the *section* fields of ``GLOBALVAR`` 669or ``FUNCTION`` records. 670 671MODULE_CODE_DEPLIB Record 672^^^^^^^^^^^^^^^^^^^^^^^^^ 673 674``[DEPLIB, ...string...]`` 675 676The ``DEPLIB`` record (code 6) contains a variable number of values representing 677the bytes of a single dependent library name string, one of the libraries 678mentioned in a ``deplibs`` declaration. There should be one ``DEPLIB`` record 679for each library name referenced. 680 681MODULE_CODE_GLOBALVAR Record 682^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 683 684``[GLOBALVAR, strtab offset, strtab size, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal, unnamed_addr, externally_initialized, dllstorageclass, comdat, attributes, preemptionspecifier]`` 685 686The ``GLOBALVAR`` record (code 7) marks the declaration or definition of a 687global variable. The operand fields are: 688 689* *strtab offset*, *strtab size*: Specifies the name of the global variable. 690 See `STRTAB_BLOCK Contents`_. 691 692* *pointer type*: The type index of the pointer type used to point to this 693 global variable 694 695* *isconst*: Non-zero if the variable is treated as constant within the module, 696 or zero if it is not 697 698* *initid*: If non-zero, the value index of the initializer for this variable, 699 plus 1. 700 701.. _linkage type: 702 703* *linkage*: An encoding of the linkage type for this variable: 704 705 * ``external``: code 0 706 * ``weak``: code 1 707 * ``appending``: code 2 708 * ``internal``: code 3 709 * ``linkonce``: code 4 710 * ``dllimport``: code 5 711 * ``dllexport``: code 6 712 * ``extern_weak``: code 7 713 * ``common``: code 8 714 * ``private``: code 9 715 * ``weak_odr``: code 10 716 * ``linkonce_odr``: code 11 717 * ``available_externally``: code 12 718 * deprecated : code 13 719 * deprecated : code 14 720 721* alignment*: The logarithm base 2 of the variable's requested alignment, plus 1 722 723* *section*: If non-zero, the 1-based section index in the table of 724 `MODULE_CODE_SECTIONNAME`_ entries. 725 726.. _visibility: 727 728* *visibility*: If present, an encoding of the visibility of this variable: 729 730 * ``default``: code 0 731 * ``hidden``: code 1 732 * ``protected``: code 2 733 734.. _bcthreadlocal: 735 736* *threadlocal*: If present, an encoding of the thread local storage mode of the 737 variable: 738 739 * ``not thread local``: code 0 740 * ``thread local; default TLS model``: code 1 741 * ``localdynamic``: code 2 742 * ``initialexec``: code 3 743 * ``localexec``: code 4 744 745.. _bcunnamedaddr: 746 747* *unnamed_addr*: If present, an encoding of the ``unnamed_addr`` attribute of this 748 variable: 749 750 * not ``unnamed_addr``: code 0 751 * ``unnamed_addr``: code 1 752 * ``local_unnamed_addr``: code 2 753 754.. _bcdllstorageclass: 755 756* *dllstorageclass*: If present, an encoding of the DLL storage class of this variable: 757 758 * ``default``: code 0 759 * ``dllimport``: code 1 760 * ``dllexport``: code 2 761 762* *comdat*: An encoding of the COMDAT of this function 763 764* *attributes*: If nonzero, the 1-based index into the table of AttributeLists. 765 766.. _bcpreemptionspecifier: 767 768* *preemptionspecifier*: If present, an encoding of the runtime preemption specifier of this variable: 769 770 * ``dso_preemptable``: code 0 771 * ``dso_local``: code 1 772 773.. _FUNCTION: 774 775MODULE_CODE_FUNCTION Record 776^^^^^^^^^^^^^^^^^^^^^^^^^^^ 777 778``[FUNCTION, strtab offset, strtab size, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata, personalityfn, preemptionspecifier]`` 779 780The ``FUNCTION`` record (code 8) marks the declaration or definition of a 781function. The operand fields are: 782 783* *strtab offset*, *strtab size*: Specifies the name of the function. 784 See `STRTAB_BLOCK Contents`_. 785 786* *type*: The type index of the function type describing this function 787 788* *callingconv*: The calling convention number: 789 * ``ccc``: code 0 790 * ``fastcc``: code 8 791 * ``coldcc``: code 9 792 * ``webkit_jscc``: code 12 793 * ``anyregcc``: code 13 794 * ``preserve_mostcc``: code 14 795 * ``preserve_allcc``: code 15 796 * ``swiftcc`` : code 16 797 * ``cxx_fast_tlscc``: code 17 798 * ``tailcc`` : code 18 799 * ``cfguard_checkcc`` : code 19 800 * ``swifttailcc`` : code 20 801 * ``x86_stdcallcc``: code 64 802 * ``x86_fastcallcc``: code 65 803 * ``arm_apcscc``: code 66 804 * ``arm_aapcscc``: code 67 805 * ``arm_aapcs_vfpcc``: code 68 806 807* isproto*: Non-zero if this entry represents a declaration rather than a 808 definition 809 810* *linkage*: An encoding of the `linkage type`_ for this function 811 812* *paramattr*: If nonzero, the 1-based parameter attribute index into the table 813 of `PARAMATTR_CODE_ENTRY`_ entries. 814 815* *alignment*: The logarithm base 2 of the function's requested alignment, plus 816 1 817 818* *section*: If non-zero, the 1-based section index in the table of 819 `MODULE_CODE_SECTIONNAME`_ entries. 820 821* *visibility*: An encoding of the `visibility`_ of this function 822 823* *gc*: If present and nonzero, the 1-based garbage collector index in the table 824 of `MODULE_CODE_GCNAME`_ entries. 825 826* *unnamed_addr*: If present, an encoding of the 827 :ref:`unnamed_addr<bcunnamedaddr>` attribute of this function 828 829* *prologuedata*: If non-zero, the value index of the prologue data for this function, 830 plus 1. 831 832* *dllstorageclass*: An encoding of the 833 :ref:`dllstorageclass<bcdllstorageclass>` of this function 834 835* *comdat*: An encoding of the COMDAT of this function 836 837* *prefixdata*: If non-zero, the value index of the prefix data for this function, 838 plus 1. 839 840* *personalityfn*: If non-zero, the value index of the personality function for this function, 841 plus 1. 842 843* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>` of this function. 844 845MODULE_CODE_ALIAS Record 846^^^^^^^^^^^^^^^^^^^^^^^^ 847 848``[ALIAS, strtab offset, strtab size, alias type, aliasee val#, linkage, visibility, dllstorageclass, threadlocal, unnamed_addr, preemptionspecifier]`` 849 850The ``ALIAS`` record (code 9) marks the definition of an alias. The operand 851fields are 852 853* *strtab offset*, *strtab size*: Specifies the name of the alias. 854 See `STRTAB_BLOCK Contents`_. 855 856* *alias type*: The type index of the alias 857 858* *aliasee val#*: The value index of the aliased value 859 860* *linkage*: An encoding of the `linkage type`_ for this alias 861 862* *visibility*: If present, an encoding of the `visibility`_ of the alias 863 864* *dllstorageclass*: If present, an encoding of the 865 :ref:`dllstorageclass<bcdllstorageclass>` of the alias 866 867* *threadlocal*: If present, an encoding of the 868 :ref:`thread local property<bcthreadlocal>` of the alias 869 870* *unnamed_addr*: If present, an encoding of the 871 :ref:`unnamed_addr<bcunnamedaddr>` attribute of this alias 872 873* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>` of this alias. 874 875.. _MODULE_CODE_GCNAME: 876 877MODULE_CODE_GCNAME Record 878^^^^^^^^^^^^^^^^^^^^^^^^^ 879 880``[GCNAME, ...string...]`` 881 882The ``GCNAME`` record (code 11) contains a variable number of values 883representing the bytes of a single garbage collector name string. There should 884be one ``GCNAME`` record for each garbage collector name referenced in function 885``gc`` attributes within the module. These records can be referenced by 1-based 886index in the *gc* fields of ``FUNCTION`` records. 887 888.. _PARAMATTR_BLOCK: 889 890PARAMATTR_BLOCK Contents 891------------------------ 892 893The ``PARAMATTR_BLOCK`` block (id 9) contains a table of entries describing the 894attributes of function parameters. These entries are referenced by 1-based index 895in the *paramattr* field of module block `FUNCTION`_ records, or within the 896*attr* field of function block ``INST_INVOKE`` and ``INST_CALL`` records. 897 898Entries within ``PARAMATTR_BLOCK`` are constructed to ensure that each is unique 899(i.e., no two indices represent equivalent attribute lists). 900 901.. _PARAMATTR_CODE_ENTRY: 902 903PARAMATTR_CODE_ENTRY Record 904^^^^^^^^^^^^^^^^^^^^^^^^^^^ 905 906``[ENTRY, attrgrp0, attrgrp1, ...]`` 907 908The ``ENTRY`` record (code 2) contains a variable number of values describing a 909unique set of function parameter attributes. Each *attrgrp* value is used as a 910key with which to look up an entry in the attribute group table described 911in the ``PARAMATTR_GROUP_BLOCK`` block. 912 913.. _PARAMATTR_CODE_ENTRY_OLD: 914 915PARAMATTR_CODE_ENTRY_OLD Record 916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 917 918.. note:: 919 This is a legacy encoding for attributes, produced by LLVM versions 3.2 and 920 earlier. It is guaranteed to be understood by the current LLVM version, as 921 specified in the :ref:`IR backwards compatibility` policy. 922 923``[ENTRY, paramidx0, attr0, paramidx1, attr1...]`` 924 925The ``ENTRY`` record (code 1) contains an even number of values describing a 926unique set of function parameter attributes. Each *paramidx* value indicates 927which set of attributes is represented, with 0 representing the return value 928attributes, 0xFFFFFFFF representing function attributes, and other values 929representing 1-based function parameters. Each *attr* value is a bitmap with the 930following interpretation: 931 932* bit 0: ``zeroext`` 933* bit 1: ``signext`` 934* bit 2: ``noreturn`` 935* bit 3: ``inreg`` 936* bit 4: ``sret`` 937* bit 5: ``nounwind`` 938* bit 6: ``noalias`` 939* bit 7: ``byval`` 940* bit 8: ``nest`` 941* bit 9: ``readnone`` 942* bit 10: ``readonly`` 943* bit 11: ``noinline`` 944* bit 12: ``alwaysinline`` 945* bit 13: ``optsize`` 946* bit 14: ``ssp`` 947* bit 15: ``sspreq`` 948* bits 16-31: ``align n`` 949* bit 32: ``nocapture`` 950* bit 33: ``noredzone`` 951* bit 34: ``noimplicitfloat`` 952* bit 35: ``naked`` 953* bit 36: ``inlinehint`` 954* bits 37-39: ``alignstack n``, represented as the logarithm 955 base 2 of the requested alignment, plus 1 956 957.. _PARAMATTR_GROUP_BLOCK: 958 959PARAMATTR_GROUP_BLOCK Contents 960------------------------------ 961 962The ``PARAMATTR_GROUP_BLOCK`` block (id 10) contains a table of entries 963describing the attribute groups present in the module. These entries can be 964referenced within ``PARAMATTR_CODE_ENTRY`` entries. 965 966.. _PARAMATTR_GRP_CODE_ENTRY: 967 968PARAMATTR_GRP_CODE_ENTRY Record 969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 970 971``[ENTRY, grpid, paramidx, attr0, attr1, ...]`` 972 973The ``ENTRY`` record (code 3) contains *grpid* and *paramidx* values, followed 974by a variable number of values describing a unique group of attributes. The 975*grpid* value is a unique key for the attribute group, which can be referenced 976within ``PARAMATTR_CODE_ENTRY`` entries. The *paramidx* value indicates which 977set of attributes is represented, with 0 representing the return value 978attributes, 0xFFFFFFFF representing function attributes, and other values 979representing 1-based function parameters. 980 981Each *attr* is itself represented as a variable number of values: 982 983``kind, key [, ...], [value [, ...]]`` 984 985Each attribute is either a well-known LLVM attribute (possibly with an integer 986value associated with it), or an arbitrary string (possibly with an arbitrary 987string value associated with it). The *kind* value is an integer code 988distinguishing between these possibilities: 989 990* code 0: well-known attribute 991* code 1: well-known attribute with an integer value 992* code 3: string attribute 993* code 4: string attribute with a string value 994 995For well-known attributes (code 0 or 1), the *key* value is an integer code 996identifying the attribute. For attributes with an integer argument (code 1), 997the *value* value indicates the argument. 998 999For string attributes (code 3 or 4), the *key* value is actually a variable 1000number of values representing the bytes of a null-terminated string. For 1001attributes with a string argument (code 4), the *value* value is similarly a 1002variable number of values representing the bytes of a null-terminated string. 1003 1004The integer codes are mapped to well-known attributes as follows. 1005 1006* code 1: ``align(<n>)`` 1007* code 2: ``alwaysinline`` 1008* code 3: ``byval`` 1009* code 4: ``inlinehint`` 1010* code 5: ``inreg`` 1011* code 6: ``minsize`` 1012* code 7: ``naked`` 1013* code 8: ``nest`` 1014* code 9: ``noalias`` 1015* code 10: ``nobuiltin`` 1016* code 11: ``nocapture`` 1017* code 12: ``nodeduplicate`` 1018* code 13: ``noimplicitfloat`` 1019* code 14: ``noinline`` 1020* code 15: ``nonlazybind`` 1021* code 16: ``noredzone`` 1022* code 17: ``noreturn`` 1023* code 18: ``nounwind`` 1024* code 19: ``optsize`` 1025* code 20: ``readnone`` 1026* code 21: ``readonly`` 1027* code 22: ``returned`` 1028* code 23: ``returns_twice`` 1029* code 24: ``signext`` 1030* code 25: ``alignstack(<n>)`` 1031* code 26: ``ssp`` 1032* code 27: ``sspreq`` 1033* code 28: ``sspstrong`` 1034* code 29: ``sret`` 1035* code 30: ``sanitize_address`` 1036* code 31: ``sanitize_thread`` 1037* code 32: ``sanitize_memory`` 1038* code 33: ``uwtable`` 1039* code 34: ``zeroext`` 1040* code 35: ``builtin`` 1041* code 36: ``cold`` 1042* code 37: ``optnone`` 1043* code 38: ``inalloca`` 1044* code 39: ``nonnull`` 1045* code 40: ``jumptable`` 1046* code 41: ``dereferenceable(<n>)`` 1047* code 42: ``dereferenceable_or_null(<n>)`` 1048* code 43: ``convergent`` 1049* code 44: ``safestack`` 1050* code 45: ``argmemonly`` 1051* code 46: ``swiftself`` 1052* code 47: ``swifterror`` 1053* code 48: ``norecurse`` 1054* code 49: ``inaccessiblememonly`` 1055* code 50: ``inaccessiblememonly_or_argmemonly`` 1056* code 51: ``allocsize(<EltSizeParam>[, <NumEltsParam>])`` 1057* code 52: ``writeonly`` 1058* code 53: ``speculatable`` 1059* code 54: ``strictfp`` 1060* code 55: ``sanitize_hwaddress`` 1061* code 56: ``nocf_check`` 1062* code 57: ``optforfuzzing`` 1063* code 58: ``shadowcallstack`` 1064* code 59: ``speculative_load_hardening`` 1065* code 60: ``immarg`` 1066* code 61: ``willreturn`` 1067* code 62: ``nofree`` 1068* code 63: ``nosync`` 1069* code 64: ``sanitize_memtag`` 1070* code 65: ``preallocated`` 1071* code 66: ``no_merge`` 1072* code 67: ``null_pointer_is_valid`` 1073* code 68: ``noundef`` 1074* code 69: ``byref`` 1075* code 70: ``mustprogress`` 1076* code 74: ``vscale_range(<Min>[, <Max>])`` 1077* code 75: ``swiftasync`` 1078* code 76: ``nosanitize_coverage`` 1079* code 77: ``elementtype`` 1080* code 78: ``disable_sanitizer_instrumentation`` 1081 1082.. note:: 1083 The ``allocsize`` attribute has a special encoding for its arguments. Its two 1084 arguments, which are 32-bit integers, are packed into one 64-bit integer value 1085 (i.e. ``(EltSizeParam << 32) | NumEltsParam``), with ``NumEltsParam`` taking on 1086 the sentinel value -1 if it is not specified. 1087 1088.. note:: 1089 The ``vscale_range`` attribute has a special encoding for its arguments. Its two 1090 arguments, which are 32-bit integers, are packed into one 64-bit integer value 1091 (i.e. ``(Min << 32) | Max``), with ``Max`` taking on the value of ``Min`` if 1092 it is not specified. 1093 1094.. _TYPE_BLOCK: 1095 1096TYPE_BLOCK Contents 1097------------------- 1098 1099The ``TYPE_BLOCK`` block (id 17) contains records which constitute a table of 1100type operator entries used to represent types referenced within an LLVM 1101module. Each record (with the exception of `NUMENTRY`_) generates a single type 1102table entry, which may be referenced by 0-based index from instructions, 1103constants, metadata, type symbol table entries, or other type operator records. 1104 1105Entries within ``TYPE_BLOCK`` are constructed to ensure that each entry is 1106unique (i.e., no two indices represent structurally equivalent types). 1107 1108.. _TYPE_CODE_NUMENTRY: 1109.. _NUMENTRY: 1110 1111TYPE_CODE_NUMENTRY Record 1112^^^^^^^^^^^^^^^^^^^^^^^^^ 1113 1114``[NUMENTRY, numentries]`` 1115 1116The ``NUMENTRY`` record (code 1) contains a single value which indicates the 1117total number of type code entries in the type table of the module. If present, 1118``NUMENTRY`` should be the first record in the block. 1119 1120TYPE_CODE_VOID Record 1121^^^^^^^^^^^^^^^^^^^^^ 1122 1123``[VOID]`` 1124 1125The ``VOID`` record (code 2) adds a ``void`` type to the type table. 1126 1127TYPE_CODE_HALF Record 1128^^^^^^^^^^^^^^^^^^^^^ 1129 1130``[HALF]`` 1131 1132The ``HALF`` record (code 10) adds a ``half`` (16-bit floating point) type to 1133the type table. 1134 1135TYPE_CODE_BFLOAT Record 1136^^^^^^^^^^^^^^^^^^^^^^^ 1137 1138``[BFLOAT]`` 1139 1140The ``BFLOAT`` record (code 23) adds a ``bfloat`` (16-bit brain floating point) 1141type to the type table. 1142 1143TYPE_CODE_FLOAT Record 1144^^^^^^^^^^^^^^^^^^^^^^ 1145 1146``[FLOAT]`` 1147 1148The ``FLOAT`` record (code 3) adds a ``float`` (32-bit floating point) type to 1149the type table. 1150 1151TYPE_CODE_DOUBLE Record 1152^^^^^^^^^^^^^^^^^^^^^^^ 1153 1154``[DOUBLE]`` 1155 1156The ``DOUBLE`` record (code 4) adds a ``double`` (64-bit floating point) type to 1157the type table. 1158 1159TYPE_CODE_LABEL Record 1160^^^^^^^^^^^^^^^^^^^^^^ 1161 1162``[LABEL]`` 1163 1164The ``LABEL`` record (code 5) adds a ``label`` type to the type table. 1165 1166TYPE_CODE_OPAQUE Record 1167^^^^^^^^^^^^^^^^^^^^^^^ 1168 1169``[OPAQUE]`` 1170 1171The ``OPAQUE`` record (code 6) adds an ``opaque`` type to the type table, with 1172a name defined by a previously encountered ``STRUCT_NAME`` record. Note that 1173distinct ``opaque`` types are not unified. 1174 1175TYPE_CODE_INTEGER Record 1176^^^^^^^^^^^^^^^^^^^^^^^^ 1177 1178``[INTEGER, width]`` 1179 1180The ``INTEGER`` record (code 7) adds an integer type to the type table. The 1181single *width* field indicates the width of the integer type. 1182 1183TYPE_CODE_POINTER Record 1184^^^^^^^^^^^^^^^^^^^^^^^^ 1185 1186``[POINTER, pointee type, address space]`` 1187 1188The ``POINTER`` record (code 8) adds a pointer type to the type table. The 1189operand fields are 1190 1191* *pointee type*: The type index of the pointed-to type 1192 1193* *address space*: If supplied, the target-specific numbered address space where 1194 the pointed-to object resides. Otherwise, the default address space is zero. 1195 1196TYPE_CODE_FUNCTION_OLD Record 1197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1198 1199.. note:: 1200 This is a legacy encoding for functions, produced by LLVM versions 3.0 and 1201 earlier. It is guaranteed to be understood by the current LLVM version, as 1202 specified in the :ref:`IR backwards compatibility` policy. 1203 1204``[FUNCTION_OLD, vararg, ignored, retty, ...paramty... ]`` 1205 1206The ``FUNCTION_OLD`` record (code 9) adds a function type to the type table. 1207The operand fields are 1208 1209* *vararg*: Non-zero if the type represents a varargs function 1210 1211* *ignored*: This value field is present for backward compatibility only, and is 1212 ignored 1213 1214* *retty*: The type index of the function's return type 1215 1216* *paramty*: Zero or more type indices representing the parameter types of the 1217 function 1218 1219TYPE_CODE_ARRAY Record 1220^^^^^^^^^^^^^^^^^^^^^^ 1221 1222``[ARRAY, numelts, eltty]`` 1223 1224The ``ARRAY`` record (code 11) adds an array type to the type table. The 1225operand fields are 1226 1227* *numelts*: The number of elements in arrays of this type 1228 1229* *eltty*: The type index of the array element type 1230 1231TYPE_CODE_VECTOR Record 1232^^^^^^^^^^^^^^^^^^^^^^^ 1233 1234``[VECTOR, numelts, eltty]`` 1235 1236The ``VECTOR`` record (code 12) adds a vector type to the type table. The 1237operand fields are 1238 1239* *numelts*: The number of elements in vectors of this type 1240 1241* *eltty*: The type index of the vector element type 1242 1243TYPE_CODE_X86_FP80 Record 1244^^^^^^^^^^^^^^^^^^^^^^^^^ 1245 1246``[X86_FP80]`` 1247 1248The ``X86_FP80`` record (code 13) adds an ``x86_fp80`` (80-bit floating point) 1249type to the type table. 1250 1251TYPE_CODE_FP128 Record 1252^^^^^^^^^^^^^^^^^^^^^^ 1253 1254``[FP128]`` 1255 1256The ``FP128`` record (code 14) adds an ``fp128`` (128-bit floating point) type 1257to the type table. 1258 1259TYPE_CODE_PPC_FP128 Record 1260^^^^^^^^^^^^^^^^^^^^^^^^^^ 1261 1262``[PPC_FP128]`` 1263 1264The ``PPC_FP128`` record (code 15) adds a ``ppc_fp128`` (128-bit floating point) 1265type to the type table. 1266 1267TYPE_CODE_METADATA Record 1268^^^^^^^^^^^^^^^^^^^^^^^^^ 1269 1270``[METADATA]`` 1271 1272The ``METADATA`` record (code 16) adds a ``metadata`` type to the type table. 1273 1274TYPE_CODE_X86_MMX Record 1275^^^^^^^^^^^^^^^^^^^^^^^^ 1276 1277``[X86_MMX]`` 1278 1279The ``X86_MMX`` record (code 17) adds an ``x86_mmx`` type to the type table. 1280 1281TYPE_CODE_STRUCT_ANON Record 1282^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1283 1284``[STRUCT_ANON, ispacked, ...eltty...]`` 1285 1286The ``STRUCT_ANON`` record (code 18) adds a literal struct type to the type 1287table. The operand fields are 1288 1289* *ispacked*: Non-zero if the type represents a packed structure 1290 1291* *eltty*: Zero or more type indices representing the element types of the 1292 structure 1293 1294TYPE_CODE_STRUCT_NAME Record 1295^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1296 1297``[STRUCT_NAME, ...string...]`` 1298 1299The ``STRUCT_NAME`` record (code 19) contains a variable number of values 1300representing the bytes of a struct name. The next ``OPAQUE`` or 1301``STRUCT_NAMED`` record will use this name. 1302 1303TYPE_CODE_STRUCT_NAMED Record 1304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1305 1306``[STRUCT_NAMED, ispacked, ...eltty...]`` 1307 1308The ``STRUCT_NAMED`` record (code 20) adds an identified struct type to the 1309type table, with a name defined by a previously encountered ``STRUCT_NAME`` 1310record. The operand fields are 1311 1312* *ispacked*: Non-zero if the type represents a packed structure 1313 1314* *eltty*: Zero or more type indices representing the element types of the 1315 structure 1316 1317TYPE_CODE_FUNCTION Record 1318^^^^^^^^^^^^^^^^^^^^^^^^^ 1319 1320``[FUNCTION, vararg, retty, ...paramty... ]`` 1321 1322The ``FUNCTION`` record (code 21) adds a function type to the type table. The 1323operand fields are 1324 1325* *vararg*: Non-zero if the type represents a varargs function 1326 1327* *retty*: The type index of the function's return type 1328 1329* *paramty*: Zero or more type indices representing the parameter types of the 1330 function 1331 1332TYPE_CODE_X86_AMX Record 1333^^^^^^^^^^^^^^^^^^^^^^^^ 1334 1335``[X86_AMX]`` 1336 1337The ``X86_AMX`` record (code 24) adds an ``x86_amx`` type to the type table. 1338 1339.. _CONSTANTS_BLOCK: 1340 1341CONSTANTS_BLOCK Contents 1342------------------------ 1343 1344The ``CONSTANTS_BLOCK`` block (id 11) ... 1345 1346.. _FUNCTION_BLOCK: 1347 1348FUNCTION_BLOCK Contents 1349----------------------- 1350 1351The ``FUNCTION_BLOCK`` block (id 12) ... 1352 1353In addition to the record types described below, a ``FUNCTION_BLOCK`` block may 1354contain the following sub-blocks: 1355 1356* `CONSTANTS_BLOCK`_ 1357* `VALUE_SYMTAB_BLOCK`_ 1358* `METADATA_ATTACHMENT`_ 1359 1360.. _VALUE_SYMTAB_BLOCK: 1361 1362VALUE_SYMTAB_BLOCK Contents 1363--------------------------- 1364 1365The ``VALUE_SYMTAB_BLOCK`` block (id 14) ... 1366 1367.. _METADATA_BLOCK: 1368 1369METADATA_BLOCK Contents 1370----------------------- 1371 1372The ``METADATA_BLOCK`` block (id 15) ... 1373 1374.. _METADATA_ATTACHMENT: 1375 1376METADATA_ATTACHMENT Contents 1377---------------------------- 1378 1379The ``METADATA_ATTACHMENT`` block (id 16) ... 1380 1381.. _STRTAB_BLOCK: 1382 1383STRTAB_BLOCK Contents 1384--------------------- 1385 1386The ``STRTAB`` block (id 23) contains a single record (``STRTAB_BLOB``, id 1) 1387with a single blob operand containing the bitcode file's string table. 1388 1389Strings in the string table are not null terminated. A record's *strtab 1390offset* and *strtab size* operands specify the byte offset and size of a 1391string within the string table. 1392 1393The string table is used by all preceding blocks in the bitcode file that are 1394not succeeded by another intervening ``STRTAB`` block. Normally a bitcode 1395file will have a single string table, but it may have more than one if it 1396was created by binary concatenation of multiple bitcode files. 1397