1 //===-- RNBRemote.cpp -------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Created by Greg Clayton on 12/12/07. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "RNBRemote.h" 14 15 #include <bsm/audit.h> 16 #include <bsm/audit_session.h> 17 #include <cerrno> 18 #include <csignal> 19 #include <libproc.h> 20 #include <mach-o/loader.h> 21 #include <mach/exception_types.h> 22 #include <mach/mach_vm.h> 23 #include <mach/task_info.h> 24 #include <pwd.h> 25 #include <sys/stat.h> 26 #include <sys/sysctl.h> 27 #include <unistd.h> 28 29 #if defined(__APPLE__) 30 #include <pthread.h> 31 #include <sched.h> 32 #endif 33 34 #include "DNB.h" 35 #include "DNBDataRef.h" 36 #include "DNBLog.h" 37 #include "DNBThreadResumeActions.h" 38 #include "JSON.h" 39 #include "JSONGenerator.h" 40 #include "JSONGenerator.h" 41 #include "MacOSX/Genealogy.h" 42 #include "OsLogger.h" 43 #include "RNBContext.h" 44 #include "RNBServices.h" 45 #include "RNBSocket.h" 46 #include "StdStringExtractor.h" 47 48 #include <compression.h> 49 50 #include <TargetConditionals.h> 51 #include <iomanip> 52 #include <memory> 53 #include <sstream> 54 #include <unordered_set> 55 56 #include <CoreFoundation/CoreFoundation.h> 57 #include <Security/Security.h> 58 59 // constants 60 61 static const std::string OS_LOG_EVENTS_KEY_NAME("events"); 62 static const std::string JSON_ASYNC_TYPE_KEY_NAME("type"); 63 64 // std::iostream formatting macros 65 #define RAW_HEXBASE std::setfill('0') << std::hex << std::right 66 #define HEXBASE '0' << 'x' << RAW_HEXBASE 67 #define RAWHEX8(x) RAW_HEXBASE << std::setw(2) << ((uint32_t)((uint8_t)x)) 68 #define RAWHEX16 RAW_HEXBASE << std::setw(4) 69 #define RAWHEX32 RAW_HEXBASE << std::setw(8) 70 #define RAWHEX64 RAW_HEXBASE << std::setw(16) 71 #define HEX8(x) HEXBASE << std::setw(2) << ((uint32_t)(x)) 72 #define HEX16 HEXBASE << std::setw(4) 73 #define HEX32 HEXBASE << std::setw(8) 74 #define HEX64 HEXBASE << std::setw(16) 75 #define RAW_HEX(x) RAW_HEXBASE << std::setw(sizeof(x) * 2) << (x) 76 #define HEX(x) HEXBASE << std::setw(sizeof(x) * 2) << (x) 77 #define RAWHEX_SIZE(x, sz) RAW_HEXBASE << std::setw((sz)) << (x) 78 #define HEX_SIZE(x, sz) HEXBASE << std::setw((sz)) << (x) 79 #define STRING_WIDTH(w) std::setfill(' ') << std::setw(w) 80 #define LEFT_STRING_WIDTH(s, w) \ 81 std::left << std::setfill(' ') << std::setw(w) << (s) << std::right 82 #define DECIMAL std::dec << std::setfill(' ') 83 #define DECIMAL_WIDTH(w) DECIMAL << std::setw(w) 84 #define FLOAT(n, d) \ 85 std::setfill(' ') << std::setw((n) + (d) + 1) << std::setprecision(d) \ 86 << std::showpoint << std::fixed 87 #define INDENT_WITH_SPACES(iword_idx) \ 88 std::setfill(' ') << std::setw((iword_idx)) << "" 89 #define INDENT_WITH_TABS(iword_idx) \ 90 std::setfill('\t') << std::setw((iword_idx)) << "" 91 // Class to handle communications via gdb remote protocol. 92 93 // Prototypes 94 95 static std::string binary_encode_string(const std::string &s); 96 97 // Decode a single hex character and return the hex value as a number or 98 // -1 if "ch" is not a hex character. 99 static inline int xdigit_to_sint(char ch) { 100 if (ch >= 'a' && ch <= 'f') 101 return 10 + ch - 'a'; 102 if (ch >= 'A' && ch <= 'F') 103 return 10 + ch - 'A'; 104 if (ch >= '0' && ch <= '9') 105 return ch - '0'; 106 return -1; 107 } 108 109 // Decode a single hex ASCII byte. Return -1 on failure, a value 0-255 110 // on success. 111 static inline int decoded_hex_ascii_char(const char *p) { 112 const int hi_nibble = xdigit_to_sint(p[0]); 113 if (hi_nibble == -1) 114 return -1; 115 const int lo_nibble = xdigit_to_sint(p[1]); 116 if (lo_nibble == -1) 117 return -1; 118 return (uint8_t)((hi_nibble << 4) + lo_nibble); 119 } 120 121 // Decode a hex ASCII string back into a string 122 static std::string decode_hex_ascii_string(const char *p, 123 uint32_t max_length = UINT32_MAX) { 124 std::string arg; 125 if (p) { 126 for (const char *c = p; ((c - p) / 2) < max_length; c += 2) { 127 int ch = decoded_hex_ascii_char(c); 128 if (ch == -1) 129 break; 130 else 131 arg.push_back(ch); 132 } 133 } 134 return arg; 135 } 136 137 uint64_t decode_uint64(const char *p, int base, char **end = nullptr, 138 uint64_t fail_value = 0) { 139 nub_addr_t addr = strtoull(p, end, 16); 140 if (addr == 0 && errno != 0) 141 return fail_value; 142 return addr; 143 } 144 145 extern void ASLLogCallback(void *baton, uint32_t flags, const char *format, 146 va_list args); 147 148 // from System.framework/Versions/B/PrivateHeaders/sys/codesign.h 149 extern "C" { 150 #define CS_OPS_STATUS 0 /* return status */ 151 #define CS_RESTRICT 0x0000800 /* tell dyld to treat restricted */ 152 int csops(pid_t pid, unsigned int ops, void *useraddr, size_t usersize); 153 154 // from rootless.h 155 bool rootless_allows_task_for_pid(pid_t pid); 156 157 // from sys/csr.h 158 typedef uint32_t csr_config_t; 159 #define CSR_ALLOW_TASK_FOR_PID (1 << 2) 160 int csr_check(csr_config_t mask); 161 } 162 163 RNBRemote::RNBRemote() 164 : m_ctx(), m_comm(), m_arch(), m_continue_thread(-1), m_thread(-1), 165 m_mutex(), m_dispatch_queue_offsets(), 166 m_dispatch_queue_offsets_addr(INVALID_NUB_ADDRESS), 167 m_qSymbol_index(UINT32_MAX), m_packets_recvd(0), m_packets(), 168 m_rx_packets(), m_rx_partial_data(), m_rx_pthread(0), 169 m_max_payload_size(DEFAULT_GDB_REMOTE_PROTOCOL_BUFSIZE - 4), 170 m_extended_mode(false), m_noack_mode(false), 171 m_thread_suffix_supported(false), m_list_threads_in_stop_reply(false), 172 m_compression_minsize(384), m_enable_compression_next_send_packet(false), 173 m_compression_mode(compression_types::none) { 174 DNBLogThreadedIf(LOG_RNB_REMOTE, "%s", __PRETTY_FUNCTION__); 175 CreatePacketTable(); 176 } 177 178 RNBRemote::~RNBRemote() { 179 DNBLogThreadedIf(LOG_RNB_REMOTE, "%s", __PRETTY_FUNCTION__); 180 StopReadRemoteDataThread(); 181 } 182 183 void RNBRemote::CreatePacketTable() { 184 // Step required to add new packets: 185 // 1 - Add new enumeration to RNBRemote::PacketEnum 186 // 2 - Create the RNBRemote::HandlePacket_ function if a new function is 187 // needed 188 // 3 - Register the Packet definition with any needed callbacks in this 189 // function 190 // - If no response is needed for a command, then use NULL for the 191 // normal callback 192 // - If the packet is not supported while the target is running, use 193 // NULL for the async callback 194 // 4 - If the packet is a standard packet (starts with a '$' character 195 // followed by the payload and then '#' and checksum, then you are done 196 // else go on to step 5 197 // 5 - if the packet is a fixed length packet: 198 // - modify the switch statement for the first character in the payload 199 // in RNBRemote::CommDataReceived so it doesn't reject the new packet 200 // type as invalid 201 // - modify the switch statement for the first character in the payload 202 // in RNBRemote::GetPacketPayload and make sure the payload of the 203 // packet 204 // is returned correctly 205 206 std::vector<Packet> &t = m_packets; 207 t.push_back(Packet(ack, NULL, NULL, "+", "ACK")); 208 t.push_back(Packet(nack, NULL, NULL, "-", "!ACK")); 209 t.push_back(Packet(read_memory, &RNBRemote::HandlePacket_m, NULL, "m", 210 "Read memory")); 211 t.push_back(Packet(read_register, &RNBRemote::HandlePacket_p, NULL, "p", 212 "Read one register")); 213 t.push_back(Packet(read_general_regs, &RNBRemote::HandlePacket_g, NULL, "g", 214 "Read registers")); 215 t.push_back(Packet(write_memory, &RNBRemote::HandlePacket_M, NULL, "M", 216 "Write memory")); 217 t.push_back(Packet(write_register, &RNBRemote::HandlePacket_P, NULL, "P", 218 "Write one register")); 219 t.push_back(Packet(write_general_regs, &RNBRemote::HandlePacket_G, NULL, "G", 220 "Write registers")); 221 t.push_back(Packet(insert_mem_bp, &RNBRemote::HandlePacket_z, NULL, "Z0", 222 "Insert memory breakpoint")); 223 t.push_back(Packet(remove_mem_bp, &RNBRemote::HandlePacket_z, NULL, "z0", 224 "Remove memory breakpoint")); 225 t.push_back(Packet(single_step, &RNBRemote::HandlePacket_s, NULL, "s", 226 "Single step")); 227 t.push_back(Packet(cont, &RNBRemote::HandlePacket_c, NULL, "c", "continue")); 228 t.push_back(Packet(single_step_with_sig, &RNBRemote::HandlePacket_S, NULL, 229 "S", "Single step with signal")); 230 t.push_back( 231 Packet(set_thread, &RNBRemote::HandlePacket_H, NULL, "H", "Set thread")); 232 t.push_back(Packet(halt, &RNBRemote::HandlePacket_last_signal, 233 &RNBRemote::HandlePacket_stop_process, "\x03", "^C")); 234 // t.push_back (Packet (use_extended_mode, 235 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "!", "Use extended mode")); 236 t.push_back(Packet(why_halted, &RNBRemote::HandlePacket_last_signal, NULL, 237 "?", "Why did target halt")); 238 t.push_back( 239 Packet(set_argv, &RNBRemote::HandlePacket_A, NULL, "A", "Set argv")); 240 // t.push_back (Packet (set_bp, 241 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "B", "Set/clear 242 // breakpoint")); 243 t.push_back(Packet(continue_with_sig, &RNBRemote::HandlePacket_C, NULL, "C", 244 "Continue with signal")); 245 t.push_back(Packet(detach, &RNBRemote::HandlePacket_D, NULL, "D", 246 "Detach gdb from remote system")); 247 // t.push_back (Packet (step_inferior_one_cycle, 248 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "i", "Step inferior by one 249 // clock cycle")); 250 // t.push_back (Packet (signal_and_step_inf_one_cycle, 251 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "I", "Signal inferior, then 252 // step one clock cycle")); 253 t.push_back(Packet(kill, &RNBRemote::HandlePacket_k, NULL, "k", "Kill")); 254 // t.push_back (Packet (restart, 255 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "R", "Restart inferior")); 256 // t.push_back (Packet (search_mem_backwards, 257 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "t", "Search memory 258 // backwards")); 259 t.push_back(Packet(thread_alive_p, &RNBRemote::HandlePacket_T, NULL, "T", 260 "Is thread alive")); 261 t.push_back(Packet(query_supported_features, 262 &RNBRemote::HandlePacket_qSupported, NULL, "qSupported", 263 "Query about supported features")); 264 t.push_back(Packet(vattach, &RNBRemote::HandlePacket_v, NULL, "vAttach", 265 "Attach to a new process")); 266 t.push_back(Packet(vattachwait, &RNBRemote::HandlePacket_v, NULL, 267 "vAttachWait", 268 "Wait for a process to start up then attach to it")); 269 t.push_back(Packet(vattachorwait, &RNBRemote::HandlePacket_v, NULL, 270 "vAttachOrWait", "Attach to the process or if it doesn't " 271 "exist, wait for the process to start up " 272 "then attach to it")); 273 t.push_back(Packet(vattachname, &RNBRemote::HandlePacket_v, NULL, 274 "vAttachName", "Attach to an existing process by name")); 275 t.push_back(Packet(vcont_list_actions, &RNBRemote::HandlePacket_v, NULL, 276 "vCont;", "Verbose resume with thread actions")); 277 t.push_back(Packet(vcont_list_actions, &RNBRemote::HandlePacket_v, NULL, 278 "vCont?", 279 "List valid continue-with-thread-actions actions")); 280 t.push_back(Packet(read_data_from_memory, &RNBRemote::HandlePacket_x, NULL, 281 "x", "Read data from memory")); 282 t.push_back(Packet(write_data_to_memory, &RNBRemote::HandlePacket_X, NULL, 283 "X", "Write data to memory")); 284 t.push_back(Packet(insert_hardware_bp, &RNBRemote::HandlePacket_z, NULL, "Z1", 285 "Insert hardware breakpoint")); 286 t.push_back(Packet(remove_hardware_bp, &RNBRemote::HandlePacket_z, NULL, "z1", 287 "Remove hardware breakpoint")); 288 t.push_back(Packet(insert_write_watch_bp, &RNBRemote::HandlePacket_z, NULL, 289 "Z2", "Insert write watchpoint")); 290 t.push_back(Packet(remove_write_watch_bp, &RNBRemote::HandlePacket_z, NULL, 291 "z2", "Remove write watchpoint")); 292 t.push_back(Packet(insert_read_watch_bp, &RNBRemote::HandlePacket_z, NULL, 293 "Z3", "Insert read watchpoint")); 294 t.push_back(Packet(remove_read_watch_bp, &RNBRemote::HandlePacket_z, NULL, 295 "z3", "Remove read watchpoint")); 296 t.push_back(Packet(insert_access_watch_bp, &RNBRemote::HandlePacket_z, NULL, 297 "Z4", "Insert access watchpoint")); 298 t.push_back(Packet(remove_access_watch_bp, &RNBRemote::HandlePacket_z, NULL, 299 "z4", "Remove access watchpoint")); 300 t.push_back(Packet(query_monitor, &RNBRemote::HandlePacket_qRcmd, NULL, 301 "qRcmd", "Monitor command")); 302 t.push_back(Packet(query_current_thread_id, &RNBRemote::HandlePacket_qC, NULL, 303 "qC", "Query current thread ID")); 304 t.push_back(Packet(query_echo, &RNBRemote::HandlePacket_qEcho, NULL, "qEcho:", 305 "Echo the packet back to allow the debugger to sync up " 306 "with this server")); 307 t.push_back(Packet(query_get_pid, &RNBRemote::HandlePacket_qGetPid, NULL, 308 "qGetPid", "Query process id")); 309 t.push_back(Packet(query_thread_ids_first, 310 &RNBRemote::HandlePacket_qThreadInfo, NULL, "qfThreadInfo", 311 "Get list of active threads (first req)")); 312 t.push_back(Packet(query_thread_ids_subsequent, 313 &RNBRemote::HandlePacket_qThreadInfo, NULL, "qsThreadInfo", 314 "Get list of active threads (subsequent req)")); 315 // APPLE LOCAL: qThreadStopInfo 316 // syntax: qThreadStopInfoTTTT 317 // TTTT is hex thread ID 318 t.push_back(Packet(query_thread_stop_info, 319 &RNBRemote::HandlePacket_qThreadStopInfo, NULL, 320 "qThreadStopInfo", 321 "Get detailed info on why the specified thread stopped")); 322 t.push_back(Packet(query_thread_extra_info, 323 &RNBRemote::HandlePacket_qThreadExtraInfo, NULL, 324 "qThreadExtraInfo", "Get printable status of a thread")); 325 // t.push_back (Packet (query_image_offsets, 326 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "qOffsets", "Report offset 327 // of loaded program")); 328 t.push_back(Packet( 329 query_launch_success, &RNBRemote::HandlePacket_qLaunchSuccess, NULL, 330 "qLaunchSuccess", "Report the success or failure of the launch attempt")); 331 t.push_back( 332 Packet(query_register_info, &RNBRemote::HandlePacket_qRegisterInfo, NULL, 333 "qRegisterInfo", 334 "Dynamically discover remote register context information.")); 335 t.push_back(Packet( 336 query_shlib_notify_info_addr, &RNBRemote::HandlePacket_qShlibInfoAddr, 337 NULL, "qShlibInfoAddr", "Returns the address that contains info needed " 338 "for getting shared library notifications")); 339 t.push_back(Packet(query_step_packet_supported, 340 &RNBRemote::HandlePacket_qStepPacketSupported, NULL, 341 "qStepPacketSupported", 342 "Replys with OK if the 's' packet is supported.")); 343 t.push_back( 344 Packet(query_vattachorwait_supported, 345 &RNBRemote::HandlePacket_qVAttachOrWaitSupported, NULL, 346 "qVAttachOrWaitSupported", 347 "Replys with OK if the 'vAttachOrWait' packet is supported.")); 348 t.push_back( 349 Packet(query_sync_thread_state_supported, 350 &RNBRemote::HandlePacket_qSyncThreadStateSupported, NULL, 351 "qSyncThreadStateSupported", 352 "Replys with OK if the 'QSyncThreadState:' packet is supported.")); 353 t.push_back(Packet( 354 query_host_info, &RNBRemote::HandlePacket_qHostInfo, NULL, "qHostInfo", 355 "Replies with multiple 'key:value;' tuples appended to each other.")); 356 t.push_back(Packet( 357 query_gdb_server_version, &RNBRemote::HandlePacket_qGDBServerVersion, 358 NULL, "qGDBServerVersion", 359 "Replies with multiple 'key:value;' tuples appended to each other.")); 360 t.push_back(Packet( 361 query_process_info, &RNBRemote::HandlePacket_qProcessInfo, NULL, 362 "qProcessInfo", 363 "Replies with multiple 'key:value;' tuples appended to each other.")); 364 t.push_back(Packet( 365 query_symbol_lookup, &RNBRemote::HandlePacket_qSymbol, NULL, "qSymbol:", 366 "Notify that host debugger is ready to do symbol lookups")); 367 t.push_back(Packet(json_query_thread_extended_info, 368 &RNBRemote::HandlePacket_jThreadExtendedInfo, NULL, 369 "jThreadExtendedInfo", 370 "Replies with JSON data of thread extended information.")); 371 t.push_back(Packet(json_query_get_loaded_dynamic_libraries_infos, 372 &RNBRemote::HandlePacket_jGetLoadedDynamicLibrariesInfos, 373 NULL, "jGetLoadedDynamicLibrariesInfos", 374 "Replies with JSON data of all the shared libraries " 375 "loaded in this process.")); 376 t.push_back( 377 Packet(json_query_threads_info, &RNBRemote::HandlePacket_jThreadsInfo, 378 NULL, "jThreadsInfo", 379 "Replies with JSON data with information about all threads.")); 380 t.push_back(Packet(json_query_get_shared_cache_info, 381 &RNBRemote::HandlePacket_jGetSharedCacheInfo, NULL, 382 "jGetSharedCacheInfo", "Replies with JSON data about the " 383 "location and uuid of the shared " 384 "cache in the inferior process.")); 385 t.push_back(Packet(start_noack_mode, &RNBRemote::HandlePacket_QStartNoAckMode, 386 NULL, "QStartNoAckMode", 387 "Request that " DEBUGSERVER_PROGRAM_NAME 388 " stop acking remote protocol packets")); 389 t.push_back(Packet(prefix_reg_packets_with_tid, 390 &RNBRemote::HandlePacket_QThreadSuffixSupported, NULL, 391 "QThreadSuffixSupported", 392 "Check if thread specific packets (register packets 'g', " 393 "'G', 'p', and 'P') support having the thread ID appended " 394 "to the end of the command")); 395 t.push_back(Packet(set_logging_mode, &RNBRemote::HandlePacket_QSetLogging, 396 NULL, "QSetLogging:", "Check if register packets ('g', " 397 "'G', 'p', and 'P' support having " 398 "the thread ID prefix")); 399 t.push_back(Packet( 400 set_max_packet_size, &RNBRemote::HandlePacket_QSetMaxPacketSize, NULL, 401 "QSetMaxPacketSize:", 402 "Tell " DEBUGSERVER_PROGRAM_NAME " the max sized packet gdb can handle")); 403 t.push_back(Packet( 404 set_max_payload_size, &RNBRemote::HandlePacket_QSetMaxPayloadSize, NULL, 405 "QSetMaxPayloadSize:", "Tell " DEBUGSERVER_PROGRAM_NAME 406 " the max sized payload gdb can handle")); 407 t.push_back( 408 Packet(set_environment_variable, &RNBRemote::HandlePacket_QEnvironment, 409 NULL, "QEnvironment:", 410 "Add an environment variable to the inferior's environment")); 411 t.push_back( 412 Packet(set_environment_variable_hex, 413 &RNBRemote::HandlePacket_QEnvironmentHexEncoded, NULL, 414 "QEnvironmentHexEncoded:", 415 "Add an environment variable to the inferior's environment")); 416 t.push_back(Packet(set_launch_arch, &RNBRemote::HandlePacket_QLaunchArch, 417 NULL, "QLaunchArch:", "Set the architecture to use when " 418 "launching a process for hosts that " 419 "can run multiple architecture " 420 "slices from universal files.")); 421 t.push_back(Packet(set_disable_aslr, &RNBRemote::HandlePacket_QSetDisableASLR, 422 NULL, "QSetDisableASLR:", 423 "Set whether to disable ASLR when launching the process " 424 "with the set argv ('A') packet")); 425 t.push_back(Packet(set_stdin, &RNBRemote::HandlePacket_QSetSTDIO, NULL, 426 "QSetSTDIN:", "Set the standard input for a process to be " 427 "launched with the 'A' packet")); 428 t.push_back(Packet(set_stdout, &RNBRemote::HandlePacket_QSetSTDIO, NULL, 429 "QSetSTDOUT:", "Set the standard output for a process to " 430 "be launched with the 'A' packet")); 431 t.push_back(Packet(set_stderr, &RNBRemote::HandlePacket_QSetSTDIO, NULL, 432 "QSetSTDERR:", "Set the standard error for a process to " 433 "be launched with the 'A' packet")); 434 t.push_back(Packet(set_working_dir, &RNBRemote::HandlePacket_QSetWorkingDir, 435 NULL, "QSetWorkingDir:", "Set the working directory for a " 436 "process to be launched with the " 437 "'A' packet")); 438 t.push_back(Packet(set_list_threads_in_stop_reply, 439 &RNBRemote::HandlePacket_QListThreadsInStopReply, NULL, 440 "QListThreadsInStopReply", 441 "Set if the 'threads' key should be added to the stop " 442 "reply packets with a list of all thread IDs.")); 443 t.push_back(Packet( 444 sync_thread_state, &RNBRemote::HandlePacket_QSyncThreadState, NULL, 445 "QSyncThreadState:", "Do whatever is necessary to make sure 'thread' is " 446 "in a safe state to call functions on.")); 447 // t.push_back (Packet (pass_signals_to_inferior, 448 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "QPassSignals:", "Specify 449 // which signals are passed to the inferior")); 450 t.push_back(Packet(allocate_memory, &RNBRemote::HandlePacket_AllocateMemory, 451 NULL, "_M", "Allocate memory in the inferior process.")); 452 t.push_back(Packet(deallocate_memory, 453 &RNBRemote::HandlePacket_DeallocateMemory, NULL, "_m", 454 "Deallocate memory in the inferior process.")); 455 t.push_back(Packet( 456 save_register_state, &RNBRemote::HandlePacket_SaveRegisterState, NULL, 457 "QSaveRegisterState", "Save the register state for the current thread " 458 "and return a decimal save ID.")); 459 t.push_back(Packet(restore_register_state, 460 &RNBRemote::HandlePacket_RestoreRegisterState, NULL, 461 "QRestoreRegisterState:", 462 "Restore the register state given a save ID previously " 463 "returned from a call to QSaveRegisterState.")); 464 t.push_back(Packet( 465 memory_region_info, &RNBRemote::HandlePacket_MemoryRegionInfo, NULL, 466 "qMemoryRegionInfo", "Return size and attributes of a memory region that " 467 "contains the given address")); 468 t.push_back(Packet(get_profile_data, &RNBRemote::HandlePacket_GetProfileData, 469 NULL, "qGetProfileData", 470 "Return profiling data of the current target.")); 471 t.push_back(Packet(set_enable_profiling, 472 &RNBRemote::HandlePacket_SetEnableAsyncProfiling, NULL, 473 "QSetEnableAsyncProfiling", 474 "Enable or disable the profiling of current target.")); 475 t.push_back(Packet(enable_compression, 476 &RNBRemote::HandlePacket_QEnableCompression, NULL, 477 "QEnableCompression:", 478 "Enable compression for the remainder of the connection")); 479 t.push_back(Packet(watchpoint_support_info, 480 &RNBRemote::HandlePacket_WatchpointSupportInfo, NULL, 481 "qWatchpointSupportInfo", 482 "Return the number of supported hardware watchpoints")); 483 t.push_back(Packet(set_process_event, 484 &RNBRemote::HandlePacket_QSetProcessEvent, NULL, 485 "QSetProcessEvent:", "Set a process event, to be passed " 486 "to the process, can be set before " 487 "the process is started, or after.")); 488 t.push_back( 489 Packet(set_detach_on_error, &RNBRemote::HandlePacket_QSetDetachOnError, 490 NULL, "QSetDetachOnError:", 491 "Set whether debugserver will detach (1) or kill (0) from the " 492 "process it is controlling if it loses connection to lldb.")); 493 t.push_back(Packet( 494 speed_test, &RNBRemote::HandlePacket_qSpeedTest, NULL, "qSpeedTest:", 495 "Test the maximum speed at which packet can be sent/received.")); 496 t.push_back(Packet(query_transfer, &RNBRemote::HandlePacket_qXfer, NULL, 497 "qXfer:", "Support the qXfer packet.")); 498 } 499 500 void RNBRemote::FlushSTDIO() { 501 if (m_ctx.HasValidProcessID()) { 502 nub_process_t pid = m_ctx.ProcessID(); 503 char buf[256]; 504 nub_size_t count; 505 do { 506 count = DNBProcessGetAvailableSTDOUT(pid, buf, sizeof(buf)); 507 if (count > 0) { 508 SendSTDOUTPacket(buf, count); 509 } 510 } while (count > 0); 511 512 do { 513 count = DNBProcessGetAvailableSTDERR(pid, buf, sizeof(buf)); 514 if (count > 0) { 515 SendSTDERRPacket(buf, count); 516 } 517 } while (count > 0); 518 } 519 } 520 521 void RNBRemote::SendAsyncProfileData() { 522 if (m_ctx.HasValidProcessID()) { 523 nub_process_t pid = m_ctx.ProcessID(); 524 char buf[1024]; 525 nub_size_t count; 526 do { 527 count = DNBProcessGetAvailableProfileData(pid, buf, sizeof(buf)); 528 if (count > 0) { 529 SendAsyncProfileDataPacket(buf, count); 530 } 531 } while (count > 0); 532 } 533 } 534 535 rnb_err_t RNBRemote::SendHexEncodedBytePacket(const char *header, 536 const void *buf, size_t buf_len, 537 const char *footer) { 538 std::ostringstream packet_sstrm; 539 // Append the header cstr if there was one 540 if (header && header[0]) 541 packet_sstrm << header; 542 nub_size_t i; 543 const uint8_t *ubuf8 = (const uint8_t *)buf; 544 for (i = 0; i < buf_len; i++) { 545 packet_sstrm << RAWHEX8(ubuf8[i]); 546 } 547 // Append the footer cstr if there was one 548 if (footer && footer[0]) 549 packet_sstrm << footer; 550 551 return SendPacket(packet_sstrm.str()); 552 } 553 554 rnb_err_t RNBRemote::SendSTDOUTPacket(char *buf, nub_size_t buf_size) { 555 if (buf_size == 0) 556 return rnb_success; 557 return SendHexEncodedBytePacket("O", buf, buf_size, NULL); 558 } 559 560 rnb_err_t RNBRemote::SendSTDERRPacket(char *buf, nub_size_t buf_size) { 561 if (buf_size == 0) 562 return rnb_success; 563 return SendHexEncodedBytePacket("O", buf, buf_size, NULL); 564 } 565 566 // This makes use of asynchronous bit 'A' in the gdb remote protocol. 567 rnb_err_t RNBRemote::SendAsyncProfileDataPacket(char *buf, 568 nub_size_t buf_size) { 569 if (buf_size == 0) 570 return rnb_success; 571 572 std::string packet("A"); 573 packet.append(buf, buf_size); 574 return SendPacket(packet); 575 } 576 577 rnb_err_t 578 RNBRemote::SendAsyncJSONPacket(const JSONGenerator::Dictionary &dictionary) { 579 std::ostringstream stream; 580 // We're choosing something that is easy to spot if we somehow get one 581 // of these coming out at the wrong time (i.e. when the remote side 582 // is not waiting for a process control completion response). 583 stream << "JSON-async:"; 584 dictionary.Dump(stream); 585 const std::string payload = binary_encode_string(stream.str()); 586 return SendPacket(payload); 587 } 588 589 // Given a std::string packet contents to send, possibly encode/compress it. 590 // If compression is enabled, the returned std::string will be in one of two 591 // forms: 592 // 593 // N<original packet contents uncompressed> 594 // C<size of original decompressed packet>:<packet compressed with the 595 // requested compression scheme> 596 // 597 // If compression is not requested, the original packet contents are returned 598 599 std::string RNBRemote::CompressString(const std::string &orig) { 600 std::string compressed; 601 compression_types compression_type = GetCompressionType(); 602 if (compression_type != compression_types::none) { 603 bool compress_this_packet = false; 604 605 if (orig.size() > m_compression_minsize) { 606 compress_this_packet = true; 607 } 608 609 if (compress_this_packet) { 610 const size_t encoded_data_buf_size = orig.size() + 128; 611 std::vector<uint8_t> encoded_data(encoded_data_buf_size); 612 size_t compressed_size = 0; 613 614 // Allocate a scratch buffer for libcompression the first 615 // time we see a different compression type; reuse it in 616 // all compression_encode_buffer calls so it doesn't need 617 // to allocate / free its own scratch buffer each time. 618 // This buffer will only be freed when compression type 619 // changes; otherwise it will persist until debugserver 620 // exit. 621 622 static compression_types g_libcompress_scratchbuf_type = compression_types::none; 623 static void *g_libcompress_scratchbuf = nullptr; 624 625 if (g_libcompress_scratchbuf_type != compression_type) { 626 if (g_libcompress_scratchbuf) { 627 free (g_libcompress_scratchbuf); 628 g_libcompress_scratchbuf = nullptr; 629 } 630 size_t scratchbuf_size = 0; 631 switch (compression_type) { 632 case compression_types::lz4: 633 scratchbuf_size = compression_encode_scratch_buffer_size (COMPRESSION_LZ4_RAW); 634 break; 635 case compression_types::zlib_deflate: 636 scratchbuf_size = compression_encode_scratch_buffer_size (COMPRESSION_ZLIB); 637 break; 638 case compression_types::lzma: 639 scratchbuf_size = compression_encode_scratch_buffer_size (COMPRESSION_LZMA); 640 break; 641 case compression_types::lzfse: 642 scratchbuf_size = compression_encode_scratch_buffer_size (COMPRESSION_LZFSE); 643 break; 644 default: 645 break; 646 } 647 if (scratchbuf_size > 0) { 648 g_libcompress_scratchbuf = (void*) malloc (scratchbuf_size); 649 g_libcompress_scratchbuf_type = compression_type; 650 } 651 } 652 653 if (compression_type == compression_types::lz4) { 654 compressed_size = compression_encode_buffer( 655 encoded_data.data(), encoded_data_buf_size, 656 (const uint8_t *)orig.c_str(), orig.size(), 657 g_libcompress_scratchbuf, 658 COMPRESSION_LZ4_RAW); 659 } 660 if (compression_type == compression_types::zlib_deflate) { 661 compressed_size = compression_encode_buffer( 662 encoded_data.data(), encoded_data_buf_size, 663 (const uint8_t *)orig.c_str(), orig.size(), 664 g_libcompress_scratchbuf, 665 COMPRESSION_ZLIB); 666 } 667 if (compression_type == compression_types::lzma) { 668 compressed_size = compression_encode_buffer( 669 encoded_data.data(), encoded_data_buf_size, 670 (const uint8_t *)orig.c_str(), orig.size(), 671 g_libcompress_scratchbuf, 672 COMPRESSION_LZMA); 673 } 674 if (compression_type == compression_types::lzfse) { 675 compressed_size = compression_encode_buffer( 676 encoded_data.data(), encoded_data_buf_size, 677 (const uint8_t *)orig.c_str(), orig.size(), 678 g_libcompress_scratchbuf, 679 COMPRESSION_LZFSE); 680 } 681 682 if (compressed_size > 0) { 683 compressed.clear(); 684 compressed.reserve(compressed_size); 685 compressed = "C"; 686 char numbuf[16]; 687 snprintf(numbuf, sizeof(numbuf), "%zu:", orig.size()); 688 numbuf[sizeof(numbuf) - 1] = '\0'; 689 compressed.append(numbuf); 690 691 for (size_t i = 0; i < compressed_size; i++) { 692 uint8_t byte = encoded_data[i]; 693 if (byte == '#' || byte == '$' || byte == '}' || byte == '*' || 694 byte == '\0') { 695 compressed.push_back(0x7d); 696 compressed.push_back(byte ^ 0x20); 697 } else { 698 compressed.push_back(byte); 699 } 700 } 701 } else { 702 compressed = "N" + orig; 703 } 704 } else { 705 compressed = "N" + orig; 706 } 707 } else { 708 compressed = orig; 709 } 710 711 return compressed; 712 } 713 714 rnb_err_t RNBRemote::SendPacket(const std::string &s) { 715 DNBLogThreadedIf(LOG_RNB_MAX, "%8d RNBRemote::%s (%s) called", 716 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 717 __FUNCTION__, s.c_str()); 718 719 std::string s_compressed = CompressString(s); 720 721 std::string sendpacket = "$" + s_compressed + "#"; 722 int cksum = 0; 723 char hexbuf[5]; 724 725 if (m_noack_mode) { 726 sendpacket += "00"; 727 } else { 728 for (size_t i = 0; i != s_compressed.size(); ++i) 729 cksum += s_compressed[i]; 730 snprintf(hexbuf, sizeof hexbuf, "%02x", cksum & 0xff); 731 sendpacket += hexbuf; 732 } 733 734 rnb_err_t err = m_comm.Write(sendpacket.c_str(), sendpacket.size()); 735 if (err != rnb_success) 736 return err; 737 738 if (m_noack_mode) 739 return rnb_success; 740 741 std::string reply; 742 RNBRemote::Packet packet; 743 err = GetPacket(reply, packet, true); 744 745 if (err != rnb_success) { 746 DNBLogThreadedIf(LOG_RNB_REMOTE, 747 "%8d RNBRemote::%s (%s) got error trying to get reply...", 748 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 749 __FUNCTION__, sendpacket.c_str()); 750 return err; 751 } 752 753 DNBLogThreadedIf(LOG_RNB_MAX, "%8d RNBRemote::%s (%s) got reply: '%s'", 754 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 755 __FUNCTION__, sendpacket.c_str(), reply.c_str()); 756 757 if (packet.type == ack) 758 return rnb_success; 759 760 // Should we try to resend the packet at this layer? 761 // if (packet.command == nack) 762 return rnb_err; 763 } 764 765 /* Get a packet via gdb remote protocol. 766 Strip off the prefix/suffix, verify the checksum to make sure 767 a valid packet was received, send an ACK if they match. */ 768 769 rnb_err_t RNBRemote::GetPacketPayload(std::string &return_packet) { 770 // DNBLogThreadedIf (LOG_RNB_MAX, "%8u RNBRemote::%s called", 771 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); 772 773 PThreadMutex::Locker locker(m_mutex); 774 if (m_rx_packets.empty()) { 775 // Only reset the remote command available event if we have no more packets 776 m_ctx.Events().ResetEvents(RNBContext::event_read_packet_available); 777 // DNBLogThreadedIf (LOG_RNB_MAX, "%8u RNBRemote::%s error: no packets 778 // available...", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 779 // __FUNCTION__); 780 return rnb_err; 781 } 782 783 // DNBLogThreadedIf (LOG_RNB_MAX, "%8u RNBRemote::%s has %u queued packets", 784 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, 785 // m_rx_packets.size()); 786 return_packet.swap(m_rx_packets.front()); 787 m_rx_packets.pop_front(); 788 locker.Reset(); // Release our lock on the mutex 789 790 if (m_rx_packets.empty()) { 791 // Reset the remote command available event if we have no more packets 792 m_ctx.Events().ResetEvents(RNBContext::event_read_packet_available); 793 } 794 795 // DNBLogThreadedIf (LOG_RNB_MEDIUM, "%8u RNBRemote::%s: '%s'", 796 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, 797 // return_packet.c_str()); 798 799 switch (return_packet[0]) { 800 case '+': 801 case '-': 802 case '\x03': 803 break; 804 805 case '$': { 806 long packet_checksum = 0; 807 if (!m_noack_mode) { 808 for (size_t i = return_packet.size() - 2; i < return_packet.size(); ++i) { 809 char checksum_char = tolower(return_packet[i]); 810 if (!isxdigit(checksum_char)) { 811 m_comm.Write("-", 1); 812 DNBLogThreadedIf(LOG_RNB_REMOTE, "%8u RNBRemote::%s error: packet " 813 "with invalid checksum characters: " 814 "%s", 815 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 816 __FUNCTION__, return_packet.c_str()); 817 return rnb_err; 818 } 819 } 820 packet_checksum = 821 strtol(&return_packet[return_packet.size() - 2], NULL, 16); 822 } 823 824 return_packet.erase(0, 1); // Strip the leading '$' 825 return_packet.erase(return_packet.size() - 3); // Strip the #XX checksum 826 827 if (!m_noack_mode) { 828 // Compute the checksum 829 int computed_checksum = 0; 830 for (std::string::iterator it = return_packet.begin(); 831 it != return_packet.end(); ++it) { 832 computed_checksum += *it; 833 } 834 835 if (packet_checksum == (computed_checksum & 0xff)) { 836 // DNBLogThreadedIf (LOG_RNB_MEDIUM, "%8u RNBRemote::%s sending ACK for 837 // '%s'", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 838 // __FUNCTION__, return_packet.c_str()); 839 m_comm.Write("+", 1); 840 } else { 841 DNBLogThreadedIf( 842 LOG_RNB_MEDIUM, "%8u RNBRemote::%s sending ACK for '%s' (error: " 843 "packet checksum mismatch (0x%2.2lx != 0x%2.2x))", 844 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, 845 return_packet.c_str(), packet_checksum, computed_checksum); 846 m_comm.Write("-", 1); 847 return rnb_err; 848 } 849 } 850 } break; 851 852 default: 853 DNBLogThreadedIf(LOG_RNB_REMOTE, 854 "%8u RNBRemote::%s tossing unexpected packet???? %s", 855 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 856 __FUNCTION__, return_packet.c_str()); 857 if (!m_noack_mode) 858 m_comm.Write("-", 1); 859 return rnb_err; 860 } 861 862 return rnb_success; 863 } 864 865 rnb_err_t RNBRemote::HandlePacket_UNIMPLEMENTED(const char *p) { 866 DNBLogThreadedIf(LOG_RNB_MAX, "%8u RNBRemote::%s(\"%s\")", 867 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 868 __FUNCTION__, p ? p : "NULL"); 869 return SendPacket(""); 870 } 871 872 rnb_err_t RNBRemote::HandlePacket_ILLFORMED(const char *file, int line, 873 const char *p, 874 const char *description) { 875 DNBLogThreadedIf(LOG_RNB_PACKETS, "%8u %s:%i ILLFORMED: '%s' (%s)", 876 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), file, 877 line, __FUNCTION__, p); 878 return SendPacket("E03"); 879 } 880 881 rnb_err_t RNBRemote::GetPacket(std::string &packet_payload, 882 RNBRemote::Packet &packet_info, bool wait) { 883 std::string payload; 884 rnb_err_t err = GetPacketPayload(payload); 885 if (err != rnb_success) { 886 PThreadEvent &events = m_ctx.Events(); 887 nub_event_t set_events = events.GetEventBits(); 888 // TODO: add timeout version of GetPacket?? We would then need to pass 889 // that timeout value along to DNBProcessTimedWaitForEvent. 890 if (!wait || ((set_events & RNBContext::event_read_thread_running) == 0)) 891 return err; 892 893 const nub_event_t events_to_wait_for = 894 RNBContext::event_read_packet_available | 895 RNBContext::event_read_thread_exiting; 896 897 while ((set_events = events.WaitForSetEvents(events_to_wait_for)) != 0) { 898 if (set_events & RNBContext::event_read_packet_available) { 899 // Try the queue again now that we got an event 900 err = GetPacketPayload(payload); 901 if (err == rnb_success) 902 break; 903 } 904 905 if (set_events & RNBContext::event_read_thread_exiting) 906 err = rnb_not_connected; 907 908 if (err == rnb_not_connected) 909 return err; 910 } 911 while (err == rnb_err) 912 ; 913 914 if (set_events == 0) 915 err = rnb_not_connected; 916 } 917 918 if (err == rnb_success) { 919 Packet::iterator it; 920 for (it = m_packets.begin(); it != m_packets.end(); ++it) { 921 if (payload.compare(0, it->abbrev.size(), it->abbrev) == 0) 922 break; 923 } 924 925 // A packet we don't have an entry for. This can happen when we 926 // get a packet that we don't know about or support. We just reply 927 // accordingly and go on. 928 if (it == m_packets.end()) { 929 DNBLogThreadedIf(LOG_RNB_PACKETS, "unimplemented packet: '%s'", 930 payload.c_str()); 931 HandlePacket_UNIMPLEMENTED(payload.c_str()); 932 return rnb_err; 933 } else { 934 packet_info = *it; 935 packet_payload = payload; 936 } 937 } 938 return err; 939 } 940 941 rnb_err_t RNBRemote::HandleAsyncPacket(PacketEnum *type) { 942 DNBLogThreadedIf(LOG_RNB_REMOTE, "%8u RNBRemote::%s", 943 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 944 __FUNCTION__); 945 static DNBTimer g_packetTimer(true); 946 rnb_err_t err = rnb_err; 947 std::string packet_data; 948 RNBRemote::Packet packet_info; 949 err = GetPacket(packet_data, packet_info, false); 950 951 if (err == rnb_success) { 952 if (!packet_data.empty() && isprint(packet_data[0])) 953 DNBLogThreadedIf(LOG_RNB_REMOTE | LOG_RNB_PACKETS, 954 "HandleAsyncPacket (\"%s\");", packet_data.c_str()); 955 else 956 DNBLogThreadedIf(LOG_RNB_REMOTE | LOG_RNB_PACKETS, 957 "HandleAsyncPacket (%s);", 958 packet_info.printable_name.c_str()); 959 960 HandlePacketCallback packet_callback = packet_info.async; 961 if (packet_callback != NULL) { 962 if (type != NULL) 963 *type = packet_info.type; 964 return (this->*packet_callback)(packet_data.c_str()); 965 } 966 } 967 968 return err; 969 } 970 971 rnb_err_t RNBRemote::HandleReceivedPacket(PacketEnum *type) { 972 static DNBTimer g_packetTimer(true); 973 974 // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s", 975 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); 976 rnb_err_t err = rnb_err; 977 std::string packet_data; 978 RNBRemote::Packet packet_info; 979 err = GetPacket(packet_data, packet_info, false); 980 981 if (err == rnb_success) { 982 DNBLogThreadedIf(LOG_RNB_REMOTE, "HandleReceivedPacket (\"%s\");", 983 packet_data.c_str()); 984 HandlePacketCallback packet_callback = packet_info.normal; 985 if (packet_callback != NULL) { 986 if (type != NULL) 987 *type = packet_info.type; 988 return (this->*packet_callback)(packet_data.c_str()); 989 } else { 990 // Do not fall through to end of this function, if we have valid 991 // packet_info and it has a NULL callback, then we need to respect 992 // that it may not want any response or anything to be done. 993 return err; 994 } 995 } 996 return rnb_err; 997 } 998 999 void RNBRemote::CommDataReceived(const std::string &new_data) { 1000 // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s called", 1001 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); 1002 { 1003 // Put the packet data into the buffer in a thread safe fashion 1004 PThreadMutex::Locker locker(m_mutex); 1005 1006 std::string data; 1007 // See if we have any left over data from a previous call to this 1008 // function? 1009 if (!m_rx_partial_data.empty()) { 1010 // We do, so lets start with that data 1011 data.swap(m_rx_partial_data); 1012 } 1013 // Append the new incoming data 1014 data += new_data; 1015 1016 // Parse up the packets into gdb remote packets 1017 size_t idx = 0; 1018 const size_t data_size = data.size(); 1019 1020 while (idx < data_size) { 1021 // end_idx must be one past the last valid packet byte. Start 1022 // it off with an invalid value that is the same as the current 1023 // index. 1024 size_t end_idx = idx; 1025 1026 switch (data[idx]) { 1027 case '+': // Look for ack 1028 case '-': // Look for cancel 1029 case '\x03': // ^C to halt target 1030 end_idx = idx + 1; // The command is one byte long... 1031 break; 1032 1033 case '$': 1034 // Look for a standard gdb packet? 1035 end_idx = data.find('#', idx + 1); 1036 if (end_idx == std::string::npos || end_idx + 3 > data_size) { 1037 end_idx = std::string::npos; 1038 } else { 1039 // Add two for the checksum bytes and 1 to point to the 1040 // byte just past the end of this packet 1041 end_idx += 3; 1042 } 1043 break; 1044 1045 default: 1046 break; 1047 } 1048 1049 if (end_idx == std::string::npos) { 1050 // Not all data may be here for the packet yet, save it for 1051 // next time through this function. 1052 m_rx_partial_data += data.substr(idx); 1053 // DNBLogThreadedIf (LOG_RNB_MAX, "%8d RNBRemote::%s saving data for 1054 // later[%u, npos): 1055 // '%s'",(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 1056 // __FUNCTION__, idx, m_rx_partial_data.c_str()); 1057 idx = end_idx; 1058 } else if (idx < end_idx) { 1059 m_packets_recvd++; 1060 // Hack to get rid of initial '+' ACK??? 1061 if (m_packets_recvd == 1 && (end_idx == idx + 1) && data[idx] == '+') { 1062 // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s throwing first 1063 // ACK away....[%u, npos): 1064 // '+'",(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 1065 // __FUNCTION__, idx); 1066 } else { 1067 // We have a valid packet... 1068 m_rx_packets.push_back(data.substr(idx, end_idx - idx)); 1069 DNBLogThreadedIf(LOG_RNB_PACKETS, "getpkt: %s", 1070 m_rx_packets.back().c_str()); 1071 } 1072 idx = end_idx; 1073 } else { 1074 DNBLogThreadedIf(LOG_RNB_MAX, 1075 "%8d RNBRemote::%s tossing junk byte at %c", 1076 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 1077 __FUNCTION__, data[idx]); 1078 idx = idx + 1; 1079 } 1080 } 1081 } 1082 1083 if (!m_rx_packets.empty()) { 1084 // Let the main thread know we have received a packet 1085 1086 // DNBLogThreadedIf (LOG_RNB_EVENTS, "%8d RNBRemote::%s called 1087 // events.SetEvent(RNBContext::event_read_packet_available)", 1088 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); 1089 PThreadEvent &events = m_ctx.Events(); 1090 events.SetEvents(RNBContext::event_read_packet_available); 1091 } 1092 } 1093 1094 rnb_err_t RNBRemote::GetCommData() { 1095 // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s called", 1096 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); 1097 std::string comm_data; 1098 rnb_err_t err = m_comm.Read(comm_data); 1099 if (err == rnb_success) { 1100 if (!comm_data.empty()) 1101 CommDataReceived(comm_data); 1102 } 1103 return err; 1104 } 1105 1106 void RNBRemote::StartReadRemoteDataThread() { 1107 DNBLogThreadedIf(LOG_RNB_REMOTE, "%8u RNBRemote::%s called", 1108 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 1109 __FUNCTION__); 1110 PThreadEvent &events = m_ctx.Events(); 1111 if ((events.GetEventBits() & RNBContext::event_read_thread_running) == 0) { 1112 events.ResetEvents(RNBContext::event_read_thread_exiting); 1113 int err = ::pthread_create(&m_rx_pthread, NULL, 1114 ThreadFunctionReadRemoteData, this); 1115 if (err == 0) { 1116 // Our thread was successfully kicked off, wait for it to 1117 // set the started event so we can safely continue 1118 events.WaitForSetEvents(RNBContext::event_read_thread_running); 1119 } else { 1120 events.ResetEvents(RNBContext::event_read_thread_running); 1121 events.SetEvents(RNBContext::event_read_thread_exiting); 1122 } 1123 } 1124 } 1125 1126 void RNBRemote::StopReadRemoteDataThread() { 1127 DNBLogThreadedIf(LOG_RNB_REMOTE, "%8u RNBRemote::%s called", 1128 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 1129 __FUNCTION__); 1130 PThreadEvent &events = m_ctx.Events(); 1131 if ((events.GetEventBits() & RNBContext::event_read_thread_running) == 1132 RNBContext::event_read_thread_running) { 1133 DNBLog("debugserver about to shut down packet communications to lldb."); 1134 m_comm.Disconnect(true); 1135 struct timespec timeout_abstime; 1136 DNBTimer::OffsetTimeOfDay(&timeout_abstime, 2, 0); 1137 1138 // Wait for 2 seconds for the remote data thread to exit 1139 if (events.WaitForSetEvents(RNBContext::event_read_thread_exiting, 1140 &timeout_abstime) == 0) { 1141 // Kill the remote data thread??? 1142 } 1143 } 1144 } 1145 1146 void *RNBRemote::ThreadFunctionReadRemoteData(void *arg) { 1147 // Keep a shared pointer reference so this doesn't go away on us before the 1148 // thread is killed. 1149 DNBLogThreadedIf(LOG_RNB_REMOTE, "RNBRemote::%s (%p): thread starting...", 1150 __FUNCTION__, arg); 1151 RNBRemoteSP remoteSP(g_remoteSP); 1152 if (remoteSP.get() != NULL) { 1153 1154 #if defined(__APPLE__) 1155 pthread_setname_np("read gdb-remote packets thread"); 1156 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 1157 struct sched_param thread_param; 1158 int thread_sched_policy; 1159 if (pthread_getschedparam(pthread_self(), &thread_sched_policy, 1160 &thread_param) == 0) { 1161 thread_param.sched_priority = 47; 1162 pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param); 1163 } 1164 #endif 1165 #endif 1166 1167 RNBRemote *remote = remoteSP.get(); 1168 PThreadEvent &events = remote->Context().Events(); 1169 events.SetEvents(RNBContext::event_read_thread_running); 1170 // START: main receive remote command thread loop 1171 bool done = false; 1172 while (!done) { 1173 rnb_err_t err = remote->GetCommData(); 1174 1175 switch (err) { 1176 case rnb_success: 1177 break; 1178 1179 case rnb_err: 1180 DNBLogThreadedIf(LOG_RNB_REMOTE, 1181 "RNBSocket::GetCommData returned error %u", err); 1182 done = true; 1183 break; 1184 1185 case rnb_not_connected: 1186 DNBLogThreadedIf(LOG_RNB_REMOTE, 1187 "RNBSocket::GetCommData returned not connected..."); 1188 done = true; 1189 break; 1190 } 1191 } 1192 // START: main receive remote command thread loop 1193 events.ResetEvents(RNBContext::event_read_thread_running); 1194 events.SetEvents(RNBContext::event_read_thread_exiting); 1195 } 1196 DNBLogThreadedIf(LOG_RNB_REMOTE, "RNBRemote::%s (%p): thread exiting...", 1197 __FUNCTION__, arg); 1198 return NULL; 1199 } 1200 1201 // If we fail to get back a valid CPU type for the remote process, 1202 // make a best guess for the CPU type based on the currently running 1203 // debugserver binary -- the debugger may not handle the case of an 1204 // un-specified process CPU type correctly. 1205 1206 static cpu_type_t best_guess_cpu_type() { 1207 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 1208 if (sizeof(char *) == 8) { 1209 return CPU_TYPE_ARM64; 1210 } else { 1211 #if defined (__ARM64_ARCH_8_32__) 1212 return CPU_TYPE_ARM64_32; 1213 #endif 1214 return CPU_TYPE_ARM; 1215 } 1216 #elif defined(__i386__) || defined(__x86_64__) 1217 if (sizeof(char *) == 8) { 1218 return CPU_TYPE_X86_64; 1219 } else { 1220 return CPU_TYPE_I386; 1221 } 1222 #endif 1223 return 0; 1224 } 1225 1226 /* Read the bytes in STR which are GDB Remote Protocol binary encoded bytes 1227 (8-bit bytes). 1228 This encoding uses 0x7d ('}') as an escape character for 1229 0x7d ('}'), 0x23 ('#'), 0x24 ('$'), 0x2a ('*'). 1230 LEN is the number of bytes to be processed. If a character is escaped, 1231 it is 2 characters for LEN. A LEN of -1 means decode-until-nul-byte 1232 (end of string). */ 1233 1234 std::vector<uint8_t> decode_binary_data(const char *str, size_t len) { 1235 std::vector<uint8_t> bytes; 1236 if (len == 0) { 1237 return bytes; 1238 } 1239 if (len == (size_t)-1) 1240 len = strlen(str); 1241 1242 while (len--) { 1243 unsigned char c = *str++; 1244 if (c == 0x7d && len > 0) { 1245 len--; 1246 c = *str++ ^ 0x20; 1247 } 1248 bytes.push_back(c); 1249 } 1250 return bytes; 1251 } 1252 1253 // Quote any meta characters in a std::string as per the binary 1254 // packet convention in the gdb-remote protocol. 1255 1256 static std::string binary_encode_string(const std::string &s) { 1257 std::string output; 1258 const size_t s_size = s.size(); 1259 const char *s_chars = s.c_str(); 1260 1261 for (size_t i = 0; i < s_size; i++) { 1262 unsigned char ch = *(s_chars + i); 1263 if (ch == '#' || ch == '$' || ch == '}' || ch == '*') { 1264 output.push_back('}'); // 0x7d 1265 output.push_back(ch ^ 0x20); 1266 } else { 1267 output.push_back(ch); 1268 } 1269 } 1270 return output; 1271 } 1272 1273 // If the value side of a key-value pair in JSON is a string, 1274 // and that string has a " character in it, the " character must 1275 // be escaped. 1276 1277 std::string json_string_quote_metachars(const std::string &s) { 1278 if (s.find('"') == std::string::npos) 1279 return s; 1280 1281 std::string output; 1282 const size_t s_size = s.size(); 1283 const char *s_chars = s.c_str(); 1284 for (size_t i = 0; i < s_size; i++) { 1285 unsigned char ch = *(s_chars + i); 1286 if (ch == '"') { 1287 output.push_back('\\'); 1288 } 1289 output.push_back(ch); 1290 } 1291 return output; 1292 } 1293 1294 typedef struct register_map_entry { 1295 uint32_t debugserver_regnum; // debugserver register number 1296 uint32_t offset; // Offset in bytes into the register context data with no 1297 // padding between register values 1298 DNBRegisterInfo nub_info; // debugnub register info 1299 std::vector<uint32_t> value_regnums; 1300 std::vector<uint32_t> invalidate_regnums; 1301 } register_map_entry_t; 1302 1303 // If the notion of registers differs from what is handed out by the 1304 // architecture, then flavors can be defined here. 1305 1306 static std::vector<register_map_entry_t> g_dynamic_register_map; 1307 static register_map_entry_t *g_reg_entries = NULL; 1308 static size_t g_num_reg_entries = 0; 1309 1310 void RNBRemote::Initialize() { DNBInitialize(); } 1311 1312 bool RNBRemote::InitializeRegisters(bool force) { 1313 pid_t pid = m_ctx.ProcessID(); 1314 if (pid == INVALID_NUB_PROCESS) 1315 return false; 1316 1317 DNBLogThreadedIf( 1318 LOG_RNB_PROC, 1319 "RNBRemote::%s() getting native registers from DNB interface", 1320 __FUNCTION__); 1321 // Discover the registers by querying the DNB interface and letting it 1322 // state the registers that it would like to export. This allows the 1323 // registers to be discovered using multiple qRegisterInfo calls to get 1324 // all register information after the architecture for the process is 1325 // determined. 1326 if (force) { 1327 g_dynamic_register_map.clear(); 1328 g_reg_entries = NULL; 1329 g_num_reg_entries = 0; 1330 } 1331 1332 if (g_dynamic_register_map.empty()) { 1333 nub_size_t num_reg_sets = 0; 1334 const DNBRegisterSetInfo *reg_sets = DNBGetRegisterSetInfo(&num_reg_sets); 1335 1336 assert(num_reg_sets > 0 && reg_sets != NULL); 1337 1338 uint32_t regnum = 0; 1339 uint32_t reg_data_offset = 0; 1340 typedef std::map<std::string, uint32_t> NameToRegNum; 1341 NameToRegNum name_to_regnum; 1342 for (nub_size_t set = 0; set < num_reg_sets; ++set) { 1343 if (reg_sets[set].registers == NULL) 1344 continue; 1345 1346 for (uint32_t reg = 0; reg < reg_sets[set].num_registers; ++reg) { 1347 register_map_entry_t reg_entry = { 1348 regnum++, // register number starts at zero and goes up with no gaps 1349 reg_data_offset, // Offset into register context data, no gaps 1350 // between registers 1351 reg_sets[set].registers[reg], // DNBRegisterInfo 1352 {}, 1353 {}, 1354 }; 1355 1356 name_to_regnum[reg_entry.nub_info.name] = reg_entry.debugserver_regnum; 1357 1358 if (reg_entry.nub_info.value_regs == NULL) { 1359 reg_data_offset += reg_entry.nub_info.size; 1360 } 1361 1362 g_dynamic_register_map.push_back(reg_entry); 1363 } 1364 } 1365 1366 // Now we must find any registers whose values are in other registers and 1367 // fix up 1368 // the offsets since we removed all gaps... 1369 for (auto ®_entry : g_dynamic_register_map) { 1370 if (reg_entry.nub_info.value_regs) { 1371 uint32_t new_offset = UINT32_MAX; 1372 for (size_t i = 0; reg_entry.nub_info.value_regs[i] != NULL; ++i) { 1373 const char *name = reg_entry.nub_info.value_regs[i]; 1374 auto pos = name_to_regnum.find(name); 1375 if (pos != name_to_regnum.end()) { 1376 regnum = pos->second; 1377 reg_entry.value_regnums.push_back(regnum); 1378 if (regnum < g_dynamic_register_map.size()) { 1379 // The offset for value_regs registers is the offset within the 1380 // register with the lowest offset 1381 const uint32_t reg_offset = 1382 g_dynamic_register_map[regnum].offset + 1383 reg_entry.nub_info.offset; 1384 if (new_offset > reg_offset) 1385 new_offset = reg_offset; 1386 } 1387 } 1388 } 1389 1390 if (new_offset != UINT32_MAX) { 1391 reg_entry.offset = new_offset; 1392 } else { 1393 DNBLogThreaded("no offset was calculated entry for register %s", 1394 reg_entry.nub_info.name); 1395 reg_entry.offset = UINT32_MAX; 1396 } 1397 } 1398 1399 if (reg_entry.nub_info.update_regs) { 1400 for (size_t i = 0; reg_entry.nub_info.update_regs[i] != NULL; ++i) { 1401 const char *name = reg_entry.nub_info.update_regs[i]; 1402 auto pos = name_to_regnum.find(name); 1403 if (pos != name_to_regnum.end()) { 1404 regnum = pos->second; 1405 reg_entry.invalidate_regnums.push_back(regnum); 1406 } 1407 } 1408 } 1409 } 1410 1411 // for (auto ®_entry: g_dynamic_register_map) 1412 // { 1413 // DNBLogThreaded("%4i: size = %3u, pseudo = %i, name = %s", 1414 // reg_entry.offset, 1415 // reg_entry.nub_info.size, 1416 // reg_entry.nub_info.value_regs != NULL, 1417 // reg_entry.nub_info.name); 1418 // } 1419 1420 g_reg_entries = g_dynamic_register_map.data(); 1421 g_num_reg_entries = g_dynamic_register_map.size(); 1422 } 1423 return true; 1424 } 1425 1426 /* The inferior has stopped executing; send a packet 1427 to gdb to let it know. */ 1428 1429 void RNBRemote::NotifyThatProcessStopped(void) { 1430 RNBRemote::HandlePacket_last_signal(NULL); 1431 return; 1432 } 1433 1434 /* 'A arglen,argnum,arg,...' 1435 Update the inferior context CTX with the program name and arg 1436 list. 1437 The documentation for this packet is underwhelming but my best reading 1438 of this is that it is a series of (len, position #, arg)'s, one for 1439 each argument with "arg" hex encoded (two 0-9a-f chars?). 1440 Why we need BOTH a "len" and a hex encoded "arg" is beyond me - either 1441 is sufficient to get around the "," position separator escape issue. 1442 1443 e.g. our best guess for a valid 'A' packet for "gdb -q a.out" is 1444 1445 6,0,676462,4,1,2d71,10,2,612e6f7574 1446 1447 Note that "argnum" and "arglen" are numbers in base 10. Again, that's 1448 not documented either way but I'm assuming it's so. */ 1449 1450 rnb_err_t RNBRemote::HandlePacket_A(const char *p) { 1451 if (p == NULL || *p == '\0') { 1452 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1453 "Null packet for 'A' pkt"); 1454 } 1455 p++; 1456 if (*p == '\0' || !isdigit(*p)) { 1457 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1458 "arglen not specified on 'A' pkt"); 1459 } 1460 1461 /* I promise I don't modify it anywhere in this function. strtoul()'s 1462 2nd arg has to be non-const which makes it problematic to step 1463 through the string easily. */ 1464 char *buf = const_cast<char *>(p); 1465 1466 RNBContext &ctx = Context(); 1467 1468 while (*buf != '\0') { 1469 unsigned long arglen, argnum; 1470 std::string arg; 1471 char *c; 1472 1473 errno = 0; 1474 arglen = strtoul(buf, &c, 10); 1475 if (errno != 0 && arglen == 0) { 1476 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1477 "arglen not a number on 'A' pkt"); 1478 } 1479 if (*c != ',') { 1480 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1481 "arglen not followed by comma on 'A' pkt"); 1482 } 1483 buf = c + 1; 1484 1485 errno = 0; 1486 argnum = strtoul(buf, &c, 10); 1487 if (errno != 0 && argnum == 0) { 1488 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1489 "argnum not a number on 'A' pkt"); 1490 } 1491 if (*c != ',') { 1492 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1493 "arglen not followed by comma on 'A' pkt"); 1494 } 1495 buf = c + 1; 1496 1497 c = buf; 1498 buf = buf + arglen; 1499 while (c < buf && *c != '\0' && c + 1 < buf && *(c + 1) != '\0') { 1500 char smallbuf[3]; 1501 smallbuf[0] = *c; 1502 smallbuf[1] = *(c + 1); 1503 smallbuf[2] = '\0'; 1504 1505 errno = 0; 1506 int ch = static_cast<int>(strtoul(smallbuf, NULL, 16)); 1507 if (errno != 0 && ch == 0) { 1508 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1509 "non-hex char in arg on 'A' pkt"); 1510 } 1511 1512 arg.push_back(ch); 1513 c += 2; 1514 } 1515 1516 ctx.PushArgument(arg.c_str()); 1517 if (*buf == ',') 1518 buf++; 1519 } 1520 SendPacket("OK"); 1521 1522 return rnb_success; 1523 } 1524 1525 /* 'H c t' 1526 Set the thread for subsequent actions; 'c' for step/continue ops, 1527 'g' for other ops. -1 means all threads, 0 means any thread. */ 1528 1529 rnb_err_t RNBRemote::HandlePacket_H(const char *p) { 1530 p++; // skip 'H' 1531 if (*p != 'c' && *p != 'g') { 1532 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1533 "Missing 'c' or 'g' type in H packet"); 1534 } 1535 1536 if (!m_ctx.HasValidProcessID()) { 1537 // We allow gdb to connect to a server that hasn't started running 1538 // the target yet. gdb still wants to ask questions about it and 1539 // freaks out if it gets an error. So just return OK here. 1540 } 1541 1542 errno = 0; 1543 nub_thread_t tid = strtoul(p + 1, NULL, 16); 1544 if (errno != 0 && tid == 0) { 1545 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1546 "Invalid thread number in H packet"); 1547 } 1548 if (*p == 'c') 1549 SetContinueThread(tid); 1550 if (*p == 'g') 1551 SetCurrentThread(tid); 1552 1553 return SendPacket("OK"); 1554 } 1555 1556 rnb_err_t RNBRemote::HandlePacket_qLaunchSuccess(const char *p) { 1557 if (m_ctx.HasValidProcessID() || m_ctx.LaunchStatus().Status() == 0) 1558 return SendPacket("OK"); 1559 std::ostringstream ret_str; 1560 std::string status_str; 1561 std::string error_quoted = binary_encode_string 1562 (m_ctx.LaunchStatusAsString(status_str)); 1563 ret_str << "E" << error_quoted; 1564 1565 return SendPacket(ret_str.str()); 1566 } 1567 1568 rnb_err_t RNBRemote::HandlePacket_qShlibInfoAddr(const char *p) { 1569 if (m_ctx.HasValidProcessID()) { 1570 nub_addr_t shlib_info_addr = 1571 DNBProcessGetSharedLibraryInfoAddress(m_ctx.ProcessID()); 1572 if (shlib_info_addr != INVALID_NUB_ADDRESS) { 1573 std::ostringstream ostrm; 1574 ostrm << RAW_HEXBASE << shlib_info_addr; 1575 return SendPacket(ostrm.str()); 1576 } 1577 } 1578 return SendPacket("E44"); 1579 } 1580 1581 rnb_err_t RNBRemote::HandlePacket_qStepPacketSupported(const char *p) { 1582 // Normally the "s" packet is mandatory, yet in gdb when using ARM, they 1583 // get around the need for this packet by implementing software single 1584 // stepping from gdb. Current versions of debugserver do support the "s" 1585 // packet, yet some older versions do not. We need a way to tell if this 1586 // packet is supported so we can disable software single stepping in gdb 1587 // for remote targets (so the "s" packet will get used). 1588 return SendPacket("OK"); 1589 } 1590 1591 rnb_err_t RNBRemote::HandlePacket_qSyncThreadStateSupported(const char *p) { 1592 // We support attachOrWait meaning attach if the process exists, otherwise 1593 // wait to attach. 1594 return SendPacket("OK"); 1595 } 1596 1597 rnb_err_t RNBRemote::HandlePacket_qVAttachOrWaitSupported(const char *p) { 1598 // We support attachOrWait meaning attach if the process exists, otherwise 1599 // wait to attach. 1600 return SendPacket("OK"); 1601 } 1602 1603 rnb_err_t RNBRemote::HandlePacket_qThreadStopInfo(const char *p) { 1604 p += strlen("qThreadStopInfo"); 1605 nub_thread_t tid = strtoul(p, 0, 16); 1606 return SendStopReplyPacketForThread(tid); 1607 } 1608 1609 rnb_err_t RNBRemote::HandlePacket_qThreadInfo(const char *p) { 1610 // We allow gdb to connect to a server that hasn't started running 1611 // the target yet. gdb still wants to ask questions about it and 1612 // freaks out if it gets an error. So just return OK here. 1613 nub_process_t pid = m_ctx.ProcessID(); 1614 if (pid == INVALID_NUB_PROCESS) 1615 return SendPacket("OK"); 1616 1617 // Only "qfThreadInfo" and "qsThreadInfo" get into this function so 1618 // we only need to check the second byte to tell which is which 1619 if (p[1] == 'f') { 1620 nub_size_t numthreads = DNBProcessGetNumThreads(pid); 1621 std::ostringstream ostrm; 1622 ostrm << "m"; 1623 bool first = true; 1624 for (nub_size_t i = 0; i < numthreads; ++i) { 1625 if (first) 1626 first = false; 1627 else 1628 ostrm << ","; 1629 nub_thread_t th = DNBProcessGetThreadAtIndex(pid, i); 1630 ostrm << std::hex << th; 1631 } 1632 return SendPacket(ostrm.str()); 1633 } else { 1634 return SendPacket("l"); 1635 } 1636 } 1637 1638 rnb_err_t RNBRemote::HandlePacket_qThreadExtraInfo(const char *p) { 1639 // We allow gdb to connect to a server that hasn't started running 1640 // the target yet. gdb still wants to ask questions about it and 1641 // freaks out if it gets an error. So just return OK here. 1642 nub_process_t pid = m_ctx.ProcessID(); 1643 if (pid == INVALID_NUB_PROCESS) 1644 return SendPacket("OK"); 1645 1646 /* This is supposed to return a string like 'Runnable' or 1647 'Blocked on Mutex'. 1648 The returned string is formatted like the "A" packet - a 1649 sequence of letters encoded in as 2-hex-chars-per-letter. */ 1650 p += strlen("qThreadExtraInfo"); 1651 if (*p++ != ',') 1652 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1653 "Illformed qThreadExtraInfo packet"); 1654 errno = 0; 1655 nub_thread_t tid = strtoul(p, NULL, 16); 1656 if (errno != 0 && tid == 0) { 1657 return HandlePacket_ILLFORMED( 1658 __FILE__, __LINE__, p, 1659 "Invalid thread number in qThreadExtraInfo packet"); 1660 } 1661 1662 const char *threadInfo = DNBThreadGetInfo(pid, tid); 1663 if (threadInfo != NULL && threadInfo[0]) { 1664 return SendHexEncodedBytePacket(NULL, threadInfo, strlen(threadInfo), NULL); 1665 } else { 1666 // "OK" == 4f6b 1667 // Return "OK" as a ASCII hex byte stream if things go wrong 1668 return SendPacket("4f6b"); 1669 } 1670 1671 return SendPacket(""); 1672 } 1673 1674 const char *k_space_delimiters = " \t"; 1675 static void skip_spaces(std::string &line) { 1676 if (!line.empty()) { 1677 size_t space_pos = line.find_first_not_of(k_space_delimiters); 1678 if (space_pos > 0) 1679 line.erase(0, space_pos); 1680 } 1681 } 1682 1683 static std::string get_identifier(std::string &line) { 1684 std::string word; 1685 skip_spaces(line); 1686 const size_t line_size = line.size(); 1687 size_t end_pos; 1688 for (end_pos = 0; end_pos < line_size; ++end_pos) { 1689 if (end_pos == 0) { 1690 if (isalpha(line[end_pos]) || line[end_pos] == '_') 1691 continue; 1692 } else if (isalnum(line[end_pos]) || line[end_pos] == '_') 1693 continue; 1694 break; 1695 } 1696 word.assign(line, 0, end_pos); 1697 line.erase(0, end_pos); 1698 return word; 1699 } 1700 1701 static std::string get_operator(std::string &line) { 1702 std::string op; 1703 skip_spaces(line); 1704 if (!line.empty()) { 1705 if (line[0] == '=') { 1706 op = '='; 1707 line.erase(0, 1); 1708 } 1709 } 1710 return op; 1711 } 1712 1713 static std::string get_value(std::string &line) { 1714 std::string value; 1715 skip_spaces(line); 1716 if (!line.empty()) { 1717 value.swap(line); 1718 } 1719 return value; 1720 } 1721 1722 extern void FileLogCallback(void *baton, uint32_t flags, const char *format, 1723 va_list args); 1724 extern void ASLLogCallback(void *baton, uint32_t flags, const char *format, 1725 va_list args); 1726 1727 rnb_err_t RNBRemote::HandlePacket_qRcmd(const char *p) { 1728 const char *c = p + strlen("qRcmd,"); 1729 std::string line; 1730 while (c[0] && c[1]) { 1731 char smallbuf[3] = {c[0], c[1], '\0'}; 1732 errno = 0; 1733 int ch = static_cast<int>(strtoul(smallbuf, NULL, 16)); 1734 if (errno != 0 && ch == 0) 1735 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1736 "non-hex char in payload of qRcmd packet"); 1737 line.push_back(ch); 1738 c += 2; 1739 } 1740 if (*c == '\0') { 1741 std::string command = get_identifier(line); 1742 if (command == "set") { 1743 std::string variable = get_identifier(line); 1744 std::string op = get_operator(line); 1745 std::string value = get_value(line); 1746 if (variable == "logfile") { 1747 FILE *log_file = fopen(value.c_str(), "w"); 1748 if (log_file) { 1749 DNBLogSetLogCallback(FileLogCallback, log_file); 1750 return SendPacket("OK"); 1751 } 1752 return SendPacket("E71"); 1753 } else if (variable == "logmask") { 1754 char *end; 1755 errno = 0; 1756 uint32_t logmask = 1757 static_cast<uint32_t>(strtoul(value.c_str(), &end, 0)); 1758 if (errno == 0 && end && *end == '\0') { 1759 DNBLogSetLogMask(logmask); 1760 if (!DNBLogGetLogCallback()) 1761 DNBLogSetLogCallback(ASLLogCallback, NULL); 1762 return SendPacket("OK"); 1763 } 1764 errno = 0; 1765 logmask = static_cast<uint32_t>(strtoul(value.c_str(), &end, 16)); 1766 if (errno == 0 && end && *end == '\0') { 1767 DNBLogSetLogMask(logmask); 1768 return SendPacket("OK"); 1769 } 1770 return SendPacket("E72"); 1771 } 1772 return SendPacket("E70"); 1773 } 1774 return SendPacket("E69"); 1775 } 1776 return SendPacket("E73"); 1777 } 1778 1779 rnb_err_t RNBRemote::HandlePacket_qC(const char *p) { 1780 nub_thread_t tid; 1781 std::ostringstream rep; 1782 // If we haven't run the process yet, we tell the debugger the 1783 // pid is 0. That way it can know to tell use to run later on. 1784 if (!m_ctx.HasValidProcessID()) 1785 tid = 0; 1786 else { 1787 // Grab the current thread. 1788 tid = DNBProcessGetCurrentThread(m_ctx.ProcessID()); 1789 // Make sure we set the current thread so g and p packets return 1790 // the data the gdb will expect. 1791 SetCurrentThread(tid); 1792 } 1793 rep << "QC" << std::hex << tid; 1794 return SendPacket(rep.str()); 1795 } 1796 1797 rnb_err_t RNBRemote::HandlePacket_qEcho(const char *p) { 1798 // Just send the exact same packet back that we received to 1799 // synchronize the response packets after a previous packet 1800 // timed out. This allows the debugger to get back on track 1801 // with responses after a packet timeout. 1802 return SendPacket(p); 1803 } 1804 1805 rnb_err_t RNBRemote::HandlePacket_qGetPid(const char *p) { 1806 nub_process_t pid; 1807 std::ostringstream rep; 1808 // If we haven't run the process yet, we tell the debugger the 1809 // pid is 0. That way it can know to tell use to run later on. 1810 if (m_ctx.HasValidProcessID()) 1811 pid = m_ctx.ProcessID(); 1812 else 1813 pid = 0; 1814 rep << std::hex << pid; 1815 return SendPacket(rep.str()); 1816 } 1817 1818 rnb_err_t RNBRemote::HandlePacket_qRegisterInfo(const char *p) { 1819 if (g_num_reg_entries == 0) 1820 InitializeRegisters(); 1821 1822 p += strlen("qRegisterInfo"); 1823 1824 nub_size_t num_reg_sets = 0; 1825 const DNBRegisterSetInfo *reg_set_info = DNBGetRegisterSetInfo(&num_reg_sets); 1826 uint32_t reg_num = static_cast<uint32_t>(strtoul(p, 0, 16)); 1827 1828 if (reg_num < g_num_reg_entries) { 1829 const register_map_entry_t *reg_entry = &g_reg_entries[reg_num]; 1830 std::ostringstream ostrm; 1831 if (reg_entry->nub_info.name) 1832 ostrm << "name:" << reg_entry->nub_info.name << ';'; 1833 if (reg_entry->nub_info.alt) 1834 ostrm << "alt-name:" << reg_entry->nub_info.alt << ';'; 1835 1836 ostrm << "bitsize:" << std::dec << reg_entry->nub_info.size * 8 << ';'; 1837 ostrm << "offset:" << std::dec << reg_entry->offset << ';'; 1838 1839 switch (reg_entry->nub_info.type) { 1840 case Uint: 1841 ostrm << "encoding:uint;"; 1842 break; 1843 case Sint: 1844 ostrm << "encoding:sint;"; 1845 break; 1846 case IEEE754: 1847 ostrm << "encoding:ieee754;"; 1848 break; 1849 case Vector: 1850 ostrm << "encoding:vector;"; 1851 break; 1852 } 1853 1854 switch (reg_entry->nub_info.format) { 1855 case Binary: 1856 ostrm << "format:binary;"; 1857 break; 1858 case Decimal: 1859 ostrm << "format:decimal;"; 1860 break; 1861 case Hex: 1862 ostrm << "format:hex;"; 1863 break; 1864 case Float: 1865 ostrm << "format:float;"; 1866 break; 1867 case VectorOfSInt8: 1868 ostrm << "format:vector-sint8;"; 1869 break; 1870 case VectorOfUInt8: 1871 ostrm << "format:vector-uint8;"; 1872 break; 1873 case VectorOfSInt16: 1874 ostrm << "format:vector-sint16;"; 1875 break; 1876 case VectorOfUInt16: 1877 ostrm << "format:vector-uint16;"; 1878 break; 1879 case VectorOfSInt32: 1880 ostrm << "format:vector-sint32;"; 1881 break; 1882 case VectorOfUInt32: 1883 ostrm << "format:vector-uint32;"; 1884 break; 1885 case VectorOfFloat32: 1886 ostrm << "format:vector-float32;"; 1887 break; 1888 case VectorOfUInt128: 1889 ostrm << "format:vector-uint128;"; 1890 break; 1891 }; 1892 1893 if (reg_set_info && reg_entry->nub_info.set < num_reg_sets) 1894 ostrm << "set:" << reg_set_info[reg_entry->nub_info.set].name << ';'; 1895 1896 if (reg_entry->nub_info.reg_ehframe != INVALID_NUB_REGNUM) 1897 ostrm << "ehframe:" << std::dec << reg_entry->nub_info.reg_ehframe << ';'; 1898 1899 if (reg_entry->nub_info.reg_dwarf != INVALID_NUB_REGNUM) 1900 ostrm << "dwarf:" << std::dec << reg_entry->nub_info.reg_dwarf << ';'; 1901 1902 switch (reg_entry->nub_info.reg_generic) { 1903 case GENERIC_REGNUM_FP: 1904 ostrm << "generic:fp;"; 1905 break; 1906 case GENERIC_REGNUM_PC: 1907 ostrm << "generic:pc;"; 1908 break; 1909 case GENERIC_REGNUM_SP: 1910 ostrm << "generic:sp;"; 1911 break; 1912 case GENERIC_REGNUM_RA: 1913 ostrm << "generic:ra;"; 1914 break; 1915 case GENERIC_REGNUM_FLAGS: 1916 ostrm << "generic:flags;"; 1917 break; 1918 case GENERIC_REGNUM_ARG1: 1919 ostrm << "generic:arg1;"; 1920 break; 1921 case GENERIC_REGNUM_ARG2: 1922 ostrm << "generic:arg2;"; 1923 break; 1924 case GENERIC_REGNUM_ARG3: 1925 ostrm << "generic:arg3;"; 1926 break; 1927 case GENERIC_REGNUM_ARG4: 1928 ostrm << "generic:arg4;"; 1929 break; 1930 case GENERIC_REGNUM_ARG5: 1931 ostrm << "generic:arg5;"; 1932 break; 1933 case GENERIC_REGNUM_ARG6: 1934 ostrm << "generic:arg6;"; 1935 break; 1936 case GENERIC_REGNUM_ARG7: 1937 ostrm << "generic:arg7;"; 1938 break; 1939 case GENERIC_REGNUM_ARG8: 1940 ostrm << "generic:arg8;"; 1941 break; 1942 default: 1943 break; 1944 } 1945 1946 if (!reg_entry->value_regnums.empty()) { 1947 ostrm << "container-regs:"; 1948 for (size_t i = 0, n = reg_entry->value_regnums.size(); i < n; ++i) { 1949 if (i > 0) 1950 ostrm << ','; 1951 ostrm << RAW_HEXBASE << reg_entry->value_regnums[i]; 1952 } 1953 ostrm << ';'; 1954 } 1955 1956 if (!reg_entry->invalidate_regnums.empty()) { 1957 ostrm << "invalidate-regs:"; 1958 for (size_t i = 0, n = reg_entry->invalidate_regnums.size(); i < n; ++i) { 1959 if (i > 0) 1960 ostrm << ','; 1961 ostrm << RAW_HEXBASE << reg_entry->invalidate_regnums[i]; 1962 } 1963 ostrm << ';'; 1964 } 1965 1966 return SendPacket(ostrm.str()); 1967 } 1968 return SendPacket("E45"); 1969 } 1970 1971 /* This expects a packet formatted like 1972 1973 QSetLogging:bitmask=LOG_ALL|LOG_RNB_REMOTE; 1974 1975 with the "QSetLogging:" already removed from the start. Maybe in the 1976 future this packet will include other keyvalue pairs like 1977 1978 QSetLogging:bitmask=LOG_ALL;mode=asl; 1979 */ 1980 1981 rnb_err_t set_logging(const char *p) { 1982 int bitmask = 0; 1983 while (p && *p != '\0') { 1984 if (strncmp(p, "bitmask=", sizeof("bitmask=") - 1) == 0) { 1985 p += sizeof("bitmask=") - 1; 1986 while (p && *p != '\0' && *p != ';') { 1987 if (*p == '|') 1988 p++; 1989 1990 // to regenerate the LOG_ entries (not including the LOG_RNB entries) 1991 // $ for logname in `grep '^#define LOG_' DNBDefs.h | egrep -v 1992 // 'LOG_HI|LOG_LO' | awk '{print $2}'` 1993 // do 1994 // echo " else if (strncmp (p, \"$logname\", sizeof 1995 // (\"$logname\") - 1) == 0)" 1996 // echo " {" 1997 // echo " p += sizeof (\"$logname\") - 1;" 1998 // echo " bitmask |= $logname;" 1999 // echo " }" 2000 // done 2001 if (strncmp(p, "LOG_VERBOSE", sizeof("LOG_VERBOSE") - 1) == 0) { 2002 p += sizeof("LOG_VERBOSE") - 1; 2003 bitmask |= LOG_VERBOSE; 2004 } else if (strncmp(p, "LOG_PROCESS", sizeof("LOG_PROCESS") - 1) == 0) { 2005 p += sizeof("LOG_PROCESS") - 1; 2006 bitmask |= LOG_PROCESS; 2007 } else if (strncmp(p, "LOG_THREAD", sizeof("LOG_THREAD") - 1) == 0) { 2008 p += sizeof("LOG_THREAD") - 1; 2009 bitmask |= LOG_THREAD; 2010 } else if (strncmp(p, "LOG_EXCEPTIONS", sizeof("LOG_EXCEPTIONS") - 1) == 2011 0) { 2012 p += sizeof("LOG_EXCEPTIONS") - 1; 2013 bitmask |= LOG_EXCEPTIONS; 2014 } else if (strncmp(p, "LOG_SHLIB", sizeof("LOG_SHLIB") - 1) == 0) { 2015 p += sizeof("LOG_SHLIB") - 1; 2016 bitmask |= LOG_SHLIB; 2017 } else if (strncmp(p, "LOG_MEMORY_DATA_SHORT", 2018 sizeof("LOG_MEMORY_DATA_SHORT") - 1) == 0) { 2019 p += sizeof("LOG_MEMORY_DATA_SHORT") - 1; 2020 bitmask |= LOG_MEMORY_DATA_SHORT; 2021 } else if (strncmp(p, "LOG_MEMORY_DATA_LONG", 2022 sizeof("LOG_MEMORY_DATA_LONG") - 1) == 0) { 2023 p += sizeof("LOG_MEMORY_DATA_LONG") - 1; 2024 bitmask |= LOG_MEMORY_DATA_LONG; 2025 } else if (strncmp(p, "LOG_MEMORY_PROTECTIONS", 2026 sizeof("LOG_MEMORY_PROTECTIONS") - 1) == 0) { 2027 p += sizeof("LOG_MEMORY_PROTECTIONS") - 1; 2028 bitmask |= LOG_MEMORY_PROTECTIONS; 2029 } else if (strncmp(p, "LOG_MEMORY", sizeof("LOG_MEMORY") - 1) == 0) { 2030 p += sizeof("LOG_MEMORY") - 1; 2031 bitmask |= LOG_MEMORY; 2032 } else if (strncmp(p, "LOG_BREAKPOINTS", 2033 sizeof("LOG_BREAKPOINTS") - 1) == 0) { 2034 p += sizeof("LOG_BREAKPOINTS") - 1; 2035 bitmask |= LOG_BREAKPOINTS; 2036 } else if (strncmp(p, "LOG_EVENTS", sizeof("LOG_EVENTS") - 1) == 0) { 2037 p += sizeof("LOG_EVENTS") - 1; 2038 bitmask |= LOG_EVENTS; 2039 } else if (strncmp(p, "LOG_WATCHPOINTS", 2040 sizeof("LOG_WATCHPOINTS") - 1) == 0) { 2041 p += sizeof("LOG_WATCHPOINTS") - 1; 2042 bitmask |= LOG_WATCHPOINTS; 2043 } else if (strncmp(p, "LOG_STEP", sizeof("LOG_STEP") - 1) == 0) { 2044 p += sizeof("LOG_STEP") - 1; 2045 bitmask |= LOG_STEP; 2046 } else if (strncmp(p, "LOG_TASK", sizeof("LOG_TASK") - 1) == 0) { 2047 p += sizeof("LOG_TASK") - 1; 2048 bitmask |= LOG_TASK; 2049 } else if (strncmp(p, "LOG_ALL", sizeof("LOG_ALL") - 1) == 0) { 2050 p += sizeof("LOG_ALL") - 1; 2051 bitmask |= LOG_ALL; 2052 } else if (strncmp(p, "LOG_DEFAULT", sizeof("LOG_DEFAULT") - 1) == 0) { 2053 p += sizeof("LOG_DEFAULT") - 1; 2054 bitmask |= LOG_DEFAULT; 2055 } 2056 // end of auto-generated entries 2057 2058 else if (strncmp(p, "LOG_NONE", sizeof("LOG_NONE") - 1) == 0) { 2059 p += sizeof("LOG_NONE") - 1; 2060 bitmask = 0; 2061 } else if (strncmp(p, "LOG_RNB_MINIMAL", 2062 sizeof("LOG_RNB_MINIMAL") - 1) == 0) { 2063 p += sizeof("LOG_RNB_MINIMAL") - 1; 2064 bitmask |= LOG_RNB_MINIMAL; 2065 } else if (strncmp(p, "LOG_RNB_MEDIUM", sizeof("LOG_RNB_MEDIUM") - 1) == 2066 0) { 2067 p += sizeof("LOG_RNB_MEDIUM") - 1; 2068 bitmask |= LOG_RNB_MEDIUM; 2069 } else if (strncmp(p, "LOG_RNB_MAX", sizeof("LOG_RNB_MAX") - 1) == 0) { 2070 p += sizeof("LOG_RNB_MAX") - 1; 2071 bitmask |= LOG_RNB_MAX; 2072 } else if (strncmp(p, "LOG_RNB_COMM", sizeof("LOG_RNB_COMM") - 1) == 2073 0) { 2074 p += sizeof("LOG_RNB_COMM") - 1; 2075 bitmask |= LOG_RNB_COMM; 2076 } else if (strncmp(p, "LOG_RNB_REMOTE", sizeof("LOG_RNB_REMOTE") - 1) == 2077 0) { 2078 p += sizeof("LOG_RNB_REMOTE") - 1; 2079 bitmask |= LOG_RNB_REMOTE; 2080 } else if (strncmp(p, "LOG_RNB_EVENTS", sizeof("LOG_RNB_EVENTS") - 1) == 2081 0) { 2082 p += sizeof("LOG_RNB_EVENTS") - 1; 2083 bitmask |= LOG_RNB_EVENTS; 2084 } else if (strncmp(p, "LOG_RNB_PROC", sizeof("LOG_RNB_PROC") - 1) == 2085 0) { 2086 p += sizeof("LOG_RNB_PROC") - 1; 2087 bitmask |= LOG_RNB_PROC; 2088 } else if (strncmp(p, "LOG_RNB_PACKETS", 2089 sizeof("LOG_RNB_PACKETS") - 1) == 0) { 2090 p += sizeof("LOG_RNB_PACKETS") - 1; 2091 bitmask |= LOG_RNB_PACKETS; 2092 } else if (strncmp(p, "LOG_RNB_ALL", sizeof("LOG_RNB_ALL") - 1) == 0) { 2093 p += sizeof("LOG_RNB_ALL") - 1; 2094 bitmask |= LOG_RNB_ALL; 2095 } else if (strncmp(p, "LOG_RNB_DEFAULT", 2096 sizeof("LOG_RNB_DEFAULT") - 1) == 0) { 2097 p += sizeof("LOG_RNB_DEFAULT") - 1; 2098 bitmask |= LOG_RNB_DEFAULT; 2099 } else if (strncmp(p, "LOG_DARWIN_LOG", sizeof("LOG_DARWIN_LOG") - 1) == 2100 0) { 2101 p += sizeof("LOG_DARWIN_LOG") - 1; 2102 bitmask |= LOG_DARWIN_LOG; 2103 } else if (strncmp(p, "LOG_RNB_NONE", sizeof("LOG_RNB_NONE") - 1) == 2104 0) { 2105 p += sizeof("LOG_RNB_NONE") - 1; 2106 bitmask = 0; 2107 } else { 2108 /* Unrecognized logging bit; ignore it. */ 2109 const char *c = strchr(p, '|'); 2110 if (c) { 2111 p = c; 2112 } else { 2113 c = strchr(p, ';'); 2114 if (c) { 2115 p = c; 2116 } else { 2117 // Improperly terminated word; just go to end of str 2118 p = strchr(p, '\0'); 2119 } 2120 } 2121 } 2122 } 2123 // Did we get a properly formatted logging bitmask? 2124 if (p && *p == ';') { 2125 // Enable DNB logging. 2126 // Use the existing log callback if one was already configured. 2127 if (!DNBLogGetLogCallback()) { 2128 // Use the os_log()-based logger if available; otherwise, 2129 // fallback to ASL. 2130 auto log_callback = OsLogger::GetLogFunction(); 2131 if (log_callback) 2132 DNBLogSetLogCallback(log_callback, nullptr); 2133 else 2134 DNBLogSetLogCallback(ASLLogCallback, nullptr); 2135 } 2136 2137 // Update logging to use the configured log channel bitmask. 2138 DNBLogSetLogMask(bitmask); 2139 p++; 2140 } 2141 } 2142 // We're not going to support logging to a file for now. All logging 2143 // goes through ASL or the previously arranged log callback. 2144 #if 0 2145 else if (strncmp (p, "mode=", sizeof ("mode=") - 1) == 0) 2146 { 2147 p += sizeof ("mode=") - 1; 2148 if (strncmp (p, "asl;", sizeof ("asl;") - 1) == 0) 2149 { 2150 DNBLogToASL (); 2151 p += sizeof ("asl;") - 1; 2152 } 2153 else if (strncmp (p, "file;", sizeof ("file;") - 1) == 0) 2154 { 2155 DNBLogToFile (); 2156 p += sizeof ("file;") - 1; 2157 } 2158 else 2159 { 2160 // Ignore unknown argument 2161 const char *c = strchr (p, ';'); 2162 if (c) 2163 p = c + 1; 2164 else 2165 p = strchr (p, '\0'); 2166 } 2167 } 2168 else if (strncmp (p, "filename=", sizeof ("filename=") - 1) == 0) 2169 { 2170 p += sizeof ("filename=") - 1; 2171 const char *c = strchr (p, ';'); 2172 if (c == NULL) 2173 { 2174 c = strchr (p, '\0'); 2175 continue; 2176 } 2177 char *fn = (char *) alloca (c - p + 1); 2178 strlcpy (fn, p, c - p); 2179 fn[c - p] = '\0'; 2180 2181 // A file name of "asl" is special and is another way to indicate 2182 // that logging should be done via ASL, not by file. 2183 if (strcmp (fn, "asl") == 0) 2184 { 2185 DNBLogToASL (); 2186 } 2187 else 2188 { 2189 FILE *f = fopen (fn, "w"); 2190 if (f) 2191 { 2192 DNBLogSetLogFile (f); 2193 DNBEnableLogging (f, DNBLogGetLogMask ()); 2194 DNBLogToFile (); 2195 } 2196 } 2197 p = c + 1; 2198 } 2199 #endif /* #if 0 to enforce ASL logging only. */ 2200 else { 2201 // Ignore unknown argument 2202 const char *c = strchr(p, ';'); 2203 if (c) 2204 p = c + 1; 2205 else 2206 p = strchr(p, '\0'); 2207 } 2208 } 2209 2210 return rnb_success; 2211 } 2212 2213 rnb_err_t RNBRemote::HandlePacket_QThreadSuffixSupported(const char *p) { 2214 m_thread_suffix_supported = true; 2215 return SendPacket("OK"); 2216 } 2217 2218 rnb_err_t RNBRemote::HandlePacket_QStartNoAckMode(const char *p) { 2219 // Send the OK packet first so the correct checksum is appended... 2220 rnb_err_t result = SendPacket("OK"); 2221 m_noack_mode = true; 2222 return result; 2223 } 2224 2225 rnb_err_t RNBRemote::HandlePacket_QSetLogging(const char *p) { 2226 p += sizeof("QSetLogging:") - 1; 2227 rnb_err_t result = set_logging(p); 2228 if (result == rnb_success) 2229 return SendPacket("OK"); 2230 else 2231 return SendPacket("E35"); 2232 } 2233 2234 rnb_err_t RNBRemote::HandlePacket_QSetDisableASLR(const char *p) { 2235 extern int g_disable_aslr; 2236 p += sizeof("QSetDisableASLR:") - 1; 2237 switch (*p) { 2238 case '0': 2239 g_disable_aslr = 0; 2240 break; 2241 case '1': 2242 g_disable_aslr = 1; 2243 break; 2244 default: 2245 return SendPacket("E56"); 2246 } 2247 return SendPacket("OK"); 2248 } 2249 2250 rnb_err_t RNBRemote::HandlePacket_QSetSTDIO(const char *p) { 2251 // Only set stdin/out/err if we don't already have a process 2252 if (!m_ctx.HasValidProcessID()) { 2253 bool success = false; 2254 // Check the seventh character since the packet will be one of: 2255 // QSetSTDIN 2256 // QSetSTDOUT 2257 // QSetSTDERR 2258 StdStringExtractor packet(p); 2259 packet.SetFilePos(7); 2260 char ch = packet.GetChar(); 2261 while (packet.GetChar() != ':') 2262 /* Do nothing. */; 2263 2264 switch (ch) { 2265 case 'I': // STDIN 2266 packet.GetHexByteString(m_ctx.GetSTDIN()); 2267 success = !m_ctx.GetSTDIN().empty(); 2268 break; 2269 2270 case 'O': // STDOUT 2271 packet.GetHexByteString(m_ctx.GetSTDOUT()); 2272 success = !m_ctx.GetSTDOUT().empty(); 2273 break; 2274 2275 case 'E': // STDERR 2276 packet.GetHexByteString(m_ctx.GetSTDERR()); 2277 success = !m_ctx.GetSTDERR().empty(); 2278 break; 2279 2280 default: 2281 break; 2282 } 2283 if (success) 2284 return SendPacket("OK"); 2285 return SendPacket("E57"); 2286 } 2287 return SendPacket("E58"); 2288 } 2289 2290 rnb_err_t RNBRemote::HandlePacket_QSetWorkingDir(const char *p) { 2291 // Only set the working directory if we don't already have a process 2292 if (!m_ctx.HasValidProcessID()) { 2293 StdStringExtractor packet(p += sizeof("QSetWorkingDir:") - 1); 2294 if (packet.GetHexByteString(m_ctx.GetWorkingDir())) { 2295 struct stat working_dir_stat; 2296 if (::stat(m_ctx.GetWorkingDirPath(), &working_dir_stat) == -1) { 2297 m_ctx.GetWorkingDir().clear(); 2298 return SendPacket("E61"); // Working directory doesn't exist... 2299 } else if ((working_dir_stat.st_mode & S_IFMT) == S_IFDIR) { 2300 return SendPacket("OK"); 2301 } else { 2302 m_ctx.GetWorkingDir().clear(); 2303 return SendPacket("E62"); // Working directory isn't a directory... 2304 } 2305 } 2306 return SendPacket("E59"); // Invalid path 2307 } 2308 return SendPacket( 2309 "E60"); // Already had a process, too late to set working dir 2310 } 2311 2312 rnb_err_t RNBRemote::HandlePacket_QSyncThreadState(const char *p) { 2313 if (!m_ctx.HasValidProcessID()) { 2314 // We allow gdb to connect to a server that hasn't started running 2315 // the target yet. gdb still wants to ask questions about it and 2316 // freaks out if it gets an error. So just return OK here. 2317 return SendPacket("OK"); 2318 } 2319 2320 errno = 0; 2321 p += strlen("QSyncThreadState:"); 2322 nub_thread_t tid = strtoul(p, NULL, 16); 2323 if (errno != 0 && tid == 0) { 2324 return HandlePacket_ILLFORMED( 2325 __FILE__, __LINE__, p, 2326 "Invalid thread number in QSyncThreadState packet"); 2327 } 2328 if (DNBProcessSyncThreadState(m_ctx.ProcessID(), tid)) 2329 return SendPacket("OK"); 2330 else 2331 return SendPacket("E61"); 2332 } 2333 2334 rnb_err_t RNBRemote::HandlePacket_QSetDetachOnError(const char *p) { 2335 p += sizeof("QSetDetachOnError:") - 1; 2336 bool should_detach = true; 2337 switch (*p) { 2338 case '0': 2339 should_detach = false; 2340 break; 2341 case '1': 2342 should_detach = true; 2343 break; 2344 default: 2345 return HandlePacket_ILLFORMED( 2346 __FILE__, __LINE__, p, 2347 "Invalid value for QSetDetachOnError - should be 0 or 1"); 2348 break; 2349 } 2350 2351 m_ctx.SetDetachOnError(should_detach); 2352 return SendPacket("OK"); 2353 } 2354 2355 rnb_err_t RNBRemote::HandlePacket_QListThreadsInStopReply(const char *p) { 2356 // If this packet is received, it allows us to send an extra key/value 2357 // pair in the stop reply packets where we will list all of the thread IDs 2358 // separated by commas: 2359 // 2360 // "threads:10a,10b,10c;" 2361 // 2362 // This will get included in the stop reply packet as something like: 2363 // 2364 // "T11thread:10a;00:00000000;01:00010203:threads:10a,10b,10c;" 2365 // 2366 // This can save two packets on each stop: qfThreadInfo/qsThreadInfo and 2367 // speed things up a bit. 2368 // 2369 // Send the OK packet first so the correct checksum is appended... 2370 rnb_err_t result = SendPacket("OK"); 2371 m_list_threads_in_stop_reply = true; 2372 2373 return result; 2374 } 2375 2376 rnb_err_t RNBRemote::HandlePacket_QSetMaxPayloadSize(const char *p) { 2377 /* The number of characters in a packet payload that gdb is 2378 prepared to accept. The packet-start char, packet-end char, 2379 2 checksum chars and terminating null character are not included 2380 in this size. */ 2381 p += sizeof("QSetMaxPayloadSize:") - 1; 2382 errno = 0; 2383 uint32_t size = static_cast<uint32_t>(strtoul(p, NULL, 16)); 2384 if (errno != 0 && size == 0) { 2385 return HandlePacket_ILLFORMED( 2386 __FILE__, __LINE__, p, "Invalid length in QSetMaxPayloadSize packet"); 2387 } 2388 m_max_payload_size = size; 2389 return SendPacket("OK"); 2390 } 2391 2392 rnb_err_t RNBRemote::HandlePacket_QSetMaxPacketSize(const char *p) { 2393 /* This tells us the largest packet that gdb can handle. 2394 i.e. the size of gdb's packet-reading buffer. 2395 QSetMaxPayloadSize is preferred because it is less ambiguous. */ 2396 p += sizeof("QSetMaxPacketSize:") - 1; 2397 errno = 0; 2398 uint32_t size = static_cast<uint32_t>(strtoul(p, NULL, 16)); 2399 if (errno != 0 && size == 0) { 2400 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2401 "Invalid length in QSetMaxPacketSize packet"); 2402 } 2403 m_max_payload_size = size - 5; 2404 return SendPacket("OK"); 2405 } 2406 2407 rnb_err_t RNBRemote::HandlePacket_QEnvironment(const char *p) { 2408 /* This sets the environment for the target program. The packet is of the 2409 form: 2410 2411 QEnvironment:VARIABLE=VALUE 2412 2413 */ 2414 2415 DNBLogThreadedIf( 2416 LOG_RNB_REMOTE, "%8u RNBRemote::%s Handling QEnvironment: \"%s\"", 2417 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, p); 2418 2419 p += sizeof("QEnvironment:") - 1; 2420 RNBContext &ctx = Context(); 2421 2422 ctx.PushEnvironment(p); 2423 return SendPacket("OK"); 2424 } 2425 2426 rnb_err_t RNBRemote::HandlePacket_QEnvironmentHexEncoded(const char *p) { 2427 /* This sets the environment for the target program. The packet is of the 2428 form: 2429 2430 QEnvironmentHexEncoded:VARIABLE=VALUE 2431 2432 The VARIABLE=VALUE part is sent hex-encoded so characters like '#' with 2433 special 2434 meaning in the remote protocol won't break it. 2435 */ 2436 2437 DNBLogThreadedIf(LOG_RNB_REMOTE, 2438 "%8u RNBRemote::%s Handling QEnvironmentHexEncoded: \"%s\"", 2439 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 2440 __FUNCTION__, p); 2441 2442 p += sizeof("QEnvironmentHexEncoded:") - 1; 2443 2444 std::string arg; 2445 const char *c; 2446 c = p; 2447 while (*c != '\0') { 2448 if (*(c + 1) == '\0') { 2449 return HandlePacket_ILLFORMED( 2450 __FILE__, __LINE__, p, 2451 "non-hex char in arg on 'QEnvironmentHexEncoded' pkt"); 2452 } 2453 char smallbuf[3]; 2454 smallbuf[0] = *c; 2455 smallbuf[1] = *(c + 1); 2456 smallbuf[2] = '\0'; 2457 errno = 0; 2458 int ch = static_cast<int>(strtoul(smallbuf, NULL, 16)); 2459 if (errno != 0 && ch == 0) { 2460 return HandlePacket_ILLFORMED( 2461 __FILE__, __LINE__, p, 2462 "non-hex char in arg on 'QEnvironmentHexEncoded' pkt"); 2463 } 2464 arg.push_back(ch); 2465 c += 2; 2466 } 2467 2468 RNBContext &ctx = Context(); 2469 if (arg.length() > 0) 2470 ctx.PushEnvironment(arg.c_str()); 2471 2472 return SendPacket("OK"); 2473 } 2474 2475 rnb_err_t RNBRemote::HandlePacket_QLaunchArch(const char *p) { 2476 p += sizeof("QLaunchArch:") - 1; 2477 if (DNBSetArchitecture(p)) 2478 return SendPacket("OK"); 2479 return SendPacket("E63"); 2480 } 2481 2482 rnb_err_t RNBRemote::HandlePacket_QSetProcessEvent(const char *p) { 2483 p += sizeof("QSetProcessEvent:") - 1; 2484 // If the process is running, then send the event to the process, otherwise 2485 // store it in the context. 2486 if (Context().HasValidProcessID()) { 2487 if (DNBProcessSendEvent(Context().ProcessID(), p)) 2488 return SendPacket("OK"); 2489 else 2490 return SendPacket("E80"); 2491 } else { 2492 Context().PushProcessEvent(p); 2493 } 2494 return SendPacket("OK"); 2495 } 2496 2497 void append_hex_value(std::ostream &ostrm, const void *buf, size_t buf_size, 2498 bool swap) { 2499 int i; 2500 const uint8_t *p = (const uint8_t *)buf; 2501 if (swap) { 2502 for (i = static_cast<int>(buf_size) - 1; i >= 0; i--) 2503 ostrm << RAWHEX8(p[i]); 2504 } else { 2505 for (size_t i = 0; i < buf_size; i++) 2506 ostrm << RAWHEX8(p[i]); 2507 } 2508 } 2509 2510 std::string cstring_to_asciihex_string(const char *str) { 2511 std::string hex_str; 2512 hex_str.reserve (strlen (str) * 2); 2513 while (str && *str) { 2514 uint8_t c = *str++; 2515 char hexbuf[5]; 2516 snprintf (hexbuf, sizeof(hexbuf), "%02x", c); 2517 hex_str += hexbuf; 2518 } 2519 return hex_str; 2520 } 2521 2522 void append_hexified_string(std::ostream &ostrm, const std::string &string) { 2523 size_t string_size = string.size(); 2524 const char *string_buf = string.c_str(); 2525 for (size_t i = 0; i < string_size; i++) { 2526 ostrm << RAWHEX8(*(string_buf + i)); 2527 } 2528 } 2529 2530 void register_value_in_hex_fixed_width(std::ostream &ostrm, nub_process_t pid, 2531 nub_thread_t tid, 2532 const register_map_entry_t *reg, 2533 const DNBRegisterValue *reg_value_ptr) { 2534 if (reg != NULL) { 2535 DNBRegisterValue reg_value; 2536 if (reg_value_ptr == NULL) { 2537 if (DNBThreadGetRegisterValueByID(pid, tid, reg->nub_info.set, 2538 reg->nub_info.reg, ®_value)) 2539 reg_value_ptr = ®_value; 2540 } 2541 2542 if (reg_value_ptr) { 2543 append_hex_value(ostrm, reg_value_ptr->value.v_uint8, reg->nub_info.size, 2544 false); 2545 } else { 2546 // If we fail to read a register value, check if it has a default 2547 // fail value. If it does, return this instead in case some of 2548 // the registers are not available on the current system. 2549 if (reg->nub_info.size > 0) { 2550 std::basic_string<uint8_t> zeros(reg->nub_info.size, '\0'); 2551 append_hex_value(ostrm, zeros.data(), zeros.size(), false); 2552 } 2553 } 2554 } 2555 } 2556 2557 void debugserver_regnum_with_fixed_width_hex_register_value( 2558 std::ostream &ostrm, nub_process_t pid, nub_thread_t tid, 2559 const register_map_entry_t *reg, const DNBRegisterValue *reg_value_ptr) { 2560 // Output the register number as 'NN:VVVVVVVV;' where NN is a 2 bytes HEX 2561 // gdb register number, and VVVVVVVV is the correct number of hex bytes 2562 // as ASCII for the register value. 2563 if (reg != NULL) { 2564 ostrm << RAWHEX8(reg->debugserver_regnum) << ':'; 2565 register_value_in_hex_fixed_width(ostrm, pid, tid, reg, reg_value_ptr); 2566 ostrm << ';'; 2567 } 2568 } 2569 2570 void RNBRemote::DispatchQueueOffsets::GetThreadQueueInfo( 2571 nub_process_t pid, nub_addr_t dispatch_qaddr, nub_addr_t &dispatch_queue_t, 2572 std::string &queue_name, uint64_t &queue_width, 2573 uint64_t &queue_serialnum) const { 2574 queue_name.clear(); 2575 queue_width = 0; 2576 queue_serialnum = 0; 2577 2578 if (IsValid() && dispatch_qaddr != INVALID_NUB_ADDRESS && 2579 dispatch_qaddr != 0) { 2580 dispatch_queue_t = DNBProcessMemoryReadPointer(pid, dispatch_qaddr); 2581 if (dispatch_queue_t) { 2582 queue_width = DNBProcessMemoryReadInteger( 2583 pid, dispatch_queue_t + dqo_width, dqo_width_size, 0); 2584 queue_serialnum = DNBProcessMemoryReadInteger( 2585 pid, dispatch_queue_t + dqo_serialnum, dqo_serialnum_size, 0); 2586 2587 if (dqo_version >= 4) { 2588 // libdispatch versions 4+, pointer to dispatch name is in the 2589 // queue structure. 2590 nub_addr_t pointer_to_label_address = dispatch_queue_t + dqo_label; 2591 nub_addr_t label_addr = 2592 DNBProcessMemoryReadPointer(pid, pointer_to_label_address); 2593 if (label_addr) 2594 queue_name = DNBProcessMemoryReadCString(pid, label_addr); 2595 } else { 2596 // libdispatch versions 1-3, dispatch name is a fixed width char array 2597 // in the queue structure. 2598 queue_name = DNBProcessMemoryReadCStringFixed( 2599 pid, dispatch_queue_t + dqo_label, dqo_label_size); 2600 } 2601 } 2602 } 2603 } 2604 2605 struct StackMemory { 2606 uint8_t bytes[2 * sizeof(nub_addr_t)]; 2607 nub_size_t length; 2608 }; 2609 typedef std::map<nub_addr_t, StackMemory> StackMemoryMap; 2610 2611 static void ReadStackMemory(nub_process_t pid, nub_thread_t tid, 2612 StackMemoryMap &stack_mmap, 2613 uint32_t backtrace_limit = 256) { 2614 DNBRegisterValue reg_value; 2615 if (DNBThreadGetRegisterValueByID(pid, tid, REGISTER_SET_GENERIC, 2616 GENERIC_REGNUM_FP, ®_value)) { 2617 uint32_t frame_count = 0; 2618 uint64_t fp = 0; 2619 if (reg_value.info.size == 4) 2620 fp = reg_value.value.uint32; 2621 else 2622 fp = reg_value.value.uint64; 2623 while (fp != 0) { 2624 // Make sure we never recurse more than 256 times so we don't recurse too 2625 // far or 2626 // store up too much memory in the expedited cache 2627 if (++frame_count > backtrace_limit) 2628 break; 2629 2630 const nub_size_t read_size = reg_value.info.size * 2; 2631 StackMemory stack_memory; 2632 stack_memory.length = read_size; 2633 if (DNBProcessMemoryRead(pid, fp, read_size, stack_memory.bytes) != 2634 read_size) 2635 break; 2636 // Make sure we don't try to put the same stack memory in more than once 2637 if (stack_mmap.find(fp) != stack_mmap.end()) 2638 break; 2639 // Put the entry into the cache 2640 stack_mmap[fp] = stack_memory; 2641 // Dereference the frame pointer to get to the previous frame pointer 2642 if (reg_value.info.size == 4) 2643 fp = ((uint32_t *)stack_memory.bytes)[0]; 2644 else 2645 fp = ((uint64_t *)stack_memory.bytes)[0]; 2646 } 2647 } 2648 } 2649 2650 rnb_err_t RNBRemote::SendStopReplyPacketForThread(nub_thread_t tid) { 2651 const nub_process_t pid = m_ctx.ProcessID(); 2652 if (pid == INVALID_NUB_PROCESS) 2653 return SendPacket("E50"); 2654 2655 struct DNBThreadStopInfo tid_stop_info; 2656 2657 /* Fill the remaining space in this packet with as many registers 2658 as we can stuff in there. */ 2659 2660 if (DNBThreadGetStopReason(pid, tid, &tid_stop_info)) { 2661 const bool did_exec = tid_stop_info.reason == eStopTypeExec; 2662 if (did_exec) { 2663 RNBRemote::InitializeRegisters(true); 2664 2665 // Reset any symbols that need resetting when we exec 2666 m_dispatch_queue_offsets_addr = INVALID_NUB_ADDRESS; 2667 m_dispatch_queue_offsets.Clear(); 2668 } 2669 2670 std::ostringstream ostrm; 2671 // Output the T packet with the thread 2672 ostrm << 'T'; 2673 int signum = tid_stop_info.details.signal.signo; 2674 DNBLogThreadedIf( 2675 LOG_RNB_PROC, "%8d %s got signal signo = %u, exc_type = %u", 2676 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, 2677 signum, tid_stop_info.details.exception.type); 2678 2679 // Translate any mach exceptions to gdb versions, unless they are 2680 // common exceptions like a breakpoint or a soft signal. 2681 switch (tid_stop_info.details.exception.type) { 2682 default: 2683 signum = 0; 2684 break; 2685 case EXC_BREAKPOINT: 2686 signum = SIGTRAP; 2687 break; 2688 case EXC_BAD_ACCESS: 2689 signum = TARGET_EXC_BAD_ACCESS; 2690 break; 2691 case EXC_BAD_INSTRUCTION: 2692 signum = TARGET_EXC_BAD_INSTRUCTION; 2693 break; 2694 case EXC_ARITHMETIC: 2695 signum = TARGET_EXC_ARITHMETIC; 2696 break; 2697 case EXC_EMULATION: 2698 signum = TARGET_EXC_EMULATION; 2699 break; 2700 case EXC_SOFTWARE: 2701 if (tid_stop_info.details.exception.data_count == 2 && 2702 tid_stop_info.details.exception.data[0] == EXC_SOFT_SIGNAL) 2703 signum = static_cast<int>(tid_stop_info.details.exception.data[1]); 2704 else 2705 signum = TARGET_EXC_SOFTWARE; 2706 break; 2707 } 2708 2709 ostrm << RAWHEX8(signum & 0xff); 2710 2711 ostrm << std::hex << "thread:" << tid << ';'; 2712 2713 const char *thread_name = DNBThreadGetName(pid, tid); 2714 if (thread_name && thread_name[0]) { 2715 size_t thread_name_len = strlen(thread_name); 2716 2717 if (::strcspn(thread_name, "$#+-;:") == thread_name_len) 2718 ostrm << std::hex << "name:" << thread_name << ';'; 2719 else { 2720 // the thread name contains special chars, send as hex bytes 2721 ostrm << std::hex << "hexname:"; 2722 const uint8_t *u_thread_name = (const uint8_t *)thread_name; 2723 for (size_t i = 0; i < thread_name_len; i++) 2724 ostrm << RAWHEX8(u_thread_name[i]); 2725 ostrm << ';'; 2726 } 2727 } 2728 2729 // If a 'QListThreadsInStopReply' was sent to enable this feature, we 2730 // will send all thread IDs back in the "threads" key whose value is 2731 // a list of hex thread IDs separated by commas: 2732 // "threads:10a,10b,10c;" 2733 // This will save the debugger from having to send a pair of qfThreadInfo 2734 // and qsThreadInfo packets, but it also might take a lot of room in the 2735 // stop reply packet, so it must be enabled only on systems where there 2736 // are no limits on packet lengths. 2737 if (m_list_threads_in_stop_reply) { 2738 const nub_size_t numthreads = DNBProcessGetNumThreads(pid); 2739 if (numthreads > 0) { 2740 std::vector<uint64_t> pc_values; 2741 ostrm << std::hex << "threads:"; 2742 for (nub_size_t i = 0; i < numthreads; ++i) { 2743 nub_thread_t th = DNBProcessGetThreadAtIndex(pid, i); 2744 if (i > 0) 2745 ostrm << ','; 2746 ostrm << std::hex << th; 2747 DNBRegisterValue pc_regval; 2748 if (DNBThreadGetRegisterValueByID(pid, th, REGISTER_SET_GENERIC, 2749 GENERIC_REGNUM_PC, &pc_regval)) { 2750 uint64_t pc = INVALID_NUB_ADDRESS; 2751 if (pc_regval.value.uint64 != INVALID_NUB_ADDRESS) { 2752 if (pc_regval.info.size == 4) { 2753 pc = pc_regval.value.uint32; 2754 } else if (pc_regval.info.size == 8) { 2755 pc = pc_regval.value.uint64; 2756 } 2757 if (pc != INVALID_NUB_ADDRESS) { 2758 pc_values.push_back(pc); 2759 } 2760 } 2761 } 2762 } 2763 ostrm << ';'; 2764 2765 // If we failed to get any of the thread pc values, the size of our 2766 // vector will not 2767 // be the same as the # of threads. Don't provide any expedited thread 2768 // pc values in 2769 // that case. This should not happen. 2770 if (pc_values.size() == numthreads) { 2771 ostrm << std::hex << "thread-pcs:"; 2772 for (nub_size_t i = 0; i < numthreads; ++i) { 2773 if (i > 0) 2774 ostrm << ','; 2775 ostrm << std::hex << pc_values[i]; 2776 } 2777 ostrm << ';'; 2778 } 2779 } 2780 2781 // Include JSON info that describes the stop reason for any threads 2782 // that actually have stop reasons. We use the new "jstopinfo" key 2783 // whose values is hex ascii JSON that contains the thread IDs 2784 // thread stop info only for threads that have stop reasons. Only send 2785 // this if we have more than one thread otherwise this packet has all 2786 // the info it needs. 2787 if (numthreads > 1) { 2788 const bool threads_with_valid_stop_info_only = true; 2789 JSONGenerator::ObjectSP threads_info_sp = 2790 GetJSONThreadsInfo(threads_with_valid_stop_info_only); 2791 if (threads_info_sp) { 2792 ostrm << std::hex << "jstopinfo:"; 2793 std::ostringstream json_strm; 2794 threads_info_sp->Dump(json_strm); 2795 append_hexified_string(ostrm, json_strm.str()); 2796 ostrm << ';'; 2797 } 2798 } 2799 } 2800 2801 if (g_num_reg_entries == 0) 2802 InitializeRegisters(); 2803 2804 if (g_reg_entries != NULL) { 2805 DNBRegisterValue reg_value; 2806 for (uint32_t reg = 0; reg < g_num_reg_entries; reg++) { 2807 // Expedite all registers in the first register set that aren't 2808 // contained in other registers 2809 if (g_reg_entries[reg].nub_info.set == 1 && 2810 g_reg_entries[reg].nub_info.value_regs == NULL) { 2811 if (!DNBThreadGetRegisterValueByID( 2812 pid, tid, g_reg_entries[reg].nub_info.set, 2813 g_reg_entries[reg].nub_info.reg, ®_value)) 2814 continue; 2815 2816 debugserver_regnum_with_fixed_width_hex_register_value( 2817 ostrm, pid, tid, &g_reg_entries[reg], ®_value); 2818 } 2819 } 2820 } 2821 2822 if (did_exec) { 2823 ostrm << "reason:exec;"; 2824 } else if (tid_stop_info.details.exception.type) { 2825 ostrm << "metype:" << std::hex << tid_stop_info.details.exception.type 2826 << ';'; 2827 ostrm << "mecount:" << std::hex 2828 << tid_stop_info.details.exception.data_count << ';'; 2829 for (nub_size_t i = 0; i < tid_stop_info.details.exception.data_count; 2830 ++i) 2831 ostrm << "medata:" << std::hex 2832 << tid_stop_info.details.exception.data[i] << ';'; 2833 } 2834 2835 // Add expedited stack memory so stack backtracing doesn't need to read 2836 // anything from the 2837 // frame pointer chain. 2838 StackMemoryMap stack_mmap; 2839 ReadStackMemory(pid, tid, stack_mmap, 2); 2840 if (!stack_mmap.empty()) { 2841 for (const auto &stack_memory : stack_mmap) { 2842 ostrm << "memory:" << HEXBASE << stack_memory.first << '='; 2843 append_hex_value(ostrm, stack_memory.second.bytes, 2844 stack_memory.second.length, false); 2845 ostrm << ';'; 2846 } 2847 } 2848 2849 return SendPacket(ostrm.str()); 2850 } 2851 return SendPacket("E51"); 2852 } 2853 2854 /* '?' 2855 The stop reply packet - tell gdb what the status of the inferior is. 2856 Often called the questionmark_packet. */ 2857 2858 rnb_err_t RNBRemote::HandlePacket_last_signal(const char *unused) { 2859 if (!m_ctx.HasValidProcessID()) { 2860 // Inferior is not yet specified/running 2861 return SendPacket("E02"); 2862 } 2863 2864 nub_process_t pid = m_ctx.ProcessID(); 2865 nub_state_t pid_state = DNBProcessGetState(pid); 2866 2867 switch (pid_state) { 2868 case eStateAttaching: 2869 case eStateLaunching: 2870 case eStateRunning: 2871 case eStateStepping: 2872 case eStateDetached: 2873 return rnb_success; // Ignore 2874 2875 case eStateSuspended: 2876 case eStateStopped: 2877 case eStateCrashed: { 2878 nub_thread_t tid = DNBProcessGetCurrentThread(pid); 2879 // Make sure we set the current thread so g and p packets return 2880 // the data the gdb will expect. 2881 SetCurrentThread(tid); 2882 2883 SendStopReplyPacketForThread(tid); 2884 } break; 2885 2886 case eStateInvalid: 2887 case eStateUnloaded: 2888 case eStateExited: { 2889 char pid_exited_packet[16] = ""; 2890 int pid_status = 0; 2891 // Process exited with exit status 2892 if (!DNBProcessGetExitStatus(pid, &pid_status)) 2893 pid_status = 0; 2894 2895 if (pid_status) { 2896 if (WIFEXITED(pid_status)) 2897 snprintf(pid_exited_packet, sizeof(pid_exited_packet), "W%02x", 2898 WEXITSTATUS(pid_status)); 2899 else if (WIFSIGNALED(pid_status)) 2900 snprintf(pid_exited_packet, sizeof(pid_exited_packet), "X%02x", 2901 WTERMSIG(pid_status)); 2902 else if (WIFSTOPPED(pid_status)) 2903 snprintf(pid_exited_packet, sizeof(pid_exited_packet), "S%02x", 2904 WSTOPSIG(pid_status)); 2905 } 2906 2907 // If we have an empty exit packet, lets fill one in to be safe. 2908 if (!pid_exited_packet[0]) { 2909 strlcpy(pid_exited_packet, "W00", sizeof(pid_exited_packet) - 1); 2910 pid_exited_packet[sizeof(pid_exited_packet) - 1] = '\0'; 2911 } 2912 2913 const char *exit_info = DNBProcessGetExitInfo(pid); 2914 if (exit_info != NULL && *exit_info != '\0') { 2915 std::ostringstream exit_packet; 2916 exit_packet << pid_exited_packet; 2917 exit_packet << ';'; 2918 exit_packet << RAW_HEXBASE << "description"; 2919 exit_packet << ':'; 2920 for (size_t i = 0; exit_info[i] != '\0'; i++) 2921 exit_packet << RAWHEX8(exit_info[i]); 2922 exit_packet << ';'; 2923 return SendPacket(exit_packet.str()); 2924 } else 2925 return SendPacket(pid_exited_packet); 2926 } break; 2927 } 2928 return rnb_success; 2929 } 2930 2931 rnb_err_t RNBRemote::HandlePacket_M(const char *p) { 2932 if (p == NULL || p[0] == '\0' || strlen(p) < 3) { 2933 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, "Too short M packet"); 2934 } 2935 2936 char *c; 2937 p++; 2938 errno = 0; 2939 nub_addr_t addr = strtoull(p, &c, 16); 2940 if (errno != 0 && addr == 0) { 2941 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2942 "Invalid address in M packet"); 2943 } 2944 if (*c != ',') { 2945 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2946 "Comma sep missing in M packet"); 2947 } 2948 2949 /* Advance 'p' to the length part of the packet. */ 2950 p += (c - p) + 1; 2951 2952 errno = 0; 2953 unsigned long length = strtoul(p, &c, 16); 2954 if (errno != 0 && length == 0) { 2955 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2956 "Invalid length in M packet"); 2957 } 2958 if (length == 0) { 2959 return SendPacket("OK"); 2960 } 2961 2962 if (*c != ':') { 2963 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2964 "Missing colon in M packet"); 2965 } 2966 /* Advance 'p' to the data part of the packet. */ 2967 p += (c - p) + 1; 2968 2969 size_t datalen = strlen(p); 2970 if (datalen & 0x1) { 2971 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2972 "Uneven # of hex chars for data in M packet"); 2973 } 2974 if (datalen == 0) { 2975 return SendPacket("OK"); 2976 } 2977 2978 uint8_t *buf = (uint8_t *)alloca(datalen / 2); 2979 uint8_t *i = buf; 2980 2981 while (*p != '\0' && *(p + 1) != '\0') { 2982 char hexbuf[3]; 2983 hexbuf[0] = *p; 2984 hexbuf[1] = *(p + 1); 2985 hexbuf[2] = '\0'; 2986 errno = 0; 2987 uint8_t byte = strtoul(hexbuf, NULL, 16); 2988 if (errno != 0 && byte == 0) { 2989 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2990 "Invalid hex byte in M packet"); 2991 } 2992 *i++ = byte; 2993 p += 2; 2994 } 2995 2996 nub_size_t wrote = 2997 DNBProcessMemoryWrite(m_ctx.ProcessID(), addr, length, buf); 2998 if (wrote != length) 2999 return SendPacket("E09"); 3000 else 3001 return SendPacket("OK"); 3002 } 3003 3004 rnb_err_t RNBRemote::HandlePacket_m(const char *p) { 3005 if (p == NULL || p[0] == '\0' || strlen(p) < 3) { 3006 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, "Too short m packet"); 3007 } 3008 3009 char *c; 3010 p++; 3011 errno = 0; 3012 nub_addr_t addr = strtoull(p, &c, 16); 3013 if (errno != 0 && addr == 0) { 3014 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3015 "Invalid address in m packet"); 3016 } 3017 if (*c != ',') { 3018 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3019 "Comma sep missing in m packet"); 3020 } 3021 3022 /* Advance 'p' to the length part of the packet. */ 3023 p += (c - p) + 1; 3024 3025 errno = 0; 3026 auto length = strtoul(p, NULL, 16); 3027 if (errno != 0 && length == 0) { 3028 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3029 "Invalid length in m packet"); 3030 } 3031 if (length == 0) { 3032 return SendPacket(""); 3033 } 3034 3035 std::string buf(length, '\0'); 3036 if (buf.empty()) { 3037 return SendPacket("E78"); 3038 } 3039 nub_size_t bytes_read = 3040 DNBProcessMemoryRead(m_ctx.ProcessID(), addr, buf.size(), &buf[0]); 3041 if (bytes_read == 0) { 3042 return SendPacket("E08"); 3043 } 3044 3045 // "The reply may contain fewer bytes than requested if the server was able 3046 // to read only part of the region of memory." 3047 length = bytes_read; 3048 3049 std::ostringstream ostrm; 3050 for (unsigned long i = 0; i < length; i++) 3051 ostrm << RAWHEX8(buf[i]); 3052 return SendPacket(ostrm.str()); 3053 } 3054 3055 // Read memory, sent it up as binary data. 3056 // Usage: xADDR,LEN 3057 // ADDR and LEN are both base 16. 3058 3059 // Responds with 'OK' for zero-length request 3060 // or 3061 // 3062 // DATA 3063 // 3064 // where DATA is the binary data payload. 3065 3066 rnb_err_t RNBRemote::HandlePacket_x(const char *p) { 3067 if (p == NULL || p[0] == '\0' || strlen(p) < 3) { 3068 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, "Too short X packet"); 3069 } 3070 3071 char *c; 3072 p++; 3073 errno = 0; 3074 nub_addr_t addr = strtoull(p, &c, 16); 3075 if (errno != 0) { 3076 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3077 "Invalid address in X packet"); 3078 } 3079 if (*c != ',') { 3080 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3081 "Comma sep missing in X packet"); 3082 } 3083 3084 /* Advance 'p' to the number of bytes to be read. */ 3085 p += (c - p) + 1; 3086 3087 errno = 0; 3088 auto length = strtoul(p, NULL, 16); 3089 if (errno != 0) { 3090 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3091 "Invalid length in x packet"); 3092 } 3093 3094 // zero length read means this is a test of whether that packet is implemented 3095 // or not. 3096 if (length == 0) { 3097 return SendPacket("OK"); 3098 } 3099 3100 std::vector<uint8_t> buf(length); 3101 3102 if (buf.capacity() != length) { 3103 return SendPacket("E79"); 3104 } 3105 nub_size_t bytes_read = 3106 DNBProcessMemoryRead(m_ctx.ProcessID(), addr, buf.size(), &buf[0]); 3107 if (bytes_read == 0) { 3108 return SendPacket("E80"); 3109 } 3110 3111 std::vector<uint8_t> buf_quoted; 3112 buf_quoted.reserve(bytes_read + 30); 3113 for (nub_size_t i = 0; i < bytes_read; i++) { 3114 if (buf[i] == '#' || buf[i] == '$' || buf[i] == '}' || buf[i] == '*') { 3115 buf_quoted.push_back(0x7d); 3116 buf_quoted.push_back(buf[i] ^ 0x20); 3117 } else { 3118 buf_quoted.push_back(buf[i]); 3119 } 3120 } 3121 length = buf_quoted.size(); 3122 3123 std::ostringstream ostrm; 3124 for (unsigned long i = 0; i < length; i++) 3125 ostrm << buf_quoted[i]; 3126 3127 return SendPacket(ostrm.str()); 3128 } 3129 3130 rnb_err_t RNBRemote::HandlePacket_X(const char *p) { 3131 if (p == NULL || p[0] == '\0' || strlen(p) < 3) { 3132 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, "Too short X packet"); 3133 } 3134 3135 char *c; 3136 p++; 3137 errno = 0; 3138 nub_addr_t addr = strtoull(p, &c, 16); 3139 if (errno != 0 && addr == 0) { 3140 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3141 "Invalid address in X packet"); 3142 } 3143 if (*c != ',') { 3144 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3145 "Comma sep missing in X packet"); 3146 } 3147 3148 /* Advance 'p' to the length part of the packet. NB this is the length of the 3149 packet 3150 including any escaped chars. The data payload may be a little bit smaller 3151 after 3152 decoding. */ 3153 p += (c - p) + 1; 3154 3155 errno = 0; 3156 auto length = strtoul(p, NULL, 16); 3157 if (errno != 0 && length == 0) { 3158 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3159 "Invalid length in X packet"); 3160 } 3161 3162 // I think gdb sends a zero length write request to test whether this 3163 // packet is accepted. 3164 if (length == 0) { 3165 return SendPacket("OK"); 3166 } 3167 3168 std::vector<uint8_t> data = decode_binary_data(c, -1); 3169 std::vector<uint8_t>::const_iterator it; 3170 uint8_t *buf = (uint8_t *)alloca(data.size()); 3171 uint8_t *i = buf; 3172 for (it = data.begin(); it != data.end(); ++it) { 3173 *i++ = *it; 3174 } 3175 3176 nub_size_t wrote = 3177 DNBProcessMemoryWrite(m_ctx.ProcessID(), addr, data.size(), buf); 3178 if (wrote != data.size()) 3179 return SendPacket("E08"); 3180 return SendPacket("OK"); 3181 } 3182 3183 /* 'g' -- read registers 3184 Get the contents of the registers for the current thread, 3185 send them to gdb. 3186 Should the setting of the Hg packet determine which thread's registers 3187 are returned? */ 3188 3189 rnb_err_t RNBRemote::HandlePacket_g(const char *p) { 3190 std::ostringstream ostrm; 3191 if (!m_ctx.HasValidProcessID()) { 3192 return SendPacket("E11"); 3193 } 3194 3195 if (g_num_reg_entries == 0) 3196 InitializeRegisters(); 3197 3198 nub_process_t pid = m_ctx.ProcessID(); 3199 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(p + 1); 3200 if (tid == INVALID_NUB_THREAD) 3201 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3202 "No thread specified in p packet"); 3203 3204 // Get the register context size first by calling with NULL buffer 3205 nub_size_t reg_ctx_size = DNBThreadGetRegisterContext(pid, tid, NULL, 0); 3206 if (reg_ctx_size) { 3207 // Now allocate enough space for the entire register context 3208 std::vector<uint8_t> reg_ctx; 3209 reg_ctx.resize(reg_ctx_size); 3210 // Now read the register context 3211 reg_ctx_size = 3212 DNBThreadGetRegisterContext(pid, tid, ®_ctx[0], reg_ctx.size()); 3213 if (reg_ctx_size) { 3214 append_hex_value(ostrm, reg_ctx.data(), reg_ctx.size(), false); 3215 return SendPacket(ostrm.str()); 3216 } 3217 } 3218 return SendPacket("E74"); 3219 } 3220 3221 /* 'G XXX...' -- write registers 3222 How is the thread for these specified, beyond "the current thread"? 3223 Does gdb actually use the Hg packet to set this? */ 3224 3225 rnb_err_t RNBRemote::HandlePacket_G(const char *p) { 3226 if (!m_ctx.HasValidProcessID()) { 3227 return SendPacket("E11"); 3228 } 3229 3230 if (g_num_reg_entries == 0) 3231 InitializeRegisters(); 3232 3233 StdStringExtractor packet(p); 3234 packet.SetFilePos(1); // Skip the 'G' 3235 3236 nub_process_t pid = m_ctx.ProcessID(); 3237 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(p); 3238 if (tid == INVALID_NUB_THREAD) 3239 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3240 "No thread specified in p packet"); 3241 3242 // Get the register context size first by calling with NULL buffer 3243 nub_size_t reg_ctx_size = DNBThreadGetRegisterContext(pid, tid, NULL, 0); 3244 if (reg_ctx_size) { 3245 // Now allocate enough space for the entire register context 3246 std::vector<uint8_t> reg_ctx; 3247 reg_ctx.resize(reg_ctx_size); 3248 3249 const nub_size_t bytes_extracted = 3250 packet.GetHexBytes(®_ctx[0], reg_ctx.size(), 0xcc); 3251 if (bytes_extracted == reg_ctx.size()) { 3252 // Now write the register context 3253 reg_ctx_size = 3254 DNBThreadSetRegisterContext(pid, tid, reg_ctx.data(), reg_ctx.size()); 3255 if (reg_ctx_size == reg_ctx.size()) 3256 return SendPacket("OK"); 3257 else 3258 return SendPacket("E55"); 3259 } else { 3260 DNBLogError("RNBRemote::HandlePacket_G(%s): extracted %llu of %llu " 3261 "bytes, size mismatch\n", 3262 p, (uint64_t)bytes_extracted, (uint64_t)reg_ctx_size); 3263 return SendPacket("E64"); 3264 } 3265 } 3266 return SendPacket("E65"); 3267 } 3268 3269 static bool RNBRemoteShouldCancelCallback(void *not_used) { 3270 RNBRemoteSP remoteSP(g_remoteSP); 3271 if (remoteSP.get() != NULL) { 3272 RNBRemote *remote = remoteSP.get(); 3273 return !remote->Comm().IsConnected(); 3274 } 3275 return true; 3276 } 3277 3278 // FORMAT: _MXXXXXX,PPP 3279 // XXXXXX: big endian hex chars 3280 // PPP: permissions can be any combo of r w x chars 3281 // 3282 // RESPONSE: XXXXXX 3283 // XXXXXX: hex address of the newly allocated memory 3284 // EXX: error code 3285 // 3286 // EXAMPLES: 3287 // _M123000,rw 3288 // _M123000,rwx 3289 // _M123000,xw 3290 3291 rnb_err_t RNBRemote::HandlePacket_AllocateMemory(const char *p) { 3292 StdStringExtractor packet(p); 3293 packet.SetFilePos(2); // Skip the "_M" 3294 3295 nub_addr_t size = packet.GetHexMaxU64(StdStringExtractor::BigEndian, 0); 3296 if (size != 0) { 3297 if (packet.GetChar() == ',') { 3298 uint32_t permissions = 0; 3299 char ch; 3300 bool success = true; 3301 while (success && (ch = packet.GetChar()) != '\0') { 3302 switch (ch) { 3303 case 'r': 3304 permissions |= eMemoryPermissionsReadable; 3305 break; 3306 case 'w': 3307 permissions |= eMemoryPermissionsWritable; 3308 break; 3309 case 'x': 3310 permissions |= eMemoryPermissionsExecutable; 3311 break; 3312 default: 3313 success = false; 3314 break; 3315 } 3316 } 3317 3318 if (success) { 3319 nub_addr_t addr = 3320 DNBProcessMemoryAllocate(m_ctx.ProcessID(), size, permissions); 3321 if (addr != INVALID_NUB_ADDRESS) { 3322 std::ostringstream ostrm; 3323 ostrm << RAW_HEXBASE << addr; 3324 return SendPacket(ostrm.str()); 3325 } 3326 } 3327 } 3328 } 3329 return SendPacket("E53"); 3330 } 3331 3332 // FORMAT: _mXXXXXX 3333 // XXXXXX: address that was previously allocated 3334 // 3335 // RESPONSE: XXXXXX 3336 // OK: address was deallocated 3337 // EXX: error code 3338 // 3339 // EXAMPLES: 3340 // _m123000 3341 3342 rnb_err_t RNBRemote::HandlePacket_DeallocateMemory(const char *p) { 3343 StdStringExtractor packet(p); 3344 packet.SetFilePos(2); // Skip the "_m" 3345 nub_addr_t addr = 3346 packet.GetHexMaxU64(StdStringExtractor::BigEndian, INVALID_NUB_ADDRESS); 3347 3348 if (addr != INVALID_NUB_ADDRESS) { 3349 if (DNBProcessMemoryDeallocate(m_ctx.ProcessID(), addr)) 3350 return SendPacket("OK"); 3351 } 3352 return SendPacket("E54"); 3353 } 3354 3355 // FORMAT: QSaveRegisterState;thread:TTTT; (when thread suffix is supported) 3356 // FORMAT: QSaveRegisterState (when thread suffix is NOT 3357 // supported) 3358 // TTTT: thread ID in hex 3359 // 3360 // RESPONSE: 3361 // SAVEID: Where SAVEID is a decimal number that represents the save ID 3362 // that can be passed back into a "QRestoreRegisterState" packet 3363 // EXX: error code 3364 // 3365 // EXAMPLES: 3366 // QSaveRegisterState;thread:1E34; (when thread suffix is supported) 3367 // QSaveRegisterState (when thread suffix is NOT 3368 // supported) 3369 3370 rnb_err_t RNBRemote::HandlePacket_SaveRegisterState(const char *p) { 3371 nub_process_t pid = m_ctx.ProcessID(); 3372 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(p); 3373 if (tid == INVALID_NUB_THREAD) { 3374 if (m_thread_suffix_supported) 3375 return HandlePacket_ILLFORMED( 3376 __FILE__, __LINE__, p, 3377 "No thread specified in QSaveRegisterState packet"); 3378 else 3379 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3380 "No thread was is set with the Hg packet"); 3381 } 3382 3383 // Get the register context size first by calling with NULL buffer 3384 const uint32_t save_id = DNBThreadSaveRegisterState(pid, tid); 3385 if (save_id != 0) { 3386 char response[64]; 3387 snprintf(response, sizeof(response), "%u", save_id); 3388 return SendPacket(response); 3389 } else { 3390 return SendPacket("E75"); 3391 } 3392 } 3393 // FORMAT: QRestoreRegisterState:SAVEID;thread:TTTT; (when thread suffix is 3394 // supported) 3395 // FORMAT: QRestoreRegisterState:SAVEID (when thread suffix is NOT 3396 // supported) 3397 // TTTT: thread ID in hex 3398 // SAVEID: a decimal number that represents the save ID that was 3399 // returned from a call to "QSaveRegisterState" 3400 // 3401 // RESPONSE: 3402 // OK: successfully restored registers for the specified thread 3403 // EXX: error code 3404 // 3405 // EXAMPLES: 3406 // QRestoreRegisterState:1;thread:1E34; (when thread suffix is 3407 // supported) 3408 // QRestoreRegisterState:1 (when thread suffix is NOT 3409 // supported) 3410 3411 rnb_err_t RNBRemote::HandlePacket_RestoreRegisterState(const char *p) { 3412 nub_process_t pid = m_ctx.ProcessID(); 3413 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(p); 3414 if (tid == INVALID_NUB_THREAD) { 3415 if (m_thread_suffix_supported) 3416 return HandlePacket_ILLFORMED( 3417 __FILE__, __LINE__, p, 3418 "No thread specified in QSaveRegisterState packet"); 3419 else 3420 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3421 "No thread was is set with the Hg packet"); 3422 } 3423 3424 StdStringExtractor packet(p); 3425 packet.SetFilePos( 3426 strlen("QRestoreRegisterState:")); // Skip the "QRestoreRegisterState:" 3427 const uint32_t save_id = packet.GetU32(0); 3428 3429 if (save_id != 0) { 3430 // Get the register context size first by calling with NULL buffer 3431 if (DNBThreadRestoreRegisterState(pid, tid, save_id)) 3432 return SendPacket("OK"); 3433 else 3434 return SendPacket("E77"); 3435 } 3436 return SendPacket("E76"); 3437 } 3438 3439 static bool GetProcessNameFrom_vAttach(const char *&p, 3440 std::string &attach_name) { 3441 bool return_val = true; 3442 while (*p != '\0') { 3443 char smallbuf[3]; 3444 smallbuf[0] = *p; 3445 smallbuf[1] = *(p + 1); 3446 smallbuf[2] = '\0'; 3447 3448 errno = 0; 3449 int ch = static_cast<int>(strtoul(smallbuf, NULL, 16)); 3450 if (errno != 0 && ch == 0) { 3451 return_val = false; 3452 break; 3453 } 3454 3455 attach_name.push_back(ch); 3456 p += 2; 3457 } 3458 return return_val; 3459 } 3460 3461 rnb_err_t RNBRemote::HandlePacket_qSupported(const char *p) { 3462 uint32_t max_packet_size = 128 * 1024; // 128KBytes is a reasonable max packet 3463 // size--debugger can always use less 3464 char buf[256]; 3465 snprintf(buf, sizeof(buf), 3466 "qXfer:features:read+;PacketSize=%x;qEcho+;native-signals+", 3467 max_packet_size); 3468 3469 bool enable_compression = false; 3470 (void)enable_compression; 3471 3472 #if (defined (TARGET_OS_WATCH) && TARGET_OS_WATCH == 1) \ 3473 || (defined (TARGET_OS_IOS) && TARGET_OS_IOS == 1) \ 3474 || (defined (TARGET_OS_TV) && TARGET_OS_TV == 1) \ 3475 || (defined (TARGET_OS_BRIDGE) && TARGET_OS_BRIDGE == 1) 3476 enable_compression = true; 3477 #endif 3478 3479 if (enable_compression) { 3480 strcat(buf, ";SupportedCompressions=lzfse,zlib-deflate,lz4,lzma;" 3481 "DefaultCompressionMinSize="); 3482 char numbuf[16]; 3483 snprintf(numbuf, sizeof(numbuf), "%zu", m_compression_minsize); 3484 numbuf[sizeof(numbuf) - 1] = '\0'; 3485 strcat(buf, numbuf); 3486 } 3487 3488 return SendPacket(buf); 3489 } 3490 3491 static bool process_does_not_exist (nub_process_t pid) { 3492 std::vector<struct kinfo_proc> proc_infos; 3493 DNBGetAllInfos (proc_infos); 3494 const size_t infos_size = proc_infos.size(); 3495 for (size_t i = 0; i < infos_size; i++) 3496 if (proc_infos[i].kp_proc.p_pid == pid) 3497 return false; 3498 3499 return true; // process does not exist 3500 } 3501 3502 // my_uid and process_uid are only initialized if this function 3503 // returns true -- that there was a uid mismatch -- and those 3504 // id's may want to be used in the error message. 3505 // 3506 // NOTE: this should only be called after process_does_not_exist(). 3507 // This sysctl will return uninitialized data if we ask for a pid 3508 // that doesn't exist. The alternative would be to fetch all 3509 // processes and step through to find the one we're looking for 3510 // (as process_does_not_exist() does). 3511 static bool attach_failed_due_to_uid_mismatch (nub_process_t pid, 3512 uid_t &my_uid, 3513 uid_t &process_uid) { 3514 struct kinfo_proc kinfo; 3515 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid}; 3516 size_t len = sizeof(struct kinfo_proc); 3517 if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), &kinfo, &len, NULL, 0) != 0) { 3518 return false; // pid doesn't exist? can't check uid mismatch - it was fine 3519 } 3520 my_uid = geteuid(); 3521 if (my_uid == 0) 3522 return false; // if we're root, attach didn't fail because of uid mismatch 3523 process_uid = kinfo.kp_eproc.e_ucred.cr_uid; 3524 3525 // If my uid != the process' uid, then the attach probably failed because 3526 // of that. 3527 if (my_uid != process_uid) 3528 return true; 3529 else 3530 return false; 3531 } 3532 3533 // NOTE: this should only be called after process_does_not_exist(). 3534 // This sysctl will return uninitialized data if we ask for a pid 3535 // that doesn't exist. The alternative would be to fetch all 3536 // processes and step through to find the one we're looking for 3537 // (as process_does_not_exist() does). 3538 static bool process_is_already_being_debugged (nub_process_t pid) { 3539 struct kinfo_proc kinfo; 3540 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid}; 3541 size_t len = sizeof(struct kinfo_proc); 3542 if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), &kinfo, &len, NULL, 0) != 0) { 3543 return false; // pid doesn't exist? well, it's not being debugged... 3544 } 3545 if (kinfo.kp_proc.p_flag & P_TRACED) 3546 return true; // is being debugged already 3547 else 3548 return false; 3549 } 3550 3551 // Test if this current login session has a connection to the 3552 // window server (if it does not have that access, it cannot ask 3553 // for debug permission by popping up a dialog box and attach 3554 // may fail outright). 3555 static bool login_session_has_gui_access () { 3556 // I believe this API only works on macOS. 3557 #if TARGET_OS_OSX == 0 3558 return true; 3559 #else 3560 auditinfo_addr_t info; 3561 getaudit_addr(&info, sizeof(info)); 3562 if (info.ai_flags & AU_SESSION_FLAG_HAS_GRAPHIC_ACCESS) 3563 return true; 3564 else 3565 return false; 3566 #endif 3567 } 3568 3569 // Checking for 3570 // 3571 // { 3572 // 'class' : 'rule', 3573 // 'comment' : 'For use by Apple. WARNING: administrators are advised 3574 // not to modify this right.', 3575 // 'k-of-n' : '1', 3576 // 'rule' : [ 3577 // 'is-admin', 3578 // 'is-developer', 3579 // 'authenticate-developer' 3580 // ] 3581 // } 3582 // 3583 // $ security authorizationdb read system.privilege.taskport.debug 3584 3585 static bool developer_mode_enabled () { 3586 // This API only exists on macOS. 3587 #if TARGET_OS_OSX == 0 3588 return true; 3589 #else 3590 CFDictionaryRef currentRightDict = NULL; 3591 const char *debug_right = "system.privilege.taskport.debug"; 3592 // caller must free dictionary initialized by the following 3593 OSStatus status = AuthorizationRightGet(debug_right, ¤tRightDict); 3594 if (status != errAuthorizationSuccess) { 3595 // could not check authorization 3596 return true; 3597 } 3598 3599 bool devmode_enabled = true; 3600 3601 if (!CFDictionaryContainsKey(currentRightDict, CFSTR("k-of-n"))) { 3602 devmode_enabled = false; 3603 } else { 3604 CFNumberRef item = (CFNumberRef) CFDictionaryGetValue(currentRightDict, CFSTR("k-of-n")); 3605 if (item && CFGetTypeID(item) == CFNumberGetTypeID()) { 3606 int64_t num = 0; 3607 ::CFNumberGetValue(item, kCFNumberSInt64Type, &num); 3608 if (num != 1) { 3609 devmode_enabled = false; 3610 } 3611 } else { 3612 devmode_enabled = false; 3613 } 3614 } 3615 3616 if (!CFDictionaryContainsKey(currentRightDict, CFSTR("class"))) { 3617 devmode_enabled = false; 3618 } else { 3619 CFStringRef item = (CFStringRef) CFDictionaryGetValue(currentRightDict, CFSTR("class")); 3620 if (item && CFGetTypeID(item) == CFStringGetTypeID()) { 3621 char tmpbuf[128]; 3622 if (CFStringGetCString (item, tmpbuf, sizeof(tmpbuf), CFStringGetSystemEncoding())) { 3623 tmpbuf[sizeof (tmpbuf) - 1] = '\0'; 3624 if (strcmp (tmpbuf, "rule") != 0) { 3625 devmode_enabled = false; 3626 } 3627 } else { 3628 devmode_enabled = false; 3629 } 3630 } else { 3631 devmode_enabled = false; 3632 } 3633 } 3634 3635 if (!CFDictionaryContainsKey(currentRightDict, CFSTR("rule"))) { 3636 devmode_enabled = false; 3637 } else { 3638 CFArrayRef item = (CFArrayRef) CFDictionaryGetValue(currentRightDict, CFSTR("rule")); 3639 if (item && CFGetTypeID(item) == CFArrayGetTypeID()) { 3640 int count = ::CFArrayGetCount(item); 3641 CFRange range = CFRangeMake (0, count); 3642 if (!::CFArrayContainsValue (item, range, CFSTR("is-admin"))) 3643 devmode_enabled = false; 3644 if (!::CFArrayContainsValue (item, range, CFSTR("is-developer"))) 3645 devmode_enabled = false; 3646 if (!::CFArrayContainsValue (item, range, CFSTR("authenticate-developer"))) 3647 devmode_enabled = false; 3648 } else { 3649 devmode_enabled = false; 3650 } 3651 } 3652 ::CFRelease(currentRightDict); 3653 3654 return devmode_enabled; 3655 #endif // TARGET_OS_OSX 3656 } 3657 3658 /* 3659 vAttach;pid 3660 3661 Attach to a new process with the specified process ID. pid is a hexadecimal 3662 integer 3663 identifying the process. If the stub is currently controlling a process, it is 3664 killed. The attached process is stopped.This packet is only available in 3665 extended 3666 mode (see extended mode). 3667 3668 Reply: 3669 "ENN" for an error 3670 "Any Stop Reply Packet" for success 3671 */ 3672 3673 rnb_err_t RNBRemote::HandlePacket_v(const char *p) { 3674 if (strcmp(p, "vCont;c") == 0) { 3675 // Simple continue 3676 return RNBRemote::HandlePacket_c("c"); 3677 } else if (strcmp(p, "vCont;s") == 0) { 3678 // Simple step 3679 return RNBRemote::HandlePacket_s("s"); 3680 } else if (strstr(p, "vCont") == p) { 3681 DNBThreadResumeActions thread_actions; 3682 char *c = const_cast<char *>(p += strlen("vCont")); 3683 char *c_end = c + strlen(c); 3684 if (*c == '?') 3685 return SendPacket("vCont;c;C;s;S"); 3686 3687 while (c < c_end && *c == ';') { 3688 ++c; // Skip the semi-colon 3689 DNBThreadResumeAction thread_action; 3690 thread_action.tid = INVALID_NUB_THREAD; 3691 thread_action.state = eStateInvalid; 3692 thread_action.signal = 0; 3693 thread_action.addr = INVALID_NUB_ADDRESS; 3694 3695 char action = *c++; 3696 3697 switch (action) { 3698 case 'C': 3699 errno = 0; 3700 thread_action.signal = static_cast<int>(strtoul(c, &c, 16)); 3701 if (errno != 0) 3702 return HandlePacket_ILLFORMED( 3703 __FILE__, __LINE__, p, "Could not parse signal in vCont packet"); 3704 // Fall through to next case... 3705 [[clang::fallthrough]]; 3706 case 'c': 3707 // Continue 3708 thread_action.state = eStateRunning; 3709 break; 3710 3711 case 'S': 3712 errno = 0; 3713 thread_action.signal = static_cast<int>(strtoul(c, &c, 16)); 3714 if (errno != 0) 3715 return HandlePacket_ILLFORMED( 3716 __FILE__, __LINE__, p, "Could not parse signal in vCont packet"); 3717 // Fall through to next case... 3718 [[clang::fallthrough]]; 3719 case 's': 3720 // Step 3721 thread_action.state = eStateStepping; 3722 break; 3723 3724 default: 3725 HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3726 "Unsupported action in vCont packet"); 3727 break; 3728 } 3729 if (*c == ':') { 3730 errno = 0; 3731 thread_action.tid = strtoul(++c, &c, 16); 3732 if (errno != 0) 3733 return HandlePacket_ILLFORMED( 3734 __FILE__, __LINE__, p, 3735 "Could not parse thread number in vCont packet"); 3736 } 3737 3738 thread_actions.Append(thread_action); 3739 } 3740 3741 // If a default action for all other threads wasn't mentioned 3742 // then we should stop the threads 3743 thread_actions.SetDefaultThreadActionIfNeeded(eStateStopped, 0); 3744 DNBProcessResume(m_ctx.ProcessID(), thread_actions.GetFirst(), 3745 thread_actions.GetSize()); 3746 return rnb_success; 3747 } else if (strstr(p, "vAttach") == p) { 3748 nub_process_t attach_pid = 3749 INVALID_NUB_PROCESS; // attach_pid will be set to 0 if the attach fails 3750 nub_process_t pid_attaching_to = 3751 INVALID_NUB_PROCESS; // pid_attaching_to is the original pid specified 3752 char err_str[1024] = {'\0'}; 3753 std::string attach_name; 3754 3755 if (DNBDebugserverIsTranslated()) { 3756 DNBLogError("debugserver is x86_64 binary running in translation, attach " 3757 "failed."); 3758 std::string return_message = "E96;"; 3759 return_message += 3760 cstring_to_asciihex_string("debugserver is x86_64 binary running in " 3761 "translation, attached failed."); 3762 SendPacket(return_message.c_str()); 3763 return rnb_err; 3764 } 3765 3766 if (strstr(p, "vAttachWait;") == p) { 3767 p += strlen("vAttachWait;"); 3768 if (!GetProcessNameFrom_vAttach(p, attach_name)) { 3769 return HandlePacket_ILLFORMED( 3770 __FILE__, __LINE__, p, "non-hex char in arg on 'vAttachWait' pkt"); 3771 } 3772 DNBLog("[LaunchAttach] START %d vAttachWait for process name '%s'", 3773 getpid(), attach_name.c_str()); 3774 const bool ignore_existing = true; 3775 attach_pid = DNBProcessAttachWait( 3776 &m_ctx, attach_name.c_str(), ignore_existing, NULL, 1000, err_str, 3777 sizeof(err_str), RNBRemoteShouldCancelCallback); 3778 3779 } else if (strstr(p, "vAttachOrWait;") == p) { 3780 p += strlen("vAttachOrWait;"); 3781 if (!GetProcessNameFrom_vAttach(p, attach_name)) { 3782 return HandlePacket_ILLFORMED( 3783 __FILE__, __LINE__, p, 3784 "non-hex char in arg on 'vAttachOrWait' pkt"); 3785 } 3786 const bool ignore_existing = false; 3787 DNBLog("[LaunchAttach] START %d vAttachWaitOrWait for process name " 3788 "'%s'", 3789 getpid(), attach_name.c_str()); 3790 attach_pid = DNBProcessAttachWait( 3791 &m_ctx, attach_name.c_str(), ignore_existing, NULL, 1000, err_str, 3792 sizeof(err_str), RNBRemoteShouldCancelCallback); 3793 } else if (strstr(p, "vAttachName;") == p) { 3794 p += strlen("vAttachName;"); 3795 if (!GetProcessNameFrom_vAttach(p, attach_name)) { 3796 return HandlePacket_ILLFORMED( 3797 __FILE__, __LINE__, p, "non-hex char in arg on 'vAttachName' pkt"); 3798 } 3799 3800 DNBLog("[LaunchAttach] START %d vAttachName attach to process name " 3801 "'%s'", 3802 getpid(), attach_name.c_str()); 3803 attach_pid = DNBProcessAttachByName(attach_name.c_str(), NULL, 3804 Context().GetUnmaskSignals(), err_str, 3805 sizeof(err_str)); 3806 3807 } else if (strstr(p, "vAttach;") == p) { 3808 p += strlen("vAttach;"); 3809 char *end = NULL; 3810 pid_attaching_to = static_cast<int>( 3811 strtoul(p, &end, 16)); // PID will be in hex, so use base 16 to decode 3812 if (p != end && *end == '\0') { 3813 // Wait at most 30 second for attach 3814 struct timespec attach_timeout_abstime; 3815 DNBTimer::OffsetTimeOfDay(&attach_timeout_abstime, 30, 0); 3816 DNBLog("[LaunchAttach] START %d vAttach to pid %d", getpid(), 3817 pid_attaching_to); 3818 attach_pid = DNBProcessAttach(pid_attaching_to, &attach_timeout_abstime, 3819 false, err_str, sizeof(err_str)); 3820 } 3821 } else { 3822 return HandlePacket_UNIMPLEMENTED(p); 3823 } 3824 3825 if (attach_pid != INVALID_NUB_PROCESS) { 3826 if (m_ctx.ProcessID() != attach_pid) 3827 m_ctx.SetProcessID(attach_pid); 3828 DNBLog("Successfully attached to pid %d", attach_pid); 3829 // Send a stop reply packet to indicate we successfully attached! 3830 NotifyThatProcessStopped(); 3831 return rnb_success; 3832 } else { 3833 DNBLogError("Attach failed"); 3834 m_ctx.LaunchStatus().SetError(-1, DNBError::Generic); 3835 if (err_str[0]) 3836 m_ctx.LaunchStatus().SetErrorString(err_str); 3837 else 3838 m_ctx.LaunchStatus().SetErrorString("attach failed"); 3839 3840 if (pid_attaching_to == INVALID_NUB_PROCESS && !attach_name.empty()) { 3841 pid_attaching_to = DNBProcessGetPIDByName(attach_name.c_str()); 3842 } 3843 3844 // attach_pid is INVALID_NUB_PROCESS - we did not succeed in attaching 3845 // if the original request, pid_attaching_to, is available, see if we 3846 // can figure out why we couldn't attach. Return an informative error 3847 // string to lldb. 3848 3849 if (pid_attaching_to != INVALID_NUB_PROCESS) { 3850 // The order of these checks is important. 3851 if (process_does_not_exist (pid_attaching_to)) { 3852 DNBLogError("Tried to attach to pid that doesn't exist"); 3853 std::string return_message = "E96;"; 3854 return_message += cstring_to_asciihex_string("no such process."); 3855 return SendPacket(return_message.c_str()); 3856 } 3857 if (process_is_already_being_debugged (pid_attaching_to)) { 3858 DNBLogError("Tried to attach to process already being debugged"); 3859 std::string return_message = "E96;"; 3860 return_message += cstring_to_asciihex_string("tried to attach to " 3861 "process already being debugged"); 3862 return SendPacket(return_message.c_str()); 3863 } 3864 uid_t my_uid, process_uid; 3865 if (attach_failed_due_to_uid_mismatch (pid_attaching_to, 3866 my_uid, process_uid)) { 3867 std::string my_username = "uid " + std::to_string (my_uid); 3868 std::string process_username = "uid " + std::to_string (process_uid); 3869 struct passwd *pw = getpwuid (my_uid); 3870 if (pw && pw->pw_name) { 3871 my_username = pw->pw_name; 3872 } 3873 pw = getpwuid (process_uid); 3874 if (pw && pw->pw_name) { 3875 process_username = pw->pw_name; 3876 } 3877 DNBLogError("Tried to attach to process with uid mismatch"); 3878 std::string return_message = "E96;"; 3879 std::string msg = "tried to attach to process as user '" 3880 + my_username + "' and process is running " 3881 "as user '" + process_username + "'"; 3882 return_message += cstring_to_asciihex_string(msg.c_str()); 3883 return SendPacket(return_message.c_str()); 3884 } 3885 if (!login_session_has_gui_access() && !developer_mode_enabled()) { 3886 DNBLogError("Developer mode is not enabled and this is a " 3887 "non-interactive session"); 3888 std::string return_message = "E96;"; 3889 return_message += cstring_to_asciihex_string("developer mode is " 3890 "not enabled on this machine " 3891 "and this is a non-interactive " 3892 "debug session."); 3893 return SendPacket(return_message.c_str()); 3894 } 3895 if (!login_session_has_gui_access()) { 3896 DNBLogError("This is a non-interactive session"); 3897 std::string return_message = "E96;"; 3898 return_message += cstring_to_asciihex_string("this is a " 3899 "non-interactive debug session, " 3900 "cannot get permission to debug " 3901 "processes."); 3902 return SendPacket(return_message.c_str()); 3903 } 3904 } 3905 3906 std::string error_explainer = "attach failed"; 3907 if (err_str[0] != '\0') { 3908 // This is not a super helpful message for end users 3909 if (strcmp (err_str, "unable to start the exception thread") == 0) { 3910 snprintf (err_str, sizeof (err_str) - 1, 3911 "Not allowed to attach to process. Look in the console " 3912 "messages (Console.app), near the debugserver entries, " 3913 "when the attach failed. The subsystem that denied " 3914 "the attach permission will likely have logged an " 3915 "informative message about why it was denied."); 3916 err_str[sizeof (err_str) - 1] = '\0'; 3917 } 3918 error_explainer += " ("; 3919 error_explainer += err_str; 3920 error_explainer += ")"; 3921 } 3922 std::string default_return_msg = "E96;"; 3923 default_return_msg += cstring_to_asciihex_string 3924 (error_explainer.c_str()); 3925 SendPacket (default_return_msg.c_str()); 3926 DNBLogError("Attach failed: \"%s\".", err_str); 3927 return rnb_err; 3928 } 3929 } 3930 3931 // All other failures come through here 3932 return HandlePacket_UNIMPLEMENTED(p); 3933 } 3934 3935 /* 'T XX' -- status of thread 3936 Check if the specified thread is alive. 3937 The thread number is in hex? */ 3938 3939 rnb_err_t RNBRemote::HandlePacket_T(const char *p) { 3940 p++; 3941 if (p == NULL || *p == '\0') { 3942 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3943 "No thread specified in T packet"); 3944 } 3945 if (!m_ctx.HasValidProcessID()) { 3946 return SendPacket("E15"); 3947 } 3948 errno = 0; 3949 nub_thread_t tid = strtoul(p, NULL, 16); 3950 if (errno != 0 && tid == 0) { 3951 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3952 "Could not parse thread number in T packet"); 3953 } 3954 3955 nub_state_t state = DNBThreadGetState(m_ctx.ProcessID(), tid); 3956 if (state == eStateInvalid || state == eStateExited || 3957 state == eStateCrashed) { 3958 return SendPacket("E16"); 3959 } 3960 3961 return SendPacket("OK"); 3962 } 3963 3964 rnb_err_t RNBRemote::HandlePacket_z(const char *p) { 3965 if (p == NULL || *p == '\0') 3966 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3967 "No thread specified in z packet"); 3968 3969 if (!m_ctx.HasValidProcessID()) 3970 return SendPacket("E15"); 3971 3972 char packet_cmd = *p++; 3973 char break_type = *p++; 3974 3975 if (*p++ != ',') 3976 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3977 "Comma separator missing in z packet"); 3978 3979 char *c = NULL; 3980 nub_process_t pid = m_ctx.ProcessID(); 3981 errno = 0; 3982 nub_addr_t addr = strtoull(p, &c, 16); 3983 if (errno != 0 && addr == 0) 3984 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3985 "Invalid address in z packet"); 3986 p = c; 3987 if (*p++ != ',') 3988 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3989 "Comma separator missing in z packet"); 3990 3991 errno = 0; 3992 auto byte_size = strtoul(p, &c, 16); 3993 if (errno != 0 && byte_size == 0) 3994 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3995 "Invalid length in z packet"); 3996 3997 if (packet_cmd == 'Z') { 3998 // set 3999 switch (break_type) { 4000 case '0': // set software breakpoint 4001 case '1': // set hardware breakpoint 4002 { 4003 // gdb can send multiple Z packets for the same address and 4004 // these calls must be ref counted. 4005 bool hardware = (break_type == '1'); 4006 4007 if (DNBBreakpointSet(pid, addr, byte_size, hardware)) { 4008 // We successfully created a breakpoint, now lets full out 4009 // a ref count structure with the breakID and add it to our 4010 // map. 4011 return SendPacket("OK"); 4012 } else { 4013 // We failed to set the software breakpoint 4014 return SendPacket("E09"); 4015 } 4016 } break; 4017 4018 case '2': // set write watchpoint 4019 case '3': // set read watchpoint 4020 case '4': // set access watchpoint 4021 { 4022 bool hardware = true; 4023 uint32_t watch_flags = 0; 4024 if (break_type == '2') 4025 watch_flags = WATCH_TYPE_WRITE; 4026 else if (break_type == '3') 4027 watch_flags = WATCH_TYPE_READ; 4028 else 4029 watch_flags = WATCH_TYPE_READ | WATCH_TYPE_WRITE; 4030 4031 if (DNBWatchpointSet(pid, addr, byte_size, watch_flags, hardware)) { 4032 return SendPacket("OK"); 4033 } else { 4034 // We failed to set the watchpoint 4035 return SendPacket("E09"); 4036 } 4037 } break; 4038 4039 default: 4040 break; 4041 } 4042 } else if (packet_cmd == 'z') { 4043 // remove 4044 switch (break_type) { 4045 case '0': // remove software breakpoint 4046 case '1': // remove hardware breakpoint 4047 if (DNBBreakpointClear(pid, addr)) { 4048 return SendPacket("OK"); 4049 } else { 4050 return SendPacket("E08"); 4051 } 4052 break; 4053 4054 case '2': // remove write watchpoint 4055 case '3': // remove read watchpoint 4056 case '4': // remove access watchpoint 4057 if (DNBWatchpointClear(pid, addr)) { 4058 return SendPacket("OK"); 4059 } else { 4060 return SendPacket("E08"); 4061 } 4062 break; 4063 4064 default: 4065 break; 4066 } 4067 } 4068 return HandlePacket_UNIMPLEMENTED(p); 4069 } 4070 4071 // Extract the thread number from the thread suffix that might be appended to 4072 // thread specific packets. This will only be enabled if 4073 // m_thread_suffix_supported 4074 // is true. 4075 nub_thread_t RNBRemote::ExtractThreadIDFromThreadSuffix(const char *p) { 4076 if (m_thread_suffix_supported) { 4077 nub_thread_t tid = INVALID_NUB_THREAD; 4078 if (p) { 4079 const char *tid_cstr = strstr(p, "thread:"); 4080 if (tid_cstr) { 4081 tid_cstr += strlen("thread:"); 4082 tid = strtoul(tid_cstr, NULL, 16); 4083 } 4084 } 4085 return tid; 4086 } 4087 return GetCurrentThread(); 4088 } 4089 4090 /* 'p XX' 4091 print the contents of register X */ 4092 4093 rnb_err_t RNBRemote::HandlePacket_p(const char *p) { 4094 if (g_num_reg_entries == 0) 4095 InitializeRegisters(); 4096 4097 if (p == NULL || *p == '\0') { 4098 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4099 "No thread specified in p packet"); 4100 } 4101 if (!m_ctx.HasValidProcessID()) { 4102 return SendPacket("E15"); 4103 } 4104 nub_process_t pid = m_ctx.ProcessID(); 4105 errno = 0; 4106 char *tid_cstr = NULL; 4107 uint32_t reg = static_cast<uint32_t>(strtoul(p + 1, &tid_cstr, 16)); 4108 if (errno != 0 && reg == 0) { 4109 return HandlePacket_ILLFORMED( 4110 __FILE__, __LINE__, p, "Could not parse register number in p packet"); 4111 } 4112 4113 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(tid_cstr); 4114 if (tid == INVALID_NUB_THREAD) 4115 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4116 "No thread specified in p packet"); 4117 4118 const register_map_entry_t *reg_entry; 4119 4120 if (reg < g_num_reg_entries) 4121 reg_entry = &g_reg_entries[reg]; 4122 else 4123 reg_entry = NULL; 4124 4125 std::ostringstream ostrm; 4126 if (reg_entry == NULL) { 4127 DNBLogError( 4128 "RNBRemote::HandlePacket_p(%s): unknown register number %u requested\n", 4129 p, reg); 4130 ostrm << "00000000"; 4131 } else if (reg_entry->nub_info.reg == (uint32_t)-1) { 4132 if (reg_entry->nub_info.size > 0) { 4133 std::basic_string<uint8_t> zeros(reg_entry->nub_info.size, '\0'); 4134 append_hex_value(ostrm, zeros.data(), zeros.size(), false); 4135 } 4136 } else { 4137 register_value_in_hex_fixed_width(ostrm, pid, tid, reg_entry, NULL); 4138 } 4139 return SendPacket(ostrm.str()); 4140 } 4141 4142 /* 'Pnn=rrrrr' 4143 Set register number n to value r. 4144 n and r are hex strings. */ 4145 4146 rnb_err_t RNBRemote::HandlePacket_P(const char *p) { 4147 if (g_num_reg_entries == 0) 4148 InitializeRegisters(); 4149 4150 if (p == NULL || *p == '\0') { 4151 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, "Empty P packet"); 4152 } 4153 if (!m_ctx.HasValidProcessID()) { 4154 return SendPacket("E28"); 4155 } 4156 4157 nub_process_t pid = m_ctx.ProcessID(); 4158 4159 StdStringExtractor packet(p); 4160 4161 const char cmd_char = packet.GetChar(); 4162 // Register ID is always in big endian 4163 const uint32_t reg = packet.GetHexMaxU32(false, UINT32_MAX); 4164 const char equal_char = packet.GetChar(); 4165 4166 if (cmd_char != 'P') 4167 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4168 "Improperly formed P packet"); 4169 4170 if (reg == UINT32_MAX) 4171 return SendPacket("E29"); 4172 4173 if (equal_char != '=') 4174 return SendPacket("E30"); 4175 4176 const register_map_entry_t *reg_entry; 4177 4178 if (reg >= g_num_reg_entries) 4179 return SendPacket("E47"); 4180 4181 reg_entry = &g_reg_entries[reg]; 4182 4183 if (reg_entry->nub_info.set == (uint32_t)-1 && 4184 reg_entry->nub_info.reg == (uint32_t)-1) { 4185 DNBLogError( 4186 "RNBRemote::HandlePacket_P(%s): unknown register number %u requested\n", 4187 p, reg); 4188 return SendPacket("E48"); 4189 } 4190 4191 DNBRegisterValue reg_value; 4192 reg_value.info = reg_entry->nub_info; 4193 packet.GetHexBytes(reg_value.value.v_sint8, reg_entry->nub_info.size, 0xcc); 4194 4195 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(p); 4196 if (tid == INVALID_NUB_THREAD) 4197 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4198 "No thread specified in p packet"); 4199 4200 if (!DNBThreadSetRegisterValueByID(pid, tid, reg_entry->nub_info.set, 4201 reg_entry->nub_info.reg, ®_value)) { 4202 return SendPacket("E32"); 4203 } 4204 return SendPacket("OK"); 4205 } 4206 4207 /* 'c [addr]' 4208 Continue, optionally from a specified address. */ 4209 4210 rnb_err_t RNBRemote::HandlePacket_c(const char *p) { 4211 const nub_process_t pid = m_ctx.ProcessID(); 4212 4213 if (pid == INVALID_NUB_PROCESS) 4214 return SendPacket("E23"); 4215 4216 DNBThreadResumeAction action = {INVALID_NUB_THREAD, eStateRunning, 0, 4217 INVALID_NUB_ADDRESS}; 4218 4219 if (*(p + 1) != '\0') { 4220 action.tid = GetContinueThread(); 4221 errno = 0; 4222 action.addr = strtoull(p + 1, NULL, 16); 4223 if (errno != 0 && action.addr == 0) 4224 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4225 "Could not parse address in c packet"); 4226 } 4227 4228 DNBThreadResumeActions thread_actions; 4229 thread_actions.Append(action); 4230 thread_actions.SetDefaultThreadActionIfNeeded(eStateRunning, 0); 4231 if (!DNBProcessResume(pid, thread_actions.GetFirst(), 4232 thread_actions.GetSize())) 4233 return SendPacket("E25"); 4234 // Don't send an "OK" packet; response is the stopped/exited message. 4235 return rnb_success; 4236 } 4237 4238 rnb_err_t RNBRemote::HandlePacket_MemoryRegionInfo(const char *p) { 4239 /* This packet will find memory attributes (e.g. readable, writable, 4240 executable, stack, jitted code) 4241 for the memory region containing a given address and return that 4242 information. 4243 4244 Users of this packet must be prepared for three results: 4245 4246 Region information is returned 4247 Region information is unavailable for this address because the address 4248 is in unmapped memory 4249 Region lookup cannot be performed on this platform or process is not 4250 yet launched 4251 This packet isn't implemented 4252 4253 Examples of use: 4254 qMemoryRegionInfo:3a55140 4255 start:3a50000,size:100000,permissions:rwx 4256 4257 qMemoryRegionInfo:0 4258 error:address in unmapped region 4259 4260 qMemoryRegionInfo:3a551140 (on a different platform) 4261 error:region lookup cannot be performed 4262 4263 qMemoryRegionInfo 4264 OK // this packet is implemented by the remote nub 4265 */ 4266 4267 p += sizeof("qMemoryRegionInfo") - 1; 4268 if (*p == '\0') 4269 return SendPacket("OK"); 4270 if (*p++ != ':') 4271 return SendPacket("E67"); 4272 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X')) 4273 p += 2; 4274 4275 errno = 0; 4276 uint64_t address = strtoul(p, NULL, 16); 4277 if (errno != 0 && address == 0) { 4278 return HandlePacket_ILLFORMED( 4279 __FILE__, __LINE__, p, "Invalid address in qMemoryRegionInfo packet"); 4280 } 4281 4282 DNBRegionInfo region_info; 4283 DNBProcessMemoryRegionInfo(m_ctx.ProcessID(), address, ®ion_info); 4284 std::ostringstream ostrm; 4285 4286 // start:3a50000,size:100000,permissions:rwx 4287 ostrm << "start:" << std::hex << region_info.addr << ';'; 4288 4289 if (region_info.size > 0) 4290 ostrm << "size:" << std::hex << region_info.size << ';'; 4291 4292 if (region_info.permissions) { 4293 ostrm << "permissions:"; 4294 4295 if (region_info.permissions & eMemoryPermissionsReadable) 4296 ostrm << 'r'; 4297 if (region_info.permissions & eMemoryPermissionsWritable) 4298 ostrm << 'w'; 4299 if (region_info.permissions & eMemoryPermissionsExecutable) 4300 ostrm << 'x'; 4301 ostrm << ';'; 4302 4303 ostrm << "dirty-pages:"; 4304 if (region_info.dirty_pages.size() > 0) { 4305 bool first = true; 4306 for (nub_addr_t addr : region_info.dirty_pages) { 4307 if (!first) 4308 ostrm << ","; 4309 first = false; 4310 ostrm << std::hex << addr; 4311 } 4312 } 4313 ostrm << ";"; 4314 if (!region_info.vm_types.empty()) { 4315 ostrm << "type:"; 4316 for (size_t i = 0; i < region_info.vm_types.size(); i++) { 4317 if (i) 4318 ostrm << ","; 4319 ostrm << region_info.vm_types[i]; 4320 } 4321 ostrm << ";"; 4322 } 4323 } 4324 return SendPacket(ostrm.str()); 4325 } 4326 4327 // qGetProfileData;scan_type:0xYYYYYYY 4328 rnb_err_t RNBRemote::HandlePacket_GetProfileData(const char *p) { 4329 nub_process_t pid = m_ctx.ProcessID(); 4330 if (pid == INVALID_NUB_PROCESS) 4331 return SendPacket("OK"); 4332 4333 StdStringExtractor packet(p += sizeof("qGetProfileData")); 4334 DNBProfileDataScanType scan_type = eProfileAll; 4335 std::string name; 4336 std::string value; 4337 while (packet.GetNameColonValue(name, value)) { 4338 if (name == "scan_type") { 4339 std::istringstream iss(value); 4340 uint32_t int_value = 0; 4341 if (iss >> std::hex >> int_value) { 4342 scan_type = (DNBProfileDataScanType)int_value; 4343 } 4344 } 4345 } 4346 4347 std::string data = DNBProcessGetProfileData(pid, scan_type); 4348 if (!data.empty()) { 4349 return SendPacket(data.c_str()); 4350 } else { 4351 return SendPacket("OK"); 4352 } 4353 } 4354 4355 // QSetEnableAsyncProfiling;enable:[0|1]:interval_usec:XXXXXX;scan_type:0xYYYYYYY 4356 rnb_err_t RNBRemote::HandlePacket_SetEnableAsyncProfiling(const char *p) { 4357 nub_process_t pid = m_ctx.ProcessID(); 4358 if (pid == INVALID_NUB_PROCESS) 4359 return SendPacket("OK"); 4360 4361 StdStringExtractor packet(p += sizeof("QSetEnableAsyncProfiling")); 4362 bool enable = false; 4363 uint64_t interval_usec = 0; 4364 DNBProfileDataScanType scan_type = eProfileAll; 4365 std::string name; 4366 std::string value; 4367 while (packet.GetNameColonValue(name, value)) { 4368 if (name == "enable") { 4369 enable = strtoul(value.c_str(), NULL, 10) > 0; 4370 } else if (name == "interval_usec") { 4371 interval_usec = strtoul(value.c_str(), NULL, 10); 4372 } else if (name == "scan_type") { 4373 std::istringstream iss(value); 4374 uint32_t int_value = 0; 4375 if (iss >> std::hex >> int_value) { 4376 scan_type = (DNBProfileDataScanType)int_value; 4377 } 4378 } 4379 } 4380 4381 if (interval_usec == 0) { 4382 enable = false; 4383 } 4384 4385 DNBProcessSetEnableAsyncProfiling(pid, enable, interval_usec, scan_type); 4386 return SendPacket("OK"); 4387 } 4388 4389 // QEnableCompression:type:<COMPRESSION-TYPE>;minsize:<MINIMUM PACKET SIZE TO 4390 // COMPRESS>; 4391 // 4392 // type: must be a type previously reported by the qXfer:features: 4393 // SupportedCompressions list 4394 // 4395 // minsize: is optional; by default the qXfer:features: 4396 // DefaultCompressionMinSize value is used 4397 // debugserver may have a better idea of what a good minimum packet size to 4398 // compress is than lldb. 4399 4400 rnb_err_t RNBRemote::HandlePacket_QEnableCompression(const char *p) { 4401 p += sizeof("QEnableCompression:") - 1; 4402 4403 size_t new_compression_minsize = m_compression_minsize; 4404 const char *new_compression_minsize_str = strstr(p, "minsize:"); 4405 if (new_compression_minsize_str) { 4406 new_compression_minsize_str += strlen("minsize:"); 4407 errno = 0; 4408 new_compression_minsize = strtoul(new_compression_minsize_str, NULL, 10); 4409 if (errno != 0 || new_compression_minsize == ULONG_MAX) { 4410 new_compression_minsize = m_compression_minsize; 4411 } 4412 } 4413 4414 if (strstr(p, "type:zlib-deflate;") != nullptr) { 4415 EnableCompressionNextSendPacket(compression_types::zlib_deflate); 4416 m_compression_minsize = new_compression_minsize; 4417 return SendPacket("OK"); 4418 } else if (strstr(p, "type:lz4;") != nullptr) { 4419 EnableCompressionNextSendPacket(compression_types::lz4); 4420 m_compression_minsize = new_compression_minsize; 4421 return SendPacket("OK"); 4422 } else if (strstr(p, "type:lzma;") != nullptr) { 4423 EnableCompressionNextSendPacket(compression_types::lzma); 4424 m_compression_minsize = new_compression_minsize; 4425 return SendPacket("OK"); 4426 } else if (strstr(p, "type:lzfse;") != nullptr) { 4427 EnableCompressionNextSendPacket(compression_types::lzfse); 4428 m_compression_minsize = new_compression_minsize; 4429 return SendPacket("OK"); 4430 } 4431 4432 return SendPacket("E88"); 4433 } 4434 4435 rnb_err_t RNBRemote::HandlePacket_qSpeedTest(const char *p) { 4436 p += strlen("qSpeedTest:response_size:"); 4437 char *end = NULL; 4438 errno = 0; 4439 uint64_t response_size = ::strtoul(p, &end, 16); 4440 if (errno != 0) 4441 return HandlePacket_ILLFORMED( 4442 __FILE__, __LINE__, p, 4443 "Didn't find response_size value at right offset"); 4444 else if (*end == ';') { 4445 static char g_data[4 * 1024 * 1024 + 16]; 4446 strcpy(g_data, "data:"); 4447 memset(g_data + 5, 'a', response_size); 4448 g_data[response_size + 5] = '\0'; 4449 return SendPacket(g_data); 4450 } else { 4451 return SendPacket("E79"); 4452 } 4453 } 4454 4455 rnb_err_t RNBRemote::HandlePacket_WatchpointSupportInfo(const char *p) { 4456 /* This packet simply returns the number of supported hardware watchpoints. 4457 4458 Examples of use: 4459 qWatchpointSupportInfo: 4460 num:4 4461 4462 qWatchpointSupportInfo 4463 OK // this packet is implemented by the remote nub 4464 */ 4465 4466 p += sizeof("qWatchpointSupportInfo") - 1; 4467 if (*p == '\0') 4468 return SendPacket("OK"); 4469 if (*p++ != ':') 4470 return SendPacket("E67"); 4471 4472 errno = 0; 4473 uint32_t num = DNBWatchpointGetNumSupportedHWP(m_ctx.ProcessID()); 4474 std::ostringstream ostrm; 4475 4476 // size:4 4477 ostrm << "num:" << std::dec << num << ';'; 4478 return SendPacket(ostrm.str()); 4479 } 4480 4481 /* 'C sig [;addr]' 4482 Resume with signal sig, optionally at address addr. */ 4483 4484 rnb_err_t RNBRemote::HandlePacket_C(const char *p) { 4485 const nub_process_t pid = m_ctx.ProcessID(); 4486 4487 if (pid == INVALID_NUB_PROCESS) 4488 return SendPacket("E36"); 4489 4490 DNBThreadResumeAction action = {INVALID_NUB_THREAD, eStateRunning, 0, 4491 INVALID_NUB_ADDRESS}; 4492 int process_signo = -1; 4493 if (*(p + 1) != '\0') { 4494 action.tid = GetContinueThread(); 4495 char *end = NULL; 4496 errno = 0; 4497 process_signo = static_cast<int>(strtoul(p + 1, &end, 16)); 4498 if (errno != 0) 4499 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4500 "Could not parse signal in C packet"); 4501 else if (*end == ';') { 4502 errno = 0; 4503 action.addr = strtoull(end + 1, NULL, 16); 4504 if (errno != 0 && action.addr == 0) 4505 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4506 "Could not parse address in C packet"); 4507 } 4508 } 4509 4510 DNBThreadResumeActions thread_actions; 4511 thread_actions.Append(action); 4512 thread_actions.SetDefaultThreadActionIfNeeded(eStateRunning, action.signal); 4513 if (!DNBProcessSignal(pid, process_signo)) 4514 return SendPacket("E52"); 4515 if (!DNBProcessResume(pid, thread_actions.GetFirst(), 4516 thread_actions.GetSize())) 4517 return SendPacket("E38"); 4518 /* Don't send an "OK" packet; response is the stopped/exited message. */ 4519 return rnb_success; 4520 } 4521 4522 // 'D' packet 4523 // Detach from gdb. 4524 rnb_err_t RNBRemote::HandlePacket_D(const char *p) { 4525 if (m_ctx.HasValidProcessID()) { 4526 DNBLog("detaching from pid %u due to D packet", m_ctx.ProcessID()); 4527 if (DNBProcessDetach(m_ctx.ProcessID())) 4528 SendPacket("OK"); 4529 else { 4530 DNBLog("error while detaching from pid %u due to D packet", 4531 m_ctx.ProcessID()); 4532 SendPacket("E"); 4533 } 4534 } else { 4535 SendPacket("E"); 4536 } 4537 return rnb_success; 4538 } 4539 4540 /* 'k' 4541 Kill the inferior process. */ 4542 4543 rnb_err_t RNBRemote::HandlePacket_k(const char *p) { 4544 DNBLog("Got a 'k' packet, killing the inferior process."); 4545 // No response to should be sent to the kill packet 4546 if (m_ctx.HasValidProcessID()) 4547 DNBProcessKill(m_ctx.ProcessID()); 4548 SendPacket("X09"); 4549 return rnb_success; 4550 } 4551 4552 rnb_err_t RNBRemote::HandlePacket_stop_process(const char *p) { 4553 //#define TEST_EXIT_ON_INTERRUPT // This should only be uncommented to test 4554 //exiting on interrupt 4555 #if defined(TEST_EXIT_ON_INTERRUPT) 4556 rnb_err_t err = HandlePacket_k(p); 4557 m_comm.Disconnect(true); 4558 return err; 4559 #else 4560 if (!DNBProcessInterrupt(m_ctx.ProcessID())) { 4561 // If we failed to interrupt the process, then send a stop 4562 // reply packet as the process was probably already stopped 4563 DNBLogThreaded("RNBRemote::HandlePacket_stop_process() sending extra stop " 4564 "reply because DNBProcessInterrupt returned false"); 4565 HandlePacket_last_signal(NULL); 4566 } 4567 return rnb_success; 4568 #endif 4569 } 4570 4571 /* 's' 4572 Step the inferior process. */ 4573 4574 rnb_err_t RNBRemote::HandlePacket_s(const char *p) { 4575 const nub_process_t pid = m_ctx.ProcessID(); 4576 if (pid == INVALID_NUB_PROCESS) 4577 return SendPacket("E32"); 4578 4579 // Hardware supported stepping not supported on arm 4580 nub_thread_t tid = GetContinueThread(); 4581 if (tid == 0 || tid == (nub_thread_t)-1) 4582 tid = GetCurrentThread(); 4583 4584 if (tid == INVALID_NUB_THREAD) 4585 return SendPacket("E33"); 4586 4587 DNBThreadResumeActions thread_actions; 4588 thread_actions.AppendAction(tid, eStateStepping); 4589 4590 // Make all other threads stop when we are stepping 4591 thread_actions.SetDefaultThreadActionIfNeeded(eStateStopped, 0); 4592 if (!DNBProcessResume(pid, thread_actions.GetFirst(), 4593 thread_actions.GetSize())) 4594 return SendPacket("E49"); 4595 // Don't send an "OK" packet; response is the stopped/exited message. 4596 return rnb_success; 4597 } 4598 4599 /* 'S sig [;addr]' 4600 Step with signal sig, optionally at address addr. */ 4601 4602 rnb_err_t RNBRemote::HandlePacket_S(const char *p) { 4603 const nub_process_t pid = m_ctx.ProcessID(); 4604 if (pid == INVALID_NUB_PROCESS) 4605 return SendPacket("E36"); 4606 4607 DNBThreadResumeAction action = {INVALID_NUB_THREAD, eStateStepping, 0, 4608 INVALID_NUB_ADDRESS}; 4609 4610 if (*(p + 1) != '\0') { 4611 char *end = NULL; 4612 errno = 0; 4613 action.signal = static_cast<int>(strtoul(p + 1, &end, 16)); 4614 if (errno != 0) 4615 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4616 "Could not parse signal in S packet"); 4617 else if (*end == ';') { 4618 errno = 0; 4619 action.addr = strtoull(end + 1, NULL, 16); 4620 if (errno != 0 && action.addr == 0) { 4621 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4622 "Could not parse address in S packet"); 4623 } 4624 } 4625 } 4626 4627 action.tid = GetContinueThread(); 4628 if (action.tid == 0 || action.tid == (nub_thread_t)-1) 4629 return SendPacket("E40"); 4630 4631 nub_state_t tstate = DNBThreadGetState(pid, action.tid); 4632 if (tstate == eStateInvalid || tstate == eStateExited) 4633 return SendPacket("E37"); 4634 4635 DNBThreadResumeActions thread_actions; 4636 thread_actions.Append(action); 4637 4638 // Make all other threads stop when we are stepping 4639 thread_actions.SetDefaultThreadActionIfNeeded(eStateStopped, 0); 4640 if (!DNBProcessResume(pid, thread_actions.GetFirst(), 4641 thread_actions.GetSize())) 4642 return SendPacket("E39"); 4643 4644 // Don't send an "OK" packet; response is the stopped/exited message. 4645 return rnb_success; 4646 } 4647 4648 static const char *GetArchName(const uint32_t cputype, 4649 const uint32_t cpusubtype) { 4650 switch (cputype) { 4651 case CPU_TYPE_ARM: 4652 switch (cpusubtype) { 4653 case 5: 4654 return "armv4"; 4655 case 6: 4656 return "armv6"; 4657 case 7: 4658 return "armv5t"; 4659 case 8: 4660 return "xscale"; 4661 case 9: 4662 return "armv7"; 4663 case 10: 4664 return "armv7f"; 4665 case 11: 4666 return "armv7s"; 4667 case 12: 4668 return "armv7k"; 4669 case 14: 4670 return "armv6m"; 4671 case 15: 4672 return "armv7m"; 4673 case 16: 4674 return "armv7em"; 4675 default: 4676 return "arm"; 4677 } 4678 break; 4679 case CPU_TYPE_ARM64: 4680 return "arm64"; 4681 case CPU_TYPE_ARM64_32: 4682 return "arm64_32"; 4683 case CPU_TYPE_I386: 4684 return "i386"; 4685 case CPU_TYPE_X86_64: 4686 switch (cpusubtype) { 4687 default: 4688 return "x86_64"; 4689 case 8: 4690 return "x86_64h"; 4691 } 4692 break; 4693 } 4694 return NULL; 4695 } 4696 4697 static bool GetHostCPUType(uint32_t &cputype, uint32_t &cpusubtype, 4698 uint32_t &is_64_bit_capable, bool &promoted_to_64) { 4699 static uint32_t g_host_cputype = 0; 4700 static uint32_t g_host_cpusubtype = 0; 4701 static uint32_t g_is_64_bit_capable = 0; 4702 static bool g_promoted_to_64 = false; 4703 4704 if (g_host_cputype == 0) { 4705 g_promoted_to_64 = false; 4706 size_t len = sizeof(uint32_t); 4707 if (::sysctlbyname("hw.cputype", &g_host_cputype, &len, NULL, 0) == 0) { 4708 len = sizeof(uint32_t); 4709 if (::sysctlbyname("hw.cpu64bit_capable", &g_is_64_bit_capable, &len, 4710 NULL, 0) == 0) { 4711 if (g_is_64_bit_capable && ((g_host_cputype & CPU_ARCH_ABI64) == 0)) { 4712 g_promoted_to_64 = true; 4713 g_host_cputype |= CPU_ARCH_ABI64; 4714 } 4715 } 4716 #if defined (TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 4717 if (g_host_cputype == CPU_TYPE_ARM64 && sizeof (void*) == 4) 4718 g_host_cputype = CPU_TYPE_ARM64_32; 4719 #endif 4720 } 4721 4722 len = sizeof(uint32_t); 4723 if (::sysctlbyname("hw.cpusubtype", &g_host_cpusubtype, &len, NULL, 0) == 4724 0) { 4725 if (g_promoted_to_64 && g_host_cputype == CPU_TYPE_X86_64 && 4726 g_host_cpusubtype == CPU_SUBTYPE_486) 4727 g_host_cpusubtype = CPU_SUBTYPE_X86_64_ALL; 4728 } 4729 #if defined (TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 4730 // on arm64_32 devices, the machine's native cpu type is 4731 // CPU_TYPE_ARM64 and subtype is 2 indicating arm64e. 4732 // But we change the cputype to CPU_TYPE_ARM64_32 because 4733 // the user processes are all ILP32 processes today. 4734 // We also need to rewrite the cpusubtype so we vend 4735 // a valid cputype + cpusubtype combination. 4736 if (g_host_cputype == CPU_TYPE_ARM64_32) 4737 g_host_cpusubtype = CPU_SUBTYPE_ARM64_32_V8; 4738 #endif 4739 } 4740 4741 cputype = g_host_cputype; 4742 cpusubtype = g_host_cpusubtype; 4743 is_64_bit_capable = g_is_64_bit_capable; 4744 promoted_to_64 = g_promoted_to_64; 4745 return g_host_cputype != 0; 4746 } 4747 4748 static bool GetAddressingBits(uint32_t &addressing_bits) { 4749 static uint32_t g_addressing_bits = 0; 4750 static bool g_tried_addressing_bits_syscall = false; 4751 if (g_tried_addressing_bits_syscall == false) { 4752 size_t len = sizeof (uint32_t); 4753 if (::sysctlbyname("machdep.virtual_address_size", 4754 &g_addressing_bits, &len, NULL, 0) != 0) { 4755 g_addressing_bits = 0; 4756 } 4757 } 4758 g_tried_addressing_bits_syscall = true; 4759 addressing_bits = g_addressing_bits; 4760 if (addressing_bits > 0) 4761 return true; 4762 else 4763 return false; 4764 } 4765 4766 rnb_err_t RNBRemote::HandlePacket_qHostInfo(const char *p) { 4767 std::ostringstream strm; 4768 4769 uint32_t cputype = 0; 4770 uint32_t cpusubtype = 0; 4771 uint32_t is_64_bit_capable = 0; 4772 bool promoted_to_64 = false; 4773 if (GetHostCPUType(cputype, cpusubtype, is_64_bit_capable, promoted_to_64)) { 4774 strm << "cputype:" << std::dec << cputype << ';'; 4775 strm << "cpusubtype:" << std::dec << cpusubtype << ';'; 4776 } 4777 4778 uint32_t addressing_bits = 0; 4779 if (GetAddressingBits(addressing_bits)) { 4780 strm << "addressing_bits:" << std::dec << addressing_bits << ';'; 4781 } 4782 4783 // The OS in the triple should be "ios" or "macosx" which doesn't match our 4784 // "Darwin" which gets returned from "kern.ostype", so we need to hardcode 4785 // this for now. 4786 if (cputype == CPU_TYPE_ARM || cputype == CPU_TYPE_ARM64 4787 || cputype == CPU_TYPE_ARM64_32) { 4788 #if defined(TARGET_OS_TV) && TARGET_OS_TV == 1 4789 strm << "ostype:tvos;"; 4790 #elif defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 4791 strm << "ostype:watchos;"; 4792 #elif defined(TARGET_OS_BRIDGE) && TARGET_OS_BRIDGE == 1 4793 strm << "ostype:bridgeos;"; 4794 #elif defined(TARGET_OS_OSX) && TARGET_OS_OSX == 1 4795 strm << "ostype:macosx;"; 4796 #else 4797 strm << "ostype:ios;"; 4798 #endif 4799 4800 // On armv7 we use "synchronous" watchpoints which means the exception is 4801 // delivered before the instruction executes. 4802 strm << "watchpoint_exceptions_received:before;"; 4803 } else { 4804 strm << "ostype:macosx;"; 4805 strm << "watchpoint_exceptions_received:after;"; 4806 } 4807 // char ostype[64]; 4808 // len = sizeof(ostype); 4809 // if (::sysctlbyname("kern.ostype", &ostype, &len, NULL, 0) == 0) 4810 // { 4811 // len = strlen(ostype); 4812 // std::transform (ostype, ostype + len, ostype, tolower); 4813 // strm << "ostype:" << std::dec << ostype << ';'; 4814 // } 4815 4816 strm << "vendor:apple;"; 4817 4818 uint64_t major, minor, patch; 4819 if (DNBGetOSVersionNumbers(&major, &minor, &patch)) { 4820 strm << "os_version:" << major << "." << minor; 4821 if (patch != UINT64_MAX) 4822 strm << "." << patch; 4823 strm << ";"; 4824 } 4825 4826 std::string maccatalyst_version = DNBGetMacCatalystVersionString(); 4827 if (!maccatalyst_version.empty() && 4828 std::all_of(maccatalyst_version.begin(), maccatalyst_version.end(), 4829 [](char c) { return (c >= '0' && c <= '9') || c == '.'; })) 4830 strm << "maccatalyst_version:" << maccatalyst_version << ";"; 4831 4832 #if defined(__LITTLE_ENDIAN__) 4833 strm << "endian:little;"; 4834 #elif defined(__BIG_ENDIAN__) 4835 strm << "endian:big;"; 4836 #elif defined(__PDP_ENDIAN__) 4837 strm << "endian:pdp;"; 4838 #endif 4839 4840 if (promoted_to_64) 4841 strm << "ptrsize:8;"; 4842 else 4843 strm << "ptrsize:" << std::dec << sizeof(void *) << ';'; 4844 4845 #if defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 4846 strm << "default_packet_timeout:10;"; 4847 #endif 4848 4849 strm << "vm-page-size:" << std::dec << vm_page_size << ";"; 4850 4851 return SendPacket(strm.str()); 4852 } 4853 4854 void XMLElementStart(std::ostringstream &s, uint32_t indent, const char *name, 4855 bool has_attributes) { 4856 if (indent) 4857 s << INDENT_WITH_SPACES(indent); 4858 s << '<' << name; 4859 if (!has_attributes) 4860 s << '>' << std::endl; 4861 } 4862 4863 void XMLElementStartEndAttributes(std::ostringstream &s, bool empty) { 4864 if (empty) 4865 s << '/'; 4866 s << '>' << std::endl; 4867 } 4868 4869 void XMLElementEnd(std::ostringstream &s, uint32_t indent, const char *name) { 4870 if (indent) 4871 s << INDENT_WITH_SPACES(indent); 4872 s << '<' << '/' << name << '>' << std::endl; 4873 } 4874 4875 void XMLElementWithStringValue(std::ostringstream &s, uint32_t indent, 4876 const char *name, const char *value, 4877 bool close = true) { 4878 if (value) { 4879 if (indent) 4880 s << INDENT_WITH_SPACES(indent); 4881 s << '<' << name << '>' << value; 4882 if (close) 4883 XMLElementEnd(s, 0, name); 4884 } 4885 } 4886 4887 void XMLElementWithUnsignedValue(std::ostringstream &s, uint32_t indent, 4888 const char *name, uint64_t value, 4889 bool close = true) { 4890 if (indent) 4891 s << INDENT_WITH_SPACES(indent); 4892 4893 s << '<' << name << '>' << DECIMAL << value; 4894 if (close) 4895 XMLElementEnd(s, 0, name); 4896 } 4897 4898 void XMLAttributeString(std::ostringstream &s, const char *name, 4899 const char *value, const char *default_value = NULL) { 4900 if (value) { 4901 if (default_value && strcmp(value, default_value) == 0) 4902 return; // No need to emit the attribute because it matches the default 4903 // value 4904 s << ' ' << name << "=\"" << value << "\""; 4905 } 4906 } 4907 4908 void XMLAttributeUnsignedDecimal(std::ostringstream &s, const char *name, 4909 uint64_t value) { 4910 s << ' ' << name << "=\"" << DECIMAL << value << "\""; 4911 } 4912 4913 void GenerateTargetXMLRegister(std::ostringstream &s, const uint32_t reg_num, 4914 nub_size_t num_reg_sets, 4915 const DNBRegisterSetInfo *reg_set_info, 4916 const register_map_entry_t ®) { 4917 const char *default_lldb_encoding = "uint"; 4918 const char *lldb_encoding = default_lldb_encoding; 4919 const char *gdb_group = "general"; 4920 const char *default_gdb_type = "int"; 4921 const char *gdb_type = default_gdb_type; 4922 const char *default_lldb_format = "hex"; 4923 const char *lldb_format = default_lldb_format; 4924 const char *lldb_set = NULL; 4925 4926 switch (reg.nub_info.type) { 4927 case Uint: 4928 lldb_encoding = "uint"; 4929 break; 4930 case Sint: 4931 lldb_encoding = "sint"; 4932 break; 4933 case IEEE754: 4934 lldb_encoding = "ieee754"; 4935 if (reg.nub_info.set > 0) 4936 gdb_group = "float"; 4937 break; 4938 case Vector: 4939 lldb_encoding = "vector"; 4940 if (reg.nub_info.set > 0) 4941 gdb_group = "vector"; 4942 break; 4943 } 4944 4945 switch (reg.nub_info.format) { 4946 case Binary: 4947 lldb_format = "binary"; 4948 break; 4949 case Decimal: 4950 lldb_format = "decimal"; 4951 break; 4952 case Hex: 4953 lldb_format = "hex"; 4954 break; 4955 case Float: 4956 gdb_type = "float"; 4957 lldb_format = "float"; 4958 break; 4959 case VectorOfSInt8: 4960 gdb_type = "float"; 4961 lldb_format = "vector-sint8"; 4962 break; 4963 case VectorOfUInt8: 4964 gdb_type = "float"; 4965 lldb_format = "vector-uint8"; 4966 break; 4967 case VectorOfSInt16: 4968 gdb_type = "float"; 4969 lldb_format = "vector-sint16"; 4970 break; 4971 case VectorOfUInt16: 4972 gdb_type = "float"; 4973 lldb_format = "vector-uint16"; 4974 break; 4975 case VectorOfSInt32: 4976 gdb_type = "float"; 4977 lldb_format = "vector-sint32"; 4978 break; 4979 case VectorOfUInt32: 4980 gdb_type = "float"; 4981 lldb_format = "vector-uint32"; 4982 break; 4983 case VectorOfFloat32: 4984 gdb_type = "float"; 4985 lldb_format = "vector-float32"; 4986 break; 4987 case VectorOfUInt128: 4988 gdb_type = "float"; 4989 lldb_format = "vector-uint128"; 4990 break; 4991 }; 4992 if (reg_set_info && reg.nub_info.set < num_reg_sets) 4993 lldb_set = reg_set_info[reg.nub_info.set].name; 4994 4995 uint32_t indent = 2; 4996 4997 XMLElementStart(s, indent, "reg", true); 4998 XMLAttributeString(s, "name", reg.nub_info.name); 4999 XMLAttributeUnsignedDecimal(s, "regnum", reg_num); 5000 XMLAttributeUnsignedDecimal(s, "offset", reg.offset); 5001 XMLAttributeUnsignedDecimal(s, "bitsize", reg.nub_info.size * 8); 5002 XMLAttributeString(s, "group", gdb_group); 5003 XMLAttributeString(s, "type", gdb_type, default_gdb_type); 5004 XMLAttributeString(s, "altname", reg.nub_info.alt); 5005 XMLAttributeString(s, "encoding", lldb_encoding, default_lldb_encoding); 5006 XMLAttributeString(s, "format", lldb_format, default_lldb_format); 5007 XMLAttributeUnsignedDecimal(s, "group_id", reg.nub_info.set); 5008 if (reg.nub_info.reg_ehframe != INVALID_NUB_REGNUM) 5009 XMLAttributeUnsignedDecimal(s, "ehframe_regnum", reg.nub_info.reg_ehframe); 5010 if (reg.nub_info.reg_dwarf != INVALID_NUB_REGNUM) 5011 XMLAttributeUnsignedDecimal(s, "dwarf_regnum", reg.nub_info.reg_dwarf); 5012 5013 const char *lldb_generic = NULL; 5014 switch (reg.nub_info.reg_generic) { 5015 case GENERIC_REGNUM_FP: 5016 lldb_generic = "fp"; 5017 break; 5018 case GENERIC_REGNUM_PC: 5019 lldb_generic = "pc"; 5020 break; 5021 case GENERIC_REGNUM_SP: 5022 lldb_generic = "sp"; 5023 break; 5024 case GENERIC_REGNUM_RA: 5025 lldb_generic = "ra"; 5026 break; 5027 case GENERIC_REGNUM_FLAGS: 5028 lldb_generic = "flags"; 5029 break; 5030 case GENERIC_REGNUM_ARG1: 5031 lldb_generic = "arg1"; 5032 break; 5033 case GENERIC_REGNUM_ARG2: 5034 lldb_generic = "arg2"; 5035 break; 5036 case GENERIC_REGNUM_ARG3: 5037 lldb_generic = "arg3"; 5038 break; 5039 case GENERIC_REGNUM_ARG4: 5040 lldb_generic = "arg4"; 5041 break; 5042 case GENERIC_REGNUM_ARG5: 5043 lldb_generic = "arg5"; 5044 break; 5045 case GENERIC_REGNUM_ARG6: 5046 lldb_generic = "arg6"; 5047 break; 5048 case GENERIC_REGNUM_ARG7: 5049 lldb_generic = "arg7"; 5050 break; 5051 case GENERIC_REGNUM_ARG8: 5052 lldb_generic = "arg8"; 5053 break; 5054 default: 5055 break; 5056 } 5057 XMLAttributeString(s, "generic", lldb_generic); 5058 5059 bool empty = reg.value_regnums.empty() && reg.invalidate_regnums.empty(); 5060 if (!empty) { 5061 if (!reg.value_regnums.empty()) { 5062 std::ostringstream regnums; 5063 bool first = true; 5064 regnums << DECIMAL; 5065 for (auto regnum : reg.value_regnums) { 5066 if (!first) 5067 regnums << ','; 5068 regnums << regnum; 5069 first = false; 5070 } 5071 XMLAttributeString(s, "value_regnums", regnums.str().c_str()); 5072 } 5073 5074 if (!reg.invalidate_regnums.empty()) { 5075 std::ostringstream regnums; 5076 bool first = true; 5077 regnums << DECIMAL; 5078 for (auto regnum : reg.invalidate_regnums) { 5079 if (!first) 5080 regnums << ','; 5081 regnums << regnum; 5082 first = false; 5083 } 5084 XMLAttributeString(s, "invalidate_regnums", regnums.str().c_str()); 5085 } 5086 } 5087 XMLElementStartEndAttributes(s, true); 5088 } 5089 5090 void GenerateTargetXMLRegisters(std::ostringstream &s) { 5091 nub_size_t num_reg_sets = 0; 5092 const DNBRegisterSetInfo *reg_sets = DNBGetRegisterSetInfo(&num_reg_sets); 5093 5094 uint32_t cputype = DNBGetRegisterCPUType(); 5095 if (cputype) { 5096 XMLElementStart(s, 0, "feature", true); 5097 std::ostringstream name_strm; 5098 name_strm << "com.apple.debugserver." << GetArchName(cputype, 0); 5099 XMLAttributeString(s, "name", name_strm.str().c_str()); 5100 XMLElementStartEndAttributes(s, false); 5101 for (uint32_t reg_num = 0; reg_num < g_num_reg_entries; ++reg_num) 5102 // for (const auto ®: g_dynamic_register_map) 5103 { 5104 GenerateTargetXMLRegister(s, reg_num, num_reg_sets, reg_sets, 5105 g_reg_entries[reg_num]); 5106 } 5107 XMLElementEnd(s, 0, "feature"); 5108 5109 if (num_reg_sets > 0) { 5110 XMLElementStart(s, 0, "groups", false); 5111 for (uint32_t set = 1; set < num_reg_sets; ++set) { 5112 XMLElementStart(s, 2, "group", true); 5113 XMLAttributeUnsignedDecimal(s, "id", set); 5114 XMLAttributeString(s, "name", reg_sets[set].name); 5115 XMLElementStartEndAttributes(s, true); 5116 } 5117 XMLElementEnd(s, 0, "groups"); 5118 } 5119 } 5120 } 5121 5122 static const char *g_target_xml_header = R"(<?xml version="1.0"?> 5123 <target version="1.0">)"; 5124 5125 static const char *g_target_xml_footer = "</target>"; 5126 5127 static std::string g_target_xml; 5128 5129 void UpdateTargetXML() { 5130 std::ostringstream s; 5131 s << g_target_xml_header << std::endl; 5132 5133 // Set the architecture 5134 // 5135 // On raw targets (no OS, vendor info), I've seen replies like 5136 // <architecture>i386:x86-64</architecture> (for x86_64 systems - from vmware) 5137 // <architecture>arm</architecture> (for an unspecified arm device - from a Segger JLink) 5138 // For good interop, I'm not sure what's expected here. e.g. will anyone understand 5139 // <architecture>x86_64</architecture> ? Or is i386:x86_64 the expected phrasing? 5140 // 5141 // s << "<architecture>" << arch "</architecture>" << std::endl; 5142 5143 // Set the OSABI 5144 // s << "<osabi>abi-name</osabi>" 5145 5146 GenerateTargetXMLRegisters(s); 5147 5148 s << g_target_xml_footer << std::endl; 5149 5150 // Save the XML output in case it gets retrieved in chunks 5151 g_target_xml = s.str(); 5152 } 5153 5154 rnb_err_t RNBRemote::HandlePacket_qXfer(const char *command) { 5155 const char *p = command; 5156 p += strlen("qXfer:"); 5157 const char *sep = strchr(p, ':'); 5158 if (sep) { 5159 std::string object(p, sep - p); // "auxv", "backtrace", "features", etc 5160 p = sep + 1; 5161 sep = strchr(p, ':'); 5162 if (sep) { 5163 std::string rw(p, sep - p); // "read" or "write" 5164 p = sep + 1; 5165 sep = strchr(p, ':'); 5166 if (sep) { 5167 std::string annex(p, sep - p); // "read" or "write" 5168 5169 p = sep + 1; 5170 sep = strchr(p, ','); 5171 if (sep) { 5172 std::string offset_str(p, sep - p); // read the length as a string 5173 p = sep + 1; 5174 std::string length_str(p); // read the offset as a string 5175 char *end = nullptr; 5176 const uint64_t offset = strtoul(offset_str.c_str(), &end, 5177 16); // convert offset_str to a offset 5178 if (*end == '\0') { 5179 const uint64_t length = strtoul( 5180 length_str.c_str(), &end, 16); // convert length_str to a length 5181 if (*end == '\0') { 5182 if (object == "features" && rw == "read" && 5183 annex == "target.xml") { 5184 std::ostringstream xml_out; 5185 5186 if (offset == 0) { 5187 InitializeRegisters(true); 5188 5189 UpdateTargetXML(); 5190 if (g_target_xml.empty()) 5191 return SendPacket("E83"); 5192 5193 if (length > g_target_xml.size()) { 5194 xml_out << 'l'; // No more data 5195 xml_out << binary_encode_string(g_target_xml); 5196 } else { 5197 xml_out << 'm'; // More data needs to be read with a 5198 // subsequent call 5199 xml_out << binary_encode_string( 5200 std::string(g_target_xml, offset, length)); 5201 } 5202 } else { 5203 // Retrieving target XML in chunks 5204 if (offset < g_target_xml.size()) { 5205 std::string chunk(g_target_xml, offset, length); 5206 if (chunk.size() < length) 5207 xml_out << 'l'; // No more data 5208 else 5209 xml_out << 'm'; // More data needs to be read with a 5210 // subsequent call 5211 xml_out << binary_encode_string(chunk.data()); 5212 } 5213 } 5214 return SendPacket(xml_out.str()); 5215 } 5216 // Well formed, put not supported 5217 return HandlePacket_UNIMPLEMENTED(command); 5218 } 5219 } 5220 } 5221 } else { 5222 SendPacket("E85"); 5223 } 5224 } else { 5225 SendPacket("E86"); 5226 } 5227 } 5228 return SendPacket("E82"); 5229 } 5230 5231 rnb_err_t RNBRemote::HandlePacket_qGDBServerVersion(const char *p) { 5232 std::ostringstream strm; 5233 5234 #if defined(DEBUGSERVER_PROGRAM_NAME) 5235 strm << "name:" DEBUGSERVER_PROGRAM_NAME ";"; 5236 #else 5237 strm << "name:debugserver;"; 5238 #endif 5239 strm << "version:" << DEBUGSERVER_VERSION_NUM << ";"; 5240 5241 return SendPacket(strm.str()); 5242 } 5243 5244 // A helper function that retrieves a single integer value from 5245 // a one-level-deep JSON dictionary of key-value pairs. e.g. 5246 // jThreadExtendedInfo:{"plo_pthread_tsd_base_address_offset":0,"plo_pthread_tsd_base_offset":224,"plo_pthread_tsd_entry_size":8,"thread":144305}] 5247 // 5248 uint64_t get_integer_value_for_key_name_from_json(const char *key, 5249 const char *json_string) { 5250 uint64_t retval = INVALID_NUB_ADDRESS; 5251 std::string key_with_quotes = "\""; 5252 key_with_quotes += key; 5253 key_with_quotes += "\""; 5254 const char *c = strstr(json_string, key_with_quotes.c_str()); 5255 if (c) { 5256 c += key_with_quotes.size(); 5257 5258 while (*c != '\0' && (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5259 c++; 5260 5261 if (*c == ':') { 5262 c++; 5263 5264 while (*c != '\0' && 5265 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5266 c++; 5267 5268 errno = 0; 5269 retval = strtoul(c, NULL, 10); 5270 if (errno != 0) { 5271 retval = INVALID_NUB_ADDRESS; 5272 } 5273 } 5274 } 5275 return retval; 5276 } 5277 5278 // A helper function that retrieves a boolean value from 5279 // a one-level-deep JSON dictionary of key-value pairs. e.g. 5280 // jGetLoadedDynamicLibrariesInfos:{"fetch_all_solibs":true}] 5281 5282 // Returns true if it was able to find the key name, and sets the 'value' 5283 // argument to the value found. 5284 5285 bool get_boolean_value_for_key_name_from_json(const char *key, 5286 const char *json_string, 5287 bool &value) { 5288 std::string key_with_quotes = "\""; 5289 key_with_quotes += key; 5290 key_with_quotes += "\""; 5291 const char *c = strstr(json_string, key_with_quotes.c_str()); 5292 if (c) { 5293 c += key_with_quotes.size(); 5294 5295 while (*c != '\0' && (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5296 c++; 5297 5298 if (*c == ':') { 5299 c++; 5300 5301 while (*c != '\0' && 5302 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5303 c++; 5304 5305 if (strncmp(c, "true", 4) == 0) { 5306 value = true; 5307 return true; 5308 } else if (strncmp(c, "false", 5) == 0) { 5309 value = false; 5310 return true; 5311 } 5312 } 5313 } 5314 return false; 5315 } 5316 5317 // A helper function that reads an array of uint64_t's from 5318 // a one-level-deep JSON dictionary of key-value pairs. e.g. 5319 // jGetLoadedDynamicLibrariesInfos:{"solib_addrs":[31345823,7768020384,7310483024]}] 5320 5321 // Returns true if it was able to find the key name, false if it did not. 5322 // "ints" will have all integers found in the array appended to it. 5323 5324 bool get_array_of_ints_value_for_key_name_from_json( 5325 const char *key, const char *json_string, std::vector<uint64_t> &ints) { 5326 std::string key_with_quotes = "\""; 5327 key_with_quotes += key; 5328 key_with_quotes += "\""; 5329 const char *c = strstr(json_string, key_with_quotes.c_str()); 5330 if (c) { 5331 c += key_with_quotes.size(); 5332 5333 while (*c != '\0' && (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5334 c++; 5335 5336 if (*c == ':') { 5337 c++; 5338 5339 while (*c != '\0' && 5340 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5341 c++; 5342 5343 if (*c == '[') { 5344 c++; 5345 while (*c != '\0' && 5346 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5347 c++; 5348 while (true) { 5349 if (!isdigit(*c)) { 5350 return true; 5351 } 5352 5353 errno = 0; 5354 char *endptr; 5355 uint64_t value = strtoul(c, &endptr, 10); 5356 if (errno == 0) { 5357 ints.push_back(value); 5358 } else { 5359 break; 5360 } 5361 if (endptr == c || endptr == nullptr || *endptr == '\0') { 5362 break; 5363 } 5364 c = endptr; 5365 5366 while (*c != '\0' && 5367 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5368 c++; 5369 if (*c == ',') 5370 c++; 5371 while (*c != '\0' && 5372 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5373 c++; 5374 if (*c == ']') { 5375 return true; 5376 } 5377 } 5378 } 5379 } 5380 } 5381 return false; 5382 } 5383 5384 JSONGenerator::ObjectSP 5385 RNBRemote::GetJSONThreadsInfo(bool threads_with_valid_stop_info_only) { 5386 JSONGenerator::ArraySP threads_array_sp; 5387 if (m_ctx.HasValidProcessID()) { 5388 threads_array_sp = std::make_shared<JSONGenerator::Array>(); 5389 5390 nub_process_t pid = m_ctx.ProcessID(); 5391 5392 nub_size_t numthreads = DNBProcessGetNumThreads(pid); 5393 for (nub_size_t i = 0; i < numthreads; ++i) { 5394 nub_thread_t tid = DNBProcessGetThreadAtIndex(pid, i); 5395 5396 struct DNBThreadStopInfo tid_stop_info; 5397 5398 const bool stop_info_valid = 5399 DNBThreadGetStopReason(pid, tid, &tid_stop_info); 5400 5401 // If we are doing stop info only, then we only show threads that have a 5402 // valid stop reason 5403 if (threads_with_valid_stop_info_only) { 5404 if (!stop_info_valid || tid_stop_info.reason == eStopTypeInvalid) 5405 continue; 5406 } 5407 5408 JSONGenerator::DictionarySP thread_dict_sp( 5409 new JSONGenerator::Dictionary()); 5410 thread_dict_sp->AddIntegerItem("tid", tid); 5411 5412 std::string reason_value("none"); 5413 5414 if (stop_info_valid) { 5415 switch (tid_stop_info.reason) { 5416 case eStopTypeInvalid: 5417 break; 5418 5419 case eStopTypeSignal: 5420 if (tid_stop_info.details.signal.signo != 0) { 5421 thread_dict_sp->AddIntegerItem("signal", 5422 tid_stop_info.details.signal.signo); 5423 reason_value = "signal"; 5424 } 5425 break; 5426 5427 case eStopTypeException: 5428 if (tid_stop_info.details.exception.type != 0) { 5429 reason_value = "exception"; 5430 thread_dict_sp->AddIntegerItem( 5431 "metype", tid_stop_info.details.exception.type); 5432 JSONGenerator::ArraySP medata_array_sp(new JSONGenerator::Array()); 5433 for (nub_size_t i = 0; 5434 i < tid_stop_info.details.exception.data_count; ++i) { 5435 medata_array_sp->AddItem( 5436 JSONGenerator::IntegerSP(new JSONGenerator::Integer( 5437 tid_stop_info.details.exception.data[i]))); 5438 } 5439 thread_dict_sp->AddItem("medata", medata_array_sp); 5440 } 5441 break; 5442 5443 case eStopTypeExec: 5444 reason_value = "exec"; 5445 break; 5446 } 5447 } 5448 5449 thread_dict_sp->AddStringItem("reason", reason_value); 5450 5451 if (!threads_with_valid_stop_info_only) { 5452 const char *thread_name = DNBThreadGetName(pid, tid); 5453 if (thread_name && thread_name[0]) 5454 thread_dict_sp->AddStringItem("name", thread_name); 5455 5456 thread_identifier_info_data_t thread_ident_info; 5457 if (DNBThreadGetIdentifierInfo(pid, tid, &thread_ident_info)) { 5458 if (thread_ident_info.dispatch_qaddr != 0) { 5459 thread_dict_sp->AddIntegerItem("qaddr", 5460 thread_ident_info.dispatch_qaddr); 5461 5462 const DispatchQueueOffsets *dispatch_queue_offsets = 5463 GetDispatchQueueOffsets(); 5464 if (dispatch_queue_offsets) { 5465 std::string queue_name; 5466 uint64_t queue_width = 0; 5467 uint64_t queue_serialnum = 0; 5468 nub_addr_t dispatch_queue_t = INVALID_NUB_ADDRESS; 5469 dispatch_queue_offsets->GetThreadQueueInfo( 5470 pid, thread_ident_info.dispatch_qaddr, dispatch_queue_t, 5471 queue_name, queue_width, queue_serialnum); 5472 if (dispatch_queue_t == 0 && queue_name.empty() && 5473 queue_serialnum == 0) { 5474 thread_dict_sp->AddBooleanItem("associated_with_dispatch_queue", 5475 false); 5476 } else { 5477 thread_dict_sp->AddBooleanItem("associated_with_dispatch_queue", 5478 true); 5479 } 5480 if (dispatch_queue_t != INVALID_NUB_ADDRESS && 5481 dispatch_queue_t != 0) 5482 thread_dict_sp->AddIntegerItem("dispatch_queue_t", 5483 dispatch_queue_t); 5484 if (!queue_name.empty()) 5485 thread_dict_sp->AddStringItem("qname", queue_name); 5486 if (queue_width == 1) 5487 thread_dict_sp->AddStringItem("qkind", "serial"); 5488 else if (queue_width > 1) 5489 thread_dict_sp->AddStringItem("qkind", "concurrent"); 5490 if (queue_serialnum > 0) 5491 thread_dict_sp->AddIntegerItem("qserialnum", queue_serialnum); 5492 } 5493 } 5494 } 5495 5496 DNBRegisterValue reg_value; 5497 5498 if (g_reg_entries != NULL) { 5499 JSONGenerator::DictionarySP registers_dict_sp( 5500 new JSONGenerator::Dictionary()); 5501 5502 for (uint32_t reg = 0; reg < g_num_reg_entries; reg++) { 5503 // Expedite all registers in the first register set that aren't 5504 // contained in other registers 5505 if (g_reg_entries[reg].nub_info.set == 1 && 5506 g_reg_entries[reg].nub_info.value_regs == NULL) { 5507 if (!DNBThreadGetRegisterValueByID( 5508 pid, tid, g_reg_entries[reg].nub_info.set, 5509 g_reg_entries[reg].nub_info.reg, ®_value)) 5510 continue; 5511 5512 std::ostringstream reg_num; 5513 reg_num << std::dec << g_reg_entries[reg].debugserver_regnum; 5514 // Encode native byte ordered bytes as hex ascii 5515 registers_dict_sp->AddBytesAsHexASCIIString( 5516 reg_num.str(), reg_value.value.v_uint8, 5517 g_reg_entries[reg].nub_info.size); 5518 } 5519 } 5520 thread_dict_sp->AddItem("registers", registers_dict_sp); 5521 } 5522 5523 // Add expedited stack memory so stack backtracing doesn't need to read 5524 // anything from the 5525 // frame pointer chain. 5526 StackMemoryMap stack_mmap; 5527 ReadStackMemory(pid, tid, stack_mmap); 5528 if (!stack_mmap.empty()) { 5529 JSONGenerator::ArraySP memory_array_sp(new JSONGenerator::Array()); 5530 5531 for (const auto &stack_memory : stack_mmap) { 5532 JSONGenerator::DictionarySP stack_memory_sp( 5533 new JSONGenerator::Dictionary()); 5534 stack_memory_sp->AddIntegerItem("address", stack_memory.first); 5535 stack_memory_sp->AddBytesAsHexASCIIString( 5536 "bytes", stack_memory.second.bytes, stack_memory.second.length); 5537 memory_array_sp->AddItem(stack_memory_sp); 5538 } 5539 thread_dict_sp->AddItem("memory", memory_array_sp); 5540 } 5541 } 5542 5543 threads_array_sp->AddItem(thread_dict_sp); 5544 } 5545 } 5546 return threads_array_sp; 5547 } 5548 5549 rnb_err_t RNBRemote::HandlePacket_jThreadsInfo(const char *p) { 5550 JSONGenerator::ObjectSP threads_info_sp; 5551 std::ostringstream json; 5552 std::ostringstream reply_strm; 5553 // If we haven't run the process yet, return an error. 5554 if (m_ctx.HasValidProcessID()) { 5555 const bool threads_with_valid_stop_info_only = false; 5556 JSONGenerator::ObjectSP threads_info_sp = 5557 GetJSONThreadsInfo(threads_with_valid_stop_info_only); 5558 5559 if (threads_info_sp) { 5560 std::ostringstream strm; 5561 threads_info_sp->Dump(strm); 5562 std::string binary_packet = binary_encode_string(strm.str()); 5563 if (!binary_packet.empty()) 5564 return SendPacket(binary_packet.c_str()); 5565 } 5566 } 5567 return SendPacket("E85"); 5568 } 5569 5570 rnb_err_t RNBRemote::HandlePacket_jThreadExtendedInfo(const char *p) { 5571 nub_process_t pid; 5572 std::ostringstream json; 5573 // If we haven't run the process yet, return an error. 5574 if (!m_ctx.HasValidProcessID()) { 5575 return SendPacket("E81"); 5576 } 5577 5578 pid = m_ctx.ProcessID(); 5579 5580 const char thread_extended_info_str[] = {"jThreadExtendedInfo:{"}; 5581 if (strncmp(p, thread_extended_info_str, 5582 sizeof(thread_extended_info_str) - 1) == 0) { 5583 p += strlen(thread_extended_info_str); 5584 5585 uint64_t tid = get_integer_value_for_key_name_from_json("thread", p); 5586 uint64_t plo_pthread_tsd_base_address_offset = 5587 get_integer_value_for_key_name_from_json( 5588 "plo_pthread_tsd_base_address_offset", p); 5589 uint64_t plo_pthread_tsd_base_offset = 5590 get_integer_value_for_key_name_from_json("plo_pthread_tsd_base_offset", 5591 p); 5592 uint64_t plo_pthread_tsd_entry_size = 5593 get_integer_value_for_key_name_from_json("plo_pthread_tsd_entry_size", 5594 p); 5595 uint64_t dti_qos_class_index = 5596 get_integer_value_for_key_name_from_json("dti_qos_class_index", p); 5597 5598 if (tid != INVALID_NUB_ADDRESS) { 5599 nub_addr_t pthread_t_value = DNBGetPThreadT(pid, tid); 5600 5601 uint64_t tsd_address = INVALID_NUB_ADDRESS; 5602 if (plo_pthread_tsd_entry_size != INVALID_NUB_ADDRESS && 5603 plo_pthread_tsd_base_offset != INVALID_NUB_ADDRESS && 5604 plo_pthread_tsd_entry_size != INVALID_NUB_ADDRESS) { 5605 tsd_address = DNBGetTSDAddressForThread( 5606 pid, tid, plo_pthread_tsd_base_address_offset, 5607 plo_pthread_tsd_base_offset, plo_pthread_tsd_entry_size); 5608 } 5609 5610 bool timed_out = false; 5611 Genealogy::ThreadActivitySP thread_activity_sp; 5612 5613 // If the pthread_t value is invalid, or if we were able to fetch the 5614 // thread's TSD base 5615 // and got an invalid value back, then we have a thread in early startup 5616 // or shutdown and 5617 // it's possible that gathering the genealogy information for this thread 5618 // go badly. 5619 // Ideally fetching this info for a thread in these odd states shouldn't 5620 // matter - but 5621 // we've seen some problems with these new SPI and threads in edge-casey 5622 // states. 5623 5624 double genealogy_fetch_time = 0; 5625 if (pthread_t_value != INVALID_NUB_ADDRESS && 5626 tsd_address != INVALID_NUB_ADDRESS) { 5627 DNBTimer timer(false); 5628 thread_activity_sp = DNBGetGenealogyInfoForThread(pid, tid, timed_out); 5629 genealogy_fetch_time = timer.ElapsedMicroSeconds(false) / 1000000.0; 5630 } 5631 5632 std::unordered_set<uint32_t> 5633 process_info_indexes; // an array of the process info #'s seen 5634 5635 json << "{"; 5636 5637 bool need_to_print_comma = false; 5638 5639 if (thread_activity_sp && !timed_out) { 5640 const Genealogy::Activity *activity = 5641 &thread_activity_sp->current_activity; 5642 bool need_vouchers_comma_sep = false; 5643 json << "\"activity_query_timed_out\":false,"; 5644 if (genealogy_fetch_time != 0) { 5645 // If we append the floating point value with << we'll get it in 5646 // scientific 5647 // notation. 5648 char floating_point_ascii_buffer[64]; 5649 floating_point_ascii_buffer[0] = '\0'; 5650 snprintf(floating_point_ascii_buffer, 5651 sizeof(floating_point_ascii_buffer), "%f", 5652 genealogy_fetch_time); 5653 if (strlen(floating_point_ascii_buffer) > 0) { 5654 if (need_to_print_comma) 5655 json << ","; 5656 need_to_print_comma = true; 5657 json << "\"activity_query_duration\":" 5658 << floating_point_ascii_buffer; 5659 } 5660 } 5661 if (activity->activity_id != 0) { 5662 if (need_to_print_comma) 5663 json << ","; 5664 need_to_print_comma = true; 5665 need_vouchers_comma_sep = true; 5666 json << "\"activity\":{"; 5667 json << "\"start\":" << activity->activity_start << ","; 5668 json << "\"id\":" << activity->activity_id << ","; 5669 json << "\"parent_id\":" << activity->parent_id << ","; 5670 json << "\"name\":\"" 5671 << json_string_quote_metachars(activity->activity_name) << "\","; 5672 json << "\"reason\":\"" 5673 << json_string_quote_metachars(activity->reason) << "\""; 5674 json << "}"; 5675 } 5676 if (thread_activity_sp->messages.size() > 0) { 5677 need_to_print_comma = true; 5678 if (need_vouchers_comma_sep) 5679 json << ","; 5680 need_vouchers_comma_sep = true; 5681 json << "\"trace_messages\":["; 5682 bool printed_one_message = false; 5683 for (auto iter = thread_activity_sp->messages.begin(); 5684 iter != thread_activity_sp->messages.end(); ++iter) { 5685 if (printed_one_message) 5686 json << ","; 5687 else 5688 printed_one_message = true; 5689 json << "{"; 5690 json << "\"timestamp\":" << iter->timestamp << ","; 5691 json << "\"activity_id\":" << iter->activity_id << ","; 5692 json << "\"trace_id\":" << iter->trace_id << ","; 5693 json << "\"thread\":" << iter->thread << ","; 5694 json << "\"type\":" << (int)iter->type << ","; 5695 json << "\"process_info_index\":" << iter->process_info_index 5696 << ","; 5697 process_info_indexes.insert(iter->process_info_index); 5698 json << "\"message\":\"" 5699 << json_string_quote_metachars(iter->message) << "\""; 5700 json << "}"; 5701 } 5702 json << "]"; 5703 } 5704 if (thread_activity_sp->breadcrumbs.size() == 1) { 5705 need_to_print_comma = true; 5706 if (need_vouchers_comma_sep) 5707 json << ","; 5708 need_vouchers_comma_sep = true; 5709 json << "\"breadcrumb\":{"; 5710 for (auto iter = thread_activity_sp->breadcrumbs.begin(); 5711 iter != thread_activity_sp->breadcrumbs.end(); ++iter) { 5712 json << "\"breadcrumb_id\":" << iter->breadcrumb_id << ","; 5713 json << "\"activity_id\":" << iter->activity_id << ","; 5714 json << "\"timestamp\":" << iter->timestamp << ","; 5715 json << "\"name\":\"" << json_string_quote_metachars(iter->name) 5716 << "\""; 5717 } 5718 json << "}"; 5719 } 5720 if (process_info_indexes.size() > 0) { 5721 need_to_print_comma = true; 5722 if (need_vouchers_comma_sep) 5723 json << ","; 5724 need_vouchers_comma_sep = true; 5725 bool printed_one_process_info = false; 5726 for (auto iter = process_info_indexes.begin(); 5727 iter != process_info_indexes.end(); ++iter) { 5728 if (printed_one_process_info) 5729 json << ","; 5730 Genealogy::ProcessExecutableInfoSP image_info_sp; 5731 uint32_t idx = *iter; 5732 image_info_sp = DNBGetGenealogyImageInfo(pid, idx); 5733 if (image_info_sp) { 5734 if (!printed_one_process_info) { 5735 json << "\"process_infos\":["; 5736 printed_one_process_info = true; 5737 } 5738 5739 json << "{"; 5740 char uuid_buf[37]; 5741 uuid_unparse_upper(image_info_sp->image_uuid, uuid_buf); 5742 json << "\"process_info_index\":" << idx << ","; 5743 json << "\"image_path\":\"" 5744 << json_string_quote_metachars(image_info_sp->image_path) 5745 << "\","; 5746 json << "\"image_uuid\":\"" << uuid_buf << "\""; 5747 json << "}"; 5748 } 5749 } 5750 if (printed_one_process_info) 5751 json << "]"; 5752 } 5753 } else { 5754 if (timed_out) { 5755 if (need_to_print_comma) 5756 json << ","; 5757 need_to_print_comma = true; 5758 json << "\"activity_query_timed_out\":true"; 5759 if (genealogy_fetch_time != 0) { 5760 // If we append the floating point value with << we'll get it in 5761 // scientific 5762 // notation. 5763 char floating_point_ascii_buffer[64]; 5764 floating_point_ascii_buffer[0] = '\0'; 5765 snprintf(floating_point_ascii_buffer, 5766 sizeof(floating_point_ascii_buffer), "%f", 5767 genealogy_fetch_time); 5768 if (strlen(floating_point_ascii_buffer) > 0) { 5769 json << ","; 5770 json << "\"activity_query_duration\":" 5771 << floating_point_ascii_buffer; 5772 } 5773 } 5774 } 5775 } 5776 5777 if (tsd_address != INVALID_NUB_ADDRESS) { 5778 if (need_to_print_comma) 5779 json << ","; 5780 need_to_print_comma = true; 5781 json << "\"tsd_address\":" << tsd_address; 5782 5783 if (dti_qos_class_index != 0 && dti_qos_class_index != UINT64_MAX) { 5784 ThreadInfo::QoS requested_qos = DNBGetRequestedQoSForThread( 5785 pid, tid, tsd_address, dti_qos_class_index); 5786 if (requested_qos.IsValid()) { 5787 if (need_to_print_comma) 5788 json << ","; 5789 need_to_print_comma = true; 5790 json << "\"requested_qos\":{"; 5791 json << "\"enum_value\":" << requested_qos.enum_value << ","; 5792 json << "\"constant_name\":\"" 5793 << json_string_quote_metachars(requested_qos.constant_name) 5794 << "\","; 5795 json << "\"printable_name\":\"" 5796 << json_string_quote_metachars(requested_qos.printable_name) 5797 << "\""; 5798 json << "}"; 5799 } 5800 } 5801 } 5802 5803 if (pthread_t_value != INVALID_NUB_ADDRESS) { 5804 if (need_to_print_comma) 5805 json << ","; 5806 need_to_print_comma = true; 5807 json << "\"pthread_t\":" << pthread_t_value; 5808 } 5809 5810 nub_addr_t dispatch_queue_t_value = DNBGetDispatchQueueT(pid, tid); 5811 if (dispatch_queue_t_value != INVALID_NUB_ADDRESS) { 5812 if (need_to_print_comma) 5813 json << ","; 5814 need_to_print_comma = true; 5815 json << "\"dispatch_queue_t\":" << dispatch_queue_t_value; 5816 } 5817 5818 json << "}"; 5819 std::string json_quoted = binary_encode_string(json.str()); 5820 return SendPacket(json_quoted); 5821 } 5822 } 5823 return SendPacket("OK"); 5824 } 5825 5826 // This packet may be called in one of three ways: 5827 // 5828 // jGetLoadedDynamicLibrariesInfos:{"image_count":40,"image_list_address":4295244704} 5829 // Look for an array of the old dyld_all_image_infos style of binary infos 5830 // at the image_list_address. 5831 // This an array of {void* load_addr, void* mod_date, void* pathname} 5832 // 5833 // jGetLoadedDynamicLibrariesInfos:{"fetch_all_solibs":true} 5834 // Use the new style (macOS 10.12, tvOS 10, iOS 10, watchOS 3) dyld SPI to 5835 // get a list of all the 5836 // libraries loaded 5837 // 5838 // jGetLoadedDynamicLibrariesInfos:{"solib_addresses":[8382824135,3258302053,830202858503]} 5839 // Use the new style (macOS 10.12, tvOS 10, iOS 10, watchOS 3) dyld SPI to 5840 // get the information 5841 // about the libraries loaded at these addresses. 5842 // 5843 rnb_err_t 5844 RNBRemote::HandlePacket_jGetLoadedDynamicLibrariesInfos(const char *p) { 5845 nub_process_t pid; 5846 // If we haven't run the process yet, return an error. 5847 if (!m_ctx.HasValidProcessID()) { 5848 return SendPacket("E83"); 5849 } 5850 5851 pid = m_ctx.ProcessID(); 5852 5853 const char get_loaded_dynamic_libraries_infos_str[] = { 5854 "jGetLoadedDynamicLibrariesInfos:{"}; 5855 if (strncmp(p, get_loaded_dynamic_libraries_infos_str, 5856 sizeof(get_loaded_dynamic_libraries_infos_str) - 1) == 0) { 5857 p += strlen(get_loaded_dynamic_libraries_infos_str); 5858 5859 JSONGenerator::ObjectSP json_sp; 5860 5861 std::vector<uint64_t> macho_addresses; 5862 bool fetch_all_solibs = false; 5863 if (get_boolean_value_for_key_name_from_json("fetch_all_solibs", p, 5864 fetch_all_solibs) && 5865 fetch_all_solibs) { 5866 json_sp = DNBGetAllLoadedLibrariesInfos(pid); 5867 } else if (get_array_of_ints_value_for_key_name_from_json( 5868 "solib_addresses", p, macho_addresses)) { 5869 json_sp = DNBGetLibrariesInfoForAddresses(pid, macho_addresses); 5870 } else { 5871 nub_addr_t image_list_address = 5872 get_integer_value_for_key_name_from_json("image_list_address", p); 5873 nub_addr_t image_count = 5874 get_integer_value_for_key_name_from_json("image_count", p); 5875 5876 if (image_list_address != INVALID_NUB_ADDRESS && 5877 image_count != INVALID_NUB_ADDRESS) { 5878 json_sp = DNBGetLoadedDynamicLibrariesInfos(pid, image_list_address, 5879 image_count); 5880 } 5881 } 5882 5883 if (json_sp.get()) { 5884 std::ostringstream json_str; 5885 json_sp->Dump(json_str); 5886 if (json_str.str().size() > 0) { 5887 std::string json_str_quoted = binary_encode_string(json_str.str()); 5888 return SendPacket(json_str_quoted.c_str()); 5889 } else { 5890 SendPacket("E84"); 5891 } 5892 } 5893 } 5894 return SendPacket("OK"); 5895 } 5896 5897 // This packet does not currently take any arguments. So the behavior is 5898 // jGetSharedCacheInfo:{} 5899 // send information about the inferior's shared cache 5900 // jGetSharedCacheInfo: 5901 // send "OK" to indicate that this packet is supported 5902 rnb_err_t RNBRemote::HandlePacket_jGetSharedCacheInfo(const char *p) { 5903 nub_process_t pid; 5904 // If we haven't run the process yet, return an error. 5905 if (!m_ctx.HasValidProcessID()) { 5906 return SendPacket("E85"); 5907 } 5908 5909 pid = m_ctx.ProcessID(); 5910 5911 const char get_shared_cache_info_str[] = {"jGetSharedCacheInfo:{"}; 5912 if (strncmp(p, get_shared_cache_info_str, 5913 sizeof(get_shared_cache_info_str) - 1) == 0) { 5914 JSONGenerator::ObjectSP json_sp = DNBGetSharedCacheInfo(pid); 5915 5916 if (json_sp.get()) { 5917 std::ostringstream json_str; 5918 json_sp->Dump(json_str); 5919 if (json_str.str().size() > 0) { 5920 std::string json_str_quoted = binary_encode_string(json_str.str()); 5921 return SendPacket(json_str_quoted.c_str()); 5922 } else { 5923 SendPacket("E86"); 5924 } 5925 } 5926 } 5927 return SendPacket("OK"); 5928 } 5929 5930 static bool MachHeaderIsMainExecutable(nub_process_t pid, uint32_t addr_size, 5931 nub_addr_t mach_header_addr, 5932 mach_header &mh) { 5933 DNBLogThreadedIf(LOG_RNB_PROC, "GetMachHeaderForMainExecutable(pid = %u, " 5934 "addr_size = %u, mach_header_addr = " 5935 "0x%16.16llx)", 5936 pid, addr_size, mach_header_addr); 5937 const nub_size_t bytes_read = 5938 DNBProcessMemoryRead(pid, mach_header_addr, sizeof(mh), &mh); 5939 if (bytes_read == sizeof(mh)) { 5940 DNBLogThreadedIf( 5941 LOG_RNB_PROC, "GetMachHeaderForMainExecutable(pid = %u, addr_size = " 5942 "%u, mach_header_addr = 0x%16.16llx): mh = {\n magic = " 5943 "0x%8.8x\n cpu = 0x%8.8x\n sub = 0x%8.8x\n filetype = " 5944 "%u\n ncmds = %u\n sizeofcmds = 0x%8.8x\n flags = " 5945 "0x%8.8x }", 5946 pid, addr_size, mach_header_addr, mh.magic, mh.cputype, mh.cpusubtype, 5947 mh.filetype, mh.ncmds, mh.sizeofcmds, mh.flags); 5948 if ((addr_size == 4 && mh.magic == MH_MAGIC) || 5949 (addr_size == 8 && mh.magic == MH_MAGIC_64)) { 5950 if (mh.filetype == MH_EXECUTE) { 5951 DNBLogThreadedIf(LOG_RNB_PROC, "GetMachHeaderForMainExecutable(pid = " 5952 "%u, addr_size = %u, mach_header_addr = " 5953 "0x%16.16llx) -> this is the " 5954 "executable!!!", 5955 pid, addr_size, mach_header_addr); 5956 return true; 5957 } 5958 } 5959 } 5960 return false; 5961 } 5962 5963 static nub_addr_t GetMachHeaderForMainExecutable(const nub_process_t pid, 5964 const uint32_t addr_size, 5965 mach_header &mh) { 5966 struct AllImageInfos { 5967 uint32_t version; 5968 uint32_t dylib_info_count; 5969 uint64_t dylib_info_addr; 5970 }; 5971 5972 uint64_t mach_header_addr = 0; 5973 5974 const nub_addr_t shlib_addr = DNBProcessGetSharedLibraryInfoAddress(pid); 5975 uint8_t bytes[256]; 5976 nub_size_t bytes_read = 0; 5977 DNBDataRef data(bytes, sizeof(bytes), false); 5978 DNBDataRef::offset_t offset = 0; 5979 data.SetPointerSize(addr_size); 5980 5981 // When we are sitting at __dyld_start, the kernel has placed the 5982 // address of the mach header of the main executable on the stack. If we 5983 // read the SP and dereference a pointer, we might find the mach header 5984 // for the executable. We also just make sure there is only 1 thread 5985 // since if we are at __dyld_start we shouldn't have multiple threads. 5986 if (DNBProcessGetNumThreads(pid) == 1) { 5987 nub_thread_t tid = DNBProcessGetThreadAtIndex(pid, 0); 5988 if (tid != INVALID_NUB_THREAD) { 5989 DNBRegisterValue sp_value; 5990 if (DNBThreadGetRegisterValueByID(pid, tid, REGISTER_SET_GENERIC, 5991 GENERIC_REGNUM_SP, &sp_value)) { 5992 uint64_t sp = 5993 addr_size == 8 ? sp_value.value.uint64 : sp_value.value.uint32; 5994 bytes_read = DNBProcessMemoryRead(pid, sp, addr_size, bytes); 5995 if (bytes_read == addr_size) { 5996 offset = 0; 5997 mach_header_addr = data.GetPointer(&offset); 5998 if (MachHeaderIsMainExecutable(pid, addr_size, mach_header_addr, mh)) 5999 return mach_header_addr; 6000 } 6001 } 6002 } 6003 } 6004 6005 // Check the dyld_all_image_info structure for a list of mach header 6006 // since it is a very easy thing to check 6007 if (shlib_addr != INVALID_NUB_ADDRESS) { 6008 bytes_read = 6009 DNBProcessMemoryRead(pid, shlib_addr, sizeof(AllImageInfos), bytes); 6010 if (bytes_read > 0) { 6011 AllImageInfos aii; 6012 offset = 0; 6013 aii.version = data.Get32(&offset); 6014 aii.dylib_info_count = data.Get32(&offset); 6015 if (aii.dylib_info_count > 0) { 6016 aii.dylib_info_addr = data.GetPointer(&offset); 6017 if (aii.dylib_info_addr != 0) { 6018 const size_t image_info_byte_size = 3 * addr_size; 6019 for (uint32_t i = 0; i < aii.dylib_info_count; ++i) { 6020 bytes_read = DNBProcessMemoryRead(pid, aii.dylib_info_addr + 6021 i * image_info_byte_size, 6022 image_info_byte_size, bytes); 6023 if (bytes_read != image_info_byte_size) 6024 break; 6025 offset = 0; 6026 mach_header_addr = data.GetPointer(&offset); 6027 if (MachHeaderIsMainExecutable(pid, addr_size, mach_header_addr, 6028 mh)) 6029 return mach_header_addr; 6030 } 6031 } 6032 } 6033 } 6034 } 6035 6036 // We failed to find the executable's mach header from the all image 6037 // infos and by dereferencing the stack pointer. Now we fall back to 6038 // enumerating the memory regions and looking for regions that are 6039 // executable. 6040 DNBRegionInfo region_info; 6041 mach_header_addr = 0; 6042 while (DNBProcessMemoryRegionInfo(pid, mach_header_addr, ®ion_info)) { 6043 if (region_info.size == 0) 6044 break; 6045 6046 if (region_info.permissions & eMemoryPermissionsExecutable) { 6047 DNBLogThreadedIf( 6048 LOG_RNB_PROC, "[0x%16.16llx - 0x%16.16llx) permissions = %c%c%c: " 6049 "checking region for executable mach header", 6050 region_info.addr, region_info.addr + region_info.size, 6051 (region_info.permissions & eMemoryPermissionsReadable) ? 'r' : '-', 6052 (region_info.permissions & eMemoryPermissionsWritable) ? 'w' : '-', 6053 (region_info.permissions & eMemoryPermissionsExecutable) ? 'x' : '-'); 6054 if (MachHeaderIsMainExecutable(pid, addr_size, mach_header_addr, mh)) 6055 return mach_header_addr; 6056 } else { 6057 DNBLogThreadedIf( 6058 LOG_RNB_PROC, 6059 "[0x%16.16llx - 0x%16.16llx): permissions = %c%c%c: skipping region", 6060 region_info.addr, region_info.addr + region_info.size, 6061 (region_info.permissions & eMemoryPermissionsReadable) ? 'r' : '-', 6062 (region_info.permissions & eMemoryPermissionsWritable) ? 'w' : '-', 6063 (region_info.permissions & eMemoryPermissionsExecutable) ? 'x' : '-'); 6064 } 6065 // Set the address to the next mapped region 6066 mach_header_addr = region_info.addr + region_info.size; 6067 } 6068 bzero(&mh, sizeof(mh)); 6069 return INVALID_NUB_ADDRESS; 6070 } 6071 6072 rnb_err_t RNBRemote::HandlePacket_qSymbol(const char *command) { 6073 const char *p = command; 6074 p += strlen("qSymbol:"); 6075 const char *sep = strchr(p, ':'); 6076 6077 std::string symbol_name; 6078 std::string symbol_value_str; 6079 // Extract the symbol value if there is one 6080 if (sep > p) 6081 symbol_value_str.assign(p, sep - p); 6082 p = sep + 1; 6083 6084 if (*p) { 6085 // We have a symbol name 6086 symbol_name = decode_hex_ascii_string(p); 6087 if (!symbol_value_str.empty()) { 6088 nub_addr_t symbol_value = decode_uint64(symbol_value_str.c_str(), 16); 6089 if (symbol_name == "dispatch_queue_offsets") 6090 m_dispatch_queue_offsets_addr = symbol_value; 6091 } 6092 ++m_qSymbol_index; 6093 } else { 6094 // No symbol name, set our symbol index to zero so we can 6095 // read any symbols that we need 6096 m_qSymbol_index = 0; 6097 } 6098 6099 symbol_name.clear(); 6100 6101 if (m_qSymbol_index == 0) { 6102 if (m_dispatch_queue_offsets_addr == INVALID_NUB_ADDRESS) 6103 symbol_name = "dispatch_queue_offsets"; 6104 else 6105 ++m_qSymbol_index; 6106 } 6107 6108 // // Lookup next symbol when we have one... 6109 // if (m_qSymbol_index == 1) 6110 // { 6111 // } 6112 6113 if (symbol_name.empty()) { 6114 // Done with symbol lookups 6115 return SendPacket("OK"); 6116 } else { 6117 std::ostringstream reply; 6118 reply << "qSymbol:"; 6119 for (size_t i = 0; i < symbol_name.size(); ++i) 6120 reply << RAWHEX8(symbol_name[i]); 6121 return SendPacket(reply.str().c_str()); 6122 } 6123 } 6124 6125 // Note that all numeric values returned by qProcessInfo are hex encoded, 6126 // including the pid and the cpu type. 6127 6128 rnb_err_t RNBRemote::HandlePacket_qProcessInfo(const char *p) { 6129 nub_process_t pid; 6130 std::ostringstream rep; 6131 6132 // If we haven't run the process yet, return an error. 6133 if (!m_ctx.HasValidProcessID()) 6134 return SendPacket("E68"); 6135 6136 pid = m_ctx.ProcessID(); 6137 6138 rep << "pid:" << std::hex << pid << ';'; 6139 6140 int procpid_mib[4]; 6141 procpid_mib[0] = CTL_KERN; 6142 procpid_mib[1] = KERN_PROC; 6143 procpid_mib[2] = KERN_PROC_PID; 6144 procpid_mib[3] = pid; 6145 struct kinfo_proc proc_kinfo; 6146 size_t proc_kinfo_size = sizeof(struct kinfo_proc); 6147 6148 if (::sysctl(procpid_mib, 4, &proc_kinfo, &proc_kinfo_size, NULL, 0) == 0) { 6149 if (proc_kinfo_size > 0) { 6150 rep << "parent-pid:" << std::hex << proc_kinfo.kp_eproc.e_ppid << ';'; 6151 rep << "real-uid:" << std::hex << proc_kinfo.kp_eproc.e_pcred.p_ruid 6152 << ';'; 6153 rep << "real-gid:" << std::hex << proc_kinfo.kp_eproc.e_pcred.p_rgid 6154 << ';'; 6155 rep << "effective-uid:" << std::hex << proc_kinfo.kp_eproc.e_ucred.cr_uid 6156 << ';'; 6157 if (proc_kinfo.kp_eproc.e_ucred.cr_ngroups > 0) 6158 rep << "effective-gid:" << std::hex 6159 << proc_kinfo.kp_eproc.e_ucred.cr_groups[0] << ';'; 6160 } 6161 } 6162 6163 cpu_type_t cputype = DNBProcessGetCPUType(pid); 6164 if (cputype == 0) { 6165 DNBLog("Unable to get the process cpu_type, making a best guess."); 6166 cputype = best_guess_cpu_type(); 6167 } 6168 6169 uint32_t addr_size = 0; 6170 if (cputype != 0) { 6171 rep << "cputype:" << std::hex << cputype << ";"; 6172 if (cputype & CPU_ARCH_ABI64) 6173 addr_size = 8; 6174 else 6175 addr_size = 4; 6176 } 6177 6178 bool host_cpu_is_64bit = false; 6179 uint32_t is64bit_capable; 6180 size_t is64bit_capable_len = sizeof(is64bit_capable); 6181 if (sysctlbyname("hw.cpu64bit_capable", &is64bit_capable, 6182 &is64bit_capable_len, NULL, 0) == 0) 6183 host_cpu_is_64bit = is64bit_capable != 0; 6184 6185 uint32_t cpusubtype; 6186 size_t cpusubtype_len = sizeof(cpusubtype); 6187 if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &cpusubtype_len, NULL, 0) == 6188 0) { 6189 // If a process is CPU_TYPE_X86, then ignore the cpusubtype that we detected 6190 // from the host and use CPU_SUBTYPE_I386_ALL because we don't want the 6191 // CPU_SUBTYPE_X86_ARCH1 or CPU_SUBTYPE_X86_64_H to be used as the cpu 6192 // subtype 6193 // for i386... 6194 if (host_cpu_is_64bit) { 6195 if (cputype == CPU_TYPE_X86) { 6196 cpusubtype = 3; // CPU_SUBTYPE_I386_ALL 6197 } else if (cputype == CPU_TYPE_ARM) { 6198 // We can query a process' cputype but we cannot query a process' 6199 // cpusubtype. 6200 // If the process has cputype CPU_TYPE_ARM, then it is an armv7 (32-bit 6201 // process) and we 6202 // need to override the host cpusubtype (which is in the 6203 // CPU_SUBTYPE_ARM64 subtype namespace) 6204 // with a reasonable CPU_SUBTYPE_ARMV7 subtype. 6205 cpusubtype = 12; // CPU_SUBTYPE_ARM_V7K 6206 } 6207 } 6208 #if defined (TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 6209 // on arm64_32 devices, the machine's native cpu type is 6210 // CPU_TYPE_ARM64 and subtype is 2 indicating arm64e. 6211 // But we change the cputype to CPU_TYPE_ARM64_32 because 6212 // the user processes are all ILP32 processes today. 6213 // We also need to rewrite the cpusubtype so we vend 6214 // a valid cputype + cpusubtype combination. 6215 if (cputype == CPU_TYPE_ARM64_32 && cpusubtype == 2) 6216 cpusubtype = CPU_SUBTYPE_ARM64_32_V8; 6217 #endif 6218 6219 rep << "cpusubtype:" << std::hex << cpusubtype << ';'; 6220 } 6221 6222 bool os_handled = false; 6223 if (addr_size > 0) { 6224 rep << "ptrsize:" << std::dec << addr_size << ';'; 6225 6226 #if defined(TARGET_OS_OSX) && TARGET_OS_OSX == 1 6227 // Try and get the OS type by looking at the load commands in the main 6228 // executable and looking for a LC_VERSION_MIN load command. This is the 6229 // most reliable way to determine the "ostype" value when on desktop. 6230 6231 mach_header mh; 6232 nub_addr_t exe_mach_header_addr = 6233 GetMachHeaderForMainExecutable(pid, addr_size, mh); 6234 if (exe_mach_header_addr != INVALID_NUB_ADDRESS) { 6235 uint64_t load_command_addr = 6236 exe_mach_header_addr + 6237 ((addr_size == 8) ? sizeof(mach_header_64) : sizeof(mach_header)); 6238 load_command lc; 6239 for (uint32_t i = 0; i < mh.ncmds && !os_handled; ++i) { 6240 const nub_size_t bytes_read = 6241 DNBProcessMemoryRead(pid, load_command_addr, sizeof(lc), &lc); 6242 (void)bytes_read; 6243 6244 bool is_executable = true; 6245 uint32_t major_version, minor_version, patch_version; 6246 auto *platform = 6247 DNBGetDeploymentInfo(pid, is_executable, lc, load_command_addr, 6248 major_version, minor_version, patch_version); 6249 if (platform) { 6250 os_handled = true; 6251 rep << "ostype:" << platform << ";"; 6252 break; 6253 } 6254 load_command_addr = load_command_addr + lc.cmdsize; 6255 } 6256 } 6257 #endif // TARGET_OS_OSX 6258 } 6259 6260 // If we weren't able to find the OS in a LC_VERSION_MIN load command, try 6261 // to set it correctly by using the cpu type and other tricks 6262 if (!os_handled) { 6263 // The OS in the triple should be "ios" or "macosx" which doesn't match our 6264 // "Darwin" which gets returned from "kern.ostype", so we need to hardcode 6265 // this for now. 6266 if (cputype == CPU_TYPE_ARM || cputype == CPU_TYPE_ARM64 6267 || cputype == CPU_TYPE_ARM64_32) { 6268 #if defined(TARGET_OS_TV) && TARGET_OS_TV == 1 6269 rep << "ostype:tvos;"; 6270 #elif defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 6271 rep << "ostype:watchos;"; 6272 #elif defined(TARGET_OS_BRIDGE) && TARGET_OS_BRIDGE == 1 6273 rep << "ostype:bridgeos;"; 6274 #elif defined(TARGET_OS_OSX) && TARGET_OS_OSX == 1 6275 rep << "ostype:macosx;"; 6276 #else 6277 rep << "ostype:ios;"; 6278 #endif 6279 } else { 6280 bool is_ios_simulator = false; 6281 if (cputype == CPU_TYPE_X86 || cputype == CPU_TYPE_X86_64) { 6282 // Check for iOS simulator binaries by getting the process argument 6283 // and environment and checking for SIMULATOR_UDID in the environment 6284 int proc_args_mib[3] = {CTL_KERN, KERN_PROCARGS2, (int)pid}; 6285 6286 uint8_t arg_data[8192]; 6287 size_t arg_data_size = sizeof(arg_data); 6288 if (::sysctl(proc_args_mib, 3, arg_data, &arg_data_size, NULL, 0) == 6289 0) { 6290 DNBDataRef data(arg_data, arg_data_size, false); 6291 DNBDataRef::offset_t offset = 0; 6292 uint32_t argc = data.Get32(&offset); 6293 const char *cstr; 6294 6295 cstr = data.GetCStr(&offset); 6296 if (cstr) { 6297 // Skip NULLs 6298 while (true) { 6299 const char *p = data.PeekCStr(offset); 6300 if ((p == NULL) || (*p != '\0')) 6301 break; 6302 ++offset; 6303 } 6304 // Now skip all arguments 6305 for (uint32_t i = 0; i < argc; ++i) { 6306 data.GetCStr(&offset); 6307 } 6308 6309 // Now iterate across all environment variables 6310 while ((cstr = data.GetCStr(&offset))) { 6311 if (strncmp(cstr, "SIMULATOR_UDID=", strlen("SIMULATOR_UDID=")) == 6312 0) { 6313 is_ios_simulator = true; 6314 break; 6315 } 6316 if (cstr[0] == '\0') 6317 break; 6318 } 6319 } 6320 } 6321 } 6322 if (is_ios_simulator) { 6323 #if defined(TARGET_OS_TV) && TARGET_OS_TV == 1 6324 rep << "ostype:tvos;"; 6325 #elif defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 6326 rep << "ostype:watchos;"; 6327 #elif defined(TARGET_OS_BRIDGE) && TARGET_OS_BRIDGE == 1 6328 rep << "ostype:bridgeos;"; 6329 #else 6330 rep << "ostype:ios;"; 6331 #endif 6332 } else { 6333 rep << "ostype:macosx;"; 6334 } 6335 } 6336 } 6337 6338 rep << "vendor:apple;"; 6339 6340 #if defined(__LITTLE_ENDIAN__) 6341 rep << "endian:little;"; 6342 #elif defined(__BIG_ENDIAN__) 6343 rep << "endian:big;"; 6344 #elif defined(__PDP_ENDIAN__) 6345 rep << "endian:pdp;"; 6346 #endif 6347 6348 if (addr_size == 0) { 6349 #if (defined(__x86_64__) || defined(__i386__)) && defined(x86_THREAD_STATE) 6350 nub_thread_t thread = DNBProcessGetCurrentThreadMachPort(pid); 6351 kern_return_t kr; 6352 x86_thread_state_t gp_regs; 6353 mach_msg_type_number_t gp_count = x86_THREAD_STATE_COUNT; 6354 kr = thread_get_state(static_cast<thread_act_t>(thread), x86_THREAD_STATE, 6355 (thread_state_t)&gp_regs, &gp_count); 6356 if (kr == KERN_SUCCESS) { 6357 if (gp_regs.tsh.flavor == x86_THREAD_STATE64) 6358 rep << "ptrsize:8;"; 6359 else 6360 rep << "ptrsize:4;"; 6361 } 6362 #elif defined(__arm__) 6363 rep << "ptrsize:4;"; 6364 #elif (defined(__arm64__) || defined(__aarch64__)) && \ 6365 defined(ARM_UNIFIED_THREAD_STATE) 6366 nub_thread_t thread = DNBProcessGetCurrentThreadMachPort(pid); 6367 kern_return_t kr; 6368 arm_unified_thread_state_t gp_regs; 6369 mach_msg_type_number_t gp_count = ARM_UNIFIED_THREAD_STATE_COUNT; 6370 kr = thread_get_state(thread, ARM_UNIFIED_THREAD_STATE, 6371 (thread_state_t)&gp_regs, &gp_count); 6372 if (kr == KERN_SUCCESS) { 6373 if (gp_regs.ash.flavor == ARM_THREAD_STATE64) 6374 rep << "ptrsize:8;"; 6375 else 6376 rep << "ptrsize:4;"; 6377 } 6378 #endif 6379 } 6380 6381 return SendPacket(rep.str()); 6382 } 6383 6384 const RNBRemote::DispatchQueueOffsets *RNBRemote::GetDispatchQueueOffsets() { 6385 if (!m_dispatch_queue_offsets.IsValid() && 6386 m_dispatch_queue_offsets_addr != INVALID_NUB_ADDRESS && 6387 m_ctx.HasValidProcessID()) { 6388 nub_process_t pid = m_ctx.ProcessID(); 6389 nub_size_t bytes_read = DNBProcessMemoryRead( 6390 pid, m_dispatch_queue_offsets_addr, sizeof(m_dispatch_queue_offsets), 6391 &m_dispatch_queue_offsets); 6392 if (bytes_read != sizeof(m_dispatch_queue_offsets)) 6393 m_dispatch_queue_offsets.Clear(); 6394 } 6395 6396 if (m_dispatch_queue_offsets.IsValid()) 6397 return &m_dispatch_queue_offsets; 6398 else 6399 return nullptr; 6400 } 6401 6402 void RNBRemote::EnableCompressionNextSendPacket(compression_types type) { 6403 m_compression_mode = type; 6404 m_enable_compression_next_send_packet = true; 6405 } 6406 6407 compression_types RNBRemote::GetCompressionType() { 6408 // The first packet we send back to the debugger after a QEnableCompression 6409 // request 6410 // should be uncompressed -- so we can indicate whether the compression was 6411 // enabled 6412 // or not via OK / Enn returns. After that, all packets sent will be using 6413 // the 6414 // compression protocol. 6415 6416 if (m_enable_compression_next_send_packet) { 6417 // One time, we send back "None" as our compression type 6418 m_enable_compression_next_send_packet = false; 6419 return compression_types::none; 6420 } 6421 return m_compression_mode; 6422 } 6423