1 //===-- RNBRemote.cpp -------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Created by Greg Clayton on 12/12/07. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "RNBRemote.h" 14 15 #include <bsm/audit.h> 16 #include <bsm/audit_session.h> 17 #include <cerrno> 18 #include <csignal> 19 #include <libproc.h> 20 #include <mach-o/loader.h> 21 #include <mach/exception_types.h> 22 #include <mach/mach_vm.h> 23 #include <mach/task_info.h> 24 #include <pwd.h> 25 #include <sys/stat.h> 26 #include <sys/sysctl.h> 27 #include <unistd.h> 28 29 #if defined(__APPLE__) 30 #include <pthread.h> 31 #include <sched.h> 32 #endif 33 34 #include "DNB.h" 35 #include "DNBDataRef.h" 36 #include "DNBLog.h" 37 #include "DNBThreadResumeActions.h" 38 #include "JSON.h" 39 #include "JSONGenerator.h" 40 #include "JSONGenerator.h" 41 #include "MacOSX/Genealogy.h" 42 #include "OsLogger.h" 43 #include "RNBContext.h" 44 #include "RNBServices.h" 45 #include "RNBSocket.h" 46 #include "StdStringExtractor.h" 47 48 #include <compression.h> 49 50 #include <TargetConditionals.h> 51 #include <iomanip> 52 #include <memory> 53 #include <sstream> 54 #include <unordered_set> 55 56 #include <CoreFoundation/CoreFoundation.h> 57 #include <Security/Security.h> 58 59 // constants 60 61 static const std::string OS_LOG_EVENTS_KEY_NAME("events"); 62 static const std::string JSON_ASYNC_TYPE_KEY_NAME("type"); 63 64 // std::iostream formatting macros 65 #define RAW_HEXBASE std::setfill('0') << std::hex << std::right 66 #define HEXBASE '0' << 'x' << RAW_HEXBASE 67 #define RAWHEX8(x) RAW_HEXBASE << std::setw(2) << ((uint32_t)((uint8_t)x)) 68 #define RAWHEX16 RAW_HEXBASE << std::setw(4) 69 #define RAWHEX32 RAW_HEXBASE << std::setw(8) 70 #define RAWHEX64 RAW_HEXBASE << std::setw(16) 71 #define HEX8(x) HEXBASE << std::setw(2) << ((uint32_t)(x)) 72 #define HEX16 HEXBASE << std::setw(4) 73 #define HEX32 HEXBASE << std::setw(8) 74 #define HEX64 HEXBASE << std::setw(16) 75 #define RAW_HEX(x) RAW_HEXBASE << std::setw(sizeof(x) * 2) << (x) 76 #define HEX(x) HEXBASE << std::setw(sizeof(x) * 2) << (x) 77 #define RAWHEX_SIZE(x, sz) RAW_HEXBASE << std::setw((sz)) << (x) 78 #define HEX_SIZE(x, sz) HEXBASE << std::setw((sz)) << (x) 79 #define STRING_WIDTH(w) std::setfill(' ') << std::setw(w) 80 #define LEFT_STRING_WIDTH(s, w) \ 81 std::left << std::setfill(' ') << std::setw(w) << (s) << std::right 82 #define DECIMAL std::dec << std::setfill(' ') 83 #define DECIMAL_WIDTH(w) DECIMAL << std::setw(w) 84 #define FLOAT(n, d) \ 85 std::setfill(' ') << std::setw((n) + (d) + 1) << std::setprecision(d) \ 86 << std::showpoint << std::fixed 87 #define INDENT_WITH_SPACES(iword_idx) \ 88 std::setfill(' ') << std::setw((iword_idx)) << "" 89 #define INDENT_WITH_TABS(iword_idx) \ 90 std::setfill('\t') << std::setw((iword_idx)) << "" 91 // Class to handle communications via gdb remote protocol. 92 93 // Prototypes 94 95 static std::string binary_encode_string(const std::string &s); 96 97 // Decode a single hex character and return the hex value as a number or 98 // -1 if "ch" is not a hex character. 99 static inline int xdigit_to_sint(char ch) { 100 if (ch >= 'a' && ch <= 'f') 101 return 10 + ch - 'a'; 102 if (ch >= 'A' && ch <= 'F') 103 return 10 + ch - 'A'; 104 if (ch >= '0' && ch <= '9') 105 return ch - '0'; 106 return -1; 107 } 108 109 // Decode a single hex ASCII byte. Return -1 on failure, a value 0-255 110 // on success. 111 static inline int decoded_hex_ascii_char(const char *p) { 112 const int hi_nibble = xdigit_to_sint(p[0]); 113 if (hi_nibble == -1) 114 return -1; 115 const int lo_nibble = xdigit_to_sint(p[1]); 116 if (lo_nibble == -1) 117 return -1; 118 return (uint8_t)((hi_nibble << 4) + lo_nibble); 119 } 120 121 // Decode a hex ASCII string back into a string 122 static std::string decode_hex_ascii_string(const char *p, 123 uint32_t max_length = UINT32_MAX) { 124 std::string arg; 125 if (p) { 126 for (const char *c = p; ((c - p) / 2) < max_length; c += 2) { 127 int ch = decoded_hex_ascii_char(c); 128 if (ch == -1) 129 break; 130 else 131 arg.push_back(ch); 132 } 133 } 134 return arg; 135 } 136 137 uint64_t decode_uint64(const char *p, int base, char **end = nullptr, 138 uint64_t fail_value = 0) { 139 nub_addr_t addr = strtoull(p, end, 16); 140 if (addr == 0 && errno != 0) 141 return fail_value; 142 return addr; 143 } 144 145 extern void ASLLogCallback(void *baton, uint32_t flags, const char *format, 146 va_list args); 147 148 // from System.framework/Versions/B/PrivateHeaders/sys/codesign.h 149 extern "C" { 150 #define CS_OPS_STATUS 0 /* return status */ 151 #define CS_RESTRICT 0x0000800 /* tell dyld to treat restricted */ 152 int csops(pid_t pid, unsigned int ops, void *useraddr, size_t usersize); 153 154 // from rootless.h 155 bool rootless_allows_task_for_pid(pid_t pid); 156 157 // from sys/csr.h 158 typedef uint32_t csr_config_t; 159 #define CSR_ALLOW_TASK_FOR_PID (1 << 2) 160 int csr_check(csr_config_t mask); 161 } 162 163 RNBRemote::RNBRemote() 164 : m_ctx(), m_comm(), m_arch(), m_continue_thread(-1), m_thread(-1), 165 m_mutex(), m_dispatch_queue_offsets(), 166 m_dispatch_queue_offsets_addr(INVALID_NUB_ADDRESS), 167 m_qSymbol_index(UINT32_MAX), m_packets_recvd(0), m_packets(), 168 m_rx_packets(), m_rx_partial_data(), m_rx_pthread(0), 169 m_max_payload_size(DEFAULT_GDB_REMOTE_PROTOCOL_BUFSIZE - 4), 170 m_extended_mode(false), m_noack_mode(false), 171 m_thread_suffix_supported(false), m_list_threads_in_stop_reply(false), 172 m_compression_minsize(384), m_enable_compression_next_send_packet(false), 173 m_compression_mode(compression_types::none) { 174 DNBLogThreadedIf(LOG_RNB_REMOTE, "%s", __PRETTY_FUNCTION__); 175 CreatePacketTable(); 176 } 177 178 RNBRemote::~RNBRemote() { 179 DNBLogThreadedIf(LOG_RNB_REMOTE, "%s", __PRETTY_FUNCTION__); 180 StopReadRemoteDataThread(); 181 } 182 183 void RNBRemote::CreatePacketTable() { 184 // Step required to add new packets: 185 // 1 - Add new enumeration to RNBRemote::PacketEnum 186 // 2 - Create the RNBRemote::HandlePacket_ function if a new function is 187 // needed 188 // 3 - Register the Packet definition with any needed callbacks in this 189 // function 190 // - If no response is needed for a command, then use NULL for the 191 // normal callback 192 // - If the packet is not supported while the target is running, use 193 // NULL for the async callback 194 // 4 - If the packet is a standard packet (starts with a '$' character 195 // followed by the payload and then '#' and checksum, then you are done 196 // else go on to step 5 197 // 5 - if the packet is a fixed length packet: 198 // - modify the switch statement for the first character in the payload 199 // in RNBRemote::CommDataReceived so it doesn't reject the new packet 200 // type as invalid 201 // - modify the switch statement for the first character in the payload 202 // in RNBRemote::GetPacketPayload and make sure the payload of the 203 // packet 204 // is returned correctly 205 206 std::vector<Packet> &t = m_packets; 207 t.push_back(Packet(ack, NULL, NULL, "+", "ACK")); 208 t.push_back(Packet(nack, NULL, NULL, "-", "!ACK")); 209 t.push_back(Packet(read_memory, &RNBRemote::HandlePacket_m, NULL, "m", 210 "Read memory")); 211 t.push_back(Packet(read_register, &RNBRemote::HandlePacket_p, NULL, "p", 212 "Read one register")); 213 t.push_back(Packet(read_general_regs, &RNBRemote::HandlePacket_g, NULL, "g", 214 "Read registers")); 215 t.push_back(Packet(write_memory, &RNBRemote::HandlePacket_M, NULL, "M", 216 "Write memory")); 217 t.push_back(Packet(write_register, &RNBRemote::HandlePacket_P, NULL, "P", 218 "Write one register")); 219 t.push_back(Packet(write_general_regs, &RNBRemote::HandlePacket_G, NULL, "G", 220 "Write registers")); 221 t.push_back(Packet(insert_mem_bp, &RNBRemote::HandlePacket_z, NULL, "Z0", 222 "Insert memory breakpoint")); 223 t.push_back(Packet(remove_mem_bp, &RNBRemote::HandlePacket_z, NULL, "z0", 224 "Remove memory breakpoint")); 225 t.push_back(Packet(single_step, &RNBRemote::HandlePacket_s, NULL, "s", 226 "Single step")); 227 t.push_back(Packet(cont, &RNBRemote::HandlePacket_c, NULL, "c", "continue")); 228 t.push_back(Packet(single_step_with_sig, &RNBRemote::HandlePacket_S, NULL, 229 "S", "Single step with signal")); 230 t.push_back( 231 Packet(set_thread, &RNBRemote::HandlePacket_H, NULL, "H", "Set thread")); 232 t.push_back(Packet(halt, &RNBRemote::HandlePacket_last_signal, 233 &RNBRemote::HandlePacket_stop_process, "\x03", "^C")); 234 // t.push_back (Packet (use_extended_mode, 235 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "!", "Use extended mode")); 236 t.push_back(Packet(why_halted, &RNBRemote::HandlePacket_last_signal, NULL, 237 "?", "Why did target halt")); 238 t.push_back( 239 Packet(set_argv, &RNBRemote::HandlePacket_A, NULL, "A", "Set argv")); 240 // t.push_back (Packet (set_bp, 241 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "B", "Set/clear 242 // breakpoint")); 243 t.push_back(Packet(continue_with_sig, &RNBRemote::HandlePacket_C, NULL, "C", 244 "Continue with signal")); 245 t.push_back(Packet(detach, &RNBRemote::HandlePacket_D, NULL, "D", 246 "Detach gdb from remote system")); 247 // t.push_back (Packet (step_inferior_one_cycle, 248 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "i", "Step inferior by one 249 // clock cycle")); 250 // t.push_back (Packet (signal_and_step_inf_one_cycle, 251 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "I", "Signal inferior, then 252 // step one clock cycle")); 253 t.push_back(Packet(kill, &RNBRemote::HandlePacket_k, NULL, "k", "Kill")); 254 // t.push_back (Packet (restart, 255 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "R", "Restart inferior")); 256 // t.push_back (Packet (search_mem_backwards, 257 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "t", "Search memory 258 // backwards")); 259 t.push_back(Packet(thread_alive_p, &RNBRemote::HandlePacket_T, NULL, "T", 260 "Is thread alive")); 261 t.push_back(Packet(query_supported_features, 262 &RNBRemote::HandlePacket_qSupported, NULL, "qSupported", 263 "Query about supported features")); 264 t.push_back(Packet(vattach, &RNBRemote::HandlePacket_v, NULL, "vAttach", 265 "Attach to a new process")); 266 t.push_back(Packet(vattachwait, &RNBRemote::HandlePacket_v, NULL, 267 "vAttachWait", 268 "Wait for a process to start up then attach to it")); 269 t.push_back(Packet(vattachorwait, &RNBRemote::HandlePacket_v, NULL, 270 "vAttachOrWait", "Attach to the process or if it doesn't " 271 "exist, wait for the process to start up " 272 "then attach to it")); 273 t.push_back(Packet(vattachname, &RNBRemote::HandlePacket_v, NULL, 274 "vAttachName", "Attach to an existing process by name")); 275 t.push_back(Packet(vcont_list_actions, &RNBRemote::HandlePacket_v, NULL, 276 "vCont;", "Verbose resume with thread actions")); 277 t.push_back(Packet(vcont_list_actions, &RNBRemote::HandlePacket_v, NULL, 278 "vCont?", 279 "List valid continue-with-thread-actions actions")); 280 t.push_back(Packet(read_data_from_memory, &RNBRemote::HandlePacket_x, NULL, 281 "x", "Read data from memory")); 282 t.push_back(Packet(write_data_to_memory, &RNBRemote::HandlePacket_X, NULL, 283 "X", "Write data to memory")); 284 t.push_back(Packet(insert_hardware_bp, &RNBRemote::HandlePacket_z, NULL, "Z1", 285 "Insert hardware breakpoint")); 286 t.push_back(Packet(remove_hardware_bp, &RNBRemote::HandlePacket_z, NULL, "z1", 287 "Remove hardware breakpoint")); 288 t.push_back(Packet(insert_write_watch_bp, &RNBRemote::HandlePacket_z, NULL, 289 "Z2", "Insert write watchpoint")); 290 t.push_back(Packet(remove_write_watch_bp, &RNBRemote::HandlePacket_z, NULL, 291 "z2", "Remove write watchpoint")); 292 t.push_back(Packet(insert_read_watch_bp, &RNBRemote::HandlePacket_z, NULL, 293 "Z3", "Insert read watchpoint")); 294 t.push_back(Packet(remove_read_watch_bp, &RNBRemote::HandlePacket_z, NULL, 295 "z3", "Remove read watchpoint")); 296 t.push_back(Packet(insert_access_watch_bp, &RNBRemote::HandlePacket_z, NULL, 297 "Z4", "Insert access watchpoint")); 298 t.push_back(Packet(remove_access_watch_bp, &RNBRemote::HandlePacket_z, NULL, 299 "z4", "Remove access watchpoint")); 300 t.push_back(Packet(query_monitor, &RNBRemote::HandlePacket_qRcmd, NULL, 301 "qRcmd", "Monitor command")); 302 t.push_back(Packet(query_current_thread_id, &RNBRemote::HandlePacket_qC, NULL, 303 "qC", "Query current thread ID")); 304 t.push_back(Packet(query_echo, &RNBRemote::HandlePacket_qEcho, NULL, "qEcho:", 305 "Echo the packet back to allow the debugger to sync up " 306 "with this server")); 307 t.push_back(Packet(query_get_pid, &RNBRemote::HandlePacket_qGetPid, NULL, 308 "qGetPid", "Query process id")); 309 t.push_back(Packet(query_thread_ids_first, 310 &RNBRemote::HandlePacket_qThreadInfo, NULL, "qfThreadInfo", 311 "Get list of active threads (first req)")); 312 t.push_back(Packet(query_thread_ids_subsequent, 313 &RNBRemote::HandlePacket_qThreadInfo, NULL, "qsThreadInfo", 314 "Get list of active threads (subsequent req)")); 315 // APPLE LOCAL: qThreadStopInfo 316 // syntax: qThreadStopInfoTTTT 317 // TTTT is hex thread ID 318 t.push_back(Packet(query_thread_stop_info, 319 &RNBRemote::HandlePacket_qThreadStopInfo, NULL, 320 "qThreadStopInfo", 321 "Get detailed info on why the specified thread stopped")); 322 t.push_back(Packet(query_thread_extra_info, 323 &RNBRemote::HandlePacket_qThreadExtraInfo, NULL, 324 "qThreadExtraInfo", "Get printable status of a thread")); 325 // t.push_back (Packet (query_image_offsets, 326 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "qOffsets", "Report offset 327 // of loaded program")); 328 t.push_back(Packet( 329 query_launch_success, &RNBRemote::HandlePacket_qLaunchSuccess, NULL, 330 "qLaunchSuccess", "Report the success or failure of the launch attempt")); 331 t.push_back( 332 Packet(query_register_info, &RNBRemote::HandlePacket_qRegisterInfo, NULL, 333 "qRegisterInfo", 334 "Dynamically discover remote register context information.")); 335 t.push_back(Packet( 336 query_shlib_notify_info_addr, &RNBRemote::HandlePacket_qShlibInfoAddr, 337 NULL, "qShlibInfoAddr", "Returns the address that contains info needed " 338 "for getting shared library notifications")); 339 t.push_back(Packet(query_step_packet_supported, 340 &RNBRemote::HandlePacket_qStepPacketSupported, NULL, 341 "qStepPacketSupported", 342 "Replys with OK if the 's' packet is supported.")); 343 t.push_back( 344 Packet(query_vattachorwait_supported, 345 &RNBRemote::HandlePacket_qVAttachOrWaitSupported, NULL, 346 "qVAttachOrWaitSupported", 347 "Replys with OK if the 'vAttachOrWait' packet is supported.")); 348 t.push_back( 349 Packet(query_sync_thread_state_supported, 350 &RNBRemote::HandlePacket_qSyncThreadStateSupported, NULL, 351 "qSyncThreadStateSupported", 352 "Replys with OK if the 'QSyncThreadState:' packet is supported.")); 353 t.push_back(Packet( 354 query_host_info, &RNBRemote::HandlePacket_qHostInfo, NULL, "qHostInfo", 355 "Replies with multiple 'key:value;' tuples appended to each other.")); 356 t.push_back(Packet( 357 query_gdb_server_version, &RNBRemote::HandlePacket_qGDBServerVersion, 358 NULL, "qGDBServerVersion", 359 "Replies with multiple 'key:value;' tuples appended to each other.")); 360 t.push_back(Packet( 361 query_process_info, &RNBRemote::HandlePacket_qProcessInfo, NULL, 362 "qProcessInfo", 363 "Replies with multiple 'key:value;' tuples appended to each other.")); 364 t.push_back(Packet( 365 query_symbol_lookup, &RNBRemote::HandlePacket_qSymbol, NULL, "qSymbol:", 366 "Notify that host debugger is ready to do symbol lookups")); 367 t.push_back(Packet(json_query_thread_extended_info, 368 &RNBRemote::HandlePacket_jThreadExtendedInfo, NULL, 369 "jThreadExtendedInfo", 370 "Replies with JSON data of thread extended information.")); 371 t.push_back(Packet(json_query_get_loaded_dynamic_libraries_infos, 372 &RNBRemote::HandlePacket_jGetLoadedDynamicLibrariesInfos, 373 NULL, "jGetLoadedDynamicLibrariesInfos", 374 "Replies with JSON data of all the shared libraries " 375 "loaded in this process.")); 376 t.push_back( 377 Packet(json_query_threads_info, &RNBRemote::HandlePacket_jThreadsInfo, 378 NULL, "jThreadsInfo", 379 "Replies with JSON data with information about all threads.")); 380 t.push_back(Packet(json_query_get_shared_cache_info, 381 &RNBRemote::HandlePacket_jGetSharedCacheInfo, NULL, 382 "jGetSharedCacheInfo", "Replies with JSON data about the " 383 "location and uuid of the shared " 384 "cache in the inferior process.")); 385 t.push_back(Packet(start_noack_mode, &RNBRemote::HandlePacket_QStartNoAckMode, 386 NULL, "QStartNoAckMode", 387 "Request that " DEBUGSERVER_PROGRAM_NAME 388 " stop acking remote protocol packets")); 389 t.push_back(Packet(prefix_reg_packets_with_tid, 390 &RNBRemote::HandlePacket_QThreadSuffixSupported, NULL, 391 "QThreadSuffixSupported", 392 "Check if thread specific packets (register packets 'g', " 393 "'G', 'p', and 'P') support having the thread ID appended " 394 "to the end of the command")); 395 t.push_back(Packet(set_logging_mode, &RNBRemote::HandlePacket_QSetLogging, 396 NULL, "QSetLogging:", "Check if register packets ('g', " 397 "'G', 'p', and 'P' support having " 398 "the thread ID prefix")); 399 t.push_back(Packet( 400 set_max_packet_size, &RNBRemote::HandlePacket_QSetMaxPacketSize, NULL, 401 "QSetMaxPacketSize:", 402 "Tell " DEBUGSERVER_PROGRAM_NAME " the max sized packet gdb can handle")); 403 t.push_back(Packet( 404 set_max_payload_size, &RNBRemote::HandlePacket_QSetMaxPayloadSize, NULL, 405 "QSetMaxPayloadSize:", "Tell " DEBUGSERVER_PROGRAM_NAME 406 " the max sized payload gdb can handle")); 407 t.push_back( 408 Packet(set_environment_variable, &RNBRemote::HandlePacket_QEnvironment, 409 NULL, "QEnvironment:", 410 "Add an environment variable to the inferior's environment")); 411 t.push_back( 412 Packet(set_environment_variable_hex, 413 &RNBRemote::HandlePacket_QEnvironmentHexEncoded, NULL, 414 "QEnvironmentHexEncoded:", 415 "Add an environment variable to the inferior's environment")); 416 t.push_back(Packet(set_launch_arch, &RNBRemote::HandlePacket_QLaunchArch, 417 NULL, "QLaunchArch:", "Set the architecture to use when " 418 "launching a process for hosts that " 419 "can run multiple architecture " 420 "slices from universal files.")); 421 t.push_back(Packet(set_disable_aslr, &RNBRemote::HandlePacket_QSetDisableASLR, 422 NULL, "QSetDisableASLR:", 423 "Set whether to disable ASLR when launching the process " 424 "with the set argv ('A') packet")); 425 t.push_back(Packet(set_stdin, &RNBRemote::HandlePacket_QSetSTDIO, NULL, 426 "QSetSTDIN:", "Set the standard input for a process to be " 427 "launched with the 'A' packet")); 428 t.push_back(Packet(set_stdout, &RNBRemote::HandlePacket_QSetSTDIO, NULL, 429 "QSetSTDOUT:", "Set the standard output for a process to " 430 "be launched with the 'A' packet")); 431 t.push_back(Packet(set_stderr, &RNBRemote::HandlePacket_QSetSTDIO, NULL, 432 "QSetSTDERR:", "Set the standard error for a process to " 433 "be launched with the 'A' packet")); 434 t.push_back(Packet(set_working_dir, &RNBRemote::HandlePacket_QSetWorkingDir, 435 NULL, "QSetWorkingDir:", "Set the working directory for a " 436 "process to be launched with the " 437 "'A' packet")); 438 t.push_back(Packet(set_list_threads_in_stop_reply, 439 &RNBRemote::HandlePacket_QListThreadsInStopReply, NULL, 440 "QListThreadsInStopReply", 441 "Set if the 'threads' key should be added to the stop " 442 "reply packets with a list of all thread IDs.")); 443 t.push_back(Packet( 444 sync_thread_state, &RNBRemote::HandlePacket_QSyncThreadState, NULL, 445 "QSyncThreadState:", "Do whatever is necessary to make sure 'thread' is " 446 "in a safe state to call functions on.")); 447 // t.push_back (Packet (pass_signals_to_inferior, 448 // &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "QPassSignals:", "Specify 449 // which signals are passed to the inferior")); 450 t.push_back(Packet(allocate_memory, &RNBRemote::HandlePacket_AllocateMemory, 451 NULL, "_M", "Allocate memory in the inferior process.")); 452 t.push_back(Packet(deallocate_memory, 453 &RNBRemote::HandlePacket_DeallocateMemory, NULL, "_m", 454 "Deallocate memory in the inferior process.")); 455 t.push_back(Packet( 456 save_register_state, &RNBRemote::HandlePacket_SaveRegisterState, NULL, 457 "QSaveRegisterState", "Save the register state for the current thread " 458 "and return a decimal save ID.")); 459 t.push_back(Packet(restore_register_state, 460 &RNBRemote::HandlePacket_RestoreRegisterState, NULL, 461 "QRestoreRegisterState:", 462 "Restore the register state given a save ID previously " 463 "returned from a call to QSaveRegisterState.")); 464 t.push_back(Packet( 465 memory_region_info, &RNBRemote::HandlePacket_MemoryRegionInfo, NULL, 466 "qMemoryRegionInfo", "Return size and attributes of a memory region that " 467 "contains the given address")); 468 t.push_back(Packet(get_profile_data, &RNBRemote::HandlePacket_GetProfileData, 469 NULL, "qGetProfileData", 470 "Return profiling data of the current target.")); 471 t.push_back(Packet(set_enable_profiling, 472 &RNBRemote::HandlePacket_SetEnableAsyncProfiling, NULL, 473 "QSetEnableAsyncProfiling", 474 "Enable or disable the profiling of current target.")); 475 t.push_back(Packet(enable_compression, 476 &RNBRemote::HandlePacket_QEnableCompression, NULL, 477 "QEnableCompression:", 478 "Enable compression for the remainder of the connection")); 479 t.push_back(Packet(watchpoint_support_info, 480 &RNBRemote::HandlePacket_WatchpointSupportInfo, NULL, 481 "qWatchpointSupportInfo", 482 "Return the number of supported hardware watchpoints")); 483 t.push_back(Packet(set_process_event, 484 &RNBRemote::HandlePacket_QSetProcessEvent, NULL, 485 "QSetProcessEvent:", "Set a process event, to be passed " 486 "to the process, can be set before " 487 "the process is started, or after.")); 488 t.push_back( 489 Packet(set_detach_on_error, &RNBRemote::HandlePacket_QSetDetachOnError, 490 NULL, "QSetDetachOnError:", 491 "Set whether debugserver will detach (1) or kill (0) from the " 492 "process it is controlling if it loses connection to lldb.")); 493 t.push_back(Packet( 494 speed_test, &RNBRemote::HandlePacket_qSpeedTest, NULL, "qSpeedTest:", 495 "Test the maximum speed at which packet can be sent/received.")); 496 t.push_back(Packet(query_transfer, &RNBRemote::HandlePacket_qXfer, NULL, 497 "qXfer:", "Support the qXfer packet.")); 498 } 499 500 void RNBRemote::FlushSTDIO() { 501 if (m_ctx.HasValidProcessID()) { 502 nub_process_t pid = m_ctx.ProcessID(); 503 char buf[256]; 504 nub_size_t count; 505 do { 506 count = DNBProcessGetAvailableSTDOUT(pid, buf, sizeof(buf)); 507 if (count > 0) { 508 SendSTDOUTPacket(buf, count); 509 } 510 } while (count > 0); 511 512 do { 513 count = DNBProcessGetAvailableSTDERR(pid, buf, sizeof(buf)); 514 if (count > 0) { 515 SendSTDERRPacket(buf, count); 516 } 517 } while (count > 0); 518 } 519 } 520 521 void RNBRemote::SendAsyncProfileData() { 522 if (m_ctx.HasValidProcessID()) { 523 nub_process_t pid = m_ctx.ProcessID(); 524 char buf[1024]; 525 nub_size_t count; 526 do { 527 count = DNBProcessGetAvailableProfileData(pid, buf, sizeof(buf)); 528 if (count > 0) { 529 SendAsyncProfileDataPacket(buf, count); 530 } 531 } while (count > 0); 532 } 533 } 534 535 rnb_err_t RNBRemote::SendHexEncodedBytePacket(const char *header, 536 const void *buf, size_t buf_len, 537 const char *footer) { 538 std::ostringstream packet_sstrm; 539 // Append the header cstr if there was one 540 if (header && header[0]) 541 packet_sstrm << header; 542 nub_size_t i; 543 const uint8_t *ubuf8 = (const uint8_t *)buf; 544 for (i = 0; i < buf_len; i++) { 545 packet_sstrm << RAWHEX8(ubuf8[i]); 546 } 547 // Append the footer cstr if there was one 548 if (footer && footer[0]) 549 packet_sstrm << footer; 550 551 return SendPacket(packet_sstrm.str()); 552 } 553 554 rnb_err_t RNBRemote::SendSTDOUTPacket(char *buf, nub_size_t buf_size) { 555 if (buf_size == 0) 556 return rnb_success; 557 return SendHexEncodedBytePacket("O", buf, buf_size, NULL); 558 } 559 560 rnb_err_t RNBRemote::SendSTDERRPacket(char *buf, nub_size_t buf_size) { 561 if (buf_size == 0) 562 return rnb_success; 563 return SendHexEncodedBytePacket("O", buf, buf_size, NULL); 564 } 565 566 // This makes use of asynchronous bit 'A' in the gdb remote protocol. 567 rnb_err_t RNBRemote::SendAsyncProfileDataPacket(char *buf, 568 nub_size_t buf_size) { 569 if (buf_size == 0) 570 return rnb_success; 571 572 std::string packet("A"); 573 packet.append(buf, buf_size); 574 return SendPacket(packet); 575 } 576 577 rnb_err_t 578 RNBRemote::SendAsyncJSONPacket(const JSONGenerator::Dictionary &dictionary) { 579 std::ostringstream stream; 580 // We're choosing something that is easy to spot if we somehow get one 581 // of these coming out at the wrong time (i.e. when the remote side 582 // is not waiting for a process control completion response). 583 stream << "JSON-async:"; 584 dictionary.Dump(stream); 585 const std::string payload = binary_encode_string(stream.str()); 586 return SendPacket(payload); 587 } 588 589 // Given a std::string packet contents to send, possibly encode/compress it. 590 // If compression is enabled, the returned std::string will be in one of two 591 // forms: 592 // 593 // N<original packet contents uncompressed> 594 // C<size of original decompressed packet>:<packet compressed with the 595 // requested compression scheme> 596 // 597 // If compression is not requested, the original packet contents are returned 598 599 std::string RNBRemote::CompressString(const std::string &orig) { 600 std::string compressed; 601 compression_types compression_type = GetCompressionType(); 602 if (compression_type != compression_types::none) { 603 bool compress_this_packet = false; 604 605 if (orig.size() > m_compression_minsize) { 606 compress_this_packet = true; 607 } 608 609 if (compress_this_packet) { 610 const size_t encoded_data_buf_size = orig.size() + 128; 611 std::vector<uint8_t> encoded_data(encoded_data_buf_size); 612 size_t compressed_size = 0; 613 614 // Allocate a scratch buffer for libcompression the first 615 // time we see a different compression type; reuse it in 616 // all compression_encode_buffer calls so it doesn't need 617 // to allocate / free its own scratch buffer each time. 618 // This buffer will only be freed when compression type 619 // changes; otherwise it will persist until debugserver 620 // exit. 621 622 static compression_types g_libcompress_scratchbuf_type = compression_types::none; 623 static void *g_libcompress_scratchbuf = nullptr; 624 625 if (g_libcompress_scratchbuf_type != compression_type) { 626 if (g_libcompress_scratchbuf) { 627 free (g_libcompress_scratchbuf); 628 g_libcompress_scratchbuf = nullptr; 629 } 630 size_t scratchbuf_size = 0; 631 switch (compression_type) { 632 case compression_types::lz4: 633 scratchbuf_size = compression_encode_scratch_buffer_size (COMPRESSION_LZ4_RAW); 634 break; 635 case compression_types::zlib_deflate: 636 scratchbuf_size = compression_encode_scratch_buffer_size (COMPRESSION_ZLIB); 637 break; 638 case compression_types::lzma: 639 scratchbuf_size = compression_encode_scratch_buffer_size (COMPRESSION_LZMA); 640 break; 641 case compression_types::lzfse: 642 scratchbuf_size = compression_encode_scratch_buffer_size (COMPRESSION_LZFSE); 643 break; 644 default: 645 break; 646 } 647 if (scratchbuf_size > 0) { 648 g_libcompress_scratchbuf = (void*) malloc (scratchbuf_size); 649 g_libcompress_scratchbuf_type = compression_type; 650 } 651 } 652 653 if (compression_type == compression_types::lz4) { 654 compressed_size = compression_encode_buffer( 655 encoded_data.data(), encoded_data_buf_size, 656 (const uint8_t *)orig.c_str(), orig.size(), 657 g_libcompress_scratchbuf, 658 COMPRESSION_LZ4_RAW); 659 } 660 if (compression_type == compression_types::zlib_deflate) { 661 compressed_size = compression_encode_buffer( 662 encoded_data.data(), encoded_data_buf_size, 663 (const uint8_t *)orig.c_str(), orig.size(), 664 g_libcompress_scratchbuf, 665 COMPRESSION_ZLIB); 666 } 667 if (compression_type == compression_types::lzma) { 668 compressed_size = compression_encode_buffer( 669 encoded_data.data(), encoded_data_buf_size, 670 (const uint8_t *)orig.c_str(), orig.size(), 671 g_libcompress_scratchbuf, 672 COMPRESSION_LZMA); 673 } 674 if (compression_type == compression_types::lzfse) { 675 compressed_size = compression_encode_buffer( 676 encoded_data.data(), encoded_data_buf_size, 677 (const uint8_t *)orig.c_str(), orig.size(), 678 g_libcompress_scratchbuf, 679 COMPRESSION_LZFSE); 680 } 681 682 if (compressed_size > 0) { 683 compressed.clear(); 684 compressed.reserve(compressed_size); 685 compressed = "C"; 686 char numbuf[16]; 687 snprintf(numbuf, sizeof(numbuf), "%zu:", orig.size()); 688 numbuf[sizeof(numbuf) - 1] = '\0'; 689 compressed.append(numbuf); 690 691 for (size_t i = 0; i < compressed_size; i++) { 692 uint8_t byte = encoded_data[i]; 693 if (byte == '#' || byte == '$' || byte == '}' || byte == '*' || 694 byte == '\0') { 695 compressed.push_back(0x7d); 696 compressed.push_back(byte ^ 0x20); 697 } else { 698 compressed.push_back(byte); 699 } 700 } 701 } else { 702 compressed = "N" + orig; 703 } 704 } else { 705 compressed = "N" + orig; 706 } 707 } else { 708 compressed = orig; 709 } 710 711 return compressed; 712 } 713 714 rnb_err_t RNBRemote::SendPacket(const std::string &s) { 715 DNBLogThreadedIf(LOG_RNB_MAX, "%8d RNBRemote::%s (%s) called", 716 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 717 __FUNCTION__, s.c_str()); 718 719 std::string s_compressed = CompressString(s); 720 721 std::string sendpacket = "$" + s_compressed + "#"; 722 int cksum = 0; 723 char hexbuf[5]; 724 725 if (m_noack_mode) { 726 sendpacket += "00"; 727 } else { 728 for (size_t i = 0; i != s_compressed.size(); ++i) 729 cksum += s_compressed[i]; 730 snprintf(hexbuf, sizeof hexbuf, "%02x", cksum & 0xff); 731 sendpacket += hexbuf; 732 } 733 734 rnb_err_t err = m_comm.Write(sendpacket.c_str(), sendpacket.size()); 735 if (err != rnb_success) 736 return err; 737 738 if (m_noack_mode) 739 return rnb_success; 740 741 std::string reply; 742 RNBRemote::Packet packet; 743 err = GetPacket(reply, packet, true); 744 745 if (err != rnb_success) { 746 DNBLogThreadedIf(LOG_RNB_REMOTE, 747 "%8d RNBRemote::%s (%s) got error trying to get reply...", 748 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 749 __FUNCTION__, sendpacket.c_str()); 750 return err; 751 } 752 753 DNBLogThreadedIf(LOG_RNB_MAX, "%8d RNBRemote::%s (%s) got reply: '%s'", 754 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 755 __FUNCTION__, sendpacket.c_str(), reply.c_str()); 756 757 if (packet.type == ack) 758 return rnb_success; 759 760 // Should we try to resend the packet at this layer? 761 // if (packet.command == nack) 762 return rnb_err; 763 } 764 765 /* Get a packet via gdb remote protocol. 766 Strip off the prefix/suffix, verify the checksum to make sure 767 a valid packet was received, send an ACK if they match. */ 768 769 rnb_err_t RNBRemote::GetPacketPayload(std::string &return_packet) { 770 // DNBLogThreadedIf (LOG_RNB_MAX, "%8u RNBRemote::%s called", 771 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); 772 773 PThreadMutex::Locker locker(m_mutex); 774 if (m_rx_packets.empty()) { 775 // Only reset the remote command available event if we have no more packets 776 m_ctx.Events().ResetEvents(RNBContext::event_read_packet_available); 777 // DNBLogThreadedIf (LOG_RNB_MAX, "%8u RNBRemote::%s error: no packets 778 // available...", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 779 // __FUNCTION__); 780 return rnb_err; 781 } 782 783 // DNBLogThreadedIf (LOG_RNB_MAX, "%8u RNBRemote::%s has %u queued packets", 784 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, 785 // m_rx_packets.size()); 786 return_packet.swap(m_rx_packets.front()); 787 m_rx_packets.pop_front(); 788 locker.Reset(); // Release our lock on the mutex 789 790 if (m_rx_packets.empty()) { 791 // Reset the remote command available event if we have no more packets 792 m_ctx.Events().ResetEvents(RNBContext::event_read_packet_available); 793 } 794 795 // DNBLogThreadedIf (LOG_RNB_MEDIUM, "%8u RNBRemote::%s: '%s'", 796 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, 797 // return_packet.c_str()); 798 799 switch (return_packet[0]) { 800 case '+': 801 case '-': 802 case '\x03': 803 break; 804 805 case '$': { 806 long packet_checksum = 0; 807 if (!m_noack_mode) { 808 for (size_t i = return_packet.size() - 2; i < return_packet.size(); ++i) { 809 char checksum_char = tolower(return_packet[i]); 810 if (!isxdigit(checksum_char)) { 811 m_comm.Write("-", 1); 812 DNBLogThreadedIf(LOG_RNB_REMOTE, "%8u RNBRemote::%s error: packet " 813 "with invalid checksum characters: " 814 "%s", 815 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 816 __FUNCTION__, return_packet.c_str()); 817 return rnb_err; 818 } 819 } 820 packet_checksum = 821 strtol(&return_packet[return_packet.size() - 2], NULL, 16); 822 } 823 824 return_packet.erase(0, 1); // Strip the leading '$' 825 return_packet.erase(return_packet.size() - 3); // Strip the #XX checksum 826 827 if (!m_noack_mode) { 828 // Compute the checksum 829 int computed_checksum = 0; 830 for (std::string::iterator it = return_packet.begin(); 831 it != return_packet.end(); ++it) { 832 computed_checksum += *it; 833 } 834 835 if (packet_checksum == (computed_checksum & 0xff)) { 836 // DNBLogThreadedIf (LOG_RNB_MEDIUM, "%8u RNBRemote::%s sending ACK for 837 // '%s'", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 838 // __FUNCTION__, return_packet.c_str()); 839 m_comm.Write("+", 1); 840 } else { 841 DNBLogThreadedIf( 842 LOG_RNB_MEDIUM, "%8u RNBRemote::%s sending ACK for '%s' (error: " 843 "packet checksum mismatch (0x%2.2lx != 0x%2.2x))", 844 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, 845 return_packet.c_str(), packet_checksum, computed_checksum); 846 m_comm.Write("-", 1); 847 return rnb_err; 848 } 849 } 850 } break; 851 852 default: 853 DNBLogThreadedIf(LOG_RNB_REMOTE, 854 "%8u RNBRemote::%s tossing unexpected packet???? %s", 855 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 856 __FUNCTION__, return_packet.c_str()); 857 if (!m_noack_mode) 858 m_comm.Write("-", 1); 859 return rnb_err; 860 } 861 862 return rnb_success; 863 } 864 865 rnb_err_t RNBRemote::HandlePacket_UNIMPLEMENTED(const char *p) { 866 DNBLogThreadedIf(LOG_RNB_MAX, "%8u RNBRemote::%s(\"%s\")", 867 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 868 __FUNCTION__, p ? p : "NULL"); 869 return SendPacket(""); 870 } 871 872 rnb_err_t RNBRemote::HandlePacket_ILLFORMED(const char *file, int line, 873 const char *p, 874 const char *description) { 875 DNBLogThreadedIf(LOG_RNB_PACKETS, "%8u %s:%i ILLFORMED: '%s' (%s)", 876 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), file, 877 line, __FUNCTION__, p); 878 return SendPacket("E03"); 879 } 880 881 rnb_err_t RNBRemote::GetPacket(std::string &packet_payload, 882 RNBRemote::Packet &packet_info, bool wait) { 883 std::string payload; 884 rnb_err_t err = GetPacketPayload(payload); 885 if (err != rnb_success) { 886 PThreadEvent &events = m_ctx.Events(); 887 nub_event_t set_events = events.GetEventBits(); 888 // TODO: add timeout version of GetPacket?? We would then need to pass 889 // that timeout value along to DNBProcessTimedWaitForEvent. 890 if (!wait || ((set_events & RNBContext::event_read_thread_running) == 0)) 891 return err; 892 893 const nub_event_t events_to_wait_for = 894 RNBContext::event_read_packet_available | 895 RNBContext::event_read_thread_exiting; 896 897 while ((set_events = events.WaitForSetEvents(events_to_wait_for)) != 0) { 898 if (set_events & RNBContext::event_read_packet_available) { 899 // Try the queue again now that we got an event 900 err = GetPacketPayload(payload); 901 if (err == rnb_success) 902 break; 903 } 904 905 if (set_events & RNBContext::event_read_thread_exiting) 906 err = rnb_not_connected; 907 908 if (err == rnb_not_connected) 909 return err; 910 } 911 while (err == rnb_err) 912 ; 913 914 if (set_events == 0) 915 err = rnb_not_connected; 916 } 917 918 if (err == rnb_success) { 919 Packet::iterator it; 920 for (it = m_packets.begin(); it != m_packets.end(); ++it) { 921 if (payload.compare(0, it->abbrev.size(), it->abbrev) == 0) 922 break; 923 } 924 925 // A packet we don't have an entry for. This can happen when we 926 // get a packet that we don't know about or support. We just reply 927 // accordingly and go on. 928 if (it == m_packets.end()) { 929 DNBLogThreadedIf(LOG_RNB_PACKETS, "unimplemented packet: '%s'", 930 payload.c_str()); 931 HandlePacket_UNIMPLEMENTED(payload.c_str()); 932 return rnb_err; 933 } else { 934 packet_info = *it; 935 packet_payload = payload; 936 } 937 } 938 return err; 939 } 940 941 rnb_err_t RNBRemote::HandleAsyncPacket(PacketEnum *type) { 942 DNBLogThreadedIf(LOG_RNB_REMOTE, "%8u RNBRemote::%s", 943 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 944 __FUNCTION__); 945 static DNBTimer g_packetTimer(true); 946 rnb_err_t err = rnb_err; 947 std::string packet_data; 948 RNBRemote::Packet packet_info; 949 err = GetPacket(packet_data, packet_info, false); 950 951 if (err == rnb_success) { 952 if (!packet_data.empty() && isprint(packet_data[0])) 953 DNBLogThreadedIf(LOG_RNB_REMOTE | LOG_RNB_PACKETS, 954 "HandleAsyncPacket (\"%s\");", packet_data.c_str()); 955 else 956 DNBLogThreadedIf(LOG_RNB_REMOTE | LOG_RNB_PACKETS, 957 "HandleAsyncPacket (%s);", 958 packet_info.printable_name.c_str()); 959 960 HandlePacketCallback packet_callback = packet_info.async; 961 if (packet_callback != NULL) { 962 if (type != NULL) 963 *type = packet_info.type; 964 return (this->*packet_callback)(packet_data.c_str()); 965 } 966 } 967 968 return err; 969 } 970 971 rnb_err_t RNBRemote::HandleReceivedPacket(PacketEnum *type) { 972 static DNBTimer g_packetTimer(true); 973 974 // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s", 975 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); 976 rnb_err_t err = rnb_err; 977 std::string packet_data; 978 RNBRemote::Packet packet_info; 979 err = GetPacket(packet_data, packet_info, false); 980 981 if (err == rnb_success) { 982 DNBLogThreadedIf(LOG_RNB_REMOTE, "HandleReceivedPacket (\"%s\");", 983 packet_data.c_str()); 984 HandlePacketCallback packet_callback = packet_info.normal; 985 if (packet_callback != NULL) { 986 if (type != NULL) 987 *type = packet_info.type; 988 return (this->*packet_callback)(packet_data.c_str()); 989 } else { 990 // Do not fall through to end of this function, if we have valid 991 // packet_info and it has a NULL callback, then we need to respect 992 // that it may not want any response or anything to be done. 993 return err; 994 } 995 } 996 return rnb_err; 997 } 998 999 void RNBRemote::CommDataReceived(const std::string &new_data) { 1000 // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s called", 1001 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); 1002 { 1003 // Put the packet data into the buffer in a thread safe fashion 1004 PThreadMutex::Locker locker(m_mutex); 1005 1006 std::string data; 1007 // See if we have any left over data from a previous call to this 1008 // function? 1009 if (!m_rx_partial_data.empty()) { 1010 // We do, so lets start with that data 1011 data.swap(m_rx_partial_data); 1012 } 1013 // Append the new incoming data 1014 data += new_data; 1015 1016 // Parse up the packets into gdb remote packets 1017 size_t idx = 0; 1018 const size_t data_size = data.size(); 1019 1020 while (idx < data_size) { 1021 // end_idx must be one past the last valid packet byte. Start 1022 // it off with an invalid value that is the same as the current 1023 // index. 1024 size_t end_idx = idx; 1025 1026 switch (data[idx]) { 1027 case '+': // Look for ack 1028 case '-': // Look for cancel 1029 case '\x03': // ^C to halt target 1030 end_idx = idx + 1; // The command is one byte long... 1031 break; 1032 1033 case '$': 1034 // Look for a standard gdb packet? 1035 end_idx = data.find('#', idx + 1); 1036 if (end_idx == std::string::npos || end_idx + 3 > data_size) { 1037 end_idx = std::string::npos; 1038 } else { 1039 // Add two for the checksum bytes and 1 to point to the 1040 // byte just past the end of this packet 1041 end_idx += 3; 1042 } 1043 break; 1044 1045 default: 1046 break; 1047 } 1048 1049 if (end_idx == std::string::npos) { 1050 // Not all data may be here for the packet yet, save it for 1051 // next time through this function. 1052 m_rx_partial_data += data.substr(idx); 1053 // DNBLogThreadedIf (LOG_RNB_MAX, "%8d RNBRemote::%s saving data for 1054 // later[%u, npos): 1055 // '%s'",(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 1056 // __FUNCTION__, idx, m_rx_partial_data.c_str()); 1057 idx = end_idx; 1058 } else if (idx < end_idx) { 1059 m_packets_recvd++; 1060 // Hack to get rid of initial '+' ACK??? 1061 if (m_packets_recvd == 1 && (end_idx == idx + 1) && data[idx] == '+') { 1062 // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s throwing first 1063 // ACK away....[%u, npos): 1064 // '+'",(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 1065 // __FUNCTION__, idx); 1066 } else { 1067 // We have a valid packet... 1068 m_rx_packets.push_back(data.substr(idx, end_idx - idx)); 1069 DNBLogThreadedIf(LOG_RNB_PACKETS, "getpkt: %s", 1070 m_rx_packets.back().c_str()); 1071 } 1072 idx = end_idx; 1073 } else { 1074 DNBLogThreadedIf(LOG_RNB_MAX, 1075 "%8d RNBRemote::%s tossing junk byte at %c", 1076 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 1077 __FUNCTION__, data[idx]); 1078 idx = idx + 1; 1079 } 1080 } 1081 } 1082 1083 if (!m_rx_packets.empty()) { 1084 // Let the main thread know we have received a packet 1085 1086 // DNBLogThreadedIf (LOG_RNB_EVENTS, "%8d RNBRemote::%s called 1087 // events.SetEvent(RNBContext::event_read_packet_available)", 1088 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); 1089 PThreadEvent &events = m_ctx.Events(); 1090 events.SetEvents(RNBContext::event_read_packet_available); 1091 } 1092 } 1093 1094 rnb_err_t RNBRemote::GetCommData() { 1095 // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s called", 1096 // (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); 1097 std::string comm_data; 1098 rnb_err_t err = m_comm.Read(comm_data); 1099 if (err == rnb_success) { 1100 if (!comm_data.empty()) 1101 CommDataReceived(comm_data); 1102 } 1103 return err; 1104 } 1105 1106 void RNBRemote::StartReadRemoteDataThread() { 1107 DNBLogThreadedIf(LOG_RNB_REMOTE, "%8u RNBRemote::%s called", 1108 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 1109 __FUNCTION__); 1110 PThreadEvent &events = m_ctx.Events(); 1111 if ((events.GetEventBits() & RNBContext::event_read_thread_running) == 0) { 1112 events.ResetEvents(RNBContext::event_read_thread_exiting); 1113 int err = ::pthread_create(&m_rx_pthread, NULL, 1114 ThreadFunctionReadRemoteData, this); 1115 if (err == 0) { 1116 // Our thread was successfully kicked off, wait for it to 1117 // set the started event so we can safely continue 1118 events.WaitForSetEvents(RNBContext::event_read_thread_running); 1119 } else { 1120 events.ResetEvents(RNBContext::event_read_thread_running); 1121 events.SetEvents(RNBContext::event_read_thread_exiting); 1122 } 1123 } 1124 } 1125 1126 void RNBRemote::StopReadRemoteDataThread() { 1127 DNBLogThreadedIf(LOG_RNB_REMOTE, "%8u RNBRemote::%s called", 1128 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 1129 __FUNCTION__); 1130 PThreadEvent &events = m_ctx.Events(); 1131 if ((events.GetEventBits() & RNBContext::event_read_thread_running) == 1132 RNBContext::event_read_thread_running) { 1133 DNBLog("debugserver about to shut down packet communications to lldb."); 1134 m_comm.Disconnect(true); 1135 struct timespec timeout_abstime; 1136 DNBTimer::OffsetTimeOfDay(&timeout_abstime, 2, 0); 1137 1138 // Wait for 2 seconds for the remote data thread to exit 1139 if (events.WaitForSetEvents(RNBContext::event_read_thread_exiting, 1140 &timeout_abstime) == 0) { 1141 // Kill the remote data thread??? 1142 } 1143 } 1144 } 1145 1146 void *RNBRemote::ThreadFunctionReadRemoteData(void *arg) { 1147 // Keep a shared pointer reference so this doesn't go away on us before the 1148 // thread is killed. 1149 DNBLogThreadedIf(LOG_RNB_REMOTE, "RNBRemote::%s (%p): thread starting...", 1150 __FUNCTION__, arg); 1151 RNBRemoteSP remoteSP(g_remoteSP); 1152 if (remoteSP.get() != NULL) { 1153 1154 #if defined(__APPLE__) 1155 pthread_setname_np("read gdb-remote packets thread"); 1156 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 1157 struct sched_param thread_param; 1158 int thread_sched_policy; 1159 if (pthread_getschedparam(pthread_self(), &thread_sched_policy, 1160 &thread_param) == 0) { 1161 thread_param.sched_priority = 47; 1162 pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param); 1163 } 1164 #endif 1165 #endif 1166 1167 RNBRemote *remote = remoteSP.get(); 1168 PThreadEvent &events = remote->Context().Events(); 1169 events.SetEvents(RNBContext::event_read_thread_running); 1170 // START: main receive remote command thread loop 1171 bool done = false; 1172 while (!done) { 1173 rnb_err_t err = remote->GetCommData(); 1174 1175 switch (err) { 1176 case rnb_success: 1177 break; 1178 1179 case rnb_err: 1180 DNBLogThreadedIf(LOG_RNB_REMOTE, 1181 "RNBSocket::GetCommData returned error %u", err); 1182 done = true; 1183 break; 1184 1185 case rnb_not_connected: 1186 DNBLogThreadedIf(LOG_RNB_REMOTE, 1187 "RNBSocket::GetCommData returned not connected..."); 1188 done = true; 1189 break; 1190 } 1191 } 1192 // START: main receive remote command thread loop 1193 events.ResetEvents(RNBContext::event_read_thread_running); 1194 events.SetEvents(RNBContext::event_read_thread_exiting); 1195 } 1196 DNBLogThreadedIf(LOG_RNB_REMOTE, "RNBRemote::%s (%p): thread exiting...", 1197 __FUNCTION__, arg); 1198 return NULL; 1199 } 1200 1201 // If we fail to get back a valid CPU type for the remote process, 1202 // make a best guess for the CPU type based on the currently running 1203 // debugserver binary -- the debugger may not handle the case of an 1204 // un-specified process CPU type correctly. 1205 1206 static cpu_type_t best_guess_cpu_type() { 1207 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 1208 if (sizeof(char *) == 8) { 1209 return CPU_TYPE_ARM64; 1210 } else { 1211 #if defined (__ARM64_ARCH_8_32__) 1212 return CPU_TYPE_ARM64_32; 1213 #endif 1214 return CPU_TYPE_ARM; 1215 } 1216 #elif defined(__i386__) || defined(__x86_64__) 1217 if (sizeof(char *) == 8) { 1218 return CPU_TYPE_X86_64; 1219 } else { 1220 return CPU_TYPE_I386; 1221 } 1222 #endif 1223 return 0; 1224 } 1225 1226 /* Read the bytes in STR which are GDB Remote Protocol binary encoded bytes 1227 (8-bit bytes). 1228 This encoding uses 0x7d ('}') as an escape character for 1229 0x7d ('}'), 0x23 ('#'), 0x24 ('$'), 0x2a ('*'). 1230 LEN is the number of bytes to be processed. If a character is escaped, 1231 it is 2 characters for LEN. A LEN of -1 means decode-until-nul-byte 1232 (end of string). */ 1233 1234 std::vector<uint8_t> decode_binary_data(const char *str, size_t len) { 1235 std::vector<uint8_t> bytes; 1236 if (len == 0) { 1237 return bytes; 1238 } 1239 if (len == (size_t)-1) 1240 len = strlen(str); 1241 1242 while (len--) { 1243 unsigned char c = *str++; 1244 if (c == 0x7d && len > 0) { 1245 len--; 1246 c = *str++ ^ 0x20; 1247 } 1248 bytes.push_back(c); 1249 } 1250 return bytes; 1251 } 1252 1253 // Quote any meta characters in a std::string as per the binary 1254 // packet convention in the gdb-remote protocol. 1255 1256 static std::string binary_encode_string(const std::string &s) { 1257 std::string output; 1258 const size_t s_size = s.size(); 1259 const char *s_chars = s.c_str(); 1260 1261 for (size_t i = 0; i < s_size; i++) { 1262 unsigned char ch = *(s_chars + i); 1263 if (ch == '#' || ch == '$' || ch == '}' || ch == '*') { 1264 output.push_back('}'); // 0x7d 1265 output.push_back(ch ^ 0x20); 1266 } else { 1267 output.push_back(ch); 1268 } 1269 } 1270 return output; 1271 } 1272 1273 // If the value side of a key-value pair in JSON is a string, 1274 // and that string has a " character in it, the " character must 1275 // be escaped. 1276 1277 std::string json_string_quote_metachars(const std::string &s) { 1278 if (s.find('"') == std::string::npos) 1279 return s; 1280 1281 std::string output; 1282 const size_t s_size = s.size(); 1283 const char *s_chars = s.c_str(); 1284 for (size_t i = 0; i < s_size; i++) { 1285 unsigned char ch = *(s_chars + i); 1286 if (ch == '"') { 1287 output.push_back('\\'); 1288 } 1289 output.push_back(ch); 1290 } 1291 return output; 1292 } 1293 1294 typedef struct register_map_entry { 1295 uint32_t debugserver_regnum; // debugserver register number 1296 uint32_t offset; // Offset in bytes into the register context data with no 1297 // padding between register values 1298 DNBRegisterInfo nub_info; // debugnub register info 1299 std::vector<uint32_t> value_regnums; 1300 std::vector<uint32_t> invalidate_regnums; 1301 } register_map_entry_t; 1302 1303 // If the notion of registers differs from what is handed out by the 1304 // architecture, then flavors can be defined here. 1305 1306 static std::vector<register_map_entry_t> g_dynamic_register_map; 1307 static register_map_entry_t *g_reg_entries = NULL; 1308 static size_t g_num_reg_entries = 0; 1309 1310 void RNBRemote::Initialize() { DNBInitialize(); } 1311 1312 bool RNBRemote::InitializeRegisters(bool force) { 1313 pid_t pid = m_ctx.ProcessID(); 1314 if (pid == INVALID_NUB_PROCESS) 1315 return false; 1316 1317 DNBLogThreadedIf( 1318 LOG_RNB_PROC, 1319 "RNBRemote::%s() getting native registers from DNB interface", 1320 __FUNCTION__); 1321 // Discover the registers by querying the DNB interface and letting it 1322 // state the registers that it would like to export. This allows the 1323 // registers to be discovered using multiple qRegisterInfo calls to get 1324 // all register information after the architecture for the process is 1325 // determined. 1326 if (force) { 1327 g_dynamic_register_map.clear(); 1328 g_reg_entries = NULL; 1329 g_num_reg_entries = 0; 1330 } 1331 1332 if (g_dynamic_register_map.empty()) { 1333 nub_size_t num_reg_sets = 0; 1334 const DNBRegisterSetInfo *reg_sets = DNBGetRegisterSetInfo(&num_reg_sets); 1335 1336 assert(num_reg_sets > 0 && reg_sets != NULL); 1337 1338 uint32_t regnum = 0; 1339 uint32_t reg_data_offset = 0; 1340 typedef std::map<std::string, uint32_t> NameToRegNum; 1341 NameToRegNum name_to_regnum; 1342 for (nub_size_t set = 0; set < num_reg_sets; ++set) { 1343 if (reg_sets[set].registers == NULL) 1344 continue; 1345 1346 for (uint32_t reg = 0; reg < reg_sets[set].num_registers; ++reg) { 1347 register_map_entry_t reg_entry = { 1348 regnum++, // register number starts at zero and goes up with no gaps 1349 reg_data_offset, // Offset into register context data, no gaps 1350 // between registers 1351 reg_sets[set].registers[reg], // DNBRegisterInfo 1352 {}, 1353 {}, 1354 }; 1355 1356 name_to_regnum[reg_entry.nub_info.name] = reg_entry.debugserver_regnum; 1357 1358 if (reg_entry.nub_info.value_regs == NULL) { 1359 reg_data_offset += reg_entry.nub_info.size; 1360 } 1361 1362 g_dynamic_register_map.push_back(reg_entry); 1363 } 1364 } 1365 1366 // Now we must find any registers whose values are in other registers and 1367 // fix up 1368 // the offsets since we removed all gaps... 1369 for (auto ®_entry : g_dynamic_register_map) { 1370 if (reg_entry.nub_info.value_regs) { 1371 uint32_t new_offset = UINT32_MAX; 1372 for (size_t i = 0; reg_entry.nub_info.value_regs[i] != NULL; ++i) { 1373 const char *name = reg_entry.nub_info.value_regs[i]; 1374 auto pos = name_to_regnum.find(name); 1375 if (pos != name_to_regnum.end()) { 1376 regnum = pos->second; 1377 reg_entry.value_regnums.push_back(regnum); 1378 if (regnum < g_dynamic_register_map.size()) { 1379 // The offset for value_regs registers is the offset within the 1380 // register with the lowest offset 1381 const uint32_t reg_offset = 1382 g_dynamic_register_map[regnum].offset + 1383 reg_entry.nub_info.offset; 1384 if (new_offset > reg_offset) 1385 new_offset = reg_offset; 1386 } 1387 } 1388 } 1389 1390 if (new_offset != UINT32_MAX) { 1391 reg_entry.offset = new_offset; 1392 } else { 1393 DNBLogThreaded("no offset was calculated entry for register %s", 1394 reg_entry.nub_info.name); 1395 reg_entry.offset = UINT32_MAX; 1396 } 1397 } 1398 1399 if (reg_entry.nub_info.update_regs) { 1400 for (size_t i = 0; reg_entry.nub_info.update_regs[i] != NULL; ++i) { 1401 const char *name = reg_entry.nub_info.update_regs[i]; 1402 auto pos = name_to_regnum.find(name); 1403 if (pos != name_to_regnum.end()) { 1404 regnum = pos->second; 1405 reg_entry.invalidate_regnums.push_back(regnum); 1406 } 1407 } 1408 } 1409 } 1410 1411 // for (auto ®_entry: g_dynamic_register_map) 1412 // { 1413 // DNBLogThreaded("%4i: size = %3u, pseudo = %i, name = %s", 1414 // reg_entry.offset, 1415 // reg_entry.nub_info.size, 1416 // reg_entry.nub_info.value_regs != NULL, 1417 // reg_entry.nub_info.name); 1418 // } 1419 1420 g_reg_entries = g_dynamic_register_map.data(); 1421 g_num_reg_entries = g_dynamic_register_map.size(); 1422 } 1423 return true; 1424 } 1425 1426 /* The inferior has stopped executing; send a packet 1427 to gdb to let it know. */ 1428 1429 void RNBRemote::NotifyThatProcessStopped(void) { 1430 RNBRemote::HandlePacket_last_signal(NULL); 1431 return; 1432 } 1433 1434 /* 'A arglen,argnum,arg,...' 1435 Update the inferior context CTX with the program name and arg 1436 list. 1437 The documentation for this packet is underwhelming but my best reading 1438 of this is that it is a series of (len, position #, arg)'s, one for 1439 each argument with "arg" hex encoded (two 0-9a-f chars?). 1440 Why we need BOTH a "len" and a hex encoded "arg" is beyond me - either 1441 is sufficient to get around the "," position separator escape issue. 1442 1443 e.g. our best guess for a valid 'A' packet for "gdb -q a.out" is 1444 1445 6,0,676462,4,1,2d71,10,2,612e6f7574 1446 1447 Note that "argnum" and "arglen" are numbers in base 10. Again, that's 1448 not documented either way but I'm assuming it's so. */ 1449 1450 rnb_err_t RNBRemote::HandlePacket_A(const char *p) { 1451 if (p == NULL || *p == '\0') { 1452 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1453 "Null packet for 'A' pkt"); 1454 } 1455 p++; 1456 if (*p == '\0' || !isdigit(*p)) { 1457 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1458 "arglen not specified on 'A' pkt"); 1459 } 1460 1461 /* I promise I don't modify it anywhere in this function. strtoul()'s 1462 2nd arg has to be non-const which makes it problematic to step 1463 through the string easily. */ 1464 char *buf = const_cast<char *>(p); 1465 1466 RNBContext &ctx = Context(); 1467 1468 while (*buf != '\0') { 1469 unsigned long arglen, argnum; 1470 std::string arg; 1471 char *c; 1472 1473 errno = 0; 1474 arglen = strtoul(buf, &c, 10); 1475 if (errno != 0 && arglen == 0) { 1476 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1477 "arglen not a number on 'A' pkt"); 1478 } 1479 if (*c != ',') { 1480 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1481 "arglen not followed by comma on 'A' pkt"); 1482 } 1483 buf = c + 1; 1484 1485 errno = 0; 1486 argnum = strtoul(buf, &c, 10); 1487 if (errno != 0 && argnum == 0) { 1488 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1489 "argnum not a number on 'A' pkt"); 1490 } 1491 if (*c != ',') { 1492 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1493 "arglen not followed by comma on 'A' pkt"); 1494 } 1495 buf = c + 1; 1496 1497 c = buf; 1498 buf = buf + arglen; 1499 while (c < buf && *c != '\0' && c + 1 < buf && *(c + 1) != '\0') { 1500 char smallbuf[3]; 1501 smallbuf[0] = *c; 1502 smallbuf[1] = *(c + 1); 1503 smallbuf[2] = '\0'; 1504 1505 errno = 0; 1506 int ch = static_cast<int>(strtoul(smallbuf, NULL, 16)); 1507 if (errno != 0 && ch == 0) { 1508 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1509 "non-hex char in arg on 'A' pkt"); 1510 } 1511 1512 arg.push_back(ch); 1513 c += 2; 1514 } 1515 1516 ctx.PushArgument(arg.c_str()); 1517 if (*buf == ',') 1518 buf++; 1519 } 1520 SendPacket("OK"); 1521 1522 return rnb_success; 1523 } 1524 1525 /* 'H c t' 1526 Set the thread for subsequent actions; 'c' for step/continue ops, 1527 'g' for other ops. -1 means all threads, 0 means any thread. */ 1528 1529 rnb_err_t RNBRemote::HandlePacket_H(const char *p) { 1530 p++; // skip 'H' 1531 if (*p != 'c' && *p != 'g') { 1532 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1533 "Missing 'c' or 'g' type in H packet"); 1534 } 1535 1536 if (!m_ctx.HasValidProcessID()) { 1537 // We allow gdb to connect to a server that hasn't started running 1538 // the target yet. gdb still wants to ask questions about it and 1539 // freaks out if it gets an error. So just return OK here. 1540 } 1541 1542 errno = 0; 1543 nub_thread_t tid = strtoul(p + 1, NULL, 16); 1544 if (errno != 0 && tid == 0) { 1545 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1546 "Invalid thread number in H packet"); 1547 } 1548 if (*p == 'c') 1549 SetContinueThread(tid); 1550 if (*p == 'g') 1551 SetCurrentThread(tid); 1552 1553 return SendPacket("OK"); 1554 } 1555 1556 rnb_err_t RNBRemote::HandlePacket_qLaunchSuccess(const char *p) { 1557 if (m_ctx.HasValidProcessID() || m_ctx.LaunchStatus().Status() == 0) 1558 return SendPacket("OK"); 1559 std::ostringstream ret_str; 1560 std::string status_str; 1561 std::string error_quoted = binary_encode_string 1562 (m_ctx.LaunchStatusAsString(status_str)); 1563 ret_str << "E" << error_quoted; 1564 1565 return SendPacket(ret_str.str()); 1566 } 1567 1568 rnb_err_t RNBRemote::HandlePacket_qShlibInfoAddr(const char *p) { 1569 if (m_ctx.HasValidProcessID()) { 1570 nub_addr_t shlib_info_addr = 1571 DNBProcessGetSharedLibraryInfoAddress(m_ctx.ProcessID()); 1572 if (shlib_info_addr != INVALID_NUB_ADDRESS) { 1573 std::ostringstream ostrm; 1574 ostrm << RAW_HEXBASE << shlib_info_addr; 1575 return SendPacket(ostrm.str()); 1576 } 1577 } 1578 return SendPacket("E44"); 1579 } 1580 1581 rnb_err_t RNBRemote::HandlePacket_qStepPacketSupported(const char *p) { 1582 // Normally the "s" packet is mandatory, yet in gdb when using ARM, they 1583 // get around the need for this packet by implementing software single 1584 // stepping from gdb. Current versions of debugserver do support the "s" 1585 // packet, yet some older versions do not. We need a way to tell if this 1586 // packet is supported so we can disable software single stepping in gdb 1587 // for remote targets (so the "s" packet will get used). 1588 return SendPacket("OK"); 1589 } 1590 1591 rnb_err_t RNBRemote::HandlePacket_qSyncThreadStateSupported(const char *p) { 1592 // We support attachOrWait meaning attach if the process exists, otherwise 1593 // wait to attach. 1594 return SendPacket("OK"); 1595 } 1596 1597 rnb_err_t RNBRemote::HandlePacket_qVAttachOrWaitSupported(const char *p) { 1598 // We support attachOrWait meaning attach if the process exists, otherwise 1599 // wait to attach. 1600 return SendPacket("OK"); 1601 } 1602 1603 rnb_err_t RNBRemote::HandlePacket_qThreadStopInfo(const char *p) { 1604 p += strlen("qThreadStopInfo"); 1605 nub_thread_t tid = strtoul(p, 0, 16); 1606 return SendStopReplyPacketForThread(tid); 1607 } 1608 1609 rnb_err_t RNBRemote::HandlePacket_qThreadInfo(const char *p) { 1610 // We allow gdb to connect to a server that hasn't started running 1611 // the target yet. gdb still wants to ask questions about it and 1612 // freaks out if it gets an error. So just return OK here. 1613 nub_process_t pid = m_ctx.ProcessID(); 1614 if (pid == INVALID_NUB_PROCESS) 1615 return SendPacket("OK"); 1616 1617 // Only "qfThreadInfo" and "qsThreadInfo" get into this function so 1618 // we only need to check the second byte to tell which is which 1619 if (p[1] == 'f') { 1620 nub_size_t numthreads = DNBProcessGetNumThreads(pid); 1621 std::ostringstream ostrm; 1622 ostrm << "m"; 1623 bool first = true; 1624 for (nub_size_t i = 0; i < numthreads; ++i) { 1625 if (first) 1626 first = false; 1627 else 1628 ostrm << ","; 1629 nub_thread_t th = DNBProcessGetThreadAtIndex(pid, i); 1630 ostrm << std::hex << th; 1631 } 1632 return SendPacket(ostrm.str()); 1633 } else { 1634 return SendPacket("l"); 1635 } 1636 } 1637 1638 rnb_err_t RNBRemote::HandlePacket_qThreadExtraInfo(const char *p) { 1639 // We allow gdb to connect to a server that hasn't started running 1640 // the target yet. gdb still wants to ask questions about it and 1641 // freaks out if it gets an error. So just return OK here. 1642 nub_process_t pid = m_ctx.ProcessID(); 1643 if (pid == INVALID_NUB_PROCESS) 1644 return SendPacket("OK"); 1645 1646 /* This is supposed to return a string like 'Runnable' or 1647 'Blocked on Mutex'. 1648 The returned string is formatted like the "A" packet - a 1649 sequence of letters encoded in as 2-hex-chars-per-letter. */ 1650 p += strlen("qThreadExtraInfo"); 1651 if (*p++ != ',') 1652 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1653 "Illformed qThreadExtraInfo packet"); 1654 errno = 0; 1655 nub_thread_t tid = strtoul(p, NULL, 16); 1656 if (errno != 0 && tid == 0) { 1657 return HandlePacket_ILLFORMED( 1658 __FILE__, __LINE__, p, 1659 "Invalid thread number in qThreadExtraInfo packet"); 1660 } 1661 1662 const char *threadInfo = DNBThreadGetInfo(pid, tid); 1663 if (threadInfo != NULL && threadInfo[0]) { 1664 return SendHexEncodedBytePacket(NULL, threadInfo, strlen(threadInfo), NULL); 1665 } else { 1666 // "OK" == 4f6b 1667 // Return "OK" as a ASCII hex byte stream if things go wrong 1668 return SendPacket("4f6b"); 1669 } 1670 1671 return SendPacket(""); 1672 } 1673 1674 const char *k_space_delimiters = " \t"; 1675 static void skip_spaces(std::string &line) { 1676 if (!line.empty()) { 1677 size_t space_pos = line.find_first_not_of(k_space_delimiters); 1678 if (space_pos > 0) 1679 line.erase(0, space_pos); 1680 } 1681 } 1682 1683 static std::string get_identifier(std::string &line) { 1684 std::string word; 1685 skip_spaces(line); 1686 const size_t line_size = line.size(); 1687 size_t end_pos; 1688 for (end_pos = 0; end_pos < line_size; ++end_pos) { 1689 if (end_pos == 0) { 1690 if (isalpha(line[end_pos]) || line[end_pos] == '_') 1691 continue; 1692 } else if (isalnum(line[end_pos]) || line[end_pos] == '_') 1693 continue; 1694 break; 1695 } 1696 word.assign(line, 0, end_pos); 1697 line.erase(0, end_pos); 1698 return word; 1699 } 1700 1701 static std::string get_operator(std::string &line) { 1702 std::string op; 1703 skip_spaces(line); 1704 if (!line.empty()) { 1705 if (line[0] == '=') { 1706 op = '='; 1707 line.erase(0, 1); 1708 } 1709 } 1710 return op; 1711 } 1712 1713 static std::string get_value(std::string &line) { 1714 std::string value; 1715 skip_spaces(line); 1716 if (!line.empty()) { 1717 value.swap(line); 1718 } 1719 return value; 1720 } 1721 1722 extern void FileLogCallback(void *baton, uint32_t flags, const char *format, 1723 va_list args); 1724 extern void ASLLogCallback(void *baton, uint32_t flags, const char *format, 1725 va_list args); 1726 1727 rnb_err_t RNBRemote::HandlePacket_qRcmd(const char *p) { 1728 const char *c = p + strlen("qRcmd,"); 1729 std::string line; 1730 while (c[0] && c[1]) { 1731 char smallbuf[3] = {c[0], c[1], '\0'}; 1732 errno = 0; 1733 int ch = static_cast<int>(strtoul(smallbuf, NULL, 16)); 1734 if (errno != 0 && ch == 0) 1735 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 1736 "non-hex char in payload of qRcmd packet"); 1737 line.push_back(ch); 1738 c += 2; 1739 } 1740 if (*c == '\0') { 1741 std::string command = get_identifier(line); 1742 if (command == "set") { 1743 std::string variable = get_identifier(line); 1744 std::string op = get_operator(line); 1745 std::string value = get_value(line); 1746 if (variable == "logfile") { 1747 FILE *log_file = fopen(value.c_str(), "w"); 1748 if (log_file) { 1749 DNBLogSetLogCallback(FileLogCallback, log_file); 1750 return SendPacket("OK"); 1751 } 1752 return SendPacket("E71"); 1753 } else if (variable == "logmask") { 1754 char *end; 1755 errno = 0; 1756 uint32_t logmask = 1757 static_cast<uint32_t>(strtoul(value.c_str(), &end, 0)); 1758 if (errno == 0 && end && *end == '\0') { 1759 DNBLogSetLogMask(logmask); 1760 if (!DNBLogGetLogCallback()) 1761 DNBLogSetLogCallback(ASLLogCallback, NULL); 1762 return SendPacket("OK"); 1763 } 1764 errno = 0; 1765 logmask = static_cast<uint32_t>(strtoul(value.c_str(), &end, 16)); 1766 if (errno == 0 && end && *end == '\0') { 1767 DNBLogSetLogMask(logmask); 1768 return SendPacket("OK"); 1769 } 1770 return SendPacket("E72"); 1771 } 1772 return SendPacket("E70"); 1773 } 1774 return SendPacket("E69"); 1775 } 1776 return SendPacket("E73"); 1777 } 1778 1779 rnb_err_t RNBRemote::HandlePacket_qC(const char *p) { 1780 nub_thread_t tid; 1781 std::ostringstream rep; 1782 // If we haven't run the process yet, we tell the debugger the 1783 // pid is 0. That way it can know to tell use to run later on. 1784 if (!m_ctx.HasValidProcessID()) 1785 tid = 0; 1786 else { 1787 // Grab the current thread. 1788 tid = DNBProcessGetCurrentThread(m_ctx.ProcessID()); 1789 // Make sure we set the current thread so g and p packets return 1790 // the data the gdb will expect. 1791 SetCurrentThread(tid); 1792 } 1793 rep << "QC" << std::hex << tid; 1794 return SendPacket(rep.str()); 1795 } 1796 1797 rnb_err_t RNBRemote::HandlePacket_qEcho(const char *p) { 1798 // Just send the exact same packet back that we received to 1799 // synchronize the response packets after a previous packet 1800 // timed out. This allows the debugger to get back on track 1801 // with responses after a packet timeout. 1802 return SendPacket(p); 1803 } 1804 1805 rnb_err_t RNBRemote::HandlePacket_qGetPid(const char *p) { 1806 nub_process_t pid; 1807 std::ostringstream rep; 1808 // If we haven't run the process yet, we tell the debugger the 1809 // pid is 0. That way it can know to tell use to run later on. 1810 if (m_ctx.HasValidProcessID()) 1811 pid = m_ctx.ProcessID(); 1812 else 1813 pid = 0; 1814 rep << std::hex << pid; 1815 return SendPacket(rep.str()); 1816 } 1817 1818 rnb_err_t RNBRemote::HandlePacket_qRegisterInfo(const char *p) { 1819 if (g_num_reg_entries == 0) 1820 InitializeRegisters(); 1821 1822 p += strlen("qRegisterInfo"); 1823 1824 nub_size_t num_reg_sets = 0; 1825 const DNBRegisterSetInfo *reg_set_info = DNBGetRegisterSetInfo(&num_reg_sets); 1826 uint32_t reg_num = static_cast<uint32_t>(strtoul(p, 0, 16)); 1827 1828 if (reg_num < g_num_reg_entries) { 1829 const register_map_entry_t *reg_entry = &g_reg_entries[reg_num]; 1830 std::ostringstream ostrm; 1831 if (reg_entry->nub_info.name) 1832 ostrm << "name:" << reg_entry->nub_info.name << ';'; 1833 if (reg_entry->nub_info.alt) 1834 ostrm << "alt-name:" << reg_entry->nub_info.alt << ';'; 1835 1836 ostrm << "bitsize:" << std::dec << reg_entry->nub_info.size * 8 << ';'; 1837 ostrm << "offset:" << std::dec << reg_entry->offset << ';'; 1838 1839 switch (reg_entry->nub_info.type) { 1840 case Uint: 1841 ostrm << "encoding:uint;"; 1842 break; 1843 case Sint: 1844 ostrm << "encoding:sint;"; 1845 break; 1846 case IEEE754: 1847 ostrm << "encoding:ieee754;"; 1848 break; 1849 case Vector: 1850 ostrm << "encoding:vector;"; 1851 break; 1852 } 1853 1854 switch (reg_entry->nub_info.format) { 1855 case Binary: 1856 ostrm << "format:binary;"; 1857 break; 1858 case Decimal: 1859 ostrm << "format:decimal;"; 1860 break; 1861 case Hex: 1862 ostrm << "format:hex;"; 1863 break; 1864 case Float: 1865 ostrm << "format:float;"; 1866 break; 1867 case VectorOfSInt8: 1868 ostrm << "format:vector-sint8;"; 1869 break; 1870 case VectorOfUInt8: 1871 ostrm << "format:vector-uint8;"; 1872 break; 1873 case VectorOfSInt16: 1874 ostrm << "format:vector-sint16;"; 1875 break; 1876 case VectorOfUInt16: 1877 ostrm << "format:vector-uint16;"; 1878 break; 1879 case VectorOfSInt32: 1880 ostrm << "format:vector-sint32;"; 1881 break; 1882 case VectorOfUInt32: 1883 ostrm << "format:vector-uint32;"; 1884 break; 1885 case VectorOfFloat32: 1886 ostrm << "format:vector-float32;"; 1887 break; 1888 case VectorOfUInt128: 1889 ostrm << "format:vector-uint128;"; 1890 break; 1891 }; 1892 1893 if (reg_set_info && reg_entry->nub_info.set < num_reg_sets) 1894 ostrm << "set:" << reg_set_info[reg_entry->nub_info.set].name << ';'; 1895 1896 if (reg_entry->nub_info.reg_ehframe != INVALID_NUB_REGNUM) 1897 ostrm << "ehframe:" << std::dec << reg_entry->nub_info.reg_ehframe << ';'; 1898 1899 if (reg_entry->nub_info.reg_dwarf != INVALID_NUB_REGNUM) 1900 ostrm << "dwarf:" << std::dec << reg_entry->nub_info.reg_dwarf << ';'; 1901 1902 switch (reg_entry->nub_info.reg_generic) { 1903 case GENERIC_REGNUM_FP: 1904 ostrm << "generic:fp;"; 1905 break; 1906 case GENERIC_REGNUM_PC: 1907 ostrm << "generic:pc;"; 1908 break; 1909 case GENERIC_REGNUM_SP: 1910 ostrm << "generic:sp;"; 1911 break; 1912 case GENERIC_REGNUM_RA: 1913 ostrm << "generic:ra;"; 1914 break; 1915 case GENERIC_REGNUM_FLAGS: 1916 ostrm << "generic:flags;"; 1917 break; 1918 case GENERIC_REGNUM_ARG1: 1919 ostrm << "generic:arg1;"; 1920 break; 1921 case GENERIC_REGNUM_ARG2: 1922 ostrm << "generic:arg2;"; 1923 break; 1924 case GENERIC_REGNUM_ARG3: 1925 ostrm << "generic:arg3;"; 1926 break; 1927 case GENERIC_REGNUM_ARG4: 1928 ostrm << "generic:arg4;"; 1929 break; 1930 case GENERIC_REGNUM_ARG5: 1931 ostrm << "generic:arg5;"; 1932 break; 1933 case GENERIC_REGNUM_ARG6: 1934 ostrm << "generic:arg6;"; 1935 break; 1936 case GENERIC_REGNUM_ARG7: 1937 ostrm << "generic:arg7;"; 1938 break; 1939 case GENERIC_REGNUM_ARG8: 1940 ostrm << "generic:arg8;"; 1941 break; 1942 default: 1943 break; 1944 } 1945 1946 if (!reg_entry->value_regnums.empty()) { 1947 ostrm << "container-regs:"; 1948 for (size_t i = 0, n = reg_entry->value_regnums.size(); i < n; ++i) { 1949 if (i > 0) 1950 ostrm << ','; 1951 ostrm << RAW_HEXBASE << reg_entry->value_regnums[i]; 1952 } 1953 ostrm << ';'; 1954 } 1955 1956 if (!reg_entry->invalidate_regnums.empty()) { 1957 ostrm << "invalidate-regs:"; 1958 for (size_t i = 0, n = reg_entry->invalidate_regnums.size(); i < n; ++i) { 1959 if (i > 0) 1960 ostrm << ','; 1961 ostrm << RAW_HEXBASE << reg_entry->invalidate_regnums[i]; 1962 } 1963 ostrm << ';'; 1964 } 1965 1966 return SendPacket(ostrm.str()); 1967 } 1968 return SendPacket("E45"); 1969 } 1970 1971 /* This expects a packet formatted like 1972 1973 QSetLogging:bitmask=LOG_ALL|LOG_RNB_REMOTE; 1974 1975 with the "QSetLogging:" already removed from the start. Maybe in the 1976 future this packet will include other keyvalue pairs like 1977 1978 QSetLogging:bitmask=LOG_ALL;mode=asl; 1979 */ 1980 1981 rnb_err_t set_logging(const char *p) { 1982 int bitmask = 0; 1983 while (p && *p != '\0') { 1984 if (strncmp(p, "bitmask=", sizeof("bitmask=") - 1) == 0) { 1985 p += sizeof("bitmask=") - 1; 1986 while (p && *p != '\0' && *p != ';') { 1987 if (*p == '|') 1988 p++; 1989 1990 // to regenerate the LOG_ entries (not including the LOG_RNB entries) 1991 // $ for logname in `grep '^#define LOG_' DNBDefs.h | egrep -v 1992 // 'LOG_HI|LOG_LO' | awk '{print $2}'` 1993 // do 1994 // echo " else if (strncmp (p, \"$logname\", sizeof 1995 // (\"$logname\") - 1) == 0)" 1996 // echo " {" 1997 // echo " p += sizeof (\"$logname\") - 1;" 1998 // echo " bitmask |= $logname;" 1999 // echo " }" 2000 // done 2001 if (strncmp(p, "LOG_VERBOSE", sizeof("LOG_VERBOSE") - 1) == 0) { 2002 p += sizeof("LOG_VERBOSE") - 1; 2003 bitmask |= LOG_VERBOSE; 2004 } else if (strncmp(p, "LOG_PROCESS", sizeof("LOG_PROCESS") - 1) == 0) { 2005 p += sizeof("LOG_PROCESS") - 1; 2006 bitmask |= LOG_PROCESS; 2007 } else if (strncmp(p, "LOG_THREAD", sizeof("LOG_THREAD") - 1) == 0) { 2008 p += sizeof("LOG_THREAD") - 1; 2009 bitmask |= LOG_THREAD; 2010 } else if (strncmp(p, "LOG_EXCEPTIONS", sizeof("LOG_EXCEPTIONS") - 1) == 2011 0) { 2012 p += sizeof("LOG_EXCEPTIONS") - 1; 2013 bitmask |= LOG_EXCEPTIONS; 2014 } else if (strncmp(p, "LOG_SHLIB", sizeof("LOG_SHLIB") - 1) == 0) { 2015 p += sizeof("LOG_SHLIB") - 1; 2016 bitmask |= LOG_SHLIB; 2017 } else if (strncmp(p, "LOG_MEMORY_DATA_SHORT", 2018 sizeof("LOG_MEMORY_DATA_SHORT") - 1) == 0) { 2019 p += sizeof("LOG_MEMORY_DATA_SHORT") - 1; 2020 bitmask |= LOG_MEMORY_DATA_SHORT; 2021 } else if (strncmp(p, "LOG_MEMORY_DATA_LONG", 2022 sizeof("LOG_MEMORY_DATA_LONG") - 1) == 0) { 2023 p += sizeof("LOG_MEMORY_DATA_LONG") - 1; 2024 bitmask |= LOG_MEMORY_DATA_LONG; 2025 } else if (strncmp(p, "LOG_MEMORY_PROTECTIONS", 2026 sizeof("LOG_MEMORY_PROTECTIONS") - 1) == 0) { 2027 p += sizeof("LOG_MEMORY_PROTECTIONS") - 1; 2028 bitmask |= LOG_MEMORY_PROTECTIONS; 2029 } else if (strncmp(p, "LOG_MEMORY", sizeof("LOG_MEMORY") - 1) == 0) { 2030 p += sizeof("LOG_MEMORY") - 1; 2031 bitmask |= LOG_MEMORY; 2032 } else if (strncmp(p, "LOG_BREAKPOINTS", 2033 sizeof("LOG_BREAKPOINTS") - 1) == 0) { 2034 p += sizeof("LOG_BREAKPOINTS") - 1; 2035 bitmask |= LOG_BREAKPOINTS; 2036 } else if (strncmp(p, "LOG_EVENTS", sizeof("LOG_EVENTS") - 1) == 0) { 2037 p += sizeof("LOG_EVENTS") - 1; 2038 bitmask |= LOG_EVENTS; 2039 } else if (strncmp(p, "LOG_WATCHPOINTS", 2040 sizeof("LOG_WATCHPOINTS") - 1) == 0) { 2041 p += sizeof("LOG_WATCHPOINTS") - 1; 2042 bitmask |= LOG_WATCHPOINTS; 2043 } else if (strncmp(p, "LOG_STEP", sizeof("LOG_STEP") - 1) == 0) { 2044 p += sizeof("LOG_STEP") - 1; 2045 bitmask |= LOG_STEP; 2046 } else if (strncmp(p, "LOG_TASK", sizeof("LOG_TASK") - 1) == 0) { 2047 p += sizeof("LOG_TASK") - 1; 2048 bitmask |= LOG_TASK; 2049 } else if (strncmp(p, "LOG_ALL", sizeof("LOG_ALL") - 1) == 0) { 2050 p += sizeof("LOG_ALL") - 1; 2051 bitmask |= LOG_ALL; 2052 } else if (strncmp(p, "LOG_DEFAULT", sizeof("LOG_DEFAULT") - 1) == 0) { 2053 p += sizeof("LOG_DEFAULT") - 1; 2054 bitmask |= LOG_DEFAULT; 2055 } 2056 // end of auto-generated entries 2057 2058 else if (strncmp(p, "LOG_NONE", sizeof("LOG_NONE") - 1) == 0) { 2059 p += sizeof("LOG_NONE") - 1; 2060 bitmask = 0; 2061 } else if (strncmp(p, "LOG_RNB_MINIMAL", 2062 sizeof("LOG_RNB_MINIMAL") - 1) == 0) { 2063 p += sizeof("LOG_RNB_MINIMAL") - 1; 2064 bitmask |= LOG_RNB_MINIMAL; 2065 } else if (strncmp(p, "LOG_RNB_MEDIUM", sizeof("LOG_RNB_MEDIUM") - 1) == 2066 0) { 2067 p += sizeof("LOG_RNB_MEDIUM") - 1; 2068 bitmask |= LOG_RNB_MEDIUM; 2069 } else if (strncmp(p, "LOG_RNB_MAX", sizeof("LOG_RNB_MAX") - 1) == 0) { 2070 p += sizeof("LOG_RNB_MAX") - 1; 2071 bitmask |= LOG_RNB_MAX; 2072 } else if (strncmp(p, "LOG_RNB_COMM", sizeof("LOG_RNB_COMM") - 1) == 2073 0) { 2074 p += sizeof("LOG_RNB_COMM") - 1; 2075 bitmask |= LOG_RNB_COMM; 2076 } else if (strncmp(p, "LOG_RNB_REMOTE", sizeof("LOG_RNB_REMOTE") - 1) == 2077 0) { 2078 p += sizeof("LOG_RNB_REMOTE") - 1; 2079 bitmask |= LOG_RNB_REMOTE; 2080 } else if (strncmp(p, "LOG_RNB_EVENTS", sizeof("LOG_RNB_EVENTS") - 1) == 2081 0) { 2082 p += sizeof("LOG_RNB_EVENTS") - 1; 2083 bitmask |= LOG_RNB_EVENTS; 2084 } else if (strncmp(p, "LOG_RNB_PROC", sizeof("LOG_RNB_PROC") - 1) == 2085 0) { 2086 p += sizeof("LOG_RNB_PROC") - 1; 2087 bitmask |= LOG_RNB_PROC; 2088 } else if (strncmp(p, "LOG_RNB_PACKETS", 2089 sizeof("LOG_RNB_PACKETS") - 1) == 0) { 2090 p += sizeof("LOG_RNB_PACKETS") - 1; 2091 bitmask |= LOG_RNB_PACKETS; 2092 } else if (strncmp(p, "LOG_RNB_ALL", sizeof("LOG_RNB_ALL") - 1) == 0) { 2093 p += sizeof("LOG_RNB_ALL") - 1; 2094 bitmask |= LOG_RNB_ALL; 2095 } else if (strncmp(p, "LOG_RNB_DEFAULT", 2096 sizeof("LOG_RNB_DEFAULT") - 1) == 0) { 2097 p += sizeof("LOG_RNB_DEFAULT") - 1; 2098 bitmask |= LOG_RNB_DEFAULT; 2099 } else if (strncmp(p, "LOG_DARWIN_LOG", sizeof("LOG_DARWIN_LOG") - 1) == 2100 0) { 2101 p += sizeof("LOG_DARWIN_LOG") - 1; 2102 bitmask |= LOG_DARWIN_LOG; 2103 } else if (strncmp(p, "LOG_RNB_NONE", sizeof("LOG_RNB_NONE") - 1) == 2104 0) { 2105 p += sizeof("LOG_RNB_NONE") - 1; 2106 bitmask = 0; 2107 } else { 2108 /* Unrecognized logging bit; ignore it. */ 2109 const char *c = strchr(p, '|'); 2110 if (c) { 2111 p = c; 2112 } else { 2113 c = strchr(p, ';'); 2114 if (c) { 2115 p = c; 2116 } else { 2117 // Improperly terminated word; just go to end of str 2118 p = strchr(p, '\0'); 2119 } 2120 } 2121 } 2122 } 2123 // Did we get a properly formatted logging bitmask? 2124 if (p && *p == ';') { 2125 // Enable DNB logging. 2126 // Use the existing log callback if one was already configured. 2127 if (!DNBLogGetLogCallback()) { 2128 // Use the os_log()-based logger if available; otherwise, 2129 // fallback to ASL. 2130 auto log_callback = OsLogger::GetLogFunction(); 2131 if (log_callback) 2132 DNBLogSetLogCallback(log_callback, nullptr); 2133 else 2134 DNBLogSetLogCallback(ASLLogCallback, nullptr); 2135 } 2136 2137 // Update logging to use the configured log channel bitmask. 2138 DNBLogSetLogMask(bitmask); 2139 p++; 2140 } 2141 } 2142 // We're not going to support logging to a file for now. All logging 2143 // goes through ASL or the previously arranged log callback. 2144 #if 0 2145 else if (strncmp (p, "mode=", sizeof ("mode=") - 1) == 0) 2146 { 2147 p += sizeof ("mode=") - 1; 2148 if (strncmp (p, "asl;", sizeof ("asl;") - 1) == 0) 2149 { 2150 DNBLogToASL (); 2151 p += sizeof ("asl;") - 1; 2152 } 2153 else if (strncmp (p, "file;", sizeof ("file;") - 1) == 0) 2154 { 2155 DNBLogToFile (); 2156 p += sizeof ("file;") - 1; 2157 } 2158 else 2159 { 2160 // Ignore unknown argument 2161 const char *c = strchr (p, ';'); 2162 if (c) 2163 p = c + 1; 2164 else 2165 p = strchr (p, '\0'); 2166 } 2167 } 2168 else if (strncmp (p, "filename=", sizeof ("filename=") - 1) == 0) 2169 { 2170 p += sizeof ("filename=") - 1; 2171 const char *c = strchr (p, ';'); 2172 if (c == NULL) 2173 { 2174 c = strchr (p, '\0'); 2175 continue; 2176 } 2177 char *fn = (char *) alloca (c - p + 1); 2178 strlcpy (fn, p, c - p); 2179 fn[c - p] = '\0'; 2180 2181 // A file name of "asl" is special and is another way to indicate 2182 // that logging should be done via ASL, not by file. 2183 if (strcmp (fn, "asl") == 0) 2184 { 2185 DNBLogToASL (); 2186 } 2187 else 2188 { 2189 FILE *f = fopen (fn, "w"); 2190 if (f) 2191 { 2192 DNBLogSetLogFile (f); 2193 DNBEnableLogging (f, DNBLogGetLogMask ()); 2194 DNBLogToFile (); 2195 } 2196 } 2197 p = c + 1; 2198 } 2199 #endif /* #if 0 to enforce ASL logging only. */ 2200 else { 2201 // Ignore unknown argument 2202 const char *c = strchr(p, ';'); 2203 if (c) 2204 p = c + 1; 2205 else 2206 p = strchr(p, '\0'); 2207 } 2208 } 2209 2210 return rnb_success; 2211 } 2212 2213 rnb_err_t RNBRemote::HandlePacket_QThreadSuffixSupported(const char *p) { 2214 m_thread_suffix_supported = true; 2215 return SendPacket("OK"); 2216 } 2217 2218 rnb_err_t RNBRemote::HandlePacket_QStartNoAckMode(const char *p) { 2219 // Send the OK packet first so the correct checksum is appended... 2220 rnb_err_t result = SendPacket("OK"); 2221 m_noack_mode = true; 2222 return result; 2223 } 2224 2225 rnb_err_t RNBRemote::HandlePacket_QSetLogging(const char *p) { 2226 p += sizeof("QSetLogging:") - 1; 2227 rnb_err_t result = set_logging(p); 2228 if (result == rnb_success) 2229 return SendPacket("OK"); 2230 else 2231 return SendPacket("E35"); 2232 } 2233 2234 rnb_err_t RNBRemote::HandlePacket_QSetDisableASLR(const char *p) { 2235 extern int g_disable_aslr; 2236 p += sizeof("QSetDisableASLR:") - 1; 2237 switch (*p) { 2238 case '0': 2239 g_disable_aslr = 0; 2240 break; 2241 case '1': 2242 g_disable_aslr = 1; 2243 break; 2244 default: 2245 return SendPacket("E56"); 2246 } 2247 return SendPacket("OK"); 2248 } 2249 2250 rnb_err_t RNBRemote::HandlePacket_QSetSTDIO(const char *p) { 2251 // Only set stdin/out/err if we don't already have a process 2252 if (!m_ctx.HasValidProcessID()) { 2253 bool success = false; 2254 // Check the seventh character since the packet will be one of: 2255 // QSetSTDIN 2256 // QSetSTDOUT 2257 // QSetSTDERR 2258 StdStringExtractor packet(p); 2259 packet.SetFilePos(7); 2260 char ch = packet.GetChar(); 2261 while (packet.GetChar() != ':') 2262 /* Do nothing. */; 2263 2264 switch (ch) { 2265 case 'I': // STDIN 2266 packet.GetHexByteString(m_ctx.GetSTDIN()); 2267 success = !m_ctx.GetSTDIN().empty(); 2268 break; 2269 2270 case 'O': // STDOUT 2271 packet.GetHexByteString(m_ctx.GetSTDOUT()); 2272 success = !m_ctx.GetSTDOUT().empty(); 2273 break; 2274 2275 case 'E': // STDERR 2276 packet.GetHexByteString(m_ctx.GetSTDERR()); 2277 success = !m_ctx.GetSTDERR().empty(); 2278 break; 2279 2280 default: 2281 break; 2282 } 2283 if (success) 2284 return SendPacket("OK"); 2285 return SendPacket("E57"); 2286 } 2287 return SendPacket("E58"); 2288 } 2289 2290 rnb_err_t RNBRemote::HandlePacket_QSetWorkingDir(const char *p) { 2291 // Only set the working directory if we don't already have a process 2292 if (!m_ctx.HasValidProcessID()) { 2293 StdStringExtractor packet(p += sizeof("QSetWorkingDir:") - 1); 2294 if (packet.GetHexByteString(m_ctx.GetWorkingDir())) { 2295 struct stat working_dir_stat; 2296 if (::stat(m_ctx.GetWorkingDirPath(), &working_dir_stat) == -1) { 2297 m_ctx.GetWorkingDir().clear(); 2298 return SendPacket("E61"); // Working directory doesn't exist... 2299 } else if ((working_dir_stat.st_mode & S_IFMT) == S_IFDIR) { 2300 return SendPacket("OK"); 2301 } else { 2302 m_ctx.GetWorkingDir().clear(); 2303 return SendPacket("E62"); // Working directory isn't a directory... 2304 } 2305 } 2306 return SendPacket("E59"); // Invalid path 2307 } 2308 return SendPacket( 2309 "E60"); // Already had a process, too late to set working dir 2310 } 2311 2312 rnb_err_t RNBRemote::HandlePacket_QSyncThreadState(const char *p) { 2313 if (!m_ctx.HasValidProcessID()) { 2314 // We allow gdb to connect to a server that hasn't started running 2315 // the target yet. gdb still wants to ask questions about it and 2316 // freaks out if it gets an error. So just return OK here. 2317 return SendPacket("OK"); 2318 } 2319 2320 errno = 0; 2321 p += strlen("QSyncThreadState:"); 2322 nub_thread_t tid = strtoul(p, NULL, 16); 2323 if (errno != 0 && tid == 0) { 2324 return HandlePacket_ILLFORMED( 2325 __FILE__, __LINE__, p, 2326 "Invalid thread number in QSyncThreadState packet"); 2327 } 2328 if (DNBProcessSyncThreadState(m_ctx.ProcessID(), tid)) 2329 return SendPacket("OK"); 2330 else 2331 return SendPacket("E61"); 2332 } 2333 2334 rnb_err_t RNBRemote::HandlePacket_QSetDetachOnError(const char *p) { 2335 p += sizeof("QSetDetachOnError:") - 1; 2336 bool should_detach = true; 2337 switch (*p) { 2338 case '0': 2339 should_detach = false; 2340 break; 2341 case '1': 2342 should_detach = true; 2343 break; 2344 default: 2345 return HandlePacket_ILLFORMED( 2346 __FILE__, __LINE__, p, 2347 "Invalid value for QSetDetachOnError - should be 0 or 1"); 2348 break; 2349 } 2350 2351 m_ctx.SetDetachOnError(should_detach); 2352 return SendPacket("OK"); 2353 } 2354 2355 rnb_err_t RNBRemote::HandlePacket_QListThreadsInStopReply(const char *p) { 2356 // If this packet is received, it allows us to send an extra key/value 2357 // pair in the stop reply packets where we will list all of the thread IDs 2358 // separated by commas: 2359 // 2360 // "threads:10a,10b,10c;" 2361 // 2362 // This will get included in the stop reply packet as something like: 2363 // 2364 // "T11thread:10a;00:00000000;01:00010203:threads:10a,10b,10c;" 2365 // 2366 // This can save two packets on each stop: qfThreadInfo/qsThreadInfo and 2367 // speed things up a bit. 2368 // 2369 // Send the OK packet first so the correct checksum is appended... 2370 rnb_err_t result = SendPacket("OK"); 2371 m_list_threads_in_stop_reply = true; 2372 2373 return result; 2374 } 2375 2376 rnb_err_t RNBRemote::HandlePacket_QSetMaxPayloadSize(const char *p) { 2377 /* The number of characters in a packet payload that gdb is 2378 prepared to accept. The packet-start char, packet-end char, 2379 2 checksum chars and terminating null character are not included 2380 in this size. */ 2381 p += sizeof("QSetMaxPayloadSize:") - 1; 2382 errno = 0; 2383 uint32_t size = static_cast<uint32_t>(strtoul(p, NULL, 16)); 2384 if (errno != 0 && size == 0) { 2385 return HandlePacket_ILLFORMED( 2386 __FILE__, __LINE__, p, "Invalid length in QSetMaxPayloadSize packet"); 2387 } 2388 m_max_payload_size = size; 2389 return SendPacket("OK"); 2390 } 2391 2392 rnb_err_t RNBRemote::HandlePacket_QSetMaxPacketSize(const char *p) { 2393 /* This tells us the largest packet that gdb can handle. 2394 i.e. the size of gdb's packet-reading buffer. 2395 QSetMaxPayloadSize is preferred because it is less ambiguous. */ 2396 p += sizeof("QSetMaxPacketSize:") - 1; 2397 errno = 0; 2398 uint32_t size = static_cast<uint32_t>(strtoul(p, NULL, 16)); 2399 if (errno != 0 && size == 0) { 2400 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2401 "Invalid length in QSetMaxPacketSize packet"); 2402 } 2403 m_max_payload_size = size - 5; 2404 return SendPacket("OK"); 2405 } 2406 2407 rnb_err_t RNBRemote::HandlePacket_QEnvironment(const char *p) { 2408 /* This sets the environment for the target program. The packet is of the 2409 form: 2410 2411 QEnvironment:VARIABLE=VALUE 2412 2413 */ 2414 2415 DNBLogThreadedIf( 2416 LOG_RNB_REMOTE, "%8u RNBRemote::%s Handling QEnvironment: \"%s\"", 2417 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, p); 2418 2419 p += sizeof("QEnvironment:") - 1; 2420 RNBContext &ctx = Context(); 2421 2422 ctx.PushEnvironment(p); 2423 return SendPacket("OK"); 2424 } 2425 2426 rnb_err_t RNBRemote::HandlePacket_QEnvironmentHexEncoded(const char *p) { 2427 /* This sets the environment for the target program. The packet is of the 2428 form: 2429 2430 QEnvironmentHexEncoded:VARIABLE=VALUE 2431 2432 The VARIABLE=VALUE part is sent hex-encoded so characters like '#' with 2433 special 2434 meaning in the remote protocol won't break it. 2435 */ 2436 2437 DNBLogThreadedIf(LOG_RNB_REMOTE, 2438 "%8u RNBRemote::%s Handling QEnvironmentHexEncoded: \"%s\"", 2439 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), 2440 __FUNCTION__, p); 2441 2442 p += sizeof("QEnvironmentHexEncoded:") - 1; 2443 2444 std::string arg; 2445 const char *c; 2446 c = p; 2447 while (*c != '\0') { 2448 if (*(c + 1) == '\0') { 2449 return HandlePacket_ILLFORMED( 2450 __FILE__, __LINE__, p, 2451 "non-hex char in arg on 'QEnvironmentHexEncoded' pkt"); 2452 } 2453 char smallbuf[3]; 2454 smallbuf[0] = *c; 2455 smallbuf[1] = *(c + 1); 2456 smallbuf[2] = '\0'; 2457 errno = 0; 2458 int ch = static_cast<int>(strtoul(smallbuf, NULL, 16)); 2459 if (errno != 0 && ch == 0) { 2460 return HandlePacket_ILLFORMED( 2461 __FILE__, __LINE__, p, 2462 "non-hex char in arg on 'QEnvironmentHexEncoded' pkt"); 2463 } 2464 arg.push_back(ch); 2465 c += 2; 2466 } 2467 2468 RNBContext &ctx = Context(); 2469 if (arg.length() > 0) 2470 ctx.PushEnvironment(arg.c_str()); 2471 2472 return SendPacket("OK"); 2473 } 2474 2475 rnb_err_t RNBRemote::HandlePacket_QLaunchArch(const char *p) { 2476 p += sizeof("QLaunchArch:") - 1; 2477 if (DNBSetArchitecture(p)) 2478 return SendPacket("OK"); 2479 return SendPacket("E63"); 2480 } 2481 2482 rnb_err_t RNBRemote::HandlePacket_QSetProcessEvent(const char *p) { 2483 p += sizeof("QSetProcessEvent:") - 1; 2484 // If the process is running, then send the event to the process, otherwise 2485 // store it in the context. 2486 if (Context().HasValidProcessID()) { 2487 if (DNBProcessSendEvent(Context().ProcessID(), p)) 2488 return SendPacket("OK"); 2489 else 2490 return SendPacket("E80"); 2491 } else { 2492 Context().PushProcessEvent(p); 2493 } 2494 return SendPacket("OK"); 2495 } 2496 2497 void append_hex_value(std::ostream &ostrm, const void *buf, size_t buf_size, 2498 bool swap) { 2499 int i; 2500 const uint8_t *p = (const uint8_t *)buf; 2501 if (swap) { 2502 for (i = static_cast<int>(buf_size) - 1; i >= 0; i--) 2503 ostrm << RAWHEX8(p[i]); 2504 } else { 2505 for (size_t i = 0; i < buf_size; i++) 2506 ostrm << RAWHEX8(p[i]); 2507 } 2508 } 2509 2510 std::string cstring_to_asciihex_string(const char *str) { 2511 std::string hex_str; 2512 hex_str.reserve (strlen (str) * 2); 2513 while (str && *str) { 2514 uint8_t c = *str++; 2515 char hexbuf[5]; 2516 snprintf (hexbuf, sizeof(hexbuf), "%02x", c); 2517 hex_str += hexbuf; 2518 } 2519 return hex_str; 2520 } 2521 2522 void append_hexified_string(std::ostream &ostrm, const std::string &string) { 2523 size_t string_size = string.size(); 2524 const char *string_buf = string.c_str(); 2525 for (size_t i = 0; i < string_size; i++) { 2526 ostrm << RAWHEX8(*(string_buf + i)); 2527 } 2528 } 2529 2530 void register_value_in_hex_fixed_width(std::ostream &ostrm, nub_process_t pid, 2531 nub_thread_t tid, 2532 const register_map_entry_t *reg, 2533 const DNBRegisterValue *reg_value_ptr) { 2534 if (reg != NULL) { 2535 DNBRegisterValue reg_value; 2536 if (reg_value_ptr == NULL) { 2537 if (DNBThreadGetRegisterValueByID(pid, tid, reg->nub_info.set, 2538 reg->nub_info.reg, ®_value)) 2539 reg_value_ptr = ®_value; 2540 } 2541 2542 if (reg_value_ptr) { 2543 append_hex_value(ostrm, reg_value_ptr->value.v_uint8, reg->nub_info.size, 2544 false); 2545 } else { 2546 // If we fail to read a register value, check if it has a default 2547 // fail value. If it does, return this instead in case some of 2548 // the registers are not available on the current system. 2549 if (reg->nub_info.size > 0) { 2550 std::basic_string<uint8_t> zeros(reg->nub_info.size, '\0'); 2551 append_hex_value(ostrm, zeros.data(), zeros.size(), false); 2552 } 2553 } 2554 } 2555 } 2556 2557 void debugserver_regnum_with_fixed_width_hex_register_value( 2558 std::ostream &ostrm, nub_process_t pid, nub_thread_t tid, 2559 const register_map_entry_t *reg, const DNBRegisterValue *reg_value_ptr) { 2560 // Output the register number as 'NN:VVVVVVVV;' where NN is a 2 bytes HEX 2561 // gdb register number, and VVVVVVVV is the correct number of hex bytes 2562 // as ASCII for the register value. 2563 if (reg != NULL) { 2564 ostrm << RAWHEX8(reg->debugserver_regnum) << ':'; 2565 register_value_in_hex_fixed_width(ostrm, pid, tid, reg, reg_value_ptr); 2566 ostrm << ';'; 2567 } 2568 } 2569 2570 void RNBRemote::DispatchQueueOffsets::GetThreadQueueInfo( 2571 nub_process_t pid, nub_addr_t dispatch_qaddr, nub_addr_t &dispatch_queue_t, 2572 std::string &queue_name, uint64_t &queue_width, 2573 uint64_t &queue_serialnum) const { 2574 queue_name.clear(); 2575 queue_width = 0; 2576 queue_serialnum = 0; 2577 2578 if (IsValid() && dispatch_qaddr != INVALID_NUB_ADDRESS && 2579 dispatch_qaddr != 0) { 2580 dispatch_queue_t = DNBProcessMemoryReadPointer(pid, dispatch_qaddr); 2581 if (dispatch_queue_t) { 2582 queue_width = DNBProcessMemoryReadInteger( 2583 pid, dispatch_queue_t + dqo_width, dqo_width_size, 0); 2584 queue_serialnum = DNBProcessMemoryReadInteger( 2585 pid, dispatch_queue_t + dqo_serialnum, dqo_serialnum_size, 0); 2586 2587 if (dqo_version >= 4) { 2588 // libdispatch versions 4+, pointer to dispatch name is in the 2589 // queue structure. 2590 nub_addr_t pointer_to_label_address = dispatch_queue_t + dqo_label; 2591 nub_addr_t label_addr = 2592 DNBProcessMemoryReadPointer(pid, pointer_to_label_address); 2593 if (label_addr) 2594 queue_name = DNBProcessMemoryReadCString(pid, label_addr); 2595 } else { 2596 // libdispatch versions 1-3, dispatch name is a fixed width char array 2597 // in the queue structure. 2598 queue_name = DNBProcessMemoryReadCStringFixed( 2599 pid, dispatch_queue_t + dqo_label, dqo_label_size); 2600 } 2601 } 2602 } 2603 } 2604 2605 struct StackMemory { 2606 uint8_t bytes[2 * sizeof(nub_addr_t)]; 2607 nub_size_t length; 2608 }; 2609 typedef std::map<nub_addr_t, StackMemory> StackMemoryMap; 2610 2611 static void ReadStackMemory(nub_process_t pid, nub_thread_t tid, 2612 StackMemoryMap &stack_mmap, 2613 uint32_t backtrace_limit = 256) { 2614 DNBRegisterValue reg_value; 2615 if (DNBThreadGetRegisterValueByID(pid, tid, REGISTER_SET_GENERIC, 2616 GENERIC_REGNUM_FP, ®_value)) { 2617 uint32_t frame_count = 0; 2618 uint64_t fp = 0; 2619 if (reg_value.info.size == 4) 2620 fp = reg_value.value.uint32; 2621 else 2622 fp = reg_value.value.uint64; 2623 while (fp != 0) { 2624 // Make sure we never recurse more than 256 times so we don't recurse too 2625 // far or 2626 // store up too much memory in the expedited cache 2627 if (++frame_count > backtrace_limit) 2628 break; 2629 2630 const nub_size_t read_size = reg_value.info.size * 2; 2631 StackMemory stack_memory; 2632 stack_memory.length = read_size; 2633 if (DNBProcessMemoryRead(pid, fp, read_size, stack_memory.bytes) != 2634 read_size) 2635 break; 2636 // Make sure we don't try to put the same stack memory in more than once 2637 if (stack_mmap.find(fp) != stack_mmap.end()) 2638 break; 2639 // Put the entry into the cache 2640 stack_mmap[fp] = stack_memory; 2641 // Dereference the frame pointer to get to the previous frame pointer 2642 if (reg_value.info.size == 4) 2643 fp = ((uint32_t *)stack_memory.bytes)[0]; 2644 else 2645 fp = ((uint64_t *)stack_memory.bytes)[0]; 2646 } 2647 } 2648 } 2649 2650 rnb_err_t RNBRemote::SendStopReplyPacketForThread(nub_thread_t tid) { 2651 const nub_process_t pid = m_ctx.ProcessID(); 2652 if (pid == INVALID_NUB_PROCESS) 2653 return SendPacket("E50"); 2654 2655 struct DNBThreadStopInfo tid_stop_info; 2656 2657 /* Fill the remaining space in this packet with as many registers 2658 as we can stuff in there. */ 2659 2660 if (DNBThreadGetStopReason(pid, tid, &tid_stop_info)) { 2661 const bool did_exec = tid_stop_info.reason == eStopTypeExec; 2662 if (did_exec) { 2663 RNBRemote::InitializeRegisters(true); 2664 2665 // Reset any symbols that need resetting when we exec 2666 m_dispatch_queue_offsets_addr = INVALID_NUB_ADDRESS; 2667 m_dispatch_queue_offsets.Clear(); 2668 } 2669 2670 std::ostringstream ostrm; 2671 // Output the T packet with the thread 2672 ostrm << 'T'; 2673 int signum = tid_stop_info.details.signal.signo; 2674 DNBLogThreadedIf( 2675 LOG_RNB_PROC, "%8d %s got signal signo = %u, exc_type = %u", 2676 (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, 2677 signum, tid_stop_info.details.exception.type); 2678 2679 // Translate any mach exceptions to gdb versions, unless they are 2680 // common exceptions like a breakpoint or a soft signal. 2681 switch (tid_stop_info.details.exception.type) { 2682 default: 2683 signum = 0; 2684 break; 2685 case EXC_BREAKPOINT: 2686 signum = SIGTRAP; 2687 break; 2688 case EXC_BAD_ACCESS: 2689 signum = TARGET_EXC_BAD_ACCESS; 2690 break; 2691 case EXC_BAD_INSTRUCTION: 2692 signum = TARGET_EXC_BAD_INSTRUCTION; 2693 break; 2694 case EXC_ARITHMETIC: 2695 signum = TARGET_EXC_ARITHMETIC; 2696 break; 2697 case EXC_EMULATION: 2698 signum = TARGET_EXC_EMULATION; 2699 break; 2700 case EXC_SOFTWARE: 2701 if (tid_stop_info.details.exception.data_count == 2 && 2702 tid_stop_info.details.exception.data[0] == EXC_SOFT_SIGNAL) 2703 signum = static_cast<int>(tid_stop_info.details.exception.data[1]); 2704 else 2705 signum = TARGET_EXC_SOFTWARE; 2706 break; 2707 } 2708 2709 ostrm << RAWHEX8(signum & 0xff); 2710 2711 ostrm << std::hex << "thread:" << tid << ';'; 2712 2713 const char *thread_name = DNBThreadGetName(pid, tid); 2714 if (thread_name && thread_name[0]) { 2715 size_t thread_name_len = strlen(thread_name); 2716 2717 if (::strcspn(thread_name, "$#+-;:") == thread_name_len) 2718 ostrm << std::hex << "name:" << thread_name << ';'; 2719 else { 2720 // the thread name contains special chars, send as hex bytes 2721 ostrm << std::hex << "hexname:"; 2722 const uint8_t *u_thread_name = (const uint8_t *)thread_name; 2723 for (size_t i = 0; i < thread_name_len; i++) 2724 ostrm << RAWHEX8(u_thread_name[i]); 2725 ostrm << ';'; 2726 } 2727 } 2728 2729 // If a 'QListThreadsInStopReply' was sent to enable this feature, we 2730 // will send all thread IDs back in the "threads" key whose value is 2731 // a list of hex thread IDs separated by commas: 2732 // "threads:10a,10b,10c;" 2733 // This will save the debugger from having to send a pair of qfThreadInfo 2734 // and qsThreadInfo packets, but it also might take a lot of room in the 2735 // stop reply packet, so it must be enabled only on systems where there 2736 // are no limits on packet lengths. 2737 if (m_list_threads_in_stop_reply) { 2738 const nub_size_t numthreads = DNBProcessGetNumThreads(pid); 2739 if (numthreads > 0) { 2740 std::vector<uint64_t> pc_values; 2741 ostrm << std::hex << "threads:"; 2742 for (nub_size_t i = 0; i < numthreads; ++i) { 2743 nub_thread_t th = DNBProcessGetThreadAtIndex(pid, i); 2744 if (i > 0) 2745 ostrm << ','; 2746 ostrm << std::hex << th; 2747 DNBRegisterValue pc_regval; 2748 if (DNBThreadGetRegisterValueByID(pid, th, REGISTER_SET_GENERIC, 2749 GENERIC_REGNUM_PC, &pc_regval)) { 2750 uint64_t pc = INVALID_NUB_ADDRESS; 2751 if (pc_regval.value.uint64 != INVALID_NUB_ADDRESS) { 2752 if (pc_regval.info.size == 4) { 2753 pc = pc_regval.value.uint32; 2754 } else if (pc_regval.info.size == 8) { 2755 pc = pc_regval.value.uint64; 2756 } 2757 if (pc != INVALID_NUB_ADDRESS) { 2758 pc_values.push_back(pc); 2759 } 2760 } 2761 } 2762 } 2763 ostrm << ';'; 2764 2765 // If we failed to get any of the thread pc values, the size of our 2766 // vector will not 2767 // be the same as the # of threads. Don't provide any expedited thread 2768 // pc values in 2769 // that case. This should not happen. 2770 if (pc_values.size() == numthreads) { 2771 ostrm << std::hex << "thread-pcs:"; 2772 for (nub_size_t i = 0; i < numthreads; ++i) { 2773 if (i > 0) 2774 ostrm << ','; 2775 ostrm << std::hex << pc_values[i]; 2776 } 2777 ostrm << ';'; 2778 } 2779 } 2780 2781 // Include JSON info that describes the stop reason for any threads 2782 // that actually have stop reasons. We use the new "jstopinfo" key 2783 // whose values is hex ascii JSON that contains the thread IDs 2784 // thread stop info only for threads that have stop reasons. Only send 2785 // this if we have more than one thread otherwise this packet has all 2786 // the info it needs. 2787 if (numthreads > 1) { 2788 const bool threads_with_valid_stop_info_only = true; 2789 JSONGenerator::ObjectSP threads_info_sp = 2790 GetJSONThreadsInfo(threads_with_valid_stop_info_only); 2791 if (threads_info_sp) { 2792 ostrm << std::hex << "jstopinfo:"; 2793 std::ostringstream json_strm; 2794 threads_info_sp->Dump(json_strm); 2795 append_hexified_string(ostrm, json_strm.str()); 2796 ostrm << ';'; 2797 } 2798 } 2799 } 2800 2801 if (g_num_reg_entries == 0) 2802 InitializeRegisters(); 2803 2804 if (g_reg_entries != NULL) { 2805 DNBRegisterValue reg_value; 2806 for (uint32_t reg = 0; reg < g_num_reg_entries; reg++) { 2807 // Expedite all registers in the first register set that aren't 2808 // contained in other registers 2809 if (g_reg_entries[reg].nub_info.set == 1 && 2810 g_reg_entries[reg].nub_info.value_regs == NULL) { 2811 if (!DNBThreadGetRegisterValueByID( 2812 pid, tid, g_reg_entries[reg].nub_info.set, 2813 g_reg_entries[reg].nub_info.reg, ®_value)) 2814 continue; 2815 2816 debugserver_regnum_with_fixed_width_hex_register_value( 2817 ostrm, pid, tid, &g_reg_entries[reg], ®_value); 2818 } 2819 } 2820 } 2821 2822 if (did_exec) { 2823 ostrm << "reason:exec;"; 2824 } else if (tid_stop_info.details.exception.type) { 2825 ostrm << "metype:" << std::hex << tid_stop_info.details.exception.type 2826 << ';'; 2827 ostrm << "mecount:" << std::hex 2828 << tid_stop_info.details.exception.data_count << ';'; 2829 for (nub_size_t i = 0; i < tid_stop_info.details.exception.data_count; 2830 ++i) 2831 ostrm << "medata:" << std::hex 2832 << tid_stop_info.details.exception.data[i] << ';'; 2833 } 2834 2835 // Add expedited stack memory so stack backtracing doesn't need to read 2836 // anything from the 2837 // frame pointer chain. 2838 StackMemoryMap stack_mmap; 2839 ReadStackMemory(pid, tid, stack_mmap, 2); 2840 if (!stack_mmap.empty()) { 2841 for (const auto &stack_memory : stack_mmap) { 2842 ostrm << "memory:" << HEXBASE << stack_memory.first << '='; 2843 append_hex_value(ostrm, stack_memory.second.bytes, 2844 stack_memory.second.length, false); 2845 ostrm << ';'; 2846 } 2847 } 2848 2849 return SendPacket(ostrm.str()); 2850 } 2851 return SendPacket("E51"); 2852 } 2853 2854 /* '?' 2855 The stop reply packet - tell gdb what the status of the inferior is. 2856 Often called the questionmark_packet. */ 2857 2858 rnb_err_t RNBRemote::HandlePacket_last_signal(const char *unused) { 2859 if (!m_ctx.HasValidProcessID()) { 2860 // Inferior is not yet specified/running 2861 return SendPacket("E02"); 2862 } 2863 2864 nub_process_t pid = m_ctx.ProcessID(); 2865 nub_state_t pid_state = DNBProcessGetState(pid); 2866 2867 switch (pid_state) { 2868 case eStateAttaching: 2869 case eStateLaunching: 2870 case eStateRunning: 2871 case eStateStepping: 2872 case eStateDetached: 2873 return rnb_success; // Ignore 2874 2875 case eStateSuspended: 2876 case eStateStopped: 2877 case eStateCrashed: { 2878 nub_thread_t tid = DNBProcessGetCurrentThread(pid); 2879 // Make sure we set the current thread so g and p packets return 2880 // the data the gdb will expect. 2881 SetCurrentThread(tid); 2882 2883 SendStopReplyPacketForThread(tid); 2884 } break; 2885 2886 case eStateInvalid: 2887 case eStateUnloaded: 2888 case eStateExited: { 2889 char pid_exited_packet[16] = ""; 2890 int pid_status = 0; 2891 // Process exited with exit status 2892 if (!DNBProcessGetExitStatus(pid, &pid_status)) 2893 pid_status = 0; 2894 2895 if (pid_status) { 2896 if (WIFEXITED(pid_status)) 2897 snprintf(pid_exited_packet, sizeof(pid_exited_packet), "W%02x", 2898 WEXITSTATUS(pid_status)); 2899 else if (WIFSIGNALED(pid_status)) 2900 snprintf(pid_exited_packet, sizeof(pid_exited_packet), "X%02x", 2901 WTERMSIG(pid_status)); 2902 else if (WIFSTOPPED(pid_status)) 2903 snprintf(pid_exited_packet, sizeof(pid_exited_packet), "S%02x", 2904 WSTOPSIG(pid_status)); 2905 } 2906 2907 // If we have an empty exit packet, lets fill one in to be safe. 2908 if (!pid_exited_packet[0]) { 2909 strlcpy(pid_exited_packet, "W00", sizeof(pid_exited_packet) - 1); 2910 pid_exited_packet[sizeof(pid_exited_packet) - 1] = '\0'; 2911 } 2912 2913 const char *exit_info = DNBProcessGetExitInfo(pid); 2914 if (exit_info != NULL && *exit_info != '\0') { 2915 std::ostringstream exit_packet; 2916 exit_packet << pid_exited_packet; 2917 exit_packet << ';'; 2918 exit_packet << RAW_HEXBASE << "description"; 2919 exit_packet << ':'; 2920 for (size_t i = 0; exit_info[i] != '\0'; i++) 2921 exit_packet << RAWHEX8(exit_info[i]); 2922 exit_packet << ';'; 2923 return SendPacket(exit_packet.str()); 2924 } else 2925 return SendPacket(pid_exited_packet); 2926 } break; 2927 } 2928 return rnb_success; 2929 } 2930 2931 rnb_err_t RNBRemote::HandlePacket_M(const char *p) { 2932 if (p == NULL || p[0] == '\0' || strlen(p) < 3) { 2933 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, "Too short M packet"); 2934 } 2935 2936 char *c; 2937 p++; 2938 errno = 0; 2939 nub_addr_t addr = strtoull(p, &c, 16); 2940 if (errno != 0 && addr == 0) { 2941 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2942 "Invalid address in M packet"); 2943 } 2944 if (*c != ',') { 2945 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2946 "Comma sep missing in M packet"); 2947 } 2948 2949 /* Advance 'p' to the length part of the packet. */ 2950 p += (c - p) + 1; 2951 2952 errno = 0; 2953 unsigned long length = strtoul(p, &c, 16); 2954 if (errno != 0 && length == 0) { 2955 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2956 "Invalid length in M packet"); 2957 } 2958 if (length == 0) { 2959 return SendPacket("OK"); 2960 } 2961 2962 if (*c != ':') { 2963 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2964 "Missing colon in M packet"); 2965 } 2966 /* Advance 'p' to the data part of the packet. */ 2967 p += (c - p) + 1; 2968 2969 size_t datalen = strlen(p); 2970 if (datalen & 0x1) { 2971 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2972 "Uneven # of hex chars for data in M packet"); 2973 } 2974 if (datalen == 0) { 2975 return SendPacket("OK"); 2976 } 2977 2978 uint8_t *buf = (uint8_t *)alloca(datalen / 2); 2979 uint8_t *i = buf; 2980 2981 while (*p != '\0' && *(p + 1) != '\0') { 2982 char hexbuf[3]; 2983 hexbuf[0] = *p; 2984 hexbuf[1] = *(p + 1); 2985 hexbuf[2] = '\0'; 2986 errno = 0; 2987 uint8_t byte = strtoul(hexbuf, NULL, 16); 2988 if (errno != 0 && byte == 0) { 2989 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 2990 "Invalid hex byte in M packet"); 2991 } 2992 *i++ = byte; 2993 p += 2; 2994 } 2995 2996 nub_size_t wrote = 2997 DNBProcessMemoryWrite(m_ctx.ProcessID(), addr, length, buf); 2998 if (wrote != length) 2999 return SendPacket("E09"); 3000 else 3001 return SendPacket("OK"); 3002 } 3003 3004 rnb_err_t RNBRemote::HandlePacket_m(const char *p) { 3005 if (p == NULL || p[0] == '\0' || strlen(p) < 3) { 3006 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, "Too short m packet"); 3007 } 3008 3009 char *c; 3010 p++; 3011 errno = 0; 3012 nub_addr_t addr = strtoull(p, &c, 16); 3013 if (errno != 0 && addr == 0) { 3014 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3015 "Invalid address in m packet"); 3016 } 3017 if (*c != ',') { 3018 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3019 "Comma sep missing in m packet"); 3020 } 3021 3022 /* Advance 'p' to the length part of the packet. */ 3023 p += (c - p) + 1; 3024 3025 errno = 0; 3026 auto length = strtoul(p, NULL, 16); 3027 if (errno != 0 && length == 0) { 3028 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3029 "Invalid length in m packet"); 3030 } 3031 if (length == 0) { 3032 return SendPacket(""); 3033 } 3034 3035 std::string buf(length, '\0'); 3036 if (buf.empty()) { 3037 return SendPacket("E78"); 3038 } 3039 nub_size_t bytes_read = 3040 DNBProcessMemoryRead(m_ctx.ProcessID(), addr, buf.size(), &buf[0]); 3041 if (bytes_read == 0) { 3042 return SendPacket("E08"); 3043 } 3044 3045 // "The reply may contain fewer bytes than requested if the server was able 3046 // to read only part of the region of memory." 3047 length = bytes_read; 3048 3049 std::ostringstream ostrm; 3050 for (unsigned long i = 0; i < length; i++) 3051 ostrm << RAWHEX8(buf[i]); 3052 return SendPacket(ostrm.str()); 3053 } 3054 3055 // Read memory, sent it up as binary data. 3056 // Usage: xADDR,LEN 3057 // ADDR and LEN are both base 16. 3058 3059 // Responds with 'OK' for zero-length request 3060 // or 3061 // 3062 // DATA 3063 // 3064 // where DATA is the binary data payload. 3065 3066 rnb_err_t RNBRemote::HandlePacket_x(const char *p) { 3067 if (p == NULL || p[0] == '\0' || strlen(p) < 3) { 3068 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, "Too short X packet"); 3069 } 3070 3071 char *c; 3072 p++; 3073 errno = 0; 3074 nub_addr_t addr = strtoull(p, &c, 16); 3075 if (errno != 0) { 3076 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3077 "Invalid address in X packet"); 3078 } 3079 if (*c != ',') { 3080 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3081 "Comma sep missing in X packet"); 3082 } 3083 3084 /* Advance 'p' to the number of bytes to be read. */ 3085 p += (c - p) + 1; 3086 3087 errno = 0; 3088 auto length = strtoul(p, NULL, 16); 3089 if (errno != 0) { 3090 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3091 "Invalid length in x packet"); 3092 } 3093 3094 // zero length read means this is a test of whether that packet is implemented 3095 // or not. 3096 if (length == 0) { 3097 return SendPacket("OK"); 3098 } 3099 3100 std::vector<uint8_t> buf(length); 3101 3102 if (buf.capacity() != length) { 3103 return SendPacket("E79"); 3104 } 3105 nub_size_t bytes_read = 3106 DNBProcessMemoryRead(m_ctx.ProcessID(), addr, buf.size(), &buf[0]); 3107 if (bytes_read == 0) { 3108 return SendPacket("E80"); 3109 } 3110 3111 std::vector<uint8_t> buf_quoted; 3112 buf_quoted.reserve(bytes_read + 30); 3113 for (nub_size_t i = 0; i < bytes_read; i++) { 3114 if (buf[i] == '#' || buf[i] == '$' || buf[i] == '}' || buf[i] == '*') { 3115 buf_quoted.push_back(0x7d); 3116 buf_quoted.push_back(buf[i] ^ 0x20); 3117 } else { 3118 buf_quoted.push_back(buf[i]); 3119 } 3120 } 3121 length = buf_quoted.size(); 3122 3123 std::ostringstream ostrm; 3124 for (unsigned long i = 0; i < length; i++) 3125 ostrm << buf_quoted[i]; 3126 3127 return SendPacket(ostrm.str()); 3128 } 3129 3130 rnb_err_t RNBRemote::HandlePacket_X(const char *p) { 3131 if (p == NULL || p[0] == '\0' || strlen(p) < 3) { 3132 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, "Too short X packet"); 3133 } 3134 3135 char *c; 3136 p++; 3137 errno = 0; 3138 nub_addr_t addr = strtoull(p, &c, 16); 3139 if (errno != 0 && addr == 0) { 3140 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3141 "Invalid address in X packet"); 3142 } 3143 if (*c != ',') { 3144 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3145 "Comma sep missing in X packet"); 3146 } 3147 3148 /* Advance 'p' to the length part of the packet. NB this is the length of the 3149 packet 3150 including any escaped chars. The data payload may be a little bit smaller 3151 after 3152 decoding. */ 3153 p += (c - p) + 1; 3154 3155 errno = 0; 3156 auto length = strtoul(p, NULL, 16); 3157 if (errno != 0 && length == 0) { 3158 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3159 "Invalid length in X packet"); 3160 } 3161 3162 // I think gdb sends a zero length write request to test whether this 3163 // packet is accepted. 3164 if (length == 0) { 3165 return SendPacket("OK"); 3166 } 3167 3168 std::vector<uint8_t> data = decode_binary_data(c, -1); 3169 std::vector<uint8_t>::const_iterator it; 3170 uint8_t *buf = (uint8_t *)alloca(data.size()); 3171 uint8_t *i = buf; 3172 for (it = data.begin(); it != data.end(); ++it) { 3173 *i++ = *it; 3174 } 3175 3176 nub_size_t wrote = 3177 DNBProcessMemoryWrite(m_ctx.ProcessID(), addr, data.size(), buf); 3178 if (wrote != data.size()) 3179 return SendPacket("E08"); 3180 return SendPacket("OK"); 3181 } 3182 3183 /* 'g' -- read registers 3184 Get the contents of the registers for the current thread, 3185 send them to gdb. 3186 Should the setting of the Hg packet determine which thread's registers 3187 are returned? */ 3188 3189 rnb_err_t RNBRemote::HandlePacket_g(const char *p) { 3190 std::ostringstream ostrm; 3191 if (!m_ctx.HasValidProcessID()) { 3192 return SendPacket("E11"); 3193 } 3194 3195 if (g_num_reg_entries == 0) 3196 InitializeRegisters(); 3197 3198 nub_process_t pid = m_ctx.ProcessID(); 3199 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(p + 1); 3200 if (tid == INVALID_NUB_THREAD) 3201 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3202 "No thread specified in p packet"); 3203 3204 // Get the register context size first by calling with NULL buffer 3205 nub_size_t reg_ctx_size = DNBThreadGetRegisterContext(pid, tid, NULL, 0); 3206 if (reg_ctx_size) { 3207 // Now allocate enough space for the entire register context 3208 std::vector<uint8_t> reg_ctx; 3209 reg_ctx.resize(reg_ctx_size); 3210 // Now read the register context 3211 reg_ctx_size = 3212 DNBThreadGetRegisterContext(pid, tid, ®_ctx[0], reg_ctx.size()); 3213 if (reg_ctx_size) { 3214 append_hex_value(ostrm, reg_ctx.data(), reg_ctx.size(), false); 3215 return SendPacket(ostrm.str()); 3216 } 3217 } 3218 return SendPacket("E74"); 3219 } 3220 3221 /* 'G XXX...' -- write registers 3222 How is the thread for these specified, beyond "the current thread"? 3223 Does gdb actually use the Hg packet to set this? */ 3224 3225 rnb_err_t RNBRemote::HandlePacket_G(const char *p) { 3226 if (!m_ctx.HasValidProcessID()) { 3227 return SendPacket("E11"); 3228 } 3229 3230 if (g_num_reg_entries == 0) 3231 InitializeRegisters(); 3232 3233 StdStringExtractor packet(p); 3234 packet.SetFilePos(1); // Skip the 'G' 3235 3236 nub_process_t pid = m_ctx.ProcessID(); 3237 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(p); 3238 if (tid == INVALID_NUB_THREAD) 3239 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3240 "No thread specified in p packet"); 3241 3242 // Get the register context size first by calling with NULL buffer 3243 nub_size_t reg_ctx_size = DNBThreadGetRegisterContext(pid, tid, NULL, 0); 3244 if (reg_ctx_size) { 3245 // Now allocate enough space for the entire register context 3246 std::vector<uint8_t> reg_ctx; 3247 reg_ctx.resize(reg_ctx_size); 3248 3249 const nub_size_t bytes_extracted = 3250 packet.GetHexBytes(®_ctx[0], reg_ctx.size(), 0xcc); 3251 if (bytes_extracted == reg_ctx.size()) { 3252 // Now write the register context 3253 reg_ctx_size = 3254 DNBThreadSetRegisterContext(pid, tid, reg_ctx.data(), reg_ctx.size()); 3255 if (reg_ctx_size == reg_ctx.size()) 3256 return SendPacket("OK"); 3257 else 3258 return SendPacket("E55"); 3259 } else { 3260 DNBLogError("RNBRemote::HandlePacket_G(%s): extracted %llu of %llu " 3261 "bytes, size mismatch\n", 3262 p, (uint64_t)bytes_extracted, (uint64_t)reg_ctx_size); 3263 return SendPacket("E64"); 3264 } 3265 } 3266 return SendPacket("E65"); 3267 } 3268 3269 static bool RNBRemoteShouldCancelCallback(void *not_used) { 3270 RNBRemoteSP remoteSP(g_remoteSP); 3271 if (remoteSP.get() != NULL) { 3272 RNBRemote *remote = remoteSP.get(); 3273 return !remote->Comm().IsConnected(); 3274 } 3275 return true; 3276 } 3277 3278 // FORMAT: _MXXXXXX,PPP 3279 // XXXXXX: big endian hex chars 3280 // PPP: permissions can be any combo of r w x chars 3281 // 3282 // RESPONSE: XXXXXX 3283 // XXXXXX: hex address of the newly allocated memory 3284 // EXX: error code 3285 // 3286 // EXAMPLES: 3287 // _M123000,rw 3288 // _M123000,rwx 3289 // _M123000,xw 3290 3291 rnb_err_t RNBRemote::HandlePacket_AllocateMemory(const char *p) { 3292 StdStringExtractor packet(p); 3293 packet.SetFilePos(2); // Skip the "_M" 3294 3295 nub_addr_t size = packet.GetHexMaxU64(StdStringExtractor::BigEndian, 0); 3296 if (size != 0) { 3297 if (packet.GetChar() == ',') { 3298 uint32_t permissions = 0; 3299 char ch; 3300 bool success = true; 3301 while (success && (ch = packet.GetChar()) != '\0') { 3302 switch (ch) { 3303 case 'r': 3304 permissions |= eMemoryPermissionsReadable; 3305 break; 3306 case 'w': 3307 permissions |= eMemoryPermissionsWritable; 3308 break; 3309 case 'x': 3310 permissions |= eMemoryPermissionsExecutable; 3311 break; 3312 default: 3313 success = false; 3314 break; 3315 } 3316 } 3317 3318 if (success) { 3319 nub_addr_t addr = 3320 DNBProcessMemoryAllocate(m_ctx.ProcessID(), size, permissions); 3321 if (addr != INVALID_NUB_ADDRESS) { 3322 std::ostringstream ostrm; 3323 ostrm << RAW_HEXBASE << addr; 3324 return SendPacket(ostrm.str()); 3325 } 3326 } 3327 } 3328 } 3329 return SendPacket("E53"); 3330 } 3331 3332 // FORMAT: _mXXXXXX 3333 // XXXXXX: address that was previously allocated 3334 // 3335 // RESPONSE: XXXXXX 3336 // OK: address was deallocated 3337 // EXX: error code 3338 // 3339 // EXAMPLES: 3340 // _m123000 3341 3342 rnb_err_t RNBRemote::HandlePacket_DeallocateMemory(const char *p) { 3343 StdStringExtractor packet(p); 3344 packet.SetFilePos(2); // Skip the "_m" 3345 nub_addr_t addr = 3346 packet.GetHexMaxU64(StdStringExtractor::BigEndian, INVALID_NUB_ADDRESS); 3347 3348 if (addr != INVALID_NUB_ADDRESS) { 3349 if (DNBProcessMemoryDeallocate(m_ctx.ProcessID(), addr)) 3350 return SendPacket("OK"); 3351 } 3352 return SendPacket("E54"); 3353 } 3354 3355 // FORMAT: QSaveRegisterState;thread:TTTT; (when thread suffix is supported) 3356 // FORMAT: QSaveRegisterState (when thread suffix is NOT 3357 // supported) 3358 // TTTT: thread ID in hex 3359 // 3360 // RESPONSE: 3361 // SAVEID: Where SAVEID is a decimal number that represents the save ID 3362 // that can be passed back into a "QRestoreRegisterState" packet 3363 // EXX: error code 3364 // 3365 // EXAMPLES: 3366 // QSaveRegisterState;thread:1E34; (when thread suffix is supported) 3367 // QSaveRegisterState (when thread suffix is NOT 3368 // supported) 3369 3370 rnb_err_t RNBRemote::HandlePacket_SaveRegisterState(const char *p) { 3371 nub_process_t pid = m_ctx.ProcessID(); 3372 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(p); 3373 if (tid == INVALID_NUB_THREAD) { 3374 if (m_thread_suffix_supported) 3375 return HandlePacket_ILLFORMED( 3376 __FILE__, __LINE__, p, 3377 "No thread specified in QSaveRegisterState packet"); 3378 else 3379 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3380 "No thread was is set with the Hg packet"); 3381 } 3382 3383 // Get the register context size first by calling with NULL buffer 3384 const uint32_t save_id = DNBThreadSaveRegisterState(pid, tid); 3385 if (save_id != 0) { 3386 char response[64]; 3387 snprintf(response, sizeof(response), "%u", save_id); 3388 return SendPacket(response); 3389 } else { 3390 return SendPacket("E75"); 3391 } 3392 } 3393 // FORMAT: QRestoreRegisterState:SAVEID;thread:TTTT; (when thread suffix is 3394 // supported) 3395 // FORMAT: QRestoreRegisterState:SAVEID (when thread suffix is NOT 3396 // supported) 3397 // TTTT: thread ID in hex 3398 // SAVEID: a decimal number that represents the save ID that was 3399 // returned from a call to "QSaveRegisterState" 3400 // 3401 // RESPONSE: 3402 // OK: successfully restored registers for the specified thread 3403 // EXX: error code 3404 // 3405 // EXAMPLES: 3406 // QRestoreRegisterState:1;thread:1E34; (when thread suffix is 3407 // supported) 3408 // QRestoreRegisterState:1 (when thread suffix is NOT 3409 // supported) 3410 3411 rnb_err_t RNBRemote::HandlePacket_RestoreRegisterState(const char *p) { 3412 nub_process_t pid = m_ctx.ProcessID(); 3413 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(p); 3414 if (tid == INVALID_NUB_THREAD) { 3415 if (m_thread_suffix_supported) 3416 return HandlePacket_ILLFORMED( 3417 __FILE__, __LINE__, p, 3418 "No thread specified in QSaveRegisterState packet"); 3419 else 3420 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3421 "No thread was is set with the Hg packet"); 3422 } 3423 3424 StdStringExtractor packet(p); 3425 packet.SetFilePos( 3426 strlen("QRestoreRegisterState:")); // Skip the "QRestoreRegisterState:" 3427 const uint32_t save_id = packet.GetU32(0); 3428 3429 if (save_id != 0) { 3430 // Get the register context size first by calling with NULL buffer 3431 if (DNBThreadRestoreRegisterState(pid, tid, save_id)) 3432 return SendPacket("OK"); 3433 else 3434 return SendPacket("E77"); 3435 } 3436 return SendPacket("E76"); 3437 } 3438 3439 static bool GetProcessNameFrom_vAttach(const char *&p, 3440 std::string &attach_name) { 3441 bool return_val = true; 3442 while (*p != '\0') { 3443 char smallbuf[3]; 3444 smallbuf[0] = *p; 3445 smallbuf[1] = *(p + 1); 3446 smallbuf[2] = '\0'; 3447 3448 errno = 0; 3449 int ch = static_cast<int>(strtoul(smallbuf, NULL, 16)); 3450 if (errno != 0 && ch == 0) { 3451 return_val = false; 3452 break; 3453 } 3454 3455 attach_name.push_back(ch); 3456 p += 2; 3457 } 3458 return return_val; 3459 } 3460 3461 rnb_err_t RNBRemote::HandlePacket_qSupported(const char *p) { 3462 uint32_t max_packet_size = 128 * 1024; // 128KBytes is a reasonable max packet 3463 // size--debugger can always use less 3464 char buf[256]; 3465 snprintf(buf, sizeof(buf), "qXfer:features:read+;PacketSize=%x;qEcho+", 3466 max_packet_size); 3467 3468 bool enable_compression = false; 3469 (void)enable_compression; 3470 3471 #if (defined (TARGET_OS_WATCH) && TARGET_OS_WATCH == 1) \ 3472 || (defined (TARGET_OS_IOS) && TARGET_OS_IOS == 1) \ 3473 || (defined (TARGET_OS_TV) && TARGET_OS_TV == 1) \ 3474 || (defined (TARGET_OS_BRIDGE) && TARGET_OS_BRIDGE == 1) 3475 enable_compression = true; 3476 #endif 3477 3478 if (enable_compression) { 3479 strcat(buf, ";SupportedCompressions=lzfse,zlib-deflate,lz4,lzma;" 3480 "DefaultCompressionMinSize="); 3481 char numbuf[16]; 3482 snprintf(numbuf, sizeof(numbuf), "%zu", m_compression_minsize); 3483 numbuf[sizeof(numbuf) - 1] = '\0'; 3484 strcat(buf, numbuf); 3485 } 3486 3487 return SendPacket(buf); 3488 } 3489 3490 static bool process_does_not_exist (nub_process_t pid) { 3491 std::vector<struct kinfo_proc> proc_infos; 3492 DNBGetAllInfos (proc_infos); 3493 const size_t infos_size = proc_infos.size(); 3494 for (size_t i = 0; i < infos_size; i++) 3495 if (proc_infos[i].kp_proc.p_pid == pid) 3496 return false; 3497 3498 return true; // process does not exist 3499 } 3500 3501 // my_uid and process_uid are only initialized if this function 3502 // returns true -- that there was a uid mismatch -- and those 3503 // id's may want to be used in the error message. 3504 // 3505 // NOTE: this should only be called after process_does_not_exist(). 3506 // This sysctl will return uninitialized data if we ask for a pid 3507 // that doesn't exist. The alternative would be to fetch all 3508 // processes and step through to find the one we're looking for 3509 // (as process_does_not_exist() does). 3510 static bool attach_failed_due_to_uid_mismatch (nub_process_t pid, 3511 uid_t &my_uid, 3512 uid_t &process_uid) { 3513 struct kinfo_proc kinfo; 3514 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid}; 3515 size_t len = sizeof(struct kinfo_proc); 3516 if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), &kinfo, &len, NULL, 0) != 0) { 3517 return false; // pid doesn't exist? can't check uid mismatch - it was fine 3518 } 3519 my_uid = geteuid(); 3520 if (my_uid == 0) 3521 return false; // if we're root, attach didn't fail because of uid mismatch 3522 process_uid = kinfo.kp_eproc.e_ucred.cr_uid; 3523 3524 // If my uid != the process' uid, then the attach probably failed because 3525 // of that. 3526 if (my_uid != process_uid) 3527 return true; 3528 else 3529 return false; 3530 } 3531 3532 // NOTE: this should only be called after process_does_not_exist(). 3533 // This sysctl will return uninitialized data if we ask for a pid 3534 // that doesn't exist. The alternative would be to fetch all 3535 // processes and step through to find the one we're looking for 3536 // (as process_does_not_exist() does). 3537 static bool process_is_already_being_debugged (nub_process_t pid) { 3538 struct kinfo_proc kinfo; 3539 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid}; 3540 size_t len = sizeof(struct kinfo_proc); 3541 if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), &kinfo, &len, NULL, 0) != 0) { 3542 return false; // pid doesn't exist? well, it's not being debugged... 3543 } 3544 if (kinfo.kp_proc.p_flag & P_TRACED) 3545 return true; // is being debugged already 3546 else 3547 return false; 3548 } 3549 3550 // Test if this current login session has a connection to the 3551 // window server (if it does not have that access, it cannot ask 3552 // for debug permission by popping up a dialog box and attach 3553 // may fail outright). 3554 static bool login_session_has_gui_access () { 3555 // I believe this API only works on macOS. 3556 #if TARGET_OS_OSX == 0 3557 return true; 3558 #else 3559 auditinfo_addr_t info; 3560 getaudit_addr(&info, sizeof(info)); 3561 if (info.ai_flags & AU_SESSION_FLAG_HAS_GRAPHIC_ACCESS) 3562 return true; 3563 else 3564 return false; 3565 #endif 3566 } 3567 3568 // Checking for 3569 // 3570 // { 3571 // 'class' : 'rule', 3572 // 'comment' : 'For use by Apple. WARNING: administrators are advised 3573 // not to modify this right.', 3574 // 'k-of-n' : '1', 3575 // 'rule' : [ 3576 // 'is-admin', 3577 // 'is-developer', 3578 // 'authenticate-developer' 3579 // ] 3580 // } 3581 // 3582 // $ security authorizationdb read system.privilege.taskport.debug 3583 3584 static bool developer_mode_enabled () { 3585 // This API only exists on macOS. 3586 #if TARGET_OS_OSX == 0 3587 return true; 3588 #else 3589 CFDictionaryRef currentRightDict = NULL; 3590 const char *debug_right = "system.privilege.taskport.debug"; 3591 // caller must free dictionary initialized by the following 3592 OSStatus status = AuthorizationRightGet(debug_right, ¤tRightDict); 3593 if (status != errAuthorizationSuccess) { 3594 // could not check authorization 3595 return true; 3596 } 3597 3598 bool devmode_enabled = true; 3599 3600 if (!CFDictionaryContainsKey(currentRightDict, CFSTR("k-of-n"))) { 3601 devmode_enabled = false; 3602 } else { 3603 CFNumberRef item = (CFNumberRef) CFDictionaryGetValue(currentRightDict, CFSTR("k-of-n")); 3604 if (item && CFGetTypeID(item) == CFNumberGetTypeID()) { 3605 int64_t num = 0; 3606 ::CFNumberGetValue(item, kCFNumberSInt64Type, &num); 3607 if (num != 1) { 3608 devmode_enabled = false; 3609 } 3610 } else { 3611 devmode_enabled = false; 3612 } 3613 } 3614 3615 if (!CFDictionaryContainsKey(currentRightDict, CFSTR("class"))) { 3616 devmode_enabled = false; 3617 } else { 3618 CFStringRef item = (CFStringRef) CFDictionaryGetValue(currentRightDict, CFSTR("class")); 3619 if (item && CFGetTypeID(item) == CFStringGetTypeID()) { 3620 char tmpbuf[128]; 3621 if (CFStringGetCString (item, tmpbuf, sizeof(tmpbuf), CFStringGetSystemEncoding())) { 3622 tmpbuf[sizeof (tmpbuf) - 1] = '\0'; 3623 if (strcmp (tmpbuf, "rule") != 0) { 3624 devmode_enabled = false; 3625 } 3626 } else { 3627 devmode_enabled = false; 3628 } 3629 } else { 3630 devmode_enabled = false; 3631 } 3632 } 3633 3634 if (!CFDictionaryContainsKey(currentRightDict, CFSTR("rule"))) { 3635 devmode_enabled = false; 3636 } else { 3637 CFArrayRef item = (CFArrayRef) CFDictionaryGetValue(currentRightDict, CFSTR("rule")); 3638 if (item && CFGetTypeID(item) == CFArrayGetTypeID()) { 3639 int count = ::CFArrayGetCount(item); 3640 CFRange range = CFRangeMake (0, count); 3641 if (!::CFArrayContainsValue (item, range, CFSTR("is-admin"))) 3642 devmode_enabled = false; 3643 if (!::CFArrayContainsValue (item, range, CFSTR("is-developer"))) 3644 devmode_enabled = false; 3645 if (!::CFArrayContainsValue (item, range, CFSTR("authenticate-developer"))) 3646 devmode_enabled = false; 3647 } else { 3648 devmode_enabled = false; 3649 } 3650 } 3651 ::CFRelease(currentRightDict); 3652 3653 return devmode_enabled; 3654 #endif // TARGET_OS_OSX 3655 } 3656 3657 /* 3658 vAttach;pid 3659 3660 Attach to a new process with the specified process ID. pid is a hexadecimal 3661 integer 3662 identifying the process. If the stub is currently controlling a process, it is 3663 killed. The attached process is stopped.This packet is only available in 3664 extended 3665 mode (see extended mode). 3666 3667 Reply: 3668 "ENN" for an error 3669 "Any Stop Reply Packet" for success 3670 */ 3671 3672 rnb_err_t RNBRemote::HandlePacket_v(const char *p) { 3673 if (strcmp(p, "vCont;c") == 0) { 3674 // Simple continue 3675 return RNBRemote::HandlePacket_c("c"); 3676 } else if (strcmp(p, "vCont;s") == 0) { 3677 // Simple step 3678 return RNBRemote::HandlePacket_s("s"); 3679 } else if (strstr(p, "vCont") == p) { 3680 DNBThreadResumeActions thread_actions; 3681 char *c = const_cast<char *>(p += strlen("vCont")); 3682 char *c_end = c + strlen(c); 3683 if (*c == '?') 3684 return SendPacket("vCont;c;C;s;S"); 3685 3686 while (c < c_end && *c == ';') { 3687 ++c; // Skip the semi-colon 3688 DNBThreadResumeAction thread_action; 3689 thread_action.tid = INVALID_NUB_THREAD; 3690 thread_action.state = eStateInvalid; 3691 thread_action.signal = 0; 3692 thread_action.addr = INVALID_NUB_ADDRESS; 3693 3694 char action = *c++; 3695 3696 switch (action) { 3697 case 'C': 3698 errno = 0; 3699 thread_action.signal = static_cast<int>(strtoul(c, &c, 16)); 3700 if (errno != 0) 3701 return HandlePacket_ILLFORMED( 3702 __FILE__, __LINE__, p, "Could not parse signal in vCont packet"); 3703 // Fall through to next case... 3704 [[clang::fallthrough]]; 3705 case 'c': 3706 // Continue 3707 thread_action.state = eStateRunning; 3708 break; 3709 3710 case 'S': 3711 errno = 0; 3712 thread_action.signal = static_cast<int>(strtoul(c, &c, 16)); 3713 if (errno != 0) 3714 return HandlePacket_ILLFORMED( 3715 __FILE__, __LINE__, p, "Could not parse signal in vCont packet"); 3716 // Fall through to next case... 3717 [[clang::fallthrough]]; 3718 case 's': 3719 // Step 3720 thread_action.state = eStateStepping; 3721 break; 3722 3723 default: 3724 HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3725 "Unsupported action in vCont packet"); 3726 break; 3727 } 3728 if (*c == ':') { 3729 errno = 0; 3730 thread_action.tid = strtoul(++c, &c, 16); 3731 if (errno != 0) 3732 return HandlePacket_ILLFORMED( 3733 __FILE__, __LINE__, p, 3734 "Could not parse thread number in vCont packet"); 3735 } 3736 3737 thread_actions.Append(thread_action); 3738 } 3739 3740 // If a default action for all other threads wasn't mentioned 3741 // then we should stop the threads 3742 thread_actions.SetDefaultThreadActionIfNeeded(eStateStopped, 0); 3743 DNBProcessResume(m_ctx.ProcessID(), thread_actions.GetFirst(), 3744 thread_actions.GetSize()); 3745 return rnb_success; 3746 } else if (strstr(p, "vAttach") == p) { 3747 nub_process_t attach_pid = 3748 INVALID_NUB_PROCESS; // attach_pid will be set to 0 if the attach fails 3749 nub_process_t pid_attaching_to = 3750 INVALID_NUB_PROCESS; // pid_attaching_to is the original pid specified 3751 char err_str[1024] = {'\0'}; 3752 std::string attach_name; 3753 3754 if (DNBDebugserverIsTranslated()) { 3755 DNBLogError("debugserver is x86_64 binary running in translation, attach " 3756 "failed."); 3757 std::string return_message = "E96;"; 3758 return_message += 3759 cstring_to_asciihex_string("debugserver is x86_64 binary running in " 3760 "translation, attached failed."); 3761 SendPacket(return_message.c_str()); 3762 return rnb_err; 3763 } 3764 3765 if (strstr(p, "vAttachWait;") == p) { 3766 p += strlen("vAttachWait;"); 3767 if (!GetProcessNameFrom_vAttach(p, attach_name)) { 3768 return HandlePacket_ILLFORMED( 3769 __FILE__, __LINE__, p, "non-hex char in arg on 'vAttachWait' pkt"); 3770 } 3771 DNBLog("[LaunchAttach] START %d vAttachWait for process name '%s'", 3772 getpid(), attach_name.c_str()); 3773 const bool ignore_existing = true; 3774 attach_pid = DNBProcessAttachWait( 3775 &m_ctx, attach_name.c_str(), ignore_existing, NULL, 1000, err_str, 3776 sizeof(err_str), RNBRemoteShouldCancelCallback); 3777 3778 } else if (strstr(p, "vAttachOrWait;") == p) { 3779 p += strlen("vAttachOrWait;"); 3780 if (!GetProcessNameFrom_vAttach(p, attach_name)) { 3781 return HandlePacket_ILLFORMED( 3782 __FILE__, __LINE__, p, 3783 "non-hex char in arg on 'vAttachOrWait' pkt"); 3784 } 3785 const bool ignore_existing = false; 3786 DNBLog("[LaunchAttach] START %d vAttachWaitOrWait for process name " 3787 "'%s'", 3788 getpid(), attach_name.c_str()); 3789 attach_pid = DNBProcessAttachWait( 3790 &m_ctx, attach_name.c_str(), ignore_existing, NULL, 1000, err_str, 3791 sizeof(err_str), RNBRemoteShouldCancelCallback); 3792 } else if (strstr(p, "vAttachName;") == p) { 3793 p += strlen("vAttachName;"); 3794 if (!GetProcessNameFrom_vAttach(p, attach_name)) { 3795 return HandlePacket_ILLFORMED( 3796 __FILE__, __LINE__, p, "non-hex char in arg on 'vAttachName' pkt"); 3797 } 3798 3799 DNBLog("[LaunchAttach] START %d vAttachName attach to process name " 3800 "'%s'", 3801 getpid(), attach_name.c_str()); 3802 attach_pid = DNBProcessAttachByName(attach_name.c_str(), NULL, 3803 Context().GetUnmaskSignals(), err_str, 3804 sizeof(err_str)); 3805 3806 } else if (strstr(p, "vAttach;") == p) { 3807 p += strlen("vAttach;"); 3808 char *end = NULL; 3809 pid_attaching_to = static_cast<int>( 3810 strtoul(p, &end, 16)); // PID will be in hex, so use base 16 to decode 3811 if (p != end && *end == '\0') { 3812 // Wait at most 30 second for attach 3813 struct timespec attach_timeout_abstime; 3814 DNBTimer::OffsetTimeOfDay(&attach_timeout_abstime, 30, 0); 3815 DNBLog("[LaunchAttach] START %d vAttach to pid %d", getpid(), 3816 pid_attaching_to); 3817 attach_pid = DNBProcessAttach(pid_attaching_to, &attach_timeout_abstime, 3818 false, err_str, sizeof(err_str)); 3819 } 3820 } else { 3821 return HandlePacket_UNIMPLEMENTED(p); 3822 } 3823 3824 if (attach_pid != INVALID_NUB_PROCESS) { 3825 if (m_ctx.ProcessID() != attach_pid) 3826 m_ctx.SetProcessID(attach_pid); 3827 DNBLog("Successfully attached to pid %d", attach_pid); 3828 // Send a stop reply packet to indicate we successfully attached! 3829 NotifyThatProcessStopped(); 3830 return rnb_success; 3831 } else { 3832 DNBLogError("Attach failed"); 3833 m_ctx.LaunchStatus().SetError(-1, DNBError::Generic); 3834 if (err_str[0]) 3835 m_ctx.LaunchStatus().SetErrorString(err_str); 3836 else 3837 m_ctx.LaunchStatus().SetErrorString("attach failed"); 3838 3839 if (pid_attaching_to == INVALID_NUB_PROCESS && !attach_name.empty()) { 3840 pid_attaching_to = DNBProcessGetPIDByName(attach_name.c_str()); 3841 } 3842 3843 // attach_pid is INVALID_NUB_PROCESS - we did not succeed in attaching 3844 // if the original request, pid_attaching_to, is available, see if we 3845 // can figure out why we couldn't attach. Return an informative error 3846 // string to lldb. 3847 3848 if (pid_attaching_to != INVALID_NUB_PROCESS) { 3849 // The order of these checks is important. 3850 if (process_does_not_exist (pid_attaching_to)) { 3851 DNBLogError("Tried to attach to pid that doesn't exist"); 3852 std::string return_message = "E96;"; 3853 return_message += cstring_to_asciihex_string("no such process."); 3854 return SendPacket(return_message.c_str()); 3855 } 3856 if (process_is_already_being_debugged (pid_attaching_to)) { 3857 DNBLogError("Tried to attach to process already being debugged"); 3858 std::string return_message = "E96;"; 3859 return_message += cstring_to_asciihex_string("tried to attach to " 3860 "process already being debugged"); 3861 return SendPacket(return_message.c_str()); 3862 } 3863 uid_t my_uid, process_uid; 3864 if (attach_failed_due_to_uid_mismatch (pid_attaching_to, 3865 my_uid, process_uid)) { 3866 std::string my_username = "uid " + std::to_string (my_uid); 3867 std::string process_username = "uid " + std::to_string (process_uid); 3868 struct passwd *pw = getpwuid (my_uid); 3869 if (pw && pw->pw_name) { 3870 my_username = pw->pw_name; 3871 } 3872 pw = getpwuid (process_uid); 3873 if (pw && pw->pw_name) { 3874 process_username = pw->pw_name; 3875 } 3876 DNBLogError("Tried to attach to process with uid mismatch"); 3877 std::string return_message = "E96;"; 3878 std::string msg = "tried to attach to process as user '" 3879 + my_username + "' and process is running " 3880 "as user '" + process_username + "'"; 3881 return_message += cstring_to_asciihex_string(msg.c_str()); 3882 return SendPacket(return_message.c_str()); 3883 } 3884 if (!login_session_has_gui_access() && !developer_mode_enabled()) { 3885 DNBLogError("Developer mode is not enabled and this is a " 3886 "non-interactive session"); 3887 std::string return_message = "E96;"; 3888 return_message += cstring_to_asciihex_string("developer mode is " 3889 "not enabled on this machine " 3890 "and this is a non-interactive " 3891 "debug session."); 3892 return SendPacket(return_message.c_str()); 3893 } 3894 if (!login_session_has_gui_access()) { 3895 DNBLogError("This is a non-interactive session"); 3896 std::string return_message = "E96;"; 3897 return_message += cstring_to_asciihex_string("this is a " 3898 "non-interactive debug session, " 3899 "cannot get permission to debug " 3900 "processes."); 3901 return SendPacket(return_message.c_str()); 3902 } 3903 } 3904 3905 std::string error_explainer = "attach failed"; 3906 if (err_str[0] != '\0') { 3907 // This is not a super helpful message for end users 3908 if (strcmp (err_str, "unable to start the exception thread") == 0) { 3909 snprintf (err_str, sizeof (err_str) - 1, 3910 "Not allowed to attach to process. Look in the console " 3911 "messages (Console.app), near the debugserver entries, " 3912 "when the attach failed. The subsystem that denied " 3913 "the attach permission will likely have logged an " 3914 "informative message about why it was denied."); 3915 err_str[sizeof (err_str) - 1] = '\0'; 3916 } 3917 error_explainer += " ("; 3918 error_explainer += err_str; 3919 error_explainer += ")"; 3920 } 3921 std::string default_return_msg = "E96;"; 3922 default_return_msg += cstring_to_asciihex_string 3923 (error_explainer.c_str()); 3924 SendPacket (default_return_msg.c_str()); 3925 DNBLogError("Attach failed: \"%s\".", err_str); 3926 return rnb_err; 3927 } 3928 } 3929 3930 // All other failures come through here 3931 return HandlePacket_UNIMPLEMENTED(p); 3932 } 3933 3934 /* 'T XX' -- status of thread 3935 Check if the specified thread is alive. 3936 The thread number is in hex? */ 3937 3938 rnb_err_t RNBRemote::HandlePacket_T(const char *p) { 3939 p++; 3940 if (p == NULL || *p == '\0') { 3941 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3942 "No thread specified in T packet"); 3943 } 3944 if (!m_ctx.HasValidProcessID()) { 3945 return SendPacket("E15"); 3946 } 3947 errno = 0; 3948 nub_thread_t tid = strtoul(p, NULL, 16); 3949 if (errno != 0 && tid == 0) { 3950 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3951 "Could not parse thread number in T packet"); 3952 } 3953 3954 nub_state_t state = DNBThreadGetState(m_ctx.ProcessID(), tid); 3955 if (state == eStateInvalid || state == eStateExited || 3956 state == eStateCrashed) { 3957 return SendPacket("E16"); 3958 } 3959 3960 return SendPacket("OK"); 3961 } 3962 3963 rnb_err_t RNBRemote::HandlePacket_z(const char *p) { 3964 if (p == NULL || *p == '\0') 3965 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3966 "No thread specified in z packet"); 3967 3968 if (!m_ctx.HasValidProcessID()) 3969 return SendPacket("E15"); 3970 3971 char packet_cmd = *p++; 3972 char break_type = *p++; 3973 3974 if (*p++ != ',') 3975 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3976 "Comma separator missing in z packet"); 3977 3978 char *c = NULL; 3979 nub_process_t pid = m_ctx.ProcessID(); 3980 errno = 0; 3981 nub_addr_t addr = strtoull(p, &c, 16); 3982 if (errno != 0 && addr == 0) 3983 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3984 "Invalid address in z packet"); 3985 p = c; 3986 if (*p++ != ',') 3987 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3988 "Comma separator missing in z packet"); 3989 3990 errno = 0; 3991 auto byte_size = strtoul(p, &c, 16); 3992 if (errno != 0 && byte_size == 0) 3993 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 3994 "Invalid length in z packet"); 3995 3996 if (packet_cmd == 'Z') { 3997 // set 3998 switch (break_type) { 3999 case '0': // set software breakpoint 4000 case '1': // set hardware breakpoint 4001 { 4002 // gdb can send multiple Z packets for the same address and 4003 // these calls must be ref counted. 4004 bool hardware = (break_type == '1'); 4005 4006 if (DNBBreakpointSet(pid, addr, byte_size, hardware)) { 4007 // We successfully created a breakpoint, now lets full out 4008 // a ref count structure with the breakID and add it to our 4009 // map. 4010 return SendPacket("OK"); 4011 } else { 4012 // We failed to set the software breakpoint 4013 return SendPacket("E09"); 4014 } 4015 } break; 4016 4017 case '2': // set write watchpoint 4018 case '3': // set read watchpoint 4019 case '4': // set access watchpoint 4020 { 4021 bool hardware = true; 4022 uint32_t watch_flags = 0; 4023 if (break_type == '2') 4024 watch_flags = WATCH_TYPE_WRITE; 4025 else if (break_type == '3') 4026 watch_flags = WATCH_TYPE_READ; 4027 else 4028 watch_flags = WATCH_TYPE_READ | WATCH_TYPE_WRITE; 4029 4030 if (DNBWatchpointSet(pid, addr, byte_size, watch_flags, hardware)) { 4031 return SendPacket("OK"); 4032 } else { 4033 // We failed to set the watchpoint 4034 return SendPacket("E09"); 4035 } 4036 } break; 4037 4038 default: 4039 break; 4040 } 4041 } else if (packet_cmd == 'z') { 4042 // remove 4043 switch (break_type) { 4044 case '0': // remove software breakpoint 4045 case '1': // remove hardware breakpoint 4046 if (DNBBreakpointClear(pid, addr)) { 4047 return SendPacket("OK"); 4048 } else { 4049 return SendPacket("E08"); 4050 } 4051 break; 4052 4053 case '2': // remove write watchpoint 4054 case '3': // remove read watchpoint 4055 case '4': // remove access watchpoint 4056 if (DNBWatchpointClear(pid, addr)) { 4057 return SendPacket("OK"); 4058 } else { 4059 return SendPacket("E08"); 4060 } 4061 break; 4062 4063 default: 4064 break; 4065 } 4066 } 4067 return HandlePacket_UNIMPLEMENTED(p); 4068 } 4069 4070 // Extract the thread number from the thread suffix that might be appended to 4071 // thread specific packets. This will only be enabled if 4072 // m_thread_suffix_supported 4073 // is true. 4074 nub_thread_t RNBRemote::ExtractThreadIDFromThreadSuffix(const char *p) { 4075 if (m_thread_suffix_supported) { 4076 nub_thread_t tid = INVALID_NUB_THREAD; 4077 if (p) { 4078 const char *tid_cstr = strstr(p, "thread:"); 4079 if (tid_cstr) { 4080 tid_cstr += strlen("thread:"); 4081 tid = strtoul(tid_cstr, NULL, 16); 4082 } 4083 } 4084 return tid; 4085 } 4086 return GetCurrentThread(); 4087 } 4088 4089 /* 'p XX' 4090 print the contents of register X */ 4091 4092 rnb_err_t RNBRemote::HandlePacket_p(const char *p) { 4093 if (g_num_reg_entries == 0) 4094 InitializeRegisters(); 4095 4096 if (p == NULL || *p == '\0') { 4097 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4098 "No thread specified in p packet"); 4099 } 4100 if (!m_ctx.HasValidProcessID()) { 4101 return SendPacket("E15"); 4102 } 4103 nub_process_t pid = m_ctx.ProcessID(); 4104 errno = 0; 4105 char *tid_cstr = NULL; 4106 uint32_t reg = static_cast<uint32_t>(strtoul(p + 1, &tid_cstr, 16)); 4107 if (errno != 0 && reg == 0) { 4108 return HandlePacket_ILLFORMED( 4109 __FILE__, __LINE__, p, "Could not parse register number in p packet"); 4110 } 4111 4112 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(tid_cstr); 4113 if (tid == INVALID_NUB_THREAD) 4114 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4115 "No thread specified in p packet"); 4116 4117 const register_map_entry_t *reg_entry; 4118 4119 if (reg < g_num_reg_entries) 4120 reg_entry = &g_reg_entries[reg]; 4121 else 4122 reg_entry = NULL; 4123 4124 std::ostringstream ostrm; 4125 if (reg_entry == NULL) { 4126 DNBLogError( 4127 "RNBRemote::HandlePacket_p(%s): unknown register number %u requested\n", 4128 p, reg); 4129 ostrm << "00000000"; 4130 } else if (reg_entry->nub_info.reg == (uint32_t)-1) { 4131 if (reg_entry->nub_info.size > 0) { 4132 std::basic_string<uint8_t> zeros(reg_entry->nub_info.size, '\0'); 4133 append_hex_value(ostrm, zeros.data(), zeros.size(), false); 4134 } 4135 } else { 4136 register_value_in_hex_fixed_width(ostrm, pid, tid, reg_entry, NULL); 4137 } 4138 return SendPacket(ostrm.str()); 4139 } 4140 4141 /* 'Pnn=rrrrr' 4142 Set register number n to value r. 4143 n and r are hex strings. */ 4144 4145 rnb_err_t RNBRemote::HandlePacket_P(const char *p) { 4146 if (g_num_reg_entries == 0) 4147 InitializeRegisters(); 4148 4149 if (p == NULL || *p == '\0') { 4150 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, "Empty P packet"); 4151 } 4152 if (!m_ctx.HasValidProcessID()) { 4153 return SendPacket("E28"); 4154 } 4155 4156 nub_process_t pid = m_ctx.ProcessID(); 4157 4158 StdStringExtractor packet(p); 4159 4160 const char cmd_char = packet.GetChar(); 4161 // Register ID is always in big endian 4162 const uint32_t reg = packet.GetHexMaxU32(false, UINT32_MAX); 4163 const char equal_char = packet.GetChar(); 4164 4165 if (cmd_char != 'P') 4166 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4167 "Improperly formed P packet"); 4168 4169 if (reg == UINT32_MAX) 4170 return SendPacket("E29"); 4171 4172 if (equal_char != '=') 4173 return SendPacket("E30"); 4174 4175 const register_map_entry_t *reg_entry; 4176 4177 if (reg >= g_num_reg_entries) 4178 return SendPacket("E47"); 4179 4180 reg_entry = &g_reg_entries[reg]; 4181 4182 if (reg_entry->nub_info.set == (uint32_t)-1 && 4183 reg_entry->nub_info.reg == (uint32_t)-1) { 4184 DNBLogError( 4185 "RNBRemote::HandlePacket_P(%s): unknown register number %u requested\n", 4186 p, reg); 4187 return SendPacket("E48"); 4188 } 4189 4190 DNBRegisterValue reg_value; 4191 reg_value.info = reg_entry->nub_info; 4192 packet.GetHexBytes(reg_value.value.v_sint8, reg_entry->nub_info.size, 0xcc); 4193 4194 nub_thread_t tid = ExtractThreadIDFromThreadSuffix(p); 4195 if (tid == INVALID_NUB_THREAD) 4196 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4197 "No thread specified in p packet"); 4198 4199 if (!DNBThreadSetRegisterValueByID(pid, tid, reg_entry->nub_info.set, 4200 reg_entry->nub_info.reg, ®_value)) { 4201 return SendPacket("E32"); 4202 } 4203 return SendPacket("OK"); 4204 } 4205 4206 /* 'c [addr]' 4207 Continue, optionally from a specified address. */ 4208 4209 rnb_err_t RNBRemote::HandlePacket_c(const char *p) { 4210 const nub_process_t pid = m_ctx.ProcessID(); 4211 4212 if (pid == INVALID_NUB_PROCESS) 4213 return SendPacket("E23"); 4214 4215 DNBThreadResumeAction action = {INVALID_NUB_THREAD, eStateRunning, 0, 4216 INVALID_NUB_ADDRESS}; 4217 4218 if (*(p + 1) != '\0') { 4219 action.tid = GetContinueThread(); 4220 errno = 0; 4221 action.addr = strtoull(p + 1, NULL, 16); 4222 if (errno != 0 && action.addr == 0) 4223 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4224 "Could not parse address in c packet"); 4225 } 4226 4227 DNBThreadResumeActions thread_actions; 4228 thread_actions.Append(action); 4229 thread_actions.SetDefaultThreadActionIfNeeded(eStateRunning, 0); 4230 if (!DNBProcessResume(pid, thread_actions.GetFirst(), 4231 thread_actions.GetSize())) 4232 return SendPacket("E25"); 4233 // Don't send an "OK" packet; response is the stopped/exited message. 4234 return rnb_success; 4235 } 4236 4237 rnb_err_t RNBRemote::HandlePacket_MemoryRegionInfo(const char *p) { 4238 /* This packet will find memory attributes (e.g. readable, writable, 4239 executable, stack, jitted code) 4240 for the memory region containing a given address and return that 4241 information. 4242 4243 Users of this packet must be prepared for three results: 4244 4245 Region information is returned 4246 Region information is unavailable for this address because the address 4247 is in unmapped memory 4248 Region lookup cannot be performed on this platform or process is not 4249 yet launched 4250 This packet isn't implemented 4251 4252 Examples of use: 4253 qMemoryRegionInfo:3a55140 4254 start:3a50000,size:100000,permissions:rwx 4255 4256 qMemoryRegionInfo:0 4257 error:address in unmapped region 4258 4259 qMemoryRegionInfo:3a551140 (on a different platform) 4260 error:region lookup cannot be performed 4261 4262 qMemoryRegionInfo 4263 OK // this packet is implemented by the remote nub 4264 */ 4265 4266 p += sizeof("qMemoryRegionInfo") - 1; 4267 if (*p == '\0') 4268 return SendPacket("OK"); 4269 if (*p++ != ':') 4270 return SendPacket("E67"); 4271 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X')) 4272 p += 2; 4273 4274 errno = 0; 4275 uint64_t address = strtoul(p, NULL, 16); 4276 if (errno != 0 && address == 0) { 4277 return HandlePacket_ILLFORMED( 4278 __FILE__, __LINE__, p, "Invalid address in qMemoryRegionInfo packet"); 4279 } 4280 4281 DNBRegionInfo region_info; 4282 DNBProcessMemoryRegionInfo(m_ctx.ProcessID(), address, ®ion_info); 4283 std::ostringstream ostrm; 4284 4285 // start:3a50000,size:100000,permissions:rwx 4286 ostrm << "start:" << std::hex << region_info.addr << ';'; 4287 4288 if (region_info.size > 0) 4289 ostrm << "size:" << std::hex << region_info.size << ';'; 4290 4291 if (region_info.permissions) { 4292 ostrm << "permissions:"; 4293 4294 if (region_info.permissions & eMemoryPermissionsReadable) 4295 ostrm << 'r'; 4296 if (region_info.permissions & eMemoryPermissionsWritable) 4297 ostrm << 'w'; 4298 if (region_info.permissions & eMemoryPermissionsExecutable) 4299 ostrm << 'x'; 4300 ostrm << ';'; 4301 4302 ostrm << "dirty-pages:"; 4303 if (region_info.dirty_pages.size() > 0) { 4304 bool first = true; 4305 for (nub_addr_t addr : region_info.dirty_pages) { 4306 if (!first) 4307 ostrm << ","; 4308 first = false; 4309 ostrm << "0x" << std::hex << addr; 4310 } 4311 } 4312 ostrm << ";"; 4313 if (!region_info.vm_types.empty()) { 4314 for (size_t i = 0; i < region_info.vm_types.size(); i++) { 4315 if (i) 4316 ostrm << ","; 4317 ostrm << region_info.vm_types[i]; 4318 } 4319 ostrm << ";"; 4320 } 4321 } 4322 return SendPacket(ostrm.str()); 4323 } 4324 4325 // qGetProfileData;scan_type:0xYYYYYYY 4326 rnb_err_t RNBRemote::HandlePacket_GetProfileData(const char *p) { 4327 nub_process_t pid = m_ctx.ProcessID(); 4328 if (pid == INVALID_NUB_PROCESS) 4329 return SendPacket("OK"); 4330 4331 StdStringExtractor packet(p += sizeof("qGetProfileData")); 4332 DNBProfileDataScanType scan_type = eProfileAll; 4333 std::string name; 4334 std::string value; 4335 while (packet.GetNameColonValue(name, value)) { 4336 if (name == "scan_type") { 4337 std::istringstream iss(value); 4338 uint32_t int_value = 0; 4339 if (iss >> std::hex >> int_value) { 4340 scan_type = (DNBProfileDataScanType)int_value; 4341 } 4342 } 4343 } 4344 4345 std::string data = DNBProcessGetProfileData(pid, scan_type); 4346 if (!data.empty()) { 4347 return SendPacket(data.c_str()); 4348 } else { 4349 return SendPacket("OK"); 4350 } 4351 } 4352 4353 // QSetEnableAsyncProfiling;enable:[0|1]:interval_usec:XXXXXX;scan_type:0xYYYYYYY 4354 rnb_err_t RNBRemote::HandlePacket_SetEnableAsyncProfiling(const char *p) { 4355 nub_process_t pid = m_ctx.ProcessID(); 4356 if (pid == INVALID_NUB_PROCESS) 4357 return SendPacket("OK"); 4358 4359 StdStringExtractor packet(p += sizeof("QSetEnableAsyncProfiling")); 4360 bool enable = false; 4361 uint64_t interval_usec = 0; 4362 DNBProfileDataScanType scan_type = eProfileAll; 4363 std::string name; 4364 std::string value; 4365 while (packet.GetNameColonValue(name, value)) { 4366 if (name == "enable") { 4367 enable = strtoul(value.c_str(), NULL, 10) > 0; 4368 } else if (name == "interval_usec") { 4369 interval_usec = strtoul(value.c_str(), NULL, 10); 4370 } else if (name == "scan_type") { 4371 std::istringstream iss(value); 4372 uint32_t int_value = 0; 4373 if (iss >> std::hex >> int_value) { 4374 scan_type = (DNBProfileDataScanType)int_value; 4375 } 4376 } 4377 } 4378 4379 if (interval_usec == 0) { 4380 enable = false; 4381 } 4382 4383 DNBProcessSetEnableAsyncProfiling(pid, enable, interval_usec, scan_type); 4384 return SendPacket("OK"); 4385 } 4386 4387 // QEnableCompression:type:<COMPRESSION-TYPE>;minsize:<MINIMUM PACKET SIZE TO 4388 // COMPRESS>; 4389 // 4390 // type: must be a type previously reported by the qXfer:features: 4391 // SupportedCompressions list 4392 // 4393 // minsize: is optional; by default the qXfer:features: 4394 // DefaultCompressionMinSize value is used 4395 // debugserver may have a better idea of what a good minimum packet size to 4396 // compress is than lldb. 4397 4398 rnb_err_t RNBRemote::HandlePacket_QEnableCompression(const char *p) { 4399 p += sizeof("QEnableCompression:") - 1; 4400 4401 size_t new_compression_minsize = m_compression_minsize; 4402 const char *new_compression_minsize_str = strstr(p, "minsize:"); 4403 if (new_compression_minsize_str) { 4404 new_compression_minsize_str += strlen("minsize:"); 4405 errno = 0; 4406 new_compression_minsize = strtoul(new_compression_minsize_str, NULL, 10); 4407 if (errno != 0 || new_compression_minsize == ULONG_MAX) { 4408 new_compression_minsize = m_compression_minsize; 4409 } 4410 } 4411 4412 if (strstr(p, "type:zlib-deflate;") != nullptr) { 4413 EnableCompressionNextSendPacket(compression_types::zlib_deflate); 4414 m_compression_minsize = new_compression_minsize; 4415 return SendPacket("OK"); 4416 } else if (strstr(p, "type:lz4;") != nullptr) { 4417 EnableCompressionNextSendPacket(compression_types::lz4); 4418 m_compression_minsize = new_compression_minsize; 4419 return SendPacket("OK"); 4420 } else if (strstr(p, "type:lzma;") != nullptr) { 4421 EnableCompressionNextSendPacket(compression_types::lzma); 4422 m_compression_minsize = new_compression_minsize; 4423 return SendPacket("OK"); 4424 } else if (strstr(p, "type:lzfse;") != nullptr) { 4425 EnableCompressionNextSendPacket(compression_types::lzfse); 4426 m_compression_minsize = new_compression_minsize; 4427 return SendPacket("OK"); 4428 } 4429 4430 return SendPacket("E88"); 4431 } 4432 4433 rnb_err_t RNBRemote::HandlePacket_qSpeedTest(const char *p) { 4434 p += strlen("qSpeedTest:response_size:"); 4435 char *end = NULL; 4436 errno = 0; 4437 uint64_t response_size = ::strtoul(p, &end, 16); 4438 if (errno != 0) 4439 return HandlePacket_ILLFORMED( 4440 __FILE__, __LINE__, p, 4441 "Didn't find response_size value at right offset"); 4442 else if (*end == ';') { 4443 static char g_data[4 * 1024 * 1024 + 16]; 4444 strcpy(g_data, "data:"); 4445 memset(g_data + 5, 'a', response_size); 4446 g_data[response_size + 5] = '\0'; 4447 return SendPacket(g_data); 4448 } else { 4449 return SendPacket("E79"); 4450 } 4451 } 4452 4453 rnb_err_t RNBRemote::HandlePacket_WatchpointSupportInfo(const char *p) { 4454 /* This packet simply returns the number of supported hardware watchpoints. 4455 4456 Examples of use: 4457 qWatchpointSupportInfo: 4458 num:4 4459 4460 qWatchpointSupportInfo 4461 OK // this packet is implemented by the remote nub 4462 */ 4463 4464 p += sizeof("qWatchpointSupportInfo") - 1; 4465 if (*p == '\0') 4466 return SendPacket("OK"); 4467 if (*p++ != ':') 4468 return SendPacket("E67"); 4469 4470 errno = 0; 4471 uint32_t num = DNBWatchpointGetNumSupportedHWP(m_ctx.ProcessID()); 4472 std::ostringstream ostrm; 4473 4474 // size:4 4475 ostrm << "num:" << std::dec << num << ';'; 4476 return SendPacket(ostrm.str()); 4477 } 4478 4479 /* 'C sig [;addr]' 4480 Resume with signal sig, optionally at address addr. */ 4481 4482 rnb_err_t RNBRemote::HandlePacket_C(const char *p) { 4483 const nub_process_t pid = m_ctx.ProcessID(); 4484 4485 if (pid == INVALID_NUB_PROCESS) 4486 return SendPacket("E36"); 4487 4488 DNBThreadResumeAction action = {INVALID_NUB_THREAD, eStateRunning, 0, 4489 INVALID_NUB_ADDRESS}; 4490 int process_signo = -1; 4491 if (*(p + 1) != '\0') { 4492 action.tid = GetContinueThread(); 4493 char *end = NULL; 4494 errno = 0; 4495 process_signo = static_cast<int>(strtoul(p + 1, &end, 16)); 4496 if (errno != 0) 4497 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4498 "Could not parse signal in C packet"); 4499 else if (*end == ';') { 4500 errno = 0; 4501 action.addr = strtoull(end + 1, NULL, 16); 4502 if (errno != 0 && action.addr == 0) 4503 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4504 "Could not parse address in C packet"); 4505 } 4506 } 4507 4508 DNBThreadResumeActions thread_actions; 4509 thread_actions.Append(action); 4510 thread_actions.SetDefaultThreadActionIfNeeded(eStateRunning, action.signal); 4511 if (!DNBProcessSignal(pid, process_signo)) 4512 return SendPacket("E52"); 4513 if (!DNBProcessResume(pid, thread_actions.GetFirst(), 4514 thread_actions.GetSize())) 4515 return SendPacket("E38"); 4516 /* Don't send an "OK" packet; response is the stopped/exited message. */ 4517 return rnb_success; 4518 } 4519 4520 // 'D' packet 4521 // Detach from gdb. 4522 rnb_err_t RNBRemote::HandlePacket_D(const char *p) { 4523 if (m_ctx.HasValidProcessID()) { 4524 DNBLog("detaching from pid %u due to D packet", m_ctx.ProcessID()); 4525 if (DNBProcessDetach(m_ctx.ProcessID())) 4526 SendPacket("OK"); 4527 else { 4528 DNBLog("error while detaching from pid %u due to D packet", 4529 m_ctx.ProcessID()); 4530 SendPacket("E"); 4531 } 4532 } else { 4533 SendPacket("E"); 4534 } 4535 return rnb_success; 4536 } 4537 4538 /* 'k' 4539 Kill the inferior process. */ 4540 4541 rnb_err_t RNBRemote::HandlePacket_k(const char *p) { 4542 DNBLog("Got a 'k' packet, killing the inferior process."); 4543 // No response to should be sent to the kill packet 4544 if (m_ctx.HasValidProcessID()) 4545 DNBProcessKill(m_ctx.ProcessID()); 4546 SendPacket("X09"); 4547 return rnb_success; 4548 } 4549 4550 rnb_err_t RNBRemote::HandlePacket_stop_process(const char *p) { 4551 //#define TEST_EXIT_ON_INTERRUPT // This should only be uncommented to test 4552 //exiting on interrupt 4553 #if defined(TEST_EXIT_ON_INTERRUPT) 4554 rnb_err_t err = HandlePacket_k(p); 4555 m_comm.Disconnect(true); 4556 return err; 4557 #else 4558 if (!DNBProcessInterrupt(m_ctx.ProcessID())) { 4559 // If we failed to interrupt the process, then send a stop 4560 // reply packet as the process was probably already stopped 4561 DNBLogThreaded("RNBRemote::HandlePacket_stop_process() sending extra stop " 4562 "reply because DNBProcessInterrupt returned false"); 4563 HandlePacket_last_signal(NULL); 4564 } 4565 return rnb_success; 4566 #endif 4567 } 4568 4569 /* 's' 4570 Step the inferior process. */ 4571 4572 rnb_err_t RNBRemote::HandlePacket_s(const char *p) { 4573 const nub_process_t pid = m_ctx.ProcessID(); 4574 if (pid == INVALID_NUB_PROCESS) 4575 return SendPacket("E32"); 4576 4577 // Hardware supported stepping not supported on arm 4578 nub_thread_t tid = GetContinueThread(); 4579 if (tid == 0 || tid == (nub_thread_t)-1) 4580 tid = GetCurrentThread(); 4581 4582 if (tid == INVALID_NUB_THREAD) 4583 return SendPacket("E33"); 4584 4585 DNBThreadResumeActions thread_actions; 4586 thread_actions.AppendAction(tid, eStateStepping); 4587 4588 // Make all other threads stop when we are stepping 4589 thread_actions.SetDefaultThreadActionIfNeeded(eStateStopped, 0); 4590 if (!DNBProcessResume(pid, thread_actions.GetFirst(), 4591 thread_actions.GetSize())) 4592 return SendPacket("E49"); 4593 // Don't send an "OK" packet; response is the stopped/exited message. 4594 return rnb_success; 4595 } 4596 4597 /* 'S sig [;addr]' 4598 Step with signal sig, optionally at address addr. */ 4599 4600 rnb_err_t RNBRemote::HandlePacket_S(const char *p) { 4601 const nub_process_t pid = m_ctx.ProcessID(); 4602 if (pid == INVALID_NUB_PROCESS) 4603 return SendPacket("E36"); 4604 4605 DNBThreadResumeAction action = {INVALID_NUB_THREAD, eStateStepping, 0, 4606 INVALID_NUB_ADDRESS}; 4607 4608 if (*(p + 1) != '\0') { 4609 char *end = NULL; 4610 errno = 0; 4611 action.signal = static_cast<int>(strtoul(p + 1, &end, 16)); 4612 if (errno != 0) 4613 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4614 "Could not parse signal in S packet"); 4615 else if (*end == ';') { 4616 errno = 0; 4617 action.addr = strtoull(end + 1, NULL, 16); 4618 if (errno != 0 && action.addr == 0) { 4619 return HandlePacket_ILLFORMED(__FILE__, __LINE__, p, 4620 "Could not parse address in S packet"); 4621 } 4622 } 4623 } 4624 4625 action.tid = GetContinueThread(); 4626 if (action.tid == 0 || action.tid == (nub_thread_t)-1) 4627 return SendPacket("E40"); 4628 4629 nub_state_t tstate = DNBThreadGetState(pid, action.tid); 4630 if (tstate == eStateInvalid || tstate == eStateExited) 4631 return SendPacket("E37"); 4632 4633 DNBThreadResumeActions thread_actions; 4634 thread_actions.Append(action); 4635 4636 // Make all other threads stop when we are stepping 4637 thread_actions.SetDefaultThreadActionIfNeeded(eStateStopped, 0); 4638 if (!DNBProcessResume(pid, thread_actions.GetFirst(), 4639 thread_actions.GetSize())) 4640 return SendPacket("E39"); 4641 4642 // Don't send an "OK" packet; response is the stopped/exited message. 4643 return rnb_success; 4644 } 4645 4646 static const char *GetArchName(const uint32_t cputype, 4647 const uint32_t cpusubtype) { 4648 switch (cputype) { 4649 case CPU_TYPE_ARM: 4650 switch (cpusubtype) { 4651 case 5: 4652 return "armv4"; 4653 case 6: 4654 return "armv6"; 4655 case 7: 4656 return "armv5t"; 4657 case 8: 4658 return "xscale"; 4659 case 9: 4660 return "armv7"; 4661 case 10: 4662 return "armv7f"; 4663 case 11: 4664 return "armv7s"; 4665 case 12: 4666 return "armv7k"; 4667 case 14: 4668 return "armv6m"; 4669 case 15: 4670 return "armv7m"; 4671 case 16: 4672 return "armv7em"; 4673 default: 4674 return "arm"; 4675 } 4676 break; 4677 case CPU_TYPE_ARM64: 4678 return "arm64"; 4679 case CPU_TYPE_ARM64_32: 4680 return "arm64_32"; 4681 case CPU_TYPE_I386: 4682 return "i386"; 4683 case CPU_TYPE_X86_64: 4684 switch (cpusubtype) { 4685 default: 4686 return "x86_64"; 4687 case 8: 4688 return "x86_64h"; 4689 } 4690 break; 4691 } 4692 return NULL; 4693 } 4694 4695 static bool GetHostCPUType(uint32_t &cputype, uint32_t &cpusubtype, 4696 uint32_t &is_64_bit_capable, bool &promoted_to_64) { 4697 static uint32_t g_host_cputype = 0; 4698 static uint32_t g_host_cpusubtype = 0; 4699 static uint32_t g_is_64_bit_capable = 0; 4700 static bool g_promoted_to_64 = false; 4701 4702 if (g_host_cputype == 0) { 4703 g_promoted_to_64 = false; 4704 size_t len = sizeof(uint32_t); 4705 if (::sysctlbyname("hw.cputype", &g_host_cputype, &len, NULL, 0) == 0) { 4706 len = sizeof(uint32_t); 4707 if (::sysctlbyname("hw.cpu64bit_capable", &g_is_64_bit_capable, &len, 4708 NULL, 0) == 0) { 4709 if (g_is_64_bit_capable && ((g_host_cputype & CPU_ARCH_ABI64) == 0)) { 4710 g_promoted_to_64 = true; 4711 g_host_cputype |= CPU_ARCH_ABI64; 4712 } 4713 } 4714 #if defined (TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 4715 if (g_host_cputype == CPU_TYPE_ARM64 && sizeof (void*) == 4) 4716 g_host_cputype = CPU_TYPE_ARM64_32; 4717 #endif 4718 } 4719 4720 len = sizeof(uint32_t); 4721 if (::sysctlbyname("hw.cpusubtype", &g_host_cpusubtype, &len, NULL, 0) == 4722 0) { 4723 if (g_promoted_to_64 && g_host_cputype == CPU_TYPE_X86_64 && 4724 g_host_cpusubtype == CPU_SUBTYPE_486) 4725 g_host_cpusubtype = CPU_SUBTYPE_X86_64_ALL; 4726 } 4727 #if defined (TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 4728 // on arm64_32 devices, the machine's native cpu type is 4729 // CPU_TYPE_ARM64 and subtype is 2 indicating arm64e. 4730 // But we change the cputype to CPU_TYPE_ARM64_32 because 4731 // the user processes are all ILP32 processes today. 4732 // We also need to rewrite the cpusubtype so we vend 4733 // a valid cputype + cpusubtype combination. 4734 if (g_host_cputype == CPU_TYPE_ARM64_32) 4735 g_host_cpusubtype = CPU_SUBTYPE_ARM64_32_V8; 4736 #endif 4737 } 4738 4739 cputype = g_host_cputype; 4740 cpusubtype = g_host_cpusubtype; 4741 is_64_bit_capable = g_is_64_bit_capable; 4742 promoted_to_64 = g_promoted_to_64; 4743 return g_host_cputype != 0; 4744 } 4745 4746 static bool GetAddressingBits(uint32_t &addressing_bits) { 4747 static uint32_t g_addressing_bits = 0; 4748 static bool g_tried_addressing_bits_syscall = false; 4749 if (g_tried_addressing_bits_syscall == false) { 4750 size_t len = sizeof (uint32_t); 4751 if (::sysctlbyname("machdep.virtual_address_size", 4752 &g_addressing_bits, &len, NULL, 0) != 0) { 4753 g_addressing_bits = 0; 4754 } 4755 } 4756 g_tried_addressing_bits_syscall = true; 4757 addressing_bits = g_addressing_bits; 4758 if (addressing_bits > 0) 4759 return true; 4760 else 4761 return false; 4762 } 4763 4764 rnb_err_t RNBRemote::HandlePacket_qHostInfo(const char *p) { 4765 std::ostringstream strm; 4766 4767 uint32_t cputype = 0; 4768 uint32_t cpusubtype = 0; 4769 uint32_t is_64_bit_capable = 0; 4770 bool promoted_to_64 = false; 4771 if (GetHostCPUType(cputype, cpusubtype, is_64_bit_capable, promoted_to_64)) { 4772 strm << "cputype:" << std::dec << cputype << ';'; 4773 strm << "cpusubtype:" << std::dec << cpusubtype << ';'; 4774 } 4775 4776 uint32_t addressing_bits = 0; 4777 if (GetAddressingBits(addressing_bits)) { 4778 strm << "addressing_bits:" << std::dec << addressing_bits << ';'; 4779 } 4780 4781 // The OS in the triple should be "ios" or "macosx" which doesn't match our 4782 // "Darwin" which gets returned from "kern.ostype", so we need to hardcode 4783 // this for now. 4784 if (cputype == CPU_TYPE_ARM || cputype == CPU_TYPE_ARM64 4785 || cputype == CPU_TYPE_ARM64_32) { 4786 #if defined(TARGET_OS_TV) && TARGET_OS_TV == 1 4787 strm << "ostype:tvos;"; 4788 #elif defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 4789 strm << "ostype:watchos;"; 4790 #elif defined(TARGET_OS_BRIDGE) && TARGET_OS_BRIDGE == 1 4791 strm << "ostype:bridgeos;"; 4792 #elif defined(TARGET_OS_OSX) && TARGET_OS_OSX == 1 4793 strm << "ostype:macosx;"; 4794 #else 4795 strm << "ostype:ios;"; 4796 #endif 4797 4798 // On armv7 we use "synchronous" watchpoints which means the exception is 4799 // delivered before the instruction executes. 4800 strm << "watchpoint_exceptions_received:before;"; 4801 } else { 4802 strm << "ostype:macosx;"; 4803 strm << "watchpoint_exceptions_received:after;"; 4804 } 4805 // char ostype[64]; 4806 // len = sizeof(ostype); 4807 // if (::sysctlbyname("kern.ostype", &ostype, &len, NULL, 0) == 0) 4808 // { 4809 // len = strlen(ostype); 4810 // std::transform (ostype, ostype + len, ostype, tolower); 4811 // strm << "ostype:" << std::dec << ostype << ';'; 4812 // } 4813 4814 strm << "vendor:apple;"; 4815 4816 uint64_t major, minor, patch; 4817 if (DNBGetOSVersionNumbers(&major, &minor, &patch)) { 4818 strm << "os_version:" << major << "." << minor; 4819 if (patch != UINT64_MAX) 4820 strm << "." << patch; 4821 strm << ";"; 4822 } 4823 4824 std::string maccatalyst_version = DNBGetMacCatalystVersionString(); 4825 if (!maccatalyst_version.empty() && 4826 std::all_of(maccatalyst_version.begin(), maccatalyst_version.end(), 4827 [](char c) { return (c >= '0' && c <= '9') || c == '.'; })) 4828 strm << "maccatalyst_version:" << maccatalyst_version << ";"; 4829 4830 #if defined(__LITTLE_ENDIAN__) 4831 strm << "endian:little;"; 4832 #elif defined(__BIG_ENDIAN__) 4833 strm << "endian:big;"; 4834 #elif defined(__PDP_ENDIAN__) 4835 strm << "endian:pdp;"; 4836 #endif 4837 4838 if (promoted_to_64) 4839 strm << "ptrsize:8;"; 4840 else 4841 strm << "ptrsize:" << std::dec << sizeof(void *) << ';'; 4842 4843 #if defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 4844 strm << "default_packet_timeout:10;"; 4845 #endif 4846 4847 strm << "vm-page-size:" << std::dec << vm_page_size << ";"; 4848 4849 return SendPacket(strm.str()); 4850 } 4851 4852 void XMLElementStart(std::ostringstream &s, uint32_t indent, const char *name, 4853 bool has_attributes) { 4854 if (indent) 4855 s << INDENT_WITH_SPACES(indent); 4856 s << '<' << name; 4857 if (!has_attributes) 4858 s << '>' << std::endl; 4859 } 4860 4861 void XMLElementStartEndAttributes(std::ostringstream &s, bool empty) { 4862 if (empty) 4863 s << '/'; 4864 s << '>' << std::endl; 4865 } 4866 4867 void XMLElementEnd(std::ostringstream &s, uint32_t indent, const char *name) { 4868 if (indent) 4869 s << INDENT_WITH_SPACES(indent); 4870 s << '<' << '/' << name << '>' << std::endl; 4871 } 4872 4873 void XMLElementWithStringValue(std::ostringstream &s, uint32_t indent, 4874 const char *name, const char *value, 4875 bool close = true) { 4876 if (value) { 4877 if (indent) 4878 s << INDENT_WITH_SPACES(indent); 4879 s << '<' << name << '>' << value; 4880 if (close) 4881 XMLElementEnd(s, 0, name); 4882 } 4883 } 4884 4885 void XMLElementWithUnsignedValue(std::ostringstream &s, uint32_t indent, 4886 const char *name, uint64_t value, 4887 bool close = true) { 4888 if (indent) 4889 s << INDENT_WITH_SPACES(indent); 4890 4891 s << '<' << name << '>' << DECIMAL << value; 4892 if (close) 4893 XMLElementEnd(s, 0, name); 4894 } 4895 4896 void XMLAttributeString(std::ostringstream &s, const char *name, 4897 const char *value, const char *default_value = NULL) { 4898 if (value) { 4899 if (default_value && strcmp(value, default_value) == 0) 4900 return; // No need to emit the attribute because it matches the default 4901 // value 4902 s << ' ' << name << "=\"" << value << "\""; 4903 } 4904 } 4905 4906 void XMLAttributeUnsignedDecimal(std::ostringstream &s, const char *name, 4907 uint64_t value) { 4908 s << ' ' << name << "=\"" << DECIMAL << value << "\""; 4909 } 4910 4911 void GenerateTargetXMLRegister(std::ostringstream &s, const uint32_t reg_num, 4912 nub_size_t num_reg_sets, 4913 const DNBRegisterSetInfo *reg_set_info, 4914 const register_map_entry_t ®) { 4915 const char *default_lldb_encoding = "uint"; 4916 const char *lldb_encoding = default_lldb_encoding; 4917 const char *gdb_group = "general"; 4918 const char *default_gdb_type = "int"; 4919 const char *gdb_type = default_gdb_type; 4920 const char *default_lldb_format = "hex"; 4921 const char *lldb_format = default_lldb_format; 4922 const char *lldb_set = NULL; 4923 4924 switch (reg.nub_info.type) { 4925 case Uint: 4926 lldb_encoding = "uint"; 4927 break; 4928 case Sint: 4929 lldb_encoding = "sint"; 4930 break; 4931 case IEEE754: 4932 lldb_encoding = "ieee754"; 4933 if (reg.nub_info.set > 0) 4934 gdb_group = "float"; 4935 break; 4936 case Vector: 4937 lldb_encoding = "vector"; 4938 if (reg.nub_info.set > 0) 4939 gdb_group = "vector"; 4940 break; 4941 } 4942 4943 switch (reg.nub_info.format) { 4944 case Binary: 4945 lldb_format = "binary"; 4946 break; 4947 case Decimal: 4948 lldb_format = "decimal"; 4949 break; 4950 case Hex: 4951 lldb_format = "hex"; 4952 break; 4953 case Float: 4954 gdb_type = "float"; 4955 lldb_format = "float"; 4956 break; 4957 case VectorOfSInt8: 4958 gdb_type = "float"; 4959 lldb_format = "vector-sint8"; 4960 break; 4961 case VectorOfUInt8: 4962 gdb_type = "float"; 4963 lldb_format = "vector-uint8"; 4964 break; 4965 case VectorOfSInt16: 4966 gdb_type = "float"; 4967 lldb_format = "vector-sint16"; 4968 break; 4969 case VectorOfUInt16: 4970 gdb_type = "float"; 4971 lldb_format = "vector-uint16"; 4972 break; 4973 case VectorOfSInt32: 4974 gdb_type = "float"; 4975 lldb_format = "vector-sint32"; 4976 break; 4977 case VectorOfUInt32: 4978 gdb_type = "float"; 4979 lldb_format = "vector-uint32"; 4980 break; 4981 case VectorOfFloat32: 4982 gdb_type = "float"; 4983 lldb_format = "vector-float32"; 4984 break; 4985 case VectorOfUInt128: 4986 gdb_type = "float"; 4987 lldb_format = "vector-uint128"; 4988 break; 4989 }; 4990 if (reg_set_info && reg.nub_info.set < num_reg_sets) 4991 lldb_set = reg_set_info[reg.nub_info.set].name; 4992 4993 uint32_t indent = 2; 4994 4995 XMLElementStart(s, indent, "reg", true); 4996 XMLAttributeString(s, "name", reg.nub_info.name); 4997 XMLAttributeUnsignedDecimal(s, "regnum", reg_num); 4998 XMLAttributeUnsignedDecimal(s, "offset", reg.offset); 4999 XMLAttributeUnsignedDecimal(s, "bitsize", reg.nub_info.size * 8); 5000 XMLAttributeString(s, "group", gdb_group); 5001 XMLAttributeString(s, "type", gdb_type, default_gdb_type); 5002 XMLAttributeString(s, "altname", reg.nub_info.alt); 5003 XMLAttributeString(s, "encoding", lldb_encoding, default_lldb_encoding); 5004 XMLAttributeString(s, "format", lldb_format, default_lldb_format); 5005 XMLAttributeUnsignedDecimal(s, "group_id", reg.nub_info.set); 5006 if (reg.nub_info.reg_ehframe != INVALID_NUB_REGNUM) 5007 XMLAttributeUnsignedDecimal(s, "ehframe_regnum", reg.nub_info.reg_ehframe); 5008 if (reg.nub_info.reg_dwarf != INVALID_NUB_REGNUM) 5009 XMLAttributeUnsignedDecimal(s, "dwarf_regnum", reg.nub_info.reg_dwarf); 5010 5011 const char *lldb_generic = NULL; 5012 switch (reg.nub_info.reg_generic) { 5013 case GENERIC_REGNUM_FP: 5014 lldb_generic = "fp"; 5015 break; 5016 case GENERIC_REGNUM_PC: 5017 lldb_generic = "pc"; 5018 break; 5019 case GENERIC_REGNUM_SP: 5020 lldb_generic = "sp"; 5021 break; 5022 case GENERIC_REGNUM_RA: 5023 lldb_generic = "ra"; 5024 break; 5025 case GENERIC_REGNUM_FLAGS: 5026 lldb_generic = "flags"; 5027 break; 5028 case GENERIC_REGNUM_ARG1: 5029 lldb_generic = "arg1"; 5030 break; 5031 case GENERIC_REGNUM_ARG2: 5032 lldb_generic = "arg2"; 5033 break; 5034 case GENERIC_REGNUM_ARG3: 5035 lldb_generic = "arg3"; 5036 break; 5037 case GENERIC_REGNUM_ARG4: 5038 lldb_generic = "arg4"; 5039 break; 5040 case GENERIC_REGNUM_ARG5: 5041 lldb_generic = "arg5"; 5042 break; 5043 case GENERIC_REGNUM_ARG6: 5044 lldb_generic = "arg6"; 5045 break; 5046 case GENERIC_REGNUM_ARG7: 5047 lldb_generic = "arg7"; 5048 break; 5049 case GENERIC_REGNUM_ARG8: 5050 lldb_generic = "arg8"; 5051 break; 5052 default: 5053 break; 5054 } 5055 XMLAttributeString(s, "generic", lldb_generic); 5056 5057 bool empty = reg.value_regnums.empty() && reg.invalidate_regnums.empty(); 5058 if (!empty) { 5059 if (!reg.value_regnums.empty()) { 5060 std::ostringstream regnums; 5061 bool first = true; 5062 regnums << DECIMAL; 5063 for (auto regnum : reg.value_regnums) { 5064 if (!first) 5065 regnums << ','; 5066 regnums << regnum; 5067 first = false; 5068 } 5069 XMLAttributeString(s, "value_regnums", regnums.str().c_str()); 5070 } 5071 5072 if (!reg.invalidate_regnums.empty()) { 5073 std::ostringstream regnums; 5074 bool first = true; 5075 regnums << DECIMAL; 5076 for (auto regnum : reg.invalidate_regnums) { 5077 if (!first) 5078 regnums << ','; 5079 regnums << regnum; 5080 first = false; 5081 } 5082 XMLAttributeString(s, "invalidate_regnums", regnums.str().c_str()); 5083 } 5084 } 5085 XMLElementStartEndAttributes(s, true); 5086 } 5087 5088 void GenerateTargetXMLRegisters(std::ostringstream &s) { 5089 nub_size_t num_reg_sets = 0; 5090 const DNBRegisterSetInfo *reg_sets = DNBGetRegisterSetInfo(&num_reg_sets); 5091 5092 uint32_t cputype = DNBGetRegisterCPUType(); 5093 if (cputype) { 5094 XMLElementStart(s, 0, "feature", true); 5095 std::ostringstream name_strm; 5096 name_strm << "com.apple.debugserver." << GetArchName(cputype, 0); 5097 XMLAttributeString(s, "name", name_strm.str().c_str()); 5098 XMLElementStartEndAttributes(s, false); 5099 for (uint32_t reg_num = 0; reg_num < g_num_reg_entries; ++reg_num) 5100 // for (const auto ®: g_dynamic_register_map) 5101 { 5102 GenerateTargetXMLRegister(s, reg_num, num_reg_sets, reg_sets, 5103 g_reg_entries[reg_num]); 5104 } 5105 XMLElementEnd(s, 0, "feature"); 5106 5107 if (num_reg_sets > 0) { 5108 XMLElementStart(s, 0, "groups", false); 5109 for (uint32_t set = 1; set < num_reg_sets; ++set) { 5110 XMLElementStart(s, 2, "group", true); 5111 XMLAttributeUnsignedDecimal(s, "id", set); 5112 XMLAttributeString(s, "name", reg_sets[set].name); 5113 XMLElementStartEndAttributes(s, true); 5114 } 5115 XMLElementEnd(s, 0, "groups"); 5116 } 5117 } 5118 } 5119 5120 static const char *g_target_xml_header = R"(<?xml version="1.0"?> 5121 <target version="1.0">)"; 5122 5123 static const char *g_target_xml_footer = "</target>"; 5124 5125 static std::string g_target_xml; 5126 5127 void UpdateTargetXML() { 5128 std::ostringstream s; 5129 s << g_target_xml_header << std::endl; 5130 5131 // Set the architecture 5132 // 5133 // On raw targets (no OS, vendor info), I've seen replies like 5134 // <architecture>i386:x86-64</architecture> (for x86_64 systems - from vmware) 5135 // <architecture>arm</architecture> (for an unspecified arm device - from a Segger JLink) 5136 // For good interop, I'm not sure what's expected here. e.g. will anyone understand 5137 // <architecture>x86_64</architecture> ? Or is i386:x86_64 the expected phrasing? 5138 // 5139 // s << "<architecture>" << arch "</architecture>" << std::endl; 5140 5141 // Set the OSABI 5142 // s << "<osabi>abi-name</osabi>" 5143 5144 GenerateTargetXMLRegisters(s); 5145 5146 s << g_target_xml_footer << std::endl; 5147 5148 // Save the XML output in case it gets retrieved in chunks 5149 g_target_xml = s.str(); 5150 } 5151 5152 rnb_err_t RNBRemote::HandlePacket_qXfer(const char *command) { 5153 const char *p = command; 5154 p += strlen("qXfer:"); 5155 const char *sep = strchr(p, ':'); 5156 if (sep) { 5157 std::string object(p, sep - p); // "auxv", "backtrace", "features", etc 5158 p = sep + 1; 5159 sep = strchr(p, ':'); 5160 if (sep) { 5161 std::string rw(p, sep - p); // "read" or "write" 5162 p = sep + 1; 5163 sep = strchr(p, ':'); 5164 if (sep) { 5165 std::string annex(p, sep - p); // "read" or "write" 5166 5167 p = sep + 1; 5168 sep = strchr(p, ','); 5169 if (sep) { 5170 std::string offset_str(p, sep - p); // read the length as a string 5171 p = sep + 1; 5172 std::string length_str(p); // read the offset as a string 5173 char *end = nullptr; 5174 const uint64_t offset = strtoul(offset_str.c_str(), &end, 5175 16); // convert offset_str to a offset 5176 if (*end == '\0') { 5177 const uint64_t length = strtoul( 5178 length_str.c_str(), &end, 16); // convert length_str to a length 5179 if (*end == '\0') { 5180 if (object == "features" && rw == "read" && 5181 annex == "target.xml") { 5182 std::ostringstream xml_out; 5183 5184 if (offset == 0) { 5185 InitializeRegisters(true); 5186 5187 UpdateTargetXML(); 5188 if (g_target_xml.empty()) 5189 return SendPacket("E83"); 5190 5191 if (length > g_target_xml.size()) { 5192 xml_out << 'l'; // No more data 5193 xml_out << binary_encode_string(g_target_xml); 5194 } else { 5195 xml_out << 'm'; // More data needs to be read with a 5196 // subsequent call 5197 xml_out << binary_encode_string( 5198 std::string(g_target_xml, offset, length)); 5199 } 5200 } else { 5201 // Retrieving target XML in chunks 5202 if (offset < g_target_xml.size()) { 5203 std::string chunk(g_target_xml, offset, length); 5204 if (chunk.size() < length) 5205 xml_out << 'l'; // No more data 5206 else 5207 xml_out << 'm'; // More data needs to be read with a 5208 // subsequent call 5209 xml_out << binary_encode_string(chunk.data()); 5210 } 5211 } 5212 return SendPacket(xml_out.str()); 5213 } 5214 // Well formed, put not supported 5215 return HandlePacket_UNIMPLEMENTED(command); 5216 } 5217 } 5218 } 5219 } else { 5220 SendPacket("E85"); 5221 } 5222 } else { 5223 SendPacket("E86"); 5224 } 5225 } 5226 return SendPacket("E82"); 5227 } 5228 5229 rnb_err_t RNBRemote::HandlePacket_qGDBServerVersion(const char *p) { 5230 std::ostringstream strm; 5231 5232 #if defined(DEBUGSERVER_PROGRAM_NAME) 5233 strm << "name:" DEBUGSERVER_PROGRAM_NAME ";"; 5234 #else 5235 strm << "name:debugserver;"; 5236 #endif 5237 strm << "version:" << DEBUGSERVER_VERSION_NUM << ";"; 5238 5239 return SendPacket(strm.str()); 5240 } 5241 5242 // A helper function that retrieves a single integer value from 5243 // a one-level-deep JSON dictionary of key-value pairs. e.g. 5244 // jThreadExtendedInfo:{"plo_pthread_tsd_base_address_offset":0,"plo_pthread_tsd_base_offset":224,"plo_pthread_tsd_entry_size":8,"thread":144305}] 5245 // 5246 uint64_t get_integer_value_for_key_name_from_json(const char *key, 5247 const char *json_string) { 5248 uint64_t retval = INVALID_NUB_ADDRESS; 5249 std::string key_with_quotes = "\""; 5250 key_with_quotes += key; 5251 key_with_quotes += "\""; 5252 const char *c = strstr(json_string, key_with_quotes.c_str()); 5253 if (c) { 5254 c += key_with_quotes.size(); 5255 5256 while (*c != '\0' && (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5257 c++; 5258 5259 if (*c == ':') { 5260 c++; 5261 5262 while (*c != '\0' && 5263 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5264 c++; 5265 5266 errno = 0; 5267 retval = strtoul(c, NULL, 10); 5268 if (errno != 0) { 5269 retval = INVALID_NUB_ADDRESS; 5270 } 5271 } 5272 } 5273 return retval; 5274 } 5275 5276 // A helper function that retrieves a boolean value from 5277 // a one-level-deep JSON dictionary of key-value pairs. e.g. 5278 // jGetLoadedDynamicLibrariesInfos:{"fetch_all_solibs":true}] 5279 5280 // Returns true if it was able to find the key name, and sets the 'value' 5281 // argument to the value found. 5282 5283 bool get_boolean_value_for_key_name_from_json(const char *key, 5284 const char *json_string, 5285 bool &value) { 5286 std::string key_with_quotes = "\""; 5287 key_with_quotes += key; 5288 key_with_quotes += "\""; 5289 const char *c = strstr(json_string, key_with_quotes.c_str()); 5290 if (c) { 5291 c += key_with_quotes.size(); 5292 5293 while (*c != '\0' && (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5294 c++; 5295 5296 if (*c == ':') { 5297 c++; 5298 5299 while (*c != '\0' && 5300 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5301 c++; 5302 5303 if (strncmp(c, "true", 4) == 0) { 5304 value = true; 5305 return true; 5306 } else if (strncmp(c, "false", 5) == 0) { 5307 value = false; 5308 return true; 5309 } 5310 } 5311 } 5312 return false; 5313 } 5314 5315 // A helper function that reads an array of uint64_t's from 5316 // a one-level-deep JSON dictionary of key-value pairs. e.g. 5317 // jGetLoadedDynamicLibrariesInfos:{"solib_addrs":[31345823,7768020384,7310483024]}] 5318 5319 // Returns true if it was able to find the key name, false if it did not. 5320 // "ints" will have all integers found in the array appended to it. 5321 5322 bool get_array_of_ints_value_for_key_name_from_json( 5323 const char *key, const char *json_string, std::vector<uint64_t> &ints) { 5324 std::string key_with_quotes = "\""; 5325 key_with_quotes += key; 5326 key_with_quotes += "\""; 5327 const char *c = strstr(json_string, key_with_quotes.c_str()); 5328 if (c) { 5329 c += key_with_quotes.size(); 5330 5331 while (*c != '\0' && (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5332 c++; 5333 5334 if (*c == ':') { 5335 c++; 5336 5337 while (*c != '\0' && 5338 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5339 c++; 5340 5341 if (*c == '[') { 5342 c++; 5343 while (*c != '\0' && 5344 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5345 c++; 5346 while (true) { 5347 if (!isdigit(*c)) { 5348 return true; 5349 } 5350 5351 errno = 0; 5352 char *endptr; 5353 uint64_t value = strtoul(c, &endptr, 10); 5354 if (errno == 0) { 5355 ints.push_back(value); 5356 } else { 5357 break; 5358 } 5359 if (endptr == c || endptr == nullptr || *endptr == '\0') { 5360 break; 5361 } 5362 c = endptr; 5363 5364 while (*c != '\0' && 5365 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5366 c++; 5367 if (*c == ',') 5368 c++; 5369 while (*c != '\0' && 5370 (*c == ' ' || *c == '\t' || *c == '\n' || *c == '\r')) 5371 c++; 5372 if (*c == ']') { 5373 return true; 5374 } 5375 } 5376 } 5377 } 5378 } 5379 return false; 5380 } 5381 5382 JSONGenerator::ObjectSP 5383 RNBRemote::GetJSONThreadsInfo(bool threads_with_valid_stop_info_only) { 5384 JSONGenerator::ArraySP threads_array_sp; 5385 if (m_ctx.HasValidProcessID()) { 5386 threads_array_sp = std::make_shared<JSONGenerator::Array>(); 5387 5388 nub_process_t pid = m_ctx.ProcessID(); 5389 5390 nub_size_t numthreads = DNBProcessGetNumThreads(pid); 5391 for (nub_size_t i = 0; i < numthreads; ++i) { 5392 nub_thread_t tid = DNBProcessGetThreadAtIndex(pid, i); 5393 5394 struct DNBThreadStopInfo tid_stop_info; 5395 5396 const bool stop_info_valid = 5397 DNBThreadGetStopReason(pid, tid, &tid_stop_info); 5398 5399 // If we are doing stop info only, then we only show threads that have a 5400 // valid stop reason 5401 if (threads_with_valid_stop_info_only) { 5402 if (!stop_info_valid || tid_stop_info.reason == eStopTypeInvalid) 5403 continue; 5404 } 5405 5406 JSONGenerator::DictionarySP thread_dict_sp( 5407 new JSONGenerator::Dictionary()); 5408 thread_dict_sp->AddIntegerItem("tid", tid); 5409 5410 std::string reason_value("none"); 5411 5412 if (stop_info_valid) { 5413 switch (tid_stop_info.reason) { 5414 case eStopTypeInvalid: 5415 break; 5416 5417 case eStopTypeSignal: 5418 if (tid_stop_info.details.signal.signo != 0) { 5419 thread_dict_sp->AddIntegerItem("signal", 5420 tid_stop_info.details.signal.signo); 5421 reason_value = "signal"; 5422 } 5423 break; 5424 5425 case eStopTypeException: 5426 if (tid_stop_info.details.exception.type != 0) { 5427 reason_value = "exception"; 5428 thread_dict_sp->AddIntegerItem( 5429 "metype", tid_stop_info.details.exception.type); 5430 JSONGenerator::ArraySP medata_array_sp(new JSONGenerator::Array()); 5431 for (nub_size_t i = 0; 5432 i < tid_stop_info.details.exception.data_count; ++i) { 5433 medata_array_sp->AddItem( 5434 JSONGenerator::IntegerSP(new JSONGenerator::Integer( 5435 tid_stop_info.details.exception.data[i]))); 5436 } 5437 thread_dict_sp->AddItem("medata", medata_array_sp); 5438 } 5439 break; 5440 5441 case eStopTypeExec: 5442 reason_value = "exec"; 5443 break; 5444 } 5445 } 5446 5447 thread_dict_sp->AddStringItem("reason", reason_value); 5448 5449 if (!threads_with_valid_stop_info_only) { 5450 const char *thread_name = DNBThreadGetName(pid, tid); 5451 if (thread_name && thread_name[0]) 5452 thread_dict_sp->AddStringItem("name", thread_name); 5453 5454 thread_identifier_info_data_t thread_ident_info; 5455 if (DNBThreadGetIdentifierInfo(pid, tid, &thread_ident_info)) { 5456 if (thread_ident_info.dispatch_qaddr != 0) { 5457 thread_dict_sp->AddIntegerItem("qaddr", 5458 thread_ident_info.dispatch_qaddr); 5459 5460 const DispatchQueueOffsets *dispatch_queue_offsets = 5461 GetDispatchQueueOffsets(); 5462 if (dispatch_queue_offsets) { 5463 std::string queue_name; 5464 uint64_t queue_width = 0; 5465 uint64_t queue_serialnum = 0; 5466 nub_addr_t dispatch_queue_t = INVALID_NUB_ADDRESS; 5467 dispatch_queue_offsets->GetThreadQueueInfo( 5468 pid, thread_ident_info.dispatch_qaddr, dispatch_queue_t, 5469 queue_name, queue_width, queue_serialnum); 5470 if (dispatch_queue_t == 0 && queue_name.empty() && 5471 queue_serialnum == 0) { 5472 thread_dict_sp->AddBooleanItem("associated_with_dispatch_queue", 5473 false); 5474 } else { 5475 thread_dict_sp->AddBooleanItem("associated_with_dispatch_queue", 5476 true); 5477 } 5478 if (dispatch_queue_t != INVALID_NUB_ADDRESS && 5479 dispatch_queue_t != 0) 5480 thread_dict_sp->AddIntegerItem("dispatch_queue_t", 5481 dispatch_queue_t); 5482 if (!queue_name.empty()) 5483 thread_dict_sp->AddStringItem("qname", queue_name); 5484 if (queue_width == 1) 5485 thread_dict_sp->AddStringItem("qkind", "serial"); 5486 else if (queue_width > 1) 5487 thread_dict_sp->AddStringItem("qkind", "concurrent"); 5488 if (queue_serialnum > 0) 5489 thread_dict_sp->AddIntegerItem("qserialnum", queue_serialnum); 5490 } 5491 } 5492 } 5493 5494 DNBRegisterValue reg_value; 5495 5496 if (g_reg_entries != NULL) { 5497 JSONGenerator::DictionarySP registers_dict_sp( 5498 new JSONGenerator::Dictionary()); 5499 5500 for (uint32_t reg = 0; reg < g_num_reg_entries; reg++) { 5501 // Expedite all registers in the first register set that aren't 5502 // contained in other registers 5503 if (g_reg_entries[reg].nub_info.set == 1 && 5504 g_reg_entries[reg].nub_info.value_regs == NULL) { 5505 if (!DNBThreadGetRegisterValueByID( 5506 pid, tid, g_reg_entries[reg].nub_info.set, 5507 g_reg_entries[reg].nub_info.reg, ®_value)) 5508 continue; 5509 5510 std::ostringstream reg_num; 5511 reg_num << std::dec << g_reg_entries[reg].debugserver_regnum; 5512 // Encode native byte ordered bytes as hex ascii 5513 registers_dict_sp->AddBytesAsHexASCIIString( 5514 reg_num.str(), reg_value.value.v_uint8, 5515 g_reg_entries[reg].nub_info.size); 5516 } 5517 } 5518 thread_dict_sp->AddItem("registers", registers_dict_sp); 5519 } 5520 5521 // Add expedited stack memory so stack backtracing doesn't need to read 5522 // anything from the 5523 // frame pointer chain. 5524 StackMemoryMap stack_mmap; 5525 ReadStackMemory(pid, tid, stack_mmap); 5526 if (!stack_mmap.empty()) { 5527 JSONGenerator::ArraySP memory_array_sp(new JSONGenerator::Array()); 5528 5529 for (const auto &stack_memory : stack_mmap) { 5530 JSONGenerator::DictionarySP stack_memory_sp( 5531 new JSONGenerator::Dictionary()); 5532 stack_memory_sp->AddIntegerItem("address", stack_memory.first); 5533 stack_memory_sp->AddBytesAsHexASCIIString( 5534 "bytes", stack_memory.second.bytes, stack_memory.second.length); 5535 memory_array_sp->AddItem(stack_memory_sp); 5536 } 5537 thread_dict_sp->AddItem("memory", memory_array_sp); 5538 } 5539 } 5540 5541 threads_array_sp->AddItem(thread_dict_sp); 5542 } 5543 } 5544 return threads_array_sp; 5545 } 5546 5547 rnb_err_t RNBRemote::HandlePacket_jThreadsInfo(const char *p) { 5548 JSONGenerator::ObjectSP threads_info_sp; 5549 std::ostringstream json; 5550 std::ostringstream reply_strm; 5551 // If we haven't run the process yet, return an error. 5552 if (m_ctx.HasValidProcessID()) { 5553 const bool threads_with_valid_stop_info_only = false; 5554 JSONGenerator::ObjectSP threads_info_sp = 5555 GetJSONThreadsInfo(threads_with_valid_stop_info_only); 5556 5557 if (threads_info_sp) { 5558 std::ostringstream strm; 5559 threads_info_sp->Dump(strm); 5560 std::string binary_packet = binary_encode_string(strm.str()); 5561 if (!binary_packet.empty()) 5562 return SendPacket(binary_packet.c_str()); 5563 } 5564 } 5565 return SendPacket("E85"); 5566 } 5567 5568 rnb_err_t RNBRemote::HandlePacket_jThreadExtendedInfo(const char *p) { 5569 nub_process_t pid; 5570 std::ostringstream json; 5571 // If we haven't run the process yet, return an error. 5572 if (!m_ctx.HasValidProcessID()) { 5573 return SendPacket("E81"); 5574 } 5575 5576 pid = m_ctx.ProcessID(); 5577 5578 const char thread_extended_info_str[] = {"jThreadExtendedInfo:{"}; 5579 if (strncmp(p, thread_extended_info_str, 5580 sizeof(thread_extended_info_str) - 1) == 0) { 5581 p += strlen(thread_extended_info_str); 5582 5583 uint64_t tid = get_integer_value_for_key_name_from_json("thread", p); 5584 uint64_t plo_pthread_tsd_base_address_offset = 5585 get_integer_value_for_key_name_from_json( 5586 "plo_pthread_tsd_base_address_offset", p); 5587 uint64_t plo_pthread_tsd_base_offset = 5588 get_integer_value_for_key_name_from_json("plo_pthread_tsd_base_offset", 5589 p); 5590 uint64_t plo_pthread_tsd_entry_size = 5591 get_integer_value_for_key_name_from_json("plo_pthread_tsd_entry_size", 5592 p); 5593 uint64_t dti_qos_class_index = 5594 get_integer_value_for_key_name_from_json("dti_qos_class_index", p); 5595 5596 if (tid != INVALID_NUB_ADDRESS) { 5597 nub_addr_t pthread_t_value = DNBGetPThreadT(pid, tid); 5598 5599 uint64_t tsd_address = INVALID_NUB_ADDRESS; 5600 if (plo_pthread_tsd_entry_size != INVALID_NUB_ADDRESS && 5601 plo_pthread_tsd_base_offset != INVALID_NUB_ADDRESS && 5602 plo_pthread_tsd_entry_size != INVALID_NUB_ADDRESS) { 5603 tsd_address = DNBGetTSDAddressForThread( 5604 pid, tid, plo_pthread_tsd_base_address_offset, 5605 plo_pthread_tsd_base_offset, plo_pthread_tsd_entry_size); 5606 } 5607 5608 bool timed_out = false; 5609 Genealogy::ThreadActivitySP thread_activity_sp; 5610 5611 // If the pthread_t value is invalid, or if we were able to fetch the 5612 // thread's TSD base 5613 // and got an invalid value back, then we have a thread in early startup 5614 // or shutdown and 5615 // it's possible that gathering the genealogy information for this thread 5616 // go badly. 5617 // Ideally fetching this info for a thread in these odd states shouldn't 5618 // matter - but 5619 // we've seen some problems with these new SPI and threads in edge-casey 5620 // states. 5621 5622 double genealogy_fetch_time = 0; 5623 if (pthread_t_value != INVALID_NUB_ADDRESS && 5624 tsd_address != INVALID_NUB_ADDRESS) { 5625 DNBTimer timer(false); 5626 thread_activity_sp = DNBGetGenealogyInfoForThread(pid, tid, timed_out); 5627 genealogy_fetch_time = timer.ElapsedMicroSeconds(false) / 1000000.0; 5628 } 5629 5630 std::unordered_set<uint32_t> 5631 process_info_indexes; // an array of the process info #'s seen 5632 5633 json << "{"; 5634 5635 bool need_to_print_comma = false; 5636 5637 if (thread_activity_sp && !timed_out) { 5638 const Genealogy::Activity *activity = 5639 &thread_activity_sp->current_activity; 5640 bool need_vouchers_comma_sep = false; 5641 json << "\"activity_query_timed_out\":false,"; 5642 if (genealogy_fetch_time != 0) { 5643 // If we append the floating point value with << we'll get it in 5644 // scientific 5645 // notation. 5646 char floating_point_ascii_buffer[64]; 5647 floating_point_ascii_buffer[0] = '\0'; 5648 snprintf(floating_point_ascii_buffer, 5649 sizeof(floating_point_ascii_buffer), "%f", 5650 genealogy_fetch_time); 5651 if (strlen(floating_point_ascii_buffer) > 0) { 5652 if (need_to_print_comma) 5653 json << ","; 5654 need_to_print_comma = true; 5655 json << "\"activity_query_duration\":" 5656 << floating_point_ascii_buffer; 5657 } 5658 } 5659 if (activity->activity_id != 0) { 5660 if (need_to_print_comma) 5661 json << ","; 5662 need_to_print_comma = true; 5663 need_vouchers_comma_sep = true; 5664 json << "\"activity\":{"; 5665 json << "\"start\":" << activity->activity_start << ","; 5666 json << "\"id\":" << activity->activity_id << ","; 5667 json << "\"parent_id\":" << activity->parent_id << ","; 5668 json << "\"name\":\"" 5669 << json_string_quote_metachars(activity->activity_name) << "\","; 5670 json << "\"reason\":\"" 5671 << json_string_quote_metachars(activity->reason) << "\""; 5672 json << "}"; 5673 } 5674 if (thread_activity_sp->messages.size() > 0) { 5675 need_to_print_comma = true; 5676 if (need_vouchers_comma_sep) 5677 json << ","; 5678 need_vouchers_comma_sep = true; 5679 json << "\"trace_messages\":["; 5680 bool printed_one_message = false; 5681 for (auto iter = thread_activity_sp->messages.begin(); 5682 iter != thread_activity_sp->messages.end(); ++iter) { 5683 if (printed_one_message) 5684 json << ","; 5685 else 5686 printed_one_message = true; 5687 json << "{"; 5688 json << "\"timestamp\":" << iter->timestamp << ","; 5689 json << "\"activity_id\":" << iter->activity_id << ","; 5690 json << "\"trace_id\":" << iter->trace_id << ","; 5691 json << "\"thread\":" << iter->thread << ","; 5692 json << "\"type\":" << (int)iter->type << ","; 5693 json << "\"process_info_index\":" << iter->process_info_index 5694 << ","; 5695 process_info_indexes.insert(iter->process_info_index); 5696 json << "\"message\":\"" 5697 << json_string_quote_metachars(iter->message) << "\""; 5698 json << "}"; 5699 } 5700 json << "]"; 5701 } 5702 if (thread_activity_sp->breadcrumbs.size() == 1) { 5703 need_to_print_comma = true; 5704 if (need_vouchers_comma_sep) 5705 json << ","; 5706 need_vouchers_comma_sep = true; 5707 json << "\"breadcrumb\":{"; 5708 for (auto iter = thread_activity_sp->breadcrumbs.begin(); 5709 iter != thread_activity_sp->breadcrumbs.end(); ++iter) { 5710 json << "\"breadcrumb_id\":" << iter->breadcrumb_id << ","; 5711 json << "\"activity_id\":" << iter->activity_id << ","; 5712 json << "\"timestamp\":" << iter->timestamp << ","; 5713 json << "\"name\":\"" << json_string_quote_metachars(iter->name) 5714 << "\""; 5715 } 5716 json << "}"; 5717 } 5718 if (process_info_indexes.size() > 0) { 5719 need_to_print_comma = true; 5720 if (need_vouchers_comma_sep) 5721 json << ","; 5722 need_vouchers_comma_sep = true; 5723 bool printed_one_process_info = false; 5724 for (auto iter = process_info_indexes.begin(); 5725 iter != process_info_indexes.end(); ++iter) { 5726 if (printed_one_process_info) 5727 json << ","; 5728 Genealogy::ProcessExecutableInfoSP image_info_sp; 5729 uint32_t idx = *iter; 5730 image_info_sp = DNBGetGenealogyImageInfo(pid, idx); 5731 if (image_info_sp) { 5732 if (!printed_one_process_info) { 5733 json << "\"process_infos\":["; 5734 printed_one_process_info = true; 5735 } 5736 5737 json << "{"; 5738 char uuid_buf[37]; 5739 uuid_unparse_upper(image_info_sp->image_uuid, uuid_buf); 5740 json << "\"process_info_index\":" << idx << ","; 5741 json << "\"image_path\":\"" 5742 << json_string_quote_metachars(image_info_sp->image_path) 5743 << "\","; 5744 json << "\"image_uuid\":\"" << uuid_buf << "\""; 5745 json << "}"; 5746 } 5747 } 5748 if (printed_one_process_info) 5749 json << "]"; 5750 } 5751 } else { 5752 if (timed_out) { 5753 if (need_to_print_comma) 5754 json << ","; 5755 need_to_print_comma = true; 5756 json << "\"activity_query_timed_out\":true"; 5757 if (genealogy_fetch_time != 0) { 5758 // If we append the floating point value with << we'll get it in 5759 // scientific 5760 // notation. 5761 char floating_point_ascii_buffer[64]; 5762 floating_point_ascii_buffer[0] = '\0'; 5763 snprintf(floating_point_ascii_buffer, 5764 sizeof(floating_point_ascii_buffer), "%f", 5765 genealogy_fetch_time); 5766 if (strlen(floating_point_ascii_buffer) > 0) { 5767 json << ","; 5768 json << "\"activity_query_duration\":" 5769 << floating_point_ascii_buffer; 5770 } 5771 } 5772 } 5773 } 5774 5775 if (tsd_address != INVALID_NUB_ADDRESS) { 5776 if (need_to_print_comma) 5777 json << ","; 5778 need_to_print_comma = true; 5779 json << "\"tsd_address\":" << tsd_address; 5780 5781 if (dti_qos_class_index != 0 && dti_qos_class_index != UINT64_MAX) { 5782 ThreadInfo::QoS requested_qos = DNBGetRequestedQoSForThread( 5783 pid, tid, tsd_address, dti_qos_class_index); 5784 if (requested_qos.IsValid()) { 5785 if (need_to_print_comma) 5786 json << ","; 5787 need_to_print_comma = true; 5788 json << "\"requested_qos\":{"; 5789 json << "\"enum_value\":" << requested_qos.enum_value << ","; 5790 json << "\"constant_name\":\"" 5791 << json_string_quote_metachars(requested_qos.constant_name) 5792 << "\","; 5793 json << "\"printable_name\":\"" 5794 << json_string_quote_metachars(requested_qos.printable_name) 5795 << "\""; 5796 json << "}"; 5797 } 5798 } 5799 } 5800 5801 if (pthread_t_value != INVALID_NUB_ADDRESS) { 5802 if (need_to_print_comma) 5803 json << ","; 5804 need_to_print_comma = true; 5805 json << "\"pthread_t\":" << pthread_t_value; 5806 } 5807 5808 nub_addr_t dispatch_queue_t_value = DNBGetDispatchQueueT(pid, tid); 5809 if (dispatch_queue_t_value != INVALID_NUB_ADDRESS) { 5810 if (need_to_print_comma) 5811 json << ","; 5812 need_to_print_comma = true; 5813 json << "\"dispatch_queue_t\":" << dispatch_queue_t_value; 5814 } 5815 5816 json << "}"; 5817 std::string json_quoted = binary_encode_string(json.str()); 5818 return SendPacket(json_quoted); 5819 } 5820 } 5821 return SendPacket("OK"); 5822 } 5823 5824 // This packet may be called in one of three ways: 5825 // 5826 // jGetLoadedDynamicLibrariesInfos:{"image_count":40,"image_list_address":4295244704} 5827 // Look for an array of the old dyld_all_image_infos style of binary infos 5828 // at the image_list_address. 5829 // This an array of {void* load_addr, void* mod_date, void* pathname} 5830 // 5831 // jGetLoadedDynamicLibrariesInfos:{"fetch_all_solibs":true} 5832 // Use the new style (macOS 10.12, tvOS 10, iOS 10, watchOS 3) dyld SPI to 5833 // get a list of all the 5834 // libraries loaded 5835 // 5836 // jGetLoadedDynamicLibrariesInfos:{"solib_addresses":[8382824135,3258302053,830202858503]} 5837 // Use the new style (macOS 10.12, tvOS 10, iOS 10, watchOS 3) dyld SPI to 5838 // get the information 5839 // about the libraries loaded at these addresses. 5840 // 5841 rnb_err_t 5842 RNBRemote::HandlePacket_jGetLoadedDynamicLibrariesInfos(const char *p) { 5843 nub_process_t pid; 5844 // If we haven't run the process yet, return an error. 5845 if (!m_ctx.HasValidProcessID()) { 5846 return SendPacket("E83"); 5847 } 5848 5849 pid = m_ctx.ProcessID(); 5850 5851 const char get_loaded_dynamic_libraries_infos_str[] = { 5852 "jGetLoadedDynamicLibrariesInfos:{"}; 5853 if (strncmp(p, get_loaded_dynamic_libraries_infos_str, 5854 sizeof(get_loaded_dynamic_libraries_infos_str) - 1) == 0) { 5855 p += strlen(get_loaded_dynamic_libraries_infos_str); 5856 5857 JSONGenerator::ObjectSP json_sp; 5858 5859 std::vector<uint64_t> macho_addresses; 5860 bool fetch_all_solibs = false; 5861 if (get_boolean_value_for_key_name_from_json("fetch_all_solibs", p, 5862 fetch_all_solibs) && 5863 fetch_all_solibs) { 5864 json_sp = DNBGetAllLoadedLibrariesInfos(pid); 5865 } else if (get_array_of_ints_value_for_key_name_from_json( 5866 "solib_addresses", p, macho_addresses)) { 5867 json_sp = DNBGetLibrariesInfoForAddresses(pid, macho_addresses); 5868 } else { 5869 nub_addr_t image_list_address = 5870 get_integer_value_for_key_name_from_json("image_list_address", p); 5871 nub_addr_t image_count = 5872 get_integer_value_for_key_name_from_json("image_count", p); 5873 5874 if (image_list_address != INVALID_NUB_ADDRESS && 5875 image_count != INVALID_NUB_ADDRESS) { 5876 json_sp = DNBGetLoadedDynamicLibrariesInfos(pid, image_list_address, 5877 image_count); 5878 } 5879 } 5880 5881 if (json_sp.get()) { 5882 std::ostringstream json_str; 5883 json_sp->Dump(json_str); 5884 if (json_str.str().size() > 0) { 5885 std::string json_str_quoted = binary_encode_string(json_str.str()); 5886 return SendPacket(json_str_quoted.c_str()); 5887 } else { 5888 SendPacket("E84"); 5889 } 5890 } 5891 } 5892 return SendPacket("OK"); 5893 } 5894 5895 // This packet does not currently take any arguments. So the behavior is 5896 // jGetSharedCacheInfo:{} 5897 // send information about the inferior's shared cache 5898 // jGetSharedCacheInfo: 5899 // send "OK" to indicate that this packet is supported 5900 rnb_err_t RNBRemote::HandlePacket_jGetSharedCacheInfo(const char *p) { 5901 nub_process_t pid; 5902 // If we haven't run the process yet, return an error. 5903 if (!m_ctx.HasValidProcessID()) { 5904 return SendPacket("E85"); 5905 } 5906 5907 pid = m_ctx.ProcessID(); 5908 5909 const char get_shared_cache_info_str[] = {"jGetSharedCacheInfo:{"}; 5910 if (strncmp(p, get_shared_cache_info_str, 5911 sizeof(get_shared_cache_info_str) - 1) == 0) { 5912 JSONGenerator::ObjectSP json_sp = DNBGetSharedCacheInfo(pid); 5913 5914 if (json_sp.get()) { 5915 std::ostringstream json_str; 5916 json_sp->Dump(json_str); 5917 if (json_str.str().size() > 0) { 5918 std::string json_str_quoted = binary_encode_string(json_str.str()); 5919 return SendPacket(json_str_quoted.c_str()); 5920 } else { 5921 SendPacket("E86"); 5922 } 5923 } 5924 } 5925 return SendPacket("OK"); 5926 } 5927 5928 static bool MachHeaderIsMainExecutable(nub_process_t pid, uint32_t addr_size, 5929 nub_addr_t mach_header_addr, 5930 mach_header &mh) { 5931 DNBLogThreadedIf(LOG_RNB_PROC, "GetMachHeaderForMainExecutable(pid = %u, " 5932 "addr_size = %u, mach_header_addr = " 5933 "0x%16.16llx)", 5934 pid, addr_size, mach_header_addr); 5935 const nub_size_t bytes_read = 5936 DNBProcessMemoryRead(pid, mach_header_addr, sizeof(mh), &mh); 5937 if (bytes_read == sizeof(mh)) { 5938 DNBLogThreadedIf( 5939 LOG_RNB_PROC, "GetMachHeaderForMainExecutable(pid = %u, addr_size = " 5940 "%u, mach_header_addr = 0x%16.16llx): mh = {\n magic = " 5941 "0x%8.8x\n cpu = 0x%8.8x\n sub = 0x%8.8x\n filetype = " 5942 "%u\n ncmds = %u\n sizeofcmds = 0x%8.8x\n flags = " 5943 "0x%8.8x }", 5944 pid, addr_size, mach_header_addr, mh.magic, mh.cputype, mh.cpusubtype, 5945 mh.filetype, mh.ncmds, mh.sizeofcmds, mh.flags); 5946 if ((addr_size == 4 && mh.magic == MH_MAGIC) || 5947 (addr_size == 8 && mh.magic == MH_MAGIC_64)) { 5948 if (mh.filetype == MH_EXECUTE) { 5949 DNBLogThreadedIf(LOG_RNB_PROC, "GetMachHeaderForMainExecutable(pid = " 5950 "%u, addr_size = %u, mach_header_addr = " 5951 "0x%16.16llx) -> this is the " 5952 "executable!!!", 5953 pid, addr_size, mach_header_addr); 5954 return true; 5955 } 5956 } 5957 } 5958 return false; 5959 } 5960 5961 static nub_addr_t GetMachHeaderForMainExecutable(const nub_process_t pid, 5962 const uint32_t addr_size, 5963 mach_header &mh) { 5964 struct AllImageInfos { 5965 uint32_t version; 5966 uint32_t dylib_info_count; 5967 uint64_t dylib_info_addr; 5968 }; 5969 5970 uint64_t mach_header_addr = 0; 5971 5972 const nub_addr_t shlib_addr = DNBProcessGetSharedLibraryInfoAddress(pid); 5973 uint8_t bytes[256]; 5974 nub_size_t bytes_read = 0; 5975 DNBDataRef data(bytes, sizeof(bytes), false); 5976 DNBDataRef::offset_t offset = 0; 5977 data.SetPointerSize(addr_size); 5978 5979 // When we are sitting at __dyld_start, the kernel has placed the 5980 // address of the mach header of the main executable on the stack. If we 5981 // read the SP and dereference a pointer, we might find the mach header 5982 // for the executable. We also just make sure there is only 1 thread 5983 // since if we are at __dyld_start we shouldn't have multiple threads. 5984 if (DNBProcessGetNumThreads(pid) == 1) { 5985 nub_thread_t tid = DNBProcessGetThreadAtIndex(pid, 0); 5986 if (tid != INVALID_NUB_THREAD) { 5987 DNBRegisterValue sp_value; 5988 if (DNBThreadGetRegisterValueByID(pid, tid, REGISTER_SET_GENERIC, 5989 GENERIC_REGNUM_SP, &sp_value)) { 5990 uint64_t sp = 5991 addr_size == 8 ? sp_value.value.uint64 : sp_value.value.uint32; 5992 bytes_read = DNBProcessMemoryRead(pid, sp, addr_size, bytes); 5993 if (bytes_read == addr_size) { 5994 offset = 0; 5995 mach_header_addr = data.GetPointer(&offset); 5996 if (MachHeaderIsMainExecutable(pid, addr_size, mach_header_addr, mh)) 5997 return mach_header_addr; 5998 } 5999 } 6000 } 6001 } 6002 6003 // Check the dyld_all_image_info structure for a list of mach header 6004 // since it is a very easy thing to check 6005 if (shlib_addr != INVALID_NUB_ADDRESS) { 6006 bytes_read = 6007 DNBProcessMemoryRead(pid, shlib_addr, sizeof(AllImageInfos), bytes); 6008 if (bytes_read > 0) { 6009 AllImageInfos aii; 6010 offset = 0; 6011 aii.version = data.Get32(&offset); 6012 aii.dylib_info_count = data.Get32(&offset); 6013 if (aii.dylib_info_count > 0) { 6014 aii.dylib_info_addr = data.GetPointer(&offset); 6015 if (aii.dylib_info_addr != 0) { 6016 const size_t image_info_byte_size = 3 * addr_size; 6017 for (uint32_t i = 0; i < aii.dylib_info_count; ++i) { 6018 bytes_read = DNBProcessMemoryRead(pid, aii.dylib_info_addr + 6019 i * image_info_byte_size, 6020 image_info_byte_size, bytes); 6021 if (bytes_read != image_info_byte_size) 6022 break; 6023 offset = 0; 6024 mach_header_addr = data.GetPointer(&offset); 6025 if (MachHeaderIsMainExecutable(pid, addr_size, mach_header_addr, 6026 mh)) 6027 return mach_header_addr; 6028 } 6029 } 6030 } 6031 } 6032 } 6033 6034 // We failed to find the executable's mach header from the all image 6035 // infos and by dereferencing the stack pointer. Now we fall back to 6036 // enumerating the memory regions and looking for regions that are 6037 // executable. 6038 DNBRegionInfo region_info; 6039 mach_header_addr = 0; 6040 while (DNBProcessMemoryRegionInfo(pid, mach_header_addr, ®ion_info)) { 6041 if (region_info.size == 0) 6042 break; 6043 6044 if (region_info.permissions & eMemoryPermissionsExecutable) { 6045 DNBLogThreadedIf( 6046 LOG_RNB_PROC, "[0x%16.16llx - 0x%16.16llx) permissions = %c%c%c: " 6047 "checking region for executable mach header", 6048 region_info.addr, region_info.addr + region_info.size, 6049 (region_info.permissions & eMemoryPermissionsReadable) ? 'r' : '-', 6050 (region_info.permissions & eMemoryPermissionsWritable) ? 'w' : '-', 6051 (region_info.permissions & eMemoryPermissionsExecutable) ? 'x' : '-'); 6052 if (MachHeaderIsMainExecutable(pid, addr_size, mach_header_addr, mh)) 6053 return mach_header_addr; 6054 } else { 6055 DNBLogThreadedIf( 6056 LOG_RNB_PROC, 6057 "[0x%16.16llx - 0x%16.16llx): permissions = %c%c%c: skipping region", 6058 region_info.addr, region_info.addr + region_info.size, 6059 (region_info.permissions & eMemoryPermissionsReadable) ? 'r' : '-', 6060 (region_info.permissions & eMemoryPermissionsWritable) ? 'w' : '-', 6061 (region_info.permissions & eMemoryPermissionsExecutable) ? 'x' : '-'); 6062 } 6063 // Set the address to the next mapped region 6064 mach_header_addr = region_info.addr + region_info.size; 6065 } 6066 bzero(&mh, sizeof(mh)); 6067 return INVALID_NUB_ADDRESS; 6068 } 6069 6070 rnb_err_t RNBRemote::HandlePacket_qSymbol(const char *command) { 6071 const char *p = command; 6072 p += strlen("qSymbol:"); 6073 const char *sep = strchr(p, ':'); 6074 6075 std::string symbol_name; 6076 std::string symbol_value_str; 6077 // Extract the symbol value if there is one 6078 if (sep > p) 6079 symbol_value_str.assign(p, sep - p); 6080 p = sep + 1; 6081 6082 if (*p) { 6083 // We have a symbol name 6084 symbol_name = decode_hex_ascii_string(p); 6085 if (!symbol_value_str.empty()) { 6086 nub_addr_t symbol_value = decode_uint64(symbol_value_str.c_str(), 16); 6087 if (symbol_name == "dispatch_queue_offsets") 6088 m_dispatch_queue_offsets_addr = symbol_value; 6089 } 6090 ++m_qSymbol_index; 6091 } else { 6092 // No symbol name, set our symbol index to zero so we can 6093 // read any symbols that we need 6094 m_qSymbol_index = 0; 6095 } 6096 6097 symbol_name.clear(); 6098 6099 if (m_qSymbol_index == 0) { 6100 if (m_dispatch_queue_offsets_addr == INVALID_NUB_ADDRESS) 6101 symbol_name = "dispatch_queue_offsets"; 6102 else 6103 ++m_qSymbol_index; 6104 } 6105 6106 // // Lookup next symbol when we have one... 6107 // if (m_qSymbol_index == 1) 6108 // { 6109 // } 6110 6111 if (symbol_name.empty()) { 6112 // Done with symbol lookups 6113 return SendPacket("OK"); 6114 } else { 6115 std::ostringstream reply; 6116 reply << "qSymbol:"; 6117 for (size_t i = 0; i < symbol_name.size(); ++i) 6118 reply << RAWHEX8(symbol_name[i]); 6119 return SendPacket(reply.str().c_str()); 6120 } 6121 } 6122 6123 // Note that all numeric values returned by qProcessInfo are hex encoded, 6124 // including the pid and the cpu type. 6125 6126 rnb_err_t RNBRemote::HandlePacket_qProcessInfo(const char *p) { 6127 nub_process_t pid; 6128 std::ostringstream rep; 6129 6130 // If we haven't run the process yet, return an error. 6131 if (!m_ctx.HasValidProcessID()) 6132 return SendPacket("E68"); 6133 6134 pid = m_ctx.ProcessID(); 6135 6136 rep << "pid:" << std::hex << pid << ';'; 6137 6138 int procpid_mib[4]; 6139 procpid_mib[0] = CTL_KERN; 6140 procpid_mib[1] = KERN_PROC; 6141 procpid_mib[2] = KERN_PROC_PID; 6142 procpid_mib[3] = pid; 6143 struct kinfo_proc proc_kinfo; 6144 size_t proc_kinfo_size = sizeof(struct kinfo_proc); 6145 6146 if (::sysctl(procpid_mib, 4, &proc_kinfo, &proc_kinfo_size, NULL, 0) == 0) { 6147 if (proc_kinfo_size > 0) { 6148 rep << "parent-pid:" << std::hex << proc_kinfo.kp_eproc.e_ppid << ';'; 6149 rep << "real-uid:" << std::hex << proc_kinfo.kp_eproc.e_pcred.p_ruid 6150 << ';'; 6151 rep << "real-gid:" << std::hex << proc_kinfo.kp_eproc.e_pcred.p_rgid 6152 << ';'; 6153 rep << "effective-uid:" << std::hex << proc_kinfo.kp_eproc.e_ucred.cr_uid 6154 << ';'; 6155 if (proc_kinfo.kp_eproc.e_ucred.cr_ngroups > 0) 6156 rep << "effective-gid:" << std::hex 6157 << proc_kinfo.kp_eproc.e_ucred.cr_groups[0] << ';'; 6158 } 6159 } 6160 6161 cpu_type_t cputype = DNBProcessGetCPUType(pid); 6162 if (cputype == 0) { 6163 DNBLog("Unable to get the process cpu_type, making a best guess."); 6164 cputype = best_guess_cpu_type(); 6165 } 6166 6167 uint32_t addr_size = 0; 6168 if (cputype != 0) { 6169 rep << "cputype:" << std::hex << cputype << ";"; 6170 if (cputype & CPU_ARCH_ABI64) 6171 addr_size = 8; 6172 else 6173 addr_size = 4; 6174 } 6175 6176 bool host_cpu_is_64bit = false; 6177 uint32_t is64bit_capable; 6178 size_t is64bit_capable_len = sizeof(is64bit_capable); 6179 if (sysctlbyname("hw.cpu64bit_capable", &is64bit_capable, 6180 &is64bit_capable_len, NULL, 0) == 0) 6181 host_cpu_is_64bit = is64bit_capable != 0; 6182 6183 uint32_t cpusubtype; 6184 size_t cpusubtype_len = sizeof(cpusubtype); 6185 if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &cpusubtype_len, NULL, 0) == 6186 0) { 6187 // If a process is CPU_TYPE_X86, then ignore the cpusubtype that we detected 6188 // from the host and use CPU_SUBTYPE_I386_ALL because we don't want the 6189 // CPU_SUBTYPE_X86_ARCH1 or CPU_SUBTYPE_X86_64_H to be used as the cpu 6190 // subtype 6191 // for i386... 6192 if (host_cpu_is_64bit) { 6193 if (cputype == CPU_TYPE_X86) { 6194 cpusubtype = 3; // CPU_SUBTYPE_I386_ALL 6195 } else if (cputype == CPU_TYPE_ARM) { 6196 // We can query a process' cputype but we cannot query a process' 6197 // cpusubtype. 6198 // If the process has cputype CPU_TYPE_ARM, then it is an armv7 (32-bit 6199 // process) and we 6200 // need to override the host cpusubtype (which is in the 6201 // CPU_SUBTYPE_ARM64 subtype namespace) 6202 // with a reasonable CPU_SUBTYPE_ARMV7 subtype. 6203 cpusubtype = 12; // CPU_SUBTYPE_ARM_V7K 6204 } 6205 } 6206 #if defined (TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 6207 // on arm64_32 devices, the machine's native cpu type is 6208 // CPU_TYPE_ARM64 and subtype is 2 indicating arm64e. 6209 // But we change the cputype to CPU_TYPE_ARM64_32 because 6210 // the user processes are all ILP32 processes today. 6211 // We also need to rewrite the cpusubtype so we vend 6212 // a valid cputype + cpusubtype combination. 6213 if (cputype == CPU_TYPE_ARM64_32 && cpusubtype == 2) 6214 cpusubtype = CPU_SUBTYPE_ARM64_32_V8; 6215 #endif 6216 6217 rep << "cpusubtype:" << std::hex << cpusubtype << ';'; 6218 } 6219 6220 bool os_handled = false; 6221 if (addr_size > 0) { 6222 rep << "ptrsize:" << std::dec << addr_size << ';'; 6223 6224 #if defined(TARGET_OS_OSX) && TARGET_OS_OSX == 1 6225 // Try and get the OS type by looking at the load commands in the main 6226 // executable and looking for a LC_VERSION_MIN load command. This is the 6227 // most reliable way to determine the "ostype" value when on desktop. 6228 6229 mach_header mh; 6230 nub_addr_t exe_mach_header_addr = 6231 GetMachHeaderForMainExecutable(pid, addr_size, mh); 6232 if (exe_mach_header_addr != INVALID_NUB_ADDRESS) { 6233 uint64_t load_command_addr = 6234 exe_mach_header_addr + 6235 ((addr_size == 8) ? sizeof(mach_header_64) : sizeof(mach_header)); 6236 load_command lc; 6237 for (uint32_t i = 0; i < mh.ncmds && !os_handled; ++i) { 6238 const nub_size_t bytes_read = 6239 DNBProcessMemoryRead(pid, load_command_addr, sizeof(lc), &lc); 6240 (void)bytes_read; 6241 6242 bool is_executable = true; 6243 uint32_t major_version, minor_version, patch_version; 6244 auto *platform = 6245 DNBGetDeploymentInfo(pid, is_executable, lc, load_command_addr, 6246 major_version, minor_version, patch_version); 6247 if (platform) { 6248 os_handled = true; 6249 rep << "ostype:" << platform << ";"; 6250 break; 6251 } 6252 load_command_addr = load_command_addr + lc.cmdsize; 6253 } 6254 } 6255 #endif // TARGET_OS_OSX 6256 } 6257 6258 // If we weren't able to find the OS in a LC_VERSION_MIN load command, try 6259 // to set it correctly by using the cpu type and other tricks 6260 if (!os_handled) { 6261 // The OS in the triple should be "ios" or "macosx" which doesn't match our 6262 // "Darwin" which gets returned from "kern.ostype", so we need to hardcode 6263 // this for now. 6264 if (cputype == CPU_TYPE_ARM || cputype == CPU_TYPE_ARM64 6265 || cputype == CPU_TYPE_ARM64_32) { 6266 #if defined(TARGET_OS_TV) && TARGET_OS_TV == 1 6267 rep << "ostype:tvos;"; 6268 #elif defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 6269 rep << "ostype:watchos;"; 6270 #elif defined(TARGET_OS_BRIDGE) && TARGET_OS_BRIDGE == 1 6271 rep << "ostype:bridgeos;"; 6272 #elif defined(TARGET_OS_OSX) && TARGET_OS_OSX == 1 6273 rep << "ostype:macosx;"; 6274 #else 6275 rep << "ostype:ios;"; 6276 #endif 6277 } else { 6278 bool is_ios_simulator = false; 6279 if (cputype == CPU_TYPE_X86 || cputype == CPU_TYPE_X86_64) { 6280 // Check for iOS simulator binaries by getting the process argument 6281 // and environment and checking for SIMULATOR_UDID in the environment 6282 int proc_args_mib[3] = {CTL_KERN, KERN_PROCARGS2, (int)pid}; 6283 6284 uint8_t arg_data[8192]; 6285 size_t arg_data_size = sizeof(arg_data); 6286 if (::sysctl(proc_args_mib, 3, arg_data, &arg_data_size, NULL, 0) == 6287 0) { 6288 DNBDataRef data(arg_data, arg_data_size, false); 6289 DNBDataRef::offset_t offset = 0; 6290 uint32_t argc = data.Get32(&offset); 6291 const char *cstr; 6292 6293 cstr = data.GetCStr(&offset); 6294 if (cstr) { 6295 // Skip NULLs 6296 while (true) { 6297 const char *p = data.PeekCStr(offset); 6298 if ((p == NULL) || (*p != '\0')) 6299 break; 6300 ++offset; 6301 } 6302 // Now skip all arguments 6303 for (uint32_t i = 0; i < argc; ++i) { 6304 data.GetCStr(&offset); 6305 } 6306 6307 // Now iterate across all environment variables 6308 while ((cstr = data.GetCStr(&offset))) { 6309 if (strncmp(cstr, "SIMULATOR_UDID=", strlen("SIMULATOR_UDID=")) == 6310 0) { 6311 is_ios_simulator = true; 6312 break; 6313 } 6314 if (cstr[0] == '\0') 6315 break; 6316 } 6317 } 6318 } 6319 } 6320 if (is_ios_simulator) { 6321 #if defined(TARGET_OS_TV) && TARGET_OS_TV == 1 6322 rep << "ostype:tvos;"; 6323 #elif defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 6324 rep << "ostype:watchos;"; 6325 #elif defined(TARGET_OS_BRIDGE) && TARGET_OS_BRIDGE == 1 6326 rep << "ostype:bridgeos;"; 6327 #else 6328 rep << "ostype:ios;"; 6329 #endif 6330 } else { 6331 rep << "ostype:macosx;"; 6332 } 6333 } 6334 } 6335 6336 rep << "vendor:apple;"; 6337 6338 #if defined(__LITTLE_ENDIAN__) 6339 rep << "endian:little;"; 6340 #elif defined(__BIG_ENDIAN__) 6341 rep << "endian:big;"; 6342 #elif defined(__PDP_ENDIAN__) 6343 rep << "endian:pdp;"; 6344 #endif 6345 6346 if (addr_size == 0) { 6347 #if (defined(__x86_64__) || defined(__i386__)) && defined(x86_THREAD_STATE) 6348 nub_thread_t thread = DNBProcessGetCurrentThreadMachPort(pid); 6349 kern_return_t kr; 6350 x86_thread_state_t gp_regs; 6351 mach_msg_type_number_t gp_count = x86_THREAD_STATE_COUNT; 6352 kr = thread_get_state(static_cast<thread_act_t>(thread), x86_THREAD_STATE, 6353 (thread_state_t)&gp_regs, &gp_count); 6354 if (kr == KERN_SUCCESS) { 6355 if (gp_regs.tsh.flavor == x86_THREAD_STATE64) 6356 rep << "ptrsize:8;"; 6357 else 6358 rep << "ptrsize:4;"; 6359 } 6360 #elif defined(__arm__) 6361 rep << "ptrsize:4;"; 6362 #elif (defined(__arm64__) || defined(__aarch64__)) && \ 6363 defined(ARM_UNIFIED_THREAD_STATE) 6364 nub_thread_t thread = DNBProcessGetCurrentThreadMachPort(pid); 6365 kern_return_t kr; 6366 arm_unified_thread_state_t gp_regs; 6367 mach_msg_type_number_t gp_count = ARM_UNIFIED_THREAD_STATE_COUNT; 6368 kr = thread_get_state(thread, ARM_UNIFIED_THREAD_STATE, 6369 (thread_state_t)&gp_regs, &gp_count); 6370 if (kr == KERN_SUCCESS) { 6371 if (gp_regs.ash.flavor == ARM_THREAD_STATE64) 6372 rep << "ptrsize:8;"; 6373 else 6374 rep << "ptrsize:4;"; 6375 } 6376 #endif 6377 } 6378 6379 return SendPacket(rep.str()); 6380 } 6381 6382 const RNBRemote::DispatchQueueOffsets *RNBRemote::GetDispatchQueueOffsets() { 6383 if (!m_dispatch_queue_offsets.IsValid() && 6384 m_dispatch_queue_offsets_addr != INVALID_NUB_ADDRESS && 6385 m_ctx.HasValidProcessID()) { 6386 nub_process_t pid = m_ctx.ProcessID(); 6387 nub_size_t bytes_read = DNBProcessMemoryRead( 6388 pid, m_dispatch_queue_offsets_addr, sizeof(m_dispatch_queue_offsets), 6389 &m_dispatch_queue_offsets); 6390 if (bytes_read != sizeof(m_dispatch_queue_offsets)) 6391 m_dispatch_queue_offsets.Clear(); 6392 } 6393 6394 if (m_dispatch_queue_offsets.IsValid()) 6395 return &m_dispatch_queue_offsets; 6396 else 6397 return nullptr; 6398 } 6399 6400 void RNBRemote::EnableCompressionNextSendPacket(compression_types type) { 6401 m_compression_mode = type; 6402 m_enable_compression_next_send_packet = true; 6403 } 6404 6405 compression_types RNBRemote::GetCompressionType() { 6406 // The first packet we send back to the debugger after a QEnableCompression 6407 // request 6408 // should be uncompressed -- so we can indicate whether the compression was 6409 // enabled 6410 // or not via OK / Enn returns. After that, all packets sent will be using 6411 // the 6412 // compression protocol. 6413 6414 if (m_enable_compression_next_send_packet) { 6415 // One time, we send back "None" as our compression type 6416 m_enable_compression_next_send_packet = false; 6417 return compression_types::none; 6418 } 6419 return m_compression_mode; 6420 } 6421