1 //===-- DNB.cpp -------------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Created by Greg Clayton on 3/23/07. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DNB.h" 14 #include <inttypes.h> 15 #include <libproc.h> 16 #include <map> 17 #include <signal.h> 18 #include <stdio.h> 19 #include <stdlib.h> 20 #include <sys/resource.h> 21 #include <sys/stat.h> 22 #include <sys/sysctl.h> 23 #include <sys/types.h> 24 #include <sys/wait.h> 25 #include <unistd.h> 26 #include <vector> 27 28 #if defined(__APPLE__) 29 #include <pthread.h> 30 #include <sched.h> 31 #endif 32 33 #define TRY_KQUEUE 1 34 35 #ifdef TRY_KQUEUE 36 #include <sys/event.h> 37 #include <sys/time.h> 38 #ifdef NOTE_EXIT_DETAIL 39 #define USE_KQUEUE 40 #endif 41 #endif 42 43 #include "CFBundle.h" 44 #include "CFString.h" 45 #include "DNBDataRef.h" 46 #include "DNBLog.h" 47 #include "DNBThreadResumeActions.h" 48 #include "DNBTimer.h" 49 #include "MacOSX/DarwinLog/DarwinLogCollector.h" 50 #include "MacOSX/Genealogy.h" 51 #include "MacOSX/MachProcess.h" 52 #include "MacOSX/MachTask.h" 53 #include "MacOSX/ThreadInfo.h" 54 55 typedef std::shared_ptr<MachProcess> MachProcessSP; 56 typedef std::map<nub_process_t, MachProcessSP> ProcessMap; 57 typedef ProcessMap::iterator ProcessMapIter; 58 typedef ProcessMap::const_iterator ProcessMapConstIter; 59 60 static size_t 61 GetAllInfosMatchingName(const char *process_name, 62 std::vector<struct kinfo_proc> &matching_proc_infos); 63 64 // A Thread safe singleton to get a process map pointer. 65 // 66 // Returns a pointer to the existing process map, or a pointer to a 67 // newly created process map if CAN_CREATE is non-zero. 68 static ProcessMap *GetProcessMap(bool can_create) { 69 static ProcessMap *g_process_map_ptr = NULL; 70 71 if (can_create && g_process_map_ptr == NULL) { 72 static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER; 73 PTHREAD_MUTEX_LOCKER(locker, &g_process_map_mutex); 74 if (g_process_map_ptr == NULL) 75 g_process_map_ptr = new ProcessMap; 76 } 77 return g_process_map_ptr; 78 } 79 80 // Add PID to the shared process pointer map. 81 // 82 // Return non-zero value if we succeed in adding the process to the map. 83 // The only time this should fail is if we run out of memory and can't 84 // allocate a ProcessMap. 85 static nub_bool_t AddProcessToMap(nub_process_t pid, MachProcessSP &procSP) { 86 ProcessMap *process_map = GetProcessMap(true); 87 if (process_map) { 88 process_map->insert(std::make_pair(pid, procSP)); 89 return true; 90 } 91 return false; 92 } 93 94 // Remove the shared pointer for PID from the process map. 95 // 96 // Returns the number of items removed from the process map. 97 // static size_t 98 // RemoveProcessFromMap (nub_process_t pid) 99 //{ 100 // ProcessMap* process_map = GetProcessMap(false); 101 // if (process_map) 102 // { 103 // return process_map->erase(pid); 104 // } 105 // return 0; 106 //} 107 108 // Get the shared pointer for PID from the existing process map. 109 // 110 // Returns true if we successfully find a shared pointer to a 111 // MachProcess object. 112 static nub_bool_t GetProcessSP(nub_process_t pid, MachProcessSP &procSP) { 113 ProcessMap *process_map = GetProcessMap(false); 114 if (process_map != NULL) { 115 ProcessMapIter pos = process_map->find(pid); 116 if (pos != process_map->end()) { 117 procSP = pos->second; 118 return true; 119 } 120 } 121 procSP.reset(); 122 return false; 123 } 124 125 #ifdef USE_KQUEUE 126 void *kqueue_thread(void *arg) { 127 int kq_id = (int)(intptr_t)arg; 128 129 #if defined(__APPLE__) 130 pthread_setname_np("kqueue thread"); 131 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 132 struct sched_param thread_param; 133 int thread_sched_policy; 134 if (pthread_getschedparam(pthread_self(), &thread_sched_policy, 135 &thread_param) == 0) { 136 thread_param.sched_priority = 47; 137 pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param); 138 } 139 #endif 140 #endif 141 142 struct kevent death_event; 143 while (true) { 144 int n_events = kevent(kq_id, NULL, 0, &death_event, 1, NULL); 145 if (n_events == -1) { 146 if (errno == EINTR) 147 continue; 148 else { 149 DNBLogError("kqueue failed with error: (%d): %s", errno, 150 strerror(errno)); 151 return NULL; 152 } 153 } else if (death_event.flags & EV_ERROR) { 154 int error_no = static_cast<int>(death_event.data); 155 const char *error_str = strerror(error_no); 156 if (error_str == NULL) 157 error_str = "Unknown error"; 158 DNBLogError("Failed to initialize kqueue event: (%d): %s", error_no, 159 error_str); 160 return NULL; 161 } else { 162 int status; 163 const pid_t pid = (pid_t)death_event.ident; 164 const pid_t child_pid = waitpid(pid, &status, 0); 165 166 bool exited = false; 167 int signal = 0; 168 int exit_status = 0; 169 if (WIFSTOPPED(status)) { 170 signal = WSTOPSIG(status); 171 DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> STOPPED (signal = %i)", 172 child_pid, signal); 173 } else if (WIFEXITED(status)) { 174 exit_status = WEXITSTATUS(status); 175 exited = true; 176 DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> EXITED (status = %i)", 177 child_pid, exit_status); 178 } else if (WIFSIGNALED(status)) { 179 signal = WTERMSIG(status); 180 if (child_pid == abs(pid)) { 181 DNBLogThreadedIf(LOG_PROCESS, 182 "waitpid (%i) -> SIGNALED and EXITED (signal = %i)", 183 child_pid, signal); 184 char exit_info[64]; 185 ::snprintf(exit_info, sizeof(exit_info), 186 "Terminated due to signal %i", signal); 187 DNBProcessSetExitInfo(child_pid, exit_info); 188 exited = true; 189 exit_status = INT8_MAX; 190 } else { 191 DNBLogThreadedIf(LOG_PROCESS, 192 "waitpid (%i) -> SIGNALED (signal = %i)", child_pid, 193 signal); 194 } 195 } 196 197 if (exited) { 198 if (death_event.data & NOTE_EXIT_MEMORY) 199 DNBProcessSetExitInfo(child_pid, "Terminated due to memory issue"); 200 else if (death_event.data & NOTE_EXIT_DECRYPTFAIL) 201 DNBProcessSetExitInfo(child_pid, "Terminated due to decrypt failure"); 202 else if (death_event.data & NOTE_EXIT_CSERROR) 203 DNBProcessSetExitInfo(child_pid, 204 "Terminated due to code signing error"); 205 206 DNBLogThreadedIf( 207 LOG_PROCESS, 208 "waitpid_process_thread (): setting exit status for pid = %i to %i", 209 child_pid, exit_status); 210 DNBProcessSetExitStatus(child_pid, status); 211 return NULL; 212 } 213 } 214 } 215 } 216 217 static bool spawn_kqueue_thread(pid_t pid) { 218 pthread_t thread; 219 int kq_id; 220 221 kq_id = kqueue(); 222 if (kq_id == -1) { 223 DNBLogError("Could not get kqueue for pid = %i.", pid); 224 return false; 225 } 226 227 struct kevent reg_event; 228 229 EV_SET(®_event, pid, EVFILT_PROC, EV_ADD, 230 NOTE_EXIT | NOTE_EXITSTATUS | NOTE_EXIT_DETAIL, 0, NULL); 231 // Register the event: 232 int result = kevent(kq_id, ®_event, 1, NULL, 0, NULL); 233 if (result != 0) { 234 DNBLogError( 235 "Failed to register kqueue NOTE_EXIT event for pid %i, error: %d.", pid, 236 result); 237 return false; 238 } 239 240 int ret = 241 ::pthread_create(&thread, NULL, kqueue_thread, (void *)(intptr_t)kq_id); 242 243 // pthread_create returns 0 if successful 244 if (ret == 0) { 245 ::pthread_detach(thread); 246 return true; 247 } 248 return false; 249 } 250 #endif // #if USE_KQUEUE 251 252 static void *waitpid_thread(void *arg) { 253 const pid_t pid = (pid_t)(intptr_t)arg; 254 int status; 255 256 #if defined(__APPLE__) 257 pthread_setname_np("waitpid thread"); 258 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 259 struct sched_param thread_param; 260 int thread_sched_policy; 261 if (pthread_getschedparam(pthread_self(), &thread_sched_policy, 262 &thread_param) == 0) { 263 thread_param.sched_priority = 47; 264 pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param); 265 } 266 #endif 267 #endif 268 269 while (true) { 270 pid_t child_pid = waitpid(pid, &status, 0); 271 DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): waitpid (pid = %i, " 272 "&status, 0) => %i, status = %i, errno = %i", 273 pid, child_pid, status, errno); 274 275 if (child_pid < 0) { 276 if (errno == EINTR) 277 continue; 278 break; 279 } else { 280 if (WIFSTOPPED(status)) { 281 continue; 282 } else // if (WIFEXITED(status) || WIFSIGNALED(status)) 283 { 284 DNBLogThreadedIf( 285 LOG_PROCESS, 286 "waitpid_thread (): setting exit status for pid = %i to %i", 287 child_pid, status); 288 DNBProcessSetExitStatus(child_pid, status); 289 return NULL; 290 } 291 } 292 } 293 294 // We should never exit as long as our child process is alive, so if we 295 // do something else went wrong and we should exit... 296 DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): main loop exited, setting " 297 "exit status to an invalid value (-1) for pid " 298 "%i", 299 pid); 300 DNBProcessSetExitStatus(pid, -1); 301 return NULL; 302 } 303 static bool spawn_waitpid_thread(pid_t pid) { 304 #ifdef USE_KQUEUE 305 bool success = spawn_kqueue_thread(pid); 306 if (success) 307 return true; 308 #endif 309 310 pthread_t thread; 311 int ret = 312 ::pthread_create(&thread, NULL, waitpid_thread, (void *)(intptr_t)pid); 313 // pthread_create returns 0 if successful 314 if (ret == 0) { 315 ::pthread_detach(thread); 316 return true; 317 } 318 return false; 319 } 320 321 nub_process_t DNBProcessLaunch( 322 const char *path, char const *argv[], const char *envp[], 323 const char *working_directory, // NULL => don't change, non-NULL => set 324 // working directory for inferior to this 325 const char *stdin_path, const char *stdout_path, const char *stderr_path, 326 bool no_stdio, nub_launch_flavor_t launch_flavor, int disable_aslr, 327 const char *event_data, char *err_str, size_t err_len) { 328 DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, " 329 "working_dir=%s, stdin=%s, stdout=%s, " 330 "stderr=%s, no-stdio=%i, launch_flavor = %u, " 331 "disable_aslr = %d, err = %p, err_len = " 332 "%llu) called...", 333 __FUNCTION__, path, static_cast<void *>(argv), 334 static_cast<void *>(envp), working_directory, stdin_path, 335 stdout_path, stderr_path, no_stdio, launch_flavor, 336 disable_aslr, static_cast<void *>(err_str), 337 static_cast<uint64_t>(err_len)); 338 339 if (err_str && err_len > 0) 340 err_str[0] = '\0'; 341 struct stat path_stat; 342 if (::stat(path, &path_stat) == -1) { 343 char stat_error[256]; 344 ::strerror_r(errno, stat_error, sizeof(stat_error)); 345 snprintf(err_str, err_len, "%s (%s)", stat_error, path); 346 return INVALID_NUB_PROCESS; 347 } 348 349 MachProcessSP processSP(new MachProcess); 350 if (processSP.get()) { 351 DNBError launch_err; 352 pid_t pid = processSP->LaunchForDebug(path, argv, envp, working_directory, 353 stdin_path, stdout_path, stderr_path, 354 no_stdio, launch_flavor, disable_aslr, 355 event_data, launch_err); 356 if (err_str) { 357 *err_str = '\0'; 358 if (launch_err.Fail()) { 359 const char *launch_err_str = launch_err.AsString(); 360 if (launch_err_str) { 361 strlcpy(err_str, launch_err_str, err_len - 1); 362 err_str[err_len - 1] = 363 '\0'; // Make sure the error string is terminated 364 } 365 } 366 } 367 368 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid); 369 370 if (pid != INVALID_NUB_PROCESS) { 371 // Spawn a thread to reap our child inferior process... 372 spawn_waitpid_thread(pid); 373 374 if (processSP->Task().TaskPortForProcessID(launch_err) == TASK_NULL) { 375 // We failed to get the task for our process ID which is bad. 376 // Kill our process otherwise it will be stopped at the entry 377 // point and get reparented to someone else and never go away. 378 DNBLog("Could not get task port for process, sending SIGKILL and " 379 "exiting."); 380 kill(SIGKILL, pid); 381 382 if (err_str && err_len > 0) { 383 if (launch_err.AsString()) { 384 ::snprintf(err_str, err_len, 385 "failed to get the task for process %i (%s)", pid, 386 launch_err.AsString()); 387 } else { 388 ::snprintf(err_str, err_len, 389 "failed to get the task for process %i", pid); 390 } 391 } 392 } else { 393 bool res = AddProcessToMap(pid, processSP); 394 UNUSED_IF_ASSERT_DISABLED(res); 395 assert(res && "Couldn't add process to map!"); 396 return pid; 397 } 398 } 399 } 400 return INVALID_NUB_PROCESS; 401 } 402 403 // If there is one process with a given name, return the pid for that process. 404 nub_process_t DNBProcessGetPIDByName(const char *name) { 405 std::vector<struct kinfo_proc> matching_proc_infos; 406 size_t num_matching_proc_infos = 407 GetAllInfosMatchingName(name, matching_proc_infos); 408 if (num_matching_proc_infos == 1) { 409 return matching_proc_infos[0].kp_proc.p_pid; 410 } 411 return INVALID_NUB_PROCESS; 412 } 413 414 nub_process_t DNBProcessAttachByName(const char *name, struct timespec *timeout, 415 char *err_str, size_t err_len) { 416 if (err_str && err_len > 0) 417 err_str[0] = '\0'; 418 std::vector<struct kinfo_proc> matching_proc_infos; 419 size_t num_matching_proc_infos = 420 GetAllInfosMatchingName(name, matching_proc_infos); 421 if (num_matching_proc_infos == 0) { 422 DNBLogError("error: no processes match '%s'\n", name); 423 return INVALID_NUB_PROCESS; 424 } else if (num_matching_proc_infos > 1) { 425 DNBLogError("error: %llu processes match '%s':\n", 426 (uint64_t)num_matching_proc_infos, name); 427 size_t i; 428 for (i = 0; i < num_matching_proc_infos; ++i) 429 DNBLogError("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, 430 matching_proc_infos[i].kp_proc.p_comm); 431 return INVALID_NUB_PROCESS; 432 } 433 434 return DNBProcessAttach(matching_proc_infos[0].kp_proc.p_pid, timeout, 435 err_str, err_len); 436 } 437 438 nub_process_t DNBProcessAttach(nub_process_t attach_pid, 439 struct timespec *timeout, char *err_str, 440 size_t err_len) { 441 if (err_str && err_len > 0) 442 err_str[0] = '\0'; 443 444 pid_t pid = INVALID_NUB_PROCESS; 445 MachProcessSP processSP(new MachProcess); 446 if (processSP.get()) { 447 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", 448 attach_pid); 449 pid = processSP->AttachForDebug(attach_pid, err_str, err_len); 450 451 if (pid != INVALID_NUB_PROCESS) { 452 bool res = AddProcessToMap(pid, processSP); 453 UNUSED_IF_ASSERT_DISABLED(res); 454 assert(res && "Couldn't add process to map!"); 455 spawn_waitpid_thread(pid); 456 } 457 } 458 459 while (pid != INVALID_NUB_PROCESS) { 460 // Wait for process to start up and hit entry point 461 DNBLogThreadedIf(LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, " 462 "eEventProcessRunningStateChanged | " 463 "eEventProcessStoppedStateChanged, true, " 464 "INFINITE)...", 465 __FUNCTION__, pid); 466 nub_event_t set_events = 467 DNBProcessWaitForEvents(pid, eEventProcessRunningStateChanged | 468 eEventProcessStoppedStateChanged, 469 true, timeout); 470 471 DNBLogThreadedIf(LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, " 472 "eEventProcessRunningStateChanged | " 473 "eEventProcessStoppedStateChanged, true, " 474 "INFINITE) => 0x%8.8x", 475 __FUNCTION__, pid, set_events); 476 477 if (set_events == 0) { 478 if (err_str && err_len > 0) 479 snprintf(err_str, err_len, "operation timed out"); 480 pid = INVALID_NUB_PROCESS; 481 } else { 482 if (set_events & (eEventProcessRunningStateChanged | 483 eEventProcessStoppedStateChanged)) { 484 nub_state_t pid_state = DNBProcessGetState(pid); 485 DNBLogThreadedIf( 486 LOG_PROCESS, 487 "%s process %4.4x state changed (eEventProcessStateChanged): %s", 488 __FUNCTION__, pid, DNBStateAsString(pid_state)); 489 490 switch (pid_state) { 491 case eStateInvalid: 492 case eStateUnloaded: 493 case eStateAttaching: 494 case eStateLaunching: 495 case eStateSuspended: 496 break; // Ignore 497 498 case eStateRunning: 499 case eStateStepping: 500 // Still waiting to stop at entry point... 501 break; 502 503 case eStateStopped: 504 case eStateCrashed: 505 return pid; 506 507 case eStateDetached: 508 case eStateExited: 509 if (err_str && err_len > 0) 510 snprintf(err_str, err_len, "process exited"); 511 return INVALID_NUB_PROCESS; 512 } 513 } 514 515 DNBProcessResetEvents(pid, set_events); 516 } 517 } 518 519 return INVALID_NUB_PROCESS; 520 } 521 522 size_t DNBGetAllInfos(std::vector<struct kinfo_proc> &proc_infos) { 523 size_t size = 0; 524 int name[] = {CTL_KERN, KERN_PROC, KERN_PROC_ALL}; 525 u_int namelen = sizeof(name) / sizeof(int); 526 int err; 527 528 // Try to find out how many processes are around so we can 529 // size the buffer appropriately. sysctl's man page specifically suggests 530 // this approach, and says it returns a bit larger size than needed to 531 // handle any new processes created between then and now. 532 533 err = ::sysctl(name, namelen, NULL, &size, NULL, 0); 534 535 if ((err < 0) && (err != ENOMEM)) { 536 proc_infos.clear(); 537 perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)"); 538 return 0; 539 } 540 541 // Increase the size of the buffer by a few processes in case more have 542 // been spawned 543 proc_infos.resize(size / sizeof(struct kinfo_proc)); 544 size = proc_infos.size() * 545 sizeof(struct kinfo_proc); // Make sure we don't exceed our resize... 546 err = ::sysctl(name, namelen, &proc_infos[0], &size, NULL, 0); 547 if (err < 0) { 548 proc_infos.clear(); 549 return 0; 550 } 551 552 // Trim down our array to fit what we actually got back 553 proc_infos.resize(size / sizeof(struct kinfo_proc)); 554 return proc_infos.size(); 555 } 556 557 static size_t 558 GetAllInfosMatchingName(const char *full_process_name, 559 std::vector<struct kinfo_proc> &matching_proc_infos) { 560 561 matching_proc_infos.clear(); 562 if (full_process_name && full_process_name[0]) { 563 // We only get the process name, not the full path, from the proc_info. So 564 // just take the 565 // base name of the process name... 566 const char *process_name; 567 process_name = strrchr(full_process_name, '/'); 568 if (process_name == NULL) 569 process_name = full_process_name; 570 else 571 process_name++; 572 573 const size_t process_name_len = strlen(process_name); 574 std::vector<struct kinfo_proc> proc_infos; 575 const size_t num_proc_infos = DNBGetAllInfos(proc_infos); 576 if (num_proc_infos > 0) { 577 uint32_t i; 578 for (i = 0; i < num_proc_infos; i++) { 579 // Skip zombie processes and processes with unset status 580 if (proc_infos[i].kp_proc.p_stat == 0 || 581 proc_infos[i].kp_proc.p_stat == SZOMB) 582 continue; 583 584 // Check for process by name. We only check the first MAXCOMLEN 585 // chars as that is all that kp_proc.p_comm holds. 586 587 if (::strncasecmp(process_name, proc_infos[i].kp_proc.p_comm, 588 MAXCOMLEN) == 0) { 589 if (process_name_len > MAXCOMLEN) { 590 // We found a matching process name whose first MAXCOMLEN 591 // characters match, but there is more to the name than 592 // this. We need to get the full process name. Use proc_pidpath, 593 // which will get 594 // us the full path to the executed process. 595 596 char proc_path_buf[PATH_MAX]; 597 598 int return_val = proc_pidpath(proc_infos[i].kp_proc.p_pid, 599 proc_path_buf, PATH_MAX); 600 if (return_val > 0) { 601 // Okay, now search backwards from that to see if there is a 602 // slash in the name. Note, even though we got all the args we 603 // don't care 604 // because the list data is just a bunch of concatenated null 605 // terminated strings 606 // so strrchr will start from the end of argv0. 607 608 const char *argv_basename = strrchr(proc_path_buf, '/'); 609 if (argv_basename) { 610 // Skip the '/' 611 ++argv_basename; 612 } else { 613 // We didn't find a directory delimiter in the process argv[0], 614 // just use what was in there 615 argv_basename = proc_path_buf; 616 } 617 618 if (argv_basename) { 619 if (::strncasecmp(process_name, argv_basename, PATH_MAX) == 0) { 620 matching_proc_infos.push_back(proc_infos[i]); 621 } 622 } 623 } 624 } else { 625 // We found a matching process, add it to our list 626 matching_proc_infos.push_back(proc_infos[i]); 627 } 628 } 629 } 630 } 631 } 632 // return the newly added matches. 633 return matching_proc_infos.size(); 634 } 635 636 nub_process_t DNBProcessAttachWait( 637 const char *waitfor_process_name, nub_launch_flavor_t launch_flavor, 638 bool ignore_existing, struct timespec *timeout_abstime, 639 useconds_t waitfor_interval, char *err_str, size_t err_len, 640 DNBShouldCancelCallback should_cancel_callback, void *callback_data) { 641 DNBError prepare_error; 642 std::vector<struct kinfo_proc> exclude_proc_infos; 643 size_t num_exclude_proc_infos; 644 645 // If the PrepareForAttach returns a valid token, use MachProcess to check 646 // for the process, otherwise scan the process table. 647 648 const void *attach_token = MachProcess::PrepareForAttach( 649 waitfor_process_name, launch_flavor, true, prepare_error); 650 651 if (prepare_error.Fail()) { 652 DNBLogError("Error in PrepareForAttach: %s", prepare_error.AsString()); 653 return INVALID_NUB_PROCESS; 654 } 655 656 if (attach_token == NULL) { 657 if (ignore_existing) 658 num_exclude_proc_infos = 659 GetAllInfosMatchingName(waitfor_process_name, exclude_proc_infos); 660 else 661 num_exclude_proc_infos = 0; 662 } 663 664 DNBLogThreadedIf(LOG_PROCESS, "Waiting for '%s' to appear...\n", 665 waitfor_process_name); 666 667 // Loop and try to find the process by name 668 nub_process_t waitfor_pid = INVALID_NUB_PROCESS; 669 670 while (waitfor_pid == INVALID_NUB_PROCESS) { 671 if (attach_token != NULL) { 672 nub_process_t pid; 673 pid = MachProcess::CheckForProcess(attach_token, launch_flavor); 674 if (pid != INVALID_NUB_PROCESS) { 675 waitfor_pid = pid; 676 break; 677 } 678 } else { 679 680 // Get the current process list, and check for matches that 681 // aren't in our original list. If anyone wants to attach 682 // to an existing process by name, they should do it with 683 // --attach=PROCNAME. Else we will wait for the first matching 684 // process that wasn't in our exclusion list. 685 std::vector<struct kinfo_proc> proc_infos; 686 const size_t num_proc_infos = 687 GetAllInfosMatchingName(waitfor_process_name, proc_infos); 688 for (size_t i = 0; i < num_proc_infos; i++) { 689 nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid; 690 for (size_t j = 0; j < num_exclude_proc_infos; j++) { 691 if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid) { 692 // This process was in our exclusion list, don't use it. 693 curr_pid = INVALID_NUB_PROCESS; 694 break; 695 } 696 } 697 698 // If we didn't find CURR_PID in our exclusion list, then use it. 699 if (curr_pid != INVALID_NUB_PROCESS) { 700 // We found our process! 701 waitfor_pid = curr_pid; 702 break; 703 } 704 } 705 } 706 707 // If we haven't found our process yet, check for a timeout 708 // and then sleep for a bit until we poll again. 709 if (waitfor_pid == INVALID_NUB_PROCESS) { 710 if (timeout_abstime != NULL) { 711 // Check to see if we have a waitfor-duration option that 712 // has timed out? 713 if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime)) { 714 if (err_str && err_len > 0) 715 snprintf(err_str, err_len, "operation timed out"); 716 DNBLogError("error: waiting for process '%s' timed out.\n", 717 waitfor_process_name); 718 return INVALID_NUB_PROCESS; 719 } 720 } 721 722 // Call the should cancel callback as well... 723 724 if (should_cancel_callback != NULL && 725 should_cancel_callback(callback_data)) { 726 DNBLogThreadedIf( 727 LOG_PROCESS, 728 "DNBProcessAttachWait cancelled by should_cancel callback."); 729 waitfor_pid = INVALID_NUB_PROCESS; 730 break; 731 } 732 733 ::usleep(waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again 734 } 735 } 736 737 if (waitfor_pid != INVALID_NUB_PROCESS) { 738 DNBLogThreadedIf(LOG_PROCESS, "Attaching to %s with pid %i...\n", 739 waitfor_process_name, waitfor_pid); 740 waitfor_pid = 741 DNBProcessAttach(waitfor_pid, timeout_abstime, err_str, err_len); 742 } 743 744 bool success = waitfor_pid != INVALID_NUB_PROCESS; 745 MachProcess::CleanupAfterAttach(attach_token, launch_flavor, success, 746 prepare_error); 747 748 return waitfor_pid; 749 } 750 751 nub_bool_t DNBProcessDetach(nub_process_t pid) { 752 MachProcessSP procSP; 753 if (GetProcessSP(pid, procSP)) { 754 const bool remove = true; 755 DNBLogThreaded( 756 "Disabling breakpoints and watchpoints, and detaching from %d.", pid); 757 procSP->DisableAllBreakpoints(remove); 758 procSP->DisableAllWatchpoints(remove); 759 return procSP->Detach(); 760 } 761 return false; 762 } 763 764 nub_bool_t DNBProcessKill(nub_process_t pid) { 765 MachProcessSP procSP; 766 if (GetProcessSP(pid, procSP)) { 767 return procSP->Kill(); 768 } 769 return false; 770 } 771 772 nub_bool_t DNBProcessSignal(nub_process_t pid, int signal) { 773 MachProcessSP procSP; 774 if (GetProcessSP(pid, procSP)) { 775 return procSP->Signal(signal); 776 } 777 return false; 778 } 779 780 nub_bool_t DNBProcessInterrupt(nub_process_t pid) { 781 MachProcessSP procSP; 782 if (GetProcessSP(pid, procSP)) 783 return procSP->Interrupt(); 784 return false; 785 } 786 787 nub_bool_t DNBProcessSendEvent(nub_process_t pid, const char *event) { 788 MachProcessSP procSP; 789 if (GetProcessSP(pid, procSP)) { 790 // FIXME: Do something with the error... 791 DNBError send_error; 792 return procSP->SendEvent(event, send_error); 793 } 794 return false; 795 } 796 797 nub_bool_t DNBProcessIsAlive(nub_process_t pid) { 798 MachProcessSP procSP; 799 if (GetProcessSP(pid, procSP)) { 800 return MachTask::IsValid(procSP->Task().TaskPort()); 801 } 802 return eStateInvalid; 803 } 804 805 // Process and Thread state information 806 nub_state_t DNBProcessGetState(nub_process_t pid) { 807 MachProcessSP procSP; 808 if (GetProcessSP(pid, procSP)) { 809 return procSP->GetState(); 810 } 811 return eStateInvalid; 812 } 813 814 // Process and Thread state information 815 nub_bool_t DNBProcessGetExitStatus(nub_process_t pid, int *status) { 816 MachProcessSP procSP; 817 if (GetProcessSP(pid, procSP)) { 818 return procSP->GetExitStatus(status); 819 } 820 return false; 821 } 822 823 nub_bool_t DNBProcessSetExitStatus(nub_process_t pid, int status) { 824 MachProcessSP procSP; 825 if (GetProcessSP(pid, procSP)) { 826 procSP->SetExitStatus(status); 827 return true; 828 } 829 return false; 830 } 831 832 const char *DNBProcessGetExitInfo(nub_process_t pid) { 833 MachProcessSP procSP; 834 if (GetProcessSP(pid, procSP)) { 835 return procSP->GetExitInfo(); 836 } 837 return NULL; 838 } 839 840 nub_bool_t DNBProcessSetExitInfo(nub_process_t pid, const char *info) { 841 MachProcessSP procSP; 842 if (GetProcessSP(pid, procSP)) { 843 procSP->SetExitInfo(info); 844 return true; 845 } 846 return false; 847 } 848 849 const char *DNBThreadGetName(nub_process_t pid, nub_thread_t tid) { 850 MachProcessSP procSP; 851 if (GetProcessSP(pid, procSP)) 852 return procSP->ThreadGetName(tid); 853 return NULL; 854 } 855 856 nub_bool_t 857 DNBThreadGetIdentifierInfo(nub_process_t pid, nub_thread_t tid, 858 thread_identifier_info_data_t *ident_info) { 859 MachProcessSP procSP; 860 if (GetProcessSP(pid, procSP)) 861 return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info); 862 return false; 863 } 864 865 nub_state_t DNBThreadGetState(nub_process_t pid, nub_thread_t tid) { 866 MachProcessSP procSP; 867 if (GetProcessSP(pid, procSP)) { 868 return procSP->ThreadGetState(tid); 869 } 870 return eStateInvalid; 871 } 872 873 const char *DNBStateAsString(nub_state_t state) { 874 switch (state) { 875 case eStateInvalid: 876 return "Invalid"; 877 case eStateUnloaded: 878 return "Unloaded"; 879 case eStateAttaching: 880 return "Attaching"; 881 case eStateLaunching: 882 return "Launching"; 883 case eStateStopped: 884 return "Stopped"; 885 case eStateRunning: 886 return "Running"; 887 case eStateStepping: 888 return "Stepping"; 889 case eStateCrashed: 890 return "Crashed"; 891 case eStateDetached: 892 return "Detached"; 893 case eStateExited: 894 return "Exited"; 895 case eStateSuspended: 896 return "Suspended"; 897 } 898 return "nub_state_t ???"; 899 } 900 901 Genealogy::ThreadActivitySP DNBGetGenealogyInfoForThread(nub_process_t pid, 902 nub_thread_t tid, 903 bool &timed_out) { 904 Genealogy::ThreadActivitySP thread_activity_sp; 905 MachProcessSP procSP; 906 if (GetProcessSP(pid, procSP)) 907 thread_activity_sp = procSP->GetGenealogyInfoForThread(tid, timed_out); 908 return thread_activity_sp; 909 } 910 911 Genealogy::ProcessExecutableInfoSP DNBGetGenealogyImageInfo(nub_process_t pid, 912 size_t idx) { 913 Genealogy::ProcessExecutableInfoSP image_info_sp; 914 MachProcessSP procSP; 915 if (GetProcessSP(pid, procSP)) { 916 image_info_sp = procSP->GetGenealogyImageInfo(idx); 917 } 918 return image_info_sp; 919 } 920 921 ThreadInfo::QoS DNBGetRequestedQoSForThread(nub_process_t pid, nub_thread_t tid, 922 nub_addr_t tsd, 923 uint64_t dti_qos_class_index) { 924 MachProcessSP procSP; 925 if (GetProcessSP(pid, procSP)) { 926 return procSP->GetRequestedQoS(tid, tsd, dti_qos_class_index); 927 } 928 return ThreadInfo::QoS(); 929 } 930 931 nub_addr_t DNBGetPThreadT(nub_process_t pid, nub_thread_t tid) { 932 MachProcessSP procSP; 933 if (GetProcessSP(pid, procSP)) { 934 return procSP->GetPThreadT(tid); 935 } 936 return INVALID_NUB_ADDRESS; 937 } 938 939 nub_addr_t DNBGetDispatchQueueT(nub_process_t pid, nub_thread_t tid) { 940 MachProcessSP procSP; 941 if (GetProcessSP(pid, procSP)) { 942 return procSP->GetDispatchQueueT(tid); 943 } 944 return INVALID_NUB_ADDRESS; 945 } 946 947 nub_addr_t 948 DNBGetTSDAddressForThread(nub_process_t pid, nub_thread_t tid, 949 uint64_t plo_pthread_tsd_base_address_offset, 950 uint64_t plo_pthread_tsd_base_offset, 951 uint64_t plo_pthread_tsd_entry_size) { 952 MachProcessSP procSP; 953 if (GetProcessSP(pid, procSP)) { 954 return procSP->GetTSDAddressForThread( 955 tid, plo_pthread_tsd_base_address_offset, plo_pthread_tsd_base_offset, 956 plo_pthread_tsd_entry_size); 957 } 958 return INVALID_NUB_ADDRESS; 959 } 960 961 JSONGenerator::ObjectSP DNBGetLoadedDynamicLibrariesInfos( 962 nub_process_t pid, nub_addr_t image_list_address, nub_addr_t image_count) { 963 MachProcessSP procSP; 964 if (GetProcessSP(pid, procSP)) { 965 return procSP->GetLoadedDynamicLibrariesInfos(pid, image_list_address, 966 image_count); 967 } 968 return JSONGenerator::ObjectSP(); 969 } 970 971 JSONGenerator::ObjectSP DNBGetAllLoadedLibrariesInfos(nub_process_t pid) { 972 MachProcessSP procSP; 973 if (GetProcessSP(pid, procSP)) { 974 return procSP->GetAllLoadedLibrariesInfos(pid); 975 } 976 return JSONGenerator::ObjectSP(); 977 } 978 979 JSONGenerator::ObjectSP 980 DNBGetLibrariesInfoForAddresses(nub_process_t pid, 981 std::vector<uint64_t> &macho_addresses) { 982 MachProcessSP procSP; 983 if (GetProcessSP(pid, procSP)) { 984 return procSP->GetLibrariesInfoForAddresses(pid, macho_addresses); 985 } 986 return JSONGenerator::ObjectSP(); 987 } 988 989 JSONGenerator::ObjectSP DNBGetSharedCacheInfo(nub_process_t pid) { 990 MachProcessSP procSP; 991 if (GetProcessSP(pid, procSP)) { 992 return procSP->GetSharedCacheInfo(pid); 993 } 994 return JSONGenerator::ObjectSP(); 995 } 996 997 const char *DNBProcessGetExecutablePath(nub_process_t pid) { 998 MachProcessSP procSP; 999 if (GetProcessSP(pid, procSP)) { 1000 return procSP->Path(); 1001 } 1002 return NULL; 1003 } 1004 1005 nub_size_t DNBProcessGetArgumentCount(nub_process_t pid) { 1006 MachProcessSP procSP; 1007 if (GetProcessSP(pid, procSP)) { 1008 return procSP->ArgumentCount(); 1009 } 1010 return 0; 1011 } 1012 1013 const char *DNBProcessGetArgumentAtIndex(nub_process_t pid, nub_size_t idx) { 1014 MachProcessSP procSP; 1015 if (GetProcessSP(pid, procSP)) { 1016 return procSP->ArgumentAtIndex(idx); 1017 } 1018 return NULL; 1019 } 1020 1021 // Execution control 1022 nub_bool_t DNBProcessResume(nub_process_t pid, 1023 const DNBThreadResumeAction *actions, 1024 size_t num_actions) { 1025 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid); 1026 MachProcessSP procSP; 1027 if (GetProcessSP(pid, procSP)) { 1028 DNBThreadResumeActions thread_actions(actions, num_actions); 1029 1030 // Below we add a default thread plan just in case one wasn't 1031 // provided so all threads always know what they were supposed to do 1032 if (thread_actions.IsEmpty()) { 1033 // No thread plans were given, so the default it to run all threads 1034 thread_actions.SetDefaultThreadActionIfNeeded(eStateRunning, 0); 1035 } else { 1036 // Some thread plans were given which means anything that wasn't 1037 // specified should remain stopped. 1038 thread_actions.SetDefaultThreadActionIfNeeded(eStateStopped, 0); 1039 } 1040 return procSP->Resume(thread_actions); 1041 } 1042 return false; 1043 } 1044 1045 nub_bool_t DNBProcessHalt(nub_process_t pid) { 1046 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid); 1047 MachProcessSP procSP; 1048 if (GetProcessSP(pid, procSP)) 1049 return procSP->Signal(SIGSTOP); 1050 return false; 1051 } 1052 // 1053 // nub_bool_t 1054 // DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step) 1055 //{ 1056 // DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", 1057 // __FUNCTION__, pid, tid, (uint32_t)step); 1058 // MachProcessSP procSP; 1059 // if (GetProcessSP (pid, procSP)) 1060 // { 1061 // return procSP->Resume(tid, step, 0); 1062 // } 1063 // return false; 1064 //} 1065 // 1066 // nub_bool_t 1067 // DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t 1068 // step, int signal) 1069 //{ 1070 // DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, 1071 // signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal); 1072 // MachProcessSP procSP; 1073 // if (GetProcessSP (pid, procSP)) 1074 // { 1075 // return procSP->Resume(tid, step, signal); 1076 // } 1077 // return false; 1078 //} 1079 1080 nub_event_t DNBProcessWaitForEvents(nub_process_t pid, nub_event_t event_mask, 1081 bool wait_for_set, 1082 struct timespec *timeout) { 1083 nub_event_t result = 0; 1084 MachProcessSP procSP; 1085 if (GetProcessSP(pid, procSP)) { 1086 if (wait_for_set) 1087 result = procSP->Events().WaitForSetEvents(event_mask, timeout); 1088 else 1089 result = procSP->Events().WaitForEventsToReset(event_mask, timeout); 1090 } 1091 return result; 1092 } 1093 1094 void DNBProcessResetEvents(nub_process_t pid, nub_event_t event_mask) { 1095 MachProcessSP procSP; 1096 if (GetProcessSP(pid, procSP)) 1097 procSP->Events().ResetEvents(event_mask); 1098 } 1099 1100 // Breakpoints 1101 nub_bool_t DNBBreakpointSet(nub_process_t pid, nub_addr_t addr, nub_size_t size, 1102 nub_bool_t hardware) { 1103 MachProcessSP procSP; 1104 if (GetProcessSP(pid, procSP)) 1105 return procSP->CreateBreakpoint(addr, size, hardware) != NULL; 1106 return false; 1107 } 1108 1109 nub_bool_t DNBBreakpointClear(nub_process_t pid, nub_addr_t addr) { 1110 MachProcessSP procSP; 1111 if (GetProcessSP(pid, procSP)) 1112 return procSP->DisableBreakpoint(addr, true); 1113 return false; // Failed 1114 } 1115 1116 // Watchpoints 1117 nub_bool_t DNBWatchpointSet(nub_process_t pid, nub_addr_t addr, nub_size_t size, 1118 uint32_t watch_flags, nub_bool_t hardware) { 1119 MachProcessSP procSP; 1120 if (GetProcessSP(pid, procSP)) 1121 return procSP->CreateWatchpoint(addr, size, watch_flags, hardware) != NULL; 1122 return false; 1123 } 1124 1125 nub_bool_t DNBWatchpointClear(nub_process_t pid, nub_addr_t addr) { 1126 MachProcessSP procSP; 1127 if (GetProcessSP(pid, procSP)) 1128 return procSP->DisableWatchpoint(addr, true); 1129 return false; // Failed 1130 } 1131 1132 // Return the number of supported hardware watchpoints. 1133 uint32_t DNBWatchpointGetNumSupportedHWP(nub_process_t pid) { 1134 MachProcessSP procSP; 1135 if (GetProcessSP(pid, procSP)) 1136 return procSP->GetNumSupportedHardwareWatchpoints(); 1137 return 0; 1138 } 1139 1140 // Read memory in the address space of process PID. This call will take 1141 // care of setting and restoring permissions and breaking up the memory 1142 // read into multiple chunks as required. 1143 // 1144 // RETURNS: number of bytes actually read 1145 nub_size_t DNBProcessMemoryRead(nub_process_t pid, nub_addr_t addr, 1146 nub_size_t size, void *buf) { 1147 MachProcessSP procSP; 1148 if (GetProcessSP(pid, procSP)) 1149 return procSP->ReadMemory(addr, size, buf); 1150 return 0; 1151 } 1152 1153 uint64_t DNBProcessMemoryReadInteger(nub_process_t pid, nub_addr_t addr, 1154 nub_size_t integer_size, 1155 uint64_t fail_value) { 1156 union Integers { 1157 uint8_t u8; 1158 uint16_t u16; 1159 uint32_t u32; 1160 uint64_t u64; 1161 }; 1162 1163 if (integer_size <= sizeof(uint64_t)) { 1164 Integers ints; 1165 if (DNBProcessMemoryRead(pid, addr, integer_size, &ints) == integer_size) { 1166 switch (integer_size) { 1167 case 1: 1168 return ints.u8; 1169 case 2: 1170 return ints.u16; 1171 case 3: 1172 return ints.u32 & 0xffffffu; 1173 case 4: 1174 return ints.u32; 1175 case 5: 1176 return ints.u32 & 0x000000ffffffffffull; 1177 case 6: 1178 return ints.u32 & 0x0000ffffffffffffull; 1179 case 7: 1180 return ints.u32 & 0x00ffffffffffffffull; 1181 case 8: 1182 return ints.u64; 1183 } 1184 } 1185 } 1186 return fail_value; 1187 } 1188 1189 nub_addr_t DNBProcessMemoryReadPointer(nub_process_t pid, nub_addr_t addr) { 1190 cpu_type_t cputype = DNBProcessGetCPUType(pid); 1191 if (cputype) { 1192 const nub_size_t pointer_size = (cputype & CPU_ARCH_ABI64) ? 8 : 4; 1193 return DNBProcessMemoryReadInteger(pid, addr, pointer_size, 0); 1194 } 1195 return 0; 1196 } 1197 1198 std::string DNBProcessMemoryReadCString(nub_process_t pid, nub_addr_t addr) { 1199 std::string cstr; 1200 char buffer[256]; 1201 const nub_size_t max_buffer_cstr_length = sizeof(buffer) - 1; 1202 buffer[max_buffer_cstr_length] = '\0'; 1203 nub_size_t length = 0; 1204 nub_addr_t curr_addr = addr; 1205 do { 1206 nub_size_t bytes_read = 1207 DNBProcessMemoryRead(pid, curr_addr, max_buffer_cstr_length, buffer); 1208 if (bytes_read == 0) 1209 break; 1210 length = strlen(buffer); 1211 cstr.append(buffer, length); 1212 curr_addr += length; 1213 } while (length == max_buffer_cstr_length); 1214 return cstr; 1215 } 1216 1217 std::string DNBProcessMemoryReadCStringFixed(nub_process_t pid, nub_addr_t addr, 1218 nub_size_t fixed_length) { 1219 std::string cstr; 1220 char buffer[fixed_length + 1]; 1221 buffer[fixed_length] = '\0'; 1222 nub_size_t bytes_read = DNBProcessMemoryRead(pid, addr, fixed_length, buffer); 1223 if (bytes_read > 0) 1224 cstr.assign(buffer); 1225 return cstr; 1226 } 1227 1228 // Write memory to the address space of process PID. This call will take 1229 // care of setting and restoring permissions and breaking up the memory 1230 // write into multiple chunks as required. 1231 // 1232 // RETURNS: number of bytes actually written 1233 nub_size_t DNBProcessMemoryWrite(nub_process_t pid, nub_addr_t addr, 1234 nub_size_t size, const void *buf) { 1235 MachProcessSP procSP; 1236 if (GetProcessSP(pid, procSP)) 1237 return procSP->WriteMemory(addr, size, buf); 1238 return 0; 1239 } 1240 1241 nub_addr_t DNBProcessMemoryAllocate(nub_process_t pid, nub_size_t size, 1242 uint32_t permissions) { 1243 MachProcessSP procSP; 1244 if (GetProcessSP(pid, procSP)) 1245 return procSP->Task().AllocateMemory(size, permissions); 1246 return 0; 1247 } 1248 1249 nub_bool_t DNBProcessMemoryDeallocate(nub_process_t pid, nub_addr_t addr) { 1250 MachProcessSP procSP; 1251 if (GetProcessSP(pid, procSP)) 1252 return procSP->Task().DeallocateMemory(addr); 1253 return 0; 1254 } 1255 1256 // Find attributes of the memory region that contains ADDR for process PID, 1257 // if possible, and return a string describing those attributes. 1258 // 1259 // Returns 1 if we could find attributes for this region and OUTBUF can 1260 // be sent to the remote debugger. 1261 // 1262 // Returns 0 if we couldn't find the attributes for a region of memory at 1263 // that address and OUTBUF should not be sent. 1264 // 1265 // Returns -1 if this platform cannot look up information about memory regions 1266 // or if we do not yet have a valid launched process. 1267 // 1268 int DNBProcessMemoryRegionInfo(nub_process_t pid, nub_addr_t addr, 1269 DNBRegionInfo *region_info) { 1270 MachProcessSP procSP; 1271 if (GetProcessSP(pid, procSP)) 1272 return procSP->Task().GetMemoryRegionInfo(addr, region_info); 1273 1274 return -1; 1275 } 1276 1277 std::string DNBProcessGetProfileData(nub_process_t pid, 1278 DNBProfileDataScanType scanType) { 1279 MachProcessSP procSP; 1280 if (GetProcessSP(pid, procSP)) 1281 return procSP->Task().GetProfileData(scanType); 1282 1283 return std::string(""); 1284 } 1285 1286 nub_bool_t DNBProcessSetEnableAsyncProfiling(nub_process_t pid, 1287 nub_bool_t enable, 1288 uint64_t interval_usec, 1289 DNBProfileDataScanType scan_type) { 1290 MachProcessSP procSP; 1291 if (GetProcessSP(pid, procSP)) { 1292 procSP->SetEnableAsyncProfiling(enable, interval_usec, scan_type); 1293 return true; 1294 } 1295 1296 return false; 1297 } 1298 1299 // Get the number of threads for the specified process. 1300 nub_size_t DNBProcessGetNumThreads(nub_process_t pid) { 1301 MachProcessSP procSP; 1302 if (GetProcessSP(pid, procSP)) 1303 return procSP->GetNumThreads(); 1304 return 0; 1305 } 1306 1307 // Get the thread ID of the current thread. 1308 nub_thread_t DNBProcessGetCurrentThread(nub_process_t pid) { 1309 MachProcessSP procSP; 1310 if (GetProcessSP(pid, procSP)) 1311 return procSP->GetCurrentThread(); 1312 return 0; 1313 } 1314 1315 // Get the mach port number of the current thread. 1316 nub_thread_t DNBProcessGetCurrentThreadMachPort(nub_process_t pid) { 1317 MachProcessSP procSP; 1318 if (GetProcessSP(pid, procSP)) 1319 return procSP->GetCurrentThreadMachPort(); 1320 return 0; 1321 } 1322 1323 // Change the current thread. 1324 nub_thread_t DNBProcessSetCurrentThread(nub_process_t pid, nub_thread_t tid) { 1325 MachProcessSP procSP; 1326 if (GetProcessSP(pid, procSP)) 1327 return procSP->SetCurrentThread(tid); 1328 return INVALID_NUB_THREAD; 1329 } 1330 1331 // Dump a string describing a thread's stop reason to the specified file 1332 // handle 1333 nub_bool_t DNBThreadGetStopReason(nub_process_t pid, nub_thread_t tid, 1334 struct DNBThreadStopInfo *stop_info) { 1335 MachProcessSP procSP; 1336 if (GetProcessSP(pid, procSP)) 1337 return procSP->GetThreadStoppedReason(tid, stop_info); 1338 return false; 1339 } 1340 1341 // Return string description for the specified thread. 1342 // 1343 // RETURNS: NULL if the thread isn't valid, else a NULL terminated C 1344 // string from a static buffer that must be copied prior to subsequent 1345 // calls. 1346 const char *DNBThreadGetInfo(nub_process_t pid, nub_thread_t tid) { 1347 MachProcessSP procSP; 1348 if (GetProcessSP(pid, procSP)) 1349 return procSP->GetThreadInfo(tid); 1350 return NULL; 1351 } 1352 1353 // Get the thread ID given a thread index. 1354 nub_thread_t DNBProcessGetThreadAtIndex(nub_process_t pid, size_t thread_idx) { 1355 MachProcessSP procSP; 1356 if (GetProcessSP(pid, procSP)) 1357 return procSP->GetThreadAtIndex(thread_idx); 1358 return INVALID_NUB_THREAD; 1359 } 1360 1361 // Do whatever is needed to sync the thread's register state with it's kernel 1362 // values. 1363 nub_bool_t DNBProcessSyncThreadState(nub_process_t pid, nub_thread_t tid) { 1364 MachProcessSP procSP; 1365 if (GetProcessSP(pid, procSP)) 1366 return procSP->SyncThreadState(tid); 1367 return false; 1368 } 1369 1370 nub_addr_t DNBProcessGetSharedLibraryInfoAddress(nub_process_t pid) { 1371 MachProcessSP procSP; 1372 DNBError err; 1373 if (GetProcessSP(pid, procSP)) 1374 return procSP->Task().GetDYLDAllImageInfosAddress(err); 1375 return INVALID_NUB_ADDRESS; 1376 } 1377 1378 nub_bool_t DNBProcessSharedLibrariesUpdated(nub_process_t pid) { 1379 MachProcessSP procSP; 1380 if (GetProcessSP(pid, procSP)) { 1381 procSP->SharedLibrariesUpdated(); 1382 return true; 1383 } 1384 return false; 1385 } 1386 1387 const char *DNBGetDeploymentInfo(nub_process_t pid, 1388 const struct load_command& lc, 1389 uint64_t load_command_address, 1390 uint32_t& major_version, 1391 uint32_t& minor_version, 1392 uint32_t& patch_version) { 1393 MachProcessSP procSP; 1394 if (GetProcessSP(pid, procSP)) 1395 return procSP->GetDeploymentInfo(lc, load_command_address, 1396 major_version, minor_version, 1397 patch_version); 1398 return nullptr; 1399 } 1400 1401 1402 // Get the current shared library information for a process. Only return 1403 // the shared libraries that have changed since the last shared library 1404 // state changed event if only_changed is non-zero. 1405 nub_size_t 1406 DNBProcessGetSharedLibraryInfo(nub_process_t pid, nub_bool_t only_changed, 1407 struct DNBExecutableImageInfo **image_infos) { 1408 MachProcessSP procSP; 1409 if (GetProcessSP(pid, procSP)) 1410 return procSP->CopyImageInfos(image_infos, only_changed); 1411 1412 // If we have no process, then return NULL for the shared library info 1413 // and zero for shared library count 1414 *image_infos = NULL; 1415 return 0; 1416 } 1417 1418 uint32_t DNBGetRegisterCPUType() { 1419 return DNBArchProtocol::GetRegisterCPUType(); 1420 } 1421 // Get the register set information for a specific thread. 1422 const DNBRegisterSetInfo *DNBGetRegisterSetInfo(nub_size_t *num_reg_sets) { 1423 return DNBArchProtocol::GetRegisterSetInfo(num_reg_sets); 1424 } 1425 1426 // Read a register value by register set and register index. 1427 nub_bool_t DNBThreadGetRegisterValueByID(nub_process_t pid, nub_thread_t tid, 1428 uint32_t set, uint32_t reg, 1429 DNBRegisterValue *value) { 1430 MachProcessSP procSP; 1431 ::bzero(value, sizeof(DNBRegisterValue)); 1432 if (GetProcessSP(pid, procSP)) { 1433 if (tid != INVALID_NUB_THREAD) 1434 return procSP->GetRegisterValue(tid, set, reg, value); 1435 } 1436 return false; 1437 } 1438 1439 nub_bool_t DNBThreadSetRegisterValueByID(nub_process_t pid, nub_thread_t tid, 1440 uint32_t set, uint32_t reg, 1441 const DNBRegisterValue *value) { 1442 if (tid != INVALID_NUB_THREAD) { 1443 MachProcessSP procSP; 1444 if (GetProcessSP(pid, procSP)) 1445 return procSP->SetRegisterValue(tid, set, reg, value); 1446 } 1447 return false; 1448 } 1449 1450 nub_size_t DNBThreadGetRegisterContext(nub_process_t pid, nub_thread_t tid, 1451 void *buf, size_t buf_len) { 1452 MachProcessSP procSP; 1453 if (GetProcessSP(pid, procSP)) { 1454 if (tid != INVALID_NUB_THREAD) 1455 return procSP->GetThreadList().GetRegisterContext(tid, buf, buf_len); 1456 } 1457 ::bzero(buf, buf_len); 1458 return 0; 1459 } 1460 1461 nub_size_t DNBThreadSetRegisterContext(nub_process_t pid, nub_thread_t tid, 1462 const void *buf, size_t buf_len) { 1463 MachProcessSP procSP; 1464 if (GetProcessSP(pid, procSP)) { 1465 if (tid != INVALID_NUB_THREAD) 1466 return procSP->GetThreadList().SetRegisterContext(tid, buf, buf_len); 1467 } 1468 return 0; 1469 } 1470 1471 uint32_t DNBThreadSaveRegisterState(nub_process_t pid, nub_thread_t tid) { 1472 if (tid != INVALID_NUB_THREAD) { 1473 MachProcessSP procSP; 1474 if (GetProcessSP(pid, procSP)) 1475 return procSP->GetThreadList().SaveRegisterState(tid); 1476 } 1477 return 0; 1478 } 1479 nub_bool_t DNBThreadRestoreRegisterState(nub_process_t pid, nub_thread_t tid, 1480 uint32_t save_id) { 1481 if (tid != INVALID_NUB_THREAD) { 1482 MachProcessSP procSP; 1483 if (GetProcessSP(pid, procSP)) 1484 return procSP->GetThreadList().RestoreRegisterState(tid, save_id); 1485 } 1486 return false; 1487 } 1488 1489 // Read a register value by name. 1490 nub_bool_t DNBThreadGetRegisterValueByName(nub_process_t pid, nub_thread_t tid, 1491 uint32_t reg_set, 1492 const char *reg_name, 1493 DNBRegisterValue *value) { 1494 MachProcessSP procSP; 1495 ::bzero(value, sizeof(DNBRegisterValue)); 1496 if (GetProcessSP(pid, procSP)) { 1497 const struct DNBRegisterSetInfo *set_info; 1498 nub_size_t num_reg_sets = 0; 1499 set_info = DNBGetRegisterSetInfo(&num_reg_sets); 1500 if (set_info) { 1501 uint32_t set = reg_set; 1502 uint32_t reg; 1503 if (set == REGISTER_SET_ALL) { 1504 for (set = 1; set < num_reg_sets; ++set) { 1505 for (reg = 0; reg < set_info[set].num_registers; ++reg) { 1506 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) 1507 return procSP->GetRegisterValue(tid, set, reg, value); 1508 } 1509 } 1510 } else { 1511 for (reg = 0; reg < set_info[set].num_registers; ++reg) { 1512 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) 1513 return procSP->GetRegisterValue(tid, set, reg, value); 1514 } 1515 } 1516 } 1517 } 1518 return false; 1519 } 1520 1521 // Read a register set and register number from the register name. 1522 nub_bool_t DNBGetRegisterInfoByName(const char *reg_name, 1523 DNBRegisterInfo *info) { 1524 const struct DNBRegisterSetInfo *set_info; 1525 nub_size_t num_reg_sets = 0; 1526 set_info = DNBGetRegisterSetInfo(&num_reg_sets); 1527 if (set_info) { 1528 uint32_t set, reg; 1529 for (set = 1; set < num_reg_sets; ++set) { 1530 for (reg = 0; reg < set_info[set].num_registers; ++reg) { 1531 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) { 1532 *info = set_info[set].registers[reg]; 1533 return true; 1534 } 1535 } 1536 } 1537 1538 for (set = 1; set < num_reg_sets; ++set) { 1539 uint32_t reg; 1540 for (reg = 0; reg < set_info[set].num_registers; ++reg) { 1541 if (set_info[set].registers[reg].alt == NULL) 1542 continue; 1543 1544 if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0) { 1545 *info = set_info[set].registers[reg]; 1546 return true; 1547 } 1548 } 1549 } 1550 } 1551 1552 ::bzero(info, sizeof(DNBRegisterInfo)); 1553 return false; 1554 } 1555 1556 // Set the name to address callback function that this nub can use 1557 // for any name to address lookups that are needed. 1558 nub_bool_t DNBProcessSetNameToAddressCallback(nub_process_t pid, 1559 DNBCallbackNameToAddress callback, 1560 void *baton) { 1561 MachProcessSP procSP; 1562 if (GetProcessSP(pid, procSP)) { 1563 procSP->SetNameToAddressCallback(callback, baton); 1564 return true; 1565 } 1566 return false; 1567 } 1568 1569 // Set the name to address callback function that this nub can use 1570 // for any name to address lookups that are needed. 1571 nub_bool_t DNBProcessSetSharedLibraryInfoCallback( 1572 nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, 1573 void *baton) { 1574 MachProcessSP procSP; 1575 if (GetProcessSP(pid, procSP)) { 1576 procSP->SetSharedLibraryInfoCallback(callback, baton); 1577 return true; 1578 } 1579 return false; 1580 } 1581 1582 nub_addr_t DNBProcessLookupAddress(nub_process_t pid, const char *name, 1583 const char *shlib) { 1584 MachProcessSP procSP; 1585 if (GetProcessSP(pid, procSP)) { 1586 return procSP->LookupSymbol(name, shlib); 1587 } 1588 return INVALID_NUB_ADDRESS; 1589 } 1590 1591 nub_size_t DNBProcessGetAvailableSTDOUT(nub_process_t pid, char *buf, 1592 nub_size_t buf_size) { 1593 MachProcessSP procSP; 1594 if (GetProcessSP(pid, procSP)) 1595 return procSP->GetAvailableSTDOUT(buf, buf_size); 1596 return 0; 1597 } 1598 1599 nub_size_t DNBProcessGetAvailableSTDERR(nub_process_t pid, char *buf, 1600 nub_size_t buf_size) { 1601 MachProcessSP procSP; 1602 if (GetProcessSP(pid, procSP)) 1603 return procSP->GetAvailableSTDERR(buf, buf_size); 1604 return 0; 1605 } 1606 1607 nub_size_t DNBProcessGetAvailableProfileData(nub_process_t pid, char *buf, 1608 nub_size_t buf_size) { 1609 MachProcessSP procSP; 1610 if (GetProcessSP(pid, procSP)) 1611 return procSP->GetAsyncProfileData(buf, buf_size); 1612 return 0; 1613 } 1614 1615 DarwinLogEventVector DNBProcessGetAvailableDarwinLogEvents(nub_process_t pid) { 1616 return DarwinLogCollector::GetEventsForProcess(pid); 1617 } 1618 1619 nub_size_t DNBProcessGetStopCount(nub_process_t pid) { 1620 MachProcessSP procSP; 1621 if (GetProcessSP(pid, procSP)) 1622 return procSP->StopCount(); 1623 return 0; 1624 } 1625 1626 uint32_t DNBProcessGetCPUType(nub_process_t pid) { 1627 MachProcessSP procSP; 1628 if (GetProcessSP(pid, procSP)) 1629 return procSP->GetCPUType(); 1630 return 0; 1631 } 1632 1633 nub_bool_t DNBResolveExecutablePath(const char *path, char *resolved_path, 1634 size_t resolved_path_size) { 1635 if (path == NULL || path[0] == '\0') 1636 return false; 1637 1638 char max_path[PATH_MAX]; 1639 std::string result; 1640 CFString::GlobPath(path, result); 1641 1642 if (result.empty()) 1643 result = path; 1644 1645 struct stat path_stat; 1646 if (::stat(path, &path_stat) == 0) { 1647 if ((path_stat.st_mode & S_IFMT) == S_IFDIR) { 1648 CFBundle bundle(path); 1649 CFReleaser<CFURLRef> url(bundle.CopyExecutableURL()); 1650 if (url.get()) { 1651 if (::CFURLGetFileSystemRepresentation( 1652 url.get(), true, (UInt8 *)resolved_path, resolved_path_size)) 1653 return true; 1654 } 1655 } 1656 } 1657 1658 if (realpath(path, max_path)) { 1659 // Found the path relatively... 1660 ::strlcpy(resolved_path, max_path, resolved_path_size); 1661 return strlen(resolved_path) + 1 < resolved_path_size; 1662 } else { 1663 // Not a relative path, check the PATH environment variable if the 1664 const char *PATH = getenv("PATH"); 1665 if (PATH) { 1666 const char *curr_path_start = PATH; 1667 const char *curr_path_end; 1668 while (curr_path_start && *curr_path_start) { 1669 curr_path_end = strchr(curr_path_start, ':'); 1670 if (curr_path_end == NULL) { 1671 result.assign(curr_path_start); 1672 curr_path_start = NULL; 1673 } else if (curr_path_end > curr_path_start) { 1674 size_t len = curr_path_end - curr_path_start; 1675 result.assign(curr_path_start, len); 1676 curr_path_start += len + 1; 1677 } else 1678 break; 1679 1680 result += '/'; 1681 result += path; 1682 struct stat s; 1683 if (stat(result.c_str(), &s) == 0) { 1684 ::strlcpy(resolved_path, result.c_str(), resolved_path_size); 1685 return result.size() + 1 < resolved_path_size; 1686 } 1687 } 1688 } 1689 } 1690 return false; 1691 } 1692 1693 bool DNBGetOSVersionNumbers(uint64_t *major, uint64_t *minor, uint64_t *patch) { 1694 return MachProcess::GetOSVersionNumbers(major, minor, patch); 1695 } 1696 1697 std::string DNBGetMacCatalystVersionString() { 1698 return MachProcess::GetMacCatalystVersionString(); 1699 } 1700 1701 void DNBInitialize() { 1702 DNBLogThreadedIf(LOG_PROCESS, "DNBInitialize ()"); 1703 #if defined(__i386__) || defined(__x86_64__) 1704 DNBArchImplI386::Initialize(); 1705 DNBArchImplX86_64::Initialize(); 1706 #elif defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 1707 DNBArchMachARM::Initialize(); 1708 DNBArchMachARM64::Initialize(); 1709 #endif 1710 } 1711 1712 void DNBTerminate() {} 1713 1714 nub_bool_t DNBSetArchitecture(const char *arch) { 1715 if (arch && arch[0]) { 1716 if (strcasecmp(arch, "i386") == 0) 1717 return DNBArchProtocol::SetArchitecture(CPU_TYPE_I386); 1718 else if ((strcasecmp(arch, "x86_64") == 0) || 1719 (strcasecmp(arch, "x86_64h") == 0)) 1720 return DNBArchProtocol::SetArchitecture(CPU_TYPE_X86_64); 1721 else if (strstr(arch, "arm64_32") == arch || 1722 strstr(arch, "aarch64_32") == arch) 1723 return DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM64_32); 1724 else if (strstr(arch, "arm64e") == arch) 1725 return DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM64); 1726 else if (strstr(arch, "arm64") == arch || strstr(arch, "armv8") == arch || 1727 strstr(arch, "aarch64") == arch) 1728 return DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM64); 1729 else if (strstr(arch, "arm") == arch) 1730 return DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM); 1731 } 1732 return false; 1733 } 1734