1 //===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  Created by Greg Clayton on 3/23/07.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "DNB.h"
15 #include <signal.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <sys/resource.h>
19 #include <sys/stat.h>
20 #include <sys/types.h>
21 #include <sys/wait.h>
22 #include <unistd.h>
23 #include <sys/sysctl.h>
24 #include <map>
25 #include <vector>
26 
27 #include "MacOSX/MachProcess.h"
28 #include "MacOSX/MachTask.h"
29 #include "CFString.h"
30 #include "DNBLog.h"
31 #include "DNBDataRef.h"
32 #include "DNBThreadResumeActions.h"
33 #include "DNBTimer.h"
34 
35 typedef std::tr1::shared_ptr<MachProcess> MachProcessSP;
36 typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
37 typedef ProcessMap::iterator ProcessMapIter;
38 typedef ProcessMap::const_iterator ProcessMapConstIter;
39 
40 static size_t          GetAllInfos                  (std::vector<struct kinfo_proc>& proc_infos);
41 static size_t          GetAllInfosMatchingName      (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
42 
43 //----------------------------------------------------------------------
44 // A Thread safe singleton to get a process map pointer.
45 //
46 // Returns a pointer to the existing process map, or a pointer to a
47 // newly created process map if CAN_CREATE is non-zero.
48 //----------------------------------------------------------------------
49 static ProcessMap*
50 GetProcessMap(bool can_create)
51 {
52     static ProcessMap* g_process_map_ptr = NULL;
53 
54     if (can_create && g_process_map_ptr == NULL)
55     {
56         static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
57         PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
58         if (g_process_map_ptr == NULL)
59             g_process_map_ptr = new ProcessMap;
60     }
61     return g_process_map_ptr;
62 }
63 
64 //----------------------------------------------------------------------
65 // Add PID to the shared process pointer map.
66 //
67 // Return non-zero value if we succeed in adding the process to the map.
68 // The only time this should fail is if we run out of memory and can't
69 // allocate a ProcessMap.
70 //----------------------------------------------------------------------
71 static nub_bool_t
72 AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
73 {
74     ProcessMap* process_map = GetProcessMap(true);
75     if (process_map)
76     {
77         process_map->insert(std::make_pair(pid, procSP));
78         return true;
79     }
80     return false;
81 }
82 
83 //----------------------------------------------------------------------
84 // Remove the shared pointer for PID from the process map.
85 //
86 // Returns the number of items removed from the process map.
87 //----------------------------------------------------------------------
88 static size_t
89 RemoveProcessFromMap (nub_process_t pid)
90 {
91     ProcessMap* process_map = GetProcessMap(false);
92     if (process_map)
93     {
94         return process_map->erase(pid);
95     }
96     return 0;
97 }
98 
99 //----------------------------------------------------------------------
100 // Get the shared pointer for PID from the existing process map.
101 //
102 // Returns true if we successfully find a shared pointer to a
103 // MachProcess object.
104 //----------------------------------------------------------------------
105 static nub_bool_t
106 GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
107 {
108     ProcessMap* process_map = GetProcessMap(false);
109     if (process_map != NULL)
110     {
111         ProcessMapIter pos = process_map->find(pid);
112         if (pos != process_map->end())
113         {
114             procSP = pos->second;
115             return true;
116         }
117     }
118     procSP.reset();
119     return false;
120 }
121 
122 
123 static void *
124 waitpid_thread (void *arg)
125 {
126     const pid_t pid = (pid_t)(intptr_t)arg;
127     int status;
128     while (1)
129     {
130         pid_t child_pid = waitpid(pid, &status, 0);
131         DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
132 
133         if (child_pid < 0)
134         {
135             if (errno == EINTR)
136                 continue;
137             break;
138         }
139         else
140         {
141             if (WIFSTOPPED(status))
142             {
143                 continue;
144             }
145             else// if (WIFEXITED(status) || WIFSIGNALED(status))
146             {
147                 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
148                 DNBProcessSetExitStatus (child_pid, status);
149                 return NULL;
150             }
151         }
152     }
153 
154     // We should never exit as long as our child process is alive, so if we
155     // do something else went wrong and we should exit...
156     DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
157     DNBProcessSetExitStatus (pid, -1);
158     return NULL;
159 }
160 
161 static bool
162 spawn_waitpid_thread (pid_t pid)
163 {
164     pthread_t thread = THREAD_NULL;
165     ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
166     if (thread != THREAD_NULL)
167     {
168         ::pthread_detach (thread);
169         return true;
170     }
171     return false;
172 }
173 
174 nub_process_t
175 DNBProcessLaunch (const char *path,
176                   char const *argv[],
177                   const char *envp[],
178                   const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this
179                   const char *stdin_path,
180                   const char *stdout_path,
181                   const char *stderr_path,
182                   bool no_stdio,
183                   nub_launch_flavor_t launch_flavor,
184                   int disable_aslr,
185                   char *err_str,
186                   size_t err_len)
187 {
188     DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %zu) called...",
189                      __FUNCTION__,
190                      path,
191                      argv,
192                      envp,
193                      working_directory,
194                      stdin_path,
195                      stdout_path,
196                      stderr_path,
197                      no_stdio,
198                      launch_flavor,
199                      disable_aslr,
200                      err_str,
201                      err_len);
202 
203     if (err_str && err_len > 0)
204         err_str[0] = '\0';
205     struct stat path_stat;
206     if (::stat(path, &path_stat) == -1)
207     {
208         char stat_error[256];
209         ::strerror_r (errno, stat_error, sizeof(stat_error));
210         snprintf(err_str, err_len, "%s (%s)", stat_error, path);
211         return INVALID_NUB_PROCESS;
212     }
213 
214     MachProcessSP processSP (new MachProcess);
215     if (processSP.get())
216     {
217         DNBError launch_err;
218         pid_t pid = processSP->LaunchForDebug (path,
219                                                argv,
220                                                envp,
221                                                working_directory,
222                                                stdin_path,
223                                                stdout_path,
224                                                stderr_path,
225                                                no_stdio,
226                                                launch_flavor,
227                                                disable_aslr,
228                                                launch_err);
229         if (err_str)
230         {
231             *err_str = '\0';
232             if (launch_err.Fail())
233             {
234                 const char *launch_err_str = launch_err.AsString();
235                 if (launch_err_str)
236                 {
237                     strncpy(err_str, launch_err_str, err_len-1);
238                     err_str[err_len-1] = '\0';  // Make sure the error string is terminated
239                 }
240             }
241         }
242 
243         DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
244 
245         if (pid != INVALID_NUB_PROCESS)
246         {
247             // Spawn a thread to reap our child inferior process...
248             spawn_waitpid_thread (pid);
249 
250             if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
251             {
252                 // We failed to get the task for our process ID which is bad.
253                 if (err_str && err_len > 0)
254                 {
255                     if (launch_err.AsString())
256                     {
257                         ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
258                     }
259                     else
260                     {
261                         ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
262                     }
263                 }
264             }
265             else
266             {
267                 assert(AddProcessToMap(pid, processSP));
268                 return pid;
269             }
270         }
271     }
272     return INVALID_NUB_PROCESS;
273 }
274 
275 nub_process_t
276 DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
277 {
278     if (err_str && err_len > 0)
279         err_str[0] = '\0';
280     std::vector<struct kinfo_proc> matching_proc_infos;
281     size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
282     if (num_matching_proc_infos == 0)
283     {
284         DNBLogError ("error: no processes match '%s'\n", name);
285         return INVALID_NUB_PROCESS;
286     }
287     else if (num_matching_proc_infos > 1)
288     {
289         DNBLogError ("error: %u processes match '%s':\n", num_matching_proc_infos, name);
290         size_t i;
291         for (i=0; i<num_matching_proc_infos; ++i)
292             DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
293         return INVALID_NUB_PROCESS;
294     }
295 
296     return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
297 }
298 
299 nub_process_t
300 DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
301 {
302     if (err_str && err_len > 0)
303         err_str[0] = '\0';
304 
305     pid_t pid;
306     MachProcessSP processSP(new MachProcess);
307     if (processSP.get())
308     {
309         DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
310         pid = processSP->AttachForDebug (attach_pid, err_str,  err_len);
311 
312         if (pid != INVALID_NUB_PROCESS)
313         {
314             assert(AddProcessToMap(pid, processSP));
315             spawn_waitpid_thread(pid);
316         }
317     }
318 
319     while (pid != INVALID_NUB_PROCESS)
320     {
321         // Wait for process to start up and hit entry point
322         DNBLogThreadedIf (LOG_PROCESS,
323                           "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...",
324                           __FUNCTION__,
325                           pid);
326         nub_event_t set_events = DNBProcessWaitForEvents (pid,
327                                                           eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
328                                                           true,
329                                                           timeout);
330 
331         DNBLogThreadedIf (LOG_PROCESS,
332                           "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
333                           __FUNCTION__,
334                           pid,
335                           set_events);
336 
337         if (set_events == 0)
338         {
339             if (err_str && err_len > 0)
340                 snprintf(err_str, err_len, "operation timed out");
341             pid = INVALID_NUB_PROCESS;
342         }
343         else
344         {
345             if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
346             {
347                 nub_state_t pid_state = DNBProcessGetState (pid);
348                 DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
349                         __FUNCTION__, pid, DNBStateAsString(pid_state));
350 
351                 switch (pid_state)
352                 {
353                     default:
354                     case eStateInvalid:
355                     case eStateUnloaded:
356                     case eStateAttaching:
357                     case eStateLaunching:
358                     case eStateSuspended:
359                         break;  // Ignore
360 
361                     case eStateRunning:
362                     case eStateStepping:
363                         // Still waiting to stop at entry point...
364                         break;
365 
366                     case eStateStopped:
367                     case eStateCrashed:
368                         return pid;
369 
370                     case eStateDetached:
371                     case eStateExited:
372                         if (err_str && err_len > 0)
373                             snprintf(err_str, err_len, "process exited");
374                         return INVALID_NUB_PROCESS;
375                 }
376             }
377 
378             DNBProcessResetEvents(pid, set_events);
379         }
380     }
381 
382     return INVALID_NUB_PROCESS;
383 }
384 
385 static size_t
386 GetAllInfos (std::vector<struct kinfo_proc>& proc_infos)
387 {
388     size_t size;
389     int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
390     u_int namelen = sizeof(name)/sizeof(int);
391     int err;
392 
393     // Try to find out how many processes are around so we can
394     // size the buffer appropriately.  sysctl's man page specifically suggests
395     // this approach, and says it returns a bit larger size than needed to
396     // handle any new processes created between then and now.
397 
398     err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
399 
400     if ((err < 0) && (err != ENOMEM))
401     {
402         proc_infos.clear();
403         perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
404         return 0;
405     }
406 
407 
408     // Increase the size of the buffer by a few processes in case more have
409     // been spawned
410     proc_infos.resize (size / sizeof(struct kinfo_proc));
411     size = proc_infos.size() * sizeof(struct kinfo_proc);   // Make sure we don't exceed our resize...
412     err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
413     if (err < 0)
414     {
415         proc_infos.clear();
416         return 0;
417     }
418 
419     // Trim down our array to fit what we actually got back
420     proc_infos.resize(size / sizeof(struct kinfo_proc));
421     return proc_infos.size();
422 }
423 
424 
425 static size_t
426 GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
427 {
428 
429     matching_proc_infos.clear();
430     if (full_process_name && full_process_name[0])
431     {
432         // We only get the process name, not the full path, from the proc_info.  So just take the
433         // base name of the process name...
434         const char *process_name;
435         process_name = strrchr (full_process_name, '/');
436         if (process_name == NULL)
437           process_name = full_process_name;
438         else
439           process_name++;
440 
441         std::vector<struct kinfo_proc> proc_infos;
442         const size_t num_proc_infos = GetAllInfos(proc_infos);
443         if (num_proc_infos > 0)
444         {
445             uint32_t i;
446             for (i=0; i<num_proc_infos; i++)
447             {
448                 // Skip zombie processes and processes with unset status
449                 if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
450                     continue;
451 
452                 // Check for process by name. We only check the first MAXCOMLEN
453                 // chars as that is all that kp_proc.p_comm holds.
454                 if (::strncasecmp(proc_infos[i].kp_proc.p_comm, process_name, MAXCOMLEN) == 0)
455                 {
456                     // We found a matching process, add it to our list
457                     matching_proc_infos.push_back(proc_infos[i]);
458                 }
459             }
460         }
461     }
462     // return the newly added matches.
463     return matching_proc_infos.size();
464 }
465 
466 nub_process_t
467 DNBProcessAttachWait (const char *waitfor_process_name,
468                       nub_launch_flavor_t launch_flavor,
469                       struct timespec *timeout_abstime,
470                       useconds_t waitfor_interval,
471                       char *err_str,
472                       size_t err_len,
473                       DNBShouldCancelCallback should_cancel_callback,
474                       void *callback_data)
475 {
476     DNBError prepare_error;
477     std::vector<struct kinfo_proc> exclude_proc_infos;
478     size_t num_exclude_proc_infos;
479 
480     // If the PrepareForAttach returns a valid token, use  MachProcess to check
481     // for the process, otherwise scan the process table.
482 
483     const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
484 
485     if (prepare_error.Fail())
486     {
487         DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
488         return INVALID_NUB_PROCESS;
489     }
490 
491     if (attach_token == NULL)
492         num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
493 
494     DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
495 
496     // Loop and try to find the process by name
497     nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
498 
499     while (waitfor_pid == INVALID_NUB_PROCESS)
500     {
501         if (attach_token != NULL)
502         {
503             nub_process_t pid;
504             pid = MachProcess::CheckForProcess(attach_token);
505             if (pid != INVALID_NUB_PROCESS)
506             {
507                 waitfor_pid = pid;
508                 break;
509             }
510         }
511         else
512         {
513 
514             // Get the current process list, and check for matches that
515             // aren't in our original list. If anyone wants to attach
516             // to an existing process by name, they should do it with
517             // --attach=PROCNAME. Else we will wait for the first matching
518             // process that wasn't in our exclusion list.
519             std::vector<struct kinfo_proc> proc_infos;
520             const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
521             for (size_t i=0; i<num_proc_infos; i++)
522             {
523                 nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
524                 for (size_t j=0; j<num_exclude_proc_infos; j++)
525                 {
526                     if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
527                     {
528                         // This process was in our exclusion list, don't use it.
529                         curr_pid = INVALID_NUB_PROCESS;
530                         break;
531                     }
532                 }
533 
534                 // If we didn't find CURR_PID in our exclusion list, then use it.
535                 if (curr_pid != INVALID_NUB_PROCESS)
536                 {
537                     // We found our process!
538                     waitfor_pid = curr_pid;
539                     break;
540                 }
541             }
542         }
543 
544         // If we haven't found our process yet, check for a timeout
545         // and then sleep for a bit until we poll again.
546         if (waitfor_pid == INVALID_NUB_PROCESS)
547         {
548             if (timeout_abstime != NULL)
549             {
550                 // Check to see if we have a waitfor-duration option that
551                 // has timed out?
552                 if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
553                 {
554                     if (err_str && err_len > 0)
555                         snprintf(err_str, err_len, "operation timed out");
556                     DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
557                     return INVALID_NUB_PROCESS;
558                 }
559             }
560 
561             // Call the should cancel callback as well...
562 
563             if (should_cancel_callback != NULL
564                 && should_cancel_callback (callback_data))
565             {
566                 DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
567                 waitfor_pid = INVALID_NUB_PROCESS;
568                 break;
569             }
570 
571             ::usleep (waitfor_interval);    // Sleep for WAITFOR_INTERVAL, then poll again
572         }
573     }
574 
575     if (waitfor_pid != INVALID_NUB_PROCESS)
576     {
577         DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
578         waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
579     }
580 
581     bool success = waitfor_pid != INVALID_NUB_PROCESS;
582     MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
583 
584     return waitfor_pid;
585 }
586 
587 nub_bool_t
588 DNBProcessDetach (nub_process_t pid)
589 {
590     MachProcessSP procSP;
591     if (GetProcessSP (pid, procSP))
592     {
593         return procSP->Detach();
594     }
595     return false;
596 }
597 
598 nub_bool_t
599 DNBProcessKill (nub_process_t pid)
600 {
601     MachProcessSP procSP;
602     if (GetProcessSP (pid, procSP))
603     {
604         return procSP->Kill ();
605     }
606     return false;
607 }
608 
609 nub_bool_t
610 DNBProcessSignal (nub_process_t pid, int signal)
611 {
612     MachProcessSP procSP;
613     if (GetProcessSP (pid, procSP))
614     {
615         return procSP->Signal (signal);
616     }
617     return false;
618 }
619 
620 
621 nub_bool_t
622 DNBProcessIsAlive (nub_process_t pid)
623 {
624     MachProcessSP procSP;
625     if (GetProcessSP (pid, procSP))
626     {
627         return MachTask::IsValid (procSP->Task().TaskPort());
628     }
629     return eStateInvalid;
630 }
631 
632 //----------------------------------------------------------------------
633 // Process and Thread state information
634 //----------------------------------------------------------------------
635 nub_state_t
636 DNBProcessGetState (nub_process_t pid)
637 {
638     MachProcessSP procSP;
639     if (GetProcessSP (pid, procSP))
640     {
641         return procSP->GetState();
642     }
643     return eStateInvalid;
644 }
645 
646 //----------------------------------------------------------------------
647 // Process and Thread state information
648 //----------------------------------------------------------------------
649 nub_bool_t
650 DNBProcessGetExitStatus (nub_process_t pid, int* status)
651 {
652     MachProcessSP procSP;
653     if (GetProcessSP (pid, procSP))
654     {
655         return procSP->GetExitStatus(status);
656     }
657     return false;
658 }
659 
660 nub_bool_t
661 DNBProcessSetExitStatus (nub_process_t pid, int status)
662 {
663     MachProcessSP procSP;
664     if (GetProcessSP (pid, procSP))
665     {
666         procSP->SetExitStatus(status);
667         return true;
668     }
669     return false;
670 }
671 
672 
673 const char *
674 DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
675 {
676     MachProcessSP procSP;
677     if (GetProcessSP (pid, procSP))
678         return procSP->ThreadGetName(tid);
679     return NULL;
680 }
681 
682 
683 nub_bool_t
684 DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
685 {
686     MachProcessSP procSP;
687     if (GetProcessSP (pid, procSP))
688         return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
689     return false;
690 }
691 
692 nub_state_t
693 DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
694 {
695     MachProcessSP procSP;
696     if (GetProcessSP (pid, procSP))
697     {
698         return procSP->ThreadGetState(tid);
699     }
700     return eStateInvalid;
701 }
702 
703 const char *
704 DNBStateAsString(nub_state_t state)
705 {
706     switch (state)
707     {
708     case eStateUnloaded:    return "Unloaded";
709     case eStateAttaching:   return "Attaching";
710     case eStateLaunching:   return "Launching";
711     case eStateStopped:     return "Stopped";
712     case eStateRunning:     return "Running";
713     case eStateStepping:    return "Stepping";
714     case eStateCrashed:     return "Crashed";
715     case eStateDetached:    return "Detached";
716     case eStateExited:      return "Exited";
717     case eStateSuspended:   return "Suspended";
718     }
719     return "nub_state_t ???";
720 }
721 
722 const char *
723 DNBProcessGetExecutablePath (nub_process_t pid)
724 {
725     MachProcessSP procSP;
726     if (GetProcessSP (pid, procSP))
727     {
728         return procSP->Path();
729     }
730     return NULL;
731 }
732 
733 nub_size_t
734 DNBProcessGetArgumentCount (nub_process_t pid)
735 {
736     MachProcessSP procSP;
737     if (GetProcessSP (pid, procSP))
738     {
739         return procSP->ArgumentCount();
740     }
741     return 0;
742 }
743 
744 const char *
745 DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
746 {
747     MachProcessSP procSP;
748     if (GetProcessSP (pid, procSP))
749     {
750         return procSP->ArgumentAtIndex (idx);
751     }
752     return NULL;
753 }
754 
755 
756 //----------------------------------------------------------------------
757 // Execution control
758 //----------------------------------------------------------------------
759 nub_bool_t
760 DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
761 {
762     DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
763     MachProcessSP procSP;
764     if (GetProcessSP (pid, procSP))
765     {
766         DNBThreadResumeActions thread_actions (actions, num_actions);
767 
768         // Below we add a default thread plan just in case one wasn't
769         // provided so all threads always know what they were supposed to do
770         if (thread_actions.IsEmpty())
771         {
772             // No thread plans were given, so the default it to run all threads
773             thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
774         }
775         else
776         {
777             // Some thread plans were given which means anything that wasn't
778             // specified should remain stopped.
779             thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
780         }
781         return procSP->Resume (thread_actions);
782     }
783     return false;
784 }
785 
786 nub_bool_t
787 DNBProcessHalt (nub_process_t pid)
788 {
789     DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
790     MachProcessSP procSP;
791     if (GetProcessSP (pid, procSP))
792         return procSP->Signal (SIGSTOP);
793     return false;
794 }
795 //
796 //nub_bool_t
797 //DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
798 //{
799 //    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
800 //    MachProcessSP procSP;
801 //    if (GetProcessSP (pid, procSP))
802 //    {
803 //        return procSP->Resume(tid, step, 0);
804 //    }
805 //    return false;
806 //}
807 //
808 //nub_bool_t
809 //DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
810 //{
811 //    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
812 //    MachProcessSP procSP;
813 //    if (GetProcessSP (pid, procSP))
814 //    {
815 //        return procSP->Resume(tid, step, signal);
816 //    }
817 //    return false;
818 //}
819 
820 nub_event_t
821 DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
822 {
823     nub_event_t result = 0;
824     MachProcessSP procSP;
825     if (GetProcessSP (pid, procSP))
826     {
827         if (wait_for_set)
828             result = procSP->Events().WaitForSetEvents(event_mask, timeout);
829         else
830             result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
831     }
832     return result;
833 }
834 
835 void
836 DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
837 {
838     MachProcessSP procSP;
839     if (GetProcessSP (pid, procSP))
840         procSP->Events().ResetEvents(event_mask);
841 }
842 
843 void
844 DNBProcessInterruptEvents (nub_process_t pid)
845 {
846     MachProcessSP procSP;
847     if (GetProcessSP (pid, procSP))
848         procSP->Events().SetEvents(eEventProcessAsyncInterrupt);
849 }
850 
851 
852 // Breakpoints
853 nub_break_t
854 DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
855 {
856     MachProcessSP procSP;
857     if (GetProcessSP (pid, procSP))
858     {
859         return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
860     }
861     return INVALID_NUB_BREAK_ID;
862 }
863 
864 nub_bool_t
865 DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
866 {
867     if (NUB_BREAK_ID_IS_VALID(breakID))
868     {
869         MachProcessSP procSP;
870         if (GetProcessSP (pid, procSP))
871         {
872             return procSP->DisableBreakpoint(breakID, true);
873         }
874     }
875     return false; // Failed
876 }
877 
878 nub_ssize_t
879 DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
880 {
881     if (NUB_BREAK_ID_IS_VALID(breakID))
882     {
883         MachProcessSP procSP;
884         if (GetProcessSP (pid, procSP))
885         {
886             DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
887             if (bp)
888                 return bp->GetHitCount();
889         }
890     }
891     return 0;
892 }
893 
894 nub_ssize_t
895 DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
896 {
897     if (NUB_BREAK_ID_IS_VALID(breakID))
898     {
899         MachProcessSP procSP;
900         if (GetProcessSP (pid, procSP))
901         {
902             DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
903             if (bp)
904                 return bp->GetIgnoreCount();
905         }
906     }
907     return 0;
908 }
909 
910 nub_bool_t
911 DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
912 {
913     if (NUB_BREAK_ID_IS_VALID(breakID))
914     {
915         MachProcessSP procSP;
916         if (GetProcessSP (pid, procSP))
917         {
918             DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
919             if (bp)
920             {
921                 bp->SetIgnoreCount(ignore_count);
922                 return true;
923             }
924         }
925     }
926     return false;
927 }
928 
929 // Set the callback function for a given breakpoint. The callback function will
930 // get called as soon as the breakpoint is hit. The function will be called
931 // with the process ID, thread ID, breakpoint ID and the baton, and can return
932 //
933 nub_bool_t
934 DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
935 {
936     if (NUB_BREAK_ID_IS_VALID(breakID))
937     {
938         MachProcessSP procSP;
939         if (GetProcessSP (pid, procSP))
940         {
941             DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
942             if (bp)
943             {
944                 bp->SetCallback(callback, baton);
945                 return true;
946             }
947         }
948     }
949     return false;
950 }
951 
952 //----------------------------------------------------------------------
953 // Dump the breakpoints stats for process PID for a breakpoint by ID.
954 //----------------------------------------------------------------------
955 void
956 DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
957 {
958     MachProcessSP procSP;
959     if (GetProcessSP (pid, procSP))
960         procSP->DumpBreakpoint(breakID);
961 }
962 
963 //----------------------------------------------------------------------
964 // Watchpoints
965 //----------------------------------------------------------------------
966 nub_watch_t
967 DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
968 {
969     MachProcessSP procSP;
970     if (GetProcessSP (pid, procSP))
971     {
972         return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
973     }
974     return INVALID_NUB_BREAK_ID;
975 }
976 
977 nub_bool_t
978 DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
979 {
980     if (NUB_BREAK_ID_IS_VALID(watchID))
981     {
982         MachProcessSP procSP;
983         if (GetProcessSP (pid, procSP))
984         {
985             return procSP->DisableWatchpoint(watchID, true);
986         }
987     }
988     return false; // Failed
989 }
990 
991 nub_ssize_t
992 DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
993 {
994     if (NUB_BREAK_ID_IS_VALID(watchID))
995     {
996         MachProcessSP procSP;
997         if (GetProcessSP (pid, procSP))
998         {
999             DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1000             if (bp)
1001                 return bp->GetHitCount();
1002         }
1003     }
1004     return 0;
1005 }
1006 
1007 nub_ssize_t
1008 DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
1009 {
1010     if (NUB_BREAK_ID_IS_VALID(watchID))
1011     {
1012         MachProcessSP procSP;
1013         if (GetProcessSP (pid, procSP))
1014         {
1015             DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1016             if (bp)
1017                 return bp->GetIgnoreCount();
1018         }
1019     }
1020     return 0;
1021 }
1022 
1023 nub_bool_t
1024 DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
1025 {
1026     if (NUB_BREAK_ID_IS_VALID(watchID))
1027     {
1028         MachProcessSP procSP;
1029         if (GetProcessSP (pid, procSP))
1030         {
1031             DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1032             if (bp)
1033             {
1034                 bp->SetIgnoreCount(ignore_count);
1035                 return true;
1036             }
1037         }
1038     }
1039     return false;
1040 }
1041 
1042 // Set the callback function for a given watchpoint. The callback function will
1043 // get called as soon as the watchpoint is hit. The function will be called
1044 // with the process ID, thread ID, watchpoint ID and the baton, and can return
1045 //
1046 nub_bool_t
1047 DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1048 {
1049     if (NUB_BREAK_ID_IS_VALID(watchID))
1050     {
1051         MachProcessSP procSP;
1052         if (GetProcessSP (pid, procSP))
1053         {
1054             DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1055             if (bp)
1056             {
1057                 bp->SetCallback(callback, baton);
1058                 return true;
1059             }
1060         }
1061     }
1062     return false;
1063 }
1064 
1065 //----------------------------------------------------------------------
1066 // Dump the watchpoints stats for process PID for a watchpoint by ID.
1067 //----------------------------------------------------------------------
1068 void
1069 DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1070 {
1071     MachProcessSP procSP;
1072     if (GetProcessSP (pid, procSP))
1073         procSP->DumpWatchpoint(watchID);
1074 }
1075 
1076 //----------------------------------------------------------------------
1077 // Read memory in the address space of process PID. This call will take
1078 // care of setting and restoring permissions and breaking up the memory
1079 // read into multiple chunks as required.
1080 //
1081 // RETURNS: number of bytes actually read
1082 //----------------------------------------------------------------------
1083 nub_size_t
1084 DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1085 {
1086     MachProcessSP procSP;
1087     if (GetProcessSP (pid, procSP))
1088         return procSP->ReadMemory(addr, size, buf);
1089     return 0;
1090 }
1091 
1092 //----------------------------------------------------------------------
1093 // Write memory to the address space of process PID. This call will take
1094 // care of setting and restoring permissions and breaking up the memory
1095 // write into multiple chunks as required.
1096 //
1097 // RETURNS: number of bytes actually written
1098 //----------------------------------------------------------------------
1099 nub_size_t
1100 DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1101 {
1102     MachProcessSP procSP;
1103     if (GetProcessSP (pid, procSP))
1104         return procSP->WriteMemory(addr, size, buf);
1105     return 0;
1106 }
1107 
1108 nub_addr_t
1109 DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1110 {
1111     MachProcessSP procSP;
1112     if (GetProcessSP (pid, procSP))
1113         return procSP->Task().AllocateMemory (size, permissions);
1114     return 0;
1115 }
1116 
1117 nub_bool_t
1118 DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1119 {
1120     MachProcessSP procSP;
1121     if (GetProcessSP (pid, procSP))
1122         return procSP->Task().DeallocateMemory (addr);
1123     return 0;
1124 }
1125 
1126 
1127 //----------------------------------------------------------------------
1128 // Formatted output that uses memory and registers from process and
1129 // thread in place of arguments.
1130 //----------------------------------------------------------------------
1131 nub_size_t
1132 DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1133 {
1134     if (file == NULL)
1135         return 0;
1136     enum printf_flags
1137     {
1138         alternate_form          = (1 << 0),
1139         zero_padding            = (1 << 1),
1140         negative_field_width    = (1 << 2),
1141         blank_space             = (1 << 3),
1142         show_sign               = (1 << 4),
1143         show_thousands_separator= (1 << 5),
1144     };
1145 
1146     enum printf_length_modifiers
1147     {
1148         length_mod_h            = (1 << 0),
1149         length_mod_hh           = (1 << 1),
1150         length_mod_l            = (1 << 2),
1151         length_mod_ll           = (1 << 3),
1152         length_mod_L            = (1 << 4),
1153         length_mod_j            = (1 << 5),
1154         length_mod_t            = (1 << 6),
1155         length_mod_z            = (1 << 7),
1156         length_mod_q            = (1 << 8),
1157     };
1158 
1159     nub_addr_t addr = base_addr;
1160     char *end_format = (char*)format + strlen(format);
1161     char *end = NULL;    // For strtoXXXX calls;
1162     std::basic_string<uint8_t> buf;
1163     nub_size_t total_bytes_read = 0;
1164     DNBDataRef data;
1165     const char *f;
1166     for (f = format; *f != '\0' && f < end_format; f++)
1167     {
1168         char ch = *f;
1169         switch (ch)
1170         {
1171         case '%':
1172             {
1173                 f++;    // Skip the '%' character
1174                 int min_field_width = 0;
1175                 int precision = 0;
1176                 uint32_t flags = 0;
1177                 uint32_t length_modifiers = 0;
1178                 uint32_t byte_size = 0;
1179                 uint32_t actual_byte_size = 0;
1180                 bool is_string = false;
1181                 bool is_register = false;
1182                 DNBRegisterValue register_value;
1183                 int64_t    register_offset = 0;
1184                 nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1185 
1186                 // Create the format string to use for this conversion specification
1187                 // so we can remove and mprintf specific flags and formatters.
1188                 std::string fprintf_format("%");
1189 
1190                 // Decode any flags
1191                 switch (*f)
1192                 {
1193                 case '#': fprintf_format += *f++; flags |= alternate_form;            break;
1194                 case '0': fprintf_format += *f++; flags |= zero_padding;            break;
1195                 case '-': fprintf_format += *f++; flags |= negative_field_width;    break;
1196                 case ' ': fprintf_format += *f++; flags |= blank_space;                break;
1197                 case '+': fprintf_format += *f++; flags |= show_sign;                break;
1198                 case ',': fprintf_format += *f++; flags |= show_thousands_separator;break;
1199                 case '{':
1200                 case '[':
1201                     {
1202                         // We have a register name specification that can take two forms:
1203                         // ${regname} or ${regname+offset}
1204                         //        The action is to read the register value and add the signed offset
1205                         //        (if any) and use that as the value to format.
1206                         // $[regname] or $[regname+offset]
1207                         //        The action is to read the register value and add the signed offset
1208                         //        (if any) and use the result as an address to dereference. The size
1209                         //        of what is dereferenced is specified by the actual byte size that
1210                         //        follows the minimum field width and precision (see comments below).
1211                         switch (*f)
1212                         {
1213                         case '{':
1214                         case '[':
1215                             {
1216                                 char open_scope_ch = *f;
1217                                 f++;
1218                                 const char *reg_name = f;
1219                                 size_t reg_name_length = strcspn(f, "+-}]");
1220                                 if (reg_name_length > 0)
1221                                 {
1222                                     std::string register_name(reg_name, reg_name_length);
1223                                     f += reg_name_length;
1224                                     register_offset = strtoll(f, &end, 0);
1225                                     if (f < end)
1226                                         f = end;
1227                                     if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1228                                     {
1229                                         fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1230                                         return total_bytes_read;
1231                                     }
1232                                     else
1233                                     {
1234                                         f++;
1235                                         if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1236                                         {
1237                                             // Set the address to dereference using the register value plus the offset
1238                                             switch (register_value.info.size)
1239                                             {
1240                                             default:
1241                                             case 0:
1242                                                 fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1243                                                 return total_bytes_read;
1244 
1245                                             case 1:        register_addr = register_value.value.uint8  + register_offset; break;
1246                                             case 2:        register_addr = register_value.value.uint16 + register_offset; break;
1247                                             case 4:        register_addr = register_value.value.uint32 + register_offset; break;
1248                                             case 8:        register_addr = register_value.value.uint64 + register_offset; break;
1249                                             case 16:
1250                                                 if (open_scope_ch == '[')
1251                                                 {
1252                                                     fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1253                                                     return total_bytes_read;
1254                                                 }
1255                                                 break;
1256                                             }
1257 
1258                                             if (open_scope_ch == '{')
1259                                             {
1260                                                 byte_size = register_value.info.size;
1261                                                 is_register = true;    // value is in a register
1262 
1263                                             }
1264                                             else
1265                                             {
1266                                                 addr = register_addr;    // Use register value and offset as the address
1267                                             }
1268                                         }
1269                                         else
1270                                         {
1271                                             fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.4x\n", register_name.c_str(), pid, tid);
1272                                             return total_bytes_read;
1273                                         }
1274                                     }
1275                                 }
1276                             }
1277                             break;
1278 
1279                         default:
1280                             fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1281                             return total_bytes_read;
1282                         }
1283                     }
1284                     break;
1285                 }
1286 
1287                 // Check for a minimum field width
1288                 if (isdigit(*f))
1289                 {
1290                     min_field_width = strtoul(f, &end, 10);
1291                     if (end > f)
1292                     {
1293                         fprintf_format.append(f, end - f);
1294                         f = end;
1295                     }
1296                 }
1297 
1298 
1299                 // Check for a precision
1300                 if (*f == '.')
1301                 {
1302                     f++;
1303                     if (isdigit(*f))
1304                     {
1305                         fprintf_format += '.';
1306                         precision = strtoul(f, &end, 10);
1307                         if (end > f)
1308                         {
1309                             fprintf_format.append(f, end - f);
1310                             f = end;
1311                         }
1312                     }
1313                 }
1314 
1315 
1316                 // mprintf specific: read the optional actual byte size (abs)
1317                 // after the standard minimum field width (mfw) and precision (prec).
1318                 // Standard printf calls you can have "mfw.prec" or ".prec", but
1319                 // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1320                 // for strings that may be in a fixed size buffer, but may not use all bytes
1321                 // in that buffer for printable characters.
1322                 if (*f == '.')
1323                 {
1324                     f++;
1325                     actual_byte_size = strtoul(f, &end, 10);
1326                     if (end > f)
1327                     {
1328                         byte_size = actual_byte_size;
1329                         f = end;
1330                     }
1331                 }
1332 
1333                 // Decode the length modifiers
1334                 switch (*f)
1335                 {
1336                 case 'h':    // h and hh length modifiers
1337                     fprintf_format += *f++;
1338                     length_modifiers |= length_mod_h;
1339                     if (*f == 'h')
1340                     {
1341                         fprintf_format += *f++;
1342                         length_modifiers |= length_mod_hh;
1343                     }
1344                     break;
1345 
1346                 case 'l': // l and ll length modifiers
1347                     fprintf_format += *f++;
1348                     length_modifiers |= length_mod_l;
1349                     if (*f == 'h')
1350                     {
1351                         fprintf_format += *f++;
1352                         length_modifiers |= length_mod_ll;
1353                     }
1354                     break;
1355 
1356                 case 'L':    fprintf_format += *f++;    length_modifiers |= length_mod_L;    break;
1357                 case 'j':    fprintf_format += *f++;    length_modifiers |= length_mod_j;    break;
1358                 case 't':    fprintf_format += *f++;    length_modifiers |= length_mod_t;    break;
1359                 case 'z':    fprintf_format += *f++;    length_modifiers |= length_mod_z;    break;
1360                 case 'q':    fprintf_format += *f++;    length_modifiers |= length_mod_q;    break;
1361                 }
1362 
1363                 // Decode the conversion specifier
1364                 switch (*f)
1365                 {
1366                 case '_':
1367                     // mprintf specific format items
1368                     {
1369                         ++f;    // Skip the '_' character
1370                         switch (*f)
1371                         {
1372                         case 'a':    // Print the current address
1373                             ++f;
1374                             fprintf_format += "ll";
1375                             fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ax")
1376                             fprintf (file, fprintf_format.c_str(), addr);
1377                             break;
1378                         case 'o':    // offset from base address
1379                             ++f;
1380                             fprintf_format += "ll";
1381                             fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ox")
1382                             fprintf(file, fprintf_format.c_str(), addr - base_addr);
1383                             break;
1384                         default:
1385                             fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1386                             break;
1387                         }
1388                         continue;
1389                     }
1390                     break;
1391 
1392                 case 'D':
1393                 case 'O':
1394                 case 'U':
1395                     fprintf_format += *f;
1396                     if (byte_size == 0)
1397                         byte_size = sizeof(long int);
1398                     break;
1399 
1400                 case 'd':
1401                 case 'i':
1402                 case 'o':
1403                 case 'u':
1404                 case 'x':
1405                 case 'X':
1406                     fprintf_format += *f;
1407                     if (byte_size == 0)
1408                     {
1409                         if (length_modifiers & length_mod_hh)
1410                             byte_size = sizeof(char);
1411                         else if (length_modifiers & length_mod_h)
1412                             byte_size = sizeof(short);
1413                         if (length_modifiers & length_mod_ll)
1414                             byte_size = sizeof(long long);
1415                         else if (length_modifiers & length_mod_l)
1416                             byte_size = sizeof(long);
1417                         else
1418                             byte_size = sizeof(int);
1419                     }
1420                     break;
1421 
1422                 case 'a':
1423                 case 'A':
1424                 case 'f':
1425                 case 'F':
1426                 case 'e':
1427                 case 'E':
1428                 case 'g':
1429                 case 'G':
1430                     fprintf_format += *f;
1431                     if (byte_size == 0)
1432                     {
1433                         if (length_modifiers & length_mod_L)
1434                             byte_size = sizeof(long double);
1435                         else
1436                             byte_size = sizeof(double);
1437                     }
1438                     break;
1439 
1440                 case 'c':
1441                     if ((length_modifiers & length_mod_l) == 0)
1442                     {
1443                         fprintf_format += *f;
1444                         if (byte_size == 0)
1445                             byte_size = sizeof(char);
1446                         break;
1447                     }
1448                     // Fall through to 'C' modifier below...
1449 
1450                 case 'C':
1451                     fprintf_format += *f;
1452                     if (byte_size == 0)
1453                         byte_size = sizeof(wchar_t);
1454                     break;
1455 
1456                 case 's':
1457                     fprintf_format += *f;
1458                     if (is_register || byte_size == 0)
1459                         is_string = 1;
1460                     break;
1461 
1462                 case 'p':
1463                     fprintf_format += *f;
1464                     if (byte_size == 0)
1465                         byte_size = sizeof(void*);
1466                     break;
1467                 }
1468 
1469                 if (is_string)
1470                 {
1471                     std::string mem_string;
1472                     const size_t string_buf_len = 4;
1473                     char string_buf[string_buf_len+1];
1474                     char *string_buf_end = string_buf + string_buf_len;
1475                     string_buf[string_buf_len] = '\0';
1476                     nub_size_t bytes_read;
1477                     nub_addr_t str_addr = is_register ? register_addr : addr;
1478                     while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1479                     {
1480                         // Did we get a NULL termination character yet?
1481                         if (strchr(string_buf, '\0') == string_buf_end)
1482                         {
1483                             // no NULL terminator yet, append as a std::string
1484                             mem_string.append(string_buf, string_buf_len);
1485                             str_addr += string_buf_len;
1486                         }
1487                         else
1488                         {
1489                             // yep
1490                             break;
1491                         }
1492                     }
1493                     // Append as a C-string so we don't get the extra NULL
1494                     // characters in the temp buffer (since it was resized)
1495                     mem_string += string_buf;
1496                     size_t mem_string_len = mem_string.size() + 1;
1497                     fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1498                     if (mem_string_len > 0)
1499                     {
1500                         if (!is_register)
1501                         {
1502                             addr += mem_string_len;
1503                             total_bytes_read += mem_string_len;
1504                         }
1505                     }
1506                     else
1507                         return total_bytes_read;
1508                 }
1509                 else
1510                 if (byte_size > 0)
1511                 {
1512                     buf.resize(byte_size);
1513                     nub_size_t bytes_read = 0;
1514                     if (is_register)
1515                         bytes_read = register_value.info.size;
1516                     else
1517                         bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1518                     if (bytes_read > 0)
1519                     {
1520                         if (!is_register)
1521                             total_bytes_read += bytes_read;
1522 
1523                         if (bytes_read == byte_size)
1524                         {
1525                             switch (*f)
1526                             {
1527                             case 'd':
1528                             case 'i':
1529                             case 'o':
1530                             case 'u':
1531                             case 'X':
1532                             case 'x':
1533                             case 'a':
1534                             case 'A':
1535                             case 'f':
1536                             case 'F':
1537                             case 'e':
1538                             case 'E':
1539                             case 'g':
1540                             case 'G':
1541                             case 'p':
1542                             case 'c':
1543                             case 'C':
1544                                 {
1545                                     if (is_register)
1546                                         data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1547                                     else
1548                                         data.SetData(&buf[0], bytes_read);
1549                                     DNBDataRef::offset_t data_offset = 0;
1550                                     if (byte_size <= 4)
1551                                     {
1552                                         uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1553                                         // Show the actual byte width when displaying hex
1554                                         fprintf(file, fprintf_format.c_str(), u32);
1555                                     }
1556                                     else if (byte_size <= 8)
1557                                     {
1558                                         uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1559                                         // Show the actual byte width when displaying hex
1560                                         fprintf(file, fprintf_format.c_str(), u64);
1561                                     }
1562                                     else
1563                                     {
1564                                         fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1565                                     }
1566                                     if (!is_register)
1567                                         addr += byte_size;
1568                                 }
1569                                 break;
1570 
1571                             case 's':
1572                                 fprintf(file, fprintf_format.c_str(), buf.c_str());
1573                                 addr += byte_size;
1574                                 break;
1575 
1576                             default:
1577                                 fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1578                                 break;
1579                             }
1580                         }
1581                     }
1582                 }
1583                 else
1584                     return total_bytes_read;
1585             }
1586             break;
1587 
1588         case '\\':
1589             {
1590                 f++;
1591                 switch (*f)
1592                 {
1593                 case 'e': ch = '\e'; break;
1594                 case 'a': ch = '\a'; break;
1595                 case 'b': ch = '\b'; break;
1596                 case 'f': ch = '\f'; break;
1597                 case 'n': ch = '\n'; break;
1598                 case 'r': ch = '\r'; break;
1599                 case 't': ch = '\t'; break;
1600                 case 'v': ch = '\v'; break;
1601                 case '\'': ch = '\''; break;
1602                 case '\\': ch = '\\'; break;
1603                 case '0':
1604                 case '1':
1605                 case '2':
1606                 case '3':
1607                 case '4':
1608                 case '5':
1609                 case '6':
1610                 case '7':
1611                     ch = strtoul(f, &end, 8);
1612                     f = end;
1613                     break;
1614                 default:
1615                     ch = *f;
1616                     break;
1617                 }
1618                 fputc(ch, file);
1619             }
1620             break;
1621 
1622         default:
1623             fputc(ch, file);
1624             break;
1625         }
1626     }
1627     return total_bytes_read;
1628 }
1629 
1630 
1631 //----------------------------------------------------------------------
1632 // Get the number of threads for the specified process.
1633 //----------------------------------------------------------------------
1634 nub_size_t
1635 DNBProcessGetNumThreads (nub_process_t pid)
1636 {
1637     MachProcessSP procSP;
1638     if (GetProcessSP (pid, procSP))
1639         return procSP->GetNumThreads();
1640     return 0;
1641 }
1642 
1643 //----------------------------------------------------------------------
1644 // Get the thread ID of the current thread.
1645 //----------------------------------------------------------------------
1646 nub_thread_t
1647 DNBProcessGetCurrentThread (nub_process_t pid)
1648 {
1649     MachProcessSP procSP;
1650     if (GetProcessSP (pid, procSP))
1651         return procSP->GetCurrentThread();
1652     return 0;
1653 }
1654 
1655 //----------------------------------------------------------------------
1656 // Change the current thread.
1657 //----------------------------------------------------------------------
1658 nub_thread_t
1659 DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1660 {
1661     MachProcessSP procSP;
1662     if (GetProcessSP (pid, procSP))
1663         return procSP->SetCurrentThread (tid);
1664     return INVALID_NUB_THREAD;
1665 }
1666 
1667 
1668 //----------------------------------------------------------------------
1669 // Dump a string describing a thread's stop reason to the specified file
1670 // handle
1671 //----------------------------------------------------------------------
1672 nub_bool_t
1673 DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1674 {
1675     MachProcessSP procSP;
1676     if (GetProcessSP (pid, procSP))
1677         return procSP->GetThreadStoppedReason (tid, stop_info);
1678     return false;
1679 }
1680 
1681 //----------------------------------------------------------------------
1682 // Return string description for the specified thread.
1683 //
1684 // RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1685 // string from a static buffer that must be copied prior to subsequent
1686 // calls.
1687 //----------------------------------------------------------------------
1688 const char *
1689 DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1690 {
1691     MachProcessSP procSP;
1692     if (GetProcessSP (pid, procSP))
1693         return procSP->GetThreadInfo (tid);
1694     return NULL;
1695 }
1696 
1697 //----------------------------------------------------------------------
1698 // Get the thread ID given a thread index.
1699 //----------------------------------------------------------------------
1700 nub_thread_t
1701 DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1702 {
1703     MachProcessSP procSP;
1704     if (GetProcessSP (pid, procSP))
1705         return procSP->GetThreadAtIndex (thread_idx);
1706     return INVALID_NUB_THREAD;
1707 }
1708 
1709 nub_addr_t
1710 DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1711 {
1712     MachProcessSP procSP;
1713     DNBError err;
1714     if (GetProcessSP (pid, procSP))
1715         return procSP->Task().GetDYLDAllImageInfosAddress (err);
1716     return INVALID_NUB_ADDRESS;
1717 }
1718 
1719 
1720 nub_bool_t
1721 DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1722 {
1723     MachProcessSP procSP;
1724     if (GetProcessSP (pid, procSP))
1725     {
1726         procSP->SharedLibrariesUpdated ();
1727         return true;
1728     }
1729     return false;
1730 }
1731 
1732 //----------------------------------------------------------------------
1733 // Get the current shared library information for a process. Only return
1734 // the shared libraries that have changed since the last shared library
1735 // state changed event if only_changed is non-zero.
1736 //----------------------------------------------------------------------
1737 nub_size_t
1738 DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1739 {
1740     MachProcessSP procSP;
1741     if (GetProcessSP (pid, procSP))
1742         return procSP->CopyImageInfos (image_infos, only_changed);
1743 
1744     // If we have no process, then return NULL for the shared library info
1745     // and zero for shared library count
1746     *image_infos = NULL;
1747     return 0;
1748 }
1749 
1750 //----------------------------------------------------------------------
1751 // Get the register set information for a specific thread.
1752 //----------------------------------------------------------------------
1753 const DNBRegisterSetInfo *
1754 DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1755 {
1756     return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets);
1757 }
1758 
1759 
1760 //----------------------------------------------------------------------
1761 // Read a register value by register set and register index.
1762 //----------------------------------------------------------------------
1763 nub_bool_t
1764 DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1765 {
1766     MachProcessSP procSP;
1767     ::bzero (value, sizeof(DNBRegisterValue));
1768     if (GetProcessSP (pid, procSP))
1769     {
1770         if (tid != INVALID_NUB_THREAD)
1771             return procSP->GetRegisterValue (tid, set, reg, value);
1772     }
1773     return false;
1774 }
1775 
1776 nub_bool_t
1777 DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1778 {
1779     if (tid != INVALID_NUB_THREAD)
1780     {
1781         MachProcessSP procSP;
1782         if (GetProcessSP (pid, procSP))
1783             return procSP->SetRegisterValue (tid, set, reg, value);
1784     }
1785     return false;
1786 }
1787 
1788 nub_size_t
1789 DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1790 {
1791     MachProcessSP procSP;
1792     if (GetProcessSP (pid, procSP))
1793     {
1794         if (tid != INVALID_NUB_THREAD)
1795             return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1796     }
1797     ::bzero (buf, buf_len);
1798     return 0;
1799 
1800 }
1801 
1802 nub_size_t
1803 DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1804 {
1805     MachProcessSP procSP;
1806     if (GetProcessSP (pid, procSP))
1807     {
1808         if (tid != INVALID_NUB_THREAD)
1809             return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1810     }
1811     return 0;
1812 }
1813 
1814 //----------------------------------------------------------------------
1815 // Read a register value by name.
1816 //----------------------------------------------------------------------
1817 nub_bool_t
1818 DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1819 {
1820     MachProcessSP procSP;
1821     ::bzero (value, sizeof(DNBRegisterValue));
1822     if (GetProcessSP (pid, procSP))
1823     {
1824         const struct DNBRegisterSetInfo *set_info;
1825         nub_size_t num_reg_sets = 0;
1826         set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1827         if (set_info)
1828         {
1829             uint32_t set = reg_set;
1830             uint32_t reg;
1831             if (set == REGISTER_SET_ALL)
1832             {
1833                 for (set = 1; set < num_reg_sets; ++set)
1834                 {
1835                     for (reg = 0; reg < set_info[set].num_registers; ++reg)
1836                     {
1837                         if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1838                             return procSP->GetRegisterValue (tid, set, reg, value);
1839                     }
1840                 }
1841             }
1842             else
1843             {
1844                 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1845                 {
1846                     if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1847                         return procSP->GetRegisterValue (tid, set, reg, value);
1848                 }
1849             }
1850         }
1851     }
1852     return false;
1853 }
1854 
1855 
1856 //----------------------------------------------------------------------
1857 // Read a register set and register number from the register name.
1858 //----------------------------------------------------------------------
1859 nub_bool_t
1860 DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
1861 {
1862     const struct DNBRegisterSetInfo *set_info;
1863     nub_size_t num_reg_sets = 0;
1864     set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1865     if (set_info)
1866     {
1867         uint32_t set, reg;
1868         for (set = 1; set < num_reg_sets; ++set)
1869         {
1870             for (reg = 0; reg < set_info[set].num_registers; ++reg)
1871             {
1872                 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1873                 {
1874                     *info = set_info[set].registers[reg];
1875                     return true;
1876                 }
1877             }
1878         }
1879 
1880         for (set = 1; set < num_reg_sets; ++set)
1881         {
1882             uint32_t reg;
1883             for (reg = 0; reg < set_info[set].num_registers; ++reg)
1884             {
1885                 if (set_info[set].registers[reg].alt == NULL)
1886                     continue;
1887 
1888                 if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
1889                 {
1890                     *info = set_info[set].registers[reg];
1891                     return true;
1892                 }
1893             }
1894         }
1895     }
1896 
1897     ::bzero (info, sizeof(DNBRegisterInfo));
1898     return false;
1899 }
1900 
1901 
1902 //----------------------------------------------------------------------
1903 // Set the name to address callback function that this nub can use
1904 // for any name to address lookups that are needed.
1905 //----------------------------------------------------------------------
1906 nub_bool_t
1907 DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
1908 {
1909     MachProcessSP procSP;
1910     if (GetProcessSP (pid, procSP))
1911     {
1912         procSP->SetNameToAddressCallback (callback, baton);
1913         return true;
1914     }
1915     return false;
1916 }
1917 
1918 
1919 //----------------------------------------------------------------------
1920 // Set the name to address callback function that this nub can use
1921 // for any name to address lookups that are needed.
1922 //----------------------------------------------------------------------
1923 nub_bool_t
1924 DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void  *baton)
1925 {
1926     MachProcessSP procSP;
1927     if (GetProcessSP (pid, procSP))
1928     {
1929         procSP->SetSharedLibraryInfoCallback (callback, baton);
1930         return true;
1931     }
1932     return false;
1933 }
1934 
1935 nub_addr_t
1936 DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
1937 {
1938     MachProcessSP procSP;
1939     if (GetProcessSP (pid, procSP))
1940     {
1941         return procSP->LookupSymbol (name, shlib);
1942     }
1943     return INVALID_NUB_ADDRESS;
1944 }
1945 
1946 
1947 nub_size_t
1948 DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
1949 {
1950     MachProcessSP procSP;
1951     if (GetProcessSP (pid, procSP))
1952         return procSP->GetAvailableSTDOUT (buf, buf_size);
1953     return 0;
1954 }
1955 
1956 nub_size_t
1957 DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
1958 {
1959     MachProcessSP procSP;
1960     if (GetProcessSP (pid, procSP))
1961         return procSP->GetAvailableSTDERR (buf, buf_size);
1962     return 0;
1963 }
1964 
1965 nub_size_t
1966 DNBProcessGetStopCount (nub_process_t pid)
1967 {
1968     MachProcessSP procSP;
1969     if (GetProcessSP (pid, procSP))
1970         return procSP->StopCount();
1971     return 0;
1972 }
1973 
1974 nub_bool_t
1975 DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
1976 {
1977     if (path == NULL || path[0] == '\0')
1978         return false;
1979 
1980     char max_path[PATH_MAX];
1981     std::string result;
1982     CFString::GlobPath(path, result);
1983 
1984     if (result.empty())
1985         result = path;
1986 
1987     if (realpath(path, max_path))
1988     {
1989         // Found the path relatively...
1990         ::strncpy(resolved_path, max_path, resolved_path_size);
1991         return strlen(resolved_path) + 1 < resolved_path_size;
1992     }
1993     else
1994     {
1995         // Not a relative path, check the PATH environment variable if the
1996         const char *PATH = getenv("PATH");
1997         if (PATH)
1998         {
1999             const char *curr_path_start = PATH;
2000             const char *curr_path_end;
2001             while (curr_path_start && *curr_path_start)
2002             {
2003                 curr_path_end = strchr(curr_path_start, ':');
2004                 if (curr_path_end == NULL)
2005                 {
2006                     result.assign(curr_path_start);
2007                     curr_path_start = NULL;
2008                 }
2009                 else if (curr_path_end > curr_path_start)
2010                 {
2011                     size_t len = curr_path_end - curr_path_start;
2012                     result.assign(curr_path_start, len);
2013                     curr_path_start += len + 1;
2014                 }
2015                 else
2016                     break;
2017 
2018                 result += '/';
2019                 result += path;
2020                 struct stat s;
2021                 if (stat(result.c_str(), &s) == 0)
2022                 {
2023                     ::strncpy(resolved_path, result.c_str(), resolved_path_size);
2024                     return result.size() + 1 < resolved_path_size;
2025                 }
2026             }
2027         }
2028     }
2029     return false;
2030 }
2031 
2032 
2033 void
2034 DNBInitialize()
2035 {
2036     DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()");
2037 #if defined (__i386__) || defined (__x86_64__)
2038     DNBArchImplI386::Initialize();
2039     DNBArchImplX86_64::Initialize();
2040 #elif defined (__arm__)
2041     DNBArchMachARM::Initialize();
2042 #endif
2043 }
2044 
2045 void
2046 DNBTerminate()
2047 {
2048 }
2049 
2050 nub_bool_t
2051 DNBSetArchitecture (const char *arch)
2052 {
2053     if (arch && arch[0])
2054     {
2055         if (strcasecmp (arch, "i386") == 0)
2056             return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386);
2057         else if (strcasecmp (arch, "x86_64") == 0)
2058             return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64);
2059         else if (strstr (arch, "arm") == arch)
2060             return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM);
2061     }
2062     return false;
2063 }
2064