1 //===-- DNB.cpp -------------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Created by Greg Clayton on 3/23/07. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DNB.h" 15 #include <inttypes.h> 16 #include <signal.h> 17 #include <stdio.h> 18 #include <stdlib.h> 19 #include <sys/resource.h> 20 #include <sys/stat.h> 21 #include <sys/types.h> 22 #include <sys/wait.h> 23 #include <unistd.h> 24 #include <sys/sysctl.h> 25 #include <map> 26 #include <vector> 27 #include <libproc.h> 28 29 #define TRY_KQUEUE 1 30 31 #ifdef TRY_KQUEUE 32 #include <sys/event.h> 33 #include <sys/time.h> 34 #ifdef NOTE_EXIT_DETAIL 35 #define USE_KQUEUE 36 #endif 37 #endif 38 39 #include "MacOSX/MachProcess.h" 40 #include "MacOSX/MachTask.h" 41 #include "MacOSX/Genealogy.h" 42 #include "MacOSX/ThreadInfo.h" 43 #include "CFString.h" 44 #include "DNBLog.h" 45 #include "DNBDataRef.h" 46 #include "DNBThreadResumeActions.h" 47 #include "DNBTimer.h" 48 #include "CFBundle.h" 49 50 51 typedef std::shared_ptr<MachProcess> MachProcessSP; 52 typedef std::map<nub_process_t, MachProcessSP> ProcessMap; 53 typedef ProcessMap::iterator ProcessMapIter; 54 typedef ProcessMap::const_iterator ProcessMapConstIter; 55 56 size_t GetAllInfos (std::vector<struct kinfo_proc>& proc_infos); 57 static size_t GetAllInfosMatchingName (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos); 58 59 //---------------------------------------------------------------------- 60 // A Thread safe singleton to get a process map pointer. 61 // 62 // Returns a pointer to the existing process map, or a pointer to a 63 // newly created process map if CAN_CREATE is non-zero. 64 //---------------------------------------------------------------------- 65 static ProcessMap* 66 GetProcessMap(bool can_create) 67 { 68 static ProcessMap* g_process_map_ptr = NULL; 69 70 if (can_create && g_process_map_ptr == NULL) 71 { 72 static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER; 73 PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex); 74 if (g_process_map_ptr == NULL) 75 g_process_map_ptr = new ProcessMap; 76 } 77 return g_process_map_ptr; 78 } 79 80 //---------------------------------------------------------------------- 81 // Add PID to the shared process pointer map. 82 // 83 // Return non-zero value if we succeed in adding the process to the map. 84 // The only time this should fail is if we run out of memory and can't 85 // allocate a ProcessMap. 86 //---------------------------------------------------------------------- 87 static nub_bool_t 88 AddProcessToMap (nub_process_t pid, MachProcessSP& procSP) 89 { 90 ProcessMap* process_map = GetProcessMap(true); 91 if (process_map) 92 { 93 process_map->insert(std::make_pair(pid, procSP)); 94 return true; 95 } 96 return false; 97 } 98 99 //---------------------------------------------------------------------- 100 // Remove the shared pointer for PID from the process map. 101 // 102 // Returns the number of items removed from the process map. 103 //---------------------------------------------------------------------- 104 static size_t 105 RemoveProcessFromMap (nub_process_t pid) 106 { 107 ProcessMap* process_map = GetProcessMap(false); 108 if (process_map) 109 { 110 return process_map->erase(pid); 111 } 112 return 0; 113 } 114 115 //---------------------------------------------------------------------- 116 // Get the shared pointer for PID from the existing process map. 117 // 118 // Returns true if we successfully find a shared pointer to a 119 // MachProcess object. 120 //---------------------------------------------------------------------- 121 static nub_bool_t 122 GetProcessSP (nub_process_t pid, MachProcessSP& procSP) 123 { 124 ProcessMap* process_map = GetProcessMap(false); 125 if (process_map != NULL) 126 { 127 ProcessMapIter pos = process_map->find(pid); 128 if (pos != process_map->end()) 129 { 130 procSP = pos->second; 131 return true; 132 } 133 } 134 procSP.reset(); 135 return false; 136 } 137 138 #ifdef USE_KQUEUE 139 void * 140 kqueue_thread (void *arg) 141 { 142 int kq_id = (int) (intptr_t) arg; 143 144 struct kevent death_event; 145 while (1) 146 { 147 int n_events = kevent (kq_id, NULL, 0, &death_event, 1, NULL); 148 if (n_events == -1) 149 { 150 if (errno == EINTR) 151 continue; 152 else 153 { 154 DNBLogError ("kqueue failed with error: (%d): %s", errno, strerror(errno)); 155 return NULL; 156 } 157 } 158 else if (death_event.flags & EV_ERROR) 159 { 160 int error_no = death_event.data; 161 const char *error_str = strerror(death_event.data); 162 if (error_str == NULL) 163 error_str = "Unknown error"; 164 DNBLogError ("Failed to initialize kqueue event: (%d): %s", error_no, error_str ); 165 return NULL; 166 } 167 else 168 { 169 int status; 170 const pid_t pid = (pid_t)death_event.ident; 171 const pid_t child_pid = waitpid (pid, &status, 0); 172 173 174 bool exited = false; 175 int signal = 0; 176 int exit_status = 0; 177 const char *status_cstr = NULL; 178 if (WIFSTOPPED(status)) 179 { 180 signal = WSTOPSIG(status); 181 status_cstr = "STOPPED"; 182 DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> STOPPED (signal = %i)", child_pid, signal); 183 } 184 else if (WIFEXITED(status)) 185 { 186 exit_status = WEXITSTATUS(status); 187 status_cstr = "EXITED"; 188 exited = true; 189 DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> EXITED (status = %i)", child_pid, exit_status); 190 } 191 else if (WIFSIGNALED(status)) 192 { 193 signal = WTERMSIG(status); 194 status_cstr = "SIGNALED"; 195 if (child_pid == abs(pid)) 196 { 197 DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> SIGNALED and EXITED (signal = %i)", child_pid, signal); 198 char exit_info[64]; 199 ::snprintf (exit_info, sizeof(exit_info), "Terminated due to signal %i", signal); 200 DNBProcessSetExitInfo (child_pid, exit_info); 201 exited = true; 202 exit_status = INT8_MAX; 203 } 204 else 205 { 206 DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> SIGNALED (signal = %i)", child_pid, signal); 207 } 208 } 209 210 if (exited) 211 { 212 if (death_event.data & NOTE_EXIT_MEMORY) 213 DNBProcessSetExitInfo (child_pid, "Terminated due to memory issue"); 214 else if (death_event.data & NOTE_EXIT_DECRYPTFAIL) 215 DNBProcessSetExitInfo (child_pid, "Terminated due to decrypt failure"); 216 else if (death_event.data & NOTE_EXIT_CSERROR) 217 DNBProcessSetExitInfo (child_pid, "Terminated due to code signing error"); 218 219 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, exit_status); 220 DNBProcessSetExitStatus (child_pid, status); 221 return NULL; 222 } 223 } 224 } 225 } 226 227 static bool 228 spawn_kqueue_thread (pid_t pid) 229 { 230 pthread_t thread; 231 int kq_id; 232 233 kq_id = kqueue(); 234 if (kq_id == -1) 235 { 236 DNBLogError ("Could not get kqueue for pid = %i.", pid); 237 return false; 238 } 239 240 struct kevent reg_event; 241 242 EV_SET(®_event, pid, EVFILT_PROC, EV_ADD, NOTE_EXIT|NOTE_EXIT_DETAIL, 0, NULL); 243 // Register the event: 244 int result = kevent (kq_id, ®_event, 1, NULL, 0, NULL); 245 if (result != 0) 246 { 247 DNBLogError ("Failed to register kqueue NOTE_EXIT event for pid %i, error: %d.", pid, result); 248 return false; 249 } 250 251 int ret = ::pthread_create (&thread, NULL, kqueue_thread, (void *)(intptr_t)kq_id); 252 253 // pthread_create returns 0 if successful 254 if (ret == 0) 255 { 256 ::pthread_detach (thread); 257 return true; 258 } 259 return false; 260 } 261 #endif // #if USE_KQUEUE 262 263 static void * 264 waitpid_thread (void *arg) 265 { 266 const pid_t pid = (pid_t)(intptr_t)arg; 267 int status; 268 while (1) 269 { 270 pid_t child_pid = waitpid(pid, &status, 0); 271 DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno); 272 273 if (child_pid < 0) 274 { 275 if (errno == EINTR) 276 continue; 277 break; 278 } 279 else 280 { 281 if (WIFSTOPPED(status)) 282 { 283 continue; 284 } 285 else// if (WIFEXITED(status) || WIFSIGNALED(status)) 286 { 287 DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): setting exit status for pid = %i to %i", child_pid, status); 288 DNBProcessSetExitStatus (child_pid, status); 289 return NULL; 290 } 291 } 292 } 293 294 // We should never exit as long as our child process is alive, so if we 295 // do something else went wrong and we should exit... 296 DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid); 297 DNBProcessSetExitStatus (pid, -1); 298 return NULL; 299 } 300 static bool 301 spawn_waitpid_thread (pid_t pid) 302 { 303 #ifdef USE_KQUEUE 304 bool success = spawn_kqueue_thread (pid); 305 if (success) 306 return true; 307 #endif 308 309 pthread_t thread; 310 int ret = ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid); 311 // pthread_create returns 0 if successful 312 if (ret == 0) 313 { 314 ::pthread_detach (thread); 315 return true; 316 } 317 return false; 318 } 319 320 nub_process_t 321 DNBProcessLaunch (const char *path, 322 char const *argv[], 323 const char *envp[], 324 const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this 325 const char *stdin_path, 326 const char *stdout_path, 327 const char *stderr_path, 328 bool no_stdio, 329 nub_launch_flavor_t launch_flavor, 330 int disable_aslr, 331 const char *event_data, 332 char *err_str, 333 size_t err_len) 334 { 335 DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %llu) called...", 336 __FUNCTION__, 337 path, 338 argv, 339 envp, 340 working_directory, 341 stdin_path, 342 stdout_path, 343 stderr_path, 344 no_stdio, 345 launch_flavor, 346 disable_aslr, 347 err_str, 348 (uint64_t)err_len); 349 350 if (err_str && err_len > 0) 351 err_str[0] = '\0'; 352 struct stat path_stat; 353 if (::stat(path, &path_stat) == -1) 354 { 355 char stat_error[256]; 356 ::strerror_r (errno, stat_error, sizeof(stat_error)); 357 snprintf(err_str, err_len, "%s (%s)", stat_error, path); 358 return INVALID_NUB_PROCESS; 359 } 360 361 MachProcessSP processSP (new MachProcess); 362 if (processSP.get()) 363 { 364 DNBError launch_err; 365 pid_t pid = processSP->LaunchForDebug (path, 366 argv, 367 envp, 368 working_directory, 369 stdin_path, 370 stdout_path, 371 stderr_path, 372 no_stdio, 373 launch_flavor, 374 disable_aslr, 375 event_data, 376 launch_err); 377 if (err_str) 378 { 379 *err_str = '\0'; 380 if (launch_err.Fail()) 381 { 382 const char *launch_err_str = launch_err.AsString(); 383 if (launch_err_str) 384 { 385 strncpy(err_str, launch_err_str, err_len-1); 386 err_str[err_len-1] = '\0'; // Make sure the error string is terminated 387 } 388 } 389 } 390 391 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid); 392 393 if (pid != INVALID_NUB_PROCESS) 394 { 395 // Spawn a thread to reap our child inferior process... 396 spawn_waitpid_thread (pid); 397 398 if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL) 399 { 400 // We failed to get the task for our process ID which is bad. 401 // Kill our process otherwise it will be stopped at the entry 402 // point and get reparented to someone else and never go away. 403 DNBLog ("Could not get task port for process, sending SIGKILL and exiting."); 404 kill (SIGKILL, pid); 405 406 if (err_str && err_len > 0) 407 { 408 if (launch_err.AsString()) 409 { 410 ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString()); 411 } 412 else 413 { 414 ::snprintf (err_str, err_len, "failed to get the task for process %i", pid); 415 } 416 } 417 } 418 else 419 { 420 bool res = AddProcessToMap(pid, processSP); 421 assert(res && "Couldn't add process to map!"); 422 return pid; 423 } 424 } 425 } 426 return INVALID_NUB_PROCESS; 427 } 428 429 nub_process_t 430 DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len) 431 { 432 if (err_str && err_len > 0) 433 err_str[0] = '\0'; 434 std::vector<struct kinfo_proc> matching_proc_infos; 435 size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos); 436 if (num_matching_proc_infos == 0) 437 { 438 DNBLogError ("error: no processes match '%s'\n", name); 439 return INVALID_NUB_PROCESS; 440 } 441 else if (num_matching_proc_infos > 1) 442 { 443 DNBLogError ("error: %llu processes match '%s':\n", (uint64_t)num_matching_proc_infos, name); 444 size_t i; 445 for (i=0; i<num_matching_proc_infos; ++i) 446 DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm); 447 return INVALID_NUB_PROCESS; 448 } 449 450 return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len); 451 } 452 453 nub_process_t 454 DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len) 455 { 456 if (err_str && err_len > 0) 457 err_str[0] = '\0'; 458 459 pid_t pid = INVALID_NUB_PROCESS; 460 MachProcessSP processSP(new MachProcess); 461 if (processSP.get()) 462 { 463 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid); 464 pid = processSP->AttachForDebug (attach_pid, err_str, err_len); 465 466 if (pid != INVALID_NUB_PROCESS) 467 { 468 bool res = AddProcessToMap(pid, processSP); 469 assert(res && "Couldn't add process to map!"); 470 spawn_waitpid_thread(pid); 471 } 472 } 473 474 while (pid != INVALID_NUB_PROCESS) 475 { 476 // Wait for process to start up and hit entry point 477 DNBLogThreadedIf (LOG_PROCESS, 478 "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...", 479 __FUNCTION__, 480 pid); 481 nub_event_t set_events = DNBProcessWaitForEvents (pid, 482 eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, 483 true, 484 timeout); 485 486 DNBLogThreadedIf (LOG_PROCESS, 487 "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x", 488 __FUNCTION__, 489 pid, 490 set_events); 491 492 if (set_events == 0) 493 { 494 if (err_str && err_len > 0) 495 snprintf(err_str, err_len, "operation timed out"); 496 pid = INVALID_NUB_PROCESS; 497 } 498 else 499 { 500 if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged)) 501 { 502 nub_state_t pid_state = DNBProcessGetState (pid); 503 DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s", 504 __FUNCTION__, pid, DNBStateAsString(pid_state)); 505 506 switch (pid_state) 507 { 508 default: 509 case eStateInvalid: 510 case eStateUnloaded: 511 case eStateAttaching: 512 case eStateLaunching: 513 case eStateSuspended: 514 break; // Ignore 515 516 case eStateRunning: 517 case eStateStepping: 518 // Still waiting to stop at entry point... 519 break; 520 521 case eStateStopped: 522 case eStateCrashed: 523 return pid; 524 525 case eStateDetached: 526 case eStateExited: 527 if (err_str && err_len > 0) 528 snprintf(err_str, err_len, "process exited"); 529 return INVALID_NUB_PROCESS; 530 } 531 } 532 533 DNBProcessResetEvents(pid, set_events); 534 } 535 } 536 537 return INVALID_NUB_PROCESS; 538 } 539 540 size_t 541 GetAllInfos (std::vector<struct kinfo_proc>& proc_infos) 542 { 543 size_t size = 0; 544 int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL }; 545 u_int namelen = sizeof(name)/sizeof(int); 546 int err; 547 548 // Try to find out how many processes are around so we can 549 // size the buffer appropriately. sysctl's man page specifically suggests 550 // this approach, and says it returns a bit larger size than needed to 551 // handle any new processes created between then and now. 552 553 err = ::sysctl (name, namelen, NULL, &size, NULL, 0); 554 555 if ((err < 0) && (err != ENOMEM)) 556 { 557 proc_infos.clear(); 558 perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)"); 559 return 0; 560 } 561 562 563 // Increase the size of the buffer by a few processes in case more have 564 // been spawned 565 proc_infos.resize (size / sizeof(struct kinfo_proc)); 566 size = proc_infos.size() * sizeof(struct kinfo_proc); // Make sure we don't exceed our resize... 567 err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0); 568 if (err < 0) 569 { 570 proc_infos.clear(); 571 return 0; 572 } 573 574 // Trim down our array to fit what we actually got back 575 proc_infos.resize(size / sizeof(struct kinfo_proc)); 576 return proc_infos.size(); 577 } 578 579 static size_t 580 GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos) 581 { 582 583 matching_proc_infos.clear(); 584 if (full_process_name && full_process_name[0]) 585 { 586 // We only get the process name, not the full path, from the proc_info. So just take the 587 // base name of the process name... 588 const char *process_name; 589 process_name = strrchr (full_process_name, '/'); 590 if (process_name == NULL) 591 process_name = full_process_name; 592 else 593 process_name++; 594 595 const int process_name_len = strlen(process_name); 596 std::vector<struct kinfo_proc> proc_infos; 597 const size_t num_proc_infos = GetAllInfos(proc_infos); 598 if (num_proc_infos > 0) 599 { 600 uint32_t i; 601 for (i=0; i<num_proc_infos; i++) 602 { 603 // Skip zombie processes and processes with unset status 604 if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB) 605 continue; 606 607 // Check for process by name. We only check the first MAXCOMLEN 608 // chars as that is all that kp_proc.p_comm holds. 609 610 if (::strncasecmp(process_name, proc_infos[i].kp_proc.p_comm, MAXCOMLEN) == 0) 611 { 612 if (process_name_len > MAXCOMLEN) 613 { 614 // We found a matching process name whose first MAXCOMLEN 615 // characters match, but there is more to the name than 616 // this. We need to get the full process name. Use proc_pidpath, which will get 617 // us the full path to the executed process. 618 619 char proc_path_buf[PATH_MAX]; 620 621 int return_val = proc_pidpath (proc_infos[i].kp_proc.p_pid, proc_path_buf, PATH_MAX); 622 if (return_val > 0) 623 { 624 // Okay, now search backwards from that to see if there is a 625 // slash in the name. Note, even though we got all the args we don't care 626 // because the list data is just a bunch of concatenated null terminated strings 627 // so strrchr will start from the end of argv0. 628 629 const char *argv_basename = strrchr(proc_path_buf, '/'); 630 if (argv_basename) 631 { 632 // Skip the '/' 633 ++argv_basename; 634 } 635 else 636 { 637 // We didn't find a directory delimiter in the process argv[0], just use what was in there 638 argv_basename = proc_path_buf; 639 } 640 641 if (argv_basename) 642 { 643 if (::strncasecmp(process_name, argv_basename, PATH_MAX) == 0) 644 { 645 matching_proc_infos.push_back(proc_infos[i]); 646 } 647 } 648 } 649 } 650 else 651 { 652 // We found a matching process, add it to our list 653 matching_proc_infos.push_back(proc_infos[i]); 654 } 655 } 656 } 657 } 658 } 659 // return the newly added matches. 660 return matching_proc_infos.size(); 661 } 662 663 nub_process_t 664 DNBProcessAttachWait (const char *waitfor_process_name, 665 nub_launch_flavor_t launch_flavor, 666 bool ignore_existing, 667 struct timespec *timeout_abstime, 668 useconds_t waitfor_interval, 669 char *err_str, 670 size_t err_len, 671 DNBShouldCancelCallback should_cancel_callback, 672 void *callback_data) 673 { 674 DNBError prepare_error; 675 std::vector<struct kinfo_proc> exclude_proc_infos; 676 size_t num_exclude_proc_infos; 677 678 // If the PrepareForAttach returns a valid token, use MachProcess to check 679 // for the process, otherwise scan the process table. 680 681 const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error); 682 683 if (prepare_error.Fail()) 684 { 685 DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString()); 686 return INVALID_NUB_PROCESS; 687 } 688 689 if (attach_token == NULL) 690 { 691 if (ignore_existing) 692 num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos); 693 else 694 num_exclude_proc_infos = 0; 695 } 696 697 DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name); 698 699 // Loop and try to find the process by name 700 nub_process_t waitfor_pid = INVALID_NUB_PROCESS; 701 702 while (waitfor_pid == INVALID_NUB_PROCESS) 703 { 704 if (attach_token != NULL) 705 { 706 nub_process_t pid; 707 pid = MachProcess::CheckForProcess(attach_token); 708 if (pid != INVALID_NUB_PROCESS) 709 { 710 waitfor_pid = pid; 711 break; 712 } 713 } 714 else 715 { 716 717 // Get the current process list, and check for matches that 718 // aren't in our original list. If anyone wants to attach 719 // to an existing process by name, they should do it with 720 // --attach=PROCNAME. Else we will wait for the first matching 721 // process that wasn't in our exclusion list. 722 std::vector<struct kinfo_proc> proc_infos; 723 const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos); 724 for (size_t i=0; i<num_proc_infos; i++) 725 { 726 nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid; 727 for (size_t j=0; j<num_exclude_proc_infos; j++) 728 { 729 if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid) 730 { 731 // This process was in our exclusion list, don't use it. 732 curr_pid = INVALID_NUB_PROCESS; 733 break; 734 } 735 } 736 737 // If we didn't find CURR_PID in our exclusion list, then use it. 738 if (curr_pid != INVALID_NUB_PROCESS) 739 { 740 // We found our process! 741 waitfor_pid = curr_pid; 742 break; 743 } 744 } 745 } 746 747 // If we haven't found our process yet, check for a timeout 748 // and then sleep for a bit until we poll again. 749 if (waitfor_pid == INVALID_NUB_PROCESS) 750 { 751 if (timeout_abstime != NULL) 752 { 753 // Check to see if we have a waitfor-duration option that 754 // has timed out? 755 if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime)) 756 { 757 if (err_str && err_len > 0) 758 snprintf(err_str, err_len, "operation timed out"); 759 DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name); 760 return INVALID_NUB_PROCESS; 761 } 762 } 763 764 // Call the should cancel callback as well... 765 766 if (should_cancel_callback != NULL 767 && should_cancel_callback (callback_data)) 768 { 769 DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback."); 770 waitfor_pid = INVALID_NUB_PROCESS; 771 break; 772 } 773 774 ::usleep (waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again 775 } 776 } 777 778 if (waitfor_pid != INVALID_NUB_PROCESS) 779 { 780 DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid); 781 waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len); 782 } 783 784 bool success = waitfor_pid != INVALID_NUB_PROCESS; 785 MachProcess::CleanupAfterAttach (attach_token, success, prepare_error); 786 787 return waitfor_pid; 788 } 789 790 nub_bool_t 791 DNBProcessDetach (nub_process_t pid) 792 { 793 MachProcessSP procSP; 794 if (GetProcessSP (pid, procSP)) 795 { 796 const bool remove = true; 797 DNBLogThreaded("Disabling breakpoints and watchpoints, and detaching from %d.", pid); 798 procSP->DisableAllBreakpoints(remove); 799 procSP->DisableAllWatchpoints (remove); 800 return procSP->Detach(); 801 } 802 return false; 803 } 804 805 nub_bool_t 806 DNBProcessKill (nub_process_t pid) 807 { 808 MachProcessSP procSP; 809 if (GetProcessSP (pid, procSP)) 810 { 811 return procSP->Kill (); 812 } 813 return false; 814 } 815 816 nub_bool_t 817 DNBProcessSignal (nub_process_t pid, int signal) 818 { 819 MachProcessSP procSP; 820 if (GetProcessSP (pid, procSP)) 821 { 822 return procSP->Signal (signal); 823 } 824 return false; 825 } 826 827 828 nub_bool_t 829 DNBProcessInterrupt(nub_process_t pid) 830 { 831 MachProcessSP procSP; 832 if (GetProcessSP (pid, procSP)) 833 return procSP->Interrupt(); 834 return false; 835 } 836 837 nub_bool_t 838 DNBProcessSendEvent (nub_process_t pid, const char *event) 839 { 840 MachProcessSP procSP; 841 if (GetProcessSP (pid, procSP)) 842 { 843 // FIXME: Do something with the error... 844 DNBError send_error; 845 return procSP->SendEvent (event, send_error); 846 } 847 return false; 848 } 849 850 851 nub_bool_t 852 DNBProcessIsAlive (nub_process_t pid) 853 { 854 MachProcessSP procSP; 855 if (GetProcessSP (pid, procSP)) 856 { 857 return MachTask::IsValid (procSP->Task().TaskPort()); 858 } 859 return eStateInvalid; 860 } 861 862 //---------------------------------------------------------------------- 863 // Process and Thread state information 864 //---------------------------------------------------------------------- 865 nub_state_t 866 DNBProcessGetState (nub_process_t pid) 867 { 868 MachProcessSP procSP; 869 if (GetProcessSP (pid, procSP)) 870 { 871 return procSP->GetState(); 872 } 873 return eStateInvalid; 874 } 875 876 //---------------------------------------------------------------------- 877 // Process and Thread state information 878 //---------------------------------------------------------------------- 879 nub_bool_t 880 DNBProcessGetExitStatus (nub_process_t pid, int* status) 881 { 882 MachProcessSP procSP; 883 if (GetProcessSP (pid, procSP)) 884 { 885 return procSP->GetExitStatus(status); 886 } 887 return false; 888 } 889 890 nub_bool_t 891 DNBProcessSetExitStatus (nub_process_t pid, int status) 892 { 893 MachProcessSP procSP; 894 if (GetProcessSP (pid, procSP)) 895 { 896 procSP->SetExitStatus(status); 897 return true; 898 } 899 return false; 900 } 901 902 const char * 903 DNBProcessGetExitInfo (nub_process_t pid) 904 { 905 MachProcessSP procSP; 906 if (GetProcessSP (pid, procSP)) 907 { 908 return procSP->GetExitInfo(); 909 } 910 return NULL; 911 } 912 913 nub_bool_t 914 DNBProcessSetExitInfo (nub_process_t pid, const char *info) 915 { 916 MachProcessSP procSP; 917 if (GetProcessSP (pid, procSP)) 918 { 919 procSP->SetExitInfo(info); 920 return true; 921 } 922 return false; 923 } 924 925 const char * 926 DNBThreadGetName (nub_process_t pid, nub_thread_t tid) 927 { 928 MachProcessSP procSP; 929 if (GetProcessSP (pid, procSP)) 930 return procSP->ThreadGetName(tid); 931 return NULL; 932 } 933 934 935 nub_bool_t 936 DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info) 937 { 938 MachProcessSP procSP; 939 if (GetProcessSP (pid, procSP)) 940 return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info); 941 return false; 942 } 943 944 nub_state_t 945 DNBThreadGetState (nub_process_t pid, nub_thread_t tid) 946 { 947 MachProcessSP procSP; 948 if (GetProcessSP (pid, procSP)) 949 { 950 return procSP->ThreadGetState(tid); 951 } 952 return eStateInvalid; 953 } 954 955 const char * 956 DNBStateAsString(nub_state_t state) 957 { 958 switch (state) 959 { 960 case eStateInvalid: return "Invalid"; 961 case eStateUnloaded: return "Unloaded"; 962 case eStateAttaching: return "Attaching"; 963 case eStateLaunching: return "Launching"; 964 case eStateStopped: return "Stopped"; 965 case eStateRunning: return "Running"; 966 case eStateStepping: return "Stepping"; 967 case eStateCrashed: return "Crashed"; 968 case eStateDetached: return "Detached"; 969 case eStateExited: return "Exited"; 970 case eStateSuspended: return "Suspended"; 971 } 972 return "nub_state_t ???"; 973 } 974 975 Genealogy::ThreadActivitySP 976 DNBGetGenealogyInfoForThread (nub_process_t pid, nub_thread_t tid, bool &timed_out) 977 { 978 Genealogy::ThreadActivitySP thread_activity_sp; 979 MachProcessSP procSP; 980 if (GetProcessSP (pid, procSP)) 981 thread_activity_sp = procSP->GetGenealogyInfoForThread (tid, timed_out); 982 return thread_activity_sp; 983 } 984 985 Genealogy::ProcessExecutableInfoSP 986 DNBGetGenealogyImageInfo (nub_process_t pid, size_t idx) 987 { 988 Genealogy::ProcessExecutableInfoSP image_info_sp; 989 MachProcessSP procSP; 990 if (GetProcessSP (pid, procSP)) 991 { 992 image_info_sp = procSP->GetGenealogyImageInfo (idx); 993 } 994 return image_info_sp; 995 } 996 997 ThreadInfo::QoS 998 DNBGetRequestedQoSForThread (nub_process_t pid, nub_thread_t tid, nub_addr_t tsd, uint64_t dti_qos_class_index) 999 { 1000 MachProcessSP procSP; 1001 if (GetProcessSP (pid, procSP)) 1002 { 1003 return procSP->GetRequestedQoS (tid, tsd, dti_qos_class_index); 1004 } 1005 return ThreadInfo::QoS(); 1006 } 1007 1008 nub_addr_t 1009 DNBGetPThreadT (nub_process_t pid, nub_thread_t tid) 1010 { 1011 MachProcessSP procSP; 1012 if (GetProcessSP (pid, procSP)) 1013 { 1014 return procSP->GetPThreadT (tid); 1015 } 1016 return INVALID_NUB_ADDRESS; 1017 } 1018 1019 nub_addr_t 1020 DNBGetDispatchQueueT (nub_process_t pid, nub_thread_t tid) 1021 { 1022 MachProcessSP procSP; 1023 if (GetProcessSP (pid, procSP)) 1024 { 1025 return procSP->GetDispatchQueueT (tid); 1026 } 1027 return INVALID_NUB_ADDRESS; 1028 } 1029 1030 nub_addr_t 1031 DNBGetTSDAddressForThread (nub_process_t pid, nub_thread_t tid, uint64_t plo_pthread_tsd_base_address_offset, uint64_t plo_pthread_tsd_base_offset, uint64_t plo_pthread_tsd_entry_size) 1032 { 1033 MachProcessSP procSP; 1034 if (GetProcessSP (pid, procSP)) 1035 { 1036 return procSP->GetTSDAddressForThread (tid, plo_pthread_tsd_base_address_offset, plo_pthread_tsd_base_offset, plo_pthread_tsd_entry_size); 1037 } 1038 return INVALID_NUB_ADDRESS; 1039 } 1040 1041 1042 const char * 1043 DNBProcessGetExecutablePath (nub_process_t pid) 1044 { 1045 MachProcessSP procSP; 1046 if (GetProcessSP (pid, procSP)) 1047 { 1048 return procSP->Path(); 1049 } 1050 return NULL; 1051 } 1052 1053 nub_size_t 1054 DNBProcessGetArgumentCount (nub_process_t pid) 1055 { 1056 MachProcessSP procSP; 1057 if (GetProcessSP (pid, procSP)) 1058 { 1059 return procSP->ArgumentCount(); 1060 } 1061 return 0; 1062 } 1063 1064 const char * 1065 DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx) 1066 { 1067 MachProcessSP procSP; 1068 if (GetProcessSP (pid, procSP)) 1069 { 1070 return procSP->ArgumentAtIndex (idx); 1071 } 1072 return NULL; 1073 } 1074 1075 1076 //---------------------------------------------------------------------- 1077 // Execution control 1078 //---------------------------------------------------------------------- 1079 nub_bool_t 1080 DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions) 1081 { 1082 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid); 1083 MachProcessSP procSP; 1084 if (GetProcessSP (pid, procSP)) 1085 { 1086 DNBThreadResumeActions thread_actions (actions, num_actions); 1087 1088 // Below we add a default thread plan just in case one wasn't 1089 // provided so all threads always know what they were supposed to do 1090 if (thread_actions.IsEmpty()) 1091 { 1092 // No thread plans were given, so the default it to run all threads 1093 thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0); 1094 } 1095 else 1096 { 1097 // Some thread plans were given which means anything that wasn't 1098 // specified should remain stopped. 1099 thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0); 1100 } 1101 return procSP->Resume (thread_actions); 1102 } 1103 return false; 1104 } 1105 1106 nub_bool_t 1107 DNBProcessHalt (nub_process_t pid) 1108 { 1109 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid); 1110 MachProcessSP procSP; 1111 if (GetProcessSP (pid, procSP)) 1112 return procSP->Signal (SIGSTOP); 1113 return false; 1114 } 1115 // 1116 //nub_bool_t 1117 //DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step) 1118 //{ 1119 // DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step); 1120 // MachProcessSP procSP; 1121 // if (GetProcessSP (pid, procSP)) 1122 // { 1123 // return procSP->Resume(tid, step, 0); 1124 // } 1125 // return false; 1126 //} 1127 // 1128 //nub_bool_t 1129 //DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal) 1130 //{ 1131 // DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal); 1132 // MachProcessSP procSP; 1133 // if (GetProcessSP (pid, procSP)) 1134 // { 1135 // return procSP->Resume(tid, step, signal); 1136 // } 1137 // return false; 1138 //} 1139 1140 nub_event_t 1141 DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout) 1142 { 1143 nub_event_t result = 0; 1144 MachProcessSP procSP; 1145 if (GetProcessSP (pid, procSP)) 1146 { 1147 if (wait_for_set) 1148 result = procSP->Events().WaitForSetEvents(event_mask, timeout); 1149 else 1150 result = procSP->Events().WaitForEventsToReset(event_mask, timeout); 1151 } 1152 return result; 1153 } 1154 1155 void 1156 DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask) 1157 { 1158 MachProcessSP procSP; 1159 if (GetProcessSP (pid, procSP)) 1160 procSP->Events().ResetEvents(event_mask); 1161 } 1162 1163 // Breakpoints 1164 nub_bool_t 1165 DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware) 1166 { 1167 MachProcessSP procSP; 1168 if (GetProcessSP (pid, procSP)) 1169 return procSP->CreateBreakpoint(addr, size, hardware) != NULL; 1170 return false; 1171 } 1172 1173 nub_bool_t 1174 DNBBreakpointClear (nub_process_t pid, nub_addr_t addr) 1175 { 1176 MachProcessSP procSP; 1177 if (GetProcessSP (pid, procSP)) 1178 return procSP->DisableBreakpoint(addr, true); 1179 return false; // Failed 1180 } 1181 1182 1183 //---------------------------------------------------------------------- 1184 // Watchpoints 1185 //---------------------------------------------------------------------- 1186 nub_bool_t 1187 DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware) 1188 { 1189 MachProcessSP procSP; 1190 if (GetProcessSP (pid, procSP)) 1191 return procSP->CreateWatchpoint(addr, size, watch_flags, hardware) != NULL; 1192 return false; 1193 } 1194 1195 nub_bool_t 1196 DNBWatchpointClear (nub_process_t pid, nub_addr_t addr) 1197 { 1198 MachProcessSP procSP; 1199 if (GetProcessSP (pid, procSP)) 1200 return procSP->DisableWatchpoint(addr, true); 1201 return false; // Failed 1202 } 1203 1204 //---------------------------------------------------------------------- 1205 // Return the number of supported hardware watchpoints. 1206 //---------------------------------------------------------------------- 1207 uint32_t 1208 DNBWatchpointGetNumSupportedHWP (nub_process_t pid) 1209 { 1210 MachProcessSP procSP; 1211 if (GetProcessSP (pid, procSP)) 1212 return procSP->GetNumSupportedHardwareWatchpoints(); 1213 return 0; 1214 } 1215 1216 //---------------------------------------------------------------------- 1217 // Read memory in the address space of process PID. This call will take 1218 // care of setting and restoring permissions and breaking up the memory 1219 // read into multiple chunks as required. 1220 // 1221 // RETURNS: number of bytes actually read 1222 //---------------------------------------------------------------------- 1223 nub_size_t 1224 DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf) 1225 { 1226 MachProcessSP procSP; 1227 if (GetProcessSP (pid, procSP)) 1228 return procSP->ReadMemory(addr, size, buf); 1229 return 0; 1230 } 1231 1232 //---------------------------------------------------------------------- 1233 // Write memory to the address space of process PID. This call will take 1234 // care of setting and restoring permissions and breaking up the memory 1235 // write into multiple chunks as required. 1236 // 1237 // RETURNS: number of bytes actually written 1238 //---------------------------------------------------------------------- 1239 nub_size_t 1240 DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf) 1241 { 1242 MachProcessSP procSP; 1243 if (GetProcessSP (pid, procSP)) 1244 return procSP->WriteMemory(addr, size, buf); 1245 return 0; 1246 } 1247 1248 nub_addr_t 1249 DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions) 1250 { 1251 MachProcessSP procSP; 1252 if (GetProcessSP (pid, procSP)) 1253 return procSP->Task().AllocateMemory (size, permissions); 1254 return 0; 1255 } 1256 1257 nub_bool_t 1258 DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr) 1259 { 1260 MachProcessSP procSP; 1261 if (GetProcessSP (pid, procSP)) 1262 return procSP->Task().DeallocateMemory (addr); 1263 return 0; 1264 } 1265 1266 //---------------------------------------------------------------------- 1267 // Find attributes of the memory region that contains ADDR for process PID, 1268 // if possible, and return a string describing those attributes. 1269 // 1270 // Returns 1 if we could find attributes for this region and OUTBUF can 1271 // be sent to the remote debugger. 1272 // 1273 // Returns 0 if we couldn't find the attributes for a region of memory at 1274 // that address and OUTBUF should not be sent. 1275 // 1276 // Returns -1 if this platform cannot look up information about memory regions 1277 // or if we do not yet have a valid launched process. 1278 // 1279 //---------------------------------------------------------------------- 1280 int 1281 DNBProcessMemoryRegionInfo (nub_process_t pid, nub_addr_t addr, DNBRegionInfo *region_info) 1282 { 1283 MachProcessSP procSP; 1284 if (GetProcessSP (pid, procSP)) 1285 return procSP->Task().GetMemoryRegionInfo (addr, region_info); 1286 1287 return -1; 1288 } 1289 1290 std::string 1291 DNBProcessGetProfileData (nub_process_t pid, DNBProfileDataScanType scanType) 1292 { 1293 MachProcessSP procSP; 1294 if (GetProcessSP (pid, procSP)) 1295 return procSP->Task().GetProfileData(scanType); 1296 1297 return std::string(""); 1298 } 1299 1300 nub_bool_t 1301 DNBProcessSetEnableAsyncProfiling (nub_process_t pid, nub_bool_t enable, uint64_t interval_usec, DNBProfileDataScanType scan_type) 1302 { 1303 MachProcessSP procSP; 1304 if (GetProcessSP (pid, procSP)) 1305 { 1306 procSP->SetEnableAsyncProfiling(enable, interval_usec, scan_type); 1307 return true; 1308 } 1309 1310 return false; 1311 } 1312 1313 //---------------------------------------------------------------------- 1314 // Formatted output that uses memory and registers from process and 1315 // thread in place of arguments. 1316 //---------------------------------------------------------------------- 1317 nub_size_t 1318 DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format) 1319 { 1320 if (file == NULL) 1321 return 0; 1322 enum printf_flags 1323 { 1324 alternate_form = (1 << 0), 1325 zero_padding = (1 << 1), 1326 negative_field_width = (1 << 2), 1327 blank_space = (1 << 3), 1328 show_sign = (1 << 4), 1329 show_thousands_separator= (1 << 5), 1330 }; 1331 1332 enum printf_length_modifiers 1333 { 1334 length_mod_h = (1 << 0), 1335 length_mod_hh = (1 << 1), 1336 length_mod_l = (1 << 2), 1337 length_mod_ll = (1 << 3), 1338 length_mod_L = (1 << 4), 1339 length_mod_j = (1 << 5), 1340 length_mod_t = (1 << 6), 1341 length_mod_z = (1 << 7), 1342 length_mod_q = (1 << 8), 1343 }; 1344 1345 nub_addr_t addr = base_addr; 1346 char *end_format = (char*)format + strlen(format); 1347 char *end = NULL; // For strtoXXXX calls; 1348 std::basic_string<uint8_t> buf; 1349 nub_size_t total_bytes_read = 0; 1350 DNBDataRef data; 1351 const char *f; 1352 for (f = format; *f != '\0' && f < end_format; f++) 1353 { 1354 char ch = *f; 1355 switch (ch) 1356 { 1357 case '%': 1358 { 1359 f++; // Skip the '%' character 1360 // int min_field_width = 0; 1361 // int precision = 0; 1362 //uint32_t flags = 0; 1363 uint32_t length_modifiers = 0; 1364 uint32_t byte_size = 0; 1365 uint32_t actual_byte_size = 0; 1366 bool is_string = false; 1367 bool is_register = false; 1368 DNBRegisterValue register_value; 1369 int64_t register_offset = 0; 1370 nub_addr_t register_addr = INVALID_NUB_ADDRESS; 1371 1372 // Create the format string to use for this conversion specification 1373 // so we can remove and mprintf specific flags and formatters. 1374 std::string fprintf_format("%"); 1375 1376 // Decode any flags 1377 switch (*f) 1378 { 1379 case '#': fprintf_format += *f++; break; //flags |= alternate_form; break; 1380 case '0': fprintf_format += *f++; break; //flags |= zero_padding; break; 1381 case '-': fprintf_format += *f++; break; //flags |= negative_field_width; break; 1382 case ' ': fprintf_format += *f++; break; //flags |= blank_space; break; 1383 case '+': fprintf_format += *f++; break; //flags |= show_sign; break; 1384 case ',': fprintf_format += *f++; break; //flags |= show_thousands_separator;break; 1385 case '{': 1386 case '[': 1387 { 1388 // We have a register name specification that can take two forms: 1389 // ${regname} or ${regname+offset} 1390 // The action is to read the register value and add the signed offset 1391 // (if any) and use that as the value to format. 1392 // $[regname] or $[regname+offset] 1393 // The action is to read the register value and add the signed offset 1394 // (if any) and use the result as an address to dereference. The size 1395 // of what is dereferenced is specified by the actual byte size that 1396 // follows the minimum field width and precision (see comments below). 1397 switch (*f) 1398 { 1399 case '{': 1400 case '[': 1401 { 1402 char open_scope_ch = *f; 1403 f++; 1404 const char *reg_name = f; 1405 size_t reg_name_length = strcspn(f, "+-}]"); 1406 if (reg_name_length > 0) 1407 { 1408 std::string register_name(reg_name, reg_name_length); 1409 f += reg_name_length; 1410 register_offset = strtoll(f, &end, 0); 1411 if (f < end) 1412 f = end; 1413 if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']')) 1414 { 1415 fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n"); 1416 return total_bytes_read; 1417 } 1418 else 1419 { 1420 f++; 1421 if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), ®ister_value)) 1422 { 1423 // Set the address to dereference using the register value plus the offset 1424 switch (register_value.info.size) 1425 { 1426 default: 1427 case 0: 1428 fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size); 1429 return total_bytes_read; 1430 1431 case 1: register_addr = register_value.value.uint8 + register_offset; break; 1432 case 2: register_addr = register_value.value.uint16 + register_offset; break; 1433 case 4: register_addr = register_value.value.uint32 + register_offset; break; 1434 case 8: register_addr = register_value.value.uint64 + register_offset; break; 1435 case 16: 1436 if (open_scope_ch == '[') 1437 { 1438 fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size); 1439 return total_bytes_read; 1440 } 1441 break; 1442 } 1443 1444 if (open_scope_ch == '{') 1445 { 1446 byte_size = register_value.info.size; 1447 is_register = true; // value is in a register 1448 1449 } 1450 else 1451 { 1452 addr = register_addr; // Use register value and offset as the address 1453 } 1454 } 1455 else 1456 { 1457 fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.8" PRIx64 "\n", register_name.c_str(), pid, tid); 1458 return total_bytes_read; 1459 } 1460 } 1461 } 1462 } 1463 break; 1464 1465 default: 1466 fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n"); 1467 return total_bytes_read; 1468 } 1469 } 1470 break; 1471 } 1472 1473 // Check for a minimum field width 1474 if (isdigit(*f)) 1475 { 1476 //min_field_width = strtoul(f, &end, 10); 1477 strtoul(f, &end, 10); 1478 if (end > f) 1479 { 1480 fprintf_format.append(f, end - f); 1481 f = end; 1482 } 1483 } 1484 1485 1486 // Check for a precision 1487 if (*f == '.') 1488 { 1489 f++; 1490 if (isdigit(*f)) 1491 { 1492 fprintf_format += '.'; 1493 //precision = strtoul(f, &end, 10); 1494 strtoul(f, &end, 10); 1495 if (end > f) 1496 { 1497 fprintf_format.append(f, end - f); 1498 f = end; 1499 } 1500 } 1501 } 1502 1503 1504 // mprintf specific: read the optional actual byte size (abs) 1505 // after the standard minimum field width (mfw) and precision (prec). 1506 // Standard printf calls you can have "mfw.prec" or ".prec", but 1507 // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice 1508 // for strings that may be in a fixed size buffer, but may not use all bytes 1509 // in that buffer for printable characters. 1510 if (*f == '.') 1511 { 1512 f++; 1513 actual_byte_size = strtoul(f, &end, 10); 1514 if (end > f) 1515 { 1516 byte_size = actual_byte_size; 1517 f = end; 1518 } 1519 } 1520 1521 // Decode the length modifiers 1522 switch (*f) 1523 { 1524 case 'h': // h and hh length modifiers 1525 fprintf_format += *f++; 1526 length_modifiers |= length_mod_h; 1527 if (*f == 'h') 1528 { 1529 fprintf_format += *f++; 1530 length_modifiers |= length_mod_hh; 1531 } 1532 break; 1533 1534 case 'l': // l and ll length modifiers 1535 fprintf_format += *f++; 1536 length_modifiers |= length_mod_l; 1537 if (*f == 'h') 1538 { 1539 fprintf_format += *f++; 1540 length_modifiers |= length_mod_ll; 1541 } 1542 break; 1543 1544 case 'L': fprintf_format += *f++; length_modifiers |= length_mod_L; break; 1545 case 'j': fprintf_format += *f++; length_modifiers |= length_mod_j; break; 1546 case 't': fprintf_format += *f++; length_modifiers |= length_mod_t; break; 1547 case 'z': fprintf_format += *f++; length_modifiers |= length_mod_z; break; 1548 case 'q': fprintf_format += *f++; length_modifiers |= length_mod_q; break; 1549 } 1550 1551 // Decode the conversion specifier 1552 switch (*f) 1553 { 1554 case '_': 1555 // mprintf specific format items 1556 { 1557 ++f; // Skip the '_' character 1558 switch (*f) 1559 { 1560 case 'a': // Print the current address 1561 ++f; 1562 fprintf_format += "ll"; 1563 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ax") 1564 fprintf (file, fprintf_format.c_str(), addr); 1565 break; 1566 case 'o': // offset from base address 1567 ++f; 1568 fprintf_format += "ll"; 1569 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ox") 1570 fprintf(file, fprintf_format.c_str(), addr - base_addr); 1571 break; 1572 default: 1573 fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f); 1574 break; 1575 } 1576 continue; 1577 } 1578 break; 1579 1580 case 'D': 1581 case 'O': 1582 case 'U': 1583 fprintf_format += *f; 1584 if (byte_size == 0) 1585 byte_size = sizeof(long int); 1586 break; 1587 1588 case 'd': 1589 case 'i': 1590 case 'o': 1591 case 'u': 1592 case 'x': 1593 case 'X': 1594 fprintf_format += *f; 1595 if (byte_size == 0) 1596 { 1597 if (length_modifiers & length_mod_hh) 1598 byte_size = sizeof(char); 1599 else if (length_modifiers & length_mod_h) 1600 byte_size = sizeof(short); 1601 else if (length_modifiers & length_mod_ll) 1602 byte_size = sizeof(long long); 1603 else if (length_modifiers & length_mod_l) 1604 byte_size = sizeof(long); 1605 else 1606 byte_size = sizeof(int); 1607 } 1608 break; 1609 1610 case 'a': 1611 case 'A': 1612 case 'f': 1613 case 'F': 1614 case 'e': 1615 case 'E': 1616 case 'g': 1617 case 'G': 1618 fprintf_format += *f; 1619 if (byte_size == 0) 1620 { 1621 if (length_modifiers & length_mod_L) 1622 byte_size = sizeof(long double); 1623 else 1624 byte_size = sizeof(double); 1625 } 1626 break; 1627 1628 case 'c': 1629 if ((length_modifiers & length_mod_l) == 0) 1630 { 1631 fprintf_format += *f; 1632 if (byte_size == 0) 1633 byte_size = sizeof(char); 1634 break; 1635 } 1636 // Fall through to 'C' modifier below... 1637 1638 case 'C': 1639 fprintf_format += *f; 1640 if (byte_size == 0) 1641 byte_size = sizeof(wchar_t); 1642 break; 1643 1644 case 's': 1645 fprintf_format += *f; 1646 if (is_register || byte_size == 0) 1647 is_string = 1; 1648 break; 1649 1650 case 'p': 1651 fprintf_format += *f; 1652 if (byte_size == 0) 1653 byte_size = sizeof(void*); 1654 break; 1655 } 1656 1657 if (is_string) 1658 { 1659 std::string mem_string; 1660 const size_t string_buf_len = 4; 1661 char string_buf[string_buf_len+1]; 1662 char *string_buf_end = string_buf + string_buf_len; 1663 string_buf[string_buf_len] = '\0'; 1664 nub_size_t bytes_read; 1665 nub_addr_t str_addr = is_register ? register_addr : addr; 1666 while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0) 1667 { 1668 // Did we get a NULL termination character yet? 1669 if (strchr(string_buf, '\0') == string_buf_end) 1670 { 1671 // no NULL terminator yet, append as a std::string 1672 mem_string.append(string_buf, string_buf_len); 1673 str_addr += string_buf_len; 1674 } 1675 else 1676 { 1677 // yep 1678 break; 1679 } 1680 } 1681 // Append as a C-string so we don't get the extra NULL 1682 // characters in the temp buffer (since it was resized) 1683 mem_string += string_buf; 1684 size_t mem_string_len = mem_string.size() + 1; 1685 fprintf(file, fprintf_format.c_str(), mem_string.c_str()); 1686 if (mem_string_len > 0) 1687 { 1688 if (!is_register) 1689 { 1690 addr += mem_string_len; 1691 total_bytes_read += mem_string_len; 1692 } 1693 } 1694 else 1695 return total_bytes_read; 1696 } 1697 else 1698 if (byte_size > 0) 1699 { 1700 buf.resize(byte_size); 1701 nub_size_t bytes_read = 0; 1702 if (is_register) 1703 bytes_read = register_value.info.size; 1704 else 1705 bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]); 1706 if (bytes_read > 0) 1707 { 1708 if (!is_register) 1709 total_bytes_read += bytes_read; 1710 1711 if (bytes_read == byte_size) 1712 { 1713 switch (*f) 1714 { 1715 case 'd': 1716 case 'i': 1717 case 'o': 1718 case 'u': 1719 case 'X': 1720 case 'x': 1721 case 'a': 1722 case 'A': 1723 case 'f': 1724 case 'F': 1725 case 'e': 1726 case 'E': 1727 case 'g': 1728 case 'G': 1729 case 'p': 1730 case 'c': 1731 case 'C': 1732 { 1733 if (is_register) 1734 data.SetData(®ister_value.value.v_uint8[0], register_value.info.size); 1735 else 1736 data.SetData(&buf[0], bytes_read); 1737 DNBDataRef::offset_t data_offset = 0; 1738 if (byte_size <= 4) 1739 { 1740 uint32_t u32 = data.GetMax32(&data_offset, byte_size); 1741 // Show the actual byte width when displaying hex 1742 fprintf(file, fprintf_format.c_str(), u32); 1743 } 1744 else if (byte_size <= 8) 1745 { 1746 uint64_t u64 = data.GetMax64(&data_offset, byte_size); 1747 // Show the actual byte width when displaying hex 1748 fprintf(file, fprintf_format.c_str(), u64); 1749 } 1750 else 1751 { 1752 fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size); 1753 } 1754 if (!is_register) 1755 addr += byte_size; 1756 } 1757 break; 1758 1759 case 's': 1760 fprintf(file, fprintf_format.c_str(), buf.c_str()); 1761 addr += byte_size; 1762 break; 1763 1764 default: 1765 fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f); 1766 break; 1767 } 1768 } 1769 } 1770 } 1771 else 1772 return total_bytes_read; 1773 } 1774 break; 1775 1776 case '\\': 1777 { 1778 f++; 1779 switch (*f) 1780 { 1781 case 'e': ch = '\e'; break; 1782 case 'a': ch = '\a'; break; 1783 case 'b': ch = '\b'; break; 1784 case 'f': ch = '\f'; break; 1785 case 'n': ch = '\n'; break; 1786 case 'r': ch = '\r'; break; 1787 case 't': ch = '\t'; break; 1788 case 'v': ch = '\v'; break; 1789 case '\'': ch = '\''; break; 1790 case '\\': ch = '\\'; break; 1791 case '0': 1792 case '1': 1793 case '2': 1794 case '3': 1795 case '4': 1796 case '5': 1797 case '6': 1798 case '7': 1799 ch = strtoul(f, &end, 8); 1800 f = end; 1801 break; 1802 default: 1803 ch = *f; 1804 break; 1805 } 1806 fputc(ch, file); 1807 } 1808 break; 1809 1810 default: 1811 fputc(ch, file); 1812 break; 1813 } 1814 } 1815 return total_bytes_read; 1816 } 1817 1818 1819 //---------------------------------------------------------------------- 1820 // Get the number of threads for the specified process. 1821 //---------------------------------------------------------------------- 1822 nub_size_t 1823 DNBProcessGetNumThreads (nub_process_t pid) 1824 { 1825 MachProcessSP procSP; 1826 if (GetProcessSP (pid, procSP)) 1827 return procSP->GetNumThreads(); 1828 return 0; 1829 } 1830 1831 //---------------------------------------------------------------------- 1832 // Get the thread ID of the current thread. 1833 //---------------------------------------------------------------------- 1834 nub_thread_t 1835 DNBProcessGetCurrentThread (nub_process_t pid) 1836 { 1837 MachProcessSP procSP; 1838 if (GetProcessSP (pid, procSP)) 1839 return procSP->GetCurrentThread(); 1840 return 0; 1841 } 1842 1843 //---------------------------------------------------------------------- 1844 // Get the mach port number of the current thread. 1845 //---------------------------------------------------------------------- 1846 nub_thread_t 1847 DNBProcessGetCurrentThreadMachPort (nub_process_t pid) 1848 { 1849 MachProcessSP procSP; 1850 if (GetProcessSP (pid, procSP)) 1851 return procSP->GetCurrentThreadMachPort(); 1852 return 0; 1853 } 1854 1855 //---------------------------------------------------------------------- 1856 // Change the current thread. 1857 //---------------------------------------------------------------------- 1858 nub_thread_t 1859 DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid) 1860 { 1861 MachProcessSP procSP; 1862 if (GetProcessSP (pid, procSP)) 1863 return procSP->SetCurrentThread (tid); 1864 return INVALID_NUB_THREAD; 1865 } 1866 1867 1868 //---------------------------------------------------------------------- 1869 // Dump a string describing a thread's stop reason to the specified file 1870 // handle 1871 //---------------------------------------------------------------------- 1872 nub_bool_t 1873 DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info) 1874 { 1875 MachProcessSP procSP; 1876 if (GetProcessSP (pid, procSP)) 1877 return procSP->GetThreadStoppedReason (tid, stop_info); 1878 return false; 1879 } 1880 1881 //---------------------------------------------------------------------- 1882 // Return string description for the specified thread. 1883 // 1884 // RETURNS: NULL if the thread isn't valid, else a NULL terminated C 1885 // string from a static buffer that must be copied prior to subsequent 1886 // calls. 1887 //---------------------------------------------------------------------- 1888 const char * 1889 DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid) 1890 { 1891 MachProcessSP procSP; 1892 if (GetProcessSP (pid, procSP)) 1893 return procSP->GetThreadInfo (tid); 1894 return NULL; 1895 } 1896 1897 //---------------------------------------------------------------------- 1898 // Get the thread ID given a thread index. 1899 //---------------------------------------------------------------------- 1900 nub_thread_t 1901 DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx) 1902 { 1903 MachProcessSP procSP; 1904 if (GetProcessSP (pid, procSP)) 1905 return procSP->GetThreadAtIndex (thread_idx); 1906 return INVALID_NUB_THREAD; 1907 } 1908 1909 //---------------------------------------------------------------------- 1910 // Do whatever is needed to sync the thread's register state with it's kernel values. 1911 //---------------------------------------------------------------------- 1912 nub_bool_t 1913 DNBProcessSyncThreadState (nub_process_t pid, nub_thread_t tid) 1914 { 1915 MachProcessSP procSP; 1916 if (GetProcessSP (pid, procSP)) 1917 return procSP->SyncThreadState (tid); 1918 return false; 1919 1920 } 1921 1922 nub_addr_t 1923 DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid) 1924 { 1925 MachProcessSP procSP; 1926 DNBError err; 1927 if (GetProcessSP (pid, procSP)) 1928 return procSP->Task().GetDYLDAllImageInfosAddress (err); 1929 return INVALID_NUB_ADDRESS; 1930 } 1931 1932 1933 nub_bool_t 1934 DNBProcessSharedLibrariesUpdated(nub_process_t pid) 1935 { 1936 MachProcessSP procSP; 1937 if (GetProcessSP (pid, procSP)) 1938 { 1939 procSP->SharedLibrariesUpdated (); 1940 return true; 1941 } 1942 return false; 1943 } 1944 1945 //---------------------------------------------------------------------- 1946 // Get the current shared library information for a process. Only return 1947 // the shared libraries that have changed since the last shared library 1948 // state changed event if only_changed is non-zero. 1949 //---------------------------------------------------------------------- 1950 nub_size_t 1951 DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos) 1952 { 1953 MachProcessSP procSP; 1954 if (GetProcessSP (pid, procSP)) 1955 return procSP->CopyImageInfos (image_infos, only_changed); 1956 1957 // If we have no process, then return NULL for the shared library info 1958 // and zero for shared library count 1959 *image_infos = NULL; 1960 return 0; 1961 } 1962 1963 //---------------------------------------------------------------------- 1964 // Get the register set information for a specific thread. 1965 //---------------------------------------------------------------------- 1966 const DNBRegisterSetInfo * 1967 DNBGetRegisterSetInfo (nub_size_t *num_reg_sets) 1968 { 1969 return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets); 1970 } 1971 1972 1973 //---------------------------------------------------------------------- 1974 // Read a register value by register set and register index. 1975 //---------------------------------------------------------------------- 1976 nub_bool_t 1977 DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value) 1978 { 1979 MachProcessSP procSP; 1980 ::bzero (value, sizeof(DNBRegisterValue)); 1981 if (GetProcessSP (pid, procSP)) 1982 { 1983 if (tid != INVALID_NUB_THREAD) 1984 return procSP->GetRegisterValue (tid, set, reg, value); 1985 } 1986 return false; 1987 } 1988 1989 nub_bool_t 1990 DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value) 1991 { 1992 if (tid != INVALID_NUB_THREAD) 1993 { 1994 MachProcessSP procSP; 1995 if (GetProcessSP (pid, procSP)) 1996 return procSP->SetRegisterValue (tid, set, reg, value); 1997 } 1998 return false; 1999 } 2000 2001 nub_size_t 2002 DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len) 2003 { 2004 MachProcessSP procSP; 2005 if (GetProcessSP (pid, procSP)) 2006 { 2007 if (tid != INVALID_NUB_THREAD) 2008 return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len); 2009 } 2010 ::bzero (buf, buf_len); 2011 return 0; 2012 2013 } 2014 2015 nub_size_t 2016 DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len) 2017 { 2018 MachProcessSP procSP; 2019 if (GetProcessSP (pid, procSP)) 2020 { 2021 if (tid != INVALID_NUB_THREAD) 2022 return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len); 2023 } 2024 return 0; 2025 } 2026 2027 uint32_t 2028 DNBThreadSaveRegisterState (nub_process_t pid, nub_thread_t tid) 2029 { 2030 if (tid != INVALID_NUB_THREAD) 2031 { 2032 MachProcessSP procSP; 2033 if (GetProcessSP (pid, procSP)) 2034 return procSP->GetThreadList().SaveRegisterState (tid); 2035 } 2036 return 0; 2037 } 2038 nub_bool_t 2039 DNBThreadRestoreRegisterState (nub_process_t pid, nub_thread_t tid, uint32_t save_id) 2040 { 2041 if (tid != INVALID_NUB_THREAD) 2042 { 2043 MachProcessSP procSP; 2044 if (GetProcessSP (pid, procSP)) 2045 return procSP->GetThreadList().RestoreRegisterState (tid, save_id); 2046 } 2047 return false; 2048 } 2049 2050 2051 2052 //---------------------------------------------------------------------- 2053 // Read a register value by name. 2054 //---------------------------------------------------------------------- 2055 nub_bool_t 2056 DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value) 2057 { 2058 MachProcessSP procSP; 2059 ::bzero (value, sizeof(DNBRegisterValue)); 2060 if (GetProcessSP (pid, procSP)) 2061 { 2062 const struct DNBRegisterSetInfo *set_info; 2063 nub_size_t num_reg_sets = 0; 2064 set_info = DNBGetRegisterSetInfo (&num_reg_sets); 2065 if (set_info) 2066 { 2067 uint32_t set = reg_set; 2068 uint32_t reg; 2069 if (set == REGISTER_SET_ALL) 2070 { 2071 for (set = 1; set < num_reg_sets; ++set) 2072 { 2073 for (reg = 0; reg < set_info[set].num_registers; ++reg) 2074 { 2075 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) 2076 return procSP->GetRegisterValue (tid, set, reg, value); 2077 } 2078 } 2079 } 2080 else 2081 { 2082 for (reg = 0; reg < set_info[set].num_registers; ++reg) 2083 { 2084 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) 2085 return procSP->GetRegisterValue (tid, set, reg, value); 2086 } 2087 } 2088 } 2089 } 2090 return false; 2091 } 2092 2093 2094 //---------------------------------------------------------------------- 2095 // Read a register set and register number from the register name. 2096 //---------------------------------------------------------------------- 2097 nub_bool_t 2098 DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info) 2099 { 2100 const struct DNBRegisterSetInfo *set_info; 2101 nub_size_t num_reg_sets = 0; 2102 set_info = DNBGetRegisterSetInfo (&num_reg_sets); 2103 if (set_info) 2104 { 2105 uint32_t set, reg; 2106 for (set = 1; set < num_reg_sets; ++set) 2107 { 2108 for (reg = 0; reg < set_info[set].num_registers; ++reg) 2109 { 2110 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) 2111 { 2112 *info = set_info[set].registers[reg]; 2113 return true; 2114 } 2115 } 2116 } 2117 2118 for (set = 1; set < num_reg_sets; ++set) 2119 { 2120 uint32_t reg; 2121 for (reg = 0; reg < set_info[set].num_registers; ++reg) 2122 { 2123 if (set_info[set].registers[reg].alt == NULL) 2124 continue; 2125 2126 if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0) 2127 { 2128 *info = set_info[set].registers[reg]; 2129 return true; 2130 } 2131 } 2132 } 2133 } 2134 2135 ::bzero (info, sizeof(DNBRegisterInfo)); 2136 return false; 2137 } 2138 2139 2140 //---------------------------------------------------------------------- 2141 // Set the name to address callback function that this nub can use 2142 // for any name to address lookups that are needed. 2143 //---------------------------------------------------------------------- 2144 nub_bool_t 2145 DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton) 2146 { 2147 MachProcessSP procSP; 2148 if (GetProcessSP (pid, procSP)) 2149 { 2150 procSP->SetNameToAddressCallback (callback, baton); 2151 return true; 2152 } 2153 return false; 2154 } 2155 2156 2157 //---------------------------------------------------------------------- 2158 // Set the name to address callback function that this nub can use 2159 // for any name to address lookups that are needed. 2160 //---------------------------------------------------------------------- 2161 nub_bool_t 2162 DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void *baton) 2163 { 2164 MachProcessSP procSP; 2165 if (GetProcessSP (pid, procSP)) 2166 { 2167 procSP->SetSharedLibraryInfoCallback (callback, baton); 2168 return true; 2169 } 2170 return false; 2171 } 2172 2173 nub_addr_t 2174 DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib) 2175 { 2176 MachProcessSP procSP; 2177 if (GetProcessSP (pid, procSP)) 2178 { 2179 return procSP->LookupSymbol (name, shlib); 2180 } 2181 return INVALID_NUB_ADDRESS; 2182 } 2183 2184 2185 nub_size_t 2186 DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size) 2187 { 2188 MachProcessSP procSP; 2189 if (GetProcessSP (pid, procSP)) 2190 return procSP->GetAvailableSTDOUT (buf, buf_size); 2191 return 0; 2192 } 2193 2194 nub_size_t 2195 DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size) 2196 { 2197 MachProcessSP procSP; 2198 if (GetProcessSP (pid, procSP)) 2199 return procSP->GetAvailableSTDERR (buf, buf_size); 2200 return 0; 2201 } 2202 2203 nub_size_t 2204 DNBProcessGetAvailableProfileData (nub_process_t pid, char *buf, nub_size_t buf_size) 2205 { 2206 MachProcessSP procSP; 2207 if (GetProcessSP (pid, procSP)) 2208 return procSP->GetAsyncProfileData (buf, buf_size); 2209 return 0; 2210 } 2211 2212 nub_size_t 2213 DNBProcessGetStopCount (nub_process_t pid) 2214 { 2215 MachProcessSP procSP; 2216 if (GetProcessSP (pid, procSP)) 2217 return procSP->StopCount(); 2218 return 0; 2219 } 2220 2221 uint32_t 2222 DNBProcessGetCPUType (nub_process_t pid) 2223 { 2224 MachProcessSP procSP; 2225 if (GetProcessSP (pid, procSP)) 2226 return procSP->GetCPUType (); 2227 return 0; 2228 2229 } 2230 2231 nub_bool_t 2232 DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size) 2233 { 2234 if (path == NULL || path[0] == '\0') 2235 return false; 2236 2237 char max_path[PATH_MAX]; 2238 std::string result; 2239 CFString::GlobPath(path, result); 2240 2241 if (result.empty()) 2242 result = path; 2243 2244 struct stat path_stat; 2245 if (::stat(path, &path_stat) == 0) 2246 { 2247 if ((path_stat.st_mode & S_IFMT) == S_IFDIR) 2248 { 2249 CFBundle bundle (path); 2250 CFReleaser<CFURLRef> url(bundle.CopyExecutableURL ()); 2251 if (url.get()) 2252 { 2253 if (::CFURLGetFileSystemRepresentation (url.get(), true, (UInt8*)resolved_path, resolved_path_size)) 2254 return true; 2255 } 2256 } 2257 } 2258 2259 if (realpath(path, max_path)) 2260 { 2261 // Found the path relatively... 2262 ::strncpy(resolved_path, max_path, resolved_path_size); 2263 return strlen(resolved_path) + 1 < resolved_path_size; 2264 } 2265 else 2266 { 2267 // Not a relative path, check the PATH environment variable if the 2268 const char *PATH = getenv("PATH"); 2269 if (PATH) 2270 { 2271 const char *curr_path_start = PATH; 2272 const char *curr_path_end; 2273 while (curr_path_start && *curr_path_start) 2274 { 2275 curr_path_end = strchr(curr_path_start, ':'); 2276 if (curr_path_end == NULL) 2277 { 2278 result.assign(curr_path_start); 2279 curr_path_start = NULL; 2280 } 2281 else if (curr_path_end > curr_path_start) 2282 { 2283 size_t len = curr_path_end - curr_path_start; 2284 result.assign(curr_path_start, len); 2285 curr_path_start += len + 1; 2286 } 2287 else 2288 break; 2289 2290 result += '/'; 2291 result += path; 2292 struct stat s; 2293 if (stat(result.c_str(), &s) == 0) 2294 { 2295 ::strncpy(resolved_path, result.c_str(), resolved_path_size); 2296 return result.size() + 1 < resolved_path_size; 2297 } 2298 } 2299 } 2300 } 2301 return false; 2302 } 2303 2304 2305 void 2306 DNBInitialize() 2307 { 2308 DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()"); 2309 #if defined (__i386__) || defined (__x86_64__) 2310 DNBArchImplI386::Initialize(); 2311 DNBArchImplX86_64::Initialize(); 2312 #elif defined (__arm__) || defined (__arm64__) 2313 DNBArchMachARM::Initialize(); 2314 DNBArchMachARM64::Initialize(); 2315 #endif 2316 } 2317 2318 void 2319 DNBTerminate() 2320 { 2321 } 2322 2323 nub_bool_t 2324 DNBSetArchitecture (const char *arch) 2325 { 2326 if (arch && arch[0]) 2327 { 2328 if (strcasecmp (arch, "i386") == 0) 2329 return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386); 2330 else if ((strcasecmp (arch, "x86_64") == 0) || (strcasecmp (arch, "x86_64h") == 0)) 2331 return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64); 2332 else if (strstr (arch, "arm64") == arch || strstr (arch, "armv8") == arch) 2333 return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM64); 2334 else if (strstr (arch, "arm") == arch) 2335 return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM); 2336 } 2337 return false; 2338 } 2339