1 #include <atomic> 2 #include <chrono> 3 #include <cstdlib> 4 #include <cstring> 5 #include <errno.h> 6 #include <inttypes.h> 7 #include <memory> 8 #include <mutex> 9 #if !defined(_WIN32) 10 #include <pthread.h> 11 #include <signal.h> 12 #include <unistd.h> 13 #endif 14 #include "thread.h" 15 #include <setjmp.h> 16 #include <stdint.h> 17 #include <stdio.h> 18 #include <string.h> 19 #include <string> 20 #include <thread> 21 #include <time.h> 22 #include <vector> 23 #if defined(__APPLE__) 24 #include <TargetConditionals.h> 25 #endif 26 27 static const char *const PRINT_PID_COMMAND = "print-pid"; 28 29 static bool g_print_thread_ids = false; 30 static std::mutex g_print_mutex; 31 static bool g_threads_do_segfault = false; 32 33 static std::mutex g_jump_buffer_mutex; 34 static jmp_buf g_jump_buffer; 35 static bool g_is_segfaulting = false; 36 37 static char g_message[256]; 38 39 static volatile char g_c1 = '0'; 40 static volatile char g_c2 = '1'; 41 42 static void print_pid() { 43 #if defined(_WIN32) 44 fprintf(stderr, "PID: %d\n", ::GetCurrentProcessId()); 45 #else 46 fprintf(stderr, "PID: %d\n", getpid()); 47 #endif 48 } 49 50 static void signal_handler(int signo) { 51 #if defined(_WIN32) 52 // No signal support on Windows. 53 #else 54 const char *signal_name = nullptr; 55 switch (signo) { 56 case SIGUSR1: 57 signal_name = "SIGUSR1"; 58 break; 59 case SIGSEGV: 60 signal_name = "SIGSEGV"; 61 break; 62 default: 63 signal_name = nullptr; 64 } 65 66 // Print notice that we received the signal on a given thread. 67 char buf[100]; 68 if (signal_name) 69 snprintf(buf, sizeof(buf), "received %s on thread id: %" PRIx64 "\n", signal_name, get_thread_id()); 70 else 71 snprintf(buf, sizeof(buf), "received signo %d (%s) on thread id: %" PRIx64 "\n", signo, strsignal(signo), get_thread_id()); 72 write(STDOUT_FILENO, buf, strlen(buf)); 73 74 // Reset the signal handler if we're one of the expected signal handlers. 75 switch (signo) { 76 case SIGSEGV: 77 if (g_is_segfaulting) { 78 // Fix up the pointer we're writing to. This needs to happen if nothing 79 // intercepts the SIGSEGV (i.e. if somebody runs this from the command 80 // line). 81 longjmp(g_jump_buffer, 1); 82 } 83 break; 84 case SIGUSR1: 85 if (g_is_segfaulting) { 86 // Fix up the pointer we're writing to. This is used to test gdb remote 87 // signal delivery. A SIGSEGV will be raised when the thread is created, 88 // switched out for a SIGUSR1, and then this code still needs to fix the 89 // seg fault. (i.e. if somebody runs this from the command line). 90 longjmp(g_jump_buffer, 1); 91 } 92 break; 93 } 94 95 // Reset the signal handler. 96 sig_t sig_result = signal(signo, signal_handler); 97 if (sig_result == SIG_ERR) { 98 fprintf(stderr, "failed to set signal handler: errno=%d\n", errno); 99 exit(1); 100 } 101 #endif 102 } 103 104 static void swap_chars() { 105 #if defined(__x86_64__) || defined(__i386__) 106 asm volatile("movb %1, (%2)\n\t" 107 "movb %0, (%3)\n\t" 108 "movb %0, (%2)\n\t" 109 "movb %1, (%3)\n\t" 110 : 111 : "i"('0'), "i"('1'), "r"(&g_c1), "r"(&g_c2) 112 : "memory"); 113 #elif defined(__aarch64__) 114 asm volatile("strb %w1, [%2]\n\t" 115 "strb %w0, [%3]\n\t" 116 "strb %w0, [%2]\n\t" 117 "strb %w1, [%3]\n\t" 118 : 119 : "r"('0'), "r"('1'), "r"(&g_c1), "r"(&g_c2) 120 : "memory"); 121 #elif defined(__arm__) 122 asm volatile("strb %1, [%2]\n\t" 123 "strb %0, [%3]\n\t" 124 "strb %0, [%2]\n\t" 125 "strb %1, [%3]\n\t" 126 : 127 : "r"('0'), "r"('1'), "r"(&g_c1), "r"(&g_c2) 128 : "memory"); 129 #else 130 #warning This may generate unpredictible assembly and cause the single-stepping test to fail. 131 #warning Please add appropriate assembly for your target. 132 g_c1 = '1'; 133 g_c2 = '0'; 134 135 g_c1 = '0'; 136 g_c2 = '1'; 137 #endif 138 } 139 140 static void hello() { 141 std::lock_guard<std::mutex> lock(g_print_mutex); 142 printf("hello, world\n"); 143 } 144 145 static void *thread_func(void *arg) { 146 static std::atomic<int> s_thread_index(1); 147 const int this_thread_index = s_thread_index++; 148 if (g_print_thread_ids) { 149 std::lock_guard<std::mutex> lock(g_print_mutex); 150 printf("thread %d id: %" PRIx64 "\n", this_thread_index, get_thread_id()); 151 } 152 153 if (g_threads_do_segfault) { 154 // Sleep for a number of seconds based on the thread index. 155 // TODO add ability to send commands to test exe so we can 156 // handle timing more precisely. This is clunky. All we're 157 // trying to do is add predictability as to the timing of 158 // signal generation by created threads. 159 int sleep_seconds = 2 * (this_thread_index - 1); 160 std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds)); 161 162 // Test creating a SEGV. 163 { 164 std::lock_guard<std::mutex> lock(g_jump_buffer_mutex); 165 g_is_segfaulting = true; 166 int *bad_p = nullptr; 167 if (setjmp(g_jump_buffer) == 0) { 168 // Force a seg fault signal on this thread. 169 *bad_p = 0; 170 } else { 171 // Tell the system we're no longer seg faulting. 172 // Used by the SIGUSR1 signal handler that we inject 173 // in place of the SIGSEGV so it only tries to 174 // recover from the SIGSEGV if this seg fault code 175 // was in play. 176 g_is_segfaulting = false; 177 } 178 } 179 180 { 181 std::lock_guard<std::mutex> lock(g_print_mutex); 182 printf("thread %" PRIx64 ": past SIGSEGV\n", get_thread_id()); 183 } 184 } 185 186 int sleep_seconds_remaining = 60; 187 std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds_remaining)); 188 189 return nullptr; 190 } 191 192 static bool consume_front(std::string &str, const std::string &front) { 193 if (str.find(front) != 0) 194 return false; 195 196 str = str.substr(front.size()); 197 return true; 198 } 199 200 int main(int argc, char **argv) { 201 lldb_enable_attach(); 202 203 std::vector<std::thread> threads; 204 std::unique_ptr<uint8_t[]> heap_array_up; 205 int return_value = 0; 206 207 #if !defined(_WIN32) 208 // Set the signal handler. 209 sig_t sig_result = signal(SIGALRM, signal_handler); 210 if (sig_result == SIG_ERR) { 211 fprintf(stderr, "failed to set SIGALRM signal handler: errno=%d\n", errno); 212 exit(1); 213 } 214 215 sig_result = signal(SIGUSR1, signal_handler); 216 if (sig_result == SIG_ERR) { 217 fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno); 218 exit(1); 219 } 220 221 sig_result = signal(SIGSEGV, signal_handler); 222 if (sig_result == SIG_ERR) { 223 fprintf(stderr, "failed to set SIGSEGV handler: errno=%d\n", errno); 224 exit(1); 225 } 226 227 sig_result = signal(SIGCHLD, SIG_IGN); 228 if (sig_result == SIG_ERR) { 229 fprintf(stderr, "failed to set SIGCHLD handler: errno=%d\n", errno); 230 exit(1); 231 } 232 #endif 233 234 // Process command line args. 235 for (int i = 1; i < argc; ++i) { 236 std::string arg = argv[i]; 237 if (consume_front(arg, "stderr:")) { 238 // Treat remainder as text to go to stderr. 239 fprintf(stderr, "%s\n", arg.c_str()); 240 } else if (consume_front(arg, "retval:")) { 241 // Treat as the return value for the program. 242 return_value = std::atoi(arg.c_str()); 243 } else if (consume_front(arg, "sleep:")) { 244 // Treat as the amount of time to have this process sleep (in seconds). 245 int sleep_seconds_remaining = std::atoi(arg.c_str()); 246 247 // Loop around, sleeping until all sleep time is used up. Note that 248 // signals will cause sleep to end early with the number of seconds 249 // remaining. 250 std::this_thread::sleep_for( 251 std::chrono::seconds(sleep_seconds_remaining)); 252 253 } else if (consume_front(arg, "set-message:")) { 254 // Copy the contents after "set-message:" to the g_message buffer. 255 // Used for reading inferior memory and verifying contents match 256 // expectations. 257 strncpy(g_message, arg.c_str(), sizeof(g_message)); 258 259 // Ensure we're null terminated. 260 g_message[sizeof(g_message) - 1] = '\0'; 261 262 } else if (consume_front(arg, "print-message:")) { 263 std::lock_guard<std::mutex> lock(g_print_mutex); 264 printf("message: %s\n", g_message); 265 } else if (consume_front(arg, "get-data-address-hex:")) { 266 volatile void *data_p = nullptr; 267 268 if (arg == "g_message") 269 data_p = &g_message[0]; 270 else if (arg == "g_c1") 271 data_p = &g_c1; 272 else if (arg == "g_c2") 273 data_p = &g_c2; 274 275 std::lock_guard<std::mutex> lock(g_print_mutex); 276 printf("data address: %p\n", data_p); 277 } else if (consume_front(arg, "get-heap-address-hex:")) { 278 // Create a byte array if not already present. 279 if (!heap_array_up) 280 heap_array_up.reset(new uint8_t[32]); 281 282 std::lock_guard<std::mutex> lock(g_print_mutex); 283 printf("heap address: %p\n", heap_array_up.get()); 284 285 } else if (consume_front(arg, "get-stack-address-hex:")) { 286 std::lock_guard<std::mutex> lock(g_print_mutex); 287 printf("stack address: %p\n", &return_value); 288 } else if (consume_front(arg, "get-code-address-hex:")) { 289 void (*func_p)() = nullptr; 290 291 if (arg == "hello") 292 func_p = hello; 293 else if (arg == "swap_chars") 294 func_p = swap_chars; 295 296 std::lock_guard<std::mutex> lock(g_print_mutex); 297 printf("code address: %p\n", func_p); 298 } else if (consume_front(arg, "call-function:")) { 299 void (*func_p)() = nullptr; 300 301 if (arg == "hello") 302 func_p = hello; 303 else if (arg == "swap_chars") 304 func_p = swap_chars; 305 func_p(); 306 #if !defined(_WIN32) && !defined(TARGET_OS_WATCH) && !defined(TARGET_OS_TV) 307 } else if (arg == "fork") { 308 if (fork() == 0) 309 _exit(0); 310 } else if (arg == "vfork") { 311 if (vfork() == 0) 312 _exit(0); 313 #endif 314 } else if (consume_front(arg, "thread:new")) { 315 threads.push_back(std::thread(thread_func, nullptr)); 316 } else if (consume_front(arg, "thread:print-ids")) { 317 // Turn on thread id announcing. 318 g_print_thread_ids = true; 319 320 // And announce us. 321 { 322 std::lock_guard<std::mutex> lock(g_print_mutex); 323 printf("thread 0 id: %" PRIx64 "\n", get_thread_id()); 324 } 325 } else if (consume_front(arg, "thread:segfault")) { 326 g_threads_do_segfault = true; 327 } else if (consume_front(arg, "print-pid")) { 328 print_pid(); 329 } else if (consume_front(arg, "print-env:")) { 330 // Print the value of specified envvar to stdout. 331 const char *value = getenv(arg.c_str()); 332 printf("%s\n", value ? value : "__unset__"); 333 } else { 334 // Treat the argument as text for stdout. 335 printf("%s\n", argv[i]); 336 } 337 } 338 339 // If we launched any threads, join them 340 for (std::vector<std::thread>::iterator it = threads.begin(); 341 it != threads.end(); ++it) 342 it->join(); 343 344 return return_value; 345 } 346