1 //===-- DataExtractor.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Utility/DataExtractor.h" 10 11 #include "lldb/lldb-defines.h" 12 #include "lldb/lldb-enumerations.h" 13 #include "lldb/lldb-forward.h" 14 #include "lldb/lldb-types.h" 15 16 #include "lldb/Utility/DataBuffer.h" 17 #include "lldb/Utility/DataBufferHeap.h" 18 #include "lldb/Utility/Endian.h" 19 #include "lldb/Utility/LLDBAssert.h" 20 #include "lldb/Utility/Log.h" 21 #include "lldb/Utility/Stream.h" 22 #include "lldb/Utility/StreamString.h" 23 #include "lldb/Utility/UUID.h" 24 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/MD5.h" 28 #include "llvm/Support/MathExtras.h" 29 30 #include <algorithm> 31 #include <array> 32 #include <cassert> 33 #include <cstdint> 34 #include <string> 35 36 #include <ctype.h> 37 #include <inttypes.h> 38 #include <string.h> 39 40 using namespace lldb; 41 using namespace lldb_private; 42 43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) { 44 uint16_t value; 45 memcpy(&value, ptr + offset, 2); 46 return value; 47 } 48 49 static inline uint32_t ReadInt32(const unsigned char *ptr, 50 offset_t offset = 0) { 51 uint32_t value; 52 memcpy(&value, ptr + offset, 4); 53 return value; 54 } 55 56 static inline uint64_t ReadInt64(const unsigned char *ptr, 57 offset_t offset = 0) { 58 uint64_t value; 59 memcpy(&value, ptr + offset, 8); 60 return value; 61 } 62 63 static inline uint16_t ReadInt16(const void *ptr) { 64 uint16_t value; 65 memcpy(&value, ptr, 2); 66 return value; 67 } 68 69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr, 70 offset_t offset) { 71 uint16_t value; 72 memcpy(&value, ptr + offset, 2); 73 return llvm::ByteSwap_16(value); 74 } 75 76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr, 77 offset_t offset) { 78 uint32_t value; 79 memcpy(&value, ptr + offset, 4); 80 return llvm::ByteSwap_32(value); 81 } 82 83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr, 84 offset_t offset) { 85 uint64_t value; 86 memcpy(&value, ptr + offset, 8); 87 return llvm::ByteSwap_64(value); 88 } 89 90 static inline uint16_t ReadSwapInt16(const void *ptr) { 91 uint16_t value; 92 memcpy(&value, ptr, 2); 93 return llvm::ByteSwap_16(value); 94 } 95 96 static inline uint32_t ReadSwapInt32(const void *ptr) { 97 uint32_t value; 98 memcpy(&value, ptr, 4); 99 return llvm::ByteSwap_32(value); 100 } 101 102 static inline uint64_t ReadSwapInt64(const void *ptr) { 103 uint64_t value; 104 memcpy(&value, ptr, 8); 105 return llvm::ByteSwap_64(value); 106 } 107 108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size, 109 ByteOrder byte_order) { 110 uint64_t res = 0; 111 if (byte_order == eByteOrderBig) 112 for (size_t i = 0; i < byte_size; ++i) 113 res = (res << 8) | data[i]; 114 else { 115 assert(byte_order == eByteOrderLittle); 116 for (size_t i = 0; i < byte_size; ++i) 117 res = (res << 8) | data[byte_size - 1 - i]; 118 } 119 return res; 120 } 121 122 DataExtractor::DataExtractor() 123 : m_start(nullptr), m_end(nullptr), 124 m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)), 125 m_data_sp(), m_target_byte_size(1) {} 126 127 // This constructor allows us to use data that is owned by someone else. The 128 // data must stay around as long as this object is valid. 129 DataExtractor::DataExtractor(const void *data, offset_t length, 130 ByteOrder endian, uint32_t addr_size, 131 uint32_t target_byte_size /*=1*/) 132 : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))), 133 m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length), 134 m_byte_order(endian), m_addr_size(addr_size), m_data_sp(), 135 m_target_byte_size(target_byte_size) { 136 assert(addr_size == 4 || addr_size == 8); 137 } 138 139 // Make a shared pointer reference to the shared data in "data_sp" and set the 140 // endian swapping setting to "swap", and the address size to "addr_size". The 141 // shared data reference will ensure the data lives as long as any 142 // DataExtractor objects exist that have a reference to this data. 143 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian, 144 uint32_t addr_size, 145 uint32_t target_byte_size /*=1*/) 146 : m_start(nullptr), m_end(nullptr), m_byte_order(endian), 147 m_addr_size(addr_size), m_data_sp(), 148 m_target_byte_size(target_byte_size) { 149 assert(addr_size == 4 || addr_size == 8); 150 SetData(data_sp); 151 } 152 153 // Initialize this object with a subset of the data bytes in "data". If "data" 154 // contains shared data, then a reference to this shared data will added and 155 // the shared data will stay around as long as any object contains a reference 156 // to that data. The endian swap and address size settings are copied from 157 // "data". 158 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset, 159 offset_t length, uint32_t target_byte_size /*=1*/) 160 : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order), 161 m_addr_size(data.m_addr_size), m_data_sp(), 162 m_target_byte_size(target_byte_size) { 163 assert(m_addr_size == 4 || m_addr_size == 8); 164 if (data.ValidOffset(offset)) { 165 offset_t bytes_available = data.GetByteSize() - offset; 166 if (length > bytes_available) 167 length = bytes_available; 168 SetData(data, offset, length); 169 } 170 } 171 172 DataExtractor::DataExtractor(const DataExtractor &rhs) 173 : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order), 174 m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp), 175 m_target_byte_size(rhs.m_target_byte_size) { 176 assert(m_addr_size == 4 || m_addr_size == 8); 177 } 178 179 // Assignment operator 180 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) { 181 if (this != &rhs) { 182 m_start = rhs.m_start; 183 m_end = rhs.m_end; 184 m_byte_order = rhs.m_byte_order; 185 m_addr_size = rhs.m_addr_size; 186 m_data_sp = rhs.m_data_sp; 187 } 188 return *this; 189 } 190 191 DataExtractor::~DataExtractor() = default; 192 193 // Clears the object contents back to a default invalid state, and release any 194 // references to shared data that this object may contain. 195 void DataExtractor::Clear() { 196 m_start = nullptr; 197 m_end = nullptr; 198 m_byte_order = endian::InlHostByteOrder(); 199 m_addr_size = sizeof(void *); 200 m_data_sp.reset(); 201 } 202 203 // If this object contains shared data, this function returns the offset into 204 // that shared data. Else zero is returned. 205 size_t DataExtractor::GetSharedDataOffset() const { 206 if (m_start != nullptr) { 207 const DataBuffer *data = m_data_sp.get(); 208 if (data != nullptr) { 209 const uint8_t *data_bytes = data->GetBytes(); 210 if (data_bytes != nullptr) { 211 assert(m_start >= data_bytes); 212 return m_start - data_bytes; 213 } 214 } 215 } 216 return 0; 217 } 218 219 // Set the data with which this object will extract from to data starting at 220 // BYTES and set the length of the data to LENGTH bytes long. The data is 221 // externally owned must be around at least as long as this object points to 222 // the data. No copy of the data is made, this object just refers to this data 223 // and can extract from it. If this object refers to any shared data upon 224 // entry, the reference to that data will be released. Is SWAP is set to true, 225 // any data extracted will be endian swapped. 226 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length, 227 ByteOrder endian) { 228 m_byte_order = endian; 229 m_data_sp.reset(); 230 if (bytes == nullptr || length == 0) { 231 m_start = nullptr; 232 m_end = nullptr; 233 } else { 234 m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes)); 235 m_end = m_start + length; 236 } 237 return GetByteSize(); 238 } 239 240 // Assign the data for this object to be a subrange in "data" starting 241 // "data_offset" bytes into "data" and ending "data_length" bytes later. If 242 // "data_offset" is not a valid offset into "data", then this object will 243 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too 244 // large, the length will be capped at the number of bytes remaining in "data". 245 // If "data" contains a shared pointer to other data, then a ref counted 246 // pointer to that data will be made in this object. If "data" doesn't contain 247 // a shared pointer to data, then the bytes referred to in "data" will need to 248 // exist at least as long as this object refers to those bytes. The address 249 // size and endian swap settings are copied from the current values in "data". 250 lldb::offset_t DataExtractor::SetData(const DataExtractor &data, 251 offset_t data_offset, 252 offset_t data_length) { 253 m_addr_size = data.m_addr_size; 254 assert(m_addr_size == 4 || m_addr_size == 8); 255 // If "data" contains shared pointer to data, then we can use that 256 if (data.m_data_sp) { 257 m_byte_order = data.m_byte_order; 258 return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, 259 data_length); 260 } 261 262 // We have a DataExtractor object that just has a pointer to bytes 263 if (data.ValidOffset(data_offset)) { 264 if (data_length > data.GetByteSize() - data_offset) 265 data_length = data.GetByteSize() - data_offset; 266 return SetData(data.GetDataStart() + data_offset, data_length, 267 data.GetByteOrder()); 268 } 269 return 0; 270 } 271 272 // Assign the data for this object to be a subrange of the shared data in 273 // "data_sp" starting "data_offset" bytes into "data_sp" and ending 274 // "data_length" bytes later. If "data_offset" is not a valid offset into 275 // "data_sp", then this object will contain no bytes. If "data_offset" is 276 // within "data_sp" yet "data_length" is too large, the length will be capped 277 // at the number of bytes remaining in "data_sp". A ref counted pointer to the 278 // data in "data_sp" will be made in this object IF the number of bytes this 279 // object refers to in greater than zero (if at least one byte was available 280 // starting at "data_offset") to ensure the data stays around as long as it is 281 // needed. The address size and endian swap settings will remain unchanged from 282 // their current settings. 283 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp, 284 offset_t data_offset, 285 offset_t data_length) { 286 m_start = m_end = nullptr; 287 288 if (data_length > 0) { 289 m_data_sp = data_sp; 290 if (data_sp) { 291 const size_t data_size = data_sp->GetByteSize(); 292 if (data_offset < data_size) { 293 m_start = data_sp->GetBytes() + data_offset; 294 const size_t bytes_left = data_size - data_offset; 295 // Cap the length of we asked for too many 296 if (data_length <= bytes_left) 297 m_end = m_start + data_length; // We got all the bytes we wanted 298 else 299 m_end = m_start + bytes_left; // Not all the bytes requested were 300 // available in the shared data 301 } 302 } 303 } 304 305 size_t new_size = GetByteSize(); 306 307 // Don't hold a shared pointer to the data buffer if we don't share any valid 308 // bytes in the shared buffer. 309 if (new_size == 0) 310 m_data_sp.reset(); 311 312 return new_size; 313 } 314 315 // Extract a single unsigned char from the binary data and update the offset 316 // pointed to by "offset_ptr". 317 // 318 // RETURNS the byte that was extracted, or zero on failure. 319 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const { 320 const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1)); 321 if (data) 322 return *data; 323 return 0; 324 } 325 326 // Extract "count" unsigned chars from the binary data and update the offset 327 // pointed to by "offset_ptr". The extracted data is copied into "dst". 328 // 329 // RETURNS the non-nullptr buffer pointer upon successful extraction of 330 // all the requested bytes, or nullptr when the data is not available in the 331 // buffer due to being out of bounds, or insufficient data. 332 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst, 333 uint32_t count) const { 334 const uint8_t *data = 335 static_cast<const uint8_t *>(GetData(offset_ptr, count)); 336 if (data) { 337 // Copy the data into the buffer 338 memcpy(dst, data, count); 339 // Return a non-nullptr pointer to the converted data as an indicator of 340 // success 341 return dst; 342 } 343 return nullptr; 344 } 345 346 // Extract a single uint16_t from the data and update the offset pointed to by 347 // "offset_ptr". 348 // 349 // RETURNS the uint16_t that was extracted, or zero on failure. 350 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const { 351 uint16_t val = 0; 352 const uint8_t *data = 353 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val))); 354 if (data) { 355 if (m_byte_order != endian::InlHostByteOrder()) 356 val = ReadSwapInt16(data); 357 else 358 val = ReadInt16(data); 359 } 360 return val; 361 } 362 363 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const { 364 uint16_t val; 365 if (m_byte_order == endian::InlHostByteOrder()) 366 val = ReadInt16(m_start, *offset_ptr); 367 else 368 val = ReadSwapInt16(m_start, *offset_ptr); 369 *offset_ptr += sizeof(val); 370 return val; 371 } 372 373 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const { 374 uint32_t val; 375 if (m_byte_order == endian::InlHostByteOrder()) 376 val = ReadInt32(m_start, *offset_ptr); 377 else 378 val = ReadSwapInt32(m_start, *offset_ptr); 379 *offset_ptr += sizeof(val); 380 return val; 381 } 382 383 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const { 384 uint64_t val; 385 if (m_byte_order == endian::InlHostByteOrder()) 386 val = ReadInt64(m_start, *offset_ptr); 387 else 388 val = ReadSwapInt64(m_start, *offset_ptr); 389 *offset_ptr += sizeof(val); 390 return val; 391 } 392 393 // Extract "count" uint16_t values from the binary data and update the offset 394 // pointed to by "offset_ptr". The extracted data is copied into "dst". 395 // 396 // RETURNS the non-nullptr buffer pointer upon successful extraction of 397 // all the requested bytes, or nullptr when the data is not available in the 398 // buffer due to being out of bounds, or insufficient data. 399 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst, 400 uint32_t count) const { 401 const size_t src_size = sizeof(uint16_t) * count; 402 const uint16_t *src = 403 static_cast<const uint16_t *>(GetData(offset_ptr, src_size)); 404 if (src) { 405 if (m_byte_order != endian::InlHostByteOrder()) { 406 uint16_t *dst_pos = static_cast<uint16_t *>(void_dst); 407 uint16_t *dst_end = dst_pos + count; 408 const uint16_t *src_pos = src; 409 while (dst_pos < dst_end) { 410 *dst_pos = ReadSwapInt16(src_pos); 411 ++dst_pos; 412 ++src_pos; 413 } 414 } else { 415 memcpy(void_dst, src, src_size); 416 } 417 // Return a non-nullptr pointer to the converted data as an indicator of 418 // success 419 return void_dst; 420 } 421 return nullptr; 422 } 423 424 // Extract a single uint32_t from the data and update the offset pointed to by 425 // "offset_ptr". 426 // 427 // RETURNS the uint32_t that was extracted, or zero on failure. 428 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const { 429 uint32_t val = 0; 430 const uint8_t *data = 431 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val))); 432 if (data) { 433 if (m_byte_order != endian::InlHostByteOrder()) { 434 val = ReadSwapInt32(data); 435 } else { 436 memcpy(&val, data, 4); 437 } 438 } 439 return val; 440 } 441 442 // Extract "count" uint32_t values from the binary data and update the offset 443 // pointed to by "offset_ptr". The extracted data is copied into "dst". 444 // 445 // RETURNS the non-nullptr buffer pointer upon successful extraction of 446 // all the requested bytes, or nullptr when the data is not available in the 447 // buffer due to being out of bounds, or insufficient data. 448 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst, 449 uint32_t count) const { 450 const size_t src_size = sizeof(uint32_t) * count; 451 const uint32_t *src = 452 static_cast<const uint32_t *>(GetData(offset_ptr, src_size)); 453 if (src) { 454 if (m_byte_order != endian::InlHostByteOrder()) { 455 uint32_t *dst_pos = static_cast<uint32_t *>(void_dst); 456 uint32_t *dst_end = dst_pos + count; 457 const uint32_t *src_pos = src; 458 while (dst_pos < dst_end) { 459 *dst_pos = ReadSwapInt32(src_pos); 460 ++dst_pos; 461 ++src_pos; 462 } 463 } else { 464 memcpy(void_dst, src, src_size); 465 } 466 // Return a non-nullptr pointer to the converted data as an indicator of 467 // success 468 return void_dst; 469 } 470 return nullptr; 471 } 472 473 // Extract a single uint64_t from the data and update the offset pointed to by 474 // "offset_ptr". 475 // 476 // RETURNS the uint64_t that was extracted, or zero on failure. 477 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const { 478 uint64_t val = 0; 479 const uint8_t *data = 480 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val))); 481 if (data) { 482 if (m_byte_order != endian::InlHostByteOrder()) { 483 val = ReadSwapInt64(data); 484 } else { 485 memcpy(&val, data, 8); 486 } 487 } 488 return val; 489 } 490 491 // GetU64 492 // 493 // Get multiple consecutive 64 bit values. Return true if the entire read 494 // succeeds and increment the offset pointed to by offset_ptr, else return 495 // false and leave the offset pointed to by offset_ptr unchanged. 496 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst, 497 uint32_t count) const { 498 const size_t src_size = sizeof(uint64_t) * count; 499 const uint64_t *src = 500 static_cast<const uint64_t *>(GetData(offset_ptr, src_size)); 501 if (src) { 502 if (m_byte_order != endian::InlHostByteOrder()) { 503 uint64_t *dst_pos = static_cast<uint64_t *>(void_dst); 504 uint64_t *dst_end = dst_pos + count; 505 const uint64_t *src_pos = src; 506 while (dst_pos < dst_end) { 507 *dst_pos = ReadSwapInt64(src_pos); 508 ++dst_pos; 509 ++src_pos; 510 } 511 } else { 512 memcpy(void_dst, src, src_size); 513 } 514 // Return a non-nullptr pointer to the converted data as an indicator of 515 // success 516 return void_dst; 517 } 518 return nullptr; 519 } 520 521 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr, 522 size_t byte_size) const { 523 lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!"); 524 return GetMaxU64(offset_ptr, byte_size); 525 } 526 527 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr, 528 size_t byte_size) const { 529 lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!"); 530 switch (byte_size) { 531 case 1: 532 return GetU8(offset_ptr); 533 case 2: 534 return GetU16(offset_ptr); 535 case 4: 536 return GetU32(offset_ptr); 537 case 8: 538 return GetU64(offset_ptr); 539 default: { 540 // General case. 541 const uint8_t *data = 542 static_cast<const uint8_t *>(GetData(offset_ptr, byte_size)); 543 if (data == nullptr) 544 return 0; 545 return ReadMaxInt64(data, byte_size, m_byte_order); 546 } 547 } 548 return 0; 549 } 550 551 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr, 552 size_t byte_size) const { 553 switch (byte_size) { 554 case 1: 555 return GetU8_unchecked(offset_ptr); 556 case 2: 557 return GetU16_unchecked(offset_ptr); 558 case 4: 559 return GetU32_unchecked(offset_ptr); 560 case 8: 561 return GetU64_unchecked(offset_ptr); 562 default: { 563 uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order); 564 *offset_ptr += byte_size; 565 return res; 566 } 567 } 568 return 0; 569 } 570 571 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const { 572 uint64_t u64 = GetMaxU64(offset_ptr, byte_size); 573 return llvm::SignExtend64(u64, 8 * byte_size); 574 } 575 576 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size, 577 uint32_t bitfield_bit_size, 578 uint32_t bitfield_bit_offset) const { 579 assert(bitfield_bit_size <= 64); 580 uint64_t uval64 = GetMaxU64(offset_ptr, size); 581 582 if (bitfield_bit_size == 0) 583 return uval64; 584 585 int32_t lsbcount = bitfield_bit_offset; 586 if (m_byte_order == eByteOrderBig) 587 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; 588 589 if (lsbcount > 0) 590 uval64 >>= lsbcount; 591 592 uint64_t bitfield_mask = 593 (bitfield_bit_size == 64 594 ? std::numeric_limits<uint64_t>::max() 595 : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1)); 596 if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64) 597 return uval64; 598 599 uval64 &= bitfield_mask; 600 601 return uval64; 602 } 603 604 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size, 605 uint32_t bitfield_bit_size, 606 uint32_t bitfield_bit_offset) const { 607 assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1"); 608 assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8"); 609 int64_t sval64 = GetMaxS64(offset_ptr, size); 610 if (bitfield_bit_size == 0) 611 return sval64; 612 int32_t lsbcount = bitfield_bit_offset; 613 if (m_byte_order == eByteOrderBig) 614 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; 615 if (lsbcount > 0) 616 sval64 >>= lsbcount; 617 uint64_t bitfield_mask = llvm::maskTrailingOnes<uint64_t>(bitfield_bit_size); 618 sval64 &= bitfield_mask; 619 // sign extend if needed 620 if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1))) 621 sval64 |= ~bitfield_mask; 622 return sval64; 623 } 624 625 float DataExtractor::GetFloat(offset_t *offset_ptr) const { 626 typedef float float_type; 627 float_type val = 0.0; 628 const size_t src_size = sizeof(float_type); 629 const float_type *src = 630 static_cast<const float_type *>(GetData(offset_ptr, src_size)); 631 if (src) { 632 if (m_byte_order != endian::InlHostByteOrder()) { 633 const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src); 634 uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val); 635 for (size_t i = 0; i < sizeof(float_type); ++i) 636 dst_data[sizeof(float_type) - 1 - i] = src_data[i]; 637 } else { 638 val = *src; 639 } 640 } 641 return val; 642 } 643 644 double DataExtractor::GetDouble(offset_t *offset_ptr) const { 645 typedef double float_type; 646 float_type val = 0.0; 647 const size_t src_size = sizeof(float_type); 648 const float_type *src = 649 static_cast<const float_type *>(GetData(offset_ptr, src_size)); 650 if (src) { 651 if (m_byte_order != endian::InlHostByteOrder()) { 652 const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src); 653 uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val); 654 for (size_t i = 0; i < sizeof(float_type); ++i) 655 dst_data[sizeof(float_type) - 1 - i] = src_data[i]; 656 } else { 657 val = *src; 658 } 659 } 660 return val; 661 } 662 663 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const { 664 long double val = 0.0; 665 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \ 666 defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64) 667 *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val), 668 endian::InlHostByteOrder()); 669 #else 670 *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val, 671 sizeof(val), endian::InlHostByteOrder()); 672 #endif 673 return val; 674 } 675 676 // Extract a single address from the data and update the offset pointed to by 677 // "offset_ptr". The size of the extracted address comes from the 678 // "this->m_addr_size" member variable and should be set correctly prior to 679 // extracting any address values. 680 // 681 // RETURNS the address that was extracted, or zero on failure. 682 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const { 683 assert(m_addr_size == 4 || m_addr_size == 8); 684 return GetMaxU64(offset_ptr, m_addr_size); 685 } 686 687 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const { 688 assert(m_addr_size == 4 || m_addr_size == 8); 689 return GetMaxU64_unchecked(offset_ptr, m_addr_size); 690 } 691 692 // Extract a single pointer from the data and update the offset pointed to by 693 // "offset_ptr". The size of the extracted pointer comes from the 694 // "this->m_addr_size" member variable and should be set correctly prior to 695 // extracting any pointer values. 696 // 697 // RETURNS the pointer that was extracted, or zero on failure. 698 uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const { 699 assert(m_addr_size == 4 || m_addr_size == 8); 700 return GetMaxU64(offset_ptr, m_addr_size); 701 } 702 703 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length, 704 ByteOrder dst_byte_order, void *dst) const { 705 const uint8_t *src = PeekData(offset, length); 706 if (src) { 707 if (dst_byte_order != GetByteOrder()) { 708 // Validate that only a word- or register-sized dst is byte swapped 709 assert(length == 1 || length == 2 || length == 4 || length == 8 || 710 length == 10 || length == 16 || length == 32); 711 712 for (uint32_t i = 0; i < length; ++i) 713 (static_cast<uint8_t *>(dst))[i] = src[length - i - 1]; 714 } else 715 ::memcpy(dst, src, length); 716 return length; 717 } 718 return 0; 719 } 720 721 // Extract data as it exists in target memory 722 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length, 723 void *dst) const { 724 const uint8_t *src = PeekData(offset, length); 725 if (src) { 726 ::memcpy(dst, src, length); 727 return length; 728 } 729 return 0; 730 } 731 732 // Extract data and swap if needed when doing the copy 733 lldb::offset_t 734 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len, 735 void *dst_void_ptr, offset_t dst_len, 736 ByteOrder dst_byte_order) const { 737 // Validate the source info 738 if (!ValidOffsetForDataOfSize(src_offset, src_len)) 739 assert(ValidOffsetForDataOfSize(src_offset, src_len)); 740 assert(src_len > 0); 741 assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle); 742 743 // Validate the destination info 744 assert(dst_void_ptr != nullptr); 745 assert(dst_len > 0); 746 assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle); 747 748 // Validate that only a word- or register-sized dst is byte swapped 749 assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 || 750 dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 || 751 dst_len == 32); 752 753 // Must have valid byte orders set in this object and for destination 754 if (!(dst_byte_order == eByteOrderBig || 755 dst_byte_order == eByteOrderLittle) || 756 !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle)) 757 return 0; 758 759 uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr); 760 const uint8_t *src = PeekData(src_offset, src_len); 761 if (src) { 762 if (dst_len >= src_len) { 763 // We are copying the entire value from src into dst. Calculate how many, 764 // if any, zeroes we need for the most significant bytes if "dst_len" is 765 // greater than "src_len"... 766 const size_t num_zeroes = dst_len - src_len; 767 if (dst_byte_order == eByteOrderBig) { 768 // Big endian, so we lead with zeroes... 769 if (num_zeroes > 0) 770 ::memset(dst, 0, num_zeroes); 771 // Then either copy or swap the rest 772 if (m_byte_order == eByteOrderBig) { 773 ::memcpy(dst + num_zeroes, src, src_len); 774 } else { 775 for (uint32_t i = 0; i < src_len; ++i) 776 dst[i + num_zeroes] = src[src_len - 1 - i]; 777 } 778 } else { 779 // Little endian destination, so we lead the value bytes 780 if (m_byte_order == eByteOrderBig) { 781 for (uint32_t i = 0; i < src_len; ++i) 782 dst[i] = src[src_len - 1 - i]; 783 } else { 784 ::memcpy(dst, src, src_len); 785 } 786 // And zero the rest... 787 if (num_zeroes > 0) 788 ::memset(dst + src_len, 0, num_zeroes); 789 } 790 return src_len; 791 } else { 792 // We are only copying some of the value from src into dst.. 793 794 if (dst_byte_order == eByteOrderBig) { 795 // Big endian dst 796 if (m_byte_order == eByteOrderBig) { 797 // Big endian dst, with big endian src 798 ::memcpy(dst, src + (src_len - dst_len), dst_len); 799 } else { 800 // Big endian dst, with little endian src 801 for (uint32_t i = 0; i < dst_len; ++i) 802 dst[i] = src[dst_len - 1 - i]; 803 } 804 } else { 805 // Little endian dst 806 if (m_byte_order == eByteOrderBig) { 807 // Little endian dst, with big endian src 808 for (uint32_t i = 0; i < dst_len; ++i) 809 dst[i] = src[src_len - 1 - i]; 810 } else { 811 // Little endian dst, with big endian src 812 ::memcpy(dst, src, dst_len); 813 } 814 } 815 return dst_len; 816 } 817 } 818 return 0; 819 } 820 821 // Extracts a variable length NULL terminated C string from the data at the 822 // offset pointed to by "offset_ptr". The "offset_ptr" will be updated with 823 // the offset of the byte that follows the NULL terminator byte. 824 // 825 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is 826 // non-zero and there aren't enough available bytes, nullptr will be returned 827 // and "offset_ptr" will not be updated. 828 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const { 829 const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1)); 830 // Already at the end of the data. 831 if (!start) 832 return nullptr; 833 834 const char *end = reinterpret_cast<const char *>(m_end); 835 836 // Check all bytes for a null terminator that terminates a C string. 837 const char *terminator_or_end = std::find(start, end, '\0'); 838 839 // We didn't find a null terminator, so return nullptr to indicate that there 840 // is no valid C string at that offset. 841 if (terminator_or_end == end) 842 return nullptr; 843 844 // Update offset_ptr for the caller to point to the data behind the 845 // terminator (which is 1 byte long). 846 *offset_ptr += (terminator_or_end - start + 1UL); 847 return start; 848 } 849 850 // Extracts a NULL terminated C string from the fixed length field of length 851 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be 852 // updated with the offset of the byte that follows the fixed length field. 853 // 854 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset 855 // plus the length of the field is out of bounds, or if the field does not 856 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr" 857 // will not be updated. 858 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const { 859 const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len)); 860 if (cstr != nullptr) { 861 if (memchr(cstr, '\0', len) == nullptr) { 862 return nullptr; 863 } 864 *offset_ptr += len; 865 return cstr; 866 } 867 return nullptr; 868 } 869 870 // Peeks at a string in the contained data. No verification is done to make 871 // sure the entire string lies within the bounds of this object's data, only 872 // "offset" is verified to be a valid offset. 873 // 874 // Returns a valid C string pointer if "offset" is a valid offset in this 875 // object's data, else nullptr is returned. 876 const char *DataExtractor::PeekCStr(offset_t offset) const { 877 return reinterpret_cast<const char *>(PeekData(offset, 1)); 878 } 879 880 // Extracts an unsigned LEB128 number from this object's data starting at the 881 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr" 882 // will be updated with the offset of the byte following the last extracted 883 // byte. 884 // 885 // Returned the extracted integer value. 886 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const { 887 const uint8_t *src = PeekData(*offset_ptr, 1); 888 if (src == nullptr) 889 return 0; 890 891 const uint8_t *end = m_end; 892 893 if (src < end) { 894 uint64_t result = *src++; 895 if (result >= 0x80) { 896 result &= 0x7f; 897 int shift = 7; 898 while (src < end) { 899 uint8_t byte = *src++; 900 result |= static_cast<uint64_t>(byte & 0x7f) << shift; 901 if ((byte & 0x80) == 0) 902 break; 903 shift += 7; 904 } 905 } 906 *offset_ptr = src - m_start; 907 return result; 908 } 909 910 return 0; 911 } 912 913 // Extracts an signed LEB128 number from this object's data starting at the 914 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr" 915 // will be updated with the offset of the byte following the last extracted 916 // byte. 917 // 918 // Returned the extracted integer value. 919 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const { 920 const uint8_t *src = PeekData(*offset_ptr, 1); 921 if (src == nullptr) 922 return 0; 923 924 const uint8_t *end = m_end; 925 926 if (src < end) { 927 int64_t result = 0; 928 int shift = 0; 929 int size = sizeof(int64_t) * 8; 930 931 uint8_t byte = 0; 932 int bytecount = 0; 933 934 while (src < end) { 935 bytecount++; 936 byte = *src++; 937 result |= static_cast<int64_t>(byte & 0x7f) << shift; 938 shift += 7; 939 if ((byte & 0x80) == 0) 940 break; 941 } 942 943 // Sign bit of byte is 2nd high order bit (0x40) 944 if (shift < size && (byte & 0x40)) 945 result |= -(1 << shift); 946 947 *offset_ptr += bytecount; 948 return result; 949 } 950 return 0; 951 } 952 953 // Skips a ULEB128 number (signed or unsigned) from this object's data starting 954 // at the offset pointed to by "offset_ptr". The offset pointed to by 955 // "offset_ptr" will be updated with the offset of the byte following the last 956 // extracted byte. 957 // 958 // Returns the number of bytes consumed during the extraction. 959 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const { 960 uint32_t bytes_consumed = 0; 961 const uint8_t *src = PeekData(*offset_ptr, 1); 962 if (src == nullptr) 963 return 0; 964 965 const uint8_t *end = m_end; 966 967 if (src < end) { 968 const uint8_t *src_pos = src; 969 while ((src_pos < end) && (*src_pos++ & 0x80)) 970 ++bytes_consumed; 971 *offset_ptr += src_pos - src; 972 } 973 return bytes_consumed; 974 } 975 976 // Dumps bytes from this object's data to the stream "s" starting 977 // "start_offset" bytes into this data, and ending with the byte before 978 // "end_offset". "base_addr" will be added to the offset into the dumped data 979 // when showing the offset into the data in the output information. 980 // "num_per_line" objects of type "type" will be dumped with the option to 981 // override the format for each object with "type_format". "type_format" is a 982 // printf style formatting string. If "type_format" is nullptr, then an 983 // appropriate format string will be used for the supplied "type". If the 984 // stream "s" is nullptr, then the output will be send to Log(). 985 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset, 986 offset_t length, uint64_t base_addr, 987 uint32_t num_per_line, 988 DataExtractor::Type type) const { 989 if (log == nullptr) 990 return start_offset; 991 992 offset_t offset; 993 offset_t end_offset; 994 uint32_t count; 995 StreamString sstr; 996 for (offset = start_offset, end_offset = offset + length, count = 0; 997 ValidOffset(offset) && offset < end_offset; ++count) { 998 if ((count % num_per_line) == 0) { 999 // Print out any previous string 1000 if (sstr.GetSize() > 0) { 1001 log->PutString(sstr.GetString()); 1002 sstr.Clear(); 1003 } 1004 // Reset string offset and fill the current line string with address: 1005 if (base_addr != LLDB_INVALID_ADDRESS) 1006 sstr.Printf("0x%8.8" PRIx64 ":", 1007 static_cast<uint64_t>(base_addr + (offset - start_offset))); 1008 } 1009 1010 switch (type) { 1011 case TypeUInt8: 1012 sstr.Printf(" %2.2x", GetU8(&offset)); 1013 break; 1014 case TypeChar: { 1015 char ch = GetU8(&offset); 1016 sstr.Printf(" %c", isprint(ch) ? ch : ' '); 1017 } break; 1018 case TypeUInt16: 1019 sstr.Printf(" %4.4x", GetU16(&offset)); 1020 break; 1021 case TypeUInt32: 1022 sstr.Printf(" %8.8x", GetU32(&offset)); 1023 break; 1024 case TypeUInt64: 1025 sstr.Printf(" %16.16" PRIx64, GetU64(&offset)); 1026 break; 1027 case TypePointer: 1028 sstr.Printf(" 0x%" PRIx64, GetAddress(&offset)); 1029 break; 1030 case TypeULEB128: 1031 sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset)); 1032 break; 1033 case TypeSLEB128: 1034 sstr.Printf(" %" PRId64, GetSLEB128(&offset)); 1035 break; 1036 } 1037 } 1038 1039 if (!sstr.Empty()) 1040 log->PutString(sstr.GetString()); 1041 1042 return offset; // Return the offset at which we ended up 1043 } 1044 1045 size_t DataExtractor::Copy(DataExtractor &dest_data) const { 1046 if (m_data_sp) { 1047 // we can pass along the SP to the data 1048 dest_data.SetData(m_data_sp); 1049 } else { 1050 const uint8_t *base_ptr = m_start; 1051 size_t data_size = GetByteSize(); 1052 dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size))); 1053 } 1054 return GetByteSize(); 1055 } 1056 1057 bool DataExtractor::Append(DataExtractor &rhs) { 1058 if (rhs.GetByteOrder() != GetByteOrder()) 1059 return false; 1060 1061 if (rhs.GetByteSize() == 0) 1062 return true; 1063 1064 if (GetByteSize() == 0) 1065 return (rhs.Copy(*this) > 0); 1066 1067 size_t bytes = GetByteSize() + rhs.GetByteSize(); 1068 1069 DataBufferHeap *buffer_heap_ptr = nullptr; 1070 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); 1071 1072 if (!buffer_sp || buffer_heap_ptr == nullptr) 1073 return false; 1074 1075 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); 1076 1077 memcpy(bytes_ptr, GetDataStart(), GetByteSize()); 1078 memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize()); 1079 1080 SetData(buffer_sp); 1081 1082 return true; 1083 } 1084 1085 bool DataExtractor::Append(void *buf, offset_t length) { 1086 if (buf == nullptr) 1087 return false; 1088 1089 if (length == 0) 1090 return true; 1091 1092 size_t bytes = GetByteSize() + length; 1093 1094 DataBufferHeap *buffer_heap_ptr = nullptr; 1095 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); 1096 1097 if (!buffer_sp || buffer_heap_ptr == nullptr) 1098 return false; 1099 1100 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); 1101 1102 if (GetByteSize() > 0) 1103 memcpy(bytes_ptr, GetDataStart(), GetByteSize()); 1104 1105 memcpy(bytes_ptr + GetByteSize(), buf, length); 1106 1107 SetData(buffer_sp); 1108 1109 return true; 1110 } 1111 1112 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest, 1113 uint64_t max_data) { 1114 if (max_data == 0) 1115 max_data = GetByteSize(); 1116 else 1117 max_data = std::min(max_data, GetByteSize()); 1118 1119 llvm::MD5 md5; 1120 1121 const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data); 1122 md5.update(data); 1123 1124 llvm::MD5::MD5Result result; 1125 md5.final(result); 1126 1127 dest.clear(); 1128 dest.append(result.Bytes.begin(), result.Bytes.end()); 1129 } 1130