1 //===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Utility/DataExtractor.h" 10 11 #include "lldb/lldb-defines.h" 12 #include "lldb/lldb-enumerations.h" 13 #include "lldb/lldb-forward.h" 14 #include "lldb/lldb-types.h" 15 16 #include "lldb/Utility/DataBuffer.h" 17 #include "lldb/Utility/DataBufferHeap.h" 18 #include "lldb/Utility/Endian.h" 19 #include "lldb/Utility/LLDBAssert.h" 20 #include "lldb/Utility/Log.h" 21 #include "lldb/Utility/Stream.h" 22 #include "lldb/Utility/StreamString.h" 23 #include "lldb/Utility/UUID.h" 24 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/MD5.h" 28 #include "llvm/Support/MathExtras.h" 29 30 #include <algorithm> 31 #include <array> 32 #include <cassert> 33 #include <cstdint> 34 #include <string> 35 36 #include <ctype.h> 37 #include <inttypes.h> 38 #include <string.h> 39 40 using namespace lldb; 41 using namespace lldb_private; 42 43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) { 44 uint16_t value; 45 memcpy(&value, ptr + offset, 2); 46 return value; 47 } 48 49 static inline uint32_t ReadInt32(const unsigned char *ptr, 50 offset_t offset = 0) { 51 uint32_t value; 52 memcpy(&value, ptr + offset, 4); 53 return value; 54 } 55 56 static inline uint64_t ReadInt64(const unsigned char *ptr, 57 offset_t offset = 0) { 58 uint64_t value; 59 memcpy(&value, ptr + offset, 8); 60 return value; 61 } 62 63 static inline uint16_t ReadInt16(const void *ptr) { 64 uint16_t value; 65 memcpy(&value, ptr, 2); 66 return value; 67 } 68 69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr, 70 offset_t offset) { 71 uint16_t value; 72 memcpy(&value, ptr + offset, 2); 73 return llvm::ByteSwap_16(value); 74 } 75 76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr, 77 offset_t offset) { 78 uint32_t value; 79 memcpy(&value, ptr + offset, 4); 80 return llvm::ByteSwap_32(value); 81 } 82 83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr, 84 offset_t offset) { 85 uint64_t value; 86 memcpy(&value, ptr + offset, 8); 87 return llvm::ByteSwap_64(value); 88 } 89 90 static inline uint16_t ReadSwapInt16(const void *ptr) { 91 uint16_t value; 92 memcpy(&value, ptr, 2); 93 return llvm::ByteSwap_16(value); 94 } 95 96 static inline uint32_t ReadSwapInt32(const void *ptr) { 97 uint32_t value; 98 memcpy(&value, ptr, 4); 99 return llvm::ByteSwap_32(value); 100 } 101 102 static inline uint64_t ReadSwapInt64(const void *ptr) { 103 uint64_t value; 104 memcpy(&value, ptr, 8); 105 return llvm::ByteSwap_64(value); 106 } 107 108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size, 109 ByteOrder byte_order) { 110 uint64_t res = 0; 111 if (byte_order == eByteOrderBig) 112 for (size_t i = 0; i < byte_size; ++i) 113 res = (res << 8) | data[i]; 114 else { 115 assert(byte_order == eByteOrderLittle); 116 for (size_t i = 0; i < byte_size; ++i) 117 res = (res << 8) | data[byte_size - 1 - i]; 118 } 119 return res; 120 } 121 122 DataExtractor::DataExtractor() 123 : m_start(nullptr), m_end(nullptr), 124 m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)), 125 m_data_sp(), m_target_byte_size(1) {} 126 127 // This constructor allows us to use data that is owned by someone else. The 128 // data must stay around as long as this object is valid. 129 DataExtractor::DataExtractor(const void *data, offset_t length, 130 ByteOrder endian, uint32_t addr_size, 131 uint32_t target_byte_size /*=1*/) 132 : m_start(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data))), 133 m_end(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data)) + 134 length), 135 m_byte_order(endian), m_addr_size(addr_size), m_data_sp(), 136 m_target_byte_size(target_byte_size) { 137 assert(addr_size == 4 || addr_size == 8); 138 } 139 140 // Make a shared pointer reference to the shared data in "data_sp" and set the 141 // endian swapping setting to "swap", and the address size to "addr_size". The 142 // shared data reference will ensure the data lives as long as any 143 // DataExtractor objects exist that have a reference to this data. 144 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian, 145 uint32_t addr_size, 146 uint32_t target_byte_size /*=1*/) 147 : m_start(nullptr), m_end(nullptr), m_byte_order(endian), 148 m_addr_size(addr_size), m_data_sp(), 149 m_target_byte_size(target_byte_size) { 150 assert(addr_size == 4 || addr_size == 8); 151 SetData(data_sp); 152 } 153 154 // Initialize this object with a subset of the data bytes in "data". If "data" 155 // contains shared data, then a reference to this shared data will added and 156 // the shared data will stay around as long as any object contains a reference 157 // to that data. The endian swap and address size settings are copied from 158 // "data". 159 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset, 160 offset_t length, uint32_t target_byte_size /*=1*/) 161 : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order), 162 m_addr_size(data.m_addr_size), m_data_sp(), 163 m_target_byte_size(target_byte_size) { 164 assert(m_addr_size == 4 || m_addr_size == 8); 165 if (data.ValidOffset(offset)) { 166 offset_t bytes_available = data.GetByteSize() - offset; 167 if (length > bytes_available) 168 length = bytes_available; 169 SetData(data, offset, length); 170 } 171 } 172 173 DataExtractor::DataExtractor(const DataExtractor &rhs) 174 : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order), 175 m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp), 176 m_target_byte_size(rhs.m_target_byte_size) { 177 assert(m_addr_size == 4 || m_addr_size == 8); 178 } 179 180 // Assignment operator 181 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) { 182 if (this != &rhs) { 183 m_start = rhs.m_start; 184 m_end = rhs.m_end; 185 m_byte_order = rhs.m_byte_order; 186 m_addr_size = rhs.m_addr_size; 187 m_data_sp = rhs.m_data_sp; 188 } 189 return *this; 190 } 191 192 DataExtractor::~DataExtractor() = default; 193 194 // Clears the object contents back to a default invalid state, and release any 195 // references to shared data that this object may contain. 196 void DataExtractor::Clear() { 197 m_start = nullptr; 198 m_end = nullptr; 199 m_byte_order = endian::InlHostByteOrder(); 200 m_addr_size = sizeof(void *); 201 m_data_sp.reset(); 202 } 203 204 // If this object contains shared data, this function returns the offset into 205 // that shared data. Else zero is returned. 206 size_t DataExtractor::GetSharedDataOffset() const { 207 if (m_start != nullptr) { 208 const DataBuffer *data = m_data_sp.get(); 209 if (data != nullptr) { 210 const uint8_t *data_bytes = data->GetBytes(); 211 if (data_bytes != nullptr) { 212 assert(m_start >= data_bytes); 213 return m_start - data_bytes; 214 } 215 } 216 } 217 return 0; 218 } 219 220 // Set the data with which this object will extract from to data starting at 221 // BYTES and set the length of the data to LENGTH bytes long. The data is 222 // externally owned must be around at least as long as this object points to 223 // the data. No copy of the data is made, this object just refers to this data 224 // and can extract from it. If this object refers to any shared data upon 225 // entry, the reference to that data will be released. Is SWAP is set to true, 226 // any data extracted will be endian swapped. 227 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length, 228 ByteOrder endian) { 229 m_byte_order = endian; 230 m_data_sp.reset(); 231 if (bytes == nullptr || length == 0) { 232 m_start = nullptr; 233 m_end = nullptr; 234 } else { 235 m_start = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(bytes)); 236 m_end = m_start + length; 237 } 238 return GetByteSize(); 239 } 240 241 // Assign the data for this object to be a subrange in "data" starting 242 // "data_offset" bytes into "data" and ending "data_length" bytes later. If 243 // "data_offset" is not a valid offset into "data", then this object will 244 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too 245 // large, the length will be capped at the number of bytes remaining in "data". 246 // If "data" contains a shared pointer to other data, then a ref counted 247 // pointer to that data will be made in this object. If "data" doesn't contain 248 // a shared pointer to data, then the bytes referred to in "data" will need to 249 // exist at least as long as this object refers to those bytes. The address 250 // size and endian swap settings are copied from the current values in "data". 251 lldb::offset_t DataExtractor::SetData(const DataExtractor &data, 252 offset_t data_offset, 253 offset_t data_length) { 254 m_addr_size = data.m_addr_size; 255 assert(m_addr_size == 4 || m_addr_size == 8); 256 // If "data" contains shared pointer to data, then we can use that 257 if (data.m_data_sp) { 258 m_byte_order = data.m_byte_order; 259 return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, 260 data_length); 261 } 262 263 // We have a DataExtractor object that just has a pointer to bytes 264 if (data.ValidOffset(data_offset)) { 265 if (data_length > data.GetByteSize() - data_offset) 266 data_length = data.GetByteSize() - data_offset; 267 return SetData(data.GetDataStart() + data_offset, data_length, 268 data.GetByteOrder()); 269 } 270 return 0; 271 } 272 273 // Assign the data for this object to be a subrange of the shared data in 274 // "data_sp" starting "data_offset" bytes into "data_sp" and ending 275 // "data_length" bytes later. If "data_offset" is not a valid offset into 276 // "data_sp", then this object will contain no bytes. If "data_offset" is 277 // within "data_sp" yet "data_length" is too large, the length will be capped 278 // at the number of bytes remaining in "data_sp". A ref counted pointer to the 279 // data in "data_sp" will be made in this object IF the number of bytes this 280 // object refers to in greater than zero (if at least one byte was available 281 // starting at "data_offset") to ensure the data stays around as long as it is 282 // needed. The address size and endian swap settings will remain unchanged from 283 // their current settings. 284 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp, 285 offset_t data_offset, 286 offset_t data_length) { 287 m_start = m_end = nullptr; 288 289 if (data_length > 0) { 290 m_data_sp = data_sp; 291 if (data_sp) { 292 const size_t data_size = data_sp->GetByteSize(); 293 if (data_offset < data_size) { 294 m_start = data_sp->GetBytes() + data_offset; 295 const size_t bytes_left = data_size - data_offset; 296 // Cap the length of we asked for too many 297 if (data_length <= bytes_left) 298 m_end = m_start + data_length; // We got all the bytes we wanted 299 else 300 m_end = m_start + bytes_left; // Not all the bytes requested were 301 // available in the shared data 302 } 303 } 304 } 305 306 size_t new_size = GetByteSize(); 307 308 // Don't hold a shared pointer to the data buffer if we don't share any valid 309 // bytes in the shared buffer. 310 if (new_size == 0) 311 m_data_sp.reset(); 312 313 return new_size; 314 } 315 316 // Extract a single unsigned char from the binary data and update the offset 317 // pointed to by "offset_ptr". 318 // 319 // RETURNS the byte that was extracted, or zero on failure. 320 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const { 321 const uint8_t *data = (const uint8_t *)GetData(offset_ptr, 1); 322 if (data) 323 return *data; 324 return 0; 325 } 326 327 // Extract "count" unsigned chars from the binary data and update the offset 328 // pointed to by "offset_ptr". The extracted data is copied into "dst". 329 // 330 // RETURNS the non-nullptr buffer pointer upon successful extraction of 331 // all the requested bytes, or nullptr when the data is not available in the 332 // buffer due to being out of bounds, or insufficient data. 333 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst, 334 uint32_t count) const { 335 const uint8_t *data = (const uint8_t *)GetData(offset_ptr, count); 336 if (data) { 337 // Copy the data into the buffer 338 memcpy(dst, data, count); 339 // Return a non-nullptr pointer to the converted data as an indicator of 340 // success 341 return dst; 342 } 343 return nullptr; 344 } 345 346 // Extract a single uint16_t from the data and update the offset pointed to by 347 // "offset_ptr". 348 // 349 // RETURNS the uint16_t that was extracted, or zero on failure. 350 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const { 351 uint16_t val = 0; 352 const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); 353 if (data) { 354 if (m_byte_order != endian::InlHostByteOrder()) 355 val = ReadSwapInt16(data); 356 else 357 val = ReadInt16(data); 358 } 359 return val; 360 } 361 362 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const { 363 uint16_t val; 364 if (m_byte_order == endian::InlHostByteOrder()) 365 val = ReadInt16(m_start, *offset_ptr); 366 else 367 val = ReadSwapInt16(m_start, *offset_ptr); 368 *offset_ptr += sizeof(val); 369 return val; 370 } 371 372 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const { 373 uint32_t val; 374 if (m_byte_order == endian::InlHostByteOrder()) 375 val = ReadInt32(m_start, *offset_ptr); 376 else 377 val = ReadSwapInt32(m_start, *offset_ptr); 378 *offset_ptr += sizeof(val); 379 return val; 380 } 381 382 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const { 383 uint64_t val; 384 if (m_byte_order == endian::InlHostByteOrder()) 385 val = ReadInt64(m_start, *offset_ptr); 386 else 387 val = ReadSwapInt64(m_start, *offset_ptr); 388 *offset_ptr += sizeof(val); 389 return val; 390 } 391 392 // Extract "count" uint16_t values from the binary data and update the offset 393 // pointed to by "offset_ptr". The extracted data is copied into "dst". 394 // 395 // RETURNS the non-nullptr buffer pointer upon successful extraction of 396 // all the requested bytes, or nullptr when the data is not available in the 397 // buffer due to being out of bounds, or insufficient data. 398 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst, 399 uint32_t count) const { 400 const size_t src_size = sizeof(uint16_t) * count; 401 const uint16_t *src = (const uint16_t *)GetData(offset_ptr, src_size); 402 if (src) { 403 if (m_byte_order != endian::InlHostByteOrder()) { 404 uint16_t *dst_pos = (uint16_t *)void_dst; 405 uint16_t *dst_end = dst_pos + count; 406 const uint16_t *src_pos = src; 407 while (dst_pos < dst_end) { 408 *dst_pos = ReadSwapInt16(src_pos); 409 ++dst_pos; 410 ++src_pos; 411 } 412 } else { 413 memcpy(void_dst, src, src_size); 414 } 415 // Return a non-nullptr pointer to the converted data as an indicator of 416 // success 417 return void_dst; 418 } 419 return nullptr; 420 } 421 422 // Extract a single uint32_t from the data and update the offset pointed to by 423 // "offset_ptr". 424 // 425 // RETURNS the uint32_t that was extracted, or zero on failure. 426 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const { 427 uint32_t val = 0; 428 const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); 429 if (data) { 430 if (m_byte_order != endian::InlHostByteOrder()) { 431 val = ReadSwapInt32(data); 432 } else { 433 memcpy(&val, data, 4); 434 } 435 } 436 return val; 437 } 438 439 // Extract "count" uint32_t values from the binary data and update the offset 440 // pointed to by "offset_ptr". The extracted data is copied into "dst". 441 // 442 // RETURNS the non-nullptr buffer pointer upon successful extraction of 443 // all the requested bytes, or nullptr when the data is not available in the 444 // buffer due to being out of bounds, or insufficient data. 445 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst, 446 uint32_t count) const { 447 const size_t src_size = sizeof(uint32_t) * count; 448 const uint32_t *src = (const uint32_t *)GetData(offset_ptr, src_size); 449 if (src) { 450 if (m_byte_order != endian::InlHostByteOrder()) { 451 uint32_t *dst_pos = (uint32_t *)void_dst; 452 uint32_t *dst_end = dst_pos + count; 453 const uint32_t *src_pos = src; 454 while (dst_pos < dst_end) { 455 *dst_pos = ReadSwapInt32(src_pos); 456 ++dst_pos; 457 ++src_pos; 458 } 459 } else { 460 memcpy(void_dst, src, src_size); 461 } 462 // Return a non-nullptr pointer to the converted data as an indicator of 463 // success 464 return void_dst; 465 } 466 return nullptr; 467 } 468 469 // Extract a single uint64_t from the data and update the offset pointed to by 470 // "offset_ptr". 471 // 472 // RETURNS the uint64_t that was extracted, or zero on failure. 473 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const { 474 uint64_t val = 0; 475 const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); 476 if (data) { 477 if (m_byte_order != endian::InlHostByteOrder()) { 478 val = ReadSwapInt64(data); 479 } else { 480 memcpy(&val, data, 8); 481 } 482 } 483 return val; 484 } 485 486 // GetU64 487 // 488 // Get multiple consecutive 64 bit values. Return true if the entire read 489 // succeeds and increment the offset pointed to by offset_ptr, else return 490 // false and leave the offset pointed to by offset_ptr unchanged. 491 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst, 492 uint32_t count) const { 493 const size_t src_size = sizeof(uint64_t) * count; 494 const uint64_t *src = (const uint64_t *)GetData(offset_ptr, src_size); 495 if (src) { 496 if (m_byte_order != endian::InlHostByteOrder()) { 497 uint64_t *dst_pos = (uint64_t *)void_dst; 498 uint64_t *dst_end = dst_pos + count; 499 const uint64_t *src_pos = src; 500 while (dst_pos < dst_end) { 501 *dst_pos = ReadSwapInt64(src_pos); 502 ++dst_pos; 503 ++src_pos; 504 } 505 } else { 506 memcpy(void_dst, src, src_size); 507 } 508 // Return a non-nullptr pointer to the converted data as an indicator of 509 // success 510 return void_dst; 511 } 512 return nullptr; 513 } 514 515 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr, 516 size_t byte_size) const { 517 lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!"); 518 return GetMaxU64(offset_ptr, byte_size); 519 } 520 521 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr, 522 size_t byte_size) const { 523 lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!"); 524 switch (byte_size) { 525 case 1: 526 return GetU8(offset_ptr); 527 case 2: 528 return GetU16(offset_ptr); 529 case 4: 530 return GetU32(offset_ptr); 531 case 8: 532 return GetU64(offset_ptr); 533 default: { 534 // General case. 535 const uint8_t *data = 536 static_cast<const uint8_t *>(GetData(offset_ptr, byte_size)); 537 if (data == nullptr) 538 return 0; 539 return ReadMaxInt64(data, byte_size, m_byte_order); 540 } 541 } 542 return 0; 543 } 544 545 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr, 546 size_t byte_size) const { 547 switch (byte_size) { 548 case 1: 549 return GetU8_unchecked(offset_ptr); 550 case 2: 551 return GetU16_unchecked(offset_ptr); 552 case 4: 553 return GetU32_unchecked(offset_ptr); 554 case 8: 555 return GetU64_unchecked(offset_ptr); 556 default: { 557 uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order); 558 *offset_ptr += byte_size; 559 return res; 560 } 561 } 562 return 0; 563 } 564 565 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const { 566 uint64_t u64 = GetMaxU64(offset_ptr, byte_size); 567 return llvm::SignExtend64(u64, 8 * byte_size); 568 } 569 570 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size, 571 uint32_t bitfield_bit_size, 572 uint32_t bitfield_bit_offset) const { 573 uint64_t uval64 = GetMaxU64(offset_ptr, size); 574 if (bitfield_bit_size > 0) { 575 int32_t lsbcount = bitfield_bit_offset; 576 if (m_byte_order == eByteOrderBig) 577 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; 578 if (lsbcount > 0) 579 uval64 >>= lsbcount; 580 uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1); 581 if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64) 582 return uval64; 583 uval64 &= bitfield_mask; 584 } 585 return uval64; 586 } 587 588 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size, 589 uint32_t bitfield_bit_size, 590 uint32_t bitfield_bit_offset) const { 591 int64_t sval64 = GetMaxS64(offset_ptr, size); 592 if (bitfield_bit_size > 0) { 593 int32_t lsbcount = bitfield_bit_offset; 594 if (m_byte_order == eByteOrderBig) 595 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; 596 if (lsbcount > 0) 597 sval64 >>= lsbcount; 598 uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1; 599 sval64 &= bitfield_mask; 600 // sign extend if needed 601 if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1))) 602 sval64 |= ~bitfield_mask; 603 } 604 return sval64; 605 } 606 607 float DataExtractor::GetFloat(offset_t *offset_ptr) const { 608 typedef float float_type; 609 float_type val = 0.0; 610 const size_t src_size = sizeof(float_type); 611 const float_type *src = (const float_type *)GetData(offset_ptr, src_size); 612 if (src) { 613 if (m_byte_order != endian::InlHostByteOrder()) { 614 const uint8_t *src_data = (const uint8_t *)src; 615 uint8_t *dst_data = (uint8_t *)&val; 616 for (size_t i = 0; i < sizeof(float_type); ++i) 617 dst_data[sizeof(float_type) - 1 - i] = src_data[i]; 618 } else { 619 val = *src; 620 } 621 } 622 return val; 623 } 624 625 double DataExtractor::GetDouble(offset_t *offset_ptr) const { 626 typedef double float_type; 627 float_type val = 0.0; 628 const size_t src_size = sizeof(float_type); 629 const float_type *src = (const float_type *)GetData(offset_ptr, src_size); 630 if (src) { 631 if (m_byte_order != endian::InlHostByteOrder()) { 632 const uint8_t *src_data = (const uint8_t *)src; 633 uint8_t *dst_data = (uint8_t *)&val; 634 for (size_t i = 0; i < sizeof(float_type); ++i) 635 dst_data[sizeof(float_type) - 1 - i] = src_data[i]; 636 } else { 637 val = *src; 638 } 639 } 640 return val; 641 } 642 643 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const { 644 long double val = 0.0; 645 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \ 646 defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64) 647 *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val), 648 endian::InlHostByteOrder()); 649 #else 650 *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val, 651 sizeof(val), endian::InlHostByteOrder()); 652 #endif 653 return val; 654 } 655 656 // Extract a single address from the data and update the offset pointed to by 657 // "offset_ptr". The size of the extracted address comes from the 658 // "this->m_addr_size" member variable and should be set correctly prior to 659 // extracting any address values. 660 // 661 // RETURNS the address that was extracted, or zero on failure. 662 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const { 663 assert(m_addr_size == 4 || m_addr_size == 8); 664 return GetMaxU64(offset_ptr, m_addr_size); 665 } 666 667 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const { 668 assert(m_addr_size == 4 || m_addr_size == 8); 669 return GetMaxU64_unchecked(offset_ptr, m_addr_size); 670 } 671 672 // Extract a single pointer from the data and update the offset pointed to by 673 // "offset_ptr". The size of the extracted pointer comes from the 674 // "this->m_addr_size" member variable and should be set correctly prior to 675 // extracting any pointer values. 676 // 677 // RETURNS the pointer that was extracted, or zero on failure. 678 uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const { 679 assert(m_addr_size == 4 || m_addr_size == 8); 680 return GetMaxU64(offset_ptr, m_addr_size); 681 } 682 683 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length, 684 ByteOrder dst_byte_order, void *dst) const { 685 const uint8_t *src = PeekData(offset, length); 686 if (src) { 687 if (dst_byte_order != GetByteOrder()) { 688 // Validate that only a word- or register-sized dst is byte swapped 689 assert(length == 1 || length == 2 || length == 4 || length == 8 || 690 length == 10 || length == 16 || length == 32); 691 692 for (uint32_t i = 0; i < length; ++i) 693 ((uint8_t *)dst)[i] = src[length - i - 1]; 694 } else 695 ::memcpy(dst, src, length); 696 return length; 697 } 698 return 0; 699 } 700 701 // Extract data as it exists in target memory 702 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length, 703 void *dst) const { 704 const uint8_t *src = PeekData(offset, length); 705 if (src) { 706 ::memcpy(dst, src, length); 707 return length; 708 } 709 return 0; 710 } 711 712 // Extract data and swap if needed when doing the copy 713 lldb::offset_t 714 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len, 715 void *dst_void_ptr, offset_t dst_len, 716 ByteOrder dst_byte_order) const { 717 // Validate the source info 718 if (!ValidOffsetForDataOfSize(src_offset, src_len)) 719 assert(ValidOffsetForDataOfSize(src_offset, src_len)); 720 assert(src_len > 0); 721 assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle); 722 723 // Validate the destination info 724 assert(dst_void_ptr != nullptr); 725 assert(dst_len > 0); 726 assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle); 727 728 // Validate that only a word- or register-sized dst is byte swapped 729 assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 || 730 dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 || 731 dst_len == 32); 732 733 // Must have valid byte orders set in this object and for destination 734 if (!(dst_byte_order == eByteOrderBig || 735 dst_byte_order == eByteOrderLittle) || 736 !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle)) 737 return 0; 738 739 uint8_t *dst = (uint8_t *)dst_void_ptr; 740 const uint8_t *src = (const uint8_t *)PeekData(src_offset, src_len); 741 if (src) { 742 if (dst_len >= src_len) { 743 // We are copying the entire value from src into dst. Calculate how many, 744 // if any, zeroes we need for the most significant bytes if "dst_len" is 745 // greater than "src_len"... 746 const size_t num_zeroes = dst_len - src_len; 747 if (dst_byte_order == eByteOrderBig) { 748 // Big endian, so we lead with zeroes... 749 if (num_zeroes > 0) 750 ::memset(dst, 0, num_zeroes); 751 // Then either copy or swap the rest 752 if (m_byte_order == eByteOrderBig) { 753 ::memcpy(dst + num_zeroes, src, src_len); 754 } else { 755 for (uint32_t i = 0; i < src_len; ++i) 756 dst[i + num_zeroes] = src[src_len - 1 - i]; 757 } 758 } else { 759 // Little endian destination, so we lead the value bytes 760 if (m_byte_order == eByteOrderBig) { 761 for (uint32_t i = 0; i < src_len; ++i) 762 dst[i] = src[src_len - 1 - i]; 763 } else { 764 ::memcpy(dst, src, src_len); 765 } 766 // And zero the rest... 767 if (num_zeroes > 0) 768 ::memset(dst + src_len, 0, num_zeroes); 769 } 770 return src_len; 771 } else { 772 // We are only copying some of the value from src into dst.. 773 774 if (dst_byte_order == eByteOrderBig) { 775 // Big endian dst 776 if (m_byte_order == eByteOrderBig) { 777 // Big endian dst, with big endian src 778 ::memcpy(dst, src + (src_len - dst_len), dst_len); 779 } else { 780 // Big endian dst, with little endian src 781 for (uint32_t i = 0; i < dst_len; ++i) 782 dst[i] = src[dst_len - 1 - i]; 783 } 784 } else { 785 // Little endian dst 786 if (m_byte_order == eByteOrderBig) { 787 // Little endian dst, with big endian src 788 for (uint32_t i = 0; i < dst_len; ++i) 789 dst[i] = src[src_len - 1 - i]; 790 } else { 791 // Little endian dst, with big endian src 792 ::memcpy(dst, src, dst_len); 793 } 794 } 795 return dst_len; 796 } 797 } 798 return 0; 799 } 800 801 // Extracts a variable length NULL terminated C string from the data at the 802 // offset pointed to by "offset_ptr". The "offset_ptr" will be updated with 803 // the offset of the byte that follows the NULL terminator byte. 804 // 805 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is 806 // non-zero and there aren't enough available bytes, nullptr will be returned 807 // and "offset_ptr" will not be updated. 808 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const { 809 const char *cstr = (const char *)PeekData(*offset_ptr, 1); 810 if (cstr) { 811 const char *cstr_end = cstr; 812 const char *end = (const char *)m_end; 813 while (cstr_end < end && *cstr_end) 814 ++cstr_end; 815 816 // Now we are either at the end of the data or we point to the 817 // NULL C string terminator with cstr_end... 818 if (*cstr_end == '\0') { 819 // Advance the offset with one extra byte for the NULL terminator 820 *offset_ptr += (cstr_end - cstr + 1); 821 return cstr; 822 } 823 824 // We reached the end of the data without finding a NULL C string 825 // terminator. Fall through and return nullptr otherwise anyone that would 826 // have used the result as a C string can wander into unknown memory... 827 } 828 return nullptr; 829 } 830 831 // Extracts a NULL terminated C string from the fixed length field of length 832 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be 833 // updated with the offset of the byte that follows the fixed length field. 834 // 835 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset 836 // plus the length of the field is out of bounds, or if the field does not 837 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr" 838 // will not be updated. 839 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const { 840 const char *cstr = (const char *)PeekData(*offset_ptr, len); 841 if (cstr != nullptr) { 842 if (memchr(cstr, '\0', len) == nullptr) { 843 return nullptr; 844 } 845 *offset_ptr += len; 846 return cstr; 847 } 848 return nullptr; 849 } 850 851 // Peeks at a string in the contained data. No verification is done to make 852 // sure the entire string lies within the bounds of this object's data, only 853 // "offset" is verified to be a valid offset. 854 // 855 // Returns a valid C string pointer if "offset" is a valid offset in this 856 // object's data, else nullptr is returned. 857 const char *DataExtractor::PeekCStr(offset_t offset) const { 858 return (const char *)PeekData(offset, 1); 859 } 860 861 // Extracts an unsigned LEB128 number from this object's data starting at the 862 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr" 863 // will be updated with the offset of the byte following the last extracted 864 // byte. 865 // 866 // Returned the extracted integer value. 867 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const { 868 const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); 869 if (src == nullptr) 870 return 0; 871 872 const uint8_t *end = m_end; 873 874 if (src < end) { 875 uint64_t result = *src++; 876 if (result >= 0x80) { 877 result &= 0x7f; 878 int shift = 7; 879 while (src < end) { 880 uint8_t byte = *src++; 881 result |= (uint64_t)(byte & 0x7f) << shift; 882 if ((byte & 0x80) == 0) 883 break; 884 shift += 7; 885 } 886 } 887 *offset_ptr = src - m_start; 888 return result; 889 } 890 891 return 0; 892 } 893 894 // Extracts an signed LEB128 number from this object's data starting at the 895 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr" 896 // will be updated with the offset of the byte following the last extracted 897 // byte. 898 // 899 // Returned the extracted integer value. 900 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const { 901 const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); 902 if (src == nullptr) 903 return 0; 904 905 const uint8_t *end = m_end; 906 907 if (src < end) { 908 int64_t result = 0; 909 int shift = 0; 910 int size = sizeof(int64_t) * 8; 911 912 uint8_t byte = 0; 913 int bytecount = 0; 914 915 while (src < end) { 916 bytecount++; 917 byte = *src++; 918 result |= (int64_t)(byte & 0x7f) << shift; 919 shift += 7; 920 if ((byte & 0x80) == 0) 921 break; 922 } 923 924 // Sign bit of byte is 2nd high order bit (0x40) 925 if (shift < size && (byte & 0x40)) 926 result |= -(1 << shift); 927 928 *offset_ptr += bytecount; 929 return result; 930 } 931 return 0; 932 } 933 934 // Skips a ULEB128 number (signed or unsigned) from this object's data starting 935 // at the offset pointed to by "offset_ptr". The offset pointed to by 936 // "offset_ptr" will be updated with the offset of the byte following the last 937 // extracted byte. 938 // 939 // Returns the number of bytes consumed during the extraction. 940 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const { 941 uint32_t bytes_consumed = 0; 942 const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); 943 if (src == nullptr) 944 return 0; 945 946 const uint8_t *end = m_end; 947 948 if (src < end) { 949 const uint8_t *src_pos = src; 950 while ((src_pos < end) && (*src_pos++ & 0x80)) 951 ++bytes_consumed; 952 *offset_ptr += src_pos - src; 953 } 954 return bytes_consumed; 955 } 956 957 // Dumps bytes from this object's data to the stream "s" starting 958 // "start_offset" bytes into this data, and ending with the byte before 959 // "end_offset". "base_addr" will be added to the offset into the dumped data 960 // when showing the offset into the data in the output information. 961 // "num_per_line" objects of type "type" will be dumped with the option to 962 // override the format for each object with "type_format". "type_format" is a 963 // printf style formatting string. If "type_format" is nullptr, then an 964 // appropriate format string will be used for the supplied "type". If the 965 // stream "s" is nullptr, then the output will be send to Log(). 966 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset, 967 offset_t length, uint64_t base_addr, 968 uint32_t num_per_line, 969 DataExtractor::Type type, 970 const char *format) const { 971 if (log == nullptr) 972 return start_offset; 973 974 offset_t offset; 975 offset_t end_offset; 976 uint32_t count; 977 StreamString sstr; 978 for (offset = start_offset, end_offset = offset + length, count = 0; 979 ValidOffset(offset) && offset < end_offset; ++count) { 980 if ((count % num_per_line) == 0) { 981 // Print out any previous string 982 if (sstr.GetSize() > 0) { 983 log->PutString(sstr.GetString()); 984 sstr.Clear(); 985 } 986 // Reset string offset and fill the current line string with address: 987 if (base_addr != LLDB_INVALID_ADDRESS) 988 sstr.Printf("0x%8.8" PRIx64 ":", 989 (uint64_t)(base_addr + (offset - start_offset))); 990 } 991 992 switch (type) { 993 case TypeUInt8: 994 sstr.Printf(format ? format : " %2.2x", GetU8(&offset)); 995 break; 996 case TypeChar: { 997 char ch = GetU8(&offset); 998 sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' '); 999 } break; 1000 case TypeUInt16: 1001 sstr.Printf(format ? format : " %4.4x", GetU16(&offset)); 1002 break; 1003 case TypeUInt32: 1004 sstr.Printf(format ? format : " %8.8x", GetU32(&offset)); 1005 break; 1006 case TypeUInt64: 1007 sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset)); 1008 break; 1009 case TypePointer: 1010 sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset)); 1011 break; 1012 case TypeULEB128: 1013 sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset)); 1014 break; 1015 case TypeSLEB128: 1016 sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset)); 1017 break; 1018 } 1019 } 1020 1021 if (!sstr.Empty()) 1022 log->PutString(sstr.GetString()); 1023 1024 return offset; // Return the offset at which we ended up 1025 } 1026 1027 size_t DataExtractor::Copy(DataExtractor &dest_data) const { 1028 if (m_data_sp) { 1029 // we can pass along the SP to the data 1030 dest_data.SetData(m_data_sp); 1031 } else { 1032 const uint8_t *base_ptr = m_start; 1033 size_t data_size = GetByteSize(); 1034 dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size))); 1035 } 1036 return GetByteSize(); 1037 } 1038 1039 bool DataExtractor::Append(DataExtractor &rhs) { 1040 if (rhs.GetByteOrder() != GetByteOrder()) 1041 return false; 1042 1043 if (rhs.GetByteSize() == 0) 1044 return true; 1045 1046 if (GetByteSize() == 0) 1047 return (rhs.Copy(*this) > 0); 1048 1049 size_t bytes = GetByteSize() + rhs.GetByteSize(); 1050 1051 DataBufferHeap *buffer_heap_ptr = nullptr; 1052 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); 1053 1054 if (!buffer_sp || buffer_heap_ptr == nullptr) 1055 return false; 1056 1057 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); 1058 1059 memcpy(bytes_ptr, GetDataStart(), GetByteSize()); 1060 memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize()); 1061 1062 SetData(buffer_sp); 1063 1064 return true; 1065 } 1066 1067 bool DataExtractor::Append(void *buf, offset_t length) { 1068 if (buf == nullptr) 1069 return false; 1070 1071 if (length == 0) 1072 return true; 1073 1074 size_t bytes = GetByteSize() + length; 1075 1076 DataBufferHeap *buffer_heap_ptr = nullptr; 1077 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); 1078 1079 if (!buffer_sp || buffer_heap_ptr == nullptr) 1080 return false; 1081 1082 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); 1083 1084 if (GetByteSize() > 0) 1085 memcpy(bytes_ptr, GetDataStart(), GetByteSize()); 1086 1087 memcpy(bytes_ptr + GetByteSize(), buf, length); 1088 1089 SetData(buffer_sp); 1090 1091 return true; 1092 } 1093 1094 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest, 1095 uint64_t max_data) { 1096 if (max_data == 0) 1097 max_data = GetByteSize(); 1098 else 1099 max_data = std::min(max_data, GetByteSize()); 1100 1101 llvm::MD5 md5; 1102 1103 const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data); 1104 md5.update(data); 1105 1106 llvm::MD5::MD5Result result; 1107 md5.final(result); 1108 1109 dest.clear(); 1110 dest.append(result.Bytes.begin(), result.Bytes.end()); 1111 } 1112