1 //===-- DataExtractor.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Utility/DataExtractor.h"
10 
11 #include "lldb/lldb-defines.h"
12 #include "lldb/lldb-enumerations.h"
13 #include "lldb/lldb-forward.h"
14 #include "lldb/lldb-types.h"
15 
16 #include "lldb/Utility/DataBuffer.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/Endian.h"
19 #include "lldb/Utility/LLDBAssert.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/Stream.h"
22 #include "lldb/Utility/StreamString.h"
23 #include "lldb/Utility/UUID.h"
24 
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/MD5.h"
28 #include "llvm/Support/MathExtras.h"
29 
30 #include <algorithm>
31 #include <array>
32 #include <cassert>
33 #include <cstdint>
34 #include <string>
35 
36 #include <ctype.h>
37 #include <inttypes.h>
38 #include <string.h>
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 
43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
44   uint16_t value;
45   memcpy(&value, ptr + offset, 2);
46   return value;
47 }
48 
49 static inline uint32_t ReadInt32(const unsigned char *ptr,
50                                  offset_t offset = 0) {
51   uint32_t value;
52   memcpy(&value, ptr + offset, 4);
53   return value;
54 }
55 
56 static inline uint64_t ReadInt64(const unsigned char *ptr,
57                                  offset_t offset = 0) {
58   uint64_t value;
59   memcpy(&value, ptr + offset, 8);
60   return value;
61 }
62 
63 static inline uint16_t ReadInt16(const void *ptr) {
64   uint16_t value;
65   memcpy(&value, ptr, 2);
66   return value;
67 }
68 
69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
70                                      offset_t offset) {
71   uint16_t value;
72   memcpy(&value, ptr + offset, 2);
73   return llvm::ByteSwap_16(value);
74 }
75 
76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
77                                      offset_t offset) {
78   uint32_t value;
79   memcpy(&value, ptr + offset, 4);
80   return llvm::ByteSwap_32(value);
81 }
82 
83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
84                                      offset_t offset) {
85   uint64_t value;
86   memcpy(&value, ptr + offset, 8);
87   return llvm::ByteSwap_64(value);
88 }
89 
90 static inline uint16_t ReadSwapInt16(const void *ptr) {
91   uint16_t value;
92   memcpy(&value, ptr, 2);
93   return llvm::ByteSwap_16(value);
94 }
95 
96 static inline uint32_t ReadSwapInt32(const void *ptr) {
97   uint32_t value;
98   memcpy(&value, ptr, 4);
99   return llvm::ByteSwap_32(value);
100 }
101 
102 static inline uint64_t ReadSwapInt64(const void *ptr) {
103   uint64_t value;
104   memcpy(&value, ptr, 8);
105   return llvm::ByteSwap_64(value);
106 }
107 
108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
109                                     ByteOrder byte_order) {
110   uint64_t res = 0;
111   if (byte_order == eByteOrderBig)
112     for (size_t i = 0; i < byte_size; ++i)
113       res = (res << 8) | data[i];
114   else {
115     assert(byte_order == eByteOrderLittle);
116     for (size_t i = 0; i < byte_size; ++i)
117       res = (res << 8) | data[byte_size - 1 - i];
118   }
119   return res;
120 }
121 
122 DataExtractor::DataExtractor()
123     : m_start(nullptr), m_end(nullptr),
124       m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
125       m_data_sp(), m_target_byte_size(1) {}
126 
127 // This constructor allows us to use data that is owned by someone else. The
128 // data must stay around as long as this object is valid.
129 DataExtractor::DataExtractor(const void *data, offset_t length,
130                              ByteOrder endian, uint32_t addr_size,
131                              uint32_t target_byte_size /*=1*/)
132     : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
133       m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
134       m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
135       m_target_byte_size(target_byte_size) {
136   assert(addr_size == 4 || addr_size == 8);
137 }
138 
139 // Make a shared pointer reference to the shared data in "data_sp" and set the
140 // endian swapping setting to "swap", and the address size to "addr_size". The
141 // shared data reference will ensure the data lives as long as any
142 // DataExtractor objects exist that have a reference to this data.
143 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
144                              uint32_t addr_size,
145                              uint32_t target_byte_size /*=1*/)
146     : m_start(nullptr), m_end(nullptr), m_byte_order(endian),
147       m_addr_size(addr_size), m_data_sp(),
148       m_target_byte_size(target_byte_size) {
149   assert(addr_size == 4 || addr_size == 8);
150   SetData(data_sp);
151 }
152 
153 // Initialize this object with a subset of the data bytes in "data". If "data"
154 // contains shared data, then a reference to this shared data will added and
155 // the shared data will stay around as long as any object contains a reference
156 // to that data. The endian swap and address size settings are copied from
157 // "data".
158 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
159                              offset_t length, uint32_t target_byte_size /*=1*/)
160     : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
161       m_addr_size(data.m_addr_size), m_data_sp(),
162       m_target_byte_size(target_byte_size) {
163   assert(m_addr_size == 4 || m_addr_size == 8);
164   if (data.ValidOffset(offset)) {
165     offset_t bytes_available = data.GetByteSize() - offset;
166     if (length > bytes_available)
167       length = bytes_available;
168     SetData(data, offset, length);
169   }
170 }
171 
172 DataExtractor::DataExtractor(const DataExtractor &rhs)
173     : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
174       m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
175       m_target_byte_size(rhs.m_target_byte_size) {
176   assert(m_addr_size == 4 || m_addr_size == 8);
177 }
178 
179 // Assignment operator
180 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
181   if (this != &rhs) {
182     m_start = rhs.m_start;
183     m_end = rhs.m_end;
184     m_byte_order = rhs.m_byte_order;
185     m_addr_size = rhs.m_addr_size;
186     m_data_sp = rhs.m_data_sp;
187   }
188   return *this;
189 }
190 
191 DataExtractor::~DataExtractor() = default;
192 
193 // Clears the object contents back to a default invalid state, and release any
194 // references to shared data that this object may contain.
195 void DataExtractor::Clear() {
196   m_start = nullptr;
197   m_end = nullptr;
198   m_byte_order = endian::InlHostByteOrder();
199   m_addr_size = sizeof(void *);
200   m_data_sp.reset();
201 }
202 
203 // If this object contains shared data, this function returns the offset into
204 // that shared data. Else zero is returned.
205 size_t DataExtractor::GetSharedDataOffset() const {
206   if (m_start != nullptr) {
207     const DataBuffer *data = m_data_sp.get();
208     if (data != nullptr) {
209       const uint8_t *data_bytes = data->GetBytes();
210       if (data_bytes != nullptr) {
211         assert(m_start >= data_bytes);
212         return m_start - data_bytes;
213       }
214     }
215   }
216   return 0;
217 }
218 
219 // Set the data with which this object will extract from to data starting at
220 // BYTES and set the length of the data to LENGTH bytes long. The data is
221 // externally owned must be around at least as long as this object points to
222 // the data. No copy of the data is made, this object just refers to this data
223 // and can extract from it. If this object refers to any shared data upon
224 // entry, the reference to that data will be released. Is SWAP is set to true,
225 // any data extracted will be endian swapped.
226 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
227                                       ByteOrder endian) {
228   m_byte_order = endian;
229   m_data_sp.reset();
230   if (bytes == nullptr || length == 0) {
231     m_start = nullptr;
232     m_end = nullptr;
233   } else {
234     m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
235     m_end = m_start + length;
236   }
237   return GetByteSize();
238 }
239 
240 // Assign the data for this object to be a subrange in "data" starting
241 // "data_offset" bytes into "data" and ending "data_length" bytes later. If
242 // "data_offset" is not a valid offset into "data", then this object will
243 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too
244 // large, the length will be capped at the number of bytes remaining in "data".
245 // If "data" contains a shared pointer to other data, then a ref counted
246 // pointer to that data will be made in this object. If "data" doesn't contain
247 // a shared pointer to data, then the bytes referred to in "data" will need to
248 // exist at least as long as this object refers to those bytes. The address
249 // size and endian swap settings are copied from the current values in "data".
250 lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
251                                       offset_t data_offset,
252                                       offset_t data_length) {
253   m_addr_size = data.m_addr_size;
254   assert(m_addr_size == 4 || m_addr_size == 8);
255   // If "data" contains shared pointer to data, then we can use that
256   if (data.m_data_sp) {
257     m_byte_order = data.m_byte_order;
258     return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
259                    data_length);
260   }
261 
262   // We have a DataExtractor object that just has a pointer to bytes
263   if (data.ValidOffset(data_offset)) {
264     if (data_length > data.GetByteSize() - data_offset)
265       data_length = data.GetByteSize() - data_offset;
266     return SetData(data.GetDataStart() + data_offset, data_length,
267                    data.GetByteOrder());
268   }
269   return 0;
270 }
271 
272 // Assign the data for this object to be a subrange of the shared data in
273 // "data_sp" starting "data_offset" bytes into "data_sp" and ending
274 // "data_length" bytes later. If "data_offset" is not a valid offset into
275 // "data_sp", then this object will contain no bytes. If "data_offset" is
276 // within "data_sp" yet "data_length" is too large, the length will be capped
277 // at the number of bytes remaining in "data_sp". A ref counted pointer to the
278 // data in "data_sp" will be made in this object IF the number of bytes this
279 // object refers to in greater than zero (if at least one byte was available
280 // starting at "data_offset") to ensure the data stays around as long as it is
281 // needed. The address size and endian swap settings will remain unchanged from
282 // their current settings.
283 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
284                                       offset_t data_offset,
285                                       offset_t data_length) {
286   m_start = m_end = nullptr;
287 
288   if (data_length > 0) {
289     m_data_sp = data_sp;
290     if (data_sp) {
291       const size_t data_size = data_sp->GetByteSize();
292       if (data_offset < data_size) {
293         m_start = data_sp->GetBytes() + data_offset;
294         const size_t bytes_left = data_size - data_offset;
295         // Cap the length of we asked for too many
296         if (data_length <= bytes_left)
297           m_end = m_start + data_length; // We got all the bytes we wanted
298         else
299           m_end = m_start + bytes_left; // Not all the bytes requested were
300                                         // available in the shared data
301       }
302     }
303   }
304 
305   size_t new_size = GetByteSize();
306 
307   // Don't hold a shared pointer to the data buffer if we don't share any valid
308   // bytes in the shared buffer.
309   if (new_size == 0)
310     m_data_sp.reset();
311 
312   return new_size;
313 }
314 
315 // Extract a single unsigned char from the binary data and update the offset
316 // pointed to by "offset_ptr".
317 //
318 // RETURNS the byte that was extracted, or zero on failure.
319 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
320   const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
321   if (data)
322     return *data;
323   return 0;
324 }
325 
326 // Extract "count" unsigned chars from the binary data and update the offset
327 // pointed to by "offset_ptr". The extracted data is copied into "dst".
328 //
329 // RETURNS the non-nullptr buffer pointer upon successful extraction of
330 // all the requested bytes, or nullptr when the data is not available in the
331 // buffer due to being out of bounds, or insufficient data.
332 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
333                            uint32_t count) const {
334   const uint8_t *data =
335       static_cast<const uint8_t *>(GetData(offset_ptr, count));
336   if (data) {
337     // Copy the data into the buffer
338     memcpy(dst, data, count);
339     // Return a non-nullptr pointer to the converted data as an indicator of
340     // success
341     return dst;
342   }
343   return nullptr;
344 }
345 
346 // Extract a single uint16_t from the data and update the offset pointed to by
347 // "offset_ptr".
348 //
349 // RETURNS the uint16_t that was extracted, or zero on failure.
350 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
351   uint16_t val = 0;
352   const uint8_t *data =
353       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
354   if (data) {
355     if (m_byte_order != endian::InlHostByteOrder())
356       val = ReadSwapInt16(data);
357     else
358       val = ReadInt16(data);
359   }
360   return val;
361 }
362 
363 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
364   uint16_t val;
365   if (m_byte_order == endian::InlHostByteOrder())
366     val = ReadInt16(m_start, *offset_ptr);
367   else
368     val = ReadSwapInt16(m_start, *offset_ptr);
369   *offset_ptr += sizeof(val);
370   return val;
371 }
372 
373 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
374   uint32_t val;
375   if (m_byte_order == endian::InlHostByteOrder())
376     val = ReadInt32(m_start, *offset_ptr);
377   else
378     val = ReadSwapInt32(m_start, *offset_ptr);
379   *offset_ptr += sizeof(val);
380   return val;
381 }
382 
383 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
384   uint64_t val;
385   if (m_byte_order == endian::InlHostByteOrder())
386     val = ReadInt64(m_start, *offset_ptr);
387   else
388     val = ReadSwapInt64(m_start, *offset_ptr);
389   *offset_ptr += sizeof(val);
390   return val;
391 }
392 
393 // Extract "count" uint16_t values from the binary data and update the offset
394 // pointed to by "offset_ptr". The extracted data is copied into "dst".
395 //
396 // RETURNS the non-nullptr buffer pointer upon successful extraction of
397 // all the requested bytes, or nullptr when the data is not available in the
398 // buffer due to being out of bounds, or insufficient data.
399 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
400                             uint32_t count) const {
401   const size_t src_size = sizeof(uint16_t) * count;
402   const uint16_t *src =
403       static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
404   if (src) {
405     if (m_byte_order != endian::InlHostByteOrder()) {
406       uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
407       uint16_t *dst_end = dst_pos + count;
408       const uint16_t *src_pos = src;
409       while (dst_pos < dst_end) {
410         *dst_pos = ReadSwapInt16(src_pos);
411         ++dst_pos;
412         ++src_pos;
413       }
414     } else {
415       memcpy(void_dst, src, src_size);
416     }
417     // Return a non-nullptr pointer to the converted data as an indicator of
418     // success
419     return void_dst;
420   }
421   return nullptr;
422 }
423 
424 // Extract a single uint32_t from the data and update the offset pointed to by
425 // "offset_ptr".
426 //
427 // RETURNS the uint32_t that was extracted, or zero on failure.
428 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
429   uint32_t val = 0;
430   const uint8_t *data =
431       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
432   if (data) {
433     if (m_byte_order != endian::InlHostByteOrder()) {
434       val = ReadSwapInt32(data);
435     } else {
436       memcpy(&val, data, 4);
437     }
438   }
439   return val;
440 }
441 
442 // Extract "count" uint32_t values from the binary data and update the offset
443 // pointed to by "offset_ptr". The extracted data is copied into "dst".
444 //
445 // RETURNS the non-nullptr buffer pointer upon successful extraction of
446 // all the requested bytes, or nullptr when the data is not available in the
447 // buffer due to being out of bounds, or insufficient data.
448 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
449                             uint32_t count) const {
450   const size_t src_size = sizeof(uint32_t) * count;
451   const uint32_t *src =
452       static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
453   if (src) {
454     if (m_byte_order != endian::InlHostByteOrder()) {
455       uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
456       uint32_t *dst_end = dst_pos + count;
457       const uint32_t *src_pos = src;
458       while (dst_pos < dst_end) {
459         *dst_pos = ReadSwapInt32(src_pos);
460         ++dst_pos;
461         ++src_pos;
462       }
463     } else {
464       memcpy(void_dst, src, src_size);
465     }
466     // Return a non-nullptr pointer to the converted data as an indicator of
467     // success
468     return void_dst;
469   }
470   return nullptr;
471 }
472 
473 // Extract a single uint64_t from the data and update the offset pointed to by
474 // "offset_ptr".
475 //
476 // RETURNS the uint64_t that was extracted, or zero on failure.
477 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
478   uint64_t val = 0;
479   const uint8_t *data =
480       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
481   if (data) {
482     if (m_byte_order != endian::InlHostByteOrder()) {
483       val = ReadSwapInt64(data);
484     } else {
485       memcpy(&val, data, 8);
486     }
487   }
488   return val;
489 }
490 
491 // GetU64
492 //
493 // Get multiple consecutive 64 bit values. Return true if the entire read
494 // succeeds and increment the offset pointed to by offset_ptr, else return
495 // false and leave the offset pointed to by offset_ptr unchanged.
496 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
497                             uint32_t count) const {
498   const size_t src_size = sizeof(uint64_t) * count;
499   const uint64_t *src =
500       static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
501   if (src) {
502     if (m_byte_order != endian::InlHostByteOrder()) {
503       uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
504       uint64_t *dst_end = dst_pos + count;
505       const uint64_t *src_pos = src;
506       while (dst_pos < dst_end) {
507         *dst_pos = ReadSwapInt64(src_pos);
508         ++dst_pos;
509         ++src_pos;
510       }
511     } else {
512       memcpy(void_dst, src, src_size);
513     }
514     // Return a non-nullptr pointer to the converted data as an indicator of
515     // success
516     return void_dst;
517   }
518   return nullptr;
519 }
520 
521 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
522                                   size_t byte_size) const {
523   lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
524   return GetMaxU64(offset_ptr, byte_size);
525 }
526 
527 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
528                                   size_t byte_size) const {
529   lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
530   switch (byte_size) {
531   case 1:
532     return GetU8(offset_ptr);
533   case 2:
534     return GetU16(offset_ptr);
535   case 4:
536     return GetU32(offset_ptr);
537   case 8:
538     return GetU64(offset_ptr);
539   default: {
540     // General case.
541     const uint8_t *data =
542         static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
543     if (data == nullptr)
544       return 0;
545     return ReadMaxInt64(data, byte_size, m_byte_order);
546   }
547   }
548   return 0;
549 }
550 
551 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
552                                             size_t byte_size) const {
553   switch (byte_size) {
554   case 1:
555     return GetU8_unchecked(offset_ptr);
556   case 2:
557     return GetU16_unchecked(offset_ptr);
558   case 4:
559     return GetU32_unchecked(offset_ptr);
560   case 8:
561     return GetU64_unchecked(offset_ptr);
562   default: {
563     uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
564     *offset_ptr += byte_size;
565     return res;
566   }
567   }
568   return 0;
569 }
570 
571 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
572   uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
573   return llvm::SignExtend64(u64, 8 * byte_size);
574 }
575 
576 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
577                                           uint32_t bitfield_bit_size,
578                                           uint32_t bitfield_bit_offset) const {
579   assert(bitfield_bit_size <= 64);
580   uint64_t uval64 = GetMaxU64(offset_ptr, size);
581 
582   if (bitfield_bit_size == 0)
583     return uval64;
584 
585   int32_t lsbcount = bitfield_bit_offset;
586   if (m_byte_order == eByteOrderBig)
587     lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
588 
589   if (lsbcount > 0)
590     uval64 >>= lsbcount;
591 
592   uint64_t bitfield_mask =
593       (bitfield_bit_size == 64
594            ? std::numeric_limits<uint64_t>::max()
595            : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
596   if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
597     return uval64;
598 
599   uval64 &= bitfield_mask;
600 
601   return uval64;
602 }
603 
604 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
605                                          uint32_t bitfield_bit_size,
606                                          uint32_t bitfield_bit_offset) const {
607   assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1");
608   assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8");
609   int64_t sval64 = GetMaxS64(offset_ptr, size);
610   if (bitfield_bit_size > 0) {
611     int32_t lsbcount = bitfield_bit_offset;
612     if (m_byte_order == eByteOrderBig)
613       lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
614     if (lsbcount > 0)
615       sval64 >>= lsbcount;
616     uint64_t bitfield_mask =
617         llvm::maskTrailingOnes<uint64_t>(bitfield_bit_size);
618     sval64 &= bitfield_mask;
619     // sign extend if needed
620     if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
621       sval64 |= ~bitfield_mask;
622   }
623   return sval64;
624 }
625 
626 float DataExtractor::GetFloat(offset_t *offset_ptr) const {
627   typedef float float_type;
628   float_type val = 0.0;
629   const size_t src_size = sizeof(float_type);
630   const float_type *src =
631       static_cast<const float_type *>(GetData(offset_ptr, src_size));
632   if (src) {
633     if (m_byte_order != endian::InlHostByteOrder()) {
634       const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
635       uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
636       for (size_t i = 0; i < sizeof(float_type); ++i)
637         dst_data[sizeof(float_type) - 1 - i] = src_data[i];
638     } else {
639       val = *src;
640     }
641   }
642   return val;
643 }
644 
645 double DataExtractor::GetDouble(offset_t *offset_ptr) const {
646   typedef double float_type;
647   float_type val = 0.0;
648   const size_t src_size = sizeof(float_type);
649   const float_type *src =
650       static_cast<const float_type *>(GetData(offset_ptr, src_size));
651   if (src) {
652     if (m_byte_order != endian::InlHostByteOrder()) {
653       const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
654       uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
655       for (size_t i = 0; i < sizeof(float_type); ++i)
656         dst_data[sizeof(float_type) - 1 - i] = src_data[i];
657     } else {
658       val = *src;
659     }
660   }
661   return val;
662 }
663 
664 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
665   long double val = 0.0;
666 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) ||          \
667     defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
668   *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
669                                      endian::InlHostByteOrder());
670 #else
671   *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
672                                      sizeof(val), endian::InlHostByteOrder());
673 #endif
674   return val;
675 }
676 
677 // Extract a single address from the data and update the offset pointed to by
678 // "offset_ptr". The size of the extracted address comes from the
679 // "this->m_addr_size" member variable and should be set correctly prior to
680 // extracting any address values.
681 //
682 // RETURNS the address that was extracted, or zero on failure.
683 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
684   assert(m_addr_size == 4 || m_addr_size == 8);
685   return GetMaxU64(offset_ptr, m_addr_size);
686 }
687 
688 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
689   assert(m_addr_size == 4 || m_addr_size == 8);
690   return GetMaxU64_unchecked(offset_ptr, m_addr_size);
691 }
692 
693 // Extract a single pointer from the data and update the offset pointed to by
694 // "offset_ptr". The size of the extracted pointer comes from the
695 // "this->m_addr_size" member variable and should be set correctly prior to
696 // extracting any pointer values.
697 //
698 // RETURNS the pointer that was extracted, or zero on failure.
699 uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const {
700   assert(m_addr_size == 4 || m_addr_size == 8);
701   return GetMaxU64(offset_ptr, m_addr_size);
702 }
703 
704 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
705                                    ByteOrder dst_byte_order, void *dst) const {
706   const uint8_t *src = PeekData(offset, length);
707   if (src) {
708     if (dst_byte_order != GetByteOrder()) {
709       // Validate that only a word- or register-sized dst is byte swapped
710       assert(length == 1 || length == 2 || length == 4 || length == 8 ||
711              length == 10 || length == 16 || length == 32);
712 
713       for (uint32_t i = 0; i < length; ++i)
714         (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
715     } else
716       ::memcpy(dst, src, length);
717     return length;
718   }
719   return 0;
720 }
721 
722 // Extract data as it exists in target memory
723 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
724                                        void *dst) const {
725   const uint8_t *src = PeekData(offset, length);
726   if (src) {
727     ::memcpy(dst, src, length);
728     return length;
729   }
730   return 0;
731 }
732 
733 // Extract data and swap if needed when doing the copy
734 lldb::offset_t
735 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
736                                    void *dst_void_ptr, offset_t dst_len,
737                                    ByteOrder dst_byte_order) const {
738   // Validate the source info
739   if (!ValidOffsetForDataOfSize(src_offset, src_len))
740     assert(ValidOffsetForDataOfSize(src_offset, src_len));
741   assert(src_len > 0);
742   assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
743 
744   // Validate the destination info
745   assert(dst_void_ptr != nullptr);
746   assert(dst_len > 0);
747   assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
748 
749   // Validate that only a word- or register-sized dst is byte swapped
750   assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
751          dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
752          dst_len == 32);
753 
754   // Must have valid byte orders set in this object and for destination
755   if (!(dst_byte_order == eByteOrderBig ||
756         dst_byte_order == eByteOrderLittle) ||
757       !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
758     return 0;
759 
760   uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
761   const uint8_t *src = PeekData(src_offset, src_len);
762   if (src) {
763     if (dst_len >= src_len) {
764       // We are copying the entire value from src into dst. Calculate how many,
765       // if any, zeroes we need for the most significant bytes if "dst_len" is
766       // greater than "src_len"...
767       const size_t num_zeroes = dst_len - src_len;
768       if (dst_byte_order == eByteOrderBig) {
769         // Big endian, so we lead with zeroes...
770         if (num_zeroes > 0)
771           ::memset(dst, 0, num_zeroes);
772         // Then either copy or swap the rest
773         if (m_byte_order == eByteOrderBig) {
774           ::memcpy(dst + num_zeroes, src, src_len);
775         } else {
776           for (uint32_t i = 0; i < src_len; ++i)
777             dst[i + num_zeroes] = src[src_len - 1 - i];
778         }
779       } else {
780         // Little endian destination, so we lead the value bytes
781         if (m_byte_order == eByteOrderBig) {
782           for (uint32_t i = 0; i < src_len; ++i)
783             dst[i] = src[src_len - 1 - i];
784         } else {
785           ::memcpy(dst, src, src_len);
786         }
787         // And zero the rest...
788         if (num_zeroes > 0)
789           ::memset(dst + src_len, 0, num_zeroes);
790       }
791       return src_len;
792     } else {
793       // We are only copying some of the value from src into dst..
794 
795       if (dst_byte_order == eByteOrderBig) {
796         // Big endian dst
797         if (m_byte_order == eByteOrderBig) {
798           // Big endian dst, with big endian src
799           ::memcpy(dst, src + (src_len - dst_len), dst_len);
800         } else {
801           // Big endian dst, with little endian src
802           for (uint32_t i = 0; i < dst_len; ++i)
803             dst[i] = src[dst_len - 1 - i];
804         }
805       } else {
806         // Little endian dst
807         if (m_byte_order == eByteOrderBig) {
808           // Little endian dst, with big endian src
809           for (uint32_t i = 0; i < dst_len; ++i)
810             dst[i] = src[src_len - 1 - i];
811         } else {
812           // Little endian dst, with big endian src
813           ::memcpy(dst, src, dst_len);
814         }
815       }
816       return dst_len;
817     }
818   }
819   return 0;
820 }
821 
822 // Extracts a variable length NULL terminated C string from the data at the
823 // offset pointed to by "offset_ptr".  The "offset_ptr" will be updated with
824 // the offset of the byte that follows the NULL terminator byte.
825 //
826 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
827 // non-zero and there aren't enough available bytes, nullptr will be returned
828 // and "offset_ptr" will not be updated.
829 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
830   const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
831   // Already at the end of the data.
832   if (!start)
833     return nullptr;
834 
835   const char *end = reinterpret_cast<const char *>(m_end);
836 
837   // Check all bytes for a null terminator that terminates a C string.
838   const char *terminator_or_end = std::find(start, end, '\0');
839 
840   // We didn't find a null terminator, so return nullptr to indicate that there
841   // is no valid C string at that offset.
842   if (terminator_or_end == end)
843     return nullptr;
844 
845   // Update offset_ptr for the caller to point to the data behind the
846   // terminator (which is 1 byte long).
847   *offset_ptr += (terminator_or_end - start + 1UL);
848   return start;
849 }
850 
851 // Extracts a NULL terminated C string from the fixed length field of length
852 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
853 // updated with the offset of the byte that follows the fixed length field.
854 //
855 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
856 // plus the length of the field is out of bounds, or if the field does not
857 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
858 // will not be updated.
859 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
860   const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
861   if (cstr != nullptr) {
862     if (memchr(cstr, '\0', len) == nullptr) {
863       return nullptr;
864     }
865     *offset_ptr += len;
866     return cstr;
867   }
868   return nullptr;
869 }
870 
871 // Peeks at a string in the contained data. No verification is done to make
872 // sure the entire string lies within the bounds of this object's data, only
873 // "offset" is verified to be a valid offset.
874 //
875 // Returns a valid C string pointer if "offset" is a valid offset in this
876 // object's data, else nullptr is returned.
877 const char *DataExtractor::PeekCStr(offset_t offset) const {
878   return reinterpret_cast<const char *>(PeekData(offset, 1));
879 }
880 
881 // Extracts an unsigned LEB128 number from this object's data starting at the
882 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
883 // will be updated with the offset of the byte following the last extracted
884 // byte.
885 //
886 // Returned the extracted integer value.
887 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
888   const uint8_t *src = PeekData(*offset_ptr, 1);
889   if (src == nullptr)
890     return 0;
891 
892   const uint8_t *end = m_end;
893 
894   if (src < end) {
895     uint64_t result = *src++;
896     if (result >= 0x80) {
897       result &= 0x7f;
898       int shift = 7;
899       while (src < end) {
900         uint8_t byte = *src++;
901         result |= static_cast<uint64_t>(byte & 0x7f) << shift;
902         if ((byte & 0x80) == 0)
903           break;
904         shift += 7;
905       }
906     }
907     *offset_ptr = src - m_start;
908     return result;
909   }
910 
911   return 0;
912 }
913 
914 // Extracts an signed LEB128 number from this object's data starting at the
915 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
916 // will be updated with the offset of the byte following the last extracted
917 // byte.
918 //
919 // Returned the extracted integer value.
920 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
921   const uint8_t *src = PeekData(*offset_ptr, 1);
922   if (src == nullptr)
923     return 0;
924 
925   const uint8_t *end = m_end;
926 
927   if (src < end) {
928     int64_t result = 0;
929     int shift = 0;
930     int size = sizeof(int64_t) * 8;
931 
932     uint8_t byte = 0;
933     int bytecount = 0;
934 
935     while (src < end) {
936       bytecount++;
937       byte = *src++;
938       result |= static_cast<int64_t>(byte & 0x7f) << shift;
939       shift += 7;
940       if ((byte & 0x80) == 0)
941         break;
942     }
943 
944     // Sign bit of byte is 2nd high order bit (0x40)
945     if (shift < size && (byte & 0x40))
946       result |= -(1 << shift);
947 
948     *offset_ptr += bytecount;
949     return result;
950   }
951   return 0;
952 }
953 
954 // Skips a ULEB128 number (signed or unsigned) from this object's data starting
955 // at the offset pointed to by "offset_ptr". The offset pointed to by
956 // "offset_ptr" will be updated with the offset of the byte following the last
957 // extracted byte.
958 //
959 // Returns the number of bytes consumed during the extraction.
960 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
961   uint32_t bytes_consumed = 0;
962   const uint8_t *src = PeekData(*offset_ptr, 1);
963   if (src == nullptr)
964     return 0;
965 
966   const uint8_t *end = m_end;
967 
968   if (src < end) {
969     const uint8_t *src_pos = src;
970     while ((src_pos < end) && (*src_pos++ & 0x80))
971       ++bytes_consumed;
972     *offset_ptr += src_pos - src;
973   }
974   return bytes_consumed;
975 }
976 
977 // Dumps bytes from this object's data to the stream "s" starting
978 // "start_offset" bytes into this data, and ending with the byte before
979 // "end_offset". "base_addr" will be added to the offset into the dumped data
980 // when showing the offset into the data in the output information.
981 // "num_per_line" objects of type "type" will be dumped with the option to
982 // override the format for each object with "type_format". "type_format" is a
983 // printf style formatting string. If "type_format" is nullptr, then an
984 // appropriate format string will be used for the supplied "type". If the
985 // stream "s" is nullptr, then the output will be send to Log().
986 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
987                                        offset_t length, uint64_t base_addr,
988                                        uint32_t num_per_line,
989                                        DataExtractor::Type type) const {
990   if (log == nullptr)
991     return start_offset;
992 
993   offset_t offset;
994   offset_t end_offset;
995   uint32_t count;
996   StreamString sstr;
997   for (offset = start_offset, end_offset = offset + length, count = 0;
998        ValidOffset(offset) && offset < end_offset; ++count) {
999     if ((count % num_per_line) == 0) {
1000       // Print out any previous string
1001       if (sstr.GetSize() > 0) {
1002         log->PutString(sstr.GetString());
1003         sstr.Clear();
1004       }
1005       // Reset string offset and fill the current line string with address:
1006       if (base_addr != LLDB_INVALID_ADDRESS)
1007         sstr.Printf("0x%8.8" PRIx64 ":",
1008                     static_cast<uint64_t>(base_addr + (offset - start_offset)));
1009     }
1010 
1011     switch (type) {
1012     case TypeUInt8:
1013       sstr.Printf(" %2.2x", GetU8(&offset));
1014       break;
1015     case TypeChar: {
1016       char ch = GetU8(&offset);
1017       sstr.Printf(" %c", isprint(ch) ? ch : ' ');
1018     } break;
1019     case TypeUInt16:
1020       sstr.Printf(" %4.4x", GetU16(&offset));
1021       break;
1022     case TypeUInt32:
1023       sstr.Printf(" %8.8x", GetU32(&offset));
1024       break;
1025     case TypeUInt64:
1026       sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
1027       break;
1028     case TypePointer:
1029       sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
1030       break;
1031     case TypeULEB128:
1032       sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
1033       break;
1034     case TypeSLEB128:
1035       sstr.Printf(" %" PRId64, GetSLEB128(&offset));
1036       break;
1037     }
1038   }
1039 
1040   if (!sstr.Empty())
1041     log->PutString(sstr.GetString());
1042 
1043   return offset; // Return the offset at which we ended up
1044 }
1045 
1046 size_t DataExtractor::Copy(DataExtractor &dest_data) const {
1047   if (m_data_sp) {
1048     // we can pass along the SP to the data
1049     dest_data.SetData(m_data_sp);
1050   } else {
1051     const uint8_t *base_ptr = m_start;
1052     size_t data_size = GetByteSize();
1053     dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
1054   }
1055   return GetByteSize();
1056 }
1057 
1058 bool DataExtractor::Append(DataExtractor &rhs) {
1059   if (rhs.GetByteOrder() != GetByteOrder())
1060     return false;
1061 
1062   if (rhs.GetByteSize() == 0)
1063     return true;
1064 
1065   if (GetByteSize() == 0)
1066     return (rhs.Copy(*this) > 0);
1067 
1068   size_t bytes = GetByteSize() + rhs.GetByteSize();
1069 
1070   DataBufferHeap *buffer_heap_ptr = nullptr;
1071   DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1072 
1073   if (!buffer_sp || buffer_heap_ptr == nullptr)
1074     return false;
1075 
1076   uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1077 
1078   memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1079   memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
1080 
1081   SetData(buffer_sp);
1082 
1083   return true;
1084 }
1085 
1086 bool DataExtractor::Append(void *buf, offset_t length) {
1087   if (buf == nullptr)
1088     return false;
1089 
1090   if (length == 0)
1091     return true;
1092 
1093   size_t bytes = GetByteSize() + length;
1094 
1095   DataBufferHeap *buffer_heap_ptr = nullptr;
1096   DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1097 
1098   if (!buffer_sp || buffer_heap_ptr == nullptr)
1099     return false;
1100 
1101   uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1102 
1103   if (GetByteSize() > 0)
1104     memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1105 
1106   memcpy(bytes_ptr + GetByteSize(), buf, length);
1107 
1108   SetData(buffer_sp);
1109 
1110   return true;
1111 }
1112 
1113 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1114                              uint64_t max_data) {
1115   if (max_data == 0)
1116     max_data = GetByteSize();
1117   else
1118     max_data = std::min(max_data, GetByteSize());
1119 
1120   llvm::MD5 md5;
1121 
1122   const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1123   md5.update(data);
1124 
1125   llvm::MD5::MD5Result result;
1126   md5.final(result);
1127 
1128   dest.clear();
1129   dest.append(result.Bytes.begin(), result.Bytes.end());
1130 }
1131