1 //===-- DataExtractor.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Utility/DataExtractor.h" 10 11 #include "lldb/lldb-defines.h" 12 #include "lldb/lldb-enumerations.h" 13 #include "lldb/lldb-forward.h" 14 #include "lldb/lldb-types.h" 15 16 #include "lldb/Utility/DataBuffer.h" 17 #include "lldb/Utility/DataBufferHeap.h" 18 #include "lldb/Utility/Endian.h" 19 #include "lldb/Utility/LLDBAssert.h" 20 #include "lldb/Utility/Log.h" 21 #include "lldb/Utility/Stream.h" 22 #include "lldb/Utility/StreamString.h" 23 #include "lldb/Utility/UUID.h" 24 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/MD5.h" 28 #include "llvm/Support/MathExtras.h" 29 30 #include <algorithm> 31 #include <array> 32 #include <cassert> 33 #include <cstdint> 34 #include <string> 35 36 #include <ctype.h> 37 #include <inttypes.h> 38 #include <string.h> 39 40 using namespace lldb; 41 using namespace lldb_private; 42 43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) { 44 uint16_t value; 45 memcpy(&value, ptr + offset, 2); 46 return value; 47 } 48 49 static inline uint32_t ReadInt32(const unsigned char *ptr, 50 offset_t offset = 0) { 51 uint32_t value; 52 memcpy(&value, ptr + offset, 4); 53 return value; 54 } 55 56 static inline uint64_t ReadInt64(const unsigned char *ptr, 57 offset_t offset = 0) { 58 uint64_t value; 59 memcpy(&value, ptr + offset, 8); 60 return value; 61 } 62 63 static inline uint16_t ReadInt16(const void *ptr) { 64 uint16_t value; 65 memcpy(&value, ptr, 2); 66 return value; 67 } 68 69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr, 70 offset_t offset) { 71 uint16_t value; 72 memcpy(&value, ptr + offset, 2); 73 return llvm::ByteSwap_16(value); 74 } 75 76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr, 77 offset_t offset) { 78 uint32_t value; 79 memcpy(&value, ptr + offset, 4); 80 return llvm::ByteSwap_32(value); 81 } 82 83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr, 84 offset_t offset) { 85 uint64_t value; 86 memcpy(&value, ptr + offset, 8); 87 return llvm::ByteSwap_64(value); 88 } 89 90 static inline uint16_t ReadSwapInt16(const void *ptr) { 91 uint16_t value; 92 memcpy(&value, ptr, 2); 93 return llvm::ByteSwap_16(value); 94 } 95 96 static inline uint32_t ReadSwapInt32(const void *ptr) { 97 uint32_t value; 98 memcpy(&value, ptr, 4); 99 return llvm::ByteSwap_32(value); 100 } 101 102 static inline uint64_t ReadSwapInt64(const void *ptr) { 103 uint64_t value; 104 memcpy(&value, ptr, 8); 105 return llvm::ByteSwap_64(value); 106 } 107 108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size, 109 ByteOrder byte_order) { 110 uint64_t res = 0; 111 if (byte_order == eByteOrderBig) 112 for (size_t i = 0; i < byte_size; ++i) 113 res = (res << 8) | data[i]; 114 else { 115 assert(byte_order == eByteOrderLittle); 116 for (size_t i = 0; i < byte_size; ++i) 117 res = (res << 8) | data[byte_size - 1 - i]; 118 } 119 return res; 120 } 121 122 DataExtractor::DataExtractor() 123 : m_start(nullptr), m_end(nullptr), 124 m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)), 125 m_data_sp(), m_target_byte_size(1) {} 126 127 // This constructor allows us to use data that is owned by someone else. The 128 // data must stay around as long as this object is valid. 129 DataExtractor::DataExtractor(const void *data, offset_t length, 130 ByteOrder endian, uint32_t addr_size, 131 uint32_t target_byte_size /*=1*/) 132 : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))), 133 m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length), 134 m_byte_order(endian), m_addr_size(addr_size), m_data_sp(), 135 m_target_byte_size(target_byte_size) { 136 assert(addr_size >= 1 && addr_size <= 8); 137 } 138 139 // Make a shared pointer reference to the shared data in "data_sp" and set the 140 // endian swapping setting to "swap", and the address size to "addr_size". The 141 // shared data reference will ensure the data lives as long as any 142 // DataExtractor objects exist that have a reference to this data. 143 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian, 144 uint32_t addr_size, 145 uint32_t target_byte_size /*=1*/) 146 : m_start(nullptr), m_end(nullptr), m_byte_order(endian), 147 m_addr_size(addr_size), m_data_sp(), 148 m_target_byte_size(target_byte_size) { 149 assert(addr_size >= 1 && addr_size <= 8); 150 SetData(data_sp); 151 } 152 153 // Initialize this object with a subset of the data bytes in "data". If "data" 154 // contains shared data, then a reference to this shared data will added and 155 // the shared data will stay around as long as any object contains a reference 156 // to that data. The endian swap and address size settings are copied from 157 // "data". 158 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset, 159 offset_t length, uint32_t target_byte_size /*=1*/) 160 : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order), 161 m_addr_size(data.m_addr_size), m_data_sp(), 162 m_target_byte_size(target_byte_size) { 163 assert(m_addr_size >= 1 && m_addr_size <= 8); 164 if (data.ValidOffset(offset)) { 165 offset_t bytes_available = data.GetByteSize() - offset; 166 if (length > bytes_available) 167 length = bytes_available; 168 SetData(data, offset, length); 169 } 170 } 171 172 DataExtractor::DataExtractor(const DataExtractor &rhs) 173 : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order), 174 m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp), 175 m_target_byte_size(rhs.m_target_byte_size) { 176 assert(m_addr_size >= 1 && m_addr_size <= 8); 177 } 178 179 // Assignment operator 180 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) { 181 if (this != &rhs) { 182 m_start = rhs.m_start; 183 m_end = rhs.m_end; 184 m_byte_order = rhs.m_byte_order; 185 m_addr_size = rhs.m_addr_size; 186 m_data_sp = rhs.m_data_sp; 187 } 188 return *this; 189 } 190 191 DataExtractor::~DataExtractor() = default; 192 193 // Clears the object contents back to a default invalid state, and release any 194 // references to shared data that this object may contain. 195 void DataExtractor::Clear() { 196 m_start = nullptr; 197 m_end = nullptr; 198 m_byte_order = endian::InlHostByteOrder(); 199 m_addr_size = sizeof(void *); 200 m_data_sp.reset(); 201 } 202 203 // If this object contains shared data, this function returns the offset into 204 // that shared data. Else zero is returned. 205 size_t DataExtractor::GetSharedDataOffset() const { 206 if (m_start != nullptr) { 207 const DataBuffer *data = m_data_sp.get(); 208 if (data != nullptr) { 209 const uint8_t *data_bytes = data->GetBytes(); 210 if (data_bytes != nullptr) { 211 assert(m_start >= data_bytes); 212 return m_start - data_bytes; 213 } 214 } 215 } 216 return 0; 217 } 218 219 // Set the data with which this object will extract from to data starting at 220 // BYTES and set the length of the data to LENGTH bytes long. The data is 221 // externally owned must be around at least as long as this object points to 222 // the data. No copy of the data is made, this object just refers to this data 223 // and can extract from it. If this object refers to any shared data upon 224 // entry, the reference to that data will be released. Is SWAP is set to true, 225 // any data extracted will be endian swapped. 226 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length, 227 ByteOrder endian) { 228 m_byte_order = endian; 229 m_data_sp.reset(); 230 if (bytes == nullptr || length == 0) { 231 m_start = nullptr; 232 m_end = nullptr; 233 } else { 234 m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes)); 235 m_end = m_start + length; 236 } 237 return GetByteSize(); 238 } 239 240 // Assign the data for this object to be a subrange in "data" starting 241 // "data_offset" bytes into "data" and ending "data_length" bytes later. If 242 // "data_offset" is not a valid offset into "data", then this object will 243 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too 244 // large, the length will be capped at the number of bytes remaining in "data". 245 // If "data" contains a shared pointer to other data, then a ref counted 246 // pointer to that data will be made in this object. If "data" doesn't contain 247 // a shared pointer to data, then the bytes referred to in "data" will need to 248 // exist at least as long as this object refers to those bytes. The address 249 // size and endian swap settings are copied from the current values in "data". 250 lldb::offset_t DataExtractor::SetData(const DataExtractor &data, 251 offset_t data_offset, 252 offset_t data_length) { 253 m_addr_size = data.m_addr_size; 254 assert(m_addr_size >= 1 && m_addr_size <= 8); 255 // If "data" contains shared pointer to data, then we can use that 256 if (data.m_data_sp) { 257 m_byte_order = data.m_byte_order; 258 return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, 259 data_length); 260 } 261 262 // We have a DataExtractor object that just has a pointer to bytes 263 if (data.ValidOffset(data_offset)) { 264 if (data_length > data.GetByteSize() - data_offset) 265 data_length = data.GetByteSize() - data_offset; 266 return SetData(data.GetDataStart() + data_offset, data_length, 267 data.GetByteOrder()); 268 } 269 return 0; 270 } 271 272 // Assign the data for this object to be a subrange of the shared data in 273 // "data_sp" starting "data_offset" bytes into "data_sp" and ending 274 // "data_length" bytes later. If "data_offset" is not a valid offset into 275 // "data_sp", then this object will contain no bytes. If "data_offset" is 276 // within "data_sp" yet "data_length" is too large, the length will be capped 277 // at the number of bytes remaining in "data_sp". A ref counted pointer to the 278 // data in "data_sp" will be made in this object IF the number of bytes this 279 // object refers to in greater than zero (if at least one byte was available 280 // starting at "data_offset") to ensure the data stays around as long as it is 281 // needed. The address size and endian swap settings will remain unchanged from 282 // their current settings. 283 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp, 284 offset_t data_offset, 285 offset_t data_length) { 286 m_start = m_end = nullptr; 287 288 if (data_length > 0) { 289 m_data_sp = data_sp; 290 if (data_sp) { 291 const size_t data_size = data_sp->GetByteSize(); 292 if (data_offset < data_size) { 293 m_start = data_sp->GetBytes() + data_offset; 294 const size_t bytes_left = data_size - data_offset; 295 // Cap the length of we asked for too many 296 if (data_length <= bytes_left) 297 m_end = m_start + data_length; // We got all the bytes we wanted 298 else 299 m_end = m_start + bytes_left; // Not all the bytes requested were 300 // available in the shared data 301 } 302 } 303 } 304 305 size_t new_size = GetByteSize(); 306 307 // Don't hold a shared pointer to the data buffer if we don't share any valid 308 // bytes in the shared buffer. 309 if (new_size == 0) 310 m_data_sp.reset(); 311 312 return new_size; 313 } 314 315 // Extract a single unsigned char from the binary data and update the offset 316 // pointed to by "offset_ptr". 317 // 318 // RETURNS the byte that was extracted, or zero on failure. 319 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const { 320 const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1)); 321 if (data) 322 return *data; 323 return 0; 324 } 325 326 // Extract "count" unsigned chars from the binary data and update the offset 327 // pointed to by "offset_ptr". The extracted data is copied into "dst". 328 // 329 // RETURNS the non-nullptr buffer pointer upon successful extraction of 330 // all the requested bytes, or nullptr when the data is not available in the 331 // buffer due to being out of bounds, or insufficient data. 332 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst, 333 uint32_t count) const { 334 const uint8_t *data = 335 static_cast<const uint8_t *>(GetData(offset_ptr, count)); 336 if (data) { 337 // Copy the data into the buffer 338 memcpy(dst, data, count); 339 // Return a non-nullptr pointer to the converted data as an indicator of 340 // success 341 return dst; 342 } 343 return nullptr; 344 } 345 346 // Extract a single uint16_t from the data and update the offset pointed to by 347 // "offset_ptr". 348 // 349 // RETURNS the uint16_t that was extracted, or zero on failure. 350 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const { 351 uint16_t val = 0; 352 const uint8_t *data = 353 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val))); 354 if (data) { 355 if (m_byte_order != endian::InlHostByteOrder()) 356 val = ReadSwapInt16(data); 357 else 358 val = ReadInt16(data); 359 } 360 return val; 361 } 362 363 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const { 364 uint16_t val; 365 if (m_byte_order == endian::InlHostByteOrder()) 366 val = ReadInt16(m_start, *offset_ptr); 367 else 368 val = ReadSwapInt16(m_start, *offset_ptr); 369 *offset_ptr += sizeof(val); 370 return val; 371 } 372 373 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const { 374 uint32_t val; 375 if (m_byte_order == endian::InlHostByteOrder()) 376 val = ReadInt32(m_start, *offset_ptr); 377 else 378 val = ReadSwapInt32(m_start, *offset_ptr); 379 *offset_ptr += sizeof(val); 380 return val; 381 } 382 383 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const { 384 uint64_t val; 385 if (m_byte_order == endian::InlHostByteOrder()) 386 val = ReadInt64(m_start, *offset_ptr); 387 else 388 val = ReadSwapInt64(m_start, *offset_ptr); 389 *offset_ptr += sizeof(val); 390 return val; 391 } 392 393 // Extract "count" uint16_t values from the binary data and update the offset 394 // pointed to by "offset_ptr". The extracted data is copied into "dst". 395 // 396 // RETURNS the non-nullptr buffer pointer upon successful extraction of 397 // all the requested bytes, or nullptr when the data is not available in the 398 // buffer due to being out of bounds, or insufficient data. 399 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst, 400 uint32_t count) const { 401 const size_t src_size = sizeof(uint16_t) * count; 402 const uint16_t *src = 403 static_cast<const uint16_t *>(GetData(offset_ptr, src_size)); 404 if (src) { 405 if (m_byte_order != endian::InlHostByteOrder()) { 406 uint16_t *dst_pos = static_cast<uint16_t *>(void_dst); 407 uint16_t *dst_end = dst_pos + count; 408 const uint16_t *src_pos = src; 409 while (dst_pos < dst_end) { 410 *dst_pos = ReadSwapInt16(src_pos); 411 ++dst_pos; 412 ++src_pos; 413 } 414 } else { 415 memcpy(void_dst, src, src_size); 416 } 417 // Return a non-nullptr pointer to the converted data as an indicator of 418 // success 419 return void_dst; 420 } 421 return nullptr; 422 } 423 424 // Extract a single uint32_t from the data and update the offset pointed to by 425 // "offset_ptr". 426 // 427 // RETURNS the uint32_t that was extracted, or zero on failure. 428 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const { 429 uint32_t val = 0; 430 const uint8_t *data = 431 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val))); 432 if (data) { 433 if (m_byte_order != endian::InlHostByteOrder()) { 434 val = ReadSwapInt32(data); 435 } else { 436 memcpy(&val, data, 4); 437 } 438 } 439 return val; 440 } 441 442 // Extract "count" uint32_t values from the binary data and update the offset 443 // pointed to by "offset_ptr". The extracted data is copied into "dst". 444 // 445 // RETURNS the non-nullptr buffer pointer upon successful extraction of 446 // all the requested bytes, or nullptr when the data is not available in the 447 // buffer due to being out of bounds, or insufficient data. 448 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst, 449 uint32_t count) const { 450 const size_t src_size = sizeof(uint32_t) * count; 451 const uint32_t *src = 452 static_cast<const uint32_t *>(GetData(offset_ptr, src_size)); 453 if (src) { 454 if (m_byte_order != endian::InlHostByteOrder()) { 455 uint32_t *dst_pos = static_cast<uint32_t *>(void_dst); 456 uint32_t *dst_end = dst_pos + count; 457 const uint32_t *src_pos = src; 458 while (dst_pos < dst_end) { 459 *dst_pos = ReadSwapInt32(src_pos); 460 ++dst_pos; 461 ++src_pos; 462 } 463 } else { 464 memcpy(void_dst, src, src_size); 465 } 466 // Return a non-nullptr pointer to the converted data as an indicator of 467 // success 468 return void_dst; 469 } 470 return nullptr; 471 } 472 473 // Extract a single uint64_t from the data and update the offset pointed to by 474 // "offset_ptr". 475 // 476 // RETURNS the uint64_t that was extracted, or zero on failure. 477 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const { 478 uint64_t val = 0; 479 const uint8_t *data = 480 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val))); 481 if (data) { 482 if (m_byte_order != endian::InlHostByteOrder()) { 483 val = ReadSwapInt64(data); 484 } else { 485 memcpy(&val, data, 8); 486 } 487 } 488 return val; 489 } 490 491 // GetU64 492 // 493 // Get multiple consecutive 64 bit values. Return true if the entire read 494 // succeeds and increment the offset pointed to by offset_ptr, else return 495 // false and leave the offset pointed to by offset_ptr unchanged. 496 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst, 497 uint32_t count) const { 498 const size_t src_size = sizeof(uint64_t) * count; 499 const uint64_t *src = 500 static_cast<const uint64_t *>(GetData(offset_ptr, src_size)); 501 if (src) { 502 if (m_byte_order != endian::InlHostByteOrder()) { 503 uint64_t *dst_pos = static_cast<uint64_t *>(void_dst); 504 uint64_t *dst_end = dst_pos + count; 505 const uint64_t *src_pos = src; 506 while (dst_pos < dst_end) { 507 *dst_pos = ReadSwapInt64(src_pos); 508 ++dst_pos; 509 ++src_pos; 510 } 511 } else { 512 memcpy(void_dst, src, src_size); 513 } 514 // Return a non-nullptr pointer to the converted data as an indicator of 515 // success 516 return void_dst; 517 } 518 return nullptr; 519 } 520 521 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr, 522 size_t byte_size) const { 523 lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!"); 524 return GetMaxU64(offset_ptr, byte_size); 525 } 526 527 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr, 528 size_t byte_size) const { 529 lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!"); 530 switch (byte_size) { 531 case 1: 532 return GetU8(offset_ptr); 533 case 2: 534 return GetU16(offset_ptr); 535 case 4: 536 return GetU32(offset_ptr); 537 case 8: 538 return GetU64(offset_ptr); 539 default: { 540 // General case. 541 const uint8_t *data = 542 static_cast<const uint8_t *>(GetData(offset_ptr, byte_size)); 543 if (data == nullptr) 544 return 0; 545 return ReadMaxInt64(data, byte_size, m_byte_order); 546 } 547 } 548 return 0; 549 } 550 551 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr, 552 size_t byte_size) const { 553 switch (byte_size) { 554 case 1: 555 return GetU8_unchecked(offset_ptr); 556 case 2: 557 return GetU16_unchecked(offset_ptr); 558 case 4: 559 return GetU32_unchecked(offset_ptr); 560 case 8: 561 return GetU64_unchecked(offset_ptr); 562 default: { 563 uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order); 564 *offset_ptr += byte_size; 565 return res; 566 } 567 } 568 return 0; 569 } 570 571 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const { 572 uint64_t u64 = GetMaxU64(offset_ptr, byte_size); 573 return llvm::SignExtend64(u64, 8 * byte_size); 574 } 575 576 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size, 577 uint32_t bitfield_bit_size, 578 uint32_t bitfield_bit_offset) const { 579 assert(bitfield_bit_size <= 64); 580 uint64_t uval64 = GetMaxU64(offset_ptr, size); 581 582 if (bitfield_bit_size == 0) 583 return uval64; 584 585 int32_t lsbcount = bitfield_bit_offset; 586 if (m_byte_order == eByteOrderBig) 587 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; 588 589 if (lsbcount > 0) 590 uval64 >>= lsbcount; 591 592 uint64_t bitfield_mask = 593 (bitfield_bit_size == 64 594 ? std::numeric_limits<uint64_t>::max() 595 : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1)); 596 if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64) 597 return uval64; 598 599 uval64 &= bitfield_mask; 600 601 return uval64; 602 } 603 604 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size, 605 uint32_t bitfield_bit_size, 606 uint32_t bitfield_bit_offset) const { 607 assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1"); 608 assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8"); 609 int64_t sval64 = GetMaxS64(offset_ptr, size); 610 if (bitfield_bit_size == 0) 611 return sval64; 612 int32_t lsbcount = bitfield_bit_offset; 613 if (m_byte_order == eByteOrderBig) 614 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; 615 if (lsbcount > 0) 616 sval64 >>= lsbcount; 617 uint64_t bitfield_mask = llvm::maskTrailingOnes<uint64_t>(bitfield_bit_size); 618 sval64 &= bitfield_mask; 619 // sign extend if needed 620 if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1))) 621 sval64 |= ~bitfield_mask; 622 return sval64; 623 } 624 625 float DataExtractor::GetFloat(offset_t *offset_ptr) const { 626 typedef float float_type; 627 float_type val = 0.0; 628 const size_t src_size = sizeof(float_type); 629 const float_type *src = 630 static_cast<const float_type *>(GetData(offset_ptr, src_size)); 631 if (src) { 632 if (m_byte_order != endian::InlHostByteOrder()) { 633 const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src); 634 uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val); 635 for (size_t i = 0; i < sizeof(float_type); ++i) 636 dst_data[sizeof(float_type) - 1 - i] = src_data[i]; 637 } else { 638 val = *src; 639 } 640 } 641 return val; 642 } 643 644 double DataExtractor::GetDouble(offset_t *offset_ptr) const { 645 typedef double float_type; 646 float_type val = 0.0; 647 const size_t src_size = sizeof(float_type); 648 const float_type *src = 649 static_cast<const float_type *>(GetData(offset_ptr, src_size)); 650 if (src) { 651 if (m_byte_order != endian::InlHostByteOrder()) { 652 const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src); 653 uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val); 654 for (size_t i = 0; i < sizeof(float_type); ++i) 655 dst_data[sizeof(float_type) - 1 - i] = src_data[i]; 656 } else { 657 val = *src; 658 } 659 } 660 return val; 661 } 662 663 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const { 664 long double val = 0.0; 665 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \ 666 defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64) 667 *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val), 668 endian::InlHostByteOrder()); 669 #else 670 *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val, 671 sizeof(val), endian::InlHostByteOrder()); 672 #endif 673 return val; 674 } 675 676 // Extract a single address from the data and update the offset pointed to by 677 // "offset_ptr". The size of the extracted address comes from the 678 // "this->m_addr_size" member variable and should be set correctly prior to 679 // extracting any address values. 680 // 681 // RETURNS the address that was extracted, or zero on failure. 682 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const { 683 assert(m_addr_size >= 1 && m_addr_size <= 8); 684 return GetMaxU64(offset_ptr, m_addr_size); 685 } 686 687 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const { 688 assert(m_addr_size >= 1 && m_addr_size <= 8); 689 return GetMaxU64_unchecked(offset_ptr, m_addr_size); 690 } 691 692 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length, 693 ByteOrder dst_byte_order, void *dst) const { 694 const uint8_t *src = PeekData(offset, length); 695 if (src) { 696 if (dst_byte_order != GetByteOrder()) { 697 // Validate that only a word- or register-sized dst is byte swapped 698 assert(length == 1 || length == 2 || length == 4 || length == 8 || 699 length == 10 || length == 16 || length == 32); 700 701 for (uint32_t i = 0; i < length; ++i) 702 (static_cast<uint8_t *>(dst))[i] = src[length - i - 1]; 703 } else 704 ::memcpy(dst, src, length); 705 return length; 706 } 707 return 0; 708 } 709 710 // Extract data as it exists in target memory 711 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length, 712 void *dst) const { 713 const uint8_t *src = PeekData(offset, length); 714 if (src) { 715 ::memcpy(dst, src, length); 716 return length; 717 } 718 return 0; 719 } 720 721 // Extract data and swap if needed when doing the copy 722 lldb::offset_t 723 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len, 724 void *dst_void_ptr, offset_t dst_len, 725 ByteOrder dst_byte_order) const { 726 // Validate the source info 727 if (!ValidOffsetForDataOfSize(src_offset, src_len)) 728 assert(ValidOffsetForDataOfSize(src_offset, src_len)); 729 assert(src_len > 0); 730 assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle); 731 732 // Validate the destination info 733 assert(dst_void_ptr != nullptr); 734 assert(dst_len > 0); 735 assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle); 736 737 // Validate that only a word- or register-sized dst is byte swapped 738 assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 || 739 dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 || 740 dst_len == 32); 741 742 // Must have valid byte orders set in this object and for destination 743 if (!(dst_byte_order == eByteOrderBig || 744 dst_byte_order == eByteOrderLittle) || 745 !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle)) 746 return 0; 747 748 uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr); 749 const uint8_t *src = PeekData(src_offset, src_len); 750 if (src) { 751 if (dst_len >= src_len) { 752 // We are copying the entire value from src into dst. Calculate how many, 753 // if any, zeroes we need for the most significant bytes if "dst_len" is 754 // greater than "src_len"... 755 const size_t num_zeroes = dst_len - src_len; 756 if (dst_byte_order == eByteOrderBig) { 757 // Big endian, so we lead with zeroes... 758 if (num_zeroes > 0) 759 ::memset(dst, 0, num_zeroes); 760 // Then either copy or swap the rest 761 if (m_byte_order == eByteOrderBig) { 762 ::memcpy(dst + num_zeroes, src, src_len); 763 } else { 764 for (uint32_t i = 0; i < src_len; ++i) 765 dst[i + num_zeroes] = src[src_len - 1 - i]; 766 } 767 } else { 768 // Little endian destination, so we lead the value bytes 769 if (m_byte_order == eByteOrderBig) { 770 for (uint32_t i = 0; i < src_len; ++i) 771 dst[i] = src[src_len - 1 - i]; 772 } else { 773 ::memcpy(dst, src, src_len); 774 } 775 // And zero the rest... 776 if (num_zeroes > 0) 777 ::memset(dst + src_len, 0, num_zeroes); 778 } 779 return src_len; 780 } else { 781 // We are only copying some of the value from src into dst.. 782 783 if (dst_byte_order == eByteOrderBig) { 784 // Big endian dst 785 if (m_byte_order == eByteOrderBig) { 786 // Big endian dst, with big endian src 787 ::memcpy(dst, src + (src_len - dst_len), dst_len); 788 } else { 789 // Big endian dst, with little endian src 790 for (uint32_t i = 0; i < dst_len; ++i) 791 dst[i] = src[dst_len - 1 - i]; 792 } 793 } else { 794 // Little endian dst 795 if (m_byte_order == eByteOrderBig) { 796 // Little endian dst, with big endian src 797 for (uint32_t i = 0; i < dst_len; ++i) 798 dst[i] = src[src_len - 1 - i]; 799 } else { 800 // Little endian dst, with big endian src 801 ::memcpy(dst, src, dst_len); 802 } 803 } 804 return dst_len; 805 } 806 } 807 return 0; 808 } 809 810 // Extracts a variable length NULL terminated C string from the data at the 811 // offset pointed to by "offset_ptr". The "offset_ptr" will be updated with 812 // the offset of the byte that follows the NULL terminator byte. 813 // 814 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is 815 // non-zero and there aren't enough available bytes, nullptr will be returned 816 // and "offset_ptr" will not be updated. 817 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const { 818 const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1)); 819 // Already at the end of the data. 820 if (!start) 821 return nullptr; 822 823 const char *end = reinterpret_cast<const char *>(m_end); 824 825 // Check all bytes for a null terminator that terminates a C string. 826 const char *terminator_or_end = std::find(start, end, '\0'); 827 828 // We didn't find a null terminator, so return nullptr to indicate that there 829 // is no valid C string at that offset. 830 if (terminator_or_end == end) 831 return nullptr; 832 833 // Update offset_ptr for the caller to point to the data behind the 834 // terminator (which is 1 byte long). 835 *offset_ptr += (terminator_or_end - start + 1UL); 836 return start; 837 } 838 839 // Extracts a NULL terminated C string from the fixed length field of length 840 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be 841 // updated with the offset of the byte that follows the fixed length field. 842 // 843 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset 844 // plus the length of the field is out of bounds, or if the field does not 845 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr" 846 // will not be updated. 847 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const { 848 const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len)); 849 if (cstr != nullptr) { 850 if (memchr(cstr, '\0', len) == nullptr) { 851 return nullptr; 852 } 853 *offset_ptr += len; 854 return cstr; 855 } 856 return nullptr; 857 } 858 859 // Peeks at a string in the contained data. No verification is done to make 860 // sure the entire string lies within the bounds of this object's data, only 861 // "offset" is verified to be a valid offset. 862 // 863 // Returns a valid C string pointer if "offset" is a valid offset in this 864 // object's data, else nullptr is returned. 865 const char *DataExtractor::PeekCStr(offset_t offset) const { 866 return reinterpret_cast<const char *>(PeekData(offset, 1)); 867 } 868 869 // Extracts an unsigned LEB128 number from this object's data starting at the 870 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr" 871 // will be updated with the offset of the byte following the last extracted 872 // byte. 873 // 874 // Returned the extracted integer value. 875 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const { 876 const uint8_t *src = PeekData(*offset_ptr, 1); 877 if (src == nullptr) 878 return 0; 879 880 const uint8_t *end = m_end; 881 882 if (src < end) { 883 uint64_t result = *src++; 884 if (result >= 0x80) { 885 result &= 0x7f; 886 int shift = 7; 887 while (src < end) { 888 uint8_t byte = *src++; 889 result |= static_cast<uint64_t>(byte & 0x7f) << shift; 890 if ((byte & 0x80) == 0) 891 break; 892 shift += 7; 893 } 894 } 895 *offset_ptr = src - m_start; 896 return result; 897 } 898 899 return 0; 900 } 901 902 // Extracts an signed LEB128 number from this object's data starting at the 903 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr" 904 // will be updated with the offset of the byte following the last extracted 905 // byte. 906 // 907 // Returned the extracted integer value. 908 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const { 909 const uint8_t *src = PeekData(*offset_ptr, 1); 910 if (src == nullptr) 911 return 0; 912 913 const uint8_t *end = m_end; 914 915 if (src < end) { 916 int64_t result = 0; 917 int shift = 0; 918 int size = sizeof(int64_t) * 8; 919 920 uint8_t byte = 0; 921 int bytecount = 0; 922 923 while (src < end) { 924 bytecount++; 925 byte = *src++; 926 result |= static_cast<int64_t>(byte & 0x7f) << shift; 927 shift += 7; 928 if ((byte & 0x80) == 0) 929 break; 930 } 931 932 // Sign bit of byte is 2nd high order bit (0x40) 933 if (shift < size && (byte & 0x40)) 934 result |= -(1 << shift); 935 936 *offset_ptr += bytecount; 937 return result; 938 } 939 return 0; 940 } 941 942 // Skips a ULEB128 number (signed or unsigned) from this object's data starting 943 // at the offset pointed to by "offset_ptr". The offset pointed to by 944 // "offset_ptr" will be updated with the offset of the byte following the last 945 // extracted byte. 946 // 947 // Returns the number of bytes consumed during the extraction. 948 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const { 949 uint32_t bytes_consumed = 0; 950 const uint8_t *src = PeekData(*offset_ptr, 1); 951 if (src == nullptr) 952 return 0; 953 954 const uint8_t *end = m_end; 955 956 if (src < end) { 957 const uint8_t *src_pos = src; 958 while ((src_pos < end) && (*src_pos++ & 0x80)) 959 ++bytes_consumed; 960 *offset_ptr += src_pos - src; 961 } 962 return bytes_consumed; 963 } 964 965 // Dumps bytes from this object's data to the stream "s" starting 966 // "start_offset" bytes into this data, and ending with the byte before 967 // "end_offset". "base_addr" will be added to the offset into the dumped data 968 // when showing the offset into the data in the output information. 969 // "num_per_line" objects of type "type" will be dumped with the option to 970 // override the format for each object with "type_format". "type_format" is a 971 // printf style formatting string. If "type_format" is nullptr, then an 972 // appropriate format string will be used for the supplied "type". If the 973 // stream "s" is nullptr, then the output will be send to Log(). 974 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset, 975 offset_t length, uint64_t base_addr, 976 uint32_t num_per_line, 977 DataExtractor::Type type) const { 978 if (log == nullptr) 979 return start_offset; 980 981 offset_t offset; 982 offset_t end_offset; 983 uint32_t count; 984 StreamString sstr; 985 for (offset = start_offset, end_offset = offset + length, count = 0; 986 ValidOffset(offset) && offset < end_offset; ++count) { 987 if ((count % num_per_line) == 0) { 988 // Print out any previous string 989 if (sstr.GetSize() > 0) { 990 log->PutString(sstr.GetString()); 991 sstr.Clear(); 992 } 993 // Reset string offset and fill the current line string with address: 994 if (base_addr != LLDB_INVALID_ADDRESS) 995 sstr.Printf("0x%8.8" PRIx64 ":", 996 static_cast<uint64_t>(base_addr + (offset - start_offset))); 997 } 998 999 switch (type) { 1000 case TypeUInt8: 1001 sstr.Printf(" %2.2x", GetU8(&offset)); 1002 break; 1003 case TypeChar: { 1004 char ch = GetU8(&offset); 1005 sstr.Printf(" %c", isprint(ch) ? ch : ' '); 1006 } break; 1007 case TypeUInt16: 1008 sstr.Printf(" %4.4x", GetU16(&offset)); 1009 break; 1010 case TypeUInt32: 1011 sstr.Printf(" %8.8x", GetU32(&offset)); 1012 break; 1013 case TypeUInt64: 1014 sstr.Printf(" %16.16" PRIx64, GetU64(&offset)); 1015 break; 1016 case TypePointer: 1017 sstr.Printf(" 0x%" PRIx64, GetAddress(&offset)); 1018 break; 1019 case TypeULEB128: 1020 sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset)); 1021 break; 1022 case TypeSLEB128: 1023 sstr.Printf(" %" PRId64, GetSLEB128(&offset)); 1024 break; 1025 } 1026 } 1027 1028 if (!sstr.Empty()) 1029 log->PutString(sstr.GetString()); 1030 1031 return offset; // Return the offset at which we ended up 1032 } 1033 1034 size_t DataExtractor::Copy(DataExtractor &dest_data) const { 1035 if (m_data_sp) { 1036 // we can pass along the SP to the data 1037 dest_data.SetData(m_data_sp); 1038 } else { 1039 const uint8_t *base_ptr = m_start; 1040 size_t data_size = GetByteSize(); 1041 dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size))); 1042 } 1043 return GetByteSize(); 1044 } 1045 1046 bool DataExtractor::Append(DataExtractor &rhs) { 1047 if (rhs.GetByteOrder() != GetByteOrder()) 1048 return false; 1049 1050 if (rhs.GetByteSize() == 0) 1051 return true; 1052 1053 if (GetByteSize() == 0) 1054 return (rhs.Copy(*this) > 0); 1055 1056 size_t bytes = GetByteSize() + rhs.GetByteSize(); 1057 1058 DataBufferHeap *buffer_heap_ptr = nullptr; 1059 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); 1060 1061 if (!buffer_sp || buffer_heap_ptr == nullptr) 1062 return false; 1063 1064 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); 1065 1066 memcpy(bytes_ptr, GetDataStart(), GetByteSize()); 1067 memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize()); 1068 1069 SetData(buffer_sp); 1070 1071 return true; 1072 } 1073 1074 bool DataExtractor::Append(void *buf, offset_t length) { 1075 if (buf == nullptr) 1076 return false; 1077 1078 if (length == 0) 1079 return true; 1080 1081 size_t bytes = GetByteSize() + length; 1082 1083 DataBufferHeap *buffer_heap_ptr = nullptr; 1084 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); 1085 1086 if (!buffer_sp || buffer_heap_ptr == nullptr) 1087 return false; 1088 1089 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); 1090 1091 if (GetByteSize() > 0) 1092 memcpy(bytes_ptr, GetDataStart(), GetByteSize()); 1093 1094 memcpy(bytes_ptr + GetByteSize(), buf, length); 1095 1096 SetData(buffer_sp); 1097 1098 return true; 1099 } 1100 1101 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest, 1102 uint64_t max_data) { 1103 if (max_data == 0) 1104 max_data = GetByteSize(); 1105 else 1106 max_data = std::min(max_data, GetByteSize()); 1107 1108 llvm::MD5 md5; 1109 1110 const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data); 1111 md5.update(data); 1112 1113 llvm::MD5::MD5Result result; 1114 md5.final(result); 1115 1116 dest.clear(); 1117 dest.append(result.Bytes.begin(), result.Bytes.end()); 1118 } 1119