1 //===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Utility/DataExtractor.h" 11 12 #include "lldb/lldb-defines.h" // for LLDB_INVALID_ADDRESS 13 #include "lldb/lldb-enumerations.h" // for ByteOrder::eByteOrderBig 14 #include "lldb/lldb-forward.h" // for DataBufferSP 15 #include "lldb/lldb-types.h" // for offset_t 16 17 #include "lldb/Utility/DataBuffer.h" 18 #include "lldb/Utility/DataBufferHeap.h" 19 #include "lldb/Utility/Endian.h" 20 #include "lldb/Utility/Log.h" 21 #include "lldb/Utility/Stream.h" 22 #include "lldb/Utility/StreamString.h" 23 #include "lldb/Utility/UUID.h" 24 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/MD5.h" 28 #include "llvm/Support/MathExtras.h" 29 30 #include <algorithm> // for min 31 #include <array> // for array 32 #include <cassert> 33 #include <cstdint> // for uint8_t, uint32_t, uint64_t 34 #include <string> 35 36 #include <ctype.h> // for isprint 37 #include <inttypes.h> // for PRIx64, PRId64 38 #include <string.h> // for memcpy, memset, memchr 39 40 using namespace lldb; 41 using namespace lldb_private; 42 43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) { 44 uint16_t value; 45 memcpy(&value, ptr + offset, 2); 46 return value; 47 } 48 49 static inline uint32_t ReadInt32(const unsigned char *ptr, 50 offset_t offset = 0) { 51 uint32_t value; 52 memcpy(&value, ptr + offset, 4); 53 return value; 54 } 55 56 static inline uint64_t ReadInt64(const unsigned char *ptr, 57 offset_t offset = 0) { 58 uint64_t value; 59 memcpy(&value, ptr + offset, 8); 60 return value; 61 } 62 63 static inline uint16_t ReadInt16(const void *ptr) { 64 uint16_t value; 65 memcpy(&value, ptr, 2); 66 return value; 67 } 68 69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr, 70 offset_t offset) { 71 uint16_t value; 72 memcpy(&value, ptr + offset, 2); 73 return llvm::ByteSwap_16(value); 74 } 75 76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr, 77 offset_t offset) { 78 uint32_t value; 79 memcpy(&value, ptr + offset, 4); 80 return llvm::ByteSwap_32(value); 81 } 82 83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr, 84 offset_t offset) { 85 uint64_t value; 86 memcpy(&value, ptr + offset, 8); 87 return llvm::ByteSwap_64(value); 88 } 89 90 static inline uint16_t ReadSwapInt16(const void *ptr) { 91 uint16_t value; 92 memcpy(&value, ptr, 2); 93 return llvm::ByteSwap_16(value); 94 } 95 96 static inline uint32_t ReadSwapInt32(const void *ptr) { 97 uint32_t value; 98 memcpy(&value, ptr, 4); 99 return llvm::ByteSwap_32(value); 100 } 101 102 static inline uint64_t ReadSwapInt64(const void *ptr) { 103 uint64_t value; 104 memcpy(&value, ptr, 8); 105 return llvm::ByteSwap_64(value); 106 } 107 108 DataExtractor::DataExtractor() 109 : m_start(nullptr), m_end(nullptr), 110 m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)), 111 m_data_sp(), m_target_byte_size(1) {} 112 113 //---------------------------------------------------------------------- 114 // This constructor allows us to use data that is owned by someone else. 115 // The data must stay around as long as this object is valid. 116 //---------------------------------------------------------------------- 117 DataExtractor::DataExtractor(const void *data, offset_t length, 118 ByteOrder endian, uint32_t addr_size, 119 uint32_t target_byte_size /*=1*/) 120 : m_start(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data))), 121 m_end(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data)) + 122 length), 123 m_byte_order(endian), m_addr_size(addr_size), m_data_sp(), 124 m_target_byte_size(target_byte_size) { 125 #ifdef LLDB_CONFIGURATION_DEBUG 126 assert(addr_size == 4 || addr_size == 8); 127 #endif 128 } 129 130 //---------------------------------------------------------------------- 131 // Make a shared pointer reference to the shared data in "data_sp" and 132 // set the endian swapping setting to "swap", and the address size to 133 // "addr_size". The shared data reference will ensure the data lives 134 // as long as any DataExtractor objects exist that have a reference to 135 // this data. 136 //---------------------------------------------------------------------- 137 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian, 138 uint32_t addr_size, 139 uint32_t target_byte_size /*=1*/) 140 : m_start(nullptr), m_end(nullptr), m_byte_order(endian), 141 m_addr_size(addr_size), m_data_sp(), 142 m_target_byte_size(target_byte_size) { 143 #ifdef LLDB_CONFIGURATION_DEBUG 144 assert(addr_size == 4 || addr_size == 8); 145 #endif 146 SetData(data_sp); 147 } 148 149 //---------------------------------------------------------------------- 150 // Initialize this object with a subset of the data bytes in "data". 151 // If "data" contains shared data, then a reference to this shared 152 // data will added and the shared data will stay around as long 153 // as any object contains a reference to that data. The endian 154 // swap and address size settings are copied from "data". 155 //---------------------------------------------------------------------- 156 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset, 157 offset_t length, uint32_t target_byte_size /*=1*/) 158 : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order), 159 m_addr_size(data.m_addr_size), m_data_sp(), 160 m_target_byte_size(target_byte_size) { 161 #ifdef LLDB_CONFIGURATION_DEBUG 162 assert(m_addr_size == 4 || m_addr_size == 8); 163 #endif 164 if (data.ValidOffset(offset)) { 165 offset_t bytes_available = data.GetByteSize() - offset; 166 if (length > bytes_available) 167 length = bytes_available; 168 SetData(data, offset, length); 169 } 170 } 171 172 DataExtractor::DataExtractor(const DataExtractor &rhs) 173 : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order), 174 m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp), 175 m_target_byte_size(rhs.m_target_byte_size) { 176 #ifdef LLDB_CONFIGURATION_DEBUG 177 assert(m_addr_size == 4 || m_addr_size == 8); 178 #endif 179 } 180 181 //---------------------------------------------------------------------- 182 // Assignment operator 183 //---------------------------------------------------------------------- 184 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) { 185 if (this != &rhs) { 186 m_start = rhs.m_start; 187 m_end = rhs.m_end; 188 m_byte_order = rhs.m_byte_order; 189 m_addr_size = rhs.m_addr_size; 190 m_data_sp = rhs.m_data_sp; 191 } 192 return *this; 193 } 194 195 DataExtractor::~DataExtractor() = default; 196 197 //------------------------------------------------------------------ 198 // Clears the object contents back to a default invalid state, and 199 // release any references to shared data that this object may 200 // contain. 201 //------------------------------------------------------------------ 202 void DataExtractor::Clear() { 203 m_start = nullptr; 204 m_end = nullptr; 205 m_byte_order = endian::InlHostByteOrder(); 206 m_addr_size = sizeof(void *); 207 m_data_sp.reset(); 208 } 209 210 //------------------------------------------------------------------ 211 // If this object contains shared data, this function returns the 212 // offset into that shared data. Else zero is returned. 213 //------------------------------------------------------------------ 214 size_t DataExtractor::GetSharedDataOffset() const { 215 if (m_start != nullptr) { 216 const DataBuffer *data = m_data_sp.get(); 217 if (data != nullptr) { 218 const uint8_t *data_bytes = data->GetBytes(); 219 if (data_bytes != nullptr) { 220 assert(m_start >= data_bytes); 221 return m_start - data_bytes; 222 } 223 } 224 } 225 return 0; 226 } 227 228 //---------------------------------------------------------------------- 229 // Set the data with which this object will extract from to data 230 // starting at BYTES and set the length of the data to LENGTH bytes 231 // long. The data is externally owned must be around at least as 232 // long as this object points to the data. No copy of the data is 233 // made, this object just refers to this data and can extract from 234 // it. If this object refers to any shared data upon entry, the 235 // reference to that data will be released. Is SWAP is set to true, 236 // any data extracted will be endian swapped. 237 //---------------------------------------------------------------------- 238 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length, 239 ByteOrder endian) { 240 m_byte_order = endian; 241 m_data_sp.reset(); 242 if (bytes == nullptr || length == 0) { 243 m_start = nullptr; 244 m_end = nullptr; 245 } else { 246 m_start = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(bytes)); 247 m_end = m_start + length; 248 } 249 return GetByteSize(); 250 } 251 252 //---------------------------------------------------------------------- 253 // Assign the data for this object to be a subrange in "data" 254 // starting "data_offset" bytes into "data" and ending "data_length" 255 // bytes later. If "data_offset" is not a valid offset into "data", 256 // then this object will contain no bytes. If "data_offset" is 257 // within "data" yet "data_length" is too large, the length will be 258 // capped at the number of bytes remaining in "data". If "data" 259 // contains a shared pointer to other data, then a ref counted 260 // pointer to that data will be made in this object. If "data" 261 // doesn't contain a shared pointer to data, then the bytes referred 262 // to in "data" will need to exist at least as long as this object 263 // refers to those bytes. The address size and endian swap settings 264 // are copied from the current values in "data". 265 //---------------------------------------------------------------------- 266 lldb::offset_t DataExtractor::SetData(const DataExtractor &data, 267 offset_t data_offset, 268 offset_t data_length) { 269 m_addr_size = data.m_addr_size; 270 #ifdef LLDB_CONFIGURATION_DEBUG 271 assert(m_addr_size == 4 || m_addr_size == 8); 272 #endif 273 // If "data" contains shared pointer to data, then we can use that 274 if (data.m_data_sp) { 275 m_byte_order = data.m_byte_order; 276 return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, 277 data_length); 278 } 279 280 // We have a DataExtractor object that just has a pointer to bytes 281 if (data.ValidOffset(data_offset)) { 282 if (data_length > data.GetByteSize() - data_offset) 283 data_length = data.GetByteSize() - data_offset; 284 return SetData(data.GetDataStart() + data_offset, data_length, 285 data.GetByteOrder()); 286 } 287 return 0; 288 } 289 290 //---------------------------------------------------------------------- 291 // Assign the data for this object to be a subrange of the shared 292 // data in "data_sp" starting "data_offset" bytes into "data_sp" 293 // and ending "data_length" bytes later. If "data_offset" is not 294 // a valid offset into "data_sp", then this object will contain no 295 // bytes. If "data_offset" is within "data_sp" yet "data_length" is 296 // too large, the length will be capped at the number of bytes 297 // remaining in "data_sp". A ref counted pointer to the data in 298 // "data_sp" will be made in this object IF the number of bytes this 299 // object refers to in greater than zero (if at least one byte was 300 // available starting at "data_offset") to ensure the data stays 301 // around as long as it is needed. The address size and endian swap 302 // settings will remain unchanged from their current settings. 303 //---------------------------------------------------------------------- 304 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp, 305 offset_t data_offset, 306 offset_t data_length) { 307 m_start = m_end = nullptr; 308 309 if (data_length > 0) { 310 m_data_sp = data_sp; 311 if (data_sp) { 312 const size_t data_size = data_sp->GetByteSize(); 313 if (data_offset < data_size) { 314 m_start = data_sp->GetBytes() + data_offset; 315 const size_t bytes_left = data_size - data_offset; 316 // Cap the length of we asked for too many 317 if (data_length <= bytes_left) 318 m_end = m_start + data_length; // We got all the bytes we wanted 319 else 320 m_end = m_start + bytes_left; // Not all the bytes requested were 321 // available in the shared data 322 } 323 } 324 } 325 326 size_t new_size = GetByteSize(); 327 328 // Don't hold a shared pointer to the data buffer if we don't share 329 // any valid bytes in the shared buffer. 330 if (new_size == 0) 331 m_data_sp.reset(); 332 333 return new_size; 334 } 335 336 //---------------------------------------------------------------------- 337 // Extract a single unsigned char from the binary data and update 338 // the offset pointed to by "offset_ptr". 339 // 340 // RETURNS the byte that was extracted, or zero on failure. 341 //---------------------------------------------------------------------- 342 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const { 343 const uint8_t *data = (const uint8_t *)GetData(offset_ptr, 1); 344 if (data) 345 return *data; 346 return 0; 347 } 348 349 //---------------------------------------------------------------------- 350 // Extract "count" unsigned chars from the binary data and update the 351 // offset pointed to by "offset_ptr". The extracted data is copied into 352 // "dst". 353 // 354 // RETURNS the non-nullptr buffer pointer upon successful extraction of 355 // all the requested bytes, or nullptr when the data is not available in 356 // the buffer due to being out of bounds, or insufficient data. 357 //---------------------------------------------------------------------- 358 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst, 359 uint32_t count) const { 360 const uint8_t *data = (const uint8_t *)GetData(offset_ptr, count); 361 if (data) { 362 // Copy the data into the buffer 363 memcpy(dst, data, count); 364 // Return a non-nullptr pointer to the converted data as an indicator of 365 // success 366 return dst; 367 } 368 return nullptr; 369 } 370 371 //---------------------------------------------------------------------- 372 // Extract a single uint16_t from the data and update the offset 373 // pointed to by "offset_ptr". 374 // 375 // RETURNS the uint16_t that was extracted, or zero on failure. 376 //---------------------------------------------------------------------- 377 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const { 378 uint16_t val = 0; 379 const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); 380 if (data) { 381 if (m_byte_order != endian::InlHostByteOrder()) 382 val = ReadSwapInt16(data); 383 else 384 val = ReadInt16(data); 385 } 386 return val; 387 } 388 389 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const { 390 uint16_t val; 391 if (m_byte_order == endian::InlHostByteOrder()) 392 val = ReadInt16(m_start, *offset_ptr); 393 else 394 val = ReadSwapInt16(m_start, *offset_ptr); 395 *offset_ptr += sizeof(val); 396 return val; 397 } 398 399 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const { 400 uint32_t val; 401 if (m_byte_order == endian::InlHostByteOrder()) 402 val = ReadInt32(m_start, *offset_ptr); 403 else 404 val = ReadSwapInt32(m_start, *offset_ptr); 405 *offset_ptr += sizeof(val); 406 return val; 407 } 408 409 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const { 410 uint64_t val; 411 if (m_byte_order == endian::InlHostByteOrder()) 412 val = ReadInt64(m_start, *offset_ptr); 413 else 414 val = ReadSwapInt64(m_start, *offset_ptr); 415 *offset_ptr += sizeof(val); 416 return val; 417 } 418 419 //---------------------------------------------------------------------- 420 // Extract "count" uint16_t values from the binary data and update 421 // the offset pointed to by "offset_ptr". The extracted data is 422 // copied into "dst". 423 // 424 // RETURNS the non-nullptr buffer pointer upon successful extraction of 425 // all the requested bytes, or nullptr when the data is not available 426 // in the buffer due to being out of bounds, or insufficient data. 427 //---------------------------------------------------------------------- 428 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst, 429 uint32_t count) const { 430 const size_t src_size = sizeof(uint16_t) * count; 431 const uint16_t *src = (const uint16_t *)GetData(offset_ptr, src_size); 432 if (src) { 433 if (m_byte_order != endian::InlHostByteOrder()) { 434 uint16_t *dst_pos = (uint16_t *)void_dst; 435 uint16_t *dst_end = dst_pos + count; 436 const uint16_t *src_pos = src; 437 while (dst_pos < dst_end) { 438 *dst_pos = ReadSwapInt16(src_pos); 439 ++dst_pos; 440 ++src_pos; 441 } 442 } else { 443 memcpy(void_dst, src, src_size); 444 } 445 // Return a non-nullptr pointer to the converted data as an indicator of 446 // success 447 return void_dst; 448 } 449 return nullptr; 450 } 451 452 //---------------------------------------------------------------------- 453 // Extract a single uint32_t from the data and update the offset 454 // pointed to by "offset_ptr". 455 // 456 // RETURNS the uint32_t that was extracted, or zero on failure. 457 //---------------------------------------------------------------------- 458 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const { 459 uint32_t val = 0; 460 const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); 461 if (data) { 462 if (m_byte_order != endian::InlHostByteOrder()) { 463 val = ReadSwapInt32(data); 464 } else { 465 memcpy(&val, data, 4); 466 } 467 } 468 return val; 469 } 470 471 //---------------------------------------------------------------------- 472 // Extract "count" uint32_t values from the binary data and update 473 // the offset pointed to by "offset_ptr". The extracted data is 474 // copied into "dst". 475 // 476 // RETURNS the non-nullptr buffer pointer upon successful extraction of 477 // all the requested bytes, or nullptr when the data is not available 478 // in the buffer due to being out of bounds, or insufficient data. 479 //---------------------------------------------------------------------- 480 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst, 481 uint32_t count) const { 482 const size_t src_size = sizeof(uint32_t) * count; 483 const uint32_t *src = (const uint32_t *)GetData(offset_ptr, src_size); 484 if (src) { 485 if (m_byte_order != endian::InlHostByteOrder()) { 486 uint32_t *dst_pos = (uint32_t *)void_dst; 487 uint32_t *dst_end = dst_pos + count; 488 const uint32_t *src_pos = src; 489 while (dst_pos < dst_end) { 490 *dst_pos = ReadSwapInt32(src_pos); 491 ++dst_pos; 492 ++src_pos; 493 } 494 } else { 495 memcpy(void_dst, src, src_size); 496 } 497 // Return a non-nullptr pointer to the converted data as an indicator of 498 // success 499 return void_dst; 500 } 501 return nullptr; 502 } 503 504 //---------------------------------------------------------------------- 505 // Extract a single uint64_t from the data and update the offset 506 // pointed to by "offset_ptr". 507 // 508 // RETURNS the uint64_t that was extracted, or zero on failure. 509 //---------------------------------------------------------------------- 510 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const { 511 uint64_t val = 0; 512 const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); 513 if (data) { 514 if (m_byte_order != endian::InlHostByteOrder()) { 515 val = ReadSwapInt64(data); 516 } else { 517 memcpy(&val, data, 8); 518 } 519 } 520 return val; 521 } 522 523 //---------------------------------------------------------------------- 524 // GetU64 525 // 526 // Get multiple consecutive 64 bit values. Return true if the entire 527 // read succeeds and increment the offset pointed to by offset_ptr, else 528 // return false and leave the offset pointed to by offset_ptr unchanged. 529 //---------------------------------------------------------------------- 530 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst, 531 uint32_t count) const { 532 const size_t src_size = sizeof(uint64_t) * count; 533 const uint64_t *src = (const uint64_t *)GetData(offset_ptr, src_size); 534 if (src) { 535 if (m_byte_order != endian::InlHostByteOrder()) { 536 uint64_t *dst_pos = (uint64_t *)void_dst; 537 uint64_t *dst_end = dst_pos + count; 538 const uint64_t *src_pos = src; 539 while (dst_pos < dst_end) { 540 *dst_pos = ReadSwapInt64(src_pos); 541 ++dst_pos; 542 ++src_pos; 543 } 544 } else { 545 memcpy(void_dst, src, src_size); 546 } 547 // Return a non-nullptr pointer to the converted data as an indicator of 548 // success 549 return void_dst; 550 } 551 return nullptr; 552 } 553 554 //---------------------------------------------------------------------- 555 // Extract a single integer value from the data and update the offset 556 // pointed to by "offset_ptr". The size of the extracted integer 557 // is specified by the "byte_size" argument. "byte_size" should have 558 // a value between 1 and 4 since the return value is only 32 bits 559 // wide. Any "byte_size" values less than 1 or greater than 4 will 560 // result in nothing being extracted, and zero being returned. 561 // 562 // RETURNS the integer value that was extracted, or zero on failure. 563 //---------------------------------------------------------------------- 564 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr, 565 size_t byte_size) const { 566 switch (byte_size) { 567 case 1: 568 return GetU8(offset_ptr); 569 break; 570 case 2: 571 return GetU16(offset_ptr); 572 break; 573 case 4: 574 return GetU32(offset_ptr); 575 break; 576 default: 577 assert(false && "GetMaxU32 unhandled case!"); 578 break; 579 } 580 return 0; 581 } 582 583 //---------------------------------------------------------------------- 584 // Extract a single integer value from the data and update the offset 585 // pointed to by "offset_ptr". The size of the extracted integer 586 // is specified by the "byte_size" argument. "byte_size" should have 587 // a value >= 1 and <= 8 since the return value is only 64 bits 588 // wide. Any "byte_size" values less than 1 or greater than 8 will 589 // result in nothing being extracted, and zero being returned. 590 // 591 // RETURNS the integer value that was extracted, or zero on failure. 592 //---------------------------------------------------------------------- 593 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr, size_t size) const { 594 switch (size) { 595 case 1: 596 return GetU8(offset_ptr); 597 break; 598 case 2: 599 return GetU16(offset_ptr); 600 break; 601 case 4: 602 return GetU32(offset_ptr); 603 break; 604 case 8: 605 return GetU64(offset_ptr); 606 break; 607 default: 608 assert(false && "GetMax64 unhandled case!"); 609 break; 610 } 611 return 0; 612 } 613 614 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr, 615 size_t size) const { 616 switch (size) { 617 case 1: 618 return GetU8_unchecked(offset_ptr); 619 break; 620 case 2: 621 return GetU16_unchecked(offset_ptr); 622 break; 623 case 4: 624 return GetU32_unchecked(offset_ptr); 625 break; 626 case 8: 627 return GetU64_unchecked(offset_ptr); 628 break; 629 default: 630 assert(false && "GetMax64 unhandled case!"); 631 break; 632 } 633 return 0; 634 } 635 636 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t size) const { 637 switch (size) { 638 case 1: 639 return (int8_t)GetU8(offset_ptr); 640 break; 641 case 2: 642 return (int16_t)GetU16(offset_ptr); 643 break; 644 case 4: 645 return (int32_t)GetU32(offset_ptr); 646 break; 647 case 8: 648 return (int64_t)GetU64(offset_ptr); 649 break; 650 default: 651 assert(false && "GetMax64 unhandled case!"); 652 break; 653 } 654 return 0; 655 } 656 657 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size, 658 uint32_t bitfield_bit_size, 659 uint32_t bitfield_bit_offset) const { 660 uint64_t uval64 = GetMaxU64(offset_ptr, size); 661 if (bitfield_bit_size > 0) { 662 int32_t lsbcount = bitfield_bit_offset; 663 if (m_byte_order == eByteOrderBig) 664 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; 665 if (lsbcount > 0) 666 uval64 >>= lsbcount; 667 uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1); 668 if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64) 669 return uval64; 670 uval64 &= bitfield_mask; 671 } 672 return uval64; 673 } 674 675 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size, 676 uint32_t bitfield_bit_size, 677 uint32_t bitfield_bit_offset) const { 678 int64_t sval64 = GetMaxS64(offset_ptr, size); 679 if (bitfield_bit_size > 0) { 680 int32_t lsbcount = bitfield_bit_offset; 681 if (m_byte_order == eByteOrderBig) 682 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; 683 if (lsbcount > 0) 684 sval64 >>= lsbcount; 685 uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1; 686 sval64 &= bitfield_mask; 687 // sign extend if needed 688 if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1))) 689 sval64 |= ~bitfield_mask; 690 } 691 return sval64; 692 } 693 694 float DataExtractor::GetFloat(offset_t *offset_ptr) const { 695 typedef float float_type; 696 float_type val = 0.0; 697 const size_t src_size = sizeof(float_type); 698 const float_type *src = (const float_type *)GetData(offset_ptr, src_size); 699 if (src) { 700 if (m_byte_order != endian::InlHostByteOrder()) { 701 const uint8_t *src_data = (const uint8_t *)src; 702 uint8_t *dst_data = (uint8_t *)&val; 703 for (size_t i = 0; i < sizeof(float_type); ++i) 704 dst_data[sizeof(float_type) - 1 - i] = src_data[i]; 705 } else { 706 val = *src; 707 } 708 } 709 return val; 710 } 711 712 double DataExtractor::GetDouble(offset_t *offset_ptr) const { 713 typedef double float_type; 714 float_type val = 0.0; 715 const size_t src_size = sizeof(float_type); 716 const float_type *src = (const float_type *)GetData(offset_ptr, src_size); 717 if (src) { 718 if (m_byte_order != endian::InlHostByteOrder()) { 719 const uint8_t *src_data = (const uint8_t *)src; 720 uint8_t *dst_data = (uint8_t *)&val; 721 for (size_t i = 0; i < sizeof(float_type); ++i) 722 dst_data[sizeof(float_type) - 1 - i] = src_data[i]; 723 } else { 724 val = *src; 725 } 726 } 727 return val; 728 } 729 730 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const { 731 long double val = 0.0; 732 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \ 733 defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64) 734 *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val), 735 endian::InlHostByteOrder()); 736 #else 737 *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val, 738 sizeof(val), endian::InlHostByteOrder()); 739 #endif 740 return val; 741 } 742 743 //------------------------------------------------------------------ 744 // Extract a single address from the data and update the offset 745 // pointed to by "offset_ptr". The size of the extracted address 746 // comes from the "this->m_addr_size" member variable and should be 747 // set correctly prior to extracting any address values. 748 // 749 // RETURNS the address that was extracted, or zero on failure. 750 //------------------------------------------------------------------ 751 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const { 752 #ifdef LLDB_CONFIGURATION_DEBUG 753 assert(m_addr_size == 4 || m_addr_size == 8); 754 #endif 755 return GetMaxU64(offset_ptr, m_addr_size); 756 } 757 758 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const { 759 #ifdef LLDB_CONFIGURATION_DEBUG 760 assert(m_addr_size == 4 || m_addr_size == 8); 761 #endif 762 return GetMaxU64_unchecked(offset_ptr, m_addr_size); 763 } 764 765 //------------------------------------------------------------------ 766 // Extract a single pointer from the data and update the offset 767 // pointed to by "offset_ptr". The size of the extracted pointer 768 // comes from the "this->m_addr_size" member variable and should be 769 // set correctly prior to extracting any pointer values. 770 // 771 // RETURNS the pointer that was extracted, or zero on failure. 772 //------------------------------------------------------------------ 773 uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const { 774 #ifdef LLDB_CONFIGURATION_DEBUG 775 assert(m_addr_size == 4 || m_addr_size == 8); 776 #endif 777 return GetMaxU64(offset_ptr, m_addr_size); 778 } 779 780 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length, 781 ByteOrder dst_byte_order, void *dst) const { 782 const uint8_t *src = PeekData(offset, length); 783 if (src) { 784 if (dst_byte_order != GetByteOrder()) { 785 // Validate that only a word- or register-sized dst is byte swapped 786 assert(length == 1 || length == 2 || length == 4 || length == 8 || 787 length == 10 || length == 16 || length == 32); 788 789 for (uint32_t i = 0; i < length; ++i) 790 ((uint8_t *)dst)[i] = src[length - i - 1]; 791 } else 792 ::memcpy(dst, src, length); 793 return length; 794 } 795 return 0; 796 } 797 798 // Extract data as it exists in target memory 799 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length, 800 void *dst) const { 801 const uint8_t *src = PeekData(offset, length); 802 if (src) { 803 ::memcpy(dst, src, length); 804 return length; 805 } 806 return 0; 807 } 808 809 // Extract data and swap if needed when doing the copy 810 lldb::offset_t 811 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len, 812 void *dst_void_ptr, offset_t dst_len, 813 ByteOrder dst_byte_order) const { 814 // Validate the source info 815 if (!ValidOffsetForDataOfSize(src_offset, src_len)) 816 assert(ValidOffsetForDataOfSize(src_offset, src_len)); 817 assert(src_len > 0); 818 assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle); 819 820 // Validate the destination info 821 assert(dst_void_ptr != nullptr); 822 assert(dst_len > 0); 823 assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle); 824 825 // Validate that only a word- or register-sized dst is byte swapped 826 assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 || 827 dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 || 828 dst_len == 32); 829 830 // Must have valid byte orders set in this object and for destination 831 if (!(dst_byte_order == eByteOrderBig || 832 dst_byte_order == eByteOrderLittle) || 833 !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle)) 834 return 0; 835 836 uint8_t *dst = (uint8_t *)dst_void_ptr; 837 const uint8_t *src = (const uint8_t *)PeekData(src_offset, src_len); 838 if (src) { 839 if (dst_len >= src_len) { 840 // We are copying the entire value from src into dst. 841 // Calculate how many, if any, zeroes we need for the most 842 // significant bytes if "dst_len" is greater than "src_len"... 843 const size_t num_zeroes = dst_len - src_len; 844 if (dst_byte_order == eByteOrderBig) { 845 // Big endian, so we lead with zeroes... 846 if (num_zeroes > 0) 847 ::memset(dst, 0, num_zeroes); 848 // Then either copy or swap the rest 849 if (m_byte_order == eByteOrderBig) { 850 ::memcpy(dst + num_zeroes, src, src_len); 851 } else { 852 for (uint32_t i = 0; i < src_len; ++i) 853 dst[i + num_zeroes] = src[src_len - 1 - i]; 854 } 855 } else { 856 // Little endian destination, so we lead the value bytes 857 if (m_byte_order == eByteOrderBig) { 858 for (uint32_t i = 0; i < src_len; ++i) 859 dst[i] = src[src_len - 1 - i]; 860 } else { 861 ::memcpy(dst, src, src_len); 862 } 863 // And zero the rest... 864 if (num_zeroes > 0) 865 ::memset(dst + src_len, 0, num_zeroes); 866 } 867 return src_len; 868 } else { 869 // We are only copying some of the value from src into dst.. 870 871 if (dst_byte_order == eByteOrderBig) { 872 // Big endian dst 873 if (m_byte_order == eByteOrderBig) { 874 // Big endian dst, with big endian src 875 ::memcpy(dst, src + (src_len - dst_len), dst_len); 876 } else { 877 // Big endian dst, with little endian src 878 for (uint32_t i = 0; i < dst_len; ++i) 879 dst[i] = src[dst_len - 1 - i]; 880 } 881 } else { 882 // Little endian dst 883 if (m_byte_order == eByteOrderBig) { 884 // Little endian dst, with big endian src 885 for (uint32_t i = 0; i < dst_len; ++i) 886 dst[i] = src[src_len - 1 - i]; 887 } else { 888 // Little endian dst, with big endian src 889 ::memcpy(dst, src, dst_len); 890 } 891 } 892 return dst_len; 893 } 894 } 895 return 0; 896 } 897 898 //---------------------------------------------------------------------- 899 // Extracts a variable length NULL terminated C string from 900 // the data at the offset pointed to by "offset_ptr". The 901 // "offset_ptr" will be updated with the offset of the byte that 902 // follows the NULL terminator byte. 903 // 904 // If the offset pointed to by "offset_ptr" is out of bounds, or if 905 // "length" is non-zero and there aren't enough available 906 // bytes, nullptr will be returned and "offset_ptr" will not be 907 // updated. 908 //---------------------------------------------------------------------- 909 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const { 910 const char *cstr = (const char *)PeekData(*offset_ptr, 1); 911 if (cstr) { 912 const char *cstr_end = cstr; 913 const char *end = (const char *)m_end; 914 while (cstr_end < end && *cstr_end) 915 ++cstr_end; 916 917 // Now we are either at the end of the data or we point to the 918 // NULL C string terminator with cstr_end... 919 if (*cstr_end == '\0') { 920 // Advance the offset with one extra byte for the NULL terminator 921 *offset_ptr += (cstr_end - cstr + 1); 922 return cstr; 923 } 924 925 // We reached the end of the data without finding a NULL C string 926 // terminator. Fall through and return nullptr otherwise anyone that 927 // would have used the result as a C string can wander into 928 // unknown memory... 929 } 930 return nullptr; 931 } 932 933 //---------------------------------------------------------------------- 934 // Extracts a NULL terminated C string from the fixed length field of 935 // length "len" at the offset pointed to by "offset_ptr". 936 // The "offset_ptr" will be updated with the offset of the byte that 937 // follows the fixed length field. 938 // 939 // If the offset pointed to by "offset_ptr" is out of bounds, or if 940 // the offset plus the length of the field is out of bounds, or if the 941 // field does not contain a NULL terminator byte, nullptr will be returned 942 // and "offset_ptr" will not be updated. 943 //---------------------------------------------------------------------- 944 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const { 945 const char *cstr = (const char *)PeekData(*offset_ptr, len); 946 if (cstr != nullptr) { 947 if (memchr(cstr, '\0', len) == nullptr) { 948 return nullptr; 949 } 950 *offset_ptr += len; 951 return cstr; 952 } 953 return nullptr; 954 } 955 956 //------------------------------------------------------------------ 957 // Peeks at a string in the contained data. No verification is done 958 // to make sure the entire string lies within the bounds of this 959 // object's data, only "offset" is verified to be a valid offset. 960 // 961 // Returns a valid C string pointer if "offset" is a valid offset in 962 // this object's data, else nullptr is returned. 963 //------------------------------------------------------------------ 964 const char *DataExtractor::PeekCStr(offset_t offset) const { 965 return (const char *)PeekData(offset, 1); 966 } 967 968 //---------------------------------------------------------------------- 969 // Extracts an unsigned LEB128 number from this object's data 970 // starting at the offset pointed to by "offset_ptr". The offset 971 // pointed to by "offset_ptr" will be updated with the offset of the 972 // byte following the last extracted byte. 973 // 974 // Returned the extracted integer value. 975 //---------------------------------------------------------------------- 976 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const { 977 const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); 978 if (src == nullptr) 979 return 0; 980 981 const uint8_t *end = m_end; 982 983 if (src < end) { 984 uint64_t result = *src++; 985 if (result >= 0x80) { 986 result &= 0x7f; 987 int shift = 7; 988 while (src < end) { 989 uint8_t byte = *src++; 990 result |= (uint64_t)(byte & 0x7f) << shift; 991 if ((byte & 0x80) == 0) 992 break; 993 shift += 7; 994 } 995 } 996 *offset_ptr = src - m_start; 997 return result; 998 } 999 1000 return 0; 1001 } 1002 1003 //---------------------------------------------------------------------- 1004 // Extracts an signed LEB128 number from this object's data 1005 // starting at the offset pointed to by "offset_ptr". The offset 1006 // pointed to by "offset_ptr" will be updated with the offset of the 1007 // byte following the last extracted byte. 1008 // 1009 // Returned the extracted integer value. 1010 //---------------------------------------------------------------------- 1011 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const { 1012 const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); 1013 if (src == nullptr) 1014 return 0; 1015 1016 const uint8_t *end = m_end; 1017 1018 if (src < end) { 1019 int64_t result = 0; 1020 int shift = 0; 1021 int size = sizeof(int64_t) * 8; 1022 1023 uint8_t byte = 0; 1024 int bytecount = 0; 1025 1026 while (src < end) { 1027 bytecount++; 1028 byte = *src++; 1029 result |= (int64_t)(byte & 0x7f) << shift; 1030 shift += 7; 1031 if ((byte & 0x80) == 0) 1032 break; 1033 } 1034 1035 // Sign bit of byte is 2nd high order bit (0x40) 1036 if (shift < size && (byte & 0x40)) 1037 result |= -(1 << shift); 1038 1039 *offset_ptr += bytecount; 1040 return result; 1041 } 1042 return 0; 1043 } 1044 1045 //---------------------------------------------------------------------- 1046 // Skips a ULEB128 number (signed or unsigned) from this object's 1047 // data starting at the offset pointed to by "offset_ptr". The 1048 // offset pointed to by "offset_ptr" will be updated with the offset 1049 // of the byte following the last extracted byte. 1050 // 1051 // Returns the number of bytes consumed during the extraction. 1052 //---------------------------------------------------------------------- 1053 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const { 1054 uint32_t bytes_consumed = 0; 1055 const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); 1056 if (src == nullptr) 1057 return 0; 1058 1059 const uint8_t *end = m_end; 1060 1061 if (src < end) { 1062 const uint8_t *src_pos = src; 1063 while ((src_pos < end) && (*src_pos++ & 0x80)) 1064 ++bytes_consumed; 1065 *offset_ptr += src_pos - src; 1066 } 1067 return bytes_consumed; 1068 } 1069 1070 //---------------------------------------------------------------------- 1071 // Dumps bytes from this object's data to the stream "s" starting 1072 // "start_offset" bytes into this data, and ending with the byte 1073 // before "end_offset". "base_addr" will be added to the offset 1074 // into the dumped data when showing the offset into the data in the 1075 // output information. "num_per_line" objects of type "type" will 1076 // be dumped with the option to override the format for each object 1077 // with "type_format". "type_format" is a printf style formatting 1078 // string. If "type_format" is nullptr, then an appropriate format 1079 // string will be used for the supplied "type". If the stream "s" 1080 // is nullptr, then the output will be send to Log(). 1081 //---------------------------------------------------------------------- 1082 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset, 1083 offset_t length, uint64_t base_addr, 1084 uint32_t num_per_line, 1085 DataExtractor::Type type, 1086 const char *format) const { 1087 if (log == nullptr) 1088 return start_offset; 1089 1090 offset_t offset; 1091 offset_t end_offset; 1092 uint32_t count; 1093 StreamString sstr; 1094 for (offset = start_offset, end_offset = offset + length, count = 0; 1095 ValidOffset(offset) && offset < end_offset; ++count) { 1096 if ((count % num_per_line) == 0) { 1097 // Print out any previous string 1098 if (sstr.GetSize() > 0) { 1099 log->PutString(sstr.GetString()); 1100 sstr.Clear(); 1101 } 1102 // Reset string offset and fill the current line string with address: 1103 if (base_addr != LLDB_INVALID_ADDRESS) 1104 sstr.Printf("0x%8.8" PRIx64 ":", 1105 (uint64_t)(base_addr + (offset - start_offset))); 1106 } 1107 1108 switch (type) { 1109 case TypeUInt8: 1110 sstr.Printf(format ? format : " %2.2x", GetU8(&offset)); 1111 break; 1112 case TypeChar: { 1113 char ch = GetU8(&offset); 1114 sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' '); 1115 } break; 1116 case TypeUInt16: 1117 sstr.Printf(format ? format : " %4.4x", GetU16(&offset)); 1118 break; 1119 case TypeUInt32: 1120 sstr.Printf(format ? format : " %8.8x", GetU32(&offset)); 1121 break; 1122 case TypeUInt64: 1123 sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset)); 1124 break; 1125 case TypePointer: 1126 sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset)); 1127 break; 1128 case TypeULEB128: 1129 sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset)); 1130 break; 1131 case TypeSLEB128: 1132 sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset)); 1133 break; 1134 } 1135 } 1136 1137 if (!sstr.Empty()) 1138 log->PutString(sstr.GetString()); 1139 1140 return offset; // Return the offset at which we ended up 1141 } 1142 1143 //---------------------------------------------------------------------- 1144 // DumpUUID 1145 // 1146 // Dump out a UUID starting at 'offset' bytes into the buffer 1147 //---------------------------------------------------------------------- 1148 void DataExtractor::DumpUUID(Stream *s, offset_t offset) const { 1149 if (s) { 1150 const uint8_t *uuid_data = PeekData(offset, 16); 1151 if (uuid_data) { 1152 lldb_private::UUID uuid(uuid_data, 16); 1153 uuid.Dump(s); 1154 } else { 1155 s->Printf("<not enough data for UUID at offset 0x%8.8" PRIx64 ">", 1156 offset); 1157 } 1158 } 1159 } 1160 1161 size_t DataExtractor::Copy(DataExtractor &dest_data) const { 1162 if (m_data_sp) { 1163 // we can pass along the SP to the data 1164 dest_data.SetData(m_data_sp); 1165 } else { 1166 const uint8_t *base_ptr = m_start; 1167 size_t data_size = GetByteSize(); 1168 dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size))); 1169 } 1170 return GetByteSize(); 1171 } 1172 1173 bool DataExtractor::Append(DataExtractor &rhs) { 1174 if (rhs.GetByteOrder() != GetByteOrder()) 1175 return false; 1176 1177 if (rhs.GetByteSize() == 0) 1178 return true; 1179 1180 if (GetByteSize() == 0) 1181 return (rhs.Copy(*this) > 0); 1182 1183 size_t bytes = GetByteSize() + rhs.GetByteSize(); 1184 1185 DataBufferHeap *buffer_heap_ptr = nullptr; 1186 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); 1187 1188 if (!buffer_sp || buffer_heap_ptr == nullptr) 1189 return false; 1190 1191 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); 1192 1193 memcpy(bytes_ptr, GetDataStart(), GetByteSize()); 1194 memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize()); 1195 1196 SetData(buffer_sp); 1197 1198 return true; 1199 } 1200 1201 bool DataExtractor::Append(void *buf, offset_t length) { 1202 if (buf == nullptr) 1203 return false; 1204 1205 if (length == 0) 1206 return true; 1207 1208 size_t bytes = GetByteSize() + length; 1209 1210 DataBufferHeap *buffer_heap_ptr = nullptr; 1211 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); 1212 1213 if (!buffer_sp || buffer_heap_ptr == nullptr) 1214 return false; 1215 1216 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); 1217 1218 if (GetByteSize() > 0) 1219 memcpy(bytes_ptr, GetDataStart(), GetByteSize()); 1220 1221 memcpy(bytes_ptr + GetByteSize(), buf, length); 1222 1223 SetData(buffer_sp); 1224 1225 return true; 1226 } 1227 1228 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest, 1229 uint64_t max_data) { 1230 if (max_data == 0) 1231 max_data = GetByteSize(); 1232 else 1233 max_data = std::min(max_data, GetByteSize()); 1234 1235 llvm::MD5 md5; 1236 1237 const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data); 1238 md5.update(data); 1239 1240 llvm::MD5::MD5Result result; 1241 md5.final(result); 1242 1243 dest.clear(); 1244 dest.append(result.Bytes.begin(), result.Bytes.end()); 1245 } 1246