1 //===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Utility/DataExtractor.h"
10 
11 #include "lldb/lldb-defines.h"
12 #include "lldb/lldb-enumerations.h"
13 #include "lldb/lldb-forward.h"
14 #include "lldb/lldb-types.h"
15 
16 #include "lldb/Utility/DataBuffer.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/Endian.h"
19 #include "lldb/Utility/LLDBAssert.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/Stream.h"
22 #include "lldb/Utility/StreamString.h"
23 #include "lldb/Utility/UUID.h"
24 
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/MD5.h"
28 #include "llvm/Support/MathExtras.h"
29 
30 #include <algorithm>
31 #include <array>
32 #include <cassert>
33 #include <cstdint>
34 #include <string>
35 
36 #include <ctype.h>
37 #include <inttypes.h>
38 #include <string.h>
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 
43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
44   uint16_t value;
45   memcpy(&value, ptr + offset, 2);
46   return value;
47 }
48 
49 static inline uint32_t ReadInt32(const unsigned char *ptr,
50                                  offset_t offset = 0) {
51   uint32_t value;
52   memcpy(&value, ptr + offset, 4);
53   return value;
54 }
55 
56 static inline uint64_t ReadInt64(const unsigned char *ptr,
57                                  offset_t offset = 0) {
58   uint64_t value;
59   memcpy(&value, ptr + offset, 8);
60   return value;
61 }
62 
63 static inline uint16_t ReadInt16(const void *ptr) {
64   uint16_t value;
65   memcpy(&value, ptr, 2);
66   return value;
67 }
68 
69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
70                                      offset_t offset) {
71   uint16_t value;
72   memcpy(&value, ptr + offset, 2);
73   return llvm::ByteSwap_16(value);
74 }
75 
76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
77                                      offset_t offset) {
78   uint32_t value;
79   memcpy(&value, ptr + offset, 4);
80   return llvm::ByteSwap_32(value);
81 }
82 
83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
84                                      offset_t offset) {
85   uint64_t value;
86   memcpy(&value, ptr + offset, 8);
87   return llvm::ByteSwap_64(value);
88 }
89 
90 static inline uint16_t ReadSwapInt16(const void *ptr) {
91   uint16_t value;
92   memcpy(&value, ptr, 2);
93   return llvm::ByteSwap_16(value);
94 }
95 
96 static inline uint32_t ReadSwapInt32(const void *ptr) {
97   uint32_t value;
98   memcpy(&value, ptr, 4);
99   return llvm::ByteSwap_32(value);
100 }
101 
102 static inline uint64_t ReadSwapInt64(const void *ptr) {
103   uint64_t value;
104   memcpy(&value, ptr, 8);
105   return llvm::ByteSwap_64(value);
106 }
107 
108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
109                                     ByteOrder byte_order) {
110   uint64_t res = 0;
111   if (byte_order == eByteOrderBig)
112     for (size_t i = 0; i < byte_size; ++i)
113       res = (res << 8) | data[i];
114   else {
115     assert(byte_order == eByteOrderLittle);
116     for (size_t i = 0; i < byte_size; ++i)
117       res = (res << 8) | data[byte_size - 1 - i];
118   }
119   return res;
120 }
121 
122 DataExtractor::DataExtractor()
123     : m_start(nullptr), m_end(nullptr),
124       m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
125       m_data_sp(), m_target_byte_size(1) {}
126 
127 // This constructor allows us to use data that is owned by someone else. The
128 // data must stay around as long as this object is valid.
129 DataExtractor::DataExtractor(const void *data, offset_t length,
130                              ByteOrder endian, uint32_t addr_size,
131                              uint32_t target_byte_size /*=1*/)
132     : m_start(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data))),
133       m_end(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data)) +
134             length),
135       m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
136       m_target_byte_size(target_byte_size) {
137   assert(addr_size == 4 || addr_size == 8);
138 }
139 
140 // Make a shared pointer reference to the shared data in "data_sp" and set the
141 // endian swapping setting to "swap", and the address size to "addr_size". The
142 // shared data reference will ensure the data lives as long as any
143 // DataExtractor objects exist that have a reference to this data.
144 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
145                              uint32_t addr_size,
146                              uint32_t target_byte_size /*=1*/)
147     : m_start(nullptr), m_end(nullptr), m_byte_order(endian),
148       m_addr_size(addr_size), m_data_sp(),
149       m_target_byte_size(target_byte_size) {
150   assert(addr_size == 4 || addr_size == 8);
151   SetData(data_sp);
152 }
153 
154 // Initialize this object with a subset of the data bytes in "data". If "data"
155 // contains shared data, then a reference to this shared data will added and
156 // the shared data will stay around as long as any object contains a reference
157 // to that data. The endian swap and address size settings are copied from
158 // "data".
159 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
160                              offset_t length, uint32_t target_byte_size /*=1*/)
161     : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
162       m_addr_size(data.m_addr_size), m_data_sp(),
163       m_target_byte_size(target_byte_size) {
164   assert(m_addr_size == 4 || m_addr_size == 8);
165   if (data.ValidOffset(offset)) {
166     offset_t bytes_available = data.GetByteSize() - offset;
167     if (length > bytes_available)
168       length = bytes_available;
169     SetData(data, offset, length);
170   }
171 }
172 
173 DataExtractor::DataExtractor(const DataExtractor &rhs)
174     : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
175       m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
176       m_target_byte_size(rhs.m_target_byte_size) {
177   assert(m_addr_size == 4 || m_addr_size == 8);
178 }
179 
180 // Assignment operator
181 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
182   if (this != &rhs) {
183     m_start = rhs.m_start;
184     m_end = rhs.m_end;
185     m_byte_order = rhs.m_byte_order;
186     m_addr_size = rhs.m_addr_size;
187     m_data_sp = rhs.m_data_sp;
188   }
189   return *this;
190 }
191 
192 DataExtractor::~DataExtractor() = default;
193 
194 // Clears the object contents back to a default invalid state, and release any
195 // references to shared data that this object may contain.
196 void DataExtractor::Clear() {
197   m_start = nullptr;
198   m_end = nullptr;
199   m_byte_order = endian::InlHostByteOrder();
200   m_addr_size = sizeof(void *);
201   m_data_sp.reset();
202 }
203 
204 // If this object contains shared data, this function returns the offset into
205 // that shared data. Else zero is returned.
206 size_t DataExtractor::GetSharedDataOffset() const {
207   if (m_start != nullptr) {
208     const DataBuffer *data = m_data_sp.get();
209     if (data != nullptr) {
210       const uint8_t *data_bytes = data->GetBytes();
211       if (data_bytes != nullptr) {
212         assert(m_start >= data_bytes);
213         return m_start - data_bytes;
214       }
215     }
216   }
217   return 0;
218 }
219 
220 // Set the data with which this object will extract from to data starting at
221 // BYTES and set the length of the data to LENGTH bytes long. The data is
222 // externally owned must be around at least as long as this object points to
223 // the data. No copy of the data is made, this object just refers to this data
224 // and can extract from it. If this object refers to any shared data upon
225 // entry, the reference to that data will be released. Is SWAP is set to true,
226 // any data extracted will be endian swapped.
227 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
228                                       ByteOrder endian) {
229   m_byte_order = endian;
230   m_data_sp.reset();
231   if (bytes == nullptr || length == 0) {
232     m_start = nullptr;
233     m_end = nullptr;
234   } else {
235     m_start = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(bytes));
236     m_end = m_start + length;
237   }
238   return GetByteSize();
239 }
240 
241 // Assign the data for this object to be a subrange in "data" starting
242 // "data_offset" bytes into "data" and ending "data_length" bytes later. If
243 // "data_offset" is not a valid offset into "data", then this object will
244 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too
245 // large, the length will be capped at the number of bytes remaining in "data".
246 // If "data" contains a shared pointer to other data, then a ref counted
247 // pointer to that data will be made in this object. If "data" doesn't contain
248 // a shared pointer to data, then the bytes referred to in "data" will need to
249 // exist at least as long as this object refers to those bytes. The address
250 // size and endian swap settings are copied from the current values in "data".
251 lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
252                                       offset_t data_offset,
253                                       offset_t data_length) {
254   m_addr_size = data.m_addr_size;
255   assert(m_addr_size == 4 || m_addr_size == 8);
256   // If "data" contains shared pointer to data, then we can use that
257   if (data.m_data_sp) {
258     m_byte_order = data.m_byte_order;
259     return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
260                    data_length);
261   }
262 
263   // We have a DataExtractor object that just has a pointer to bytes
264   if (data.ValidOffset(data_offset)) {
265     if (data_length > data.GetByteSize() - data_offset)
266       data_length = data.GetByteSize() - data_offset;
267     return SetData(data.GetDataStart() + data_offset, data_length,
268                    data.GetByteOrder());
269   }
270   return 0;
271 }
272 
273 // Assign the data for this object to be a subrange of the shared data in
274 // "data_sp" starting "data_offset" bytes into "data_sp" and ending
275 // "data_length" bytes later. If "data_offset" is not a valid offset into
276 // "data_sp", then this object will contain no bytes. If "data_offset" is
277 // within "data_sp" yet "data_length" is too large, the length will be capped
278 // at the number of bytes remaining in "data_sp". A ref counted pointer to the
279 // data in "data_sp" will be made in this object IF the number of bytes this
280 // object refers to in greater than zero (if at least one byte was available
281 // starting at "data_offset") to ensure the data stays around as long as it is
282 // needed. The address size and endian swap settings will remain unchanged from
283 // their current settings.
284 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
285                                       offset_t data_offset,
286                                       offset_t data_length) {
287   m_start = m_end = nullptr;
288 
289   if (data_length > 0) {
290     m_data_sp = data_sp;
291     if (data_sp) {
292       const size_t data_size = data_sp->GetByteSize();
293       if (data_offset < data_size) {
294         m_start = data_sp->GetBytes() + data_offset;
295         const size_t bytes_left = data_size - data_offset;
296         // Cap the length of we asked for too many
297         if (data_length <= bytes_left)
298           m_end = m_start + data_length; // We got all the bytes we wanted
299         else
300           m_end = m_start + bytes_left; // Not all the bytes requested were
301                                         // available in the shared data
302       }
303     }
304   }
305 
306   size_t new_size = GetByteSize();
307 
308   // Don't hold a shared pointer to the data buffer if we don't share any valid
309   // bytes in the shared buffer.
310   if (new_size == 0)
311     m_data_sp.reset();
312 
313   return new_size;
314 }
315 
316 // Extract a single unsigned char from the binary data and update the offset
317 // pointed to by "offset_ptr".
318 //
319 // RETURNS the byte that was extracted, or zero on failure.
320 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
321   const uint8_t *data = (const uint8_t *)GetData(offset_ptr, 1);
322   if (data)
323     return *data;
324   return 0;
325 }
326 
327 // Extract "count" unsigned chars from the binary data and update the offset
328 // pointed to by "offset_ptr". The extracted data is copied into "dst".
329 //
330 // RETURNS the non-nullptr buffer pointer upon successful extraction of
331 // all the requested bytes, or nullptr when the data is not available in the
332 // buffer due to being out of bounds, or insufficient data.
333 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
334                            uint32_t count) const {
335   const uint8_t *data = (const uint8_t *)GetData(offset_ptr, count);
336   if (data) {
337     // Copy the data into the buffer
338     memcpy(dst, data, count);
339     // Return a non-nullptr pointer to the converted data as an indicator of
340     // success
341     return dst;
342   }
343   return nullptr;
344 }
345 
346 // Extract a single uint16_t from the data and update the offset pointed to by
347 // "offset_ptr".
348 //
349 // RETURNS the uint16_t that was extracted, or zero on failure.
350 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
351   uint16_t val = 0;
352   const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val));
353   if (data) {
354     if (m_byte_order != endian::InlHostByteOrder())
355       val = ReadSwapInt16(data);
356     else
357       val = ReadInt16(data);
358   }
359   return val;
360 }
361 
362 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
363   uint16_t val;
364   if (m_byte_order == endian::InlHostByteOrder())
365     val = ReadInt16(m_start, *offset_ptr);
366   else
367     val = ReadSwapInt16(m_start, *offset_ptr);
368   *offset_ptr += sizeof(val);
369   return val;
370 }
371 
372 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
373   uint32_t val;
374   if (m_byte_order == endian::InlHostByteOrder())
375     val = ReadInt32(m_start, *offset_ptr);
376   else
377     val = ReadSwapInt32(m_start, *offset_ptr);
378   *offset_ptr += sizeof(val);
379   return val;
380 }
381 
382 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
383   uint64_t val;
384   if (m_byte_order == endian::InlHostByteOrder())
385     val = ReadInt64(m_start, *offset_ptr);
386   else
387     val = ReadSwapInt64(m_start, *offset_ptr);
388   *offset_ptr += sizeof(val);
389   return val;
390 }
391 
392 // Extract "count" uint16_t values from the binary data and update the offset
393 // pointed to by "offset_ptr". The extracted data is copied into "dst".
394 //
395 // RETURNS the non-nullptr buffer pointer upon successful extraction of
396 // all the requested bytes, or nullptr when the data is not available in the
397 // buffer due to being out of bounds, or insufficient data.
398 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
399                             uint32_t count) const {
400   const size_t src_size = sizeof(uint16_t) * count;
401   const uint16_t *src = (const uint16_t *)GetData(offset_ptr, src_size);
402   if (src) {
403     if (m_byte_order != endian::InlHostByteOrder()) {
404       uint16_t *dst_pos = (uint16_t *)void_dst;
405       uint16_t *dst_end = dst_pos + count;
406       const uint16_t *src_pos = src;
407       while (dst_pos < dst_end) {
408         *dst_pos = ReadSwapInt16(src_pos);
409         ++dst_pos;
410         ++src_pos;
411       }
412     } else {
413       memcpy(void_dst, src, src_size);
414     }
415     // Return a non-nullptr pointer to the converted data as an indicator of
416     // success
417     return void_dst;
418   }
419   return nullptr;
420 }
421 
422 // Extract a single uint32_t from the data and update the offset pointed to by
423 // "offset_ptr".
424 //
425 // RETURNS the uint32_t that was extracted, or zero on failure.
426 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
427   uint32_t val = 0;
428   const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val));
429   if (data) {
430     if (m_byte_order != endian::InlHostByteOrder()) {
431       val = ReadSwapInt32(data);
432     } else {
433       memcpy(&val, data, 4);
434     }
435   }
436   return val;
437 }
438 
439 // Extract "count" uint32_t values from the binary data and update the offset
440 // pointed to by "offset_ptr". The extracted data is copied into "dst".
441 //
442 // RETURNS the non-nullptr buffer pointer upon successful extraction of
443 // all the requested bytes, or nullptr when the data is not available in the
444 // buffer due to being out of bounds, or insufficient data.
445 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
446                             uint32_t count) const {
447   const size_t src_size = sizeof(uint32_t) * count;
448   const uint32_t *src = (const uint32_t *)GetData(offset_ptr, src_size);
449   if (src) {
450     if (m_byte_order != endian::InlHostByteOrder()) {
451       uint32_t *dst_pos = (uint32_t *)void_dst;
452       uint32_t *dst_end = dst_pos + count;
453       const uint32_t *src_pos = src;
454       while (dst_pos < dst_end) {
455         *dst_pos = ReadSwapInt32(src_pos);
456         ++dst_pos;
457         ++src_pos;
458       }
459     } else {
460       memcpy(void_dst, src, src_size);
461     }
462     // Return a non-nullptr pointer to the converted data as an indicator of
463     // success
464     return void_dst;
465   }
466   return nullptr;
467 }
468 
469 // Extract a single uint64_t from the data and update the offset pointed to by
470 // "offset_ptr".
471 //
472 // RETURNS the uint64_t that was extracted, or zero on failure.
473 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
474   uint64_t val = 0;
475   const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val));
476   if (data) {
477     if (m_byte_order != endian::InlHostByteOrder()) {
478       val = ReadSwapInt64(data);
479     } else {
480       memcpy(&val, data, 8);
481     }
482   }
483   return val;
484 }
485 
486 // GetU64
487 //
488 // Get multiple consecutive 64 bit values. Return true if the entire read
489 // succeeds and increment the offset pointed to by offset_ptr, else return
490 // false and leave the offset pointed to by offset_ptr unchanged.
491 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
492                             uint32_t count) const {
493   const size_t src_size = sizeof(uint64_t) * count;
494   const uint64_t *src = (const uint64_t *)GetData(offset_ptr, src_size);
495   if (src) {
496     if (m_byte_order != endian::InlHostByteOrder()) {
497       uint64_t *dst_pos = (uint64_t *)void_dst;
498       uint64_t *dst_end = dst_pos + count;
499       const uint64_t *src_pos = src;
500       while (dst_pos < dst_end) {
501         *dst_pos = ReadSwapInt64(src_pos);
502         ++dst_pos;
503         ++src_pos;
504       }
505     } else {
506       memcpy(void_dst, src, src_size);
507     }
508     // Return a non-nullptr pointer to the converted data as an indicator of
509     // success
510     return void_dst;
511   }
512   return nullptr;
513 }
514 
515 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
516                                   size_t byte_size) const {
517   lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
518   return GetMaxU64(offset_ptr, byte_size);
519 }
520 
521 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
522                                   size_t byte_size) const {
523   lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
524   switch (byte_size) {
525   case 1:
526     return GetU8(offset_ptr);
527   case 2:
528     return GetU16(offset_ptr);
529   case 4:
530     return GetU32(offset_ptr);
531   case 8:
532     return GetU64(offset_ptr);
533   default: {
534     // General case.
535     const uint8_t *data =
536         static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
537     if (data == nullptr)
538       return 0;
539     return ReadMaxInt64(data, byte_size, m_byte_order);
540   }
541   }
542   return 0;
543 }
544 
545 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
546                                             size_t byte_size) const {
547   switch (byte_size) {
548   case 1:
549     return GetU8_unchecked(offset_ptr);
550   case 2:
551     return GetU16_unchecked(offset_ptr);
552   case 4:
553     return GetU32_unchecked(offset_ptr);
554   case 8:
555     return GetU64_unchecked(offset_ptr);
556   default: {
557     uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
558     *offset_ptr += byte_size;
559     return res;
560   }
561   }
562   return 0;
563 }
564 
565 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
566   uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
567   return llvm::SignExtend64(u64, 8 * byte_size);
568 }
569 
570 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
571                                           uint32_t bitfield_bit_size,
572                                           uint32_t bitfield_bit_offset) const {
573   uint64_t uval64 = GetMaxU64(offset_ptr, size);
574   if (bitfield_bit_size > 0) {
575     int32_t lsbcount = bitfield_bit_offset;
576     if (m_byte_order == eByteOrderBig)
577       lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
578     if (lsbcount > 0)
579       uval64 >>= lsbcount;
580     uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1);
581     if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
582       return uval64;
583     uval64 &= bitfield_mask;
584   }
585   return uval64;
586 }
587 
588 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
589                                          uint32_t bitfield_bit_size,
590                                          uint32_t bitfield_bit_offset) const {
591   int64_t sval64 = GetMaxS64(offset_ptr, size);
592   if (bitfield_bit_size > 0) {
593     int32_t lsbcount = bitfield_bit_offset;
594     if (m_byte_order == eByteOrderBig)
595       lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
596     if (lsbcount > 0)
597       sval64 >>= lsbcount;
598     uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1;
599     sval64 &= bitfield_mask;
600     // sign extend if needed
601     if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1)))
602       sval64 |= ~bitfield_mask;
603   }
604   return sval64;
605 }
606 
607 float DataExtractor::GetFloat(offset_t *offset_ptr) const {
608   typedef float float_type;
609   float_type val = 0.0;
610   const size_t src_size = sizeof(float_type);
611   const float_type *src = (const float_type *)GetData(offset_ptr, src_size);
612   if (src) {
613     if (m_byte_order != endian::InlHostByteOrder()) {
614       const uint8_t *src_data = (const uint8_t *)src;
615       uint8_t *dst_data = (uint8_t *)&val;
616       for (size_t i = 0; i < sizeof(float_type); ++i)
617         dst_data[sizeof(float_type) - 1 - i] = src_data[i];
618     } else {
619       val = *src;
620     }
621   }
622   return val;
623 }
624 
625 double DataExtractor::GetDouble(offset_t *offset_ptr) const {
626   typedef double float_type;
627   float_type val = 0.0;
628   const size_t src_size = sizeof(float_type);
629   const float_type *src = (const float_type *)GetData(offset_ptr, src_size);
630   if (src) {
631     if (m_byte_order != endian::InlHostByteOrder()) {
632       const uint8_t *src_data = (const uint8_t *)src;
633       uint8_t *dst_data = (uint8_t *)&val;
634       for (size_t i = 0; i < sizeof(float_type); ++i)
635         dst_data[sizeof(float_type) - 1 - i] = src_data[i];
636     } else {
637       val = *src;
638     }
639   }
640   return val;
641 }
642 
643 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
644   long double val = 0.0;
645 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) ||          \
646     defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
647   *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
648                                      endian::InlHostByteOrder());
649 #else
650   *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
651                                      sizeof(val), endian::InlHostByteOrder());
652 #endif
653   return val;
654 }
655 
656 // Extract a single address from the data and update the offset pointed to by
657 // "offset_ptr". The size of the extracted address comes from the
658 // "this->m_addr_size" member variable and should be set correctly prior to
659 // extracting any address values.
660 //
661 // RETURNS the address that was extracted, or zero on failure.
662 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
663   assert(m_addr_size == 4 || m_addr_size == 8);
664   return GetMaxU64(offset_ptr, m_addr_size);
665 }
666 
667 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
668   assert(m_addr_size == 4 || m_addr_size == 8);
669   return GetMaxU64_unchecked(offset_ptr, m_addr_size);
670 }
671 
672 // Extract a single pointer from the data and update the offset pointed to by
673 // "offset_ptr". The size of the extracted pointer comes from the
674 // "this->m_addr_size" member variable and should be set correctly prior to
675 // extracting any pointer values.
676 //
677 // RETURNS the pointer that was extracted, or zero on failure.
678 uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const {
679   assert(m_addr_size == 4 || m_addr_size == 8);
680   return GetMaxU64(offset_ptr, m_addr_size);
681 }
682 
683 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
684                                    ByteOrder dst_byte_order, void *dst) const {
685   const uint8_t *src = PeekData(offset, length);
686   if (src) {
687     if (dst_byte_order != GetByteOrder()) {
688       // Validate that only a word- or register-sized dst is byte swapped
689       assert(length == 1 || length == 2 || length == 4 || length == 8 ||
690              length == 10 || length == 16 || length == 32);
691 
692       for (uint32_t i = 0; i < length; ++i)
693         ((uint8_t *)dst)[i] = src[length - i - 1];
694     } else
695       ::memcpy(dst, src, length);
696     return length;
697   }
698   return 0;
699 }
700 
701 // Extract data as it exists in target memory
702 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
703                                        void *dst) const {
704   const uint8_t *src = PeekData(offset, length);
705   if (src) {
706     ::memcpy(dst, src, length);
707     return length;
708   }
709   return 0;
710 }
711 
712 // Extract data and swap if needed when doing the copy
713 lldb::offset_t
714 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
715                                    void *dst_void_ptr, offset_t dst_len,
716                                    ByteOrder dst_byte_order) const {
717   // Validate the source info
718   if (!ValidOffsetForDataOfSize(src_offset, src_len))
719     assert(ValidOffsetForDataOfSize(src_offset, src_len));
720   assert(src_len > 0);
721   assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
722 
723   // Validate the destination info
724   assert(dst_void_ptr != nullptr);
725   assert(dst_len > 0);
726   assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
727 
728   // Validate that only a word- or register-sized dst is byte swapped
729   assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
730          dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
731          dst_len == 32);
732 
733   // Must have valid byte orders set in this object and for destination
734   if (!(dst_byte_order == eByteOrderBig ||
735         dst_byte_order == eByteOrderLittle) ||
736       !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
737     return 0;
738 
739   uint8_t *dst = (uint8_t *)dst_void_ptr;
740   const uint8_t *src = (const uint8_t *)PeekData(src_offset, src_len);
741   if (src) {
742     if (dst_len >= src_len) {
743       // We are copying the entire value from src into dst. Calculate how many,
744       // if any, zeroes we need for the most significant bytes if "dst_len" is
745       // greater than "src_len"...
746       const size_t num_zeroes = dst_len - src_len;
747       if (dst_byte_order == eByteOrderBig) {
748         // Big endian, so we lead with zeroes...
749         if (num_zeroes > 0)
750           ::memset(dst, 0, num_zeroes);
751         // Then either copy or swap the rest
752         if (m_byte_order == eByteOrderBig) {
753           ::memcpy(dst + num_zeroes, src, src_len);
754         } else {
755           for (uint32_t i = 0; i < src_len; ++i)
756             dst[i + num_zeroes] = src[src_len - 1 - i];
757         }
758       } else {
759         // Little endian destination, so we lead the value bytes
760         if (m_byte_order == eByteOrderBig) {
761           for (uint32_t i = 0; i < src_len; ++i)
762             dst[i] = src[src_len - 1 - i];
763         } else {
764           ::memcpy(dst, src, src_len);
765         }
766         // And zero the rest...
767         if (num_zeroes > 0)
768           ::memset(dst + src_len, 0, num_zeroes);
769       }
770       return src_len;
771     } else {
772       // We are only copying some of the value from src into dst..
773 
774       if (dst_byte_order == eByteOrderBig) {
775         // Big endian dst
776         if (m_byte_order == eByteOrderBig) {
777           // Big endian dst, with big endian src
778           ::memcpy(dst, src + (src_len - dst_len), dst_len);
779         } else {
780           // Big endian dst, with little endian src
781           for (uint32_t i = 0; i < dst_len; ++i)
782             dst[i] = src[dst_len - 1 - i];
783         }
784       } else {
785         // Little endian dst
786         if (m_byte_order == eByteOrderBig) {
787           // Little endian dst, with big endian src
788           for (uint32_t i = 0; i < dst_len; ++i)
789             dst[i] = src[src_len - 1 - i];
790         } else {
791           // Little endian dst, with big endian src
792           ::memcpy(dst, src, dst_len);
793         }
794       }
795       return dst_len;
796     }
797   }
798   return 0;
799 }
800 
801 // Extracts a variable length NULL terminated C string from the data at the
802 // offset pointed to by "offset_ptr".  The "offset_ptr" will be updated with
803 // the offset of the byte that follows the NULL terminator byte.
804 //
805 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
806 // non-zero and there aren't enough available bytes, nullptr will be returned
807 // and "offset_ptr" will not be updated.
808 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
809   const char *cstr = (const char *)PeekData(*offset_ptr, 1);
810   if (cstr) {
811     const char *cstr_end = cstr;
812     const char *end = (const char *)m_end;
813     while (cstr_end < end && *cstr_end)
814       ++cstr_end;
815 
816     // Now we are either at the end of the data or we point to the
817     // NULL C string terminator with cstr_end...
818     if (*cstr_end == '\0') {
819       // Advance the offset with one extra byte for the NULL terminator
820       *offset_ptr += (cstr_end - cstr + 1);
821       return cstr;
822     }
823 
824     // We reached the end of the data without finding a NULL C string
825     // terminator. Fall through and return nullptr otherwise anyone that would
826     // have used the result as a C string can wander into unknown memory...
827   }
828   return nullptr;
829 }
830 
831 // Extracts a NULL terminated C string from the fixed length field of length
832 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
833 // updated with the offset of the byte that follows the fixed length field.
834 //
835 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
836 // plus the length of the field is out of bounds, or if the field does not
837 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
838 // will not be updated.
839 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
840   const char *cstr = (const char *)PeekData(*offset_ptr, len);
841   if (cstr != nullptr) {
842     if (memchr(cstr, '\0', len) == nullptr) {
843       return nullptr;
844     }
845     *offset_ptr += len;
846     return cstr;
847   }
848   return nullptr;
849 }
850 
851 // Peeks at a string in the contained data. No verification is done to make
852 // sure the entire string lies within the bounds of this object's data, only
853 // "offset" is verified to be a valid offset.
854 //
855 // Returns a valid C string pointer if "offset" is a valid offset in this
856 // object's data, else nullptr is returned.
857 const char *DataExtractor::PeekCStr(offset_t offset) const {
858   return (const char *)PeekData(offset, 1);
859 }
860 
861 // Extracts an unsigned LEB128 number from this object's data starting at the
862 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
863 // will be updated with the offset of the byte following the last extracted
864 // byte.
865 //
866 // Returned the extracted integer value.
867 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
868   const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1);
869   if (src == nullptr)
870     return 0;
871 
872   const uint8_t *end = m_end;
873 
874   if (src < end) {
875     uint64_t result = *src++;
876     if (result >= 0x80) {
877       result &= 0x7f;
878       int shift = 7;
879       while (src < end) {
880         uint8_t byte = *src++;
881         result |= (uint64_t)(byte & 0x7f) << shift;
882         if ((byte & 0x80) == 0)
883           break;
884         shift += 7;
885       }
886     }
887     *offset_ptr = src - m_start;
888     return result;
889   }
890 
891   return 0;
892 }
893 
894 // Extracts an signed LEB128 number from this object's data starting at the
895 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
896 // will be updated with the offset of the byte following the last extracted
897 // byte.
898 //
899 // Returned the extracted integer value.
900 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
901   const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1);
902   if (src == nullptr)
903     return 0;
904 
905   const uint8_t *end = m_end;
906 
907   if (src < end) {
908     int64_t result = 0;
909     int shift = 0;
910     int size = sizeof(int64_t) * 8;
911 
912     uint8_t byte = 0;
913     int bytecount = 0;
914 
915     while (src < end) {
916       bytecount++;
917       byte = *src++;
918       result |= (int64_t)(byte & 0x7f) << shift;
919       shift += 7;
920       if ((byte & 0x80) == 0)
921         break;
922     }
923 
924     // Sign bit of byte is 2nd high order bit (0x40)
925     if (shift < size && (byte & 0x40))
926       result |= -(1 << shift);
927 
928     *offset_ptr += bytecount;
929     return result;
930   }
931   return 0;
932 }
933 
934 // Skips a ULEB128 number (signed or unsigned) from this object's data starting
935 // at the offset pointed to by "offset_ptr". The offset pointed to by
936 // "offset_ptr" will be updated with the offset of the byte following the last
937 // extracted byte.
938 //
939 // Returns the number of bytes consumed during the extraction.
940 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
941   uint32_t bytes_consumed = 0;
942   const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1);
943   if (src == nullptr)
944     return 0;
945 
946   const uint8_t *end = m_end;
947 
948   if (src < end) {
949     const uint8_t *src_pos = src;
950     while ((src_pos < end) && (*src_pos++ & 0x80))
951       ++bytes_consumed;
952     *offset_ptr += src_pos - src;
953   }
954   return bytes_consumed;
955 }
956 
957 // Dumps bytes from this object's data to the stream "s" starting
958 // "start_offset" bytes into this data, and ending with the byte before
959 // "end_offset". "base_addr" will be added to the offset into the dumped data
960 // when showing the offset into the data in the output information.
961 // "num_per_line" objects of type "type" will be dumped with the option to
962 // override the format for each object with "type_format". "type_format" is a
963 // printf style formatting string. If "type_format" is nullptr, then an
964 // appropriate format string will be used for the supplied "type". If the
965 // stream "s" is nullptr, then the output will be send to Log().
966 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
967                                        offset_t length, uint64_t base_addr,
968                                        uint32_t num_per_line,
969                                        DataExtractor::Type type,
970                                        const char *format) const {
971   if (log == nullptr)
972     return start_offset;
973 
974   offset_t offset;
975   offset_t end_offset;
976   uint32_t count;
977   StreamString sstr;
978   for (offset = start_offset, end_offset = offset + length, count = 0;
979        ValidOffset(offset) && offset < end_offset; ++count) {
980     if ((count % num_per_line) == 0) {
981       // Print out any previous string
982       if (sstr.GetSize() > 0) {
983         log->PutString(sstr.GetString());
984         sstr.Clear();
985       }
986       // Reset string offset and fill the current line string with address:
987       if (base_addr != LLDB_INVALID_ADDRESS)
988         sstr.Printf("0x%8.8" PRIx64 ":",
989                     (uint64_t)(base_addr + (offset - start_offset)));
990     }
991 
992     switch (type) {
993     case TypeUInt8:
994       sstr.Printf(format ? format : " %2.2x", GetU8(&offset));
995       break;
996     case TypeChar: {
997       char ch = GetU8(&offset);
998       sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' ');
999     } break;
1000     case TypeUInt16:
1001       sstr.Printf(format ? format : " %4.4x", GetU16(&offset));
1002       break;
1003     case TypeUInt32:
1004       sstr.Printf(format ? format : " %8.8x", GetU32(&offset));
1005       break;
1006     case TypeUInt64:
1007       sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset));
1008       break;
1009     case TypePointer:
1010       sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset));
1011       break;
1012     case TypeULEB128:
1013       sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset));
1014       break;
1015     case TypeSLEB128:
1016       sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset));
1017       break;
1018     }
1019   }
1020 
1021   if (!sstr.Empty())
1022     log->PutString(sstr.GetString());
1023 
1024   return offset; // Return the offset at which we ended up
1025 }
1026 
1027 size_t DataExtractor::Copy(DataExtractor &dest_data) const {
1028   if (m_data_sp) {
1029     // we can pass along the SP to the data
1030     dest_data.SetData(m_data_sp);
1031   } else {
1032     const uint8_t *base_ptr = m_start;
1033     size_t data_size = GetByteSize();
1034     dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
1035   }
1036   return GetByteSize();
1037 }
1038 
1039 bool DataExtractor::Append(DataExtractor &rhs) {
1040   if (rhs.GetByteOrder() != GetByteOrder())
1041     return false;
1042 
1043   if (rhs.GetByteSize() == 0)
1044     return true;
1045 
1046   if (GetByteSize() == 0)
1047     return (rhs.Copy(*this) > 0);
1048 
1049   size_t bytes = GetByteSize() + rhs.GetByteSize();
1050 
1051   DataBufferHeap *buffer_heap_ptr = nullptr;
1052   DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1053 
1054   if (!buffer_sp || buffer_heap_ptr == nullptr)
1055     return false;
1056 
1057   uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1058 
1059   memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1060   memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
1061 
1062   SetData(buffer_sp);
1063 
1064   return true;
1065 }
1066 
1067 bool DataExtractor::Append(void *buf, offset_t length) {
1068   if (buf == nullptr)
1069     return false;
1070 
1071   if (length == 0)
1072     return true;
1073 
1074   size_t bytes = GetByteSize() + length;
1075 
1076   DataBufferHeap *buffer_heap_ptr = nullptr;
1077   DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1078 
1079   if (!buffer_sp || buffer_heap_ptr == nullptr)
1080     return false;
1081 
1082   uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1083 
1084   if (GetByteSize() > 0)
1085     memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1086 
1087   memcpy(bytes_ptr + GetByteSize(), buf, length);
1088 
1089   SetData(buffer_sp);
1090 
1091   return true;
1092 }
1093 
1094 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1095                              uint64_t max_data) {
1096   if (max_data == 0)
1097     max_data = GetByteSize();
1098   else
1099     max_data = std::min(max_data, GetByteSize());
1100 
1101   llvm::MD5 md5;
1102 
1103   const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1104   md5.update(data);
1105 
1106   llvm::MD5::MD5Result result;
1107   md5.final(result);
1108 
1109   dest.clear();
1110   dest.append(result.Bytes.begin(), result.Bytes.end());
1111 }
1112