1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
17 #include "lldb/Breakpoint/BreakpointLocation.h"
18 #include "lldb/Breakpoint/StoppointCallbackContext.h"
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Expression/DiagnosticManager.h"
25 #include "lldb/Expression/DynamicCheckerFunctions.h"
26 #include "lldb/Expression/UserExpression.h"
27 #include "lldb/Expression/UtilityFunction.h"
28 #include "lldb/Host/ConnectionFileDescriptor.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Interpreter/CommandInterpreter.h"
37 #include "lldb/Interpreter/OptionArgParser.h"
38 #include "lldb/Interpreter/OptionValueProperties.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
42 #include "lldb/Target/AssertFrameRecognizer.h"
43 #include "lldb/Target/DynamicLoader.h"
44 #include "lldb/Target/InstrumentationRuntime.h"
45 #include "lldb/Target/JITLoader.h"
46 #include "lldb/Target/JITLoaderList.h"
47 #include "lldb/Target/Language.h"
48 #include "lldb/Target/LanguageRuntime.h"
49 #include "lldb/Target/MemoryHistory.h"
50 #include "lldb/Target/MemoryRegionInfo.h"
51 #include "lldb/Target/OperatingSystem.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
54 #include "lldb/Target/RegisterContext.h"
55 #include "lldb/Target/StopInfo.h"
56 #include "lldb/Target/StructuredDataPlugin.h"
57 #include "lldb/Target/SystemRuntime.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
62 #include "lldb/Target/ThreadPlanBase.h"
63 #include "lldb/Target/ThreadPlanCallFunction.h"
64 #include "lldb/Target/ThreadPlanStack.h"
65 #include "lldb/Target/UnixSignals.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/Log.h"
68 #include "lldb/Utility/NameMatches.h"
69 #include "lldb/Utility/ProcessInfo.h"
70 #include "lldb/Utility/SelectHelper.h"
71 #include "lldb/Utility/State.h"
72 #include "lldb/Utility/Timer.h"
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace std::chrono;
77 
78 // Comment out line below to disable memory caching, overriding the process
79 // setting target.process.disable-memory-cache
80 #define ENABLE_MEMORY_CACHING
81 
82 #ifdef ENABLE_MEMORY_CACHING
83 #define DISABLE_MEM_CACHE_DEFAULT false
84 #else
85 #define DISABLE_MEM_CACHE_DEFAULT true
86 #endif
87 
88 class ProcessOptionValueProperties
89     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
90 public:
91   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
92 
93   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
94                                      bool will_modify,
95                                      uint32_t idx) const override {
96     // When getting the value for a key from the process options, we will
97     // always try and grab the setting from the current process if there is
98     // one. Else we just use the one from this instance.
99     if (exe_ctx) {
100       Process *process = exe_ctx->GetProcessPtr();
101       if (process) {
102         ProcessOptionValueProperties *instance_properties =
103             static_cast<ProcessOptionValueProperties *>(
104                 process->GetValueProperties().get());
105         if (this != instance_properties)
106           return instance_properties->ProtectedGetPropertyAtIndex(idx);
107       }
108     }
109     return ProtectedGetPropertyAtIndex(idx);
110   }
111 };
112 
113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
114     {
115         eFollowParent,
116         "parent",
117         "Continue tracing the parent process and detach the child.",
118     },
119     {
120         eFollowChild,
121         "child",
122         "Trace the child process and detach the parent.",
123     },
124 };
125 
126 #define LLDB_PROPERTIES_process
127 #include "TargetProperties.inc"
128 
129 enum {
130 #define LLDB_PROPERTIES_process
131 #include "TargetPropertiesEnum.inc"
132   ePropertyExperimental,
133 };
134 
135 #define LLDB_PROPERTIES_process_experimental
136 #include "TargetProperties.inc"
137 
138 enum {
139 #define LLDB_PROPERTIES_process_experimental
140 #include "TargetPropertiesEnum.inc"
141 };
142 
143 class ProcessExperimentalOptionValueProperties
144     : public Cloneable<ProcessExperimentalOptionValueProperties,
145                        OptionValueProperties> {
146 public:
147   ProcessExperimentalOptionValueProperties()
148       : Cloneable(
149             ConstString(Properties::GetExperimentalSettingsName())) {}
150 };
151 
152 ProcessExperimentalProperties::ProcessExperimentalProperties()
153     : Properties(OptionValuePropertiesSP(
154           new ProcessExperimentalOptionValueProperties())) {
155   m_collection_sp->Initialize(g_process_experimental_properties);
156 }
157 
158 ProcessProperties::ProcessProperties(lldb_private::Process *process)
159     : Properties(),
160       m_process(process) // Can be nullptr for global ProcessProperties
161 {
162   if (process == nullptr) {
163     // Global process properties, set them up one time
164     m_collection_sp =
165         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
166     m_collection_sp->Initialize(g_process_properties);
167     m_collection_sp->AppendProperty(
168         ConstString("thread"), ConstString("Settings specific to threads."),
169         true, Thread::GetGlobalProperties().GetValueProperties());
170   } else {
171     m_collection_sp =
172         OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
173     m_collection_sp->SetValueChangedCallback(
174         ePropertyPythonOSPluginPath,
175         [this] { m_process->LoadOperatingSystemPlugin(true); });
176   }
177 
178   m_experimental_properties_up =
179       std::make_unique<ProcessExperimentalProperties>();
180   m_collection_sp->AppendProperty(
181       ConstString(Properties::GetExperimentalSettingsName()),
182       ConstString("Experimental settings - setting these won't produce "
183                   "errors if the setting is not present."),
184       true, m_experimental_properties_up->GetValueProperties());
185 }
186 
187 ProcessProperties::~ProcessProperties() = default;
188 
189 bool ProcessProperties::GetDisableMemoryCache() const {
190   const uint32_t idx = ePropertyDisableMemCache;
191   return m_collection_sp->GetPropertyAtIndexAsBoolean(
192       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
193 }
194 
195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
196   const uint32_t idx = ePropertyMemCacheLineSize;
197   return m_collection_sp->GetPropertyAtIndexAsUInt64(
198       nullptr, idx, g_process_properties[idx].default_uint_value);
199 }
200 
201 Args ProcessProperties::GetExtraStartupCommands() const {
202   Args args;
203   const uint32_t idx = ePropertyExtraStartCommand;
204   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
205   return args;
206 }
207 
208 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
209   const uint32_t idx = ePropertyExtraStartCommand;
210   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
211 }
212 
213 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
214   const uint32_t idx = ePropertyPythonOSPluginPath;
215   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
216 }
217 
218 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
219   const uint32_t idx = ePropertyVirtualAddressableBits;
220   return m_collection_sp->GetPropertyAtIndexAsUInt64(
221       nullptr, idx, g_process_properties[idx].default_uint_value);
222 }
223 
224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
225   const uint32_t idx = ePropertyVirtualAddressableBits;
226   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
227 }
228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
229   const uint32_t idx = ePropertyPythonOSPluginPath;
230   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
231 }
232 
233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
234   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
235   return m_collection_sp->GetPropertyAtIndexAsBoolean(
236       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
237 }
238 
239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
240   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
241   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
242 }
243 
244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
245   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
246   return m_collection_sp->GetPropertyAtIndexAsBoolean(
247       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
248 }
249 
250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
251   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
252   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
253 }
254 
255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
256   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
257   return m_collection_sp->GetPropertyAtIndexAsBoolean(
258       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
259 }
260 
261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
262   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
263   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
264 }
265 
266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
267   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
268   return m_collection_sp->GetPropertyAtIndexAsBoolean(
269       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
270 }
271 
272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
273   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
274   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
275   m_process->Flush();
276 }
277 
278 bool ProcessProperties::GetDetachKeepsStopped() const {
279   const uint32_t idx = ePropertyDetachKeepsStopped;
280   return m_collection_sp->GetPropertyAtIndexAsBoolean(
281       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
282 }
283 
284 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
285   const uint32_t idx = ePropertyDetachKeepsStopped;
286   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
287 }
288 
289 bool ProcessProperties::GetWarningsOptimization() const {
290   const uint32_t idx = ePropertyWarningOptimization;
291   return m_collection_sp->GetPropertyAtIndexAsBoolean(
292       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
293 }
294 
295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
296   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
297   return m_collection_sp->GetPropertyAtIndexAsBoolean(
298       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
299 }
300 
301 bool ProcessProperties::GetStopOnExec() const {
302   const uint32_t idx = ePropertyStopOnExec;
303   return m_collection_sp->GetPropertyAtIndexAsBoolean(
304       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
305 }
306 
307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
308   const uint32_t idx = ePropertyUtilityExpressionTimeout;
309   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
310       nullptr, idx, g_process_properties[idx].default_uint_value);
311   return std::chrono::seconds(value);
312 }
313 
314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
315   const uint32_t idx = ePropertyInterruptTimeout;
316   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
317       nullptr, idx, g_process_properties[idx].default_uint_value);
318   return std::chrono::seconds(value);
319 }
320 
321 bool ProcessProperties::GetSteppingRunsAllThreads() const {
322   const uint32_t idx = ePropertySteppingRunsAllThreads;
323   return m_collection_sp->GetPropertyAtIndexAsBoolean(
324       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
325 }
326 
327 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
328   const bool fail_value = true;
329   const Property *exp_property =
330       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
331   OptionValueProperties *exp_values =
332       exp_property->GetValue()->GetAsProperties();
333   if (!exp_values)
334     return fail_value;
335 
336   return exp_values->GetPropertyAtIndexAsBoolean(
337       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
338 }
339 
340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
341   const Property *exp_property =
342       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
343   OptionValueProperties *exp_values =
344       exp_property->GetValue()->GetAsProperties();
345   if (exp_values)
346     exp_values->SetPropertyAtIndexAsBoolean(
347         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
348 }
349 
350 FollowForkMode ProcessProperties::GetFollowForkMode() const {
351   const uint32_t idx = ePropertyFollowForkMode;
352   return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration(
353       nullptr, idx, g_process_properties[idx].default_uint_value);
354 }
355 
356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
357                               llvm::StringRef plugin_name,
358                               ListenerSP listener_sp,
359                               const FileSpec *crash_file_path,
360                               bool can_connect) {
361   static uint32_t g_process_unique_id = 0;
362 
363   ProcessSP process_sp;
364   ProcessCreateInstance create_callback = nullptr;
365   if (!plugin_name.empty()) {
366     create_callback =
367         PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
368     if (create_callback) {
369       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
370                                    can_connect);
371       if (process_sp) {
372         if (process_sp->CanDebug(target_sp, true)) {
373           process_sp->m_process_unique_id = ++g_process_unique_id;
374         } else
375           process_sp.reset();
376       }
377     }
378   } else {
379     for (uint32_t idx = 0;
380          (create_callback =
381               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
382          ++idx) {
383       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
384                                    can_connect);
385       if (process_sp) {
386         if (process_sp->CanDebug(target_sp, false)) {
387           process_sp->m_process_unique_id = ++g_process_unique_id;
388           break;
389         } else
390           process_sp.reset();
391       }
392     }
393   }
394   return process_sp;
395 }
396 
397 ConstString &Process::GetStaticBroadcasterClass() {
398   static ConstString class_name("lldb.process");
399   return class_name;
400 }
401 
402 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
403     : Process(target_sp, listener_sp,
404               UnixSignals::Create(HostInfo::GetArchitecture())) {
405   // This constructor just delegates to the full Process constructor,
406   // defaulting to using the Host's UnixSignals.
407 }
408 
409 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
410                  const UnixSignalsSP &unix_signals_sp)
411     : ProcessProperties(this),
412       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
413                   Process::GetStaticBroadcasterClass().AsCString()),
414       m_target_wp(target_sp), m_public_state(eStateUnloaded),
415       m_private_state(eStateUnloaded),
416       m_private_state_broadcaster(nullptr,
417                                   "lldb.process.internal_state_broadcaster"),
418       m_private_state_control_broadcaster(
419           nullptr, "lldb.process.internal_state_control_broadcaster"),
420       m_private_state_listener_sp(
421           Listener::MakeListener("lldb.process.internal_state_listener")),
422       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
423       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
424       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
425       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
426       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
427       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
428       m_breakpoint_site_list(), m_dynamic_checkers_up(),
429       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
430       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
431       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
432       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
433       m_memory_cache(*this), m_allocated_memory_cache(*this),
434       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
435       m_private_run_lock(), m_finalizing(false),
436       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
437       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
438       m_can_interpret_function_calls(false), m_warnings_issued(),
439       m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
440   CheckInWithManager();
441 
442   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
443   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
444 
445   if (!m_unix_signals_sp)
446     m_unix_signals_sp = std::make_shared<UnixSignals>();
447 
448   SetEventName(eBroadcastBitStateChanged, "state-changed");
449   SetEventName(eBroadcastBitInterrupt, "interrupt");
450   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
451   SetEventName(eBroadcastBitSTDERR, "stderr-available");
452   SetEventName(eBroadcastBitProfileData, "profile-data-available");
453   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
454 
455   m_private_state_control_broadcaster.SetEventName(
456       eBroadcastInternalStateControlStop, "control-stop");
457   m_private_state_control_broadcaster.SetEventName(
458       eBroadcastInternalStateControlPause, "control-pause");
459   m_private_state_control_broadcaster.SetEventName(
460       eBroadcastInternalStateControlResume, "control-resume");
461 
462   m_listener_sp->StartListeningForEvents(
463       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
464                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
465                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
466 
467   m_private_state_listener_sp->StartListeningForEvents(
468       &m_private_state_broadcaster,
469       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
470 
471   m_private_state_listener_sp->StartListeningForEvents(
472       &m_private_state_control_broadcaster,
473       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
474           eBroadcastInternalStateControlResume);
475   // We need something valid here, even if just the default UnixSignalsSP.
476   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
477 
478   // Allow the platform to override the default cache line size
479   OptionValueSP value_sp =
480       m_collection_sp
481           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
482           ->GetValue();
483   uint32_t platform_cache_line_size =
484       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
485   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
486     value_sp->SetUInt64Value(platform_cache_line_size);
487 
488   RegisterAssertFrameRecognizer(this);
489 }
490 
491 Process::~Process() {
492   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
493   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
494   StopPrivateStateThread();
495 
496   // ThreadList::Clear() will try to acquire this process's mutex, so
497   // explicitly clear the thread list here to ensure that the mutex is not
498   // destroyed before the thread list.
499   m_thread_list.Clear();
500 }
501 
502 ProcessProperties &Process::GetGlobalProperties() {
503   // NOTE: intentional leak so we don't crash if global destructor chain gets
504   // called as other threads still use the result of this function
505   static ProcessProperties *g_settings_ptr =
506       new ProcessProperties(nullptr);
507   return *g_settings_ptr;
508 }
509 
510 void Process::Finalize() {
511   if (m_finalizing.exchange(true))
512     return;
513 
514   // Destroy the process. This will call the virtual function DoDestroy under
515   // the hood, giving our derived class a chance to do the ncessary tear down.
516   DestroyImpl(false);
517 
518   // Clear our broadcaster before we proceed with destroying
519   Broadcaster::Clear();
520 
521   // Do any cleanup needed prior to being destructed... Subclasses that
522   // override this method should call this superclass method as well.
523 
524   // We need to destroy the loader before the derived Process class gets
525   // destroyed since it is very likely that undoing the loader will require
526   // access to the real process.
527   m_dynamic_checkers_up.reset();
528   m_abi_sp.reset();
529   m_os_up.reset();
530   m_system_runtime_up.reset();
531   m_dyld_up.reset();
532   m_jit_loaders_up.reset();
533   m_thread_plans.Clear();
534   m_thread_list_real.Destroy();
535   m_thread_list.Destroy();
536   m_extended_thread_list.Destroy();
537   m_queue_list.Clear();
538   m_queue_list_stop_id = 0;
539   std::vector<Notifications> empty_notifications;
540   m_notifications.swap(empty_notifications);
541   m_image_tokens.clear();
542   m_memory_cache.Clear();
543   m_allocated_memory_cache.Clear();
544   {
545     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
546     m_language_runtimes.clear();
547   }
548   m_instrumentation_runtimes.clear();
549   m_next_event_action_up.reset();
550   // Clear the last natural stop ID since it has a strong reference to this
551   // process
552   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
553   //#ifdef LLDB_CONFIGURATION_DEBUG
554   //    StreamFile s(stdout, false);
555   //    EventSP event_sp;
556   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
557   //    {
558   //        event_sp->Dump (&s);
559   //        s.EOL();
560   //    }
561   //#endif
562   // We have to be very careful here as the m_private_state_listener might
563   // contain events that have ProcessSP values in them which can keep this
564   // process around forever. These events need to be cleared out.
565   m_private_state_listener_sp->Clear();
566   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
567   m_public_run_lock.SetStopped();
568   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
569   m_private_run_lock.SetStopped();
570   m_structured_data_plugin_map.clear();
571 }
572 
573 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
574   m_notifications.push_back(callbacks);
575   if (callbacks.initialize != nullptr)
576     callbacks.initialize(callbacks.baton, this);
577 }
578 
579 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
580   std::vector<Notifications>::iterator pos, end = m_notifications.end();
581   for (pos = m_notifications.begin(); pos != end; ++pos) {
582     if (pos->baton == callbacks.baton &&
583         pos->initialize == callbacks.initialize &&
584         pos->process_state_changed == callbacks.process_state_changed) {
585       m_notifications.erase(pos);
586       return true;
587     }
588   }
589   return false;
590 }
591 
592 void Process::SynchronouslyNotifyStateChanged(StateType state) {
593   std::vector<Notifications>::iterator notification_pos,
594       notification_end = m_notifications.end();
595   for (notification_pos = m_notifications.begin();
596        notification_pos != notification_end; ++notification_pos) {
597     if (notification_pos->process_state_changed)
598       notification_pos->process_state_changed(notification_pos->baton, this,
599                                               state);
600   }
601 }
602 
603 // FIXME: We need to do some work on events before the general Listener sees
604 // them.
605 // For instance if we are continuing from a breakpoint, we need to ensure that
606 // we do the little "insert real insn, step & stop" trick.  But we can't do
607 // that when the event is delivered by the broadcaster - since that is done on
608 // the thread that is waiting for new events, so if we needed more than one
609 // event for our handling, we would stall.  So instead we do it when we fetch
610 // the event off of the queue.
611 //
612 
613 StateType Process::GetNextEvent(EventSP &event_sp) {
614   StateType state = eStateInvalid;
615 
616   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
617                                             std::chrono::seconds(0)) &&
618       event_sp)
619     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
620 
621   return state;
622 }
623 
624 void Process::SyncIOHandler(uint32_t iohandler_id,
625                             const Timeout<std::micro> &timeout) {
626   // don't sync (potentially context switch) in case where there is no process
627   // IO
628   if (!m_process_input_reader)
629     return;
630 
631   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
632 
633   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
634   if (Result) {
635     LLDB_LOG(
636         log,
637         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
638         iohandler_id, *Result);
639   } else {
640     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
641              iohandler_id);
642   }
643 }
644 
645 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
646                                         EventSP *event_sp_ptr, bool wait_always,
647                                         ListenerSP hijack_listener_sp,
648                                         Stream *stream, bool use_run_lock) {
649   // We can't just wait for a "stopped" event, because the stopped event may
650   // have restarted the target. We have to actually check each event, and in
651   // the case of a stopped event check the restarted flag on the event.
652   if (event_sp_ptr)
653     event_sp_ptr->reset();
654   StateType state = GetState();
655   // If we are exited or detached, we won't ever get back to any other valid
656   // state...
657   if (state == eStateDetached || state == eStateExited)
658     return state;
659 
660   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
661   LLDB_LOG(log, "timeout = {0}", timeout);
662 
663   if (!wait_always && StateIsStoppedState(state, true) &&
664       StateIsStoppedState(GetPrivateState(), true)) {
665     LLDB_LOGF(log,
666               "Process::%s returning without waiting for events; process "
667               "private and public states are already 'stopped'.",
668               __FUNCTION__);
669     // We need to toggle the run lock as this won't get done in
670     // SetPublicState() if the process is hijacked.
671     if (hijack_listener_sp && use_run_lock)
672       m_public_run_lock.SetStopped();
673     return state;
674   }
675 
676   while (state != eStateInvalid) {
677     EventSP event_sp;
678     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
679     if (event_sp_ptr && event_sp)
680       *event_sp_ptr = event_sp;
681 
682     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
683     Process::HandleProcessStateChangedEvent(event_sp, stream,
684                                             pop_process_io_handler);
685 
686     switch (state) {
687     case eStateCrashed:
688     case eStateDetached:
689     case eStateExited:
690     case eStateUnloaded:
691       // We need to toggle the run lock as this won't get done in
692       // SetPublicState() if the process is hijacked.
693       if (hijack_listener_sp && use_run_lock)
694         m_public_run_lock.SetStopped();
695       return state;
696     case eStateStopped:
697       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
698         continue;
699       else {
700         // We need to toggle the run lock as this won't get done in
701         // SetPublicState() if the process is hijacked.
702         if (hijack_listener_sp && use_run_lock)
703           m_public_run_lock.SetStopped();
704         return state;
705       }
706     default:
707       continue;
708     }
709   }
710   return state;
711 }
712 
713 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
714                                              Stream *stream,
715                                              bool &pop_process_io_handler) {
716   const bool handle_pop = pop_process_io_handler;
717 
718   pop_process_io_handler = false;
719   ProcessSP process_sp =
720       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
721 
722   if (!process_sp)
723     return false;
724 
725   StateType event_state =
726       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
727   if (event_state == eStateInvalid)
728     return false;
729 
730   switch (event_state) {
731   case eStateInvalid:
732   case eStateUnloaded:
733   case eStateAttaching:
734   case eStateLaunching:
735   case eStateStepping:
736   case eStateDetached:
737     if (stream)
738       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
739                      StateAsCString(event_state));
740     if (event_state == eStateDetached)
741       pop_process_io_handler = true;
742     break;
743 
744   case eStateConnected:
745   case eStateRunning:
746     // Don't be chatty when we run...
747     break;
748 
749   case eStateExited:
750     if (stream)
751       process_sp->GetStatus(*stream);
752     pop_process_io_handler = true;
753     break;
754 
755   case eStateStopped:
756   case eStateCrashed:
757   case eStateSuspended:
758     // Make sure the program hasn't been auto-restarted:
759     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
760       if (stream) {
761         size_t num_reasons =
762             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
763         if (num_reasons > 0) {
764           // FIXME: Do we want to report this, or would that just be annoyingly
765           // chatty?
766           if (num_reasons == 1) {
767             const char *reason =
768                 Process::ProcessEventData::GetRestartedReasonAtIndex(
769                     event_sp.get(), 0);
770             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
771                            process_sp->GetID(),
772                            reason ? reason : "<UNKNOWN REASON>");
773           } else {
774             stream->Printf("Process %" PRIu64
775                            " stopped and restarted, reasons:\n",
776                            process_sp->GetID());
777 
778             for (size_t i = 0; i < num_reasons; i++) {
779               const char *reason =
780                   Process::ProcessEventData::GetRestartedReasonAtIndex(
781                       event_sp.get(), i);
782               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
783             }
784           }
785         }
786       }
787     } else {
788       StopInfoSP curr_thread_stop_info_sp;
789       // Lock the thread list so it doesn't change on us, this is the scope for
790       // the locker:
791       {
792         ThreadList &thread_list = process_sp->GetThreadList();
793         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
794 
795         ThreadSP curr_thread(thread_list.GetSelectedThread());
796         ThreadSP thread;
797         StopReason curr_thread_stop_reason = eStopReasonInvalid;
798         bool prefer_curr_thread = false;
799         if (curr_thread && curr_thread->IsValid()) {
800           curr_thread_stop_reason = curr_thread->GetStopReason();
801           switch (curr_thread_stop_reason) {
802           case eStopReasonNone:
803           case eStopReasonInvalid:
804             // Don't prefer the current thread if it didn't stop for a reason.
805             break;
806           case eStopReasonSignal: {
807             // We need to do the same computation we do for other threads
808             // below in case the current thread happens to be the one that
809             // stopped for the no-stop signal.
810             uint64_t signo = curr_thread->GetStopInfo()->GetValue();
811             if (process_sp->GetUnixSignals()->GetShouldStop(signo))
812               prefer_curr_thread = true;
813           } break;
814           default:
815             prefer_curr_thread = true;
816             break;
817           }
818           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
819         }
820 
821         if (!prefer_curr_thread) {
822           // Prefer a thread that has just completed its plan over another
823           // thread as current thread.
824           ThreadSP plan_thread;
825           ThreadSP other_thread;
826 
827           const size_t num_threads = thread_list.GetSize();
828           size_t i;
829           for (i = 0; i < num_threads; ++i) {
830             thread = thread_list.GetThreadAtIndex(i);
831             StopReason thread_stop_reason = thread->GetStopReason();
832             switch (thread_stop_reason) {
833             case eStopReasonInvalid:
834             case eStopReasonNone:
835               break;
836 
837             case eStopReasonSignal: {
838               // Don't select a signal thread if we weren't going to stop at
839               // that signal.  We have to have had another reason for stopping
840               // here, and the user doesn't want to see this thread.
841               uint64_t signo = thread->GetStopInfo()->GetValue();
842               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
843                 if (!other_thread)
844                   other_thread = thread;
845               }
846               break;
847             }
848             case eStopReasonTrace:
849             case eStopReasonBreakpoint:
850             case eStopReasonWatchpoint:
851             case eStopReasonException:
852             case eStopReasonExec:
853             case eStopReasonFork:
854             case eStopReasonVFork:
855             case eStopReasonVForkDone:
856             case eStopReasonThreadExiting:
857             case eStopReasonInstrumentation:
858             case eStopReasonProcessorTrace:
859               if (!other_thread)
860                 other_thread = thread;
861               break;
862             case eStopReasonPlanComplete:
863               if (!plan_thread)
864                 plan_thread = thread;
865               break;
866             }
867           }
868           if (plan_thread)
869             thread_list.SetSelectedThreadByID(plan_thread->GetID());
870           else if (other_thread)
871             thread_list.SetSelectedThreadByID(other_thread->GetID());
872           else {
873             if (curr_thread && curr_thread->IsValid())
874               thread = curr_thread;
875             else
876               thread = thread_list.GetThreadAtIndex(0);
877 
878             if (thread)
879               thread_list.SetSelectedThreadByID(thread->GetID());
880           }
881         }
882       }
883       // Drop the ThreadList mutex by here, since GetThreadStatus below might
884       // have to run code, e.g. for Data formatters, and if we hold the
885       // ThreadList mutex, then the process is going to have a hard time
886       // restarting the process.
887       if (stream) {
888         Debugger &debugger = process_sp->GetTarget().GetDebugger();
889         if (debugger.GetTargetList().GetSelectedTarget().get() ==
890             &process_sp->GetTarget()) {
891           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
892 
893           if (!thread_sp || !thread_sp->IsValid())
894             return false;
895 
896           const bool only_threads_with_stop_reason = true;
897           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
898           const uint32_t num_frames = 1;
899           const uint32_t num_frames_with_source = 1;
900           const bool stop_format = true;
901 
902           process_sp->GetStatus(*stream);
903           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
904                                       start_frame, num_frames,
905                                       num_frames_with_source,
906                                       stop_format);
907           if (curr_thread_stop_info_sp) {
908             lldb::addr_t crashing_address;
909             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
910                 curr_thread_stop_info_sp, &crashing_address);
911             if (valobj_sp) {
912               const ValueObject::GetExpressionPathFormat format =
913                   ValueObject::GetExpressionPathFormat::
914                       eGetExpressionPathFormatHonorPointers;
915               stream->PutCString("Likely cause: ");
916               valobj_sp->GetExpressionPath(*stream, format);
917               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
918             }
919           }
920         } else {
921           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
922               process_sp->GetTarget().shared_from_this());
923           if (target_idx != UINT32_MAX)
924             stream->Printf("Target %d: (", target_idx);
925           else
926             stream->Printf("Target <unknown index>: (");
927           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
928           stream->Printf(") stopped.\n");
929         }
930       }
931 
932       // Pop the process IO handler
933       pop_process_io_handler = true;
934     }
935     break;
936   }
937 
938   if (handle_pop && pop_process_io_handler)
939     process_sp->PopProcessIOHandler();
940 
941   return true;
942 }
943 
944 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
945   if (listener_sp) {
946     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
947                                               eBroadcastBitInterrupt);
948   } else
949     return false;
950 }
951 
952 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
953 
954 StateType Process::GetStateChangedEvents(EventSP &event_sp,
955                                          const Timeout<std::micro> &timeout,
956                                          ListenerSP hijack_listener_sp) {
957   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
958   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
959 
960   ListenerSP listener_sp = hijack_listener_sp;
961   if (!listener_sp)
962     listener_sp = m_listener_sp;
963 
964   StateType state = eStateInvalid;
965   if (listener_sp->GetEventForBroadcasterWithType(
966           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
967           timeout)) {
968     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
969       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
970     else
971       LLDB_LOG(log, "got no event or was interrupted.");
972   }
973 
974   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
975   return state;
976 }
977 
978 Event *Process::PeekAtStateChangedEvents() {
979   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
980 
981   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
982 
983   Event *event_ptr;
984   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
985       this, eBroadcastBitStateChanged);
986   if (log) {
987     if (event_ptr) {
988       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
989                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
990     } else {
991       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
992     }
993   }
994   return event_ptr;
995 }
996 
997 StateType
998 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
999                                       const Timeout<std::micro> &timeout) {
1000   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1001   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1002 
1003   StateType state = eStateInvalid;
1004   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1005           &m_private_state_broadcaster,
1006           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1007           timeout))
1008     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1009       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1010 
1011   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1012            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1013   return state;
1014 }
1015 
1016 bool Process::GetEventsPrivate(EventSP &event_sp,
1017                                const Timeout<std::micro> &timeout,
1018                                bool control_only) {
1019   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1020   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1021 
1022   if (control_only)
1023     return m_private_state_listener_sp->GetEventForBroadcaster(
1024         &m_private_state_control_broadcaster, event_sp, timeout);
1025   else
1026     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1027 }
1028 
1029 bool Process::IsRunning() const {
1030   return StateIsRunningState(m_public_state.GetValue());
1031 }
1032 
1033 int Process::GetExitStatus() {
1034   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1035 
1036   if (m_public_state.GetValue() == eStateExited)
1037     return m_exit_status;
1038   return -1;
1039 }
1040 
1041 const char *Process::GetExitDescription() {
1042   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1043 
1044   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1045     return m_exit_string.c_str();
1046   return nullptr;
1047 }
1048 
1049 bool Process::SetExitStatus(int status, const char *cstr) {
1050   // Use a mutex to protect setting the exit status.
1051   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1052 
1053   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1054                                                   LIBLLDB_LOG_PROCESS));
1055   LLDB_LOGF(
1056       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1057       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1058 
1059   // We were already in the exited state
1060   if (m_private_state.GetValue() == eStateExited) {
1061     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1062                    "state was already set to eStateExited");
1063     return false;
1064   }
1065 
1066   m_exit_status = status;
1067   if (cstr)
1068     m_exit_string = cstr;
1069   else
1070     m_exit_string.clear();
1071 
1072   // Clear the last natural stop ID since it has a strong reference to this
1073   // process
1074   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1075 
1076   SetPrivateState(eStateExited);
1077 
1078   // Allow subclasses to do some cleanup
1079   DidExit();
1080 
1081   return true;
1082 }
1083 
1084 bool Process::IsAlive() {
1085   switch (m_private_state.GetValue()) {
1086   case eStateConnected:
1087   case eStateAttaching:
1088   case eStateLaunching:
1089   case eStateStopped:
1090   case eStateRunning:
1091   case eStateStepping:
1092   case eStateCrashed:
1093   case eStateSuspended:
1094     return true;
1095   default:
1096     return false;
1097   }
1098 }
1099 
1100 // This static callback can be used to watch for local child processes on the
1101 // current host. The child process exits, the process will be found in the
1102 // global target list (we want to be completely sure that the
1103 // lldb_private::Process doesn't go away before we can deliver the signal.
1104 bool Process::SetProcessExitStatus(
1105     lldb::pid_t pid, bool exited,
1106     int signo,      // Zero for no signal
1107     int exit_status // Exit value of process if signal is zero
1108     ) {
1109   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
1110   LLDB_LOGF(log,
1111             "Process::SetProcessExitStatus (pid=%" PRIu64
1112             ", exited=%i, signal=%i, exit_status=%i)\n",
1113             pid, exited, signo, exit_status);
1114 
1115   if (exited) {
1116     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1117     if (target_sp) {
1118       ProcessSP process_sp(target_sp->GetProcessSP());
1119       if (process_sp) {
1120         const char *signal_cstr = nullptr;
1121         if (signo)
1122           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1123 
1124         process_sp->SetExitStatus(exit_status, signal_cstr);
1125       }
1126     }
1127     return true;
1128   }
1129   return false;
1130 }
1131 
1132 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1133                                ThreadList &new_thread_list) {
1134   m_thread_plans.ClearThreadCache();
1135   return DoUpdateThreadList(old_thread_list, new_thread_list);
1136 }
1137 
1138 void Process::UpdateThreadListIfNeeded() {
1139   const uint32_t stop_id = GetStopID();
1140   if (m_thread_list.GetSize(false) == 0 ||
1141       stop_id != m_thread_list.GetStopID()) {
1142     bool clear_unused_threads = true;
1143     const StateType state = GetPrivateState();
1144     if (StateIsStoppedState(state, true)) {
1145       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1146       m_thread_list.SetStopID(stop_id);
1147 
1148       // m_thread_list does have its own mutex, but we need to hold onto the
1149       // mutex between the call to UpdateThreadList(...) and the
1150       // os->UpdateThreadList(...) so it doesn't change on us
1151       ThreadList &old_thread_list = m_thread_list;
1152       ThreadList real_thread_list(this);
1153       ThreadList new_thread_list(this);
1154       // Always update the thread list with the protocol specific thread list,
1155       // but only update if "true" is returned
1156       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1157         // Don't call into the OperatingSystem to update the thread list if we
1158         // are shutting down, since that may call back into the SBAPI's,
1159         // requiring the API lock which is already held by whoever is shutting
1160         // us down, causing a deadlock.
1161         OperatingSystem *os = GetOperatingSystem();
1162         if (os && !m_destroy_in_process) {
1163           // Clear any old backing threads where memory threads might have been
1164           // backed by actual threads from the lldb_private::Process subclass
1165           size_t num_old_threads = old_thread_list.GetSize(false);
1166           for (size_t i = 0; i < num_old_threads; ++i)
1167             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1168           // See if the OS plugin reports all threads.  If it does, then
1169           // it is safe to clear unseen thread's plans here.  Otherwise we
1170           // should preserve them in case they show up again:
1171           clear_unused_threads = GetOSPluginReportsAllThreads();
1172 
1173           // Turn off dynamic types to ensure we don't run any expressions.
1174           // Objective-C can run an expression to determine if a SBValue is a
1175           // dynamic type or not and we need to avoid this. OperatingSystem
1176           // plug-ins can't run expressions that require running code...
1177 
1178           Target &target = GetTarget();
1179           const lldb::DynamicValueType saved_prefer_dynamic =
1180               target.GetPreferDynamicValue();
1181           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1182             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1183 
1184           // Now let the OperatingSystem plug-in update the thread list
1185 
1186           os->UpdateThreadList(
1187               old_thread_list, // Old list full of threads created by OS plug-in
1188               real_thread_list, // The actual thread list full of threads
1189                                 // created by each lldb_private::Process
1190                                 // subclass
1191               new_thread_list); // The new thread list that we will show to the
1192                                 // user that gets filled in
1193 
1194           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1195             target.SetPreferDynamicValue(saved_prefer_dynamic);
1196         } else {
1197           // No OS plug-in, the new thread list is the same as the real thread
1198           // list.
1199           new_thread_list = real_thread_list;
1200         }
1201 
1202         m_thread_list_real.Update(real_thread_list);
1203         m_thread_list.Update(new_thread_list);
1204         m_thread_list.SetStopID(stop_id);
1205 
1206         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1207           // Clear any extended threads that we may have accumulated previously
1208           m_extended_thread_list.Clear();
1209           m_extended_thread_stop_id = GetLastNaturalStopID();
1210 
1211           m_queue_list.Clear();
1212           m_queue_list_stop_id = GetLastNaturalStopID();
1213         }
1214       }
1215       // Now update the plan stack map.
1216       // If we do have an OS plugin, any absent real threads in the
1217       // m_thread_list have already been removed from the ThreadPlanStackMap.
1218       // So any remaining threads are OS Plugin threads, and those we want to
1219       // preserve in case they show up again.
1220       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1221     }
1222   }
1223 }
1224 
1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1226   return m_thread_plans.Find(tid);
1227 }
1228 
1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1230   return m_thread_plans.PrunePlansForTID(tid);
1231 }
1232 
1233 void Process::PruneThreadPlans() {
1234   m_thread_plans.Update(GetThreadList(), true, false);
1235 }
1236 
1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1238                                     lldb::DescriptionLevel desc_level,
1239                                     bool internal, bool condense_trivial,
1240                                     bool skip_unreported_plans) {
1241   return m_thread_plans.DumpPlansForTID(
1242       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1243 }
1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1245                               bool internal, bool condense_trivial,
1246                               bool skip_unreported_plans) {
1247   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1248                            skip_unreported_plans);
1249 }
1250 
1251 void Process::UpdateQueueListIfNeeded() {
1252   if (m_system_runtime_up) {
1253     if (m_queue_list.GetSize() == 0 ||
1254         m_queue_list_stop_id != GetLastNaturalStopID()) {
1255       const StateType state = GetPrivateState();
1256       if (StateIsStoppedState(state, true)) {
1257         m_system_runtime_up->PopulateQueueList(m_queue_list);
1258         m_queue_list_stop_id = GetLastNaturalStopID();
1259       }
1260     }
1261   }
1262 }
1263 
1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1265   OperatingSystem *os = GetOperatingSystem();
1266   if (os)
1267     return os->CreateThread(tid, context);
1268   return ThreadSP();
1269 }
1270 
1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1272   return AssignIndexIDToThread(thread_id);
1273 }
1274 
1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1276   return (m_thread_id_to_index_id_map.find(thread_id) !=
1277           m_thread_id_to_index_id_map.end());
1278 }
1279 
1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1281   uint32_t result = 0;
1282   std::map<uint64_t, uint32_t>::iterator iterator =
1283       m_thread_id_to_index_id_map.find(thread_id);
1284   if (iterator == m_thread_id_to_index_id_map.end()) {
1285     result = ++m_thread_index_id;
1286     m_thread_id_to_index_id_map[thread_id] = result;
1287   } else {
1288     result = iterator->second;
1289   }
1290 
1291   return result;
1292 }
1293 
1294 StateType Process::GetState() {
1295   return m_public_state.GetValue();
1296 }
1297 
1298 void Process::SetPublicState(StateType new_state, bool restarted) {
1299   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1300   if (new_state_is_stopped) {
1301     // This will only set the time if the public stop time has no value, so
1302     // it is ok to call this multiple times. With a public stop we can't look
1303     // at the stop ID because many private stops might have happened, so we
1304     // can't check for a stop ID of zero. This allows the "statistics" command
1305     // to dump the time it takes to reach somewhere in your code, like a
1306     // breakpoint you set.
1307     GetTarget().GetStatistics().SetFirstPublicStopTime();
1308   }
1309 
1310   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1311                                                   LIBLLDB_LOG_PROCESS));
1312   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1313             StateAsCString(new_state), restarted);
1314   const StateType old_state = m_public_state.GetValue();
1315   m_public_state.SetValue(new_state);
1316 
1317   // On the transition from Run to Stopped, we unlock the writer end of the run
1318   // lock.  The lock gets locked in Resume, which is the public API to tell the
1319   // program to run.
1320   if (!StateChangedIsExternallyHijacked()) {
1321     if (new_state == eStateDetached) {
1322       LLDB_LOGF(log,
1323                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1324                 StateAsCString(new_state));
1325       m_public_run_lock.SetStopped();
1326     } else {
1327       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1328       if ((old_state_is_stopped != new_state_is_stopped)) {
1329         if (new_state_is_stopped && !restarted) {
1330           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1331                     StateAsCString(new_state));
1332           m_public_run_lock.SetStopped();
1333         }
1334       }
1335     }
1336   }
1337 }
1338 
1339 Status Process::Resume() {
1340   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1341                                                   LIBLLDB_LOG_PROCESS));
1342   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1343   if (!m_public_run_lock.TrySetRunning()) {
1344     Status error("Resume request failed - process still running.");
1345     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1346     return error;
1347   }
1348   Status error = PrivateResume();
1349   if (!error.Success()) {
1350     // Undo running state change
1351     m_public_run_lock.SetStopped();
1352   }
1353   return error;
1354 }
1355 
1356 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1357 
1358 Status Process::ResumeSynchronous(Stream *stream) {
1359   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1360                                                   LIBLLDB_LOG_PROCESS));
1361   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1362   if (!m_public_run_lock.TrySetRunning()) {
1363     Status error("Resume request failed - process still running.");
1364     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1365     return error;
1366   }
1367 
1368   ListenerSP listener_sp(
1369       Listener::MakeListener(g_resume_sync_name));
1370   HijackProcessEvents(listener_sp);
1371 
1372   Status error = PrivateResume();
1373   if (error.Success()) {
1374     StateType state = WaitForProcessToStop(llvm::None, nullptr, true,
1375                                            listener_sp, stream);
1376     const bool must_be_alive =
1377         false; // eStateExited is ok, so this must be false
1378     if (!StateIsStoppedState(state, must_be_alive))
1379       error.SetErrorStringWithFormat(
1380           "process not in stopped state after synchronous resume: %s",
1381           StateAsCString(state));
1382   } else {
1383     // Undo running state change
1384     m_public_run_lock.SetStopped();
1385   }
1386 
1387   // Undo the hijacking of process events...
1388   RestoreProcessEvents();
1389 
1390   return error;
1391 }
1392 
1393 bool Process::StateChangedIsExternallyHijacked() {
1394   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1395     const char *hijacking_name = GetHijackingListenerName();
1396     if (hijacking_name &&
1397         strcmp(hijacking_name, g_resume_sync_name))
1398       return true;
1399   }
1400   return false;
1401 }
1402 
1403 bool Process::StateChangedIsHijackedForSynchronousResume() {
1404   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1405     const char *hijacking_name = GetHijackingListenerName();
1406     if (hijacking_name &&
1407         strcmp(hijacking_name, g_resume_sync_name) == 0)
1408       return true;
1409   }
1410   return false;
1411 }
1412 
1413 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1414 
1415 void Process::SetPrivateState(StateType new_state) {
1416   if (m_finalizing)
1417     return;
1418 
1419   Log *log(lldb_private::GetLogIfAnyCategoriesSet(
1420       LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND));
1421   bool state_changed = false;
1422 
1423   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1424 
1425   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1426   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1427 
1428   const StateType old_state = m_private_state.GetValueNoLock();
1429   state_changed = old_state != new_state;
1430 
1431   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1432   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1433   if (old_state_is_stopped != new_state_is_stopped) {
1434     if (new_state_is_stopped)
1435       m_private_run_lock.SetStopped();
1436     else
1437       m_private_run_lock.SetRunning();
1438   }
1439 
1440   if (state_changed) {
1441     m_private_state.SetValueNoLock(new_state);
1442     EventSP event_sp(
1443         new Event(eBroadcastBitStateChanged,
1444                   new ProcessEventData(shared_from_this(), new_state)));
1445     if (StateIsStoppedState(new_state, false)) {
1446       // Note, this currently assumes that all threads in the list stop when
1447       // the process stops.  In the future we will want to support a debugging
1448       // model where some threads continue to run while others are stopped.
1449       // When that happens we will either need a way for the thread list to
1450       // identify which threads are stopping or create a special thread list
1451       // containing only threads which actually stopped.
1452       //
1453       // The process plugin is responsible for managing the actual behavior of
1454       // the threads and should have stopped any threads that are going to stop
1455       // before we get here.
1456       m_thread_list.DidStop();
1457 
1458       if (m_mod_id.BumpStopID() == 0)
1459         GetTarget().GetStatistics().SetFirstPrivateStopTime();
1460 
1461       if (!m_mod_id.IsLastResumeForUserExpression())
1462         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1463       m_memory_cache.Clear();
1464       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1465                 StateAsCString(new_state), m_mod_id.GetStopID());
1466     }
1467 
1468     m_private_state_broadcaster.BroadcastEvent(event_sp);
1469   } else {
1470     LLDB_LOGF(log,
1471               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1472               StateAsCString(new_state));
1473   }
1474 }
1475 
1476 void Process::SetRunningUserExpression(bool on) {
1477   m_mod_id.SetRunningUserExpression(on);
1478 }
1479 
1480 void Process::SetRunningUtilityFunction(bool on) {
1481   m_mod_id.SetRunningUtilityFunction(on);
1482 }
1483 
1484 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1485 
1486 const lldb::ABISP &Process::GetABI() {
1487   if (!m_abi_sp)
1488     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1489   return m_abi_sp;
1490 }
1491 
1492 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1493   std::vector<LanguageRuntime *> language_runtimes;
1494 
1495   if (m_finalizing)
1496     return language_runtimes;
1497 
1498   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1499   // Before we pass off a copy of the language runtimes, we must make sure that
1500   // our collection is properly populated. It's possible that some of the
1501   // language runtimes were not loaded yet, either because nobody requested it
1502   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1503   // hadn't been loaded).
1504   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1505     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1506       language_runtimes.emplace_back(runtime);
1507   }
1508 
1509   return language_runtimes;
1510 }
1511 
1512 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1513   if (m_finalizing)
1514     return nullptr;
1515 
1516   LanguageRuntime *runtime = nullptr;
1517 
1518   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1519   LanguageRuntimeCollection::iterator pos;
1520   pos = m_language_runtimes.find(language);
1521   if (pos == m_language_runtimes.end() || !pos->second) {
1522     lldb::LanguageRuntimeSP runtime_sp(
1523         LanguageRuntime::FindPlugin(this, language));
1524 
1525     m_language_runtimes[language] = runtime_sp;
1526     runtime = runtime_sp.get();
1527   } else
1528     runtime = pos->second.get();
1529 
1530   if (runtime)
1531     // It's possible that a language runtime can support multiple LanguageTypes,
1532     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1533     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1534     // primary language type and make sure that our runtime supports it.
1535     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1536 
1537   return runtime;
1538 }
1539 
1540 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1541   if (m_finalizing)
1542     return false;
1543 
1544   if (in_value.IsDynamic())
1545     return false;
1546   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1547 
1548   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1549     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1550     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1551   }
1552 
1553   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1554     if (runtime->CouldHaveDynamicValue(in_value))
1555       return true;
1556   }
1557 
1558   return false;
1559 }
1560 
1561 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1562   m_dynamic_checkers_up.reset(dynamic_checkers);
1563 }
1564 
1565 BreakpointSiteList &Process::GetBreakpointSiteList() {
1566   return m_breakpoint_site_list;
1567 }
1568 
1569 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1570   return m_breakpoint_site_list;
1571 }
1572 
1573 void Process::DisableAllBreakpointSites() {
1574   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1575     //        bp_site->SetEnabled(true);
1576     DisableBreakpointSite(bp_site);
1577   });
1578 }
1579 
1580 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1581   Status error(DisableBreakpointSiteByID(break_id));
1582 
1583   if (error.Success())
1584     m_breakpoint_site_list.Remove(break_id);
1585 
1586   return error;
1587 }
1588 
1589 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1590   Status error;
1591   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1592   if (bp_site_sp) {
1593     if (bp_site_sp->IsEnabled())
1594       error = DisableBreakpointSite(bp_site_sp.get());
1595   } else {
1596     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1597                                    break_id);
1598   }
1599 
1600   return error;
1601 }
1602 
1603 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1604   Status error;
1605   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1606   if (bp_site_sp) {
1607     if (!bp_site_sp->IsEnabled())
1608       error = EnableBreakpointSite(bp_site_sp.get());
1609   } else {
1610     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1611                                    break_id);
1612   }
1613   return error;
1614 }
1615 
1616 lldb::break_id_t
1617 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1618                               bool use_hardware) {
1619   addr_t load_addr = LLDB_INVALID_ADDRESS;
1620 
1621   bool show_error = true;
1622   switch (GetState()) {
1623   case eStateInvalid:
1624   case eStateUnloaded:
1625   case eStateConnected:
1626   case eStateAttaching:
1627   case eStateLaunching:
1628   case eStateDetached:
1629   case eStateExited:
1630     show_error = false;
1631     break;
1632 
1633   case eStateStopped:
1634   case eStateRunning:
1635   case eStateStepping:
1636   case eStateCrashed:
1637   case eStateSuspended:
1638     show_error = IsAlive();
1639     break;
1640   }
1641 
1642   // Reset the IsIndirect flag here, in case the location changes from pointing
1643   // to a indirect symbol to a regular symbol.
1644   owner->SetIsIndirect(false);
1645 
1646   if (owner->ShouldResolveIndirectFunctions()) {
1647     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1648     if (symbol && symbol->IsIndirect()) {
1649       Status error;
1650       Address symbol_address = symbol->GetAddress();
1651       load_addr = ResolveIndirectFunction(&symbol_address, error);
1652       if (!error.Success() && show_error) {
1653         GetTarget().GetDebugger().GetErrorStream().Printf(
1654             "warning: failed to resolve indirect function at 0x%" PRIx64
1655             " for breakpoint %i.%i: %s\n",
1656             symbol->GetLoadAddress(&GetTarget()),
1657             owner->GetBreakpoint().GetID(), owner->GetID(),
1658             error.AsCString() ? error.AsCString() : "unknown error");
1659         return LLDB_INVALID_BREAK_ID;
1660       }
1661       Address resolved_address(load_addr);
1662       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1663       owner->SetIsIndirect(true);
1664     } else
1665       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1666   } else
1667     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1668 
1669   if (load_addr != LLDB_INVALID_ADDRESS) {
1670     BreakpointSiteSP bp_site_sp;
1671 
1672     // Look up this breakpoint site.  If it exists, then add this new owner,
1673     // otherwise create a new breakpoint site and add it.
1674 
1675     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1676 
1677     if (bp_site_sp) {
1678       bp_site_sp->AddOwner(owner);
1679       owner->SetBreakpointSite(bp_site_sp);
1680       return bp_site_sp->GetID();
1681     } else {
1682       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1683                                           load_addr, use_hardware));
1684       if (bp_site_sp) {
1685         Status error = EnableBreakpointSite(bp_site_sp.get());
1686         if (error.Success()) {
1687           owner->SetBreakpointSite(bp_site_sp);
1688           return m_breakpoint_site_list.Add(bp_site_sp);
1689         } else {
1690           if (show_error || use_hardware) {
1691             // Report error for setting breakpoint...
1692             GetTarget().GetDebugger().GetErrorStream().Printf(
1693                 "warning: failed to set breakpoint site at 0x%" PRIx64
1694                 " for breakpoint %i.%i: %s\n",
1695                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1696                 error.AsCString() ? error.AsCString() : "unknown error");
1697           }
1698         }
1699       }
1700     }
1701   }
1702   // We failed to enable the breakpoint
1703   return LLDB_INVALID_BREAK_ID;
1704 }
1705 
1706 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1707                                             lldb::user_id_t owner_loc_id,
1708                                             BreakpointSiteSP &bp_site_sp) {
1709   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1710   if (num_owners == 0) {
1711     // Don't try to disable the site if we don't have a live process anymore.
1712     if (IsAlive())
1713       DisableBreakpointSite(bp_site_sp.get());
1714     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1715   }
1716 }
1717 
1718 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1719                                                   uint8_t *buf) const {
1720   size_t bytes_removed = 0;
1721   BreakpointSiteList bp_sites_in_range;
1722 
1723   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1724                                          bp_sites_in_range)) {
1725     bp_sites_in_range.ForEach([bp_addr, size,
1726                                buf](BreakpointSite *bp_site) -> void {
1727       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1728         addr_t intersect_addr;
1729         size_t intersect_size;
1730         size_t opcode_offset;
1731         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1732                                      &intersect_size, &opcode_offset)) {
1733           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1734           assert(bp_addr < intersect_addr + intersect_size &&
1735                  intersect_addr + intersect_size <= bp_addr + size);
1736           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1737           size_t buf_offset = intersect_addr - bp_addr;
1738           ::memcpy(buf + buf_offset,
1739                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1740                    intersect_size);
1741         }
1742       }
1743     });
1744   }
1745   return bytes_removed;
1746 }
1747 
1748 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1749   PlatformSP platform_sp(GetTarget().GetPlatform());
1750   if (platform_sp)
1751     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1752   return 0;
1753 }
1754 
1755 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1756   Status error;
1757   assert(bp_site != nullptr);
1758   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1759   const addr_t bp_addr = bp_site->GetLoadAddress();
1760   LLDB_LOGF(
1761       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1762       bp_site->GetID(), (uint64_t)bp_addr);
1763   if (bp_site->IsEnabled()) {
1764     LLDB_LOGF(
1765         log,
1766         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1767         " -- already enabled",
1768         bp_site->GetID(), (uint64_t)bp_addr);
1769     return error;
1770   }
1771 
1772   if (bp_addr == LLDB_INVALID_ADDRESS) {
1773     error.SetErrorString("BreakpointSite contains an invalid load address.");
1774     return error;
1775   }
1776   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1777   // trap for the breakpoint site
1778   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1779 
1780   if (bp_opcode_size == 0) {
1781     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1782                                    "returned zero, unable to get breakpoint "
1783                                    "trap for address 0x%" PRIx64,
1784                                    bp_addr);
1785   } else {
1786     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1787 
1788     if (bp_opcode_bytes == nullptr) {
1789       error.SetErrorString(
1790           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1791       return error;
1792     }
1793 
1794     // Save the original opcode by reading it
1795     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1796                      error) == bp_opcode_size) {
1797       // Write a software breakpoint in place of the original opcode
1798       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1799           bp_opcode_size) {
1800         uint8_t verify_bp_opcode_bytes[64];
1801         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1802                          error) == bp_opcode_size) {
1803           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1804                        bp_opcode_size) == 0) {
1805             bp_site->SetEnabled(true);
1806             bp_site->SetType(BreakpointSite::eSoftware);
1807             LLDB_LOGF(log,
1808                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1809                       "addr = 0x%" PRIx64 " -- SUCCESS",
1810                       bp_site->GetID(), (uint64_t)bp_addr);
1811           } else
1812             error.SetErrorString(
1813                 "failed to verify the breakpoint trap in memory.");
1814         } else
1815           error.SetErrorString(
1816               "Unable to read memory to verify breakpoint trap.");
1817       } else
1818         error.SetErrorString("Unable to write breakpoint trap to memory.");
1819     } else
1820       error.SetErrorString("Unable to read memory at breakpoint address.");
1821   }
1822   if (log && error.Fail())
1823     LLDB_LOGF(
1824         log,
1825         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1826         " -- FAILED: %s",
1827         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1828   return error;
1829 }
1830 
1831 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1832   Status error;
1833   assert(bp_site != nullptr);
1834   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1835   addr_t bp_addr = bp_site->GetLoadAddress();
1836   lldb::user_id_t breakID = bp_site->GetID();
1837   LLDB_LOGF(log,
1838             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1839             ") addr = 0x%" PRIx64,
1840             breakID, (uint64_t)bp_addr);
1841 
1842   if (bp_site->IsHardware()) {
1843     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1844   } else if (bp_site->IsEnabled()) {
1845     const size_t break_op_size = bp_site->GetByteSize();
1846     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1847     if (break_op_size > 0) {
1848       // Clear a software breakpoint instruction
1849       uint8_t curr_break_op[8];
1850       assert(break_op_size <= sizeof(curr_break_op));
1851       bool break_op_found = false;
1852 
1853       // Read the breakpoint opcode
1854       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1855           break_op_size) {
1856         bool verify = false;
1857         // Make sure the breakpoint opcode exists at this address
1858         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1859           break_op_found = true;
1860           // We found a valid breakpoint opcode at this address, now restore
1861           // the saved opcode.
1862           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1863                             break_op_size, error) == break_op_size) {
1864             verify = true;
1865           } else
1866             error.SetErrorString(
1867                 "Memory write failed when restoring original opcode.");
1868         } else {
1869           error.SetErrorString(
1870               "Original breakpoint trap is no longer in memory.");
1871           // Set verify to true and so we can check if the original opcode has
1872           // already been restored
1873           verify = true;
1874         }
1875 
1876         if (verify) {
1877           uint8_t verify_opcode[8];
1878           assert(break_op_size < sizeof(verify_opcode));
1879           // Verify that our original opcode made it back to the inferior
1880           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1881               break_op_size) {
1882             // compare the memory we just read with the original opcode
1883             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1884                          break_op_size) == 0) {
1885               // SUCCESS
1886               bp_site->SetEnabled(false);
1887               LLDB_LOGF(log,
1888                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1889                         "addr = 0x%" PRIx64 " -- SUCCESS",
1890                         bp_site->GetID(), (uint64_t)bp_addr);
1891               return error;
1892             } else {
1893               if (break_op_found)
1894                 error.SetErrorString("Failed to restore original opcode.");
1895             }
1896           } else
1897             error.SetErrorString("Failed to read memory to verify that "
1898                                  "breakpoint trap was restored.");
1899         }
1900       } else
1901         error.SetErrorString(
1902             "Unable to read memory that should contain the breakpoint trap.");
1903     }
1904   } else {
1905     LLDB_LOGF(
1906         log,
1907         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1908         " -- already disabled",
1909         bp_site->GetID(), (uint64_t)bp_addr);
1910     return error;
1911   }
1912 
1913   LLDB_LOGF(
1914       log,
1915       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1916       " -- FAILED: %s",
1917       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1918   return error;
1919 }
1920 
1921 // Uncomment to verify memory caching works after making changes to caching
1922 // code
1923 //#define VERIFY_MEMORY_READS
1924 
1925 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1926   error.Clear();
1927   if (!GetDisableMemoryCache()) {
1928 #if defined(VERIFY_MEMORY_READS)
1929     // Memory caching is enabled, with debug verification
1930 
1931     if (buf && size) {
1932       // Uncomment the line below to make sure memory caching is working.
1933       // I ran this through the test suite and got no assertions, so I am
1934       // pretty confident this is working well. If any changes are made to
1935       // memory caching, uncomment the line below and test your changes!
1936 
1937       // Verify all memory reads by using the cache first, then redundantly
1938       // reading the same memory from the inferior and comparing to make sure
1939       // everything is exactly the same.
1940       std::string verify_buf(size, '\0');
1941       assert(verify_buf.size() == size);
1942       const size_t cache_bytes_read =
1943           m_memory_cache.Read(this, addr, buf, size, error);
1944       Status verify_error;
1945       const size_t verify_bytes_read =
1946           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1947                                  verify_buf.size(), verify_error);
1948       assert(cache_bytes_read == verify_bytes_read);
1949       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1950       assert(verify_error.Success() == error.Success());
1951       return cache_bytes_read;
1952     }
1953     return 0;
1954 #else  // !defined(VERIFY_MEMORY_READS)
1955     // Memory caching is enabled, without debug verification
1956 
1957     return m_memory_cache.Read(addr, buf, size, error);
1958 #endif // defined (VERIFY_MEMORY_READS)
1959   } else {
1960     // Memory caching is disabled
1961 
1962     return ReadMemoryFromInferior(addr, buf, size, error);
1963   }
1964 }
1965 
1966 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1967                                       Status &error) {
1968   char buf[256];
1969   out_str.clear();
1970   addr_t curr_addr = addr;
1971   while (true) {
1972     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1973     if (length == 0)
1974       break;
1975     out_str.append(buf, length);
1976     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1977     // to read some more characters
1978     if (length == sizeof(buf) - 1)
1979       curr_addr += length;
1980     else
1981       break;
1982   }
1983   return out_str.size();
1984 }
1985 
1986 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes,
1987                                      Status &error, size_t type_width) {
1988   size_t total_bytes_read = 0;
1989   if (dst && max_bytes && type_width && max_bytes >= type_width) {
1990     // Ensure a null terminator independent of the number of bytes that is
1991     // read.
1992     memset(dst, 0, max_bytes);
1993     size_t bytes_left = max_bytes - type_width;
1994 
1995     const char terminator[4] = {'\0', '\0', '\0', '\0'};
1996     assert(sizeof(terminator) >= type_width && "Attempting to validate a "
1997                                                "string with more than 4 bytes "
1998                                                "per character!");
1999 
2000     addr_t curr_addr = addr;
2001     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2002     char *curr_dst = dst;
2003 
2004     error.Clear();
2005     while (bytes_left > 0 && error.Success()) {
2006       addr_t cache_line_bytes_left =
2007           cache_line_size - (curr_addr % cache_line_size);
2008       addr_t bytes_to_read =
2009           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2010       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2011 
2012       if (bytes_read == 0)
2013         break;
2014 
2015       // Search for a null terminator of correct size and alignment in
2016       // bytes_read
2017       size_t aligned_start = total_bytes_read - total_bytes_read % type_width;
2018       for (size_t i = aligned_start;
2019            i + type_width <= total_bytes_read + bytes_read; i += type_width)
2020         if (::memcmp(&dst[i], terminator, type_width) == 0) {
2021           error.Clear();
2022           return i;
2023         }
2024 
2025       total_bytes_read += bytes_read;
2026       curr_dst += bytes_read;
2027       curr_addr += bytes_read;
2028       bytes_left -= bytes_read;
2029     }
2030   } else {
2031     if (max_bytes)
2032       error.SetErrorString("invalid arguments");
2033   }
2034   return total_bytes_read;
2035 }
2036 
2037 // Deprecated in favor of ReadStringFromMemory which has wchar support and
2038 // correct code to find null terminators.
2039 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2040                                       size_t dst_max_len,
2041                                       Status &result_error) {
2042   size_t total_cstr_len = 0;
2043   if (dst && dst_max_len) {
2044     result_error.Clear();
2045     // NULL out everything just to be safe
2046     memset(dst, 0, dst_max_len);
2047     Status error;
2048     addr_t curr_addr = addr;
2049     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2050     size_t bytes_left = dst_max_len - 1;
2051     char *curr_dst = dst;
2052 
2053     while (bytes_left > 0) {
2054       addr_t cache_line_bytes_left =
2055           cache_line_size - (curr_addr % cache_line_size);
2056       addr_t bytes_to_read =
2057           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2058       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2059 
2060       if (bytes_read == 0) {
2061         result_error = error;
2062         dst[total_cstr_len] = '\0';
2063         break;
2064       }
2065       const size_t len = strlen(curr_dst);
2066 
2067       total_cstr_len += len;
2068 
2069       if (len < bytes_to_read)
2070         break;
2071 
2072       curr_dst += bytes_read;
2073       curr_addr += bytes_read;
2074       bytes_left -= bytes_read;
2075     }
2076   } else {
2077     if (dst == nullptr)
2078       result_error.SetErrorString("invalid arguments");
2079     else
2080       result_error.Clear();
2081   }
2082   return total_cstr_len;
2083 }
2084 
2085 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2086                                        Status &error) {
2087   LLDB_SCOPED_TIMER();
2088 
2089   if (buf == nullptr || size == 0)
2090     return 0;
2091 
2092   size_t bytes_read = 0;
2093   uint8_t *bytes = (uint8_t *)buf;
2094 
2095   while (bytes_read < size) {
2096     const size_t curr_size = size - bytes_read;
2097     const size_t curr_bytes_read =
2098         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2099     bytes_read += curr_bytes_read;
2100     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2101       break;
2102   }
2103 
2104   // Replace any software breakpoint opcodes that fall into this range back
2105   // into "buf" before we return
2106   if (bytes_read > 0)
2107     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2108   return bytes_read;
2109 }
2110 
2111 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2112                                                 size_t integer_byte_size,
2113                                                 uint64_t fail_value,
2114                                                 Status &error) {
2115   Scalar scalar;
2116   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2117                                   error))
2118     return scalar.ULongLong(fail_value);
2119   return fail_value;
2120 }
2121 
2122 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2123                                              size_t integer_byte_size,
2124                                              int64_t fail_value,
2125                                              Status &error) {
2126   Scalar scalar;
2127   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2128                                   error))
2129     return scalar.SLongLong(fail_value);
2130   return fail_value;
2131 }
2132 
2133 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2134   Scalar scalar;
2135   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2136                                   error))
2137     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2138   return LLDB_INVALID_ADDRESS;
2139 }
2140 
2141 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2142                                    Status &error) {
2143   Scalar scalar;
2144   const uint32_t addr_byte_size = GetAddressByteSize();
2145   if (addr_byte_size <= 4)
2146     scalar = (uint32_t)ptr_value;
2147   else
2148     scalar = ptr_value;
2149   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2150          addr_byte_size;
2151 }
2152 
2153 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2154                                    Status &error) {
2155   size_t bytes_written = 0;
2156   const uint8_t *bytes = (const uint8_t *)buf;
2157 
2158   while (bytes_written < size) {
2159     const size_t curr_size = size - bytes_written;
2160     const size_t curr_bytes_written = DoWriteMemory(
2161         addr + bytes_written, bytes + bytes_written, curr_size, error);
2162     bytes_written += curr_bytes_written;
2163     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2164       break;
2165   }
2166   return bytes_written;
2167 }
2168 
2169 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2170                             Status &error) {
2171 #if defined(ENABLE_MEMORY_CACHING)
2172   m_memory_cache.Flush(addr, size);
2173 #endif
2174 
2175   if (buf == nullptr || size == 0)
2176     return 0;
2177 
2178   m_mod_id.BumpMemoryID();
2179 
2180   // We need to write any data that would go where any current software traps
2181   // (enabled software breakpoints) any software traps (breakpoints) that we
2182   // may have placed in our tasks memory.
2183 
2184   BreakpointSiteList bp_sites_in_range;
2185   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2186     return WriteMemoryPrivate(addr, buf, size, error);
2187 
2188   // No breakpoint sites overlap
2189   if (bp_sites_in_range.IsEmpty())
2190     return WriteMemoryPrivate(addr, buf, size, error);
2191 
2192   const uint8_t *ubuf = (const uint8_t *)buf;
2193   uint64_t bytes_written = 0;
2194 
2195   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2196                              &error](BreakpointSite *bp) -> void {
2197     if (error.Fail())
2198       return;
2199 
2200     if (bp->GetType() != BreakpointSite::eSoftware)
2201       return;
2202 
2203     addr_t intersect_addr;
2204     size_t intersect_size;
2205     size_t opcode_offset;
2206     const bool intersects = bp->IntersectsRange(
2207         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2208     UNUSED_IF_ASSERT_DISABLED(intersects);
2209     assert(intersects);
2210     assert(addr <= intersect_addr && intersect_addr < addr + size);
2211     assert(addr < intersect_addr + intersect_size &&
2212            intersect_addr + intersect_size <= addr + size);
2213     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2214 
2215     // Check for bytes before this breakpoint
2216     const addr_t curr_addr = addr + bytes_written;
2217     if (intersect_addr > curr_addr) {
2218       // There are some bytes before this breakpoint that we need to just
2219       // write to memory
2220       size_t curr_size = intersect_addr - curr_addr;
2221       size_t curr_bytes_written =
2222           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2223       bytes_written += curr_bytes_written;
2224       if (curr_bytes_written != curr_size) {
2225         // We weren't able to write all of the requested bytes, we are
2226         // done looping and will return the number of bytes that we have
2227         // written so far.
2228         if (error.Success())
2229           error.SetErrorToGenericError();
2230       }
2231     }
2232     // Now write any bytes that would cover up any software breakpoints
2233     // directly into the breakpoint opcode buffer
2234     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2235              intersect_size);
2236     bytes_written += intersect_size;
2237   });
2238 
2239   // Write any remaining bytes after the last breakpoint if we have any left
2240   if (bytes_written < size)
2241     bytes_written +=
2242         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2243                            size - bytes_written, error);
2244 
2245   return bytes_written;
2246 }
2247 
2248 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2249                                     size_t byte_size, Status &error) {
2250   if (byte_size == UINT32_MAX)
2251     byte_size = scalar.GetByteSize();
2252   if (byte_size > 0) {
2253     uint8_t buf[32];
2254     const size_t mem_size =
2255         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2256     if (mem_size > 0)
2257       return WriteMemory(addr, buf, mem_size, error);
2258     else
2259       error.SetErrorString("failed to get scalar as memory data");
2260   } else {
2261     error.SetErrorString("invalid scalar value");
2262   }
2263   return 0;
2264 }
2265 
2266 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2267                                             bool is_signed, Scalar &scalar,
2268                                             Status &error) {
2269   uint64_t uval = 0;
2270   if (byte_size == 0) {
2271     error.SetErrorString("byte size is zero");
2272   } else if (byte_size & (byte_size - 1)) {
2273     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2274                                    byte_size);
2275   } else if (byte_size <= sizeof(uval)) {
2276     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2277     if (bytes_read == byte_size) {
2278       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2279                          GetAddressByteSize());
2280       lldb::offset_t offset = 0;
2281       if (byte_size <= 4)
2282         scalar = data.GetMaxU32(&offset, byte_size);
2283       else
2284         scalar = data.GetMaxU64(&offset, byte_size);
2285       if (is_signed)
2286         scalar.SignExtend(byte_size * 8);
2287       return bytes_read;
2288     }
2289   } else {
2290     error.SetErrorStringWithFormat(
2291         "byte size of %u is too large for integer scalar type", byte_size);
2292   }
2293   return 0;
2294 }
2295 
2296 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2297   Status error;
2298   for (const auto &Entry : entries) {
2299     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2300                 error);
2301     if (!error.Success())
2302       break;
2303   }
2304   return error;
2305 }
2306 
2307 #define USE_ALLOCATE_MEMORY_CACHE 1
2308 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2309                                Status &error) {
2310   if (GetPrivateState() != eStateStopped) {
2311     error.SetErrorToGenericError();
2312     return LLDB_INVALID_ADDRESS;
2313   }
2314 
2315 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2316   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2317 #else
2318   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2319   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2320   LLDB_LOGF(log,
2321             "Process::AllocateMemory(size=%" PRIu64
2322             ", permissions=%s) => 0x%16.16" PRIx64
2323             " (m_stop_id = %u m_memory_id = %u)",
2324             (uint64_t)size, GetPermissionsAsCString(permissions),
2325             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2326             m_mod_id.GetMemoryID());
2327   return allocated_addr;
2328 #endif
2329 }
2330 
2331 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2332                                 Status &error) {
2333   addr_t return_addr = AllocateMemory(size, permissions, error);
2334   if (error.Success()) {
2335     std::string buffer(size, 0);
2336     WriteMemory(return_addr, buffer.c_str(), size, error);
2337   }
2338   return return_addr;
2339 }
2340 
2341 bool Process::CanJIT() {
2342   if (m_can_jit == eCanJITDontKnow) {
2343     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2344     Status err;
2345 
2346     uint64_t allocated_memory = AllocateMemory(
2347         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2348         err);
2349 
2350     if (err.Success()) {
2351       m_can_jit = eCanJITYes;
2352       LLDB_LOGF(log,
2353                 "Process::%s pid %" PRIu64
2354                 " allocation test passed, CanJIT () is true",
2355                 __FUNCTION__, GetID());
2356     } else {
2357       m_can_jit = eCanJITNo;
2358       LLDB_LOGF(log,
2359                 "Process::%s pid %" PRIu64
2360                 " allocation test failed, CanJIT () is false: %s",
2361                 __FUNCTION__, GetID(), err.AsCString());
2362     }
2363 
2364     DeallocateMemory(allocated_memory);
2365   }
2366 
2367   return m_can_jit == eCanJITYes;
2368 }
2369 
2370 void Process::SetCanJIT(bool can_jit) {
2371   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2372 }
2373 
2374 void Process::SetCanRunCode(bool can_run_code) {
2375   SetCanJIT(can_run_code);
2376   m_can_interpret_function_calls = can_run_code;
2377 }
2378 
2379 Status Process::DeallocateMemory(addr_t ptr) {
2380   Status error;
2381 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2382   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2383     error.SetErrorStringWithFormat(
2384         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2385   }
2386 #else
2387   error = DoDeallocateMemory(ptr);
2388 
2389   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2390   LLDB_LOGF(log,
2391             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2392             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2393             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2394             m_mod_id.GetMemoryID());
2395 #endif
2396   return error;
2397 }
2398 
2399 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2400                                        lldb::addr_t header_addr,
2401                                        size_t size_to_read) {
2402   Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
2403   if (log) {
2404     LLDB_LOGF(log,
2405               "Process::ReadModuleFromMemory reading %s binary from memory",
2406               file_spec.GetPath().c_str());
2407   }
2408   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2409   if (module_sp) {
2410     Status error;
2411     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2412         shared_from_this(), header_addr, error, size_to_read);
2413     if (objfile)
2414       return module_sp;
2415   }
2416   return ModuleSP();
2417 }
2418 
2419 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2420                                         uint32_t &permissions) {
2421   MemoryRegionInfo range_info;
2422   permissions = 0;
2423   Status error(GetMemoryRegionInfo(load_addr, range_info));
2424   if (!error.Success())
2425     return false;
2426   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2427       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2428       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2429     return false;
2430   }
2431 
2432   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2433     permissions |= lldb::ePermissionsReadable;
2434 
2435   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2436     permissions |= lldb::ePermissionsWritable;
2437 
2438   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2439     permissions |= lldb::ePermissionsExecutable;
2440 
2441   return true;
2442 }
2443 
2444 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2445   Status error;
2446   error.SetErrorString("watchpoints are not supported");
2447   return error;
2448 }
2449 
2450 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2451   Status error;
2452   error.SetErrorString("watchpoints are not supported");
2453   return error;
2454 }
2455 
2456 StateType
2457 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2458                                    const Timeout<std::micro> &timeout) {
2459   StateType state;
2460 
2461   while (true) {
2462     event_sp.reset();
2463     state = GetStateChangedEventsPrivate(event_sp, timeout);
2464 
2465     if (StateIsStoppedState(state, false))
2466       break;
2467 
2468     // If state is invalid, then we timed out
2469     if (state == eStateInvalid)
2470       break;
2471 
2472     if (event_sp)
2473       HandlePrivateEvent(event_sp);
2474   }
2475   return state;
2476 }
2477 
2478 void Process::LoadOperatingSystemPlugin(bool flush) {
2479   if (flush)
2480     m_thread_list.Clear();
2481   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2482   if (flush)
2483     Flush();
2484 }
2485 
2486 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2487   Status error;
2488   m_abi_sp.reset();
2489   m_dyld_up.reset();
2490   m_jit_loaders_up.reset();
2491   m_system_runtime_up.reset();
2492   m_os_up.reset();
2493   m_process_input_reader.reset();
2494 
2495   Module *exe_module = GetTarget().GetExecutableModulePointer();
2496   if (!exe_module) {
2497     error.SetErrorString("executable module does not exist");
2498     return error;
2499   }
2500 
2501   char local_exec_file_path[PATH_MAX];
2502   char platform_exec_file_path[PATH_MAX];
2503   exe_module->GetFileSpec().GetPath(local_exec_file_path,
2504                                     sizeof(local_exec_file_path));
2505   exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path,
2506                                             sizeof(platform_exec_file_path));
2507   if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2508     // Install anything that might need to be installed prior to launching.
2509     // For host systems, this will do nothing, but if we are connected to a
2510     // remote platform it will install any needed binaries
2511     error = GetTarget().Install(&launch_info);
2512     if (error.Fail())
2513       return error;
2514 
2515     // Listen and queue events that are broadcasted during the process launch.
2516     ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2517     HijackProcessEvents(listener_sp);
2518     auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2519 
2520     if (PrivateStateThreadIsValid())
2521       PausePrivateStateThread();
2522 
2523     error = WillLaunch(exe_module);
2524     if (error.Success()) {
2525       const bool restarted = false;
2526       SetPublicState(eStateLaunching, restarted);
2527       m_should_detach = false;
2528 
2529       if (m_public_run_lock.TrySetRunning()) {
2530         // Now launch using these arguments.
2531         error = DoLaunch(exe_module, launch_info);
2532       } else {
2533         // This shouldn't happen
2534         error.SetErrorString("failed to acquire process run lock");
2535       }
2536 
2537       if (error.Fail()) {
2538         if (GetID() != LLDB_INVALID_PROCESS_ID) {
2539           SetID(LLDB_INVALID_PROCESS_ID);
2540           const char *error_string = error.AsCString();
2541           if (error_string == nullptr)
2542             error_string = "launch failed";
2543           SetExitStatus(-1, error_string);
2544         }
2545       } else {
2546         EventSP event_sp;
2547 
2548         // Now wait for the process to launch and return control to us, and then
2549         // call DidLaunch:
2550         StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
2551 
2552         if (state == eStateInvalid || !event_sp) {
2553           // We were able to launch the process, but we failed to catch the
2554           // initial stop.
2555           error.SetErrorString("failed to catch stop after launch");
2556           SetExitStatus(0, "failed to catch stop after launch");
2557           Destroy(false);
2558         } else if (state == eStateStopped || state == eStateCrashed) {
2559           DidLaunch();
2560 
2561           DynamicLoader *dyld = GetDynamicLoader();
2562           if (dyld)
2563             dyld->DidLaunch();
2564 
2565           GetJITLoaders().DidLaunch();
2566 
2567           SystemRuntime *system_runtime = GetSystemRuntime();
2568           if (system_runtime)
2569             system_runtime->DidLaunch();
2570 
2571           if (!m_os_up)
2572             LoadOperatingSystemPlugin(false);
2573 
2574           // We successfully launched the process and stopped, now it the
2575           // right time to set up signal filters before resuming.
2576           UpdateAutomaticSignalFiltering();
2577 
2578           // Note, the stop event was consumed above, but not handled. This
2579           // was done to give DidLaunch a chance to run. The target is either
2580           // stopped or crashed. Directly set the state.  This is done to
2581           // prevent a stop message with a bunch of spurious output on thread
2582           // status, as well as not pop a ProcessIOHandler.
2583           SetPublicState(state, false);
2584 
2585           if (PrivateStateThreadIsValid())
2586             ResumePrivateStateThread();
2587           else
2588             StartPrivateStateThread();
2589 
2590           // Target was stopped at entry as was intended. Need to notify the
2591           // listeners about it.
2592           if (state == eStateStopped &&
2593               launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2594             HandlePrivateEvent(event_sp);
2595         } else if (state == eStateExited) {
2596           // We exited while trying to launch somehow.  Don't call DidLaunch
2597           // as that's not likely to work, and return an invalid pid.
2598           HandlePrivateEvent(event_sp);
2599         }
2600       }
2601     }
2602   } else {
2603     error.SetErrorStringWithFormat("file doesn't exist: '%s'",
2604                                    local_exec_file_path);
2605   }
2606 
2607   return error;
2608 }
2609 
2610 Status Process::LoadCore() {
2611   Status error = DoLoadCore();
2612   if (error.Success()) {
2613     ListenerSP listener_sp(
2614         Listener::MakeListener("lldb.process.load_core_listener"));
2615     HijackProcessEvents(listener_sp);
2616 
2617     if (PrivateStateThreadIsValid())
2618       ResumePrivateStateThread();
2619     else
2620       StartPrivateStateThread();
2621 
2622     DynamicLoader *dyld = GetDynamicLoader();
2623     if (dyld)
2624       dyld->DidAttach();
2625 
2626     GetJITLoaders().DidAttach();
2627 
2628     SystemRuntime *system_runtime = GetSystemRuntime();
2629     if (system_runtime)
2630       system_runtime->DidAttach();
2631 
2632     if (!m_os_up)
2633       LoadOperatingSystemPlugin(false);
2634 
2635     // We successfully loaded a core file, now pretend we stopped so we can
2636     // show all of the threads in the core file and explore the crashed state.
2637     SetPrivateState(eStateStopped);
2638 
2639     // Wait for a stopped event since we just posted one above...
2640     lldb::EventSP event_sp;
2641     StateType state =
2642         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2643 
2644     if (!StateIsStoppedState(state, false)) {
2645       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2646       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2647                 StateAsCString(state));
2648       error.SetErrorString(
2649           "Did not get stopped event after loading the core file.");
2650     }
2651     RestoreProcessEvents();
2652   }
2653   return error;
2654 }
2655 
2656 DynamicLoader *Process::GetDynamicLoader() {
2657   if (!m_dyld_up)
2658     m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2659   return m_dyld_up.get();
2660 }
2661 
2662 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2663 
2664 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2665   return false;
2666 }
2667 
2668 JITLoaderList &Process::GetJITLoaders() {
2669   if (!m_jit_loaders_up) {
2670     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2671     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2672   }
2673   return *m_jit_loaders_up;
2674 }
2675 
2676 SystemRuntime *Process::GetSystemRuntime() {
2677   if (!m_system_runtime_up)
2678     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2679   return m_system_runtime_up.get();
2680 }
2681 
2682 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2683                                                           uint32_t exec_count)
2684     : NextEventAction(process), m_exec_count(exec_count) {
2685   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2686   LLDB_LOGF(
2687       log,
2688       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2689       __FUNCTION__, static_cast<void *>(process), exec_count);
2690 }
2691 
2692 Process::NextEventAction::EventActionResult
2693 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2694   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2695 
2696   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2697   LLDB_LOGF(log,
2698             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2699             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2700 
2701   switch (state) {
2702   case eStateAttaching:
2703     return eEventActionSuccess;
2704 
2705   case eStateRunning:
2706   case eStateConnected:
2707     return eEventActionRetry;
2708 
2709   case eStateStopped:
2710   case eStateCrashed:
2711     // During attach, prior to sending the eStateStopped event,
2712     // lldb_private::Process subclasses must set the new process ID.
2713     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2714     // We don't want these events to be reported, so go set the
2715     // ShouldReportStop here:
2716     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2717 
2718     if (m_exec_count > 0) {
2719       --m_exec_count;
2720 
2721       LLDB_LOGF(log,
2722                 "Process::AttachCompletionHandler::%s state %s: reduced "
2723                 "remaining exec count to %" PRIu32 ", requesting resume",
2724                 __FUNCTION__, StateAsCString(state), m_exec_count);
2725 
2726       RequestResume();
2727       return eEventActionRetry;
2728     } else {
2729       LLDB_LOGF(log,
2730                 "Process::AttachCompletionHandler::%s state %s: no more "
2731                 "execs expected to start, continuing with attach",
2732                 __FUNCTION__, StateAsCString(state));
2733 
2734       m_process->CompleteAttach();
2735       return eEventActionSuccess;
2736     }
2737     break;
2738 
2739   default:
2740   case eStateExited:
2741   case eStateInvalid:
2742     break;
2743   }
2744 
2745   m_exit_string.assign("No valid Process");
2746   return eEventActionExit;
2747 }
2748 
2749 Process::NextEventAction::EventActionResult
2750 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2751   return eEventActionSuccess;
2752 }
2753 
2754 const char *Process::AttachCompletionHandler::GetExitString() {
2755   return m_exit_string.c_str();
2756 }
2757 
2758 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2759   if (m_listener_sp)
2760     return m_listener_sp;
2761   else
2762     return debugger.GetListener();
2763 }
2764 
2765 Status Process::Attach(ProcessAttachInfo &attach_info) {
2766   m_abi_sp.reset();
2767   m_process_input_reader.reset();
2768   m_dyld_up.reset();
2769   m_jit_loaders_up.reset();
2770   m_system_runtime_up.reset();
2771   m_os_up.reset();
2772 
2773   lldb::pid_t attach_pid = attach_info.GetProcessID();
2774   Status error;
2775   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2776     char process_name[PATH_MAX];
2777 
2778     if (attach_info.GetExecutableFile().GetPath(process_name,
2779                                                 sizeof(process_name))) {
2780       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2781 
2782       if (wait_for_launch) {
2783         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2784         if (error.Success()) {
2785           if (m_public_run_lock.TrySetRunning()) {
2786             m_should_detach = true;
2787             const bool restarted = false;
2788             SetPublicState(eStateAttaching, restarted);
2789             // Now attach using these arguments.
2790             error = DoAttachToProcessWithName(process_name, attach_info);
2791           } else {
2792             // This shouldn't happen
2793             error.SetErrorString("failed to acquire process run lock");
2794           }
2795 
2796           if (error.Fail()) {
2797             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2798               SetID(LLDB_INVALID_PROCESS_ID);
2799               if (error.AsCString() == nullptr)
2800                 error.SetErrorString("attach failed");
2801 
2802               SetExitStatus(-1, error.AsCString());
2803             }
2804           } else {
2805             SetNextEventAction(new Process::AttachCompletionHandler(
2806                 this, attach_info.GetResumeCount()));
2807             StartPrivateStateThread();
2808           }
2809           return error;
2810         }
2811       } else {
2812         ProcessInstanceInfoList process_infos;
2813         PlatformSP platform_sp(GetTarget().GetPlatform());
2814 
2815         if (platform_sp) {
2816           ProcessInstanceInfoMatch match_info;
2817           match_info.GetProcessInfo() = attach_info;
2818           match_info.SetNameMatchType(NameMatch::Equals);
2819           platform_sp->FindProcesses(match_info, process_infos);
2820           const uint32_t num_matches = process_infos.size();
2821           if (num_matches == 1) {
2822             attach_pid = process_infos[0].GetProcessID();
2823             // Fall through and attach using the above process ID
2824           } else {
2825             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2826                 process_name, sizeof(process_name));
2827             if (num_matches > 1) {
2828               StreamString s;
2829               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2830               for (size_t i = 0; i < num_matches; i++) {
2831                 process_infos[i].DumpAsTableRow(
2832                     s, platform_sp->GetUserIDResolver(), true, false);
2833               }
2834               error.SetErrorStringWithFormat(
2835                   "more than one process named %s:\n%s", process_name,
2836                   s.GetData());
2837             } else
2838               error.SetErrorStringWithFormat(
2839                   "could not find a process named %s", process_name);
2840           }
2841         } else {
2842           error.SetErrorString(
2843               "invalid platform, can't find processes by name");
2844           return error;
2845         }
2846       }
2847     } else {
2848       error.SetErrorString("invalid process name");
2849     }
2850   }
2851 
2852   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2853     error = WillAttachToProcessWithID(attach_pid);
2854     if (error.Success()) {
2855 
2856       if (m_public_run_lock.TrySetRunning()) {
2857         // Now attach using these arguments.
2858         m_should_detach = true;
2859         const bool restarted = false;
2860         SetPublicState(eStateAttaching, restarted);
2861         error = DoAttachToProcessWithID(attach_pid, attach_info);
2862       } else {
2863         // This shouldn't happen
2864         error.SetErrorString("failed to acquire process run lock");
2865       }
2866 
2867       if (error.Success()) {
2868         SetNextEventAction(new Process::AttachCompletionHandler(
2869             this, attach_info.GetResumeCount()));
2870         StartPrivateStateThread();
2871       } else {
2872         if (GetID() != LLDB_INVALID_PROCESS_ID)
2873           SetID(LLDB_INVALID_PROCESS_ID);
2874 
2875         const char *error_string = error.AsCString();
2876         if (error_string == nullptr)
2877           error_string = "attach failed";
2878 
2879         SetExitStatus(-1, error_string);
2880       }
2881     }
2882   }
2883   return error;
2884 }
2885 
2886 void Process::CompleteAttach() {
2887   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
2888                                                   LIBLLDB_LOG_TARGET));
2889   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2890 
2891   // Let the process subclass figure out at much as it can about the process
2892   // before we go looking for a dynamic loader plug-in.
2893   ArchSpec process_arch;
2894   DidAttach(process_arch);
2895 
2896   if (process_arch.IsValid()) {
2897     GetTarget().SetArchitecture(process_arch);
2898     if (log) {
2899       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2900       LLDB_LOGF(log,
2901                 "Process::%s replacing process architecture with DidAttach() "
2902                 "architecture: %s",
2903                 __FUNCTION__, triple_str ? triple_str : "<null>");
2904     }
2905   }
2906 
2907   // We just attached.  If we have a platform, ask it for the process
2908   // architecture, and if it isn't the same as the one we've already set,
2909   // switch architectures.
2910   PlatformSP platform_sp(GetTarget().GetPlatform());
2911   assert(platform_sp);
2912   if (platform_sp) {
2913     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2914     if (target_arch.IsValid() &&
2915         !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) {
2916       ArchSpec platform_arch;
2917       platform_sp =
2918           platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch);
2919       if (platform_sp) {
2920         GetTarget().SetPlatform(platform_sp);
2921         GetTarget().SetArchitecture(platform_arch);
2922         LLDB_LOGF(log,
2923                   "Process::%s switching platform to %s and architecture "
2924                   "to %s based on info from attach",
2925                   __FUNCTION__, platform_sp->GetName().AsCString(""),
2926                   platform_arch.GetTriple().getTriple().c_str());
2927       }
2928     } else if (!process_arch.IsValid()) {
2929       ProcessInstanceInfo process_info;
2930       GetProcessInfo(process_info);
2931       const ArchSpec &process_arch = process_info.GetArchitecture();
2932       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2933       if (process_arch.IsValid() &&
2934           target_arch.IsCompatibleMatch(process_arch) &&
2935           !target_arch.IsExactMatch(process_arch)) {
2936         GetTarget().SetArchitecture(process_arch);
2937         LLDB_LOGF(log,
2938                   "Process::%s switching architecture to %s based on info "
2939                   "the platform retrieved for pid %" PRIu64,
2940                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2941                   GetID());
2942       }
2943     }
2944   }
2945 
2946   // We have completed the attach, now it is time to find the dynamic loader
2947   // plug-in
2948   DynamicLoader *dyld = GetDynamicLoader();
2949   if (dyld) {
2950     dyld->DidAttach();
2951     if (log) {
2952       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2953       LLDB_LOG(log,
2954                "after DynamicLoader::DidAttach(), target "
2955                "executable is {0} (using {1} plugin)",
2956                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2957                dyld->GetPluginName());
2958     }
2959   }
2960 
2961   GetJITLoaders().DidAttach();
2962 
2963   SystemRuntime *system_runtime = GetSystemRuntime();
2964   if (system_runtime) {
2965     system_runtime->DidAttach();
2966     if (log) {
2967       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2968       LLDB_LOG(log,
2969                "after SystemRuntime::DidAttach(), target "
2970                "executable is {0} (using {1} plugin)",
2971                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2972                system_runtime->GetPluginName());
2973     }
2974   }
2975 
2976   if (!m_os_up) {
2977     LoadOperatingSystemPlugin(false);
2978     if (m_os_up) {
2979       // Somebody might have gotten threads before now, but we need to force the
2980       // update after we've loaded the OperatingSystem plugin or it won't get a
2981       // chance to process the threads.
2982       m_thread_list.Clear();
2983       UpdateThreadListIfNeeded();
2984     }
2985   }
2986   // Figure out which one is the executable, and set that in our target:
2987   ModuleSP new_executable_module_sp;
2988   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2989     if (module_sp && module_sp->IsExecutable()) {
2990       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2991         new_executable_module_sp = module_sp;
2992       break;
2993     }
2994   }
2995   if (new_executable_module_sp) {
2996     GetTarget().SetExecutableModule(new_executable_module_sp,
2997                                     eLoadDependentsNo);
2998     if (log) {
2999       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3000       LLDB_LOGF(
3001           log,
3002           "Process::%s after looping through modules, target executable is %s",
3003           __FUNCTION__,
3004           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3005                         : "<none>");
3006     }
3007   }
3008 }
3009 
3010 Status Process::ConnectRemote(llvm::StringRef remote_url) {
3011   m_abi_sp.reset();
3012   m_process_input_reader.reset();
3013 
3014   // Find the process and its architecture.  Make sure it matches the
3015   // architecture of the current Target, and if not adjust it.
3016 
3017   Status error(DoConnectRemote(remote_url));
3018   if (error.Success()) {
3019     if (GetID() != LLDB_INVALID_PROCESS_ID) {
3020       EventSP event_sp;
3021       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
3022 
3023       if (state == eStateStopped || state == eStateCrashed) {
3024         // If we attached and actually have a process on the other end, then
3025         // this ended up being the equivalent of an attach.
3026         CompleteAttach();
3027 
3028         // This delays passing the stopped event to listeners till
3029         // CompleteAttach gets a chance to complete...
3030         HandlePrivateEvent(event_sp);
3031       }
3032     }
3033 
3034     if (PrivateStateThreadIsValid())
3035       ResumePrivateStateThread();
3036     else
3037       StartPrivateStateThread();
3038   }
3039   return error;
3040 }
3041 
3042 Status Process::PrivateResume() {
3043   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
3044                                                   LIBLLDB_LOG_STEP));
3045   LLDB_LOGF(log,
3046             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3047             "private state: %s",
3048             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3049             StateAsCString(m_private_state.GetValue()));
3050 
3051   // If signals handing status changed we might want to update our signal
3052   // filters before resuming.
3053   UpdateAutomaticSignalFiltering();
3054 
3055   Status error(WillResume());
3056   // Tell the process it is about to resume before the thread list
3057   if (error.Success()) {
3058     // Now let the thread list know we are about to resume so it can let all of
3059     // our threads know that they are about to be resumed. Threads will each be
3060     // called with Thread::WillResume(StateType) where StateType contains the
3061     // state that they are supposed to have when the process is resumed
3062     // (suspended/running/stepping). Threads should also check their resume
3063     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3064     // start back up with a signal.
3065     if (m_thread_list.WillResume()) {
3066       // Last thing, do the PreResumeActions.
3067       if (!RunPreResumeActions()) {
3068         error.SetErrorString(
3069             "Process::PrivateResume PreResumeActions failed, not resuming.");
3070       } else {
3071         m_mod_id.BumpResumeID();
3072         error = DoResume();
3073         if (error.Success()) {
3074           DidResume();
3075           m_thread_list.DidResume();
3076           LLDB_LOGF(log, "Process thinks the process has resumed.");
3077         } else {
3078           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3079           return error;
3080         }
3081       }
3082     } else {
3083       // Somebody wanted to run without running (e.g. we were faking a step
3084       // from one frame of a set of inlined frames that share the same PC to
3085       // another.)  So generate a continue & a stopped event, and let the world
3086       // handle them.
3087       LLDB_LOGF(log,
3088                 "Process::PrivateResume() asked to simulate a start & stop.");
3089 
3090       SetPrivateState(eStateRunning);
3091       SetPrivateState(eStateStopped);
3092     }
3093   } else
3094     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3095               error.AsCString("<unknown error>"));
3096   return error;
3097 }
3098 
3099 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3100   if (!StateIsRunningState(m_public_state.GetValue()))
3101     return Status("Process is not running.");
3102 
3103   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3104   // case it was already set and some thread plan logic calls halt on its own.
3105   m_clear_thread_plans_on_stop |= clear_thread_plans;
3106 
3107   ListenerSP halt_listener_sp(
3108       Listener::MakeListener("lldb.process.halt_listener"));
3109   HijackProcessEvents(halt_listener_sp);
3110 
3111   EventSP event_sp;
3112 
3113   SendAsyncInterrupt();
3114 
3115   if (m_public_state.GetValue() == eStateAttaching) {
3116     // Don't hijack and eat the eStateExited as the code that was doing the
3117     // attach will be waiting for this event...
3118     RestoreProcessEvents();
3119     SetExitStatus(SIGKILL, "Cancelled async attach.");
3120     Destroy(false);
3121     return Status();
3122   }
3123 
3124   // Wait for the process halt timeout seconds for the process to stop.
3125   StateType state =
3126       WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3127                            halt_listener_sp, nullptr, use_run_lock);
3128   RestoreProcessEvents();
3129 
3130   if (state == eStateInvalid || !event_sp) {
3131     // We timed out and didn't get a stop event...
3132     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3133   }
3134 
3135   BroadcastEvent(event_sp);
3136 
3137   return Status();
3138 }
3139 
3140 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3141   Status error;
3142 
3143   // Check both the public & private states here.  If we're hung evaluating an
3144   // expression, for instance, then the public state will be stopped, but we
3145   // still need to interrupt.
3146   if (m_public_state.GetValue() == eStateRunning ||
3147       m_private_state.GetValue() == eStateRunning) {
3148     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3149     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3150 
3151     ListenerSP listener_sp(
3152         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3153     HijackProcessEvents(listener_sp);
3154 
3155     SendAsyncInterrupt();
3156 
3157     // Consume the interrupt event.
3158     StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3159                                            &exit_event_sp, true, listener_sp);
3160 
3161     RestoreProcessEvents();
3162 
3163     // If the process exited while we were waiting for it to stop, put the
3164     // exited event into the shared pointer passed in and return.  Our caller
3165     // doesn't need to do anything else, since they don't have a process
3166     // anymore...
3167 
3168     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3169       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3170                 __FUNCTION__);
3171       return error;
3172     } else
3173       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3174 
3175     if (state != eStateStopped) {
3176       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3177                 StateAsCString(state));
3178       // If we really couldn't stop the process then we should just error out
3179       // here, but if the lower levels just bobbled sending the event and we
3180       // really are stopped, then continue on.
3181       StateType private_state = m_private_state.GetValue();
3182       if (private_state != eStateStopped) {
3183         return Status(
3184             "Attempt to stop the target in order to detach timed out. "
3185             "State = %s",
3186             StateAsCString(GetState()));
3187       }
3188     }
3189   }
3190   return error;
3191 }
3192 
3193 Status Process::Detach(bool keep_stopped) {
3194   EventSP exit_event_sp;
3195   Status error;
3196   m_destroy_in_process = true;
3197 
3198   error = WillDetach();
3199 
3200   if (error.Success()) {
3201     if (DetachRequiresHalt()) {
3202       error = StopForDestroyOrDetach(exit_event_sp);
3203       if (!error.Success()) {
3204         m_destroy_in_process = false;
3205         return error;
3206       } else if (exit_event_sp) {
3207         // We shouldn't need to do anything else here.  There's no process left
3208         // to detach from...
3209         StopPrivateStateThread();
3210         m_destroy_in_process = false;
3211         return error;
3212       }
3213     }
3214 
3215     m_thread_list.DiscardThreadPlans();
3216     DisableAllBreakpointSites();
3217 
3218     error = DoDetach(keep_stopped);
3219     if (error.Success()) {
3220       DidDetach();
3221       StopPrivateStateThread();
3222     } else {
3223       return error;
3224     }
3225   }
3226   m_destroy_in_process = false;
3227 
3228   // If we exited when we were waiting for a process to stop, then forward the
3229   // event here so we don't lose the event
3230   if (exit_event_sp) {
3231     // Directly broadcast our exited event because we shut down our private
3232     // state thread above
3233     BroadcastEvent(exit_event_sp);
3234   }
3235 
3236   // If we have been interrupted (to kill us) in the middle of running, we may
3237   // not end up propagating the last events through the event system, in which
3238   // case we might strand the write lock.  Unlock it here so when we do to tear
3239   // down the process we don't get an error destroying the lock.
3240 
3241   m_public_run_lock.SetStopped();
3242   return error;
3243 }
3244 
3245 Status Process::Destroy(bool force_kill) {
3246   // If we've already called Process::Finalize then there's nothing useful to
3247   // be done here.  Finalize has actually called Destroy already.
3248   if (m_finalizing)
3249     return {};
3250   return DestroyImpl(force_kill);
3251 }
3252 
3253 Status Process::DestroyImpl(bool force_kill) {
3254   // Tell ourselves we are in the process of destroying the process, so that we
3255   // don't do any unnecessary work that might hinder the destruction.  Remember
3256   // to set this back to false when we are done.  That way if the attempt
3257   // failed and the process stays around for some reason it won't be in a
3258   // confused state.
3259 
3260   if (force_kill)
3261     m_should_detach = false;
3262 
3263   if (GetShouldDetach()) {
3264     // FIXME: This will have to be a process setting:
3265     bool keep_stopped = false;
3266     Detach(keep_stopped);
3267   }
3268 
3269   m_destroy_in_process = true;
3270 
3271   Status error(WillDestroy());
3272   if (error.Success()) {
3273     EventSP exit_event_sp;
3274     if (DestroyRequiresHalt()) {
3275       error = StopForDestroyOrDetach(exit_event_sp);
3276     }
3277 
3278     if (m_public_state.GetValue() == eStateStopped) {
3279       // Ditch all thread plans, and remove all our breakpoints: in case we
3280       // have to restart the target to kill it, we don't want it hitting a
3281       // breakpoint... Only do this if we've stopped, however, since if we
3282       // didn't manage to halt it above, then we're not going to have much luck
3283       // doing this now.
3284       m_thread_list.DiscardThreadPlans();
3285       DisableAllBreakpointSites();
3286     }
3287 
3288     error = DoDestroy();
3289     if (error.Success()) {
3290       DidDestroy();
3291       StopPrivateStateThread();
3292     }
3293     m_stdio_communication.StopReadThread();
3294     m_stdio_communication.Disconnect();
3295     m_stdin_forward = false;
3296 
3297     if (m_process_input_reader) {
3298       m_process_input_reader->SetIsDone(true);
3299       m_process_input_reader->Cancel();
3300       m_process_input_reader.reset();
3301     }
3302 
3303     // If we exited when we were waiting for a process to stop, then forward
3304     // the event here so we don't lose the event
3305     if (exit_event_sp) {
3306       // Directly broadcast our exited event because we shut down our private
3307       // state thread above
3308       BroadcastEvent(exit_event_sp);
3309     }
3310 
3311     // If we have been interrupted (to kill us) in the middle of running, we
3312     // may not end up propagating the last events through the event system, in
3313     // which case we might strand the write lock.  Unlock it here so when we do
3314     // to tear down the process we don't get an error destroying the lock.
3315     m_public_run_lock.SetStopped();
3316   }
3317 
3318   m_destroy_in_process = false;
3319 
3320   return error;
3321 }
3322 
3323 Status Process::Signal(int signal) {
3324   Status error(WillSignal());
3325   if (error.Success()) {
3326     error = DoSignal(signal);
3327     if (error.Success())
3328       DidSignal();
3329   }
3330   return error;
3331 }
3332 
3333 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3334   assert(signals_sp && "null signals_sp");
3335   m_unix_signals_sp = signals_sp;
3336 }
3337 
3338 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3339   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3340   return m_unix_signals_sp;
3341 }
3342 
3343 lldb::ByteOrder Process::GetByteOrder() const {
3344   return GetTarget().GetArchitecture().GetByteOrder();
3345 }
3346 
3347 uint32_t Process::GetAddressByteSize() const {
3348   return GetTarget().GetArchitecture().GetAddressByteSize();
3349 }
3350 
3351 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3352   const StateType state =
3353       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3354   bool return_value = true;
3355   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS |
3356                                                   LIBLLDB_LOG_PROCESS));
3357 
3358   switch (state) {
3359   case eStateDetached:
3360   case eStateExited:
3361   case eStateUnloaded:
3362     m_stdio_communication.SynchronizeWithReadThread();
3363     m_stdio_communication.StopReadThread();
3364     m_stdio_communication.Disconnect();
3365     m_stdin_forward = false;
3366 
3367     LLVM_FALLTHROUGH;
3368   case eStateConnected:
3369   case eStateAttaching:
3370   case eStateLaunching:
3371     // These events indicate changes in the state of the debugging session,
3372     // always report them.
3373     return_value = true;
3374     break;
3375   case eStateInvalid:
3376     // We stopped for no apparent reason, don't report it.
3377     return_value = false;
3378     break;
3379   case eStateRunning:
3380   case eStateStepping:
3381     // If we've started the target running, we handle the cases where we are
3382     // already running and where there is a transition from stopped to running
3383     // differently. running -> running: Automatically suppress extra running
3384     // events stopped -> running: Report except when there is one or more no
3385     // votes
3386     //     and no yes votes.
3387     SynchronouslyNotifyStateChanged(state);
3388     if (m_force_next_event_delivery)
3389       return_value = true;
3390     else {
3391       switch (m_last_broadcast_state) {
3392       case eStateRunning:
3393       case eStateStepping:
3394         // We always suppress multiple runnings with no PUBLIC stop in between.
3395         return_value = false;
3396         break;
3397       default:
3398         // TODO: make this work correctly. For now always report
3399         // run if we aren't running so we don't miss any running events. If I
3400         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3401         // and hit the breakpoints on multiple threads, then somehow during the
3402         // stepping over of all breakpoints no run gets reported.
3403 
3404         // This is a transition from stop to run.
3405         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3406         case eVoteYes:
3407         case eVoteNoOpinion:
3408           return_value = true;
3409           break;
3410         case eVoteNo:
3411           return_value = false;
3412           break;
3413         }
3414         break;
3415       }
3416     }
3417     break;
3418   case eStateStopped:
3419   case eStateCrashed:
3420   case eStateSuspended:
3421     // We've stopped.  First see if we're going to restart the target. If we
3422     // are going to stop, then we always broadcast the event. If we aren't
3423     // going to stop, let the thread plans decide if we're going to report this
3424     // event. If no thread has an opinion, we don't report it.
3425 
3426     m_stdio_communication.SynchronizeWithReadThread();
3427     RefreshStateAfterStop();
3428     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3429       LLDB_LOGF(log,
3430                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3431                 "interrupt, state: %s",
3432                 static_cast<void *>(event_ptr), StateAsCString(state));
3433       // Even though we know we are going to stop, we should let the threads
3434       // have a look at the stop, so they can properly set their state.
3435       m_thread_list.ShouldStop(event_ptr);
3436       return_value = true;
3437     } else {
3438       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3439       bool should_resume = false;
3440 
3441       // It makes no sense to ask "ShouldStop" if we've already been
3442       // restarted... Asking the thread list is also not likely to go well,
3443       // since we are running again. So in that case just report the event.
3444 
3445       if (!was_restarted)
3446         should_resume = !m_thread_list.ShouldStop(event_ptr);
3447 
3448       if (was_restarted || should_resume || m_resume_requested) {
3449         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3450         LLDB_LOGF(log,
3451                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3452                   "%s was_restarted: %i report_stop_vote: %d.",
3453                   should_resume, StateAsCString(state), was_restarted,
3454                   report_stop_vote);
3455 
3456         switch (report_stop_vote) {
3457         case eVoteYes:
3458           return_value = true;
3459           break;
3460         case eVoteNoOpinion:
3461         case eVoteNo:
3462           return_value = false;
3463           break;
3464         }
3465 
3466         if (!was_restarted) {
3467           LLDB_LOGF(log,
3468                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3469                     "from state: %s",
3470                     static_cast<void *>(event_ptr), StateAsCString(state));
3471           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3472           PrivateResume();
3473         }
3474       } else {
3475         return_value = true;
3476         SynchronouslyNotifyStateChanged(state);
3477       }
3478     }
3479     break;
3480   }
3481 
3482   // Forcing the next event delivery is a one shot deal.  So reset it here.
3483   m_force_next_event_delivery = false;
3484 
3485   // We do some coalescing of events (for instance two consecutive running
3486   // events get coalesced.) But we only coalesce against events we actually
3487   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3488   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3489   // done, because the PublicState reflects the last event pulled off the
3490   // queue, and there may be several events stacked up on the queue unserviced.
3491   // So the PublicState may not reflect the last broadcasted event yet.
3492   // m_last_broadcast_state gets updated here.
3493 
3494   if (return_value)
3495     m_last_broadcast_state = state;
3496 
3497   LLDB_LOGF(log,
3498             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3499             "broadcast state: %s - %s",
3500             static_cast<void *>(event_ptr), StateAsCString(state),
3501             StateAsCString(m_last_broadcast_state),
3502             return_value ? "YES" : "NO");
3503   return return_value;
3504 }
3505 
3506 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3507   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
3508 
3509   bool already_running = PrivateStateThreadIsValid();
3510   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3511             already_running ? " already running"
3512                             : " starting private state thread");
3513 
3514   if (!is_secondary_thread && already_running)
3515     return true;
3516 
3517   // Create a thread that watches our internal state and controls which events
3518   // make it to clients (into the DCProcess event queue).
3519   char thread_name[1024];
3520   uint32_t max_len = llvm::get_max_thread_name_length();
3521   if (max_len > 0 && max_len <= 30) {
3522     // On platforms with abbreviated thread name lengths, choose thread names
3523     // that fit within the limit.
3524     if (already_running)
3525       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3526     else
3527       snprintf(thread_name, sizeof(thread_name), "intern-state");
3528   } else {
3529     if (already_running)
3530       snprintf(thread_name, sizeof(thread_name),
3531                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3532                GetID());
3533     else
3534       snprintf(thread_name, sizeof(thread_name),
3535                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3536   }
3537 
3538   // Create the private state thread, and start it running.
3539   PrivateStateThreadArgs *args_ptr =
3540       new PrivateStateThreadArgs(this, is_secondary_thread);
3541   llvm::Expected<HostThread> private_state_thread =
3542       ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread,
3543                                    (void *)args_ptr, 8 * 1024 * 1024);
3544   if (!private_state_thread) {
3545     LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST),
3546              "failed to launch host thread: {}",
3547              llvm::toString(private_state_thread.takeError()));
3548     return false;
3549   }
3550 
3551   assert(private_state_thread->IsJoinable());
3552   m_private_state_thread = *private_state_thread;
3553   ResumePrivateStateThread();
3554   return true;
3555 }
3556 
3557 void Process::PausePrivateStateThread() {
3558   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3559 }
3560 
3561 void Process::ResumePrivateStateThread() {
3562   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3563 }
3564 
3565 void Process::StopPrivateStateThread() {
3566   if (m_private_state_thread.IsJoinable())
3567     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3568   else {
3569     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3570     LLDB_LOGF(
3571         log,
3572         "Went to stop the private state thread, but it was already invalid.");
3573   }
3574 }
3575 
3576 void Process::ControlPrivateStateThread(uint32_t signal) {
3577   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3578 
3579   assert(signal == eBroadcastInternalStateControlStop ||
3580          signal == eBroadcastInternalStateControlPause ||
3581          signal == eBroadcastInternalStateControlResume);
3582 
3583   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3584 
3585   // Signal the private state thread
3586   if (m_private_state_thread.IsJoinable()) {
3587     // Broadcast the event.
3588     // It is important to do this outside of the if below, because it's
3589     // possible that the thread state is invalid but that the thread is waiting
3590     // on a control event instead of simply being on its way out (this should
3591     // not happen, but it apparently can).
3592     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3593     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3594     m_private_state_control_broadcaster.BroadcastEvent(signal,
3595                                                        event_receipt_sp);
3596 
3597     // Wait for the event receipt or for the private state thread to exit
3598     bool receipt_received = false;
3599     if (PrivateStateThreadIsValid()) {
3600       while (!receipt_received) {
3601         // Check for a receipt for n seconds and then check if the private
3602         // state thread is still around.
3603         receipt_received =
3604           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3605         if (!receipt_received) {
3606           // Check if the private state thread is still around. If it isn't
3607           // then we are done waiting
3608           if (!PrivateStateThreadIsValid())
3609             break; // Private state thread exited or is exiting, we are done
3610         }
3611       }
3612     }
3613 
3614     if (signal == eBroadcastInternalStateControlStop) {
3615       thread_result_t result = {};
3616       m_private_state_thread.Join(&result);
3617       m_private_state_thread.Reset();
3618     }
3619   } else {
3620     LLDB_LOGF(
3621         log,
3622         "Private state thread already dead, no need to signal it to stop.");
3623   }
3624 }
3625 
3626 void Process::SendAsyncInterrupt() {
3627   if (PrivateStateThreadIsValid())
3628     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3629                                                nullptr);
3630   else
3631     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3632 }
3633 
3634 void Process::HandlePrivateEvent(EventSP &event_sp) {
3635   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3636   m_resume_requested = false;
3637 
3638   const StateType new_state =
3639       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3640 
3641   // First check to see if anybody wants a shot at this event:
3642   if (m_next_event_action_up) {
3643     NextEventAction::EventActionResult action_result =
3644         m_next_event_action_up->PerformAction(event_sp);
3645     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3646 
3647     switch (action_result) {
3648     case NextEventAction::eEventActionSuccess:
3649       SetNextEventAction(nullptr);
3650       break;
3651 
3652     case NextEventAction::eEventActionRetry:
3653       break;
3654 
3655     case NextEventAction::eEventActionExit:
3656       // Handle Exiting Here.  If we already got an exited event, we should
3657       // just propagate it.  Otherwise, swallow this event, and set our state
3658       // to exit so the next event will kill us.
3659       if (new_state != eStateExited) {
3660         // FIXME: should cons up an exited event, and discard this one.
3661         SetExitStatus(0, m_next_event_action_up->GetExitString());
3662         SetNextEventAction(nullptr);
3663         return;
3664       }
3665       SetNextEventAction(nullptr);
3666       break;
3667     }
3668   }
3669 
3670   // See if we should broadcast this state to external clients?
3671   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3672 
3673   if (should_broadcast) {
3674     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3675     if (log) {
3676       LLDB_LOGF(log,
3677                 "Process::%s (pid = %" PRIu64
3678                 ") broadcasting new state %s (old state %s) to %s",
3679                 __FUNCTION__, GetID(), StateAsCString(new_state),
3680                 StateAsCString(GetState()),
3681                 is_hijacked ? "hijacked" : "public");
3682     }
3683     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3684     if (StateIsRunningState(new_state)) {
3685       // Only push the input handler if we aren't fowarding events, as this
3686       // means the curses GUI is in use... Or don't push it if we are launching
3687       // since it will come up stopped.
3688       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3689           new_state != eStateLaunching && new_state != eStateAttaching) {
3690         PushProcessIOHandler();
3691         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3692                                   eBroadcastAlways);
3693         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3694                   __FUNCTION__, m_iohandler_sync.GetValue());
3695       }
3696     } else if (StateIsStoppedState(new_state, false)) {
3697       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3698         // If the lldb_private::Debugger is handling the events, we don't want
3699         // to pop the process IOHandler here, we want to do it when we receive
3700         // the stopped event so we can carefully control when the process
3701         // IOHandler is popped because when we stop we want to display some
3702         // text stating how and why we stopped, then maybe some
3703         // process/thread/frame info, and then we want the "(lldb) " prompt to
3704         // show up. If we pop the process IOHandler here, then we will cause
3705         // the command interpreter to become the top IOHandler after the
3706         // process pops off and it will update its prompt right away... See the
3707         // Debugger.cpp file where it calls the function as
3708         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3709         // Otherwise we end up getting overlapping "(lldb) " prompts and
3710         // garbled output.
3711         //
3712         // If we aren't handling the events in the debugger (which is indicated
3713         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3714         // we are hijacked, then we always pop the process IO handler manually.
3715         // Hijacking happens when the internal process state thread is running
3716         // thread plans, or when commands want to run in synchronous mode and
3717         // they call "process->WaitForProcessToStop()". An example of something
3718         // that will hijack the events is a simple expression:
3719         //
3720         //  (lldb) expr (int)puts("hello")
3721         //
3722         // This will cause the internal process state thread to resume and halt
3723         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3724         // events) and we do need the IO handler to be pushed and popped
3725         // correctly.
3726 
3727         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3728           PopProcessIOHandler();
3729       }
3730     }
3731 
3732     BroadcastEvent(event_sp);
3733   } else {
3734     if (log) {
3735       LLDB_LOGF(
3736           log,
3737           "Process::%s (pid = %" PRIu64
3738           ") suppressing state %s (old state %s): should_broadcast == false",
3739           __FUNCTION__, GetID(), StateAsCString(new_state),
3740           StateAsCString(GetState()));
3741     }
3742   }
3743 }
3744 
3745 Status Process::HaltPrivate() {
3746   EventSP event_sp;
3747   Status error(WillHalt());
3748   if (error.Fail())
3749     return error;
3750 
3751   // Ask the process subclass to actually halt our process
3752   bool caused_stop;
3753   error = DoHalt(caused_stop);
3754 
3755   DidHalt();
3756   return error;
3757 }
3758 
3759 thread_result_t Process::PrivateStateThread(void *arg) {
3760   std::unique_ptr<PrivateStateThreadArgs> args_up(
3761       static_cast<PrivateStateThreadArgs *>(arg));
3762   thread_result_t result =
3763       args_up->process->RunPrivateStateThread(args_up->is_secondary_thread);
3764   return result;
3765 }
3766 
3767 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3768   bool control_only = true;
3769 
3770   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3771   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3772             __FUNCTION__, static_cast<void *>(this), GetID());
3773 
3774   bool exit_now = false;
3775   bool interrupt_requested = false;
3776   while (!exit_now) {
3777     EventSP event_sp;
3778     GetEventsPrivate(event_sp, llvm::None, control_only);
3779     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3780       LLDB_LOGF(log,
3781                 "Process::%s (arg = %p, pid = %" PRIu64
3782                 ") got a control event: %d",
3783                 __FUNCTION__, static_cast<void *>(this), GetID(),
3784                 event_sp->GetType());
3785 
3786       switch (event_sp->GetType()) {
3787       case eBroadcastInternalStateControlStop:
3788         exit_now = true;
3789         break; // doing any internal state management below
3790 
3791       case eBroadcastInternalStateControlPause:
3792         control_only = true;
3793         break;
3794 
3795       case eBroadcastInternalStateControlResume:
3796         control_only = false;
3797         break;
3798       }
3799 
3800       continue;
3801     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3802       if (m_public_state.GetValue() == eStateAttaching) {
3803         LLDB_LOGF(log,
3804                   "Process::%s (arg = %p, pid = %" PRIu64
3805                   ") woke up with an interrupt while attaching - "
3806                   "forwarding interrupt.",
3807                   __FUNCTION__, static_cast<void *>(this), GetID());
3808         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3809       } else if (StateIsRunningState(m_last_broadcast_state)) {
3810         LLDB_LOGF(log,
3811                   "Process::%s (arg = %p, pid = %" PRIu64
3812                   ") woke up with an interrupt - Halting.",
3813                   __FUNCTION__, static_cast<void *>(this), GetID());
3814         Status error = HaltPrivate();
3815         if (error.Fail() && log)
3816           LLDB_LOGF(log,
3817                     "Process::%s (arg = %p, pid = %" PRIu64
3818                     ") failed to halt the process: %s",
3819                     __FUNCTION__, static_cast<void *>(this), GetID(),
3820                     error.AsCString());
3821         // Halt should generate a stopped event. Make a note of the fact that
3822         // we were doing the interrupt, so we can set the interrupted flag
3823         // after we receive the event. We deliberately set this to true even if
3824         // HaltPrivate failed, so that we can interrupt on the next natural
3825         // stop.
3826         interrupt_requested = true;
3827       } else {
3828         // This can happen when someone (e.g. Process::Halt) sees that we are
3829         // running and sends an interrupt request, but the process actually
3830         // stops before we receive it. In that case, we can just ignore the
3831         // request. We use m_last_broadcast_state, because the Stopped event
3832         // may not have been popped of the event queue yet, which is when the
3833         // public state gets updated.
3834         LLDB_LOGF(log,
3835                   "Process::%s ignoring interrupt as we have already stopped.",
3836                   __FUNCTION__);
3837       }
3838       continue;
3839     }
3840 
3841     const StateType internal_state =
3842         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3843 
3844     if (internal_state != eStateInvalid) {
3845       if (m_clear_thread_plans_on_stop &&
3846           StateIsStoppedState(internal_state, true)) {
3847         m_clear_thread_plans_on_stop = false;
3848         m_thread_list.DiscardThreadPlans();
3849       }
3850 
3851       if (interrupt_requested) {
3852         if (StateIsStoppedState(internal_state, true)) {
3853           // We requested the interrupt, so mark this as such in the stop event
3854           // so clients can tell an interrupted process from a natural stop
3855           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3856           interrupt_requested = false;
3857         } else if (log) {
3858           LLDB_LOGF(log,
3859                     "Process::%s interrupt_requested, but a non-stopped "
3860                     "state '%s' received.",
3861                     __FUNCTION__, StateAsCString(internal_state));
3862         }
3863       }
3864 
3865       HandlePrivateEvent(event_sp);
3866     }
3867 
3868     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3869         internal_state == eStateDetached) {
3870       LLDB_LOGF(log,
3871                 "Process::%s (arg = %p, pid = %" PRIu64
3872                 ") about to exit with internal state %s...",
3873                 __FUNCTION__, static_cast<void *>(this), GetID(),
3874                 StateAsCString(internal_state));
3875 
3876       break;
3877     }
3878   }
3879 
3880   // Verify log is still enabled before attempting to write to it...
3881   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3882             __FUNCTION__, static_cast<void *>(this), GetID());
3883 
3884   // If we are a secondary thread, then the primary thread we are working for
3885   // will have already acquired the public_run_lock, and isn't done with what
3886   // it was doing yet, so don't try to change it on the way out.
3887   if (!is_secondary_thread)
3888     m_public_run_lock.SetStopped();
3889   return {};
3890 }
3891 
3892 // Process Event Data
3893 
3894 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3895 
3896 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3897                                             StateType state)
3898     : EventData(), m_process_wp(), m_state(state), m_restarted(false),
3899       m_update_state(0), m_interrupted(false) {
3900   if (process_sp)
3901     m_process_wp = process_sp;
3902 }
3903 
3904 Process::ProcessEventData::~ProcessEventData() = default;
3905 
3906 ConstString Process::ProcessEventData::GetFlavorString() {
3907   static ConstString g_flavor("Process::ProcessEventData");
3908   return g_flavor;
3909 }
3910 
3911 ConstString Process::ProcessEventData::GetFlavor() const {
3912   return ProcessEventData::GetFlavorString();
3913 }
3914 
3915 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3916                                            bool &found_valid_stopinfo) {
3917   found_valid_stopinfo = false;
3918 
3919   ProcessSP process_sp(m_process_wp.lock());
3920   if (!process_sp)
3921     return false;
3922 
3923   ThreadList &curr_thread_list = process_sp->GetThreadList();
3924   uint32_t num_threads = curr_thread_list.GetSize();
3925   uint32_t idx;
3926 
3927   // The actions might change one of the thread's stop_info's opinions about
3928   // whether we should stop the process, so we need to query that as we go.
3929 
3930   // One other complication here, is that we try to catch any case where the
3931   // target has run (except for expressions) and immediately exit, but if we
3932   // get that wrong (which is possible) then the thread list might have
3933   // changed, and that would cause our iteration here to crash.  We could
3934   // make a copy of the thread list, but we'd really like to also know if it
3935   // has changed at all, so we make up a vector of the thread ID's and check
3936   // what we get back against this list & bag out if anything differs.
3937   ThreadList not_suspended_thread_list(process_sp.get());
3938   std::vector<uint32_t> thread_index_array(num_threads);
3939   uint32_t not_suspended_idx = 0;
3940   for (idx = 0; idx < num_threads; ++idx) {
3941     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3942 
3943     /*
3944      Filter out all suspended threads, they could not be the reason
3945      of stop and no need to perform any actions on them.
3946      */
3947     if (thread_sp->GetResumeState() != eStateSuspended) {
3948       not_suspended_thread_list.AddThread(thread_sp);
3949       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3950       not_suspended_idx++;
3951     }
3952   }
3953 
3954   // Use this to track whether we should continue from here.  We will only
3955   // continue the target running if no thread says we should stop.  Of course
3956   // if some thread's PerformAction actually sets the target running, then it
3957   // doesn't matter what the other threads say...
3958 
3959   bool still_should_stop = false;
3960 
3961   // Sometimes - for instance if we have a bug in the stub we are talking to,
3962   // we stop but no thread has a valid stop reason.  In that case we should
3963   // just stop, because we have no way of telling what the right thing to do
3964   // is, and it's better to let the user decide than continue behind their
3965   // backs.
3966 
3967   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3968     curr_thread_list = process_sp->GetThreadList();
3969     if (curr_thread_list.GetSize() != num_threads) {
3970       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3971                                                       LIBLLDB_LOG_PROCESS));
3972       LLDB_LOGF(
3973           log,
3974           "Number of threads changed from %u to %u while processing event.",
3975           num_threads, curr_thread_list.GetSize());
3976       break;
3977     }
3978 
3979     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3980 
3981     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3982       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3983                                                       LIBLLDB_LOG_PROCESS));
3984       LLDB_LOGF(log,
3985                 "The thread at position %u changed from %u to %u while "
3986                 "processing event.",
3987                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3988       break;
3989     }
3990 
3991     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3992     if (stop_info_sp && stop_info_sp->IsValid()) {
3993       found_valid_stopinfo = true;
3994       bool this_thread_wants_to_stop;
3995       if (stop_info_sp->GetOverrideShouldStop()) {
3996         this_thread_wants_to_stop =
3997             stop_info_sp->GetOverriddenShouldStopValue();
3998       } else {
3999         stop_info_sp->PerformAction(event_ptr);
4000         // The stop action might restart the target.  If it does, then we
4001         // want to mark that in the event so that whoever is receiving it
4002         // will know to wait for the running event and reflect that state
4003         // appropriately. We also need to stop processing actions, since they
4004         // aren't expecting the target to be running.
4005 
4006         // FIXME: we might have run.
4007         if (stop_info_sp->HasTargetRunSinceMe()) {
4008           SetRestarted(true);
4009           break;
4010         }
4011 
4012         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4013       }
4014 
4015       if (!still_should_stop)
4016         still_should_stop = this_thread_wants_to_stop;
4017     }
4018   }
4019 
4020   return still_should_stop;
4021 }
4022 
4023 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4024   ProcessSP process_sp(m_process_wp.lock());
4025 
4026   if (!process_sp)
4027     return;
4028 
4029   // This function gets called twice for each event, once when the event gets
4030   // pulled off of the private process event queue, and then any number of
4031   // times, first when it gets pulled off of the public event queue, then other
4032   // times when we're pretending that this is where we stopped at the end of
4033   // expression evaluation.  m_update_state is used to distinguish these three
4034   // cases; it is 0 when we're just pulling it off for private handling, and >
4035   // 1 for expression evaluation, and we don't want to do the breakpoint
4036   // command handling then.
4037   if (m_update_state != 1)
4038     return;
4039 
4040   process_sp->SetPublicState(
4041       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4042 
4043   if (m_state == eStateStopped && !m_restarted) {
4044     // Let process subclasses know we are about to do a public stop and do
4045     // anything they might need to in order to speed up register and memory
4046     // accesses.
4047     process_sp->WillPublicStop();
4048   }
4049 
4050   // If this is a halt event, even if the halt stopped with some reason other
4051   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4052   // the halt request came through) don't do the StopInfo actions, as they may
4053   // end up restarting the process.
4054   if (m_interrupted)
4055     return;
4056 
4057   // If we're not stopped or have restarted, then skip the StopInfo actions:
4058   if (m_state != eStateStopped || m_restarted) {
4059     return;
4060   }
4061 
4062   bool does_anybody_have_an_opinion = false;
4063   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4064 
4065   if (GetRestarted()) {
4066     return;
4067   }
4068 
4069   if (!still_should_stop && does_anybody_have_an_opinion) {
4070     // We've been asked to continue, so do that here.
4071     SetRestarted(true);
4072     // Use the public resume method here, since this is just extending a
4073     // public resume.
4074     process_sp->PrivateResume();
4075   } else {
4076     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4077                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4078 
4079     if (!hijacked) {
4080       // If we didn't restart, run the Stop Hooks here.
4081       // Don't do that if state changed events aren't hooked up to the
4082       // public (or SyncResume) broadcasters.  StopHooks are just for
4083       // real public stops.  They might also restart the target,
4084       // so watch for that.
4085       if (process_sp->GetTarget().RunStopHooks())
4086         SetRestarted(true);
4087     }
4088   }
4089 }
4090 
4091 void Process::ProcessEventData::Dump(Stream *s) const {
4092   ProcessSP process_sp(m_process_wp.lock());
4093 
4094   if (process_sp)
4095     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4096               static_cast<void *>(process_sp.get()), process_sp->GetID());
4097   else
4098     s->PutCString(" process = NULL, ");
4099 
4100   s->Printf("state = %s", StateAsCString(GetState()));
4101 }
4102 
4103 const Process::ProcessEventData *
4104 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4105   if (event_ptr) {
4106     const EventData *event_data = event_ptr->GetData();
4107     if (event_data &&
4108         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4109       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4110   }
4111   return nullptr;
4112 }
4113 
4114 ProcessSP
4115 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4116   ProcessSP process_sp;
4117   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4118   if (data)
4119     process_sp = data->GetProcessSP();
4120   return process_sp;
4121 }
4122 
4123 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4124   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4125   if (data == nullptr)
4126     return eStateInvalid;
4127   else
4128     return data->GetState();
4129 }
4130 
4131 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4132   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4133   if (data == nullptr)
4134     return false;
4135   else
4136     return data->GetRestarted();
4137 }
4138 
4139 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4140                                                     bool new_value) {
4141   ProcessEventData *data =
4142       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4143   if (data != nullptr)
4144     data->SetRestarted(new_value);
4145 }
4146 
4147 size_t
4148 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4149   ProcessEventData *data =
4150       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4151   if (data != nullptr)
4152     return data->GetNumRestartedReasons();
4153   else
4154     return 0;
4155 }
4156 
4157 const char *
4158 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4159                                                      size_t idx) {
4160   ProcessEventData *data =
4161       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4162   if (data != nullptr)
4163     return data->GetRestartedReasonAtIndex(idx);
4164   else
4165     return nullptr;
4166 }
4167 
4168 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4169                                                    const char *reason) {
4170   ProcessEventData *data =
4171       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4172   if (data != nullptr)
4173     data->AddRestartedReason(reason);
4174 }
4175 
4176 bool Process::ProcessEventData::GetInterruptedFromEvent(
4177     const Event *event_ptr) {
4178   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4179   if (data == nullptr)
4180     return false;
4181   else
4182     return data->GetInterrupted();
4183 }
4184 
4185 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4186                                                       bool new_value) {
4187   ProcessEventData *data =
4188       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4189   if (data != nullptr)
4190     data->SetInterrupted(new_value);
4191 }
4192 
4193 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4194   ProcessEventData *data =
4195       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4196   if (data) {
4197     data->SetUpdateStateOnRemoval();
4198     return true;
4199   }
4200   return false;
4201 }
4202 
4203 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4204 
4205 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4206   exe_ctx.SetTargetPtr(&GetTarget());
4207   exe_ctx.SetProcessPtr(this);
4208   exe_ctx.SetThreadPtr(nullptr);
4209   exe_ctx.SetFramePtr(nullptr);
4210 }
4211 
4212 // uint32_t
4213 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4214 // std::vector<lldb::pid_t> &pids)
4215 //{
4216 //    return 0;
4217 //}
4218 //
4219 // ArchSpec
4220 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4221 //{
4222 //    return Host::GetArchSpecForExistingProcess (pid);
4223 //}
4224 //
4225 // ArchSpec
4226 // Process::GetArchSpecForExistingProcess (const char *process_name)
4227 //{
4228 //    return Host::GetArchSpecForExistingProcess (process_name);
4229 //}
4230 
4231 void Process::AppendSTDOUT(const char *s, size_t len) {
4232   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4233   m_stdout_data.append(s, len);
4234   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4235                          new ProcessEventData(shared_from_this(), GetState()));
4236 }
4237 
4238 void Process::AppendSTDERR(const char *s, size_t len) {
4239   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4240   m_stderr_data.append(s, len);
4241   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4242                          new ProcessEventData(shared_from_this(), GetState()));
4243 }
4244 
4245 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4246   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4247   m_profile_data.push_back(one_profile_data);
4248   BroadcastEventIfUnique(eBroadcastBitProfileData,
4249                          new ProcessEventData(shared_from_this(), GetState()));
4250 }
4251 
4252 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4253                                       const StructuredDataPluginSP &plugin_sp) {
4254   BroadcastEvent(
4255       eBroadcastBitStructuredData,
4256       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4257 }
4258 
4259 StructuredDataPluginSP
4260 Process::GetStructuredDataPlugin(ConstString type_name) const {
4261   auto find_it = m_structured_data_plugin_map.find(type_name);
4262   if (find_it != m_structured_data_plugin_map.end())
4263     return find_it->second;
4264   else
4265     return StructuredDataPluginSP();
4266 }
4267 
4268 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4269   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4270   if (m_profile_data.empty())
4271     return 0;
4272 
4273   std::string &one_profile_data = m_profile_data.front();
4274   size_t bytes_available = one_profile_data.size();
4275   if (bytes_available > 0) {
4276     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4277     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4278               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4279     if (bytes_available > buf_size) {
4280       memcpy(buf, one_profile_data.c_str(), buf_size);
4281       one_profile_data.erase(0, buf_size);
4282       bytes_available = buf_size;
4283     } else {
4284       memcpy(buf, one_profile_data.c_str(), bytes_available);
4285       m_profile_data.erase(m_profile_data.begin());
4286     }
4287   }
4288   return bytes_available;
4289 }
4290 
4291 // Process STDIO
4292 
4293 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4294   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4295   size_t bytes_available = m_stdout_data.size();
4296   if (bytes_available > 0) {
4297     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4298     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4299               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4300     if (bytes_available > buf_size) {
4301       memcpy(buf, m_stdout_data.c_str(), buf_size);
4302       m_stdout_data.erase(0, buf_size);
4303       bytes_available = buf_size;
4304     } else {
4305       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4306       m_stdout_data.clear();
4307     }
4308   }
4309   return bytes_available;
4310 }
4311 
4312 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4313   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4314   size_t bytes_available = m_stderr_data.size();
4315   if (bytes_available > 0) {
4316     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4317     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4318               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4319     if (bytes_available > buf_size) {
4320       memcpy(buf, m_stderr_data.c_str(), buf_size);
4321       m_stderr_data.erase(0, buf_size);
4322       bytes_available = buf_size;
4323     } else {
4324       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4325       m_stderr_data.clear();
4326     }
4327   }
4328   return bytes_available;
4329 }
4330 
4331 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4332                                            size_t src_len) {
4333   Process *process = (Process *)baton;
4334   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4335 }
4336 
4337 class IOHandlerProcessSTDIO : public IOHandler {
4338 public:
4339   IOHandlerProcessSTDIO(Process *process, int write_fd)
4340       : IOHandler(process->GetTarget().GetDebugger(),
4341                   IOHandler::Type::ProcessIO),
4342         m_process(process),
4343         m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4344         m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4345     m_pipe.CreateNew(false);
4346   }
4347 
4348   ~IOHandlerProcessSTDIO() override = default;
4349 
4350   // Each IOHandler gets to run until it is done. It should read data from the
4351   // "in" and place output into "out" and "err and return when done.
4352   void Run() override {
4353     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4354         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4355       SetIsDone(true);
4356       return;
4357     }
4358 
4359     SetIsDone(false);
4360     const int read_fd = m_read_file.GetDescriptor();
4361     Terminal terminal(read_fd);
4362     TerminalState terminal_state(terminal, false);
4363     // FIXME: error handling?
4364     llvm::consumeError(terminal.SetCanonical(false));
4365     llvm::consumeError(terminal.SetEcho(false));
4366 // FD_ZERO, FD_SET are not supported on windows
4367 #ifndef _WIN32
4368     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4369     m_is_running = true;
4370     while (!GetIsDone()) {
4371       SelectHelper select_helper;
4372       select_helper.FDSetRead(read_fd);
4373       select_helper.FDSetRead(pipe_read_fd);
4374       Status error = select_helper.Select();
4375 
4376       if (error.Fail()) {
4377         SetIsDone(true);
4378       } else {
4379         char ch = 0;
4380         size_t n;
4381         if (select_helper.FDIsSetRead(read_fd)) {
4382           n = 1;
4383           if (m_read_file.Read(&ch, n).Success() && n == 1) {
4384             if (m_write_file.Write(&ch, n).Fail() || n != 1)
4385               SetIsDone(true);
4386           } else
4387             SetIsDone(true);
4388         }
4389         if (select_helper.FDIsSetRead(pipe_read_fd)) {
4390           size_t bytes_read;
4391           // Consume the interrupt byte
4392           Status error = m_pipe.Read(&ch, 1, bytes_read);
4393           if (error.Success()) {
4394             switch (ch) {
4395             case 'q':
4396               SetIsDone(true);
4397               break;
4398             case 'i':
4399               if (StateIsRunningState(m_process->GetState()))
4400                 m_process->SendAsyncInterrupt();
4401               break;
4402             }
4403           }
4404         }
4405       }
4406     }
4407     m_is_running = false;
4408 #endif
4409   }
4410 
4411   void Cancel() override {
4412     SetIsDone(true);
4413     // Only write to our pipe to cancel if we are in
4414     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4415     // is being run from the command interpreter:
4416     //
4417     // (lldb) step_process_thousands_of_times
4418     //
4419     // In this case the command interpreter will be in the middle of handling
4420     // the command and if the process pushes and pops the IOHandler thousands
4421     // of times, we can end up writing to m_pipe without ever consuming the
4422     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4423     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4424     if (m_is_running) {
4425       char ch = 'q'; // Send 'q' for quit
4426       size_t bytes_written = 0;
4427       m_pipe.Write(&ch, 1, bytes_written);
4428     }
4429   }
4430 
4431   bool Interrupt() override {
4432     // Do only things that are safe to do in an interrupt context (like in a
4433     // SIGINT handler), like write 1 byte to a file descriptor. This will
4434     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4435     // that was written to the pipe and then call
4436     // m_process->SendAsyncInterrupt() from a much safer location in code.
4437     if (m_active) {
4438       char ch = 'i'; // Send 'i' for interrupt
4439       size_t bytes_written = 0;
4440       Status result = m_pipe.Write(&ch, 1, bytes_written);
4441       return result.Success();
4442     } else {
4443       // This IOHandler might be pushed on the stack, but not being run
4444       // currently so do the right thing if we aren't actively watching for
4445       // STDIN by sending the interrupt to the process. Otherwise the write to
4446       // the pipe above would do nothing. This can happen when the command
4447       // interpreter is running and gets a "expression ...". It will be on the
4448       // IOHandler thread and sending the input is complete to the delegate
4449       // which will cause the expression to run, which will push the process IO
4450       // handler, but not run it.
4451 
4452       if (StateIsRunningState(m_process->GetState())) {
4453         m_process->SendAsyncInterrupt();
4454         return true;
4455       }
4456     }
4457     return false;
4458   }
4459 
4460   void GotEOF() override {}
4461 
4462 protected:
4463   Process *m_process;
4464   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4465   NativeFile m_write_file; // Write to this file (usually the master pty for
4466                            // getting io to debuggee)
4467   Pipe m_pipe;
4468   std::atomic<bool> m_is_running{false};
4469 };
4470 
4471 void Process::SetSTDIOFileDescriptor(int fd) {
4472   // First set up the Read Thread for reading/handling process I/O
4473   m_stdio_communication.SetConnection(
4474       std::make_unique<ConnectionFileDescriptor>(fd, true));
4475   if (m_stdio_communication.IsConnected()) {
4476     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4477         STDIOReadThreadBytesReceived, this);
4478     m_stdio_communication.StartReadThread();
4479 
4480     // Now read thread is set up, set up input reader.
4481 
4482     if (!m_process_input_reader)
4483       m_process_input_reader =
4484           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4485   }
4486 }
4487 
4488 bool Process::ProcessIOHandlerIsActive() {
4489   IOHandlerSP io_handler_sp(m_process_input_reader);
4490   if (io_handler_sp)
4491     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4492   return false;
4493 }
4494 bool Process::PushProcessIOHandler() {
4495   IOHandlerSP io_handler_sp(m_process_input_reader);
4496   if (io_handler_sp) {
4497     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4498     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4499 
4500     io_handler_sp->SetIsDone(false);
4501     // If we evaluate an utility function, then we don't cancel the current
4502     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4503     // existing IOHandler that potentially provides the user interface (e.g.
4504     // the IOHandler for Editline).
4505     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4506     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4507                                                 cancel_top_handler);
4508     return true;
4509   }
4510   return false;
4511 }
4512 
4513 bool Process::PopProcessIOHandler() {
4514   IOHandlerSP io_handler_sp(m_process_input_reader);
4515   if (io_handler_sp)
4516     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4517   return false;
4518 }
4519 
4520 // The process needs to know about installed plug-ins
4521 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4522 
4523 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4524 
4525 namespace {
4526 // RestorePlanState is used to record the "is private", "is master" and "okay
4527 // to discard" fields of the plan we are running, and reset it on Clean or on
4528 // destruction. It will only reset the state once, so you can call Clean and
4529 // then monkey with the state and it won't get reset on you again.
4530 
4531 class RestorePlanState {
4532 public:
4533   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4534       : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) {
4535     if (m_thread_plan_sp) {
4536       m_private = m_thread_plan_sp->GetPrivate();
4537       m_is_master = m_thread_plan_sp->IsMasterPlan();
4538       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4539     }
4540   }
4541 
4542   ~RestorePlanState() { Clean(); }
4543 
4544   void Clean() {
4545     if (!m_already_reset && m_thread_plan_sp) {
4546       m_already_reset = true;
4547       m_thread_plan_sp->SetPrivate(m_private);
4548       m_thread_plan_sp->SetIsMasterPlan(m_is_master);
4549       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4550     }
4551   }
4552 
4553 private:
4554   lldb::ThreadPlanSP m_thread_plan_sp;
4555   bool m_already_reset;
4556   bool m_private;
4557   bool m_is_master;
4558   bool m_okay_to_discard;
4559 };
4560 } // anonymous namespace
4561 
4562 static microseconds
4563 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4564   const milliseconds default_one_thread_timeout(250);
4565 
4566   // If the overall wait is forever, then we don't need to worry about it.
4567   if (!options.GetTimeout()) {
4568     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4569                                          : default_one_thread_timeout;
4570   }
4571 
4572   // If the one thread timeout is set, use it.
4573   if (options.GetOneThreadTimeout())
4574     return *options.GetOneThreadTimeout();
4575 
4576   // Otherwise use half the total timeout, bounded by the
4577   // default_one_thread_timeout.
4578   return std::min<microseconds>(default_one_thread_timeout,
4579                                 *options.GetTimeout() / 2);
4580 }
4581 
4582 static Timeout<std::micro>
4583 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4584                      bool before_first_timeout) {
4585   // If we are going to run all threads the whole time, or if we are only going
4586   // to run one thread, we can just return the overall timeout.
4587   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4588     return options.GetTimeout();
4589 
4590   if (before_first_timeout)
4591     return GetOneThreadExpressionTimeout(options);
4592 
4593   if (!options.GetTimeout())
4594     return llvm::None;
4595   else
4596     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4597 }
4598 
4599 static llvm::Optional<ExpressionResults>
4600 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4601                    RestorePlanState &restorer, const EventSP &event_sp,
4602                    EventSP &event_to_broadcast_sp,
4603                    const EvaluateExpressionOptions &options,
4604                    bool handle_interrupts) {
4605   Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS);
4606 
4607   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4608                            .GetProcessSP()
4609                            ->GetThreadList()
4610                            .FindThreadByID(thread_id);
4611   if (!thread_sp) {
4612     LLDB_LOG(log,
4613              "The thread on which we were running the "
4614              "expression: tid = {0}, exited while "
4615              "the expression was running.",
4616              thread_id);
4617     return eExpressionThreadVanished;
4618   }
4619 
4620   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4621   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4622     LLDB_LOG(log, "execution completed successfully");
4623 
4624     // Restore the plan state so it will get reported as intended when we are
4625     // done.
4626     restorer.Clean();
4627     return eExpressionCompleted;
4628   }
4629 
4630   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4631   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4632       stop_info_sp->ShouldNotify(event_sp.get())) {
4633     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4634     if (!options.DoesIgnoreBreakpoints()) {
4635       // Restore the plan state and then force Private to false.  We are going
4636       // to stop because of this plan so we need it to become a public plan or
4637       // it won't report correctly when we continue to its termination later
4638       // on.
4639       restorer.Clean();
4640       thread_plan_sp->SetPrivate(false);
4641       event_to_broadcast_sp = event_sp;
4642     }
4643     return eExpressionHitBreakpoint;
4644   }
4645 
4646   if (!handle_interrupts &&
4647       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4648     return llvm::None;
4649 
4650   LLDB_LOG(log, "thread plan did not successfully complete");
4651   if (!options.DoesUnwindOnError())
4652     event_to_broadcast_sp = event_sp;
4653   return eExpressionInterrupted;
4654 }
4655 
4656 ExpressionResults
4657 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4658                        lldb::ThreadPlanSP &thread_plan_sp,
4659                        const EvaluateExpressionOptions &options,
4660                        DiagnosticManager &diagnostic_manager) {
4661   ExpressionResults return_value = eExpressionSetupError;
4662 
4663   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4664 
4665   if (!thread_plan_sp) {
4666     diagnostic_manager.PutString(
4667         eDiagnosticSeverityError,
4668         "RunThreadPlan called with empty thread plan.");
4669     return eExpressionSetupError;
4670   }
4671 
4672   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4673     diagnostic_manager.PutString(
4674         eDiagnosticSeverityError,
4675         "RunThreadPlan called with an invalid thread plan.");
4676     return eExpressionSetupError;
4677   }
4678 
4679   if (exe_ctx.GetProcessPtr() != this) {
4680     diagnostic_manager.PutString(eDiagnosticSeverityError,
4681                                  "RunThreadPlan called on wrong process.");
4682     return eExpressionSetupError;
4683   }
4684 
4685   Thread *thread = exe_ctx.GetThreadPtr();
4686   if (thread == nullptr) {
4687     diagnostic_manager.PutString(eDiagnosticSeverityError,
4688                                  "RunThreadPlan called with invalid thread.");
4689     return eExpressionSetupError;
4690   }
4691 
4692   // Record the thread's id so we can tell when a thread we were using
4693   // to run the expression exits during the expression evaluation.
4694   lldb::tid_t expr_thread_id = thread->GetID();
4695 
4696   // We need to change some of the thread plan attributes for the thread plan
4697   // runner.  This will restore them when we are done:
4698 
4699   RestorePlanState thread_plan_restorer(thread_plan_sp);
4700 
4701   // We rely on the thread plan we are running returning "PlanCompleted" if
4702   // when it successfully completes. For that to be true the plan can't be
4703   // private - since private plans suppress themselves in the GetCompletedPlan
4704   // call.
4705 
4706   thread_plan_sp->SetPrivate(false);
4707 
4708   // The plans run with RunThreadPlan also need to be terminal master plans or
4709   // when they are done we will end up asking the plan above us whether we
4710   // should stop, which may give the wrong answer.
4711 
4712   thread_plan_sp->SetIsMasterPlan(true);
4713   thread_plan_sp->SetOkayToDiscard(false);
4714 
4715   // If we are running some utility expression for LLDB, we now have to mark
4716   // this in the ProcesModID of this process. This RAII takes care of marking
4717   // and reverting the mark it once we are done running the expression.
4718   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4719 
4720   if (m_private_state.GetValue() != eStateStopped) {
4721     diagnostic_manager.PutString(
4722         eDiagnosticSeverityError,
4723         "RunThreadPlan called while the private state was not stopped.");
4724     return eExpressionSetupError;
4725   }
4726 
4727   // Save the thread & frame from the exe_ctx for restoration after we run
4728   const uint32_t thread_idx_id = thread->GetIndexID();
4729   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4730   if (!selected_frame_sp) {
4731     thread->SetSelectedFrame(nullptr);
4732     selected_frame_sp = thread->GetSelectedFrame();
4733     if (!selected_frame_sp) {
4734       diagnostic_manager.Printf(
4735           eDiagnosticSeverityError,
4736           "RunThreadPlan called without a selected frame on thread %d",
4737           thread_idx_id);
4738       return eExpressionSetupError;
4739     }
4740   }
4741 
4742   // Make sure the timeout values make sense. The one thread timeout needs to
4743   // be smaller than the overall timeout.
4744   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4745       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4746     diagnostic_manager.PutString(eDiagnosticSeverityError,
4747                                  "RunThreadPlan called with one thread "
4748                                  "timeout greater than total timeout");
4749     return eExpressionSetupError;
4750   }
4751 
4752   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4753 
4754   // N.B. Running the target may unset the currently selected thread and frame.
4755   // We don't want to do that either, so we should arrange to reset them as
4756   // well.
4757 
4758   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4759 
4760   uint32_t selected_tid;
4761   StackID selected_stack_id;
4762   if (selected_thread_sp) {
4763     selected_tid = selected_thread_sp->GetIndexID();
4764     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4765   } else {
4766     selected_tid = LLDB_INVALID_THREAD_ID;
4767   }
4768 
4769   HostThread backup_private_state_thread;
4770   lldb::StateType old_state = eStateInvalid;
4771   lldb::ThreadPlanSP stopper_base_plan_sp;
4772 
4773   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
4774                                                   LIBLLDB_LOG_PROCESS));
4775   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4776     // Yikes, we are running on the private state thread!  So we can't wait for
4777     // public events on this thread, since we are the thread that is generating
4778     // public events. The simplest thing to do is to spin up a temporary thread
4779     // to handle private state thread events while we are fielding public
4780     // events here.
4781     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4782                    "another state thread to handle the events.");
4783 
4784     backup_private_state_thread = m_private_state_thread;
4785 
4786     // One other bit of business: we want to run just this thread plan and
4787     // anything it pushes, and then stop, returning control here. But in the
4788     // normal course of things, the plan above us on the stack would be given a
4789     // shot at the stop event before deciding to stop, and we don't want that.
4790     // So we insert a "stopper" base plan on the stack before the plan we want
4791     // to run.  Since base plans always stop and return control to the user,
4792     // that will do just what we want.
4793     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4794     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4795     // Have to make sure our public state is stopped, since otherwise the
4796     // reporting logic below doesn't work correctly.
4797     old_state = m_public_state.GetValue();
4798     m_public_state.SetValueNoLock(eStateStopped);
4799 
4800     // Now spin up the private state thread:
4801     StartPrivateStateThread(true);
4802   }
4803 
4804   thread->QueueThreadPlan(
4805       thread_plan_sp, false); // This used to pass "true" does that make sense?
4806 
4807   if (options.GetDebug()) {
4808     // In this case, we aren't actually going to run, we just want to stop
4809     // right away. Flush this thread so we will refetch the stacks and show the
4810     // correct backtrace.
4811     // FIXME: To make this prettier we should invent some stop reason for this,
4812     // but that
4813     // is only cosmetic, and this functionality is only of use to lldb
4814     // developers who can live with not pretty...
4815     thread->Flush();
4816     return eExpressionStoppedForDebug;
4817   }
4818 
4819   ListenerSP listener_sp(
4820       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4821 
4822   lldb::EventSP event_to_broadcast_sp;
4823 
4824   {
4825     // This process event hijacker Hijacks the Public events and its destructor
4826     // makes sure that the process events get restored on exit to the function.
4827     //
4828     // If the event needs to propagate beyond the hijacker (e.g., the process
4829     // exits during execution), then the event is put into
4830     // event_to_broadcast_sp for rebroadcasting.
4831 
4832     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4833 
4834     if (log) {
4835       StreamString s;
4836       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4837       LLDB_LOGF(log,
4838                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4839                 " to run thread plan \"%s\".",
4840                 thread_idx_id, expr_thread_id, s.GetData());
4841     }
4842 
4843     bool got_event;
4844     lldb::EventSP event_sp;
4845     lldb::StateType stop_state = lldb::eStateInvalid;
4846 
4847     bool before_first_timeout = true; // This is set to false the first time
4848                                       // that we have to halt the target.
4849     bool do_resume = true;
4850     bool handle_running_event = true;
4851 
4852     // This is just for accounting:
4853     uint32_t num_resumes = 0;
4854 
4855     // If we are going to run all threads the whole time, or if we are only
4856     // going to run one thread, then we don't need the first timeout.  So we
4857     // pretend we are after the first timeout already.
4858     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4859       before_first_timeout = false;
4860 
4861     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4862               options.GetStopOthers(), options.GetTryAllThreads(),
4863               before_first_timeout);
4864 
4865     // This isn't going to work if there are unfetched events on the queue. Are
4866     // there cases where we might want to run the remaining events here, and
4867     // then try to call the function?  That's probably being too tricky for our
4868     // own good.
4869 
4870     Event *other_events = listener_sp->PeekAtNextEvent();
4871     if (other_events != nullptr) {
4872       diagnostic_manager.PutString(
4873           eDiagnosticSeverityError,
4874           "RunThreadPlan called with pending events on the queue.");
4875       return eExpressionSetupError;
4876     }
4877 
4878     // We also need to make sure that the next event is delivered.  We might be
4879     // calling a function as part of a thread plan, in which case the last
4880     // delivered event could be the running event, and we don't want event
4881     // coalescing to cause us to lose OUR running event...
4882     ForceNextEventDelivery();
4883 
4884 // This while loop must exit out the bottom, there's cleanup that we need to do
4885 // when we are done. So don't call return anywhere within it.
4886 
4887 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4888     // It's pretty much impossible to write test cases for things like: One
4889     // thread timeout expires, I go to halt, but the process already stopped on
4890     // the function call stop breakpoint.  Turning on this define will make us
4891     // not fetch the first event till after the halt.  So if you run a quick
4892     // function, it will have completed, and the completion event will be
4893     // waiting, when you interrupt for halt. The expression evaluation should
4894     // still succeed.
4895     bool miss_first_event = true;
4896 #endif
4897     while (true) {
4898       // We usually want to resume the process if we get to the top of the
4899       // loop. The only exception is if we get two running events with no
4900       // intervening stop, which can happen, we will just wait for then next
4901       // stop event.
4902       LLDB_LOGF(log,
4903                 "Top of while loop: do_resume: %i handle_running_event: %i "
4904                 "before_first_timeout: %i.",
4905                 do_resume, handle_running_event, before_first_timeout);
4906 
4907       if (do_resume || handle_running_event) {
4908         // Do the initial resume and wait for the running event before going
4909         // further.
4910 
4911         if (do_resume) {
4912           num_resumes++;
4913           Status resume_error = PrivateResume();
4914           if (!resume_error.Success()) {
4915             diagnostic_manager.Printf(
4916                 eDiagnosticSeverityError,
4917                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4918                 resume_error.AsCString());
4919             return_value = eExpressionSetupError;
4920             break;
4921           }
4922         }
4923 
4924         got_event =
4925             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4926         if (!got_event) {
4927           LLDB_LOGF(log,
4928                     "Process::RunThreadPlan(): didn't get any event after "
4929                     "resume %" PRIu32 ", exiting.",
4930                     num_resumes);
4931 
4932           diagnostic_manager.Printf(eDiagnosticSeverityError,
4933                                     "didn't get any event after resume %" PRIu32
4934                                     ", exiting.",
4935                                     num_resumes);
4936           return_value = eExpressionSetupError;
4937           break;
4938         }
4939 
4940         stop_state =
4941             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4942 
4943         if (stop_state != eStateRunning) {
4944           bool restarted = false;
4945 
4946           if (stop_state == eStateStopped) {
4947             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4948                 event_sp.get());
4949             LLDB_LOGF(
4950                 log,
4951                 "Process::RunThreadPlan(): didn't get running event after "
4952                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4953                 "handle_running_event: %i).",
4954                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4955                 handle_running_event);
4956           }
4957 
4958           if (restarted) {
4959             // This is probably an overabundance of caution, I don't think I
4960             // should ever get a stopped & restarted event here.  But if I do,
4961             // the best thing is to Halt and then get out of here.
4962             const bool clear_thread_plans = false;
4963             const bool use_run_lock = false;
4964             Halt(clear_thread_plans, use_run_lock);
4965           }
4966 
4967           diagnostic_manager.Printf(
4968               eDiagnosticSeverityError,
4969               "didn't get running event after initial resume, got %s instead.",
4970               StateAsCString(stop_state));
4971           return_value = eExpressionSetupError;
4972           break;
4973         }
4974 
4975         if (log)
4976           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4977         // We need to call the function synchronously, so spin waiting for it
4978         // to return. If we get interrupted while executing, we're going to
4979         // lose our context, and won't be able to gather the result at this
4980         // point. We set the timeout AFTER the resume, since the resume takes
4981         // some time and we don't want to charge that to the timeout.
4982       } else {
4983         if (log)
4984           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4985       }
4986 
4987       do_resume = true;
4988       handle_running_event = true;
4989 
4990       // Now wait for the process to stop again:
4991       event_sp.reset();
4992 
4993       Timeout<std::micro> timeout =
4994           GetExpressionTimeout(options, before_first_timeout);
4995       if (log) {
4996         if (timeout) {
4997           auto now = system_clock::now();
4998           LLDB_LOGF(log,
4999                     "Process::RunThreadPlan(): about to wait - now is %s - "
5000                     "endpoint is %s",
5001                     llvm::to_string(now).c_str(),
5002                     llvm::to_string(now + *timeout).c_str());
5003         } else {
5004           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
5005         }
5006       }
5007 
5008 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5009       // See comment above...
5010       if (miss_first_event) {
5011         std::this_thread::sleep_for(std::chrono::milliseconds(1));
5012         miss_first_event = false;
5013         got_event = false;
5014       } else
5015 #endif
5016         got_event = listener_sp->GetEvent(event_sp, timeout);
5017 
5018       if (got_event) {
5019         if (event_sp) {
5020           bool keep_going = false;
5021           if (event_sp->GetType() == eBroadcastBitInterrupt) {
5022             const bool clear_thread_plans = false;
5023             const bool use_run_lock = false;
5024             Halt(clear_thread_plans, use_run_lock);
5025             return_value = eExpressionInterrupted;
5026             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
5027                                          "execution halted by user interrupt.");
5028             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
5029                            "eBroadcastBitInterrupted, exiting.");
5030             break;
5031           } else {
5032             stop_state =
5033                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5034             LLDB_LOGF(log,
5035                       "Process::RunThreadPlan(): in while loop, got event: %s.",
5036                       StateAsCString(stop_state));
5037 
5038             switch (stop_state) {
5039             case lldb::eStateStopped: {
5040               if (Process::ProcessEventData::GetRestartedFromEvent(
5041                       event_sp.get())) {
5042                 // If we were restarted, we just need to go back up to fetch
5043                 // another event.
5044                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5045                                "restart, so we'll continue waiting.");
5046                 keep_going = true;
5047                 do_resume = false;
5048                 handle_running_event = true;
5049               } else {
5050                 const bool handle_interrupts = true;
5051                 return_value = *HandleStoppedEvent(
5052                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5053                     event_sp, event_to_broadcast_sp, options,
5054                     handle_interrupts);
5055                 if (return_value == eExpressionThreadVanished)
5056                   keep_going = false;
5057               }
5058             } break;
5059 
5060             case lldb::eStateRunning:
5061               // This shouldn't really happen, but sometimes we do get two
5062               // running events without an intervening stop, and in that case
5063               // we should just go back to waiting for the stop.
5064               do_resume = false;
5065               keep_going = true;
5066               handle_running_event = false;
5067               break;
5068 
5069             default:
5070               LLDB_LOGF(log,
5071                         "Process::RunThreadPlan(): execution stopped with "
5072                         "unexpected state: %s.",
5073                         StateAsCString(stop_state));
5074 
5075               if (stop_state == eStateExited)
5076                 event_to_broadcast_sp = event_sp;
5077 
5078               diagnostic_manager.PutString(
5079                   eDiagnosticSeverityError,
5080                   "execution stopped with unexpected state.");
5081               return_value = eExpressionInterrupted;
5082               break;
5083             }
5084           }
5085 
5086           if (keep_going)
5087             continue;
5088           else
5089             break;
5090         } else {
5091           if (log)
5092             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5093                             "the event pointer was null.  How odd...");
5094           return_value = eExpressionInterrupted;
5095           break;
5096         }
5097       } else {
5098         // If we didn't get an event that means we've timed out... We will
5099         // interrupt the process here.  Depending on what we were asked to do
5100         // we will either exit, or try with all threads running for the same
5101         // timeout.
5102 
5103         if (log) {
5104           if (options.GetTryAllThreads()) {
5105             if (before_first_timeout) {
5106               LLDB_LOG(log,
5107                        "Running function with one thread timeout timed out.");
5108             } else
5109               LLDB_LOG(log, "Restarting function with all threads enabled and "
5110                             "timeout: {0} timed out, abandoning execution.",
5111                        timeout);
5112           } else
5113             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5114                           "abandoning execution.",
5115                      timeout);
5116         }
5117 
5118         // It is possible that between the time we issued the Halt, and we get
5119         // around to calling Halt the target could have stopped.  That's fine,
5120         // Halt will figure that out and send the appropriate Stopped event.
5121         // BUT it is also possible that we stopped & restarted (e.g. hit a
5122         // signal with "stop" set to false.)  In
5123         // that case, we'll get the stopped & restarted event, and we should go
5124         // back to waiting for the Halt's stopped event.  That's what this
5125         // while loop does.
5126 
5127         bool back_to_top = true;
5128         uint32_t try_halt_again = 0;
5129         bool do_halt = true;
5130         const uint32_t num_retries = 5;
5131         while (try_halt_again < num_retries) {
5132           Status halt_error;
5133           if (do_halt) {
5134             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5135             const bool clear_thread_plans = false;
5136             const bool use_run_lock = false;
5137             Halt(clear_thread_plans, use_run_lock);
5138           }
5139           if (halt_error.Success()) {
5140             if (log)
5141               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5142 
5143             got_event =
5144                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5145 
5146             if (got_event) {
5147               stop_state =
5148                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5149               if (log) {
5150                 LLDB_LOGF(log,
5151                           "Process::RunThreadPlan(): Stopped with event: %s",
5152                           StateAsCString(stop_state));
5153                 if (stop_state == lldb::eStateStopped &&
5154                     Process::ProcessEventData::GetInterruptedFromEvent(
5155                         event_sp.get()))
5156                   log->PutCString("    Event was the Halt interruption event.");
5157               }
5158 
5159               if (stop_state == lldb::eStateStopped) {
5160                 if (Process::ProcessEventData::GetRestartedFromEvent(
5161                         event_sp.get())) {
5162                   if (log)
5163                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5164                                     "but got a restarted event, there must be "
5165                                     "an un-restarted stopped event so try "
5166                                     "again...  "
5167                                     "Exiting wait loop.");
5168                   try_halt_again++;
5169                   do_halt = false;
5170                   continue;
5171                 }
5172 
5173                 // Between the time we initiated the Halt and the time we
5174                 // delivered it, the process could have already finished its
5175                 // job.  Check that here:
5176                 const bool handle_interrupts = false;
5177                 if (auto result = HandleStoppedEvent(
5178                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5179                         event_sp, event_to_broadcast_sp, options,
5180                         handle_interrupts)) {
5181                   return_value = *result;
5182                   back_to_top = false;
5183                   break;
5184                 }
5185 
5186                 if (!options.GetTryAllThreads()) {
5187                   if (log)
5188                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5189                                     "was false, we stopped so now we're "
5190                                     "quitting.");
5191                   return_value = eExpressionInterrupted;
5192                   back_to_top = false;
5193                   break;
5194                 }
5195 
5196                 if (before_first_timeout) {
5197                   // Set all the other threads to run, and return to the top of
5198                   // the loop, which will continue;
5199                   before_first_timeout = false;
5200                   thread_plan_sp->SetStopOthers(false);
5201                   if (log)
5202                     log->PutCString(
5203                         "Process::RunThreadPlan(): about to resume.");
5204 
5205                   back_to_top = true;
5206                   break;
5207                 } else {
5208                   // Running all threads failed, so return Interrupted.
5209                   if (log)
5210                     log->PutCString("Process::RunThreadPlan(): running all "
5211                                     "threads timed out.");
5212                   return_value = eExpressionInterrupted;
5213                   back_to_top = false;
5214                   break;
5215                 }
5216               }
5217             } else {
5218               if (log)
5219                 log->PutCString("Process::RunThreadPlan(): halt said it "
5220                                 "succeeded, but I got no event.  "
5221                                 "I'm getting out of here passing Interrupted.");
5222               return_value = eExpressionInterrupted;
5223               back_to_top = false;
5224               break;
5225             }
5226           } else {
5227             try_halt_again++;
5228             continue;
5229           }
5230         }
5231 
5232         if (!back_to_top || try_halt_again > num_retries)
5233           break;
5234         else
5235           continue;
5236       }
5237     } // END WAIT LOOP
5238 
5239     // If we had to start up a temporary private state thread to run this
5240     // thread plan, shut it down now.
5241     if (backup_private_state_thread.IsJoinable()) {
5242       StopPrivateStateThread();
5243       Status error;
5244       m_private_state_thread = backup_private_state_thread;
5245       if (stopper_base_plan_sp) {
5246         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5247       }
5248       if (old_state != eStateInvalid)
5249         m_public_state.SetValueNoLock(old_state);
5250     }
5251 
5252     // If our thread went away on us, we need to get out of here without
5253     // doing any more work.  We don't have to clean up the thread plan, that
5254     // will have happened when the Thread was destroyed.
5255     if (return_value == eExpressionThreadVanished) {
5256       return return_value;
5257     }
5258 
5259     if (return_value != eExpressionCompleted && log) {
5260       // Print a backtrace into the log so we can figure out where we are:
5261       StreamString s;
5262       s.PutCString("Thread state after unsuccessful completion: \n");
5263       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5264       log->PutString(s.GetString());
5265     }
5266     // Restore the thread state if we are going to discard the plan execution.
5267     // There are three cases where this could happen: 1) The execution
5268     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5269     // was true 3) We got some other error, and discard_on_error was true
5270     bool should_unwind = (return_value == eExpressionInterrupted &&
5271                           options.DoesUnwindOnError()) ||
5272                          (return_value == eExpressionHitBreakpoint &&
5273                           options.DoesIgnoreBreakpoints());
5274 
5275     if (return_value == eExpressionCompleted || should_unwind) {
5276       thread_plan_sp->RestoreThreadState();
5277     }
5278 
5279     // Now do some processing on the results of the run:
5280     if (return_value == eExpressionInterrupted ||
5281         return_value == eExpressionHitBreakpoint) {
5282       if (log) {
5283         StreamString s;
5284         if (event_sp)
5285           event_sp->Dump(&s);
5286         else {
5287           log->PutCString("Process::RunThreadPlan(): Stop event that "
5288                           "interrupted us is NULL.");
5289         }
5290 
5291         StreamString ts;
5292 
5293         const char *event_explanation = nullptr;
5294 
5295         do {
5296           if (!event_sp) {
5297             event_explanation = "<no event>";
5298             break;
5299           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5300             event_explanation = "<user interrupt>";
5301             break;
5302           } else {
5303             const Process::ProcessEventData *event_data =
5304                 Process::ProcessEventData::GetEventDataFromEvent(
5305                     event_sp.get());
5306 
5307             if (!event_data) {
5308               event_explanation = "<no event data>";
5309               break;
5310             }
5311 
5312             Process *process = event_data->GetProcessSP().get();
5313 
5314             if (!process) {
5315               event_explanation = "<no process>";
5316               break;
5317             }
5318 
5319             ThreadList &thread_list = process->GetThreadList();
5320 
5321             uint32_t num_threads = thread_list.GetSize();
5322             uint32_t thread_index;
5323 
5324             ts.Printf("<%u threads> ", num_threads);
5325 
5326             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5327               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5328 
5329               if (!thread) {
5330                 ts.Printf("<?> ");
5331                 continue;
5332               }
5333 
5334               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5335               RegisterContext *register_context =
5336                   thread->GetRegisterContext().get();
5337 
5338               if (register_context)
5339                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5340               else
5341                 ts.Printf("[ip unknown] ");
5342 
5343               // Show the private stop info here, the public stop info will be
5344               // from the last natural stop.
5345               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5346               if (stop_info_sp) {
5347                 const char *stop_desc = stop_info_sp->GetDescription();
5348                 if (stop_desc)
5349                   ts.PutCString(stop_desc);
5350               }
5351               ts.Printf(">");
5352             }
5353 
5354             event_explanation = ts.GetData();
5355           }
5356         } while (false);
5357 
5358         if (event_explanation)
5359           LLDB_LOGF(log,
5360                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5361                     s.GetData(), event_explanation);
5362         else
5363           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5364                     s.GetData());
5365       }
5366 
5367       if (should_unwind) {
5368         LLDB_LOGF(log,
5369                   "Process::RunThreadPlan: ExecutionInterrupted - "
5370                   "discarding thread plans up to %p.",
5371                   static_cast<void *>(thread_plan_sp.get()));
5372         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5373       } else {
5374         LLDB_LOGF(log,
5375                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5376                   "plan: %p not discarding.",
5377                   static_cast<void *>(thread_plan_sp.get()));
5378       }
5379     } else if (return_value == eExpressionSetupError) {
5380       if (log)
5381         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5382 
5383       if (options.DoesUnwindOnError()) {
5384         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5385       }
5386     } else {
5387       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5388         if (log)
5389           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5390         return_value = eExpressionCompleted;
5391       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5392         if (log)
5393           log->PutCString(
5394               "Process::RunThreadPlan(): thread plan was discarded");
5395         return_value = eExpressionDiscarded;
5396       } else {
5397         if (log)
5398           log->PutCString(
5399               "Process::RunThreadPlan(): thread plan stopped in mid course");
5400         if (options.DoesUnwindOnError() && thread_plan_sp) {
5401           if (log)
5402             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5403                             "'cause unwind_on_error is set.");
5404           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5405         }
5406       }
5407     }
5408 
5409     // Thread we ran the function in may have gone away because we ran the
5410     // target Check that it's still there, and if it is put it back in the
5411     // context. Also restore the frame in the context if it is still present.
5412     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5413     if (thread) {
5414       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5415     }
5416 
5417     // Also restore the current process'es selected frame & thread, since this
5418     // function calling may be done behind the user's back.
5419 
5420     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5421       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5422           selected_stack_id.IsValid()) {
5423         // We were able to restore the selected thread, now restore the frame:
5424         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5425         StackFrameSP old_frame_sp =
5426             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5427                 selected_stack_id);
5428         if (old_frame_sp)
5429           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5430               old_frame_sp.get());
5431       }
5432     }
5433   }
5434 
5435   // If the process exited during the run of the thread plan, notify everyone.
5436 
5437   if (event_to_broadcast_sp) {
5438     if (log)
5439       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5440     BroadcastEvent(event_to_broadcast_sp);
5441   }
5442 
5443   return return_value;
5444 }
5445 
5446 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5447   const char *result_name = "<unknown>";
5448 
5449   switch (result) {
5450   case eExpressionCompleted:
5451     result_name = "eExpressionCompleted";
5452     break;
5453   case eExpressionDiscarded:
5454     result_name = "eExpressionDiscarded";
5455     break;
5456   case eExpressionInterrupted:
5457     result_name = "eExpressionInterrupted";
5458     break;
5459   case eExpressionHitBreakpoint:
5460     result_name = "eExpressionHitBreakpoint";
5461     break;
5462   case eExpressionSetupError:
5463     result_name = "eExpressionSetupError";
5464     break;
5465   case eExpressionParseError:
5466     result_name = "eExpressionParseError";
5467     break;
5468   case eExpressionResultUnavailable:
5469     result_name = "eExpressionResultUnavailable";
5470     break;
5471   case eExpressionTimedOut:
5472     result_name = "eExpressionTimedOut";
5473     break;
5474   case eExpressionStoppedForDebug:
5475     result_name = "eExpressionStoppedForDebug";
5476     break;
5477   case eExpressionThreadVanished:
5478     result_name = "eExpressionThreadVanished";
5479   }
5480   return result_name;
5481 }
5482 
5483 void Process::GetStatus(Stream &strm) {
5484   const StateType state = GetState();
5485   if (StateIsStoppedState(state, false)) {
5486     if (state == eStateExited) {
5487       int exit_status = GetExitStatus();
5488       const char *exit_description = GetExitDescription();
5489       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5490                   GetID(), exit_status, exit_status,
5491                   exit_description ? exit_description : "");
5492     } else {
5493       if (state == eStateConnected)
5494         strm.Printf("Connected to remote target.\n");
5495       else
5496         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5497     }
5498   } else {
5499     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5500   }
5501 }
5502 
5503 size_t Process::GetThreadStatus(Stream &strm,
5504                                 bool only_threads_with_stop_reason,
5505                                 uint32_t start_frame, uint32_t num_frames,
5506                                 uint32_t num_frames_with_source,
5507                                 bool stop_format) {
5508   size_t num_thread_infos_dumped = 0;
5509 
5510   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5511   // very well might run code (e.g. if we need it to get return values or
5512   // arguments.)  For that to work the process has to be able to acquire it.
5513   // So instead copy the thread ID's, and look them up one by one:
5514 
5515   uint32_t num_threads;
5516   std::vector<lldb::tid_t> thread_id_array;
5517   // Scope for thread list locker;
5518   {
5519     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5520     ThreadList &curr_thread_list = GetThreadList();
5521     num_threads = curr_thread_list.GetSize();
5522     uint32_t idx;
5523     thread_id_array.resize(num_threads);
5524     for (idx = 0; idx < num_threads; ++idx)
5525       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5526   }
5527 
5528   for (uint32_t i = 0; i < num_threads; i++) {
5529     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5530     if (thread_sp) {
5531       if (only_threads_with_stop_reason) {
5532         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5533         if (!stop_info_sp || !stop_info_sp->IsValid())
5534           continue;
5535       }
5536       thread_sp->GetStatus(strm, start_frame, num_frames,
5537                            num_frames_with_source,
5538                            stop_format);
5539       ++num_thread_infos_dumped;
5540     } else {
5541       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5542       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5543                      " vanished while running Thread::GetStatus.");
5544     }
5545   }
5546   return num_thread_infos_dumped;
5547 }
5548 
5549 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5550   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5551 }
5552 
5553 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5554   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5555                                            region.GetByteSize());
5556 }
5557 
5558 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5559                                  void *baton) {
5560   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5561 }
5562 
5563 bool Process::RunPreResumeActions() {
5564   bool result = true;
5565   while (!m_pre_resume_actions.empty()) {
5566     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5567     m_pre_resume_actions.pop_back();
5568     bool this_result = action.callback(action.baton);
5569     if (result)
5570       result = this_result;
5571   }
5572   return result;
5573 }
5574 
5575 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5576 
5577 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5578 {
5579     PreResumeCallbackAndBaton element(callback, baton);
5580     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5581     if (found_iter != m_pre_resume_actions.end())
5582     {
5583         m_pre_resume_actions.erase(found_iter);
5584     }
5585 }
5586 
5587 ProcessRunLock &Process::GetRunLock() {
5588   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5589     return m_private_run_lock;
5590   else
5591     return m_public_run_lock;
5592 }
5593 
5594 bool Process::CurrentThreadIsPrivateStateThread()
5595 {
5596   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5597 }
5598 
5599 
5600 void Process::Flush() {
5601   m_thread_list.Flush();
5602   m_extended_thread_list.Flush();
5603   m_extended_thread_stop_id = 0;
5604   m_queue_list.Clear();
5605   m_queue_list_stop_id = 0;
5606 }
5607 
5608 lldb::addr_t Process::GetCodeAddressMask() {
5609   if (m_code_address_mask == 0) {
5610     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5611       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5612       SetCodeAddressMask(address_mask);
5613     }
5614   }
5615   return m_code_address_mask;
5616 }
5617 
5618 lldb::addr_t Process::GetDataAddressMask() {
5619   if (m_data_address_mask == 0) {
5620     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5621       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5622       SetDataAddressMask(address_mask);
5623     }
5624   }
5625   return m_data_address_mask;
5626 }
5627 
5628 void Process::DidExec() {
5629   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
5630   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5631 
5632   Target &target = GetTarget();
5633   target.CleanupProcess();
5634   target.ClearModules(false);
5635   m_dynamic_checkers_up.reset();
5636   m_abi_sp.reset();
5637   m_system_runtime_up.reset();
5638   m_os_up.reset();
5639   m_dyld_up.reset();
5640   m_jit_loaders_up.reset();
5641   m_image_tokens.clear();
5642   m_allocated_memory_cache.Clear();
5643   {
5644     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5645     m_language_runtimes.clear();
5646   }
5647   m_instrumentation_runtimes.clear();
5648   m_thread_list.DiscardThreadPlans();
5649   m_memory_cache.Clear(true);
5650   DoDidExec();
5651   CompleteAttach();
5652   // Flush the process (threads and all stack frames) after running
5653   // CompleteAttach() in case the dynamic loader loaded things in new
5654   // locations.
5655   Flush();
5656 
5657   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5658   // let the target know so it can do any cleanup it needs to.
5659   target.DidExec();
5660 }
5661 
5662 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5663   if (address == nullptr) {
5664     error.SetErrorString("Invalid address argument");
5665     return LLDB_INVALID_ADDRESS;
5666   }
5667 
5668   addr_t function_addr = LLDB_INVALID_ADDRESS;
5669 
5670   addr_t addr = address->GetLoadAddress(&GetTarget());
5671   std::map<addr_t, addr_t>::const_iterator iter =
5672       m_resolved_indirect_addresses.find(addr);
5673   if (iter != m_resolved_indirect_addresses.end()) {
5674     function_addr = (*iter).second;
5675   } else {
5676     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5677       Symbol *symbol = address->CalculateSymbolContextSymbol();
5678       error.SetErrorStringWithFormat(
5679           "Unable to call resolver for indirect function %s",
5680           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5681       function_addr = LLDB_INVALID_ADDRESS;
5682     } else {
5683       if (ABISP abi_sp = GetABI())
5684         function_addr = abi_sp->FixCodeAddress(function_addr);
5685       m_resolved_indirect_addresses.insert(
5686           std::pair<addr_t, addr_t>(addr, function_addr));
5687     }
5688   }
5689   return function_addr;
5690 }
5691 
5692 void Process::ModulesDidLoad(ModuleList &module_list) {
5693   // Inform the system runtime of the modified modules.
5694   SystemRuntime *sys_runtime = GetSystemRuntime();
5695   if (sys_runtime)
5696     sys_runtime->ModulesDidLoad(module_list);
5697 
5698   GetJITLoaders().ModulesDidLoad(module_list);
5699 
5700   // Give the instrumentation runtimes a chance to be created before informing
5701   // them of the modified modules.
5702   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5703                                          m_instrumentation_runtimes);
5704   for (auto &runtime : m_instrumentation_runtimes)
5705     runtime.second->ModulesDidLoad(module_list);
5706 
5707   // Give the language runtimes a chance to be created before informing them of
5708   // the modified modules.
5709   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5710     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5711       runtime->ModulesDidLoad(module_list);
5712   }
5713 
5714   // If we don't have an operating system plug-in, try to load one since
5715   // loading shared libraries might cause a new one to try and load
5716   if (!m_os_up)
5717     LoadOperatingSystemPlugin(false);
5718 
5719   // Inform the structured-data plugins of the modified modules.
5720   for (auto pair : m_structured_data_plugin_map) {
5721     if (pair.second)
5722       pair.second->ModulesDidLoad(*this, module_list);
5723   }
5724 }
5725 
5726 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key,
5727                            const char *fmt, ...) {
5728   bool print_warning = true;
5729 
5730   StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream();
5731   if (!stream_sp)
5732     return;
5733 
5734   if (repeat_key != nullptr) {
5735     WarningsCollection::iterator it = m_warnings_issued.find(warning_type);
5736     if (it == m_warnings_issued.end()) {
5737       m_warnings_issued[warning_type] = WarningsPointerSet();
5738       m_warnings_issued[warning_type].insert(repeat_key);
5739     } else {
5740       if (it->second.find(repeat_key) != it->second.end()) {
5741         print_warning = false;
5742       } else {
5743         it->second.insert(repeat_key);
5744       }
5745     }
5746   }
5747 
5748   if (print_warning) {
5749     va_list args;
5750     va_start(args, fmt);
5751     stream_sp->PrintfVarArg(fmt, args);
5752     va_end(args);
5753   }
5754 }
5755 
5756 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5757   if (!GetWarningsOptimization())
5758     return;
5759   if (!sc.module_sp)
5760     return;
5761   if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function &&
5762       sc.function->GetIsOptimized()) {
5763     PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(),
5764                  "%s was compiled with optimization - stepping may behave "
5765                  "oddly; variables may not be available.\n",
5766                  sc.module_sp->GetFileSpec().GetFilename().GetCString());
5767   }
5768 }
5769 
5770 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5771   if (!GetWarningsUnsupportedLanguage())
5772     return;
5773   if (!sc.module_sp)
5774     return;
5775   LanguageType language = sc.GetLanguage();
5776   if (language == eLanguageTypeUnknown)
5777     return;
5778   LanguageSet plugins =
5779       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5780   if (!plugins[language]) {
5781     PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage,
5782                  sc.module_sp.get(),
5783                  "This version of LLDB has no plugin for the language \"%s\". "
5784                  "Inspection of frame variables will be limited.\n",
5785                  Language::GetNameForLanguageType(language));
5786   }
5787 }
5788 
5789 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5790   info.Clear();
5791 
5792   PlatformSP platform_sp = GetTarget().GetPlatform();
5793   if (!platform_sp)
5794     return false;
5795 
5796   return platform_sp->GetProcessInfo(GetID(), info);
5797 }
5798 
5799 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5800   ThreadCollectionSP threads;
5801 
5802   const MemoryHistorySP &memory_history =
5803       MemoryHistory::FindPlugin(shared_from_this());
5804 
5805   if (!memory_history) {
5806     return threads;
5807   }
5808 
5809   threads = std::make_shared<ThreadCollection>(
5810       memory_history->GetHistoryThreads(addr));
5811 
5812   return threads;
5813 }
5814 
5815 InstrumentationRuntimeSP
5816 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5817   InstrumentationRuntimeCollection::iterator pos;
5818   pos = m_instrumentation_runtimes.find(type);
5819   if (pos == m_instrumentation_runtimes.end()) {
5820     return InstrumentationRuntimeSP();
5821   } else
5822     return (*pos).second;
5823 }
5824 
5825 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5826                             const ArchSpec &arch, ModuleSpec &module_spec) {
5827   module_spec.Clear();
5828   return false;
5829 }
5830 
5831 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5832   m_image_tokens.push_back(image_ptr);
5833   return m_image_tokens.size() - 1;
5834 }
5835 
5836 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5837   if (token < m_image_tokens.size())
5838     return m_image_tokens[token];
5839   return LLDB_INVALID_ADDRESS;
5840 }
5841 
5842 void Process::ResetImageToken(size_t token) {
5843   if (token < m_image_tokens.size())
5844     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5845 }
5846 
5847 Address
5848 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5849                                                AddressRange range_bounds) {
5850   Target &target = GetTarget();
5851   DisassemblerSP disassembler_sp;
5852   InstructionList *insn_list = nullptr;
5853 
5854   Address retval = default_stop_addr;
5855 
5856   if (!target.GetUseFastStepping())
5857     return retval;
5858   if (!default_stop_addr.IsValid())
5859     return retval;
5860 
5861   const char *plugin_name = nullptr;
5862   const char *flavor = nullptr;
5863   disassembler_sp = Disassembler::DisassembleRange(
5864       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5865   if (disassembler_sp)
5866     insn_list = &disassembler_sp->GetInstructionList();
5867 
5868   if (insn_list == nullptr) {
5869     return retval;
5870   }
5871 
5872   size_t insn_offset =
5873       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5874   if (insn_offset == UINT32_MAX) {
5875     return retval;
5876   }
5877 
5878   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5879       insn_offset, false /* ignore_calls*/, nullptr);
5880   if (branch_index == UINT32_MAX) {
5881     return retval;
5882   }
5883 
5884   if (branch_index > insn_offset) {
5885     Address next_branch_insn_address =
5886         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5887     if (next_branch_insn_address.IsValid() &&
5888         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5889       retval = next_branch_insn_address;
5890     }
5891   }
5892 
5893   return retval;
5894 }
5895 
5896 Status
5897 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5898 
5899   Status error;
5900 
5901   lldb::addr_t range_end = 0;
5902 
5903   region_list.clear();
5904   do {
5905     lldb_private::MemoryRegionInfo region_info;
5906     error = GetMemoryRegionInfo(range_end, region_info);
5907     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5908     if (error.Fail()) {
5909       region_list.clear();
5910       break;
5911     }
5912 
5913     range_end = region_info.GetRange().GetRangeEnd();
5914     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5915       region_list.push_back(std::move(region_info));
5916     }
5917   } while (range_end != LLDB_INVALID_ADDRESS);
5918 
5919   return error;
5920 }
5921 
5922 Status
5923 Process::ConfigureStructuredData(ConstString type_name,
5924                                  const StructuredData::ObjectSP &config_sp) {
5925   // If you get this, the Process-derived class needs to implement a method to
5926   // enable an already-reported asynchronous structured data feature. See
5927   // ProcessGDBRemote for an example implementation over gdb-remote.
5928   return Status("unimplemented");
5929 }
5930 
5931 void Process::MapSupportedStructuredDataPlugins(
5932     const StructuredData::Array &supported_type_names) {
5933   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5934 
5935   // Bail out early if there are no type names to map.
5936   if (supported_type_names.GetSize() == 0) {
5937     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5938               __FUNCTION__);
5939     return;
5940   }
5941 
5942   // Convert StructuredData type names to ConstString instances.
5943   std::set<ConstString> const_type_names;
5944 
5945   LLDB_LOGF(log,
5946             "Process::%s(): the process supports the following async "
5947             "structured data types:",
5948             __FUNCTION__);
5949 
5950   supported_type_names.ForEach(
5951       [&const_type_names, &log](StructuredData::Object *object) {
5952         if (!object) {
5953           // Invalid - shouldn't be null objects in the array.
5954           return false;
5955         }
5956 
5957         auto type_name = object->GetAsString();
5958         if (!type_name) {
5959           // Invalid format - all type names should be strings.
5960           return false;
5961         }
5962 
5963         const_type_names.insert(ConstString(type_name->GetValue()));
5964         LLDB_LOG(log, "- {0}", type_name->GetValue());
5965         return true;
5966       });
5967 
5968   // For each StructuredDataPlugin, if the plugin handles any of the types in
5969   // the supported_type_names, map that type name to that plugin. Stop when
5970   // we've consumed all the type names.
5971   // FIXME: should we return an error if there are type names nobody
5972   // supports?
5973   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5974     auto create_instance =
5975            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5976                plugin_index);
5977     if (!create_instance)
5978       break;
5979 
5980     // Create the plugin.
5981     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5982     if (!plugin_sp) {
5983       // This plugin doesn't think it can work with the process. Move on to the
5984       // next.
5985       continue;
5986     }
5987 
5988     // For any of the remaining type names, map any that this plugin supports.
5989     std::vector<ConstString> names_to_remove;
5990     for (auto &type_name : const_type_names) {
5991       if (plugin_sp->SupportsStructuredDataType(type_name)) {
5992         m_structured_data_plugin_map.insert(
5993             std::make_pair(type_name, plugin_sp));
5994         names_to_remove.push_back(type_name);
5995         LLDB_LOG(log, "using plugin {0} for type name {1}",
5996                  plugin_sp->GetPluginName(), type_name);
5997       }
5998     }
5999 
6000     // Remove the type names that were consumed by this plugin.
6001     for (auto &type_name : names_to_remove)
6002       const_type_names.erase(type_name);
6003   }
6004 }
6005 
6006 bool Process::RouteAsyncStructuredData(
6007     const StructuredData::ObjectSP object_sp) {
6008   // Nothing to do if there's no data.
6009   if (!object_sp)
6010     return false;
6011 
6012   // The contract is this must be a dictionary, so we can look up the routing
6013   // key via the top-level 'type' string value within the dictionary.
6014   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
6015   if (!dictionary)
6016     return false;
6017 
6018   // Grab the async structured type name (i.e. the feature/plugin name).
6019   ConstString type_name;
6020   if (!dictionary->GetValueForKeyAsString("type", type_name))
6021     return false;
6022 
6023   // Check if there's a plugin registered for this type name.
6024   auto find_it = m_structured_data_plugin_map.find(type_name);
6025   if (find_it == m_structured_data_plugin_map.end()) {
6026     // We don't have a mapping for this structured data type.
6027     return false;
6028   }
6029 
6030   // Route the structured data to the plugin.
6031   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6032   return true;
6033 }
6034 
6035 Status Process::UpdateAutomaticSignalFiltering() {
6036   // Default implementation does nothign.
6037   // No automatic signal filtering to speak of.
6038   return Status();
6039 }
6040 
6041 UtilityFunction *Process::GetLoadImageUtilityFunction(
6042     Platform *platform,
6043     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6044   if (platform != GetTarget().GetPlatform().get())
6045     return nullptr;
6046   llvm::call_once(m_dlopen_utility_func_flag_once,
6047                   [&] { m_dlopen_utility_func_up = factory(); });
6048   return m_dlopen_utility_func_up.get();
6049 }
6050 
6051 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6052   if (!IsLiveDebugSession())
6053     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6054                                    "Can't trace a non-live process.");
6055   return llvm::make_error<UnimplementedError>();
6056 }
6057 
6058 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6059                                        addr_t &returned_func,
6060                                        bool trap_exceptions) {
6061   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6062   if (thread == nullptr || address == nullptr)
6063     return false;
6064 
6065   EvaluateExpressionOptions options;
6066   options.SetStopOthers(true);
6067   options.SetUnwindOnError(true);
6068   options.SetIgnoreBreakpoints(true);
6069   options.SetTryAllThreads(true);
6070   options.SetDebug(false);
6071   options.SetTimeout(GetUtilityExpressionTimeout());
6072   options.SetTrapExceptions(trap_exceptions);
6073 
6074   auto type_system_or_err =
6075       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6076   if (!type_system_or_err) {
6077     llvm::consumeError(type_system_or_err.takeError());
6078     return false;
6079   }
6080   CompilerType void_ptr_type =
6081       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6082   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6083       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6084   if (call_plan_sp) {
6085     DiagnosticManager diagnostics;
6086 
6087     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6088     if (frame) {
6089       ExecutionContext exe_ctx;
6090       frame->CalculateExecutionContext(exe_ctx);
6091       ExpressionResults result =
6092           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6093       if (result == eExpressionCompleted) {
6094         returned_func =
6095             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6096                 LLDB_INVALID_ADDRESS);
6097 
6098         if (GetAddressByteSize() == 4) {
6099           if (returned_func == UINT32_MAX)
6100             return false;
6101         } else if (GetAddressByteSize() == 8) {
6102           if (returned_func == UINT64_MAX)
6103             return false;
6104         }
6105         return true;
6106       }
6107     }
6108   }
6109 
6110   return false;
6111 }
6112 
6113 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6114   Architecture *arch = GetTarget().GetArchitecturePlugin();
6115   const MemoryTagManager *tag_manager =
6116       arch ? arch->GetMemoryTagManager() : nullptr;
6117   if (!arch || !tag_manager) {
6118     return llvm::createStringError(
6119         llvm::inconvertibleErrorCode(),
6120         "This architecture does not support memory tagging");
6121   }
6122 
6123   if (!SupportsMemoryTagging()) {
6124     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6125                                    "Process does not support memory tagging");
6126   }
6127 
6128   return tag_manager;
6129 }
6130 
6131 llvm::Expected<std::vector<lldb::addr_t>>
6132 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6133   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6134       GetMemoryTagManager();
6135   if (!tag_manager_or_err)
6136     return tag_manager_or_err.takeError();
6137 
6138   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6139   llvm::Expected<std::vector<uint8_t>> tag_data =
6140       DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6141   if (!tag_data)
6142     return tag_data.takeError();
6143 
6144   return tag_manager->UnpackTagsData(*tag_data,
6145                                      len / tag_manager->GetGranuleSize());
6146 }
6147 
6148 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6149                                 const std::vector<lldb::addr_t> &tags) {
6150   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6151       GetMemoryTagManager();
6152   if (!tag_manager_or_err)
6153     return Status(tag_manager_or_err.takeError());
6154 
6155   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6156   llvm::Expected<std::vector<uint8_t>> packed_tags =
6157       tag_manager->PackTags(tags);
6158   if (!packed_tags) {
6159     return Status(packed_tags.takeError());
6160   }
6161 
6162   return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6163                            *packed_tags);
6164 }
6165