1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/ADT/ScopeExit.h" 14 #include "llvm/Support/ScopedPrinter.h" 15 #include "llvm/Support/Threading.h" 16 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/DynamicCheckerFunctions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/AssertFrameRecognizer.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/Language.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/ThreadPlanCallFunction.h" 64 #include "lldb/Target/ThreadPlanStack.h" 65 #include "lldb/Target/UnixSignals.h" 66 #include "lldb/Utility/Event.h" 67 #include "lldb/Utility/Log.h" 68 #include "lldb/Utility/NameMatches.h" 69 #include "lldb/Utility/ProcessInfo.h" 70 #include "lldb/Utility/SelectHelper.h" 71 #include "lldb/Utility/State.h" 72 #include "lldb/Utility/Timer.h" 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace std::chrono; 77 78 // Comment out line below to disable memory caching, overriding the process 79 // setting target.process.disable-memory-cache 80 #define ENABLE_MEMORY_CACHING 81 82 #ifdef ENABLE_MEMORY_CACHING 83 #define DISABLE_MEM_CACHE_DEFAULT false 84 #else 85 #define DISABLE_MEM_CACHE_DEFAULT true 86 #endif 87 88 class ProcessOptionValueProperties 89 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 90 public: 91 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 92 93 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 94 bool will_modify, 95 uint32_t idx) const override { 96 // When getting the value for a key from the process options, we will 97 // always try and grab the setting from the current process if there is 98 // one. Else we just use the one from this instance. 99 if (exe_ctx) { 100 Process *process = exe_ctx->GetProcessPtr(); 101 if (process) { 102 ProcessOptionValueProperties *instance_properties = 103 static_cast<ProcessOptionValueProperties *>( 104 process->GetValueProperties().get()); 105 if (this != instance_properties) 106 return instance_properties->ProtectedGetPropertyAtIndex(idx); 107 } 108 } 109 return ProtectedGetPropertyAtIndex(idx); 110 } 111 }; 112 113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 114 { 115 eFollowParent, 116 "parent", 117 "Continue tracing the parent process and detach the child.", 118 }, 119 { 120 eFollowChild, 121 "child", 122 "Trace the child process and detach the parent.", 123 }, 124 }; 125 126 #define LLDB_PROPERTIES_process 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process 131 #include "TargetPropertiesEnum.inc" 132 ePropertyExperimental, 133 }; 134 135 #define LLDB_PROPERTIES_process_experimental 136 #include "TargetProperties.inc" 137 138 enum { 139 #define LLDB_PROPERTIES_process_experimental 140 #include "TargetPropertiesEnum.inc" 141 }; 142 143 class ProcessExperimentalOptionValueProperties 144 : public Cloneable<ProcessExperimentalOptionValueProperties, 145 OptionValueProperties> { 146 public: 147 ProcessExperimentalOptionValueProperties() 148 : Cloneable( 149 ConstString(Properties::GetExperimentalSettingsName())) {} 150 }; 151 152 ProcessExperimentalProperties::ProcessExperimentalProperties() 153 : Properties(OptionValuePropertiesSP( 154 new ProcessExperimentalOptionValueProperties())) { 155 m_collection_sp->Initialize(g_process_experimental_properties); 156 } 157 158 ProcessProperties::ProcessProperties(lldb_private::Process *process) 159 : Properties(), 160 m_process(process) // Can be nullptr for global ProcessProperties 161 { 162 if (process == nullptr) { 163 // Global process properties, set them up one time 164 m_collection_sp = 165 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 166 m_collection_sp->Initialize(g_process_properties); 167 m_collection_sp->AppendProperty( 168 ConstString("thread"), ConstString("Settings specific to threads."), 169 true, Thread::GetGlobalProperties().GetValueProperties()); 170 } else { 171 m_collection_sp = 172 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 173 m_collection_sp->SetValueChangedCallback( 174 ePropertyPythonOSPluginPath, 175 [this] { m_process->LoadOperatingSystemPlugin(true); }); 176 } 177 178 m_experimental_properties_up = 179 std::make_unique<ProcessExperimentalProperties>(); 180 m_collection_sp->AppendProperty( 181 ConstString(Properties::GetExperimentalSettingsName()), 182 ConstString("Experimental settings - setting these won't produce " 183 "errors if the setting is not present."), 184 true, m_experimental_properties_up->GetValueProperties()); 185 } 186 187 ProcessProperties::~ProcessProperties() = default; 188 189 bool ProcessProperties::GetDisableMemoryCache() const { 190 const uint32_t idx = ePropertyDisableMemCache; 191 return m_collection_sp->GetPropertyAtIndexAsBoolean( 192 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 193 } 194 195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 196 const uint32_t idx = ePropertyMemCacheLineSize; 197 return m_collection_sp->GetPropertyAtIndexAsUInt64( 198 nullptr, idx, g_process_properties[idx].default_uint_value); 199 } 200 201 Args ProcessProperties::GetExtraStartupCommands() const { 202 Args args; 203 const uint32_t idx = ePropertyExtraStartCommand; 204 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 205 return args; 206 } 207 208 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 209 const uint32_t idx = ePropertyExtraStartCommand; 210 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 211 } 212 213 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 214 const uint32_t idx = ePropertyPythonOSPluginPath; 215 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 216 } 217 218 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 219 const uint32_t idx = ePropertyVirtualAddressableBits; 220 return m_collection_sp->GetPropertyAtIndexAsUInt64( 221 nullptr, idx, g_process_properties[idx].default_uint_value); 222 } 223 224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 225 const uint32_t idx = ePropertyVirtualAddressableBits; 226 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 227 } 228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 229 const uint32_t idx = ePropertyPythonOSPluginPath; 230 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 231 } 232 233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 234 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 235 return m_collection_sp->GetPropertyAtIndexAsBoolean( 236 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 237 } 238 239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 240 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 241 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 242 } 243 244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 245 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 246 return m_collection_sp->GetPropertyAtIndexAsBoolean( 247 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 248 } 249 250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 251 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 252 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 253 } 254 255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 256 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 257 return m_collection_sp->GetPropertyAtIndexAsBoolean( 258 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 259 } 260 261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 262 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 263 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 264 } 265 266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 267 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 268 return m_collection_sp->GetPropertyAtIndexAsBoolean( 269 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 270 } 271 272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 273 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 274 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 275 m_process->Flush(); 276 } 277 278 bool ProcessProperties::GetDetachKeepsStopped() const { 279 const uint32_t idx = ePropertyDetachKeepsStopped; 280 return m_collection_sp->GetPropertyAtIndexAsBoolean( 281 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 282 } 283 284 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 285 const uint32_t idx = ePropertyDetachKeepsStopped; 286 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 287 } 288 289 bool ProcessProperties::GetWarningsOptimization() const { 290 const uint32_t idx = ePropertyWarningOptimization; 291 return m_collection_sp->GetPropertyAtIndexAsBoolean( 292 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 293 } 294 295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 296 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 297 return m_collection_sp->GetPropertyAtIndexAsBoolean( 298 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 299 } 300 301 bool ProcessProperties::GetStopOnExec() const { 302 const uint32_t idx = ePropertyStopOnExec; 303 return m_collection_sp->GetPropertyAtIndexAsBoolean( 304 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 305 } 306 307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 308 const uint32_t idx = ePropertyUtilityExpressionTimeout; 309 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 310 nullptr, idx, g_process_properties[idx].default_uint_value); 311 return std::chrono::seconds(value); 312 } 313 314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 315 const uint32_t idx = ePropertyInterruptTimeout; 316 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 317 nullptr, idx, g_process_properties[idx].default_uint_value); 318 return std::chrono::seconds(value); 319 } 320 321 bool ProcessProperties::GetSteppingRunsAllThreads() const { 322 const uint32_t idx = ePropertySteppingRunsAllThreads; 323 return m_collection_sp->GetPropertyAtIndexAsBoolean( 324 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 325 } 326 327 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 328 const bool fail_value = true; 329 const Property *exp_property = 330 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 331 OptionValueProperties *exp_values = 332 exp_property->GetValue()->GetAsProperties(); 333 if (!exp_values) 334 return fail_value; 335 336 return exp_values->GetPropertyAtIndexAsBoolean( 337 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 338 } 339 340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 341 const Property *exp_property = 342 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 343 OptionValueProperties *exp_values = 344 exp_property->GetValue()->GetAsProperties(); 345 if (exp_values) 346 exp_values->SetPropertyAtIndexAsBoolean( 347 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 348 } 349 350 FollowForkMode ProcessProperties::GetFollowForkMode() const { 351 const uint32_t idx = ePropertyFollowForkMode; 352 return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration( 353 nullptr, idx, g_process_properties[idx].default_uint_value); 354 } 355 356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 357 llvm::StringRef plugin_name, 358 ListenerSP listener_sp, 359 const FileSpec *crash_file_path, 360 bool can_connect) { 361 static uint32_t g_process_unique_id = 0; 362 363 ProcessSP process_sp; 364 ProcessCreateInstance create_callback = nullptr; 365 if (!plugin_name.empty()) { 366 create_callback = 367 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); 368 if (create_callback) { 369 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 370 can_connect); 371 if (process_sp) { 372 if (process_sp->CanDebug(target_sp, true)) { 373 process_sp->m_process_unique_id = ++g_process_unique_id; 374 } else 375 process_sp.reset(); 376 } 377 } 378 } else { 379 for (uint32_t idx = 0; 380 (create_callback = 381 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 382 ++idx) { 383 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 384 can_connect); 385 if (process_sp) { 386 if (process_sp->CanDebug(target_sp, false)) { 387 process_sp->m_process_unique_id = ++g_process_unique_id; 388 break; 389 } else 390 process_sp.reset(); 391 } 392 } 393 } 394 return process_sp; 395 } 396 397 ConstString &Process::GetStaticBroadcasterClass() { 398 static ConstString class_name("lldb.process"); 399 return class_name; 400 } 401 402 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 403 : Process(target_sp, listener_sp, 404 UnixSignals::Create(HostInfo::GetArchitecture())) { 405 // This constructor just delegates to the full Process constructor, 406 // defaulting to using the Host's UnixSignals. 407 } 408 409 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 410 const UnixSignalsSP &unix_signals_sp) 411 : ProcessProperties(this), 412 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 413 Process::GetStaticBroadcasterClass().AsCString()), 414 m_target_wp(target_sp), m_public_state(eStateUnloaded), 415 m_private_state(eStateUnloaded), 416 m_private_state_broadcaster(nullptr, 417 "lldb.process.internal_state_broadcaster"), 418 m_private_state_control_broadcaster( 419 nullptr, "lldb.process.internal_state_control_broadcaster"), 420 m_private_state_listener_sp( 421 Listener::MakeListener("lldb.process.internal_state_listener")), 422 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 423 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 424 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 425 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 426 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 427 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 428 m_breakpoint_site_list(), m_dynamic_checkers_up(), 429 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 430 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 431 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 432 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 433 m_memory_cache(*this), m_allocated_memory_cache(*this), 434 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 435 m_private_run_lock(), m_finalizing(false), 436 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 437 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 438 m_can_interpret_function_calls(false), m_warnings_issued(), 439 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 440 CheckInWithManager(); 441 442 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 443 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 444 445 if (!m_unix_signals_sp) 446 m_unix_signals_sp = std::make_shared<UnixSignals>(); 447 448 SetEventName(eBroadcastBitStateChanged, "state-changed"); 449 SetEventName(eBroadcastBitInterrupt, "interrupt"); 450 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 451 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 452 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 453 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 454 455 m_private_state_control_broadcaster.SetEventName( 456 eBroadcastInternalStateControlStop, "control-stop"); 457 m_private_state_control_broadcaster.SetEventName( 458 eBroadcastInternalStateControlPause, "control-pause"); 459 m_private_state_control_broadcaster.SetEventName( 460 eBroadcastInternalStateControlResume, "control-resume"); 461 462 m_listener_sp->StartListeningForEvents( 463 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 464 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 465 eBroadcastBitProfileData | eBroadcastBitStructuredData); 466 467 m_private_state_listener_sp->StartListeningForEvents( 468 &m_private_state_broadcaster, 469 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 470 471 m_private_state_listener_sp->StartListeningForEvents( 472 &m_private_state_control_broadcaster, 473 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 474 eBroadcastInternalStateControlResume); 475 // We need something valid here, even if just the default UnixSignalsSP. 476 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 477 478 // Allow the platform to override the default cache line size 479 OptionValueSP value_sp = 480 m_collection_sp 481 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 482 ->GetValue(); 483 uint32_t platform_cache_line_size = 484 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 485 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 486 value_sp->SetUInt64Value(platform_cache_line_size); 487 488 RegisterAssertFrameRecognizer(this); 489 } 490 491 Process::~Process() { 492 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 493 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 494 StopPrivateStateThread(); 495 496 // ThreadList::Clear() will try to acquire this process's mutex, so 497 // explicitly clear the thread list here to ensure that the mutex is not 498 // destroyed before the thread list. 499 m_thread_list.Clear(); 500 } 501 502 ProcessProperties &Process::GetGlobalProperties() { 503 // NOTE: intentional leak so we don't crash if global destructor chain gets 504 // called as other threads still use the result of this function 505 static ProcessProperties *g_settings_ptr = 506 new ProcessProperties(nullptr); 507 return *g_settings_ptr; 508 } 509 510 void Process::Finalize() { 511 if (m_finalizing.exchange(true)) 512 return; 513 514 // Destroy the process. This will call the virtual function DoDestroy under 515 // the hood, giving our derived class a chance to do the ncessary tear down. 516 DestroyImpl(false); 517 518 // Clear our broadcaster before we proceed with destroying 519 Broadcaster::Clear(); 520 521 // Do any cleanup needed prior to being destructed... Subclasses that 522 // override this method should call this superclass method as well. 523 524 // We need to destroy the loader before the derived Process class gets 525 // destroyed since it is very likely that undoing the loader will require 526 // access to the real process. 527 m_dynamic_checkers_up.reset(); 528 m_abi_sp.reset(); 529 m_os_up.reset(); 530 m_system_runtime_up.reset(); 531 m_dyld_up.reset(); 532 m_jit_loaders_up.reset(); 533 m_thread_plans.Clear(); 534 m_thread_list_real.Destroy(); 535 m_thread_list.Destroy(); 536 m_extended_thread_list.Destroy(); 537 m_queue_list.Clear(); 538 m_queue_list_stop_id = 0; 539 std::vector<Notifications> empty_notifications; 540 m_notifications.swap(empty_notifications); 541 m_image_tokens.clear(); 542 m_memory_cache.Clear(); 543 m_allocated_memory_cache.Clear(); 544 { 545 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 546 m_language_runtimes.clear(); 547 } 548 m_instrumentation_runtimes.clear(); 549 m_next_event_action_up.reset(); 550 // Clear the last natural stop ID since it has a strong reference to this 551 // process 552 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 553 //#ifdef LLDB_CONFIGURATION_DEBUG 554 // StreamFile s(stdout, false); 555 // EventSP event_sp; 556 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 557 // { 558 // event_sp->Dump (&s); 559 // s.EOL(); 560 // } 561 //#endif 562 // We have to be very careful here as the m_private_state_listener might 563 // contain events that have ProcessSP values in them which can keep this 564 // process around forever. These events need to be cleared out. 565 m_private_state_listener_sp->Clear(); 566 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 567 m_public_run_lock.SetStopped(); 568 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 569 m_private_run_lock.SetStopped(); 570 m_structured_data_plugin_map.clear(); 571 } 572 573 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 574 m_notifications.push_back(callbacks); 575 if (callbacks.initialize != nullptr) 576 callbacks.initialize(callbacks.baton, this); 577 } 578 579 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 580 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 581 for (pos = m_notifications.begin(); pos != end; ++pos) { 582 if (pos->baton == callbacks.baton && 583 pos->initialize == callbacks.initialize && 584 pos->process_state_changed == callbacks.process_state_changed) { 585 m_notifications.erase(pos); 586 return true; 587 } 588 } 589 return false; 590 } 591 592 void Process::SynchronouslyNotifyStateChanged(StateType state) { 593 std::vector<Notifications>::iterator notification_pos, 594 notification_end = m_notifications.end(); 595 for (notification_pos = m_notifications.begin(); 596 notification_pos != notification_end; ++notification_pos) { 597 if (notification_pos->process_state_changed) 598 notification_pos->process_state_changed(notification_pos->baton, this, 599 state); 600 } 601 } 602 603 // FIXME: We need to do some work on events before the general Listener sees 604 // them. 605 // For instance if we are continuing from a breakpoint, we need to ensure that 606 // we do the little "insert real insn, step & stop" trick. But we can't do 607 // that when the event is delivered by the broadcaster - since that is done on 608 // the thread that is waiting for new events, so if we needed more than one 609 // event for our handling, we would stall. So instead we do it when we fetch 610 // the event off of the queue. 611 // 612 613 StateType Process::GetNextEvent(EventSP &event_sp) { 614 StateType state = eStateInvalid; 615 616 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 617 std::chrono::seconds(0)) && 618 event_sp) 619 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 620 621 return state; 622 } 623 624 void Process::SyncIOHandler(uint32_t iohandler_id, 625 const Timeout<std::micro> &timeout) { 626 // don't sync (potentially context switch) in case where there is no process 627 // IO 628 if (!m_process_input_reader) 629 return; 630 631 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 632 633 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 634 if (Result) { 635 LLDB_LOG( 636 log, 637 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 638 iohandler_id, *Result); 639 } else { 640 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 641 iohandler_id); 642 } 643 } 644 645 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 646 EventSP *event_sp_ptr, bool wait_always, 647 ListenerSP hijack_listener_sp, 648 Stream *stream, bool use_run_lock) { 649 // We can't just wait for a "stopped" event, because the stopped event may 650 // have restarted the target. We have to actually check each event, and in 651 // the case of a stopped event check the restarted flag on the event. 652 if (event_sp_ptr) 653 event_sp_ptr->reset(); 654 StateType state = GetState(); 655 // If we are exited or detached, we won't ever get back to any other valid 656 // state... 657 if (state == eStateDetached || state == eStateExited) 658 return state; 659 660 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 661 LLDB_LOG(log, "timeout = {0}", timeout); 662 663 if (!wait_always && StateIsStoppedState(state, true) && 664 StateIsStoppedState(GetPrivateState(), true)) { 665 LLDB_LOGF(log, 666 "Process::%s returning without waiting for events; process " 667 "private and public states are already 'stopped'.", 668 __FUNCTION__); 669 // We need to toggle the run lock as this won't get done in 670 // SetPublicState() if the process is hijacked. 671 if (hijack_listener_sp && use_run_lock) 672 m_public_run_lock.SetStopped(); 673 return state; 674 } 675 676 while (state != eStateInvalid) { 677 EventSP event_sp; 678 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 679 if (event_sp_ptr && event_sp) 680 *event_sp_ptr = event_sp; 681 682 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 683 Process::HandleProcessStateChangedEvent(event_sp, stream, 684 pop_process_io_handler); 685 686 switch (state) { 687 case eStateCrashed: 688 case eStateDetached: 689 case eStateExited: 690 case eStateUnloaded: 691 // We need to toggle the run lock as this won't get done in 692 // SetPublicState() if the process is hijacked. 693 if (hijack_listener_sp && use_run_lock) 694 m_public_run_lock.SetStopped(); 695 return state; 696 case eStateStopped: 697 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 698 continue; 699 else { 700 // We need to toggle the run lock as this won't get done in 701 // SetPublicState() if the process is hijacked. 702 if (hijack_listener_sp && use_run_lock) 703 m_public_run_lock.SetStopped(); 704 return state; 705 } 706 default: 707 continue; 708 } 709 } 710 return state; 711 } 712 713 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 714 Stream *stream, 715 bool &pop_process_io_handler) { 716 const bool handle_pop = pop_process_io_handler; 717 718 pop_process_io_handler = false; 719 ProcessSP process_sp = 720 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 721 722 if (!process_sp) 723 return false; 724 725 StateType event_state = 726 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 727 if (event_state == eStateInvalid) 728 return false; 729 730 switch (event_state) { 731 case eStateInvalid: 732 case eStateUnloaded: 733 case eStateAttaching: 734 case eStateLaunching: 735 case eStateStepping: 736 case eStateDetached: 737 if (stream) 738 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 739 StateAsCString(event_state)); 740 if (event_state == eStateDetached) 741 pop_process_io_handler = true; 742 break; 743 744 case eStateConnected: 745 case eStateRunning: 746 // Don't be chatty when we run... 747 break; 748 749 case eStateExited: 750 if (stream) 751 process_sp->GetStatus(*stream); 752 pop_process_io_handler = true; 753 break; 754 755 case eStateStopped: 756 case eStateCrashed: 757 case eStateSuspended: 758 // Make sure the program hasn't been auto-restarted: 759 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 760 if (stream) { 761 size_t num_reasons = 762 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 763 if (num_reasons > 0) { 764 // FIXME: Do we want to report this, or would that just be annoyingly 765 // chatty? 766 if (num_reasons == 1) { 767 const char *reason = 768 Process::ProcessEventData::GetRestartedReasonAtIndex( 769 event_sp.get(), 0); 770 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 771 process_sp->GetID(), 772 reason ? reason : "<UNKNOWN REASON>"); 773 } else { 774 stream->Printf("Process %" PRIu64 775 " stopped and restarted, reasons:\n", 776 process_sp->GetID()); 777 778 for (size_t i = 0; i < num_reasons; i++) { 779 const char *reason = 780 Process::ProcessEventData::GetRestartedReasonAtIndex( 781 event_sp.get(), i); 782 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 783 } 784 } 785 } 786 } 787 } else { 788 StopInfoSP curr_thread_stop_info_sp; 789 // Lock the thread list so it doesn't change on us, this is the scope for 790 // the locker: 791 { 792 ThreadList &thread_list = process_sp->GetThreadList(); 793 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 794 795 ThreadSP curr_thread(thread_list.GetSelectedThread()); 796 ThreadSP thread; 797 StopReason curr_thread_stop_reason = eStopReasonInvalid; 798 bool prefer_curr_thread = false; 799 if (curr_thread && curr_thread->IsValid()) { 800 curr_thread_stop_reason = curr_thread->GetStopReason(); 801 switch (curr_thread_stop_reason) { 802 case eStopReasonNone: 803 case eStopReasonInvalid: 804 // Don't prefer the current thread if it didn't stop for a reason. 805 break; 806 case eStopReasonSignal: { 807 // We need to do the same computation we do for other threads 808 // below in case the current thread happens to be the one that 809 // stopped for the no-stop signal. 810 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 811 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 812 prefer_curr_thread = true; 813 } break; 814 default: 815 prefer_curr_thread = true; 816 break; 817 } 818 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 819 } 820 821 if (!prefer_curr_thread) { 822 // Prefer a thread that has just completed its plan over another 823 // thread as current thread. 824 ThreadSP plan_thread; 825 ThreadSP other_thread; 826 827 const size_t num_threads = thread_list.GetSize(); 828 size_t i; 829 for (i = 0; i < num_threads; ++i) { 830 thread = thread_list.GetThreadAtIndex(i); 831 StopReason thread_stop_reason = thread->GetStopReason(); 832 switch (thread_stop_reason) { 833 case eStopReasonInvalid: 834 case eStopReasonNone: 835 break; 836 837 case eStopReasonSignal: { 838 // Don't select a signal thread if we weren't going to stop at 839 // that signal. We have to have had another reason for stopping 840 // here, and the user doesn't want to see this thread. 841 uint64_t signo = thread->GetStopInfo()->GetValue(); 842 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 843 if (!other_thread) 844 other_thread = thread; 845 } 846 break; 847 } 848 case eStopReasonTrace: 849 case eStopReasonBreakpoint: 850 case eStopReasonWatchpoint: 851 case eStopReasonException: 852 case eStopReasonExec: 853 case eStopReasonFork: 854 case eStopReasonVFork: 855 case eStopReasonVForkDone: 856 case eStopReasonThreadExiting: 857 case eStopReasonInstrumentation: 858 case eStopReasonProcessorTrace: 859 if (!other_thread) 860 other_thread = thread; 861 break; 862 case eStopReasonPlanComplete: 863 if (!plan_thread) 864 plan_thread = thread; 865 break; 866 } 867 } 868 if (plan_thread) 869 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 870 else if (other_thread) 871 thread_list.SetSelectedThreadByID(other_thread->GetID()); 872 else { 873 if (curr_thread && curr_thread->IsValid()) 874 thread = curr_thread; 875 else 876 thread = thread_list.GetThreadAtIndex(0); 877 878 if (thread) 879 thread_list.SetSelectedThreadByID(thread->GetID()); 880 } 881 } 882 } 883 // Drop the ThreadList mutex by here, since GetThreadStatus below might 884 // have to run code, e.g. for Data formatters, and if we hold the 885 // ThreadList mutex, then the process is going to have a hard time 886 // restarting the process. 887 if (stream) { 888 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 889 if (debugger.GetTargetList().GetSelectedTarget().get() == 890 &process_sp->GetTarget()) { 891 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 892 893 if (!thread_sp || !thread_sp->IsValid()) 894 return false; 895 896 const bool only_threads_with_stop_reason = true; 897 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 898 const uint32_t num_frames = 1; 899 const uint32_t num_frames_with_source = 1; 900 const bool stop_format = true; 901 902 process_sp->GetStatus(*stream); 903 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 904 start_frame, num_frames, 905 num_frames_with_source, 906 stop_format); 907 if (curr_thread_stop_info_sp) { 908 lldb::addr_t crashing_address; 909 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 910 curr_thread_stop_info_sp, &crashing_address); 911 if (valobj_sp) { 912 const ValueObject::GetExpressionPathFormat format = 913 ValueObject::GetExpressionPathFormat:: 914 eGetExpressionPathFormatHonorPointers; 915 stream->PutCString("Likely cause: "); 916 valobj_sp->GetExpressionPath(*stream, format); 917 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 918 } 919 } 920 } else { 921 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 922 process_sp->GetTarget().shared_from_this()); 923 if (target_idx != UINT32_MAX) 924 stream->Printf("Target %d: (", target_idx); 925 else 926 stream->Printf("Target <unknown index>: ("); 927 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 928 stream->Printf(") stopped.\n"); 929 } 930 } 931 932 // Pop the process IO handler 933 pop_process_io_handler = true; 934 } 935 break; 936 } 937 938 if (handle_pop && pop_process_io_handler) 939 process_sp->PopProcessIOHandler(); 940 941 return true; 942 } 943 944 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 945 if (listener_sp) { 946 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 947 eBroadcastBitInterrupt); 948 } else 949 return false; 950 } 951 952 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 953 954 StateType Process::GetStateChangedEvents(EventSP &event_sp, 955 const Timeout<std::micro> &timeout, 956 ListenerSP hijack_listener_sp) { 957 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 958 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 959 960 ListenerSP listener_sp = hijack_listener_sp; 961 if (!listener_sp) 962 listener_sp = m_listener_sp; 963 964 StateType state = eStateInvalid; 965 if (listener_sp->GetEventForBroadcasterWithType( 966 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 967 timeout)) { 968 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 969 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 970 else 971 LLDB_LOG(log, "got no event or was interrupted."); 972 } 973 974 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 975 return state; 976 } 977 978 Event *Process::PeekAtStateChangedEvents() { 979 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 980 981 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 982 983 Event *event_ptr; 984 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 985 this, eBroadcastBitStateChanged); 986 if (log) { 987 if (event_ptr) { 988 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 989 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 990 } else { 991 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 992 } 993 } 994 return event_ptr; 995 } 996 997 StateType 998 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 999 const Timeout<std::micro> &timeout) { 1000 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1001 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1002 1003 StateType state = eStateInvalid; 1004 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1005 &m_private_state_broadcaster, 1006 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1007 timeout)) 1008 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1009 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1010 1011 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1012 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1013 return state; 1014 } 1015 1016 bool Process::GetEventsPrivate(EventSP &event_sp, 1017 const Timeout<std::micro> &timeout, 1018 bool control_only) { 1019 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1020 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1021 1022 if (control_only) 1023 return m_private_state_listener_sp->GetEventForBroadcaster( 1024 &m_private_state_control_broadcaster, event_sp, timeout); 1025 else 1026 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1027 } 1028 1029 bool Process::IsRunning() const { 1030 return StateIsRunningState(m_public_state.GetValue()); 1031 } 1032 1033 int Process::GetExitStatus() { 1034 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1035 1036 if (m_public_state.GetValue() == eStateExited) 1037 return m_exit_status; 1038 return -1; 1039 } 1040 1041 const char *Process::GetExitDescription() { 1042 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1043 1044 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1045 return m_exit_string.c_str(); 1046 return nullptr; 1047 } 1048 1049 bool Process::SetExitStatus(int status, const char *cstr) { 1050 // Use a mutex to protect setting the exit status. 1051 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1052 1053 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1054 LIBLLDB_LOG_PROCESS)); 1055 LLDB_LOGF( 1056 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1057 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1058 1059 // We were already in the exited state 1060 if (m_private_state.GetValue() == eStateExited) { 1061 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1062 "state was already set to eStateExited"); 1063 return false; 1064 } 1065 1066 m_exit_status = status; 1067 if (cstr) 1068 m_exit_string = cstr; 1069 else 1070 m_exit_string.clear(); 1071 1072 // Clear the last natural stop ID since it has a strong reference to this 1073 // process 1074 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1075 1076 SetPrivateState(eStateExited); 1077 1078 // Allow subclasses to do some cleanup 1079 DidExit(); 1080 1081 return true; 1082 } 1083 1084 bool Process::IsAlive() { 1085 switch (m_private_state.GetValue()) { 1086 case eStateConnected: 1087 case eStateAttaching: 1088 case eStateLaunching: 1089 case eStateStopped: 1090 case eStateRunning: 1091 case eStateStepping: 1092 case eStateCrashed: 1093 case eStateSuspended: 1094 return true; 1095 default: 1096 return false; 1097 } 1098 } 1099 1100 // This static callback can be used to watch for local child processes on the 1101 // current host. The child process exits, the process will be found in the 1102 // global target list (we want to be completely sure that the 1103 // lldb_private::Process doesn't go away before we can deliver the signal. 1104 bool Process::SetProcessExitStatus( 1105 lldb::pid_t pid, bool exited, 1106 int signo, // Zero for no signal 1107 int exit_status // Exit value of process if signal is zero 1108 ) { 1109 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1110 LLDB_LOGF(log, 1111 "Process::SetProcessExitStatus (pid=%" PRIu64 1112 ", exited=%i, signal=%i, exit_status=%i)\n", 1113 pid, exited, signo, exit_status); 1114 1115 if (exited) { 1116 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1117 if (target_sp) { 1118 ProcessSP process_sp(target_sp->GetProcessSP()); 1119 if (process_sp) { 1120 const char *signal_cstr = nullptr; 1121 if (signo) 1122 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1123 1124 process_sp->SetExitStatus(exit_status, signal_cstr); 1125 } 1126 } 1127 return true; 1128 } 1129 return false; 1130 } 1131 1132 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1133 ThreadList &new_thread_list) { 1134 m_thread_plans.ClearThreadCache(); 1135 return DoUpdateThreadList(old_thread_list, new_thread_list); 1136 } 1137 1138 void Process::UpdateThreadListIfNeeded() { 1139 const uint32_t stop_id = GetStopID(); 1140 if (m_thread_list.GetSize(false) == 0 || 1141 stop_id != m_thread_list.GetStopID()) { 1142 bool clear_unused_threads = true; 1143 const StateType state = GetPrivateState(); 1144 if (StateIsStoppedState(state, true)) { 1145 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1146 m_thread_list.SetStopID(stop_id); 1147 1148 // m_thread_list does have its own mutex, but we need to hold onto the 1149 // mutex between the call to UpdateThreadList(...) and the 1150 // os->UpdateThreadList(...) so it doesn't change on us 1151 ThreadList &old_thread_list = m_thread_list; 1152 ThreadList real_thread_list(this); 1153 ThreadList new_thread_list(this); 1154 // Always update the thread list with the protocol specific thread list, 1155 // but only update if "true" is returned 1156 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1157 // Don't call into the OperatingSystem to update the thread list if we 1158 // are shutting down, since that may call back into the SBAPI's, 1159 // requiring the API lock which is already held by whoever is shutting 1160 // us down, causing a deadlock. 1161 OperatingSystem *os = GetOperatingSystem(); 1162 if (os && !m_destroy_in_process) { 1163 // Clear any old backing threads where memory threads might have been 1164 // backed by actual threads from the lldb_private::Process subclass 1165 size_t num_old_threads = old_thread_list.GetSize(false); 1166 for (size_t i = 0; i < num_old_threads; ++i) 1167 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1168 // See if the OS plugin reports all threads. If it does, then 1169 // it is safe to clear unseen thread's plans here. Otherwise we 1170 // should preserve them in case they show up again: 1171 clear_unused_threads = GetOSPluginReportsAllThreads(); 1172 1173 // Turn off dynamic types to ensure we don't run any expressions. 1174 // Objective-C can run an expression to determine if a SBValue is a 1175 // dynamic type or not and we need to avoid this. OperatingSystem 1176 // plug-ins can't run expressions that require running code... 1177 1178 Target &target = GetTarget(); 1179 const lldb::DynamicValueType saved_prefer_dynamic = 1180 target.GetPreferDynamicValue(); 1181 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1182 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1183 1184 // Now let the OperatingSystem plug-in update the thread list 1185 1186 os->UpdateThreadList( 1187 old_thread_list, // Old list full of threads created by OS plug-in 1188 real_thread_list, // The actual thread list full of threads 1189 // created by each lldb_private::Process 1190 // subclass 1191 new_thread_list); // The new thread list that we will show to the 1192 // user that gets filled in 1193 1194 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1195 target.SetPreferDynamicValue(saved_prefer_dynamic); 1196 } else { 1197 // No OS plug-in, the new thread list is the same as the real thread 1198 // list. 1199 new_thread_list = real_thread_list; 1200 } 1201 1202 m_thread_list_real.Update(real_thread_list); 1203 m_thread_list.Update(new_thread_list); 1204 m_thread_list.SetStopID(stop_id); 1205 1206 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1207 // Clear any extended threads that we may have accumulated previously 1208 m_extended_thread_list.Clear(); 1209 m_extended_thread_stop_id = GetLastNaturalStopID(); 1210 1211 m_queue_list.Clear(); 1212 m_queue_list_stop_id = GetLastNaturalStopID(); 1213 } 1214 } 1215 // Now update the plan stack map. 1216 // If we do have an OS plugin, any absent real threads in the 1217 // m_thread_list have already been removed from the ThreadPlanStackMap. 1218 // So any remaining threads are OS Plugin threads, and those we want to 1219 // preserve in case they show up again. 1220 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1221 } 1222 } 1223 } 1224 1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1226 return m_thread_plans.Find(tid); 1227 } 1228 1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1230 return m_thread_plans.PrunePlansForTID(tid); 1231 } 1232 1233 void Process::PruneThreadPlans() { 1234 m_thread_plans.Update(GetThreadList(), true, false); 1235 } 1236 1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1238 lldb::DescriptionLevel desc_level, 1239 bool internal, bool condense_trivial, 1240 bool skip_unreported_plans) { 1241 return m_thread_plans.DumpPlansForTID( 1242 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1243 } 1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1245 bool internal, bool condense_trivial, 1246 bool skip_unreported_plans) { 1247 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1248 skip_unreported_plans); 1249 } 1250 1251 void Process::UpdateQueueListIfNeeded() { 1252 if (m_system_runtime_up) { 1253 if (m_queue_list.GetSize() == 0 || 1254 m_queue_list_stop_id != GetLastNaturalStopID()) { 1255 const StateType state = GetPrivateState(); 1256 if (StateIsStoppedState(state, true)) { 1257 m_system_runtime_up->PopulateQueueList(m_queue_list); 1258 m_queue_list_stop_id = GetLastNaturalStopID(); 1259 } 1260 } 1261 } 1262 } 1263 1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1265 OperatingSystem *os = GetOperatingSystem(); 1266 if (os) 1267 return os->CreateThread(tid, context); 1268 return ThreadSP(); 1269 } 1270 1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1272 return AssignIndexIDToThread(thread_id); 1273 } 1274 1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1276 return (m_thread_id_to_index_id_map.find(thread_id) != 1277 m_thread_id_to_index_id_map.end()); 1278 } 1279 1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1281 uint32_t result = 0; 1282 std::map<uint64_t, uint32_t>::iterator iterator = 1283 m_thread_id_to_index_id_map.find(thread_id); 1284 if (iterator == m_thread_id_to_index_id_map.end()) { 1285 result = ++m_thread_index_id; 1286 m_thread_id_to_index_id_map[thread_id] = result; 1287 } else { 1288 result = iterator->second; 1289 } 1290 1291 return result; 1292 } 1293 1294 StateType Process::GetState() { 1295 return m_public_state.GetValue(); 1296 } 1297 1298 void Process::SetPublicState(StateType new_state, bool restarted) { 1299 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1300 if (new_state_is_stopped) { 1301 // This will only set the time if the public stop time has no value, so 1302 // it is ok to call this multiple times. With a public stop we can't look 1303 // at the stop ID because many private stops might have happened, so we 1304 // can't check for a stop ID of zero. This allows the "statistics" command 1305 // to dump the time it takes to reach somewhere in your code, like a 1306 // breakpoint you set. 1307 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1308 } 1309 1310 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1311 LIBLLDB_LOG_PROCESS)); 1312 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1313 StateAsCString(new_state), restarted); 1314 const StateType old_state = m_public_state.GetValue(); 1315 m_public_state.SetValue(new_state); 1316 1317 // On the transition from Run to Stopped, we unlock the writer end of the run 1318 // lock. The lock gets locked in Resume, which is the public API to tell the 1319 // program to run. 1320 if (!StateChangedIsExternallyHijacked()) { 1321 if (new_state == eStateDetached) { 1322 LLDB_LOGF(log, 1323 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1324 StateAsCString(new_state)); 1325 m_public_run_lock.SetStopped(); 1326 } else { 1327 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1328 if ((old_state_is_stopped != new_state_is_stopped)) { 1329 if (new_state_is_stopped && !restarted) { 1330 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1331 StateAsCString(new_state)); 1332 m_public_run_lock.SetStopped(); 1333 } 1334 } 1335 } 1336 } 1337 } 1338 1339 Status Process::Resume() { 1340 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1341 LIBLLDB_LOG_PROCESS)); 1342 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1343 if (!m_public_run_lock.TrySetRunning()) { 1344 Status error("Resume request failed - process still running."); 1345 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1346 return error; 1347 } 1348 Status error = PrivateResume(); 1349 if (!error.Success()) { 1350 // Undo running state change 1351 m_public_run_lock.SetStopped(); 1352 } 1353 return error; 1354 } 1355 1356 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1357 1358 Status Process::ResumeSynchronous(Stream *stream) { 1359 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1360 LIBLLDB_LOG_PROCESS)); 1361 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1362 if (!m_public_run_lock.TrySetRunning()) { 1363 Status error("Resume request failed - process still running."); 1364 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1365 return error; 1366 } 1367 1368 ListenerSP listener_sp( 1369 Listener::MakeListener(g_resume_sync_name)); 1370 HijackProcessEvents(listener_sp); 1371 1372 Status error = PrivateResume(); 1373 if (error.Success()) { 1374 StateType state = WaitForProcessToStop(llvm::None, nullptr, true, 1375 listener_sp, stream); 1376 const bool must_be_alive = 1377 false; // eStateExited is ok, so this must be false 1378 if (!StateIsStoppedState(state, must_be_alive)) 1379 error.SetErrorStringWithFormat( 1380 "process not in stopped state after synchronous resume: %s", 1381 StateAsCString(state)); 1382 } else { 1383 // Undo running state change 1384 m_public_run_lock.SetStopped(); 1385 } 1386 1387 // Undo the hijacking of process events... 1388 RestoreProcessEvents(); 1389 1390 return error; 1391 } 1392 1393 bool Process::StateChangedIsExternallyHijacked() { 1394 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1395 const char *hijacking_name = GetHijackingListenerName(); 1396 if (hijacking_name && 1397 strcmp(hijacking_name, g_resume_sync_name)) 1398 return true; 1399 } 1400 return false; 1401 } 1402 1403 bool Process::StateChangedIsHijackedForSynchronousResume() { 1404 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1405 const char *hijacking_name = GetHijackingListenerName(); 1406 if (hijacking_name && 1407 strcmp(hijacking_name, g_resume_sync_name) == 0) 1408 return true; 1409 } 1410 return false; 1411 } 1412 1413 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1414 1415 void Process::SetPrivateState(StateType new_state) { 1416 if (m_finalizing) 1417 return; 1418 1419 Log *log(lldb_private::GetLogIfAnyCategoriesSet( 1420 LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND)); 1421 bool state_changed = false; 1422 1423 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1424 1425 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1426 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1427 1428 const StateType old_state = m_private_state.GetValueNoLock(); 1429 state_changed = old_state != new_state; 1430 1431 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1432 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1433 if (old_state_is_stopped != new_state_is_stopped) { 1434 if (new_state_is_stopped) 1435 m_private_run_lock.SetStopped(); 1436 else 1437 m_private_run_lock.SetRunning(); 1438 } 1439 1440 if (state_changed) { 1441 m_private_state.SetValueNoLock(new_state); 1442 EventSP event_sp( 1443 new Event(eBroadcastBitStateChanged, 1444 new ProcessEventData(shared_from_this(), new_state))); 1445 if (StateIsStoppedState(new_state, false)) { 1446 // Note, this currently assumes that all threads in the list stop when 1447 // the process stops. In the future we will want to support a debugging 1448 // model where some threads continue to run while others are stopped. 1449 // When that happens we will either need a way for the thread list to 1450 // identify which threads are stopping or create a special thread list 1451 // containing only threads which actually stopped. 1452 // 1453 // The process plugin is responsible for managing the actual behavior of 1454 // the threads and should have stopped any threads that are going to stop 1455 // before we get here. 1456 m_thread_list.DidStop(); 1457 1458 if (m_mod_id.BumpStopID() == 0) 1459 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1460 1461 if (!m_mod_id.IsLastResumeForUserExpression()) 1462 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1463 m_memory_cache.Clear(); 1464 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1465 StateAsCString(new_state), m_mod_id.GetStopID()); 1466 } 1467 1468 m_private_state_broadcaster.BroadcastEvent(event_sp); 1469 } else { 1470 LLDB_LOGF(log, 1471 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1472 StateAsCString(new_state)); 1473 } 1474 } 1475 1476 void Process::SetRunningUserExpression(bool on) { 1477 m_mod_id.SetRunningUserExpression(on); 1478 } 1479 1480 void Process::SetRunningUtilityFunction(bool on) { 1481 m_mod_id.SetRunningUtilityFunction(on); 1482 } 1483 1484 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1485 1486 const lldb::ABISP &Process::GetABI() { 1487 if (!m_abi_sp) 1488 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1489 return m_abi_sp; 1490 } 1491 1492 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1493 std::vector<LanguageRuntime *> language_runtimes; 1494 1495 if (m_finalizing) 1496 return language_runtimes; 1497 1498 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1499 // Before we pass off a copy of the language runtimes, we must make sure that 1500 // our collection is properly populated. It's possible that some of the 1501 // language runtimes were not loaded yet, either because nobody requested it 1502 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1503 // hadn't been loaded). 1504 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1505 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1506 language_runtimes.emplace_back(runtime); 1507 } 1508 1509 return language_runtimes; 1510 } 1511 1512 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1513 if (m_finalizing) 1514 return nullptr; 1515 1516 LanguageRuntime *runtime = nullptr; 1517 1518 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1519 LanguageRuntimeCollection::iterator pos; 1520 pos = m_language_runtimes.find(language); 1521 if (pos == m_language_runtimes.end() || !pos->second) { 1522 lldb::LanguageRuntimeSP runtime_sp( 1523 LanguageRuntime::FindPlugin(this, language)); 1524 1525 m_language_runtimes[language] = runtime_sp; 1526 runtime = runtime_sp.get(); 1527 } else 1528 runtime = pos->second.get(); 1529 1530 if (runtime) 1531 // It's possible that a language runtime can support multiple LanguageTypes, 1532 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1533 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1534 // primary language type and make sure that our runtime supports it. 1535 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1536 1537 return runtime; 1538 } 1539 1540 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1541 if (m_finalizing) 1542 return false; 1543 1544 if (in_value.IsDynamic()) 1545 return false; 1546 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1547 1548 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1549 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1550 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1551 } 1552 1553 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1554 if (runtime->CouldHaveDynamicValue(in_value)) 1555 return true; 1556 } 1557 1558 return false; 1559 } 1560 1561 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1562 m_dynamic_checkers_up.reset(dynamic_checkers); 1563 } 1564 1565 BreakpointSiteList &Process::GetBreakpointSiteList() { 1566 return m_breakpoint_site_list; 1567 } 1568 1569 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1570 return m_breakpoint_site_list; 1571 } 1572 1573 void Process::DisableAllBreakpointSites() { 1574 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1575 // bp_site->SetEnabled(true); 1576 DisableBreakpointSite(bp_site); 1577 }); 1578 } 1579 1580 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1581 Status error(DisableBreakpointSiteByID(break_id)); 1582 1583 if (error.Success()) 1584 m_breakpoint_site_list.Remove(break_id); 1585 1586 return error; 1587 } 1588 1589 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1590 Status error; 1591 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1592 if (bp_site_sp) { 1593 if (bp_site_sp->IsEnabled()) 1594 error = DisableBreakpointSite(bp_site_sp.get()); 1595 } else { 1596 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1597 break_id); 1598 } 1599 1600 return error; 1601 } 1602 1603 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1604 Status error; 1605 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1606 if (bp_site_sp) { 1607 if (!bp_site_sp->IsEnabled()) 1608 error = EnableBreakpointSite(bp_site_sp.get()); 1609 } else { 1610 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1611 break_id); 1612 } 1613 return error; 1614 } 1615 1616 lldb::break_id_t 1617 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1618 bool use_hardware) { 1619 addr_t load_addr = LLDB_INVALID_ADDRESS; 1620 1621 bool show_error = true; 1622 switch (GetState()) { 1623 case eStateInvalid: 1624 case eStateUnloaded: 1625 case eStateConnected: 1626 case eStateAttaching: 1627 case eStateLaunching: 1628 case eStateDetached: 1629 case eStateExited: 1630 show_error = false; 1631 break; 1632 1633 case eStateStopped: 1634 case eStateRunning: 1635 case eStateStepping: 1636 case eStateCrashed: 1637 case eStateSuspended: 1638 show_error = IsAlive(); 1639 break; 1640 } 1641 1642 // Reset the IsIndirect flag here, in case the location changes from pointing 1643 // to a indirect symbol to a regular symbol. 1644 owner->SetIsIndirect(false); 1645 1646 if (owner->ShouldResolveIndirectFunctions()) { 1647 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1648 if (symbol && symbol->IsIndirect()) { 1649 Status error; 1650 Address symbol_address = symbol->GetAddress(); 1651 load_addr = ResolveIndirectFunction(&symbol_address, error); 1652 if (!error.Success() && show_error) { 1653 GetTarget().GetDebugger().GetErrorStream().Printf( 1654 "warning: failed to resolve indirect function at 0x%" PRIx64 1655 " for breakpoint %i.%i: %s\n", 1656 symbol->GetLoadAddress(&GetTarget()), 1657 owner->GetBreakpoint().GetID(), owner->GetID(), 1658 error.AsCString() ? error.AsCString() : "unknown error"); 1659 return LLDB_INVALID_BREAK_ID; 1660 } 1661 Address resolved_address(load_addr); 1662 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1663 owner->SetIsIndirect(true); 1664 } else 1665 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1666 } else 1667 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1668 1669 if (load_addr != LLDB_INVALID_ADDRESS) { 1670 BreakpointSiteSP bp_site_sp; 1671 1672 // Look up this breakpoint site. If it exists, then add this new owner, 1673 // otherwise create a new breakpoint site and add it. 1674 1675 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1676 1677 if (bp_site_sp) { 1678 bp_site_sp->AddOwner(owner); 1679 owner->SetBreakpointSite(bp_site_sp); 1680 return bp_site_sp->GetID(); 1681 } else { 1682 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1683 load_addr, use_hardware)); 1684 if (bp_site_sp) { 1685 Status error = EnableBreakpointSite(bp_site_sp.get()); 1686 if (error.Success()) { 1687 owner->SetBreakpointSite(bp_site_sp); 1688 return m_breakpoint_site_list.Add(bp_site_sp); 1689 } else { 1690 if (show_error || use_hardware) { 1691 // Report error for setting breakpoint... 1692 GetTarget().GetDebugger().GetErrorStream().Printf( 1693 "warning: failed to set breakpoint site at 0x%" PRIx64 1694 " for breakpoint %i.%i: %s\n", 1695 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1696 error.AsCString() ? error.AsCString() : "unknown error"); 1697 } 1698 } 1699 } 1700 } 1701 } 1702 // We failed to enable the breakpoint 1703 return LLDB_INVALID_BREAK_ID; 1704 } 1705 1706 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1707 lldb::user_id_t owner_loc_id, 1708 BreakpointSiteSP &bp_site_sp) { 1709 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1710 if (num_owners == 0) { 1711 // Don't try to disable the site if we don't have a live process anymore. 1712 if (IsAlive()) 1713 DisableBreakpointSite(bp_site_sp.get()); 1714 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1715 } 1716 } 1717 1718 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1719 uint8_t *buf) const { 1720 size_t bytes_removed = 0; 1721 BreakpointSiteList bp_sites_in_range; 1722 1723 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1724 bp_sites_in_range)) { 1725 bp_sites_in_range.ForEach([bp_addr, size, 1726 buf](BreakpointSite *bp_site) -> void { 1727 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1728 addr_t intersect_addr; 1729 size_t intersect_size; 1730 size_t opcode_offset; 1731 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1732 &intersect_size, &opcode_offset)) { 1733 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1734 assert(bp_addr < intersect_addr + intersect_size && 1735 intersect_addr + intersect_size <= bp_addr + size); 1736 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1737 size_t buf_offset = intersect_addr - bp_addr; 1738 ::memcpy(buf + buf_offset, 1739 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1740 intersect_size); 1741 } 1742 } 1743 }); 1744 } 1745 return bytes_removed; 1746 } 1747 1748 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1749 PlatformSP platform_sp(GetTarget().GetPlatform()); 1750 if (platform_sp) 1751 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1752 return 0; 1753 } 1754 1755 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1756 Status error; 1757 assert(bp_site != nullptr); 1758 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1759 const addr_t bp_addr = bp_site->GetLoadAddress(); 1760 LLDB_LOGF( 1761 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1762 bp_site->GetID(), (uint64_t)bp_addr); 1763 if (bp_site->IsEnabled()) { 1764 LLDB_LOGF( 1765 log, 1766 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1767 " -- already enabled", 1768 bp_site->GetID(), (uint64_t)bp_addr); 1769 return error; 1770 } 1771 1772 if (bp_addr == LLDB_INVALID_ADDRESS) { 1773 error.SetErrorString("BreakpointSite contains an invalid load address."); 1774 return error; 1775 } 1776 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1777 // trap for the breakpoint site 1778 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1779 1780 if (bp_opcode_size == 0) { 1781 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1782 "returned zero, unable to get breakpoint " 1783 "trap for address 0x%" PRIx64, 1784 bp_addr); 1785 } else { 1786 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1787 1788 if (bp_opcode_bytes == nullptr) { 1789 error.SetErrorString( 1790 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1791 return error; 1792 } 1793 1794 // Save the original opcode by reading it 1795 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1796 error) == bp_opcode_size) { 1797 // Write a software breakpoint in place of the original opcode 1798 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1799 bp_opcode_size) { 1800 uint8_t verify_bp_opcode_bytes[64]; 1801 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1802 error) == bp_opcode_size) { 1803 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1804 bp_opcode_size) == 0) { 1805 bp_site->SetEnabled(true); 1806 bp_site->SetType(BreakpointSite::eSoftware); 1807 LLDB_LOGF(log, 1808 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1809 "addr = 0x%" PRIx64 " -- SUCCESS", 1810 bp_site->GetID(), (uint64_t)bp_addr); 1811 } else 1812 error.SetErrorString( 1813 "failed to verify the breakpoint trap in memory."); 1814 } else 1815 error.SetErrorString( 1816 "Unable to read memory to verify breakpoint trap."); 1817 } else 1818 error.SetErrorString("Unable to write breakpoint trap to memory."); 1819 } else 1820 error.SetErrorString("Unable to read memory at breakpoint address."); 1821 } 1822 if (log && error.Fail()) 1823 LLDB_LOGF( 1824 log, 1825 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1826 " -- FAILED: %s", 1827 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1828 return error; 1829 } 1830 1831 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1832 Status error; 1833 assert(bp_site != nullptr); 1834 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1835 addr_t bp_addr = bp_site->GetLoadAddress(); 1836 lldb::user_id_t breakID = bp_site->GetID(); 1837 LLDB_LOGF(log, 1838 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1839 ") addr = 0x%" PRIx64, 1840 breakID, (uint64_t)bp_addr); 1841 1842 if (bp_site->IsHardware()) { 1843 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1844 } else if (bp_site->IsEnabled()) { 1845 const size_t break_op_size = bp_site->GetByteSize(); 1846 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1847 if (break_op_size > 0) { 1848 // Clear a software breakpoint instruction 1849 uint8_t curr_break_op[8]; 1850 assert(break_op_size <= sizeof(curr_break_op)); 1851 bool break_op_found = false; 1852 1853 // Read the breakpoint opcode 1854 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1855 break_op_size) { 1856 bool verify = false; 1857 // Make sure the breakpoint opcode exists at this address 1858 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1859 break_op_found = true; 1860 // We found a valid breakpoint opcode at this address, now restore 1861 // the saved opcode. 1862 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1863 break_op_size, error) == break_op_size) { 1864 verify = true; 1865 } else 1866 error.SetErrorString( 1867 "Memory write failed when restoring original opcode."); 1868 } else { 1869 error.SetErrorString( 1870 "Original breakpoint trap is no longer in memory."); 1871 // Set verify to true and so we can check if the original opcode has 1872 // already been restored 1873 verify = true; 1874 } 1875 1876 if (verify) { 1877 uint8_t verify_opcode[8]; 1878 assert(break_op_size < sizeof(verify_opcode)); 1879 // Verify that our original opcode made it back to the inferior 1880 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1881 break_op_size) { 1882 // compare the memory we just read with the original opcode 1883 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1884 break_op_size) == 0) { 1885 // SUCCESS 1886 bp_site->SetEnabled(false); 1887 LLDB_LOGF(log, 1888 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1889 "addr = 0x%" PRIx64 " -- SUCCESS", 1890 bp_site->GetID(), (uint64_t)bp_addr); 1891 return error; 1892 } else { 1893 if (break_op_found) 1894 error.SetErrorString("Failed to restore original opcode."); 1895 } 1896 } else 1897 error.SetErrorString("Failed to read memory to verify that " 1898 "breakpoint trap was restored."); 1899 } 1900 } else 1901 error.SetErrorString( 1902 "Unable to read memory that should contain the breakpoint trap."); 1903 } 1904 } else { 1905 LLDB_LOGF( 1906 log, 1907 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1908 " -- already disabled", 1909 bp_site->GetID(), (uint64_t)bp_addr); 1910 return error; 1911 } 1912 1913 LLDB_LOGF( 1914 log, 1915 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1916 " -- FAILED: %s", 1917 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1918 return error; 1919 } 1920 1921 // Uncomment to verify memory caching works after making changes to caching 1922 // code 1923 //#define VERIFY_MEMORY_READS 1924 1925 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1926 error.Clear(); 1927 if (!GetDisableMemoryCache()) { 1928 #if defined(VERIFY_MEMORY_READS) 1929 // Memory caching is enabled, with debug verification 1930 1931 if (buf && size) { 1932 // Uncomment the line below to make sure memory caching is working. 1933 // I ran this through the test suite and got no assertions, so I am 1934 // pretty confident this is working well. If any changes are made to 1935 // memory caching, uncomment the line below and test your changes! 1936 1937 // Verify all memory reads by using the cache first, then redundantly 1938 // reading the same memory from the inferior and comparing to make sure 1939 // everything is exactly the same. 1940 std::string verify_buf(size, '\0'); 1941 assert(verify_buf.size() == size); 1942 const size_t cache_bytes_read = 1943 m_memory_cache.Read(this, addr, buf, size, error); 1944 Status verify_error; 1945 const size_t verify_bytes_read = 1946 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1947 verify_buf.size(), verify_error); 1948 assert(cache_bytes_read == verify_bytes_read); 1949 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1950 assert(verify_error.Success() == error.Success()); 1951 return cache_bytes_read; 1952 } 1953 return 0; 1954 #else // !defined(VERIFY_MEMORY_READS) 1955 // Memory caching is enabled, without debug verification 1956 1957 return m_memory_cache.Read(addr, buf, size, error); 1958 #endif // defined (VERIFY_MEMORY_READS) 1959 } else { 1960 // Memory caching is disabled 1961 1962 return ReadMemoryFromInferior(addr, buf, size, error); 1963 } 1964 } 1965 1966 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1967 Status &error) { 1968 char buf[256]; 1969 out_str.clear(); 1970 addr_t curr_addr = addr; 1971 while (true) { 1972 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1973 if (length == 0) 1974 break; 1975 out_str.append(buf, length); 1976 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1977 // to read some more characters 1978 if (length == sizeof(buf) - 1) 1979 curr_addr += length; 1980 else 1981 break; 1982 } 1983 return out_str.size(); 1984 } 1985 1986 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1987 Status &error, size_t type_width) { 1988 size_t total_bytes_read = 0; 1989 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1990 // Ensure a null terminator independent of the number of bytes that is 1991 // read. 1992 memset(dst, 0, max_bytes); 1993 size_t bytes_left = max_bytes - type_width; 1994 1995 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1996 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1997 "string with more than 4 bytes " 1998 "per character!"); 1999 2000 addr_t curr_addr = addr; 2001 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2002 char *curr_dst = dst; 2003 2004 error.Clear(); 2005 while (bytes_left > 0 && error.Success()) { 2006 addr_t cache_line_bytes_left = 2007 cache_line_size - (curr_addr % cache_line_size); 2008 addr_t bytes_to_read = 2009 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2010 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2011 2012 if (bytes_read == 0) 2013 break; 2014 2015 // Search for a null terminator of correct size and alignment in 2016 // bytes_read 2017 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2018 for (size_t i = aligned_start; 2019 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2020 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2021 error.Clear(); 2022 return i; 2023 } 2024 2025 total_bytes_read += bytes_read; 2026 curr_dst += bytes_read; 2027 curr_addr += bytes_read; 2028 bytes_left -= bytes_read; 2029 } 2030 } else { 2031 if (max_bytes) 2032 error.SetErrorString("invalid arguments"); 2033 } 2034 return total_bytes_read; 2035 } 2036 2037 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2038 // correct code to find null terminators. 2039 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2040 size_t dst_max_len, 2041 Status &result_error) { 2042 size_t total_cstr_len = 0; 2043 if (dst && dst_max_len) { 2044 result_error.Clear(); 2045 // NULL out everything just to be safe 2046 memset(dst, 0, dst_max_len); 2047 Status error; 2048 addr_t curr_addr = addr; 2049 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2050 size_t bytes_left = dst_max_len - 1; 2051 char *curr_dst = dst; 2052 2053 while (bytes_left > 0) { 2054 addr_t cache_line_bytes_left = 2055 cache_line_size - (curr_addr % cache_line_size); 2056 addr_t bytes_to_read = 2057 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2058 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2059 2060 if (bytes_read == 0) { 2061 result_error = error; 2062 dst[total_cstr_len] = '\0'; 2063 break; 2064 } 2065 const size_t len = strlen(curr_dst); 2066 2067 total_cstr_len += len; 2068 2069 if (len < bytes_to_read) 2070 break; 2071 2072 curr_dst += bytes_read; 2073 curr_addr += bytes_read; 2074 bytes_left -= bytes_read; 2075 } 2076 } else { 2077 if (dst == nullptr) 2078 result_error.SetErrorString("invalid arguments"); 2079 else 2080 result_error.Clear(); 2081 } 2082 return total_cstr_len; 2083 } 2084 2085 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2086 Status &error) { 2087 LLDB_SCOPED_TIMER(); 2088 2089 if (buf == nullptr || size == 0) 2090 return 0; 2091 2092 size_t bytes_read = 0; 2093 uint8_t *bytes = (uint8_t *)buf; 2094 2095 while (bytes_read < size) { 2096 const size_t curr_size = size - bytes_read; 2097 const size_t curr_bytes_read = 2098 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2099 bytes_read += curr_bytes_read; 2100 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2101 break; 2102 } 2103 2104 // Replace any software breakpoint opcodes that fall into this range back 2105 // into "buf" before we return 2106 if (bytes_read > 0) 2107 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2108 return bytes_read; 2109 } 2110 2111 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2112 size_t integer_byte_size, 2113 uint64_t fail_value, 2114 Status &error) { 2115 Scalar scalar; 2116 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2117 error)) 2118 return scalar.ULongLong(fail_value); 2119 return fail_value; 2120 } 2121 2122 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2123 size_t integer_byte_size, 2124 int64_t fail_value, 2125 Status &error) { 2126 Scalar scalar; 2127 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2128 error)) 2129 return scalar.SLongLong(fail_value); 2130 return fail_value; 2131 } 2132 2133 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2134 Scalar scalar; 2135 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2136 error)) 2137 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2138 return LLDB_INVALID_ADDRESS; 2139 } 2140 2141 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2142 Status &error) { 2143 Scalar scalar; 2144 const uint32_t addr_byte_size = GetAddressByteSize(); 2145 if (addr_byte_size <= 4) 2146 scalar = (uint32_t)ptr_value; 2147 else 2148 scalar = ptr_value; 2149 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2150 addr_byte_size; 2151 } 2152 2153 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2154 Status &error) { 2155 size_t bytes_written = 0; 2156 const uint8_t *bytes = (const uint8_t *)buf; 2157 2158 while (bytes_written < size) { 2159 const size_t curr_size = size - bytes_written; 2160 const size_t curr_bytes_written = DoWriteMemory( 2161 addr + bytes_written, bytes + bytes_written, curr_size, error); 2162 bytes_written += curr_bytes_written; 2163 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2164 break; 2165 } 2166 return bytes_written; 2167 } 2168 2169 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2170 Status &error) { 2171 #if defined(ENABLE_MEMORY_CACHING) 2172 m_memory_cache.Flush(addr, size); 2173 #endif 2174 2175 if (buf == nullptr || size == 0) 2176 return 0; 2177 2178 m_mod_id.BumpMemoryID(); 2179 2180 // We need to write any data that would go where any current software traps 2181 // (enabled software breakpoints) any software traps (breakpoints) that we 2182 // may have placed in our tasks memory. 2183 2184 BreakpointSiteList bp_sites_in_range; 2185 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2186 return WriteMemoryPrivate(addr, buf, size, error); 2187 2188 // No breakpoint sites overlap 2189 if (bp_sites_in_range.IsEmpty()) 2190 return WriteMemoryPrivate(addr, buf, size, error); 2191 2192 const uint8_t *ubuf = (const uint8_t *)buf; 2193 uint64_t bytes_written = 0; 2194 2195 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2196 &error](BreakpointSite *bp) -> void { 2197 if (error.Fail()) 2198 return; 2199 2200 if (bp->GetType() != BreakpointSite::eSoftware) 2201 return; 2202 2203 addr_t intersect_addr; 2204 size_t intersect_size; 2205 size_t opcode_offset; 2206 const bool intersects = bp->IntersectsRange( 2207 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2208 UNUSED_IF_ASSERT_DISABLED(intersects); 2209 assert(intersects); 2210 assert(addr <= intersect_addr && intersect_addr < addr + size); 2211 assert(addr < intersect_addr + intersect_size && 2212 intersect_addr + intersect_size <= addr + size); 2213 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2214 2215 // Check for bytes before this breakpoint 2216 const addr_t curr_addr = addr + bytes_written; 2217 if (intersect_addr > curr_addr) { 2218 // There are some bytes before this breakpoint that we need to just 2219 // write to memory 2220 size_t curr_size = intersect_addr - curr_addr; 2221 size_t curr_bytes_written = 2222 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2223 bytes_written += curr_bytes_written; 2224 if (curr_bytes_written != curr_size) { 2225 // We weren't able to write all of the requested bytes, we are 2226 // done looping and will return the number of bytes that we have 2227 // written so far. 2228 if (error.Success()) 2229 error.SetErrorToGenericError(); 2230 } 2231 } 2232 // Now write any bytes that would cover up any software breakpoints 2233 // directly into the breakpoint opcode buffer 2234 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2235 intersect_size); 2236 bytes_written += intersect_size; 2237 }); 2238 2239 // Write any remaining bytes after the last breakpoint if we have any left 2240 if (bytes_written < size) 2241 bytes_written += 2242 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2243 size - bytes_written, error); 2244 2245 return bytes_written; 2246 } 2247 2248 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2249 size_t byte_size, Status &error) { 2250 if (byte_size == UINT32_MAX) 2251 byte_size = scalar.GetByteSize(); 2252 if (byte_size > 0) { 2253 uint8_t buf[32]; 2254 const size_t mem_size = 2255 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2256 if (mem_size > 0) 2257 return WriteMemory(addr, buf, mem_size, error); 2258 else 2259 error.SetErrorString("failed to get scalar as memory data"); 2260 } else { 2261 error.SetErrorString("invalid scalar value"); 2262 } 2263 return 0; 2264 } 2265 2266 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2267 bool is_signed, Scalar &scalar, 2268 Status &error) { 2269 uint64_t uval = 0; 2270 if (byte_size == 0) { 2271 error.SetErrorString("byte size is zero"); 2272 } else if (byte_size & (byte_size - 1)) { 2273 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2274 byte_size); 2275 } else if (byte_size <= sizeof(uval)) { 2276 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2277 if (bytes_read == byte_size) { 2278 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2279 GetAddressByteSize()); 2280 lldb::offset_t offset = 0; 2281 if (byte_size <= 4) 2282 scalar = data.GetMaxU32(&offset, byte_size); 2283 else 2284 scalar = data.GetMaxU64(&offset, byte_size); 2285 if (is_signed) 2286 scalar.SignExtend(byte_size * 8); 2287 return bytes_read; 2288 } 2289 } else { 2290 error.SetErrorStringWithFormat( 2291 "byte size of %u is too large for integer scalar type", byte_size); 2292 } 2293 return 0; 2294 } 2295 2296 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2297 Status error; 2298 for (const auto &Entry : entries) { 2299 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2300 error); 2301 if (!error.Success()) 2302 break; 2303 } 2304 return error; 2305 } 2306 2307 #define USE_ALLOCATE_MEMORY_CACHE 1 2308 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2309 Status &error) { 2310 if (GetPrivateState() != eStateStopped) { 2311 error.SetErrorToGenericError(); 2312 return LLDB_INVALID_ADDRESS; 2313 } 2314 2315 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2316 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2317 #else 2318 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2319 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2320 LLDB_LOGF(log, 2321 "Process::AllocateMemory(size=%" PRIu64 2322 ", permissions=%s) => 0x%16.16" PRIx64 2323 " (m_stop_id = %u m_memory_id = %u)", 2324 (uint64_t)size, GetPermissionsAsCString(permissions), 2325 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2326 m_mod_id.GetMemoryID()); 2327 return allocated_addr; 2328 #endif 2329 } 2330 2331 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2332 Status &error) { 2333 addr_t return_addr = AllocateMemory(size, permissions, error); 2334 if (error.Success()) { 2335 std::string buffer(size, 0); 2336 WriteMemory(return_addr, buffer.c_str(), size, error); 2337 } 2338 return return_addr; 2339 } 2340 2341 bool Process::CanJIT() { 2342 if (m_can_jit == eCanJITDontKnow) { 2343 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2344 Status err; 2345 2346 uint64_t allocated_memory = AllocateMemory( 2347 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2348 err); 2349 2350 if (err.Success()) { 2351 m_can_jit = eCanJITYes; 2352 LLDB_LOGF(log, 2353 "Process::%s pid %" PRIu64 2354 " allocation test passed, CanJIT () is true", 2355 __FUNCTION__, GetID()); 2356 } else { 2357 m_can_jit = eCanJITNo; 2358 LLDB_LOGF(log, 2359 "Process::%s pid %" PRIu64 2360 " allocation test failed, CanJIT () is false: %s", 2361 __FUNCTION__, GetID(), err.AsCString()); 2362 } 2363 2364 DeallocateMemory(allocated_memory); 2365 } 2366 2367 return m_can_jit == eCanJITYes; 2368 } 2369 2370 void Process::SetCanJIT(bool can_jit) { 2371 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2372 } 2373 2374 void Process::SetCanRunCode(bool can_run_code) { 2375 SetCanJIT(can_run_code); 2376 m_can_interpret_function_calls = can_run_code; 2377 } 2378 2379 Status Process::DeallocateMemory(addr_t ptr) { 2380 Status error; 2381 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2382 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2383 error.SetErrorStringWithFormat( 2384 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2385 } 2386 #else 2387 error = DoDeallocateMemory(ptr); 2388 2389 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2390 LLDB_LOGF(log, 2391 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2392 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2393 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2394 m_mod_id.GetMemoryID()); 2395 #endif 2396 return error; 2397 } 2398 2399 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2400 lldb::addr_t header_addr, 2401 size_t size_to_read) { 2402 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2403 if (log) { 2404 LLDB_LOGF(log, 2405 "Process::ReadModuleFromMemory reading %s binary from memory", 2406 file_spec.GetPath().c_str()); 2407 } 2408 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2409 if (module_sp) { 2410 Status error; 2411 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2412 shared_from_this(), header_addr, error, size_to_read); 2413 if (objfile) 2414 return module_sp; 2415 } 2416 return ModuleSP(); 2417 } 2418 2419 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2420 uint32_t &permissions) { 2421 MemoryRegionInfo range_info; 2422 permissions = 0; 2423 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2424 if (!error.Success()) 2425 return false; 2426 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2427 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2428 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2429 return false; 2430 } 2431 2432 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2433 permissions |= lldb::ePermissionsReadable; 2434 2435 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2436 permissions |= lldb::ePermissionsWritable; 2437 2438 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2439 permissions |= lldb::ePermissionsExecutable; 2440 2441 return true; 2442 } 2443 2444 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2445 Status error; 2446 error.SetErrorString("watchpoints are not supported"); 2447 return error; 2448 } 2449 2450 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2451 Status error; 2452 error.SetErrorString("watchpoints are not supported"); 2453 return error; 2454 } 2455 2456 StateType 2457 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2458 const Timeout<std::micro> &timeout) { 2459 StateType state; 2460 2461 while (true) { 2462 event_sp.reset(); 2463 state = GetStateChangedEventsPrivate(event_sp, timeout); 2464 2465 if (StateIsStoppedState(state, false)) 2466 break; 2467 2468 // If state is invalid, then we timed out 2469 if (state == eStateInvalid) 2470 break; 2471 2472 if (event_sp) 2473 HandlePrivateEvent(event_sp); 2474 } 2475 return state; 2476 } 2477 2478 void Process::LoadOperatingSystemPlugin(bool flush) { 2479 if (flush) 2480 m_thread_list.Clear(); 2481 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2482 if (flush) 2483 Flush(); 2484 } 2485 2486 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2487 Status error; 2488 m_abi_sp.reset(); 2489 m_dyld_up.reset(); 2490 m_jit_loaders_up.reset(); 2491 m_system_runtime_up.reset(); 2492 m_os_up.reset(); 2493 m_process_input_reader.reset(); 2494 2495 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2496 if (!exe_module) { 2497 error.SetErrorString("executable module does not exist"); 2498 return error; 2499 } 2500 2501 char local_exec_file_path[PATH_MAX]; 2502 char platform_exec_file_path[PATH_MAX]; 2503 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2504 sizeof(local_exec_file_path)); 2505 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2506 sizeof(platform_exec_file_path)); 2507 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2508 // Install anything that might need to be installed prior to launching. 2509 // For host systems, this will do nothing, but if we are connected to a 2510 // remote platform it will install any needed binaries 2511 error = GetTarget().Install(&launch_info); 2512 if (error.Fail()) 2513 return error; 2514 2515 // Listen and queue events that are broadcasted during the process launch. 2516 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2517 HijackProcessEvents(listener_sp); 2518 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2519 2520 if (PrivateStateThreadIsValid()) 2521 PausePrivateStateThread(); 2522 2523 error = WillLaunch(exe_module); 2524 if (error.Success()) { 2525 const bool restarted = false; 2526 SetPublicState(eStateLaunching, restarted); 2527 m_should_detach = false; 2528 2529 if (m_public_run_lock.TrySetRunning()) { 2530 // Now launch using these arguments. 2531 error = DoLaunch(exe_module, launch_info); 2532 } else { 2533 // This shouldn't happen 2534 error.SetErrorString("failed to acquire process run lock"); 2535 } 2536 2537 if (error.Fail()) { 2538 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2539 SetID(LLDB_INVALID_PROCESS_ID); 2540 const char *error_string = error.AsCString(); 2541 if (error_string == nullptr) 2542 error_string = "launch failed"; 2543 SetExitStatus(-1, error_string); 2544 } 2545 } else { 2546 EventSP event_sp; 2547 2548 // Now wait for the process to launch and return control to us, and then 2549 // call DidLaunch: 2550 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2551 2552 if (state == eStateInvalid || !event_sp) { 2553 // We were able to launch the process, but we failed to catch the 2554 // initial stop. 2555 error.SetErrorString("failed to catch stop after launch"); 2556 SetExitStatus(0, "failed to catch stop after launch"); 2557 Destroy(false); 2558 } else if (state == eStateStopped || state == eStateCrashed) { 2559 DidLaunch(); 2560 2561 DynamicLoader *dyld = GetDynamicLoader(); 2562 if (dyld) 2563 dyld->DidLaunch(); 2564 2565 GetJITLoaders().DidLaunch(); 2566 2567 SystemRuntime *system_runtime = GetSystemRuntime(); 2568 if (system_runtime) 2569 system_runtime->DidLaunch(); 2570 2571 if (!m_os_up) 2572 LoadOperatingSystemPlugin(false); 2573 2574 // We successfully launched the process and stopped, now it the 2575 // right time to set up signal filters before resuming. 2576 UpdateAutomaticSignalFiltering(); 2577 2578 // Note, the stop event was consumed above, but not handled. This 2579 // was done to give DidLaunch a chance to run. The target is either 2580 // stopped or crashed. Directly set the state. This is done to 2581 // prevent a stop message with a bunch of spurious output on thread 2582 // status, as well as not pop a ProcessIOHandler. 2583 SetPublicState(state, false); 2584 2585 if (PrivateStateThreadIsValid()) 2586 ResumePrivateStateThread(); 2587 else 2588 StartPrivateStateThread(); 2589 2590 // Target was stopped at entry as was intended. Need to notify the 2591 // listeners about it. 2592 if (state == eStateStopped && 2593 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2594 HandlePrivateEvent(event_sp); 2595 } else if (state == eStateExited) { 2596 // We exited while trying to launch somehow. Don't call DidLaunch 2597 // as that's not likely to work, and return an invalid pid. 2598 HandlePrivateEvent(event_sp); 2599 } 2600 } 2601 } 2602 } else { 2603 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2604 local_exec_file_path); 2605 } 2606 2607 return error; 2608 } 2609 2610 Status Process::LoadCore() { 2611 Status error = DoLoadCore(); 2612 if (error.Success()) { 2613 ListenerSP listener_sp( 2614 Listener::MakeListener("lldb.process.load_core_listener")); 2615 HijackProcessEvents(listener_sp); 2616 2617 if (PrivateStateThreadIsValid()) 2618 ResumePrivateStateThread(); 2619 else 2620 StartPrivateStateThread(); 2621 2622 DynamicLoader *dyld = GetDynamicLoader(); 2623 if (dyld) 2624 dyld->DidAttach(); 2625 2626 GetJITLoaders().DidAttach(); 2627 2628 SystemRuntime *system_runtime = GetSystemRuntime(); 2629 if (system_runtime) 2630 system_runtime->DidAttach(); 2631 2632 if (!m_os_up) 2633 LoadOperatingSystemPlugin(false); 2634 2635 // We successfully loaded a core file, now pretend we stopped so we can 2636 // show all of the threads in the core file and explore the crashed state. 2637 SetPrivateState(eStateStopped); 2638 2639 // Wait for a stopped event since we just posted one above... 2640 lldb::EventSP event_sp; 2641 StateType state = 2642 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2643 2644 if (!StateIsStoppedState(state, false)) { 2645 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2646 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2647 StateAsCString(state)); 2648 error.SetErrorString( 2649 "Did not get stopped event after loading the core file."); 2650 } 2651 RestoreProcessEvents(); 2652 } 2653 return error; 2654 } 2655 2656 DynamicLoader *Process::GetDynamicLoader() { 2657 if (!m_dyld_up) 2658 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2659 return m_dyld_up.get(); 2660 } 2661 2662 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2663 2664 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2665 return false; 2666 } 2667 2668 JITLoaderList &Process::GetJITLoaders() { 2669 if (!m_jit_loaders_up) { 2670 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2671 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2672 } 2673 return *m_jit_loaders_up; 2674 } 2675 2676 SystemRuntime *Process::GetSystemRuntime() { 2677 if (!m_system_runtime_up) 2678 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2679 return m_system_runtime_up.get(); 2680 } 2681 2682 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2683 uint32_t exec_count) 2684 : NextEventAction(process), m_exec_count(exec_count) { 2685 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2686 LLDB_LOGF( 2687 log, 2688 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2689 __FUNCTION__, static_cast<void *>(process), exec_count); 2690 } 2691 2692 Process::NextEventAction::EventActionResult 2693 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2694 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2695 2696 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2697 LLDB_LOGF(log, 2698 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2699 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2700 2701 switch (state) { 2702 case eStateAttaching: 2703 return eEventActionSuccess; 2704 2705 case eStateRunning: 2706 case eStateConnected: 2707 return eEventActionRetry; 2708 2709 case eStateStopped: 2710 case eStateCrashed: 2711 // During attach, prior to sending the eStateStopped event, 2712 // lldb_private::Process subclasses must set the new process ID. 2713 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2714 // We don't want these events to be reported, so go set the 2715 // ShouldReportStop here: 2716 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2717 2718 if (m_exec_count > 0) { 2719 --m_exec_count; 2720 2721 LLDB_LOGF(log, 2722 "Process::AttachCompletionHandler::%s state %s: reduced " 2723 "remaining exec count to %" PRIu32 ", requesting resume", 2724 __FUNCTION__, StateAsCString(state), m_exec_count); 2725 2726 RequestResume(); 2727 return eEventActionRetry; 2728 } else { 2729 LLDB_LOGF(log, 2730 "Process::AttachCompletionHandler::%s state %s: no more " 2731 "execs expected to start, continuing with attach", 2732 __FUNCTION__, StateAsCString(state)); 2733 2734 m_process->CompleteAttach(); 2735 return eEventActionSuccess; 2736 } 2737 break; 2738 2739 default: 2740 case eStateExited: 2741 case eStateInvalid: 2742 break; 2743 } 2744 2745 m_exit_string.assign("No valid Process"); 2746 return eEventActionExit; 2747 } 2748 2749 Process::NextEventAction::EventActionResult 2750 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2751 return eEventActionSuccess; 2752 } 2753 2754 const char *Process::AttachCompletionHandler::GetExitString() { 2755 return m_exit_string.c_str(); 2756 } 2757 2758 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2759 if (m_listener_sp) 2760 return m_listener_sp; 2761 else 2762 return debugger.GetListener(); 2763 } 2764 2765 Status Process::Attach(ProcessAttachInfo &attach_info) { 2766 m_abi_sp.reset(); 2767 m_process_input_reader.reset(); 2768 m_dyld_up.reset(); 2769 m_jit_loaders_up.reset(); 2770 m_system_runtime_up.reset(); 2771 m_os_up.reset(); 2772 2773 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2774 Status error; 2775 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2776 char process_name[PATH_MAX]; 2777 2778 if (attach_info.GetExecutableFile().GetPath(process_name, 2779 sizeof(process_name))) { 2780 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2781 2782 if (wait_for_launch) { 2783 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2784 if (error.Success()) { 2785 if (m_public_run_lock.TrySetRunning()) { 2786 m_should_detach = true; 2787 const bool restarted = false; 2788 SetPublicState(eStateAttaching, restarted); 2789 // Now attach using these arguments. 2790 error = DoAttachToProcessWithName(process_name, attach_info); 2791 } else { 2792 // This shouldn't happen 2793 error.SetErrorString("failed to acquire process run lock"); 2794 } 2795 2796 if (error.Fail()) { 2797 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2798 SetID(LLDB_INVALID_PROCESS_ID); 2799 if (error.AsCString() == nullptr) 2800 error.SetErrorString("attach failed"); 2801 2802 SetExitStatus(-1, error.AsCString()); 2803 } 2804 } else { 2805 SetNextEventAction(new Process::AttachCompletionHandler( 2806 this, attach_info.GetResumeCount())); 2807 StartPrivateStateThread(); 2808 } 2809 return error; 2810 } 2811 } else { 2812 ProcessInstanceInfoList process_infos; 2813 PlatformSP platform_sp(GetTarget().GetPlatform()); 2814 2815 if (platform_sp) { 2816 ProcessInstanceInfoMatch match_info; 2817 match_info.GetProcessInfo() = attach_info; 2818 match_info.SetNameMatchType(NameMatch::Equals); 2819 platform_sp->FindProcesses(match_info, process_infos); 2820 const uint32_t num_matches = process_infos.size(); 2821 if (num_matches == 1) { 2822 attach_pid = process_infos[0].GetProcessID(); 2823 // Fall through and attach using the above process ID 2824 } else { 2825 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2826 process_name, sizeof(process_name)); 2827 if (num_matches > 1) { 2828 StreamString s; 2829 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2830 for (size_t i = 0; i < num_matches; i++) { 2831 process_infos[i].DumpAsTableRow( 2832 s, platform_sp->GetUserIDResolver(), true, false); 2833 } 2834 error.SetErrorStringWithFormat( 2835 "more than one process named %s:\n%s", process_name, 2836 s.GetData()); 2837 } else 2838 error.SetErrorStringWithFormat( 2839 "could not find a process named %s", process_name); 2840 } 2841 } else { 2842 error.SetErrorString( 2843 "invalid platform, can't find processes by name"); 2844 return error; 2845 } 2846 } 2847 } else { 2848 error.SetErrorString("invalid process name"); 2849 } 2850 } 2851 2852 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2853 error = WillAttachToProcessWithID(attach_pid); 2854 if (error.Success()) { 2855 2856 if (m_public_run_lock.TrySetRunning()) { 2857 // Now attach using these arguments. 2858 m_should_detach = true; 2859 const bool restarted = false; 2860 SetPublicState(eStateAttaching, restarted); 2861 error = DoAttachToProcessWithID(attach_pid, attach_info); 2862 } else { 2863 // This shouldn't happen 2864 error.SetErrorString("failed to acquire process run lock"); 2865 } 2866 2867 if (error.Success()) { 2868 SetNextEventAction(new Process::AttachCompletionHandler( 2869 this, attach_info.GetResumeCount())); 2870 StartPrivateStateThread(); 2871 } else { 2872 if (GetID() != LLDB_INVALID_PROCESS_ID) 2873 SetID(LLDB_INVALID_PROCESS_ID); 2874 2875 const char *error_string = error.AsCString(); 2876 if (error_string == nullptr) 2877 error_string = "attach failed"; 2878 2879 SetExitStatus(-1, error_string); 2880 } 2881 } 2882 } 2883 return error; 2884 } 2885 2886 void Process::CompleteAttach() { 2887 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2888 LIBLLDB_LOG_TARGET)); 2889 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2890 2891 // Let the process subclass figure out at much as it can about the process 2892 // before we go looking for a dynamic loader plug-in. 2893 ArchSpec process_arch; 2894 DidAttach(process_arch); 2895 2896 if (process_arch.IsValid()) { 2897 GetTarget().SetArchitecture(process_arch); 2898 if (log) { 2899 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2900 LLDB_LOGF(log, 2901 "Process::%s replacing process architecture with DidAttach() " 2902 "architecture: %s", 2903 __FUNCTION__, triple_str ? triple_str : "<null>"); 2904 } 2905 } 2906 2907 // We just attached. If we have a platform, ask it for the process 2908 // architecture, and if it isn't the same as the one we've already set, 2909 // switch architectures. 2910 PlatformSP platform_sp(GetTarget().GetPlatform()); 2911 assert(platform_sp); 2912 if (platform_sp) { 2913 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2914 if (target_arch.IsValid() && 2915 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2916 ArchSpec platform_arch; 2917 platform_sp = 2918 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2919 if (platform_sp) { 2920 GetTarget().SetPlatform(platform_sp); 2921 GetTarget().SetArchitecture(platform_arch); 2922 LLDB_LOGF(log, 2923 "Process::%s switching platform to %s and architecture " 2924 "to %s based on info from attach", 2925 __FUNCTION__, platform_sp->GetName().AsCString(""), 2926 platform_arch.GetTriple().getTriple().c_str()); 2927 } 2928 } else if (!process_arch.IsValid()) { 2929 ProcessInstanceInfo process_info; 2930 GetProcessInfo(process_info); 2931 const ArchSpec &process_arch = process_info.GetArchitecture(); 2932 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2933 if (process_arch.IsValid() && 2934 target_arch.IsCompatibleMatch(process_arch) && 2935 !target_arch.IsExactMatch(process_arch)) { 2936 GetTarget().SetArchitecture(process_arch); 2937 LLDB_LOGF(log, 2938 "Process::%s switching architecture to %s based on info " 2939 "the platform retrieved for pid %" PRIu64, 2940 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2941 GetID()); 2942 } 2943 } 2944 } 2945 2946 // We have completed the attach, now it is time to find the dynamic loader 2947 // plug-in 2948 DynamicLoader *dyld = GetDynamicLoader(); 2949 if (dyld) { 2950 dyld->DidAttach(); 2951 if (log) { 2952 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2953 LLDB_LOG(log, 2954 "after DynamicLoader::DidAttach(), target " 2955 "executable is {0} (using {1} plugin)", 2956 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2957 dyld->GetPluginName()); 2958 } 2959 } 2960 2961 GetJITLoaders().DidAttach(); 2962 2963 SystemRuntime *system_runtime = GetSystemRuntime(); 2964 if (system_runtime) { 2965 system_runtime->DidAttach(); 2966 if (log) { 2967 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2968 LLDB_LOG(log, 2969 "after SystemRuntime::DidAttach(), target " 2970 "executable is {0} (using {1} plugin)", 2971 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2972 system_runtime->GetPluginName()); 2973 } 2974 } 2975 2976 if (!m_os_up) { 2977 LoadOperatingSystemPlugin(false); 2978 if (m_os_up) { 2979 // Somebody might have gotten threads before now, but we need to force the 2980 // update after we've loaded the OperatingSystem plugin or it won't get a 2981 // chance to process the threads. 2982 m_thread_list.Clear(); 2983 UpdateThreadListIfNeeded(); 2984 } 2985 } 2986 // Figure out which one is the executable, and set that in our target: 2987 ModuleSP new_executable_module_sp; 2988 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2989 if (module_sp && module_sp->IsExecutable()) { 2990 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2991 new_executable_module_sp = module_sp; 2992 break; 2993 } 2994 } 2995 if (new_executable_module_sp) { 2996 GetTarget().SetExecutableModule(new_executable_module_sp, 2997 eLoadDependentsNo); 2998 if (log) { 2999 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3000 LLDB_LOGF( 3001 log, 3002 "Process::%s after looping through modules, target executable is %s", 3003 __FUNCTION__, 3004 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3005 : "<none>"); 3006 } 3007 } 3008 } 3009 3010 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3011 m_abi_sp.reset(); 3012 m_process_input_reader.reset(); 3013 3014 // Find the process and its architecture. Make sure it matches the 3015 // architecture of the current Target, and if not adjust it. 3016 3017 Status error(DoConnectRemote(remote_url)); 3018 if (error.Success()) { 3019 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3020 EventSP event_sp; 3021 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3022 3023 if (state == eStateStopped || state == eStateCrashed) { 3024 // If we attached and actually have a process on the other end, then 3025 // this ended up being the equivalent of an attach. 3026 CompleteAttach(); 3027 3028 // This delays passing the stopped event to listeners till 3029 // CompleteAttach gets a chance to complete... 3030 HandlePrivateEvent(event_sp); 3031 } 3032 } 3033 3034 if (PrivateStateThreadIsValid()) 3035 ResumePrivateStateThread(); 3036 else 3037 StartPrivateStateThread(); 3038 } 3039 return error; 3040 } 3041 3042 Status Process::PrivateResume() { 3043 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3044 LIBLLDB_LOG_STEP)); 3045 LLDB_LOGF(log, 3046 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3047 "private state: %s", 3048 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3049 StateAsCString(m_private_state.GetValue())); 3050 3051 // If signals handing status changed we might want to update our signal 3052 // filters before resuming. 3053 UpdateAutomaticSignalFiltering(); 3054 3055 Status error(WillResume()); 3056 // Tell the process it is about to resume before the thread list 3057 if (error.Success()) { 3058 // Now let the thread list know we are about to resume so it can let all of 3059 // our threads know that they are about to be resumed. Threads will each be 3060 // called with Thread::WillResume(StateType) where StateType contains the 3061 // state that they are supposed to have when the process is resumed 3062 // (suspended/running/stepping). Threads should also check their resume 3063 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3064 // start back up with a signal. 3065 if (m_thread_list.WillResume()) { 3066 // Last thing, do the PreResumeActions. 3067 if (!RunPreResumeActions()) { 3068 error.SetErrorString( 3069 "Process::PrivateResume PreResumeActions failed, not resuming."); 3070 } else { 3071 m_mod_id.BumpResumeID(); 3072 error = DoResume(); 3073 if (error.Success()) { 3074 DidResume(); 3075 m_thread_list.DidResume(); 3076 LLDB_LOGF(log, "Process thinks the process has resumed."); 3077 } else { 3078 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3079 return error; 3080 } 3081 } 3082 } else { 3083 // Somebody wanted to run without running (e.g. we were faking a step 3084 // from one frame of a set of inlined frames that share the same PC to 3085 // another.) So generate a continue & a stopped event, and let the world 3086 // handle them. 3087 LLDB_LOGF(log, 3088 "Process::PrivateResume() asked to simulate a start & stop."); 3089 3090 SetPrivateState(eStateRunning); 3091 SetPrivateState(eStateStopped); 3092 } 3093 } else 3094 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3095 error.AsCString("<unknown error>")); 3096 return error; 3097 } 3098 3099 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3100 if (!StateIsRunningState(m_public_state.GetValue())) 3101 return Status("Process is not running."); 3102 3103 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3104 // case it was already set and some thread plan logic calls halt on its own. 3105 m_clear_thread_plans_on_stop |= clear_thread_plans; 3106 3107 ListenerSP halt_listener_sp( 3108 Listener::MakeListener("lldb.process.halt_listener")); 3109 HijackProcessEvents(halt_listener_sp); 3110 3111 EventSP event_sp; 3112 3113 SendAsyncInterrupt(); 3114 3115 if (m_public_state.GetValue() == eStateAttaching) { 3116 // Don't hijack and eat the eStateExited as the code that was doing the 3117 // attach will be waiting for this event... 3118 RestoreProcessEvents(); 3119 SetExitStatus(SIGKILL, "Cancelled async attach."); 3120 Destroy(false); 3121 return Status(); 3122 } 3123 3124 // Wait for the process halt timeout seconds for the process to stop. 3125 StateType state = 3126 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3127 halt_listener_sp, nullptr, use_run_lock); 3128 RestoreProcessEvents(); 3129 3130 if (state == eStateInvalid || !event_sp) { 3131 // We timed out and didn't get a stop event... 3132 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3133 } 3134 3135 BroadcastEvent(event_sp); 3136 3137 return Status(); 3138 } 3139 3140 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3141 Status error; 3142 3143 // Check both the public & private states here. If we're hung evaluating an 3144 // expression, for instance, then the public state will be stopped, but we 3145 // still need to interrupt. 3146 if (m_public_state.GetValue() == eStateRunning || 3147 m_private_state.GetValue() == eStateRunning) { 3148 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3149 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3150 3151 ListenerSP listener_sp( 3152 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3153 HijackProcessEvents(listener_sp); 3154 3155 SendAsyncInterrupt(); 3156 3157 // Consume the interrupt event. 3158 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3159 &exit_event_sp, true, listener_sp); 3160 3161 RestoreProcessEvents(); 3162 3163 // If the process exited while we were waiting for it to stop, put the 3164 // exited event into the shared pointer passed in and return. Our caller 3165 // doesn't need to do anything else, since they don't have a process 3166 // anymore... 3167 3168 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3169 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3170 __FUNCTION__); 3171 return error; 3172 } else 3173 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3174 3175 if (state != eStateStopped) { 3176 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3177 StateAsCString(state)); 3178 // If we really couldn't stop the process then we should just error out 3179 // here, but if the lower levels just bobbled sending the event and we 3180 // really are stopped, then continue on. 3181 StateType private_state = m_private_state.GetValue(); 3182 if (private_state != eStateStopped) { 3183 return Status( 3184 "Attempt to stop the target in order to detach timed out. " 3185 "State = %s", 3186 StateAsCString(GetState())); 3187 } 3188 } 3189 } 3190 return error; 3191 } 3192 3193 Status Process::Detach(bool keep_stopped) { 3194 EventSP exit_event_sp; 3195 Status error; 3196 m_destroy_in_process = true; 3197 3198 error = WillDetach(); 3199 3200 if (error.Success()) { 3201 if (DetachRequiresHalt()) { 3202 error = StopForDestroyOrDetach(exit_event_sp); 3203 if (!error.Success()) { 3204 m_destroy_in_process = false; 3205 return error; 3206 } else if (exit_event_sp) { 3207 // We shouldn't need to do anything else here. There's no process left 3208 // to detach from... 3209 StopPrivateStateThread(); 3210 m_destroy_in_process = false; 3211 return error; 3212 } 3213 } 3214 3215 m_thread_list.DiscardThreadPlans(); 3216 DisableAllBreakpointSites(); 3217 3218 error = DoDetach(keep_stopped); 3219 if (error.Success()) { 3220 DidDetach(); 3221 StopPrivateStateThread(); 3222 } else { 3223 return error; 3224 } 3225 } 3226 m_destroy_in_process = false; 3227 3228 // If we exited when we were waiting for a process to stop, then forward the 3229 // event here so we don't lose the event 3230 if (exit_event_sp) { 3231 // Directly broadcast our exited event because we shut down our private 3232 // state thread above 3233 BroadcastEvent(exit_event_sp); 3234 } 3235 3236 // If we have been interrupted (to kill us) in the middle of running, we may 3237 // not end up propagating the last events through the event system, in which 3238 // case we might strand the write lock. Unlock it here so when we do to tear 3239 // down the process we don't get an error destroying the lock. 3240 3241 m_public_run_lock.SetStopped(); 3242 return error; 3243 } 3244 3245 Status Process::Destroy(bool force_kill) { 3246 // If we've already called Process::Finalize then there's nothing useful to 3247 // be done here. Finalize has actually called Destroy already. 3248 if (m_finalizing) 3249 return {}; 3250 return DestroyImpl(force_kill); 3251 } 3252 3253 Status Process::DestroyImpl(bool force_kill) { 3254 // Tell ourselves we are in the process of destroying the process, so that we 3255 // don't do any unnecessary work that might hinder the destruction. Remember 3256 // to set this back to false when we are done. That way if the attempt 3257 // failed and the process stays around for some reason it won't be in a 3258 // confused state. 3259 3260 if (force_kill) 3261 m_should_detach = false; 3262 3263 if (GetShouldDetach()) { 3264 // FIXME: This will have to be a process setting: 3265 bool keep_stopped = false; 3266 Detach(keep_stopped); 3267 } 3268 3269 m_destroy_in_process = true; 3270 3271 Status error(WillDestroy()); 3272 if (error.Success()) { 3273 EventSP exit_event_sp; 3274 if (DestroyRequiresHalt()) { 3275 error = StopForDestroyOrDetach(exit_event_sp); 3276 } 3277 3278 if (m_public_state.GetValue() == eStateStopped) { 3279 // Ditch all thread plans, and remove all our breakpoints: in case we 3280 // have to restart the target to kill it, we don't want it hitting a 3281 // breakpoint... Only do this if we've stopped, however, since if we 3282 // didn't manage to halt it above, then we're not going to have much luck 3283 // doing this now. 3284 m_thread_list.DiscardThreadPlans(); 3285 DisableAllBreakpointSites(); 3286 } 3287 3288 error = DoDestroy(); 3289 if (error.Success()) { 3290 DidDestroy(); 3291 StopPrivateStateThread(); 3292 } 3293 m_stdio_communication.StopReadThread(); 3294 m_stdio_communication.Disconnect(); 3295 m_stdin_forward = false; 3296 3297 if (m_process_input_reader) { 3298 m_process_input_reader->SetIsDone(true); 3299 m_process_input_reader->Cancel(); 3300 m_process_input_reader.reset(); 3301 } 3302 3303 // If we exited when we were waiting for a process to stop, then forward 3304 // the event here so we don't lose the event 3305 if (exit_event_sp) { 3306 // Directly broadcast our exited event because we shut down our private 3307 // state thread above 3308 BroadcastEvent(exit_event_sp); 3309 } 3310 3311 // If we have been interrupted (to kill us) in the middle of running, we 3312 // may not end up propagating the last events through the event system, in 3313 // which case we might strand the write lock. Unlock it here so when we do 3314 // to tear down the process we don't get an error destroying the lock. 3315 m_public_run_lock.SetStopped(); 3316 } 3317 3318 m_destroy_in_process = false; 3319 3320 return error; 3321 } 3322 3323 Status Process::Signal(int signal) { 3324 Status error(WillSignal()); 3325 if (error.Success()) { 3326 error = DoSignal(signal); 3327 if (error.Success()) 3328 DidSignal(); 3329 } 3330 return error; 3331 } 3332 3333 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3334 assert(signals_sp && "null signals_sp"); 3335 m_unix_signals_sp = signals_sp; 3336 } 3337 3338 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3339 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3340 return m_unix_signals_sp; 3341 } 3342 3343 lldb::ByteOrder Process::GetByteOrder() const { 3344 return GetTarget().GetArchitecture().GetByteOrder(); 3345 } 3346 3347 uint32_t Process::GetAddressByteSize() const { 3348 return GetTarget().GetArchitecture().GetAddressByteSize(); 3349 } 3350 3351 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3352 const StateType state = 3353 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3354 bool return_value = true; 3355 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3356 LIBLLDB_LOG_PROCESS)); 3357 3358 switch (state) { 3359 case eStateDetached: 3360 case eStateExited: 3361 case eStateUnloaded: 3362 m_stdio_communication.SynchronizeWithReadThread(); 3363 m_stdio_communication.StopReadThread(); 3364 m_stdio_communication.Disconnect(); 3365 m_stdin_forward = false; 3366 3367 LLVM_FALLTHROUGH; 3368 case eStateConnected: 3369 case eStateAttaching: 3370 case eStateLaunching: 3371 // These events indicate changes in the state of the debugging session, 3372 // always report them. 3373 return_value = true; 3374 break; 3375 case eStateInvalid: 3376 // We stopped for no apparent reason, don't report it. 3377 return_value = false; 3378 break; 3379 case eStateRunning: 3380 case eStateStepping: 3381 // If we've started the target running, we handle the cases where we are 3382 // already running and where there is a transition from stopped to running 3383 // differently. running -> running: Automatically suppress extra running 3384 // events stopped -> running: Report except when there is one or more no 3385 // votes 3386 // and no yes votes. 3387 SynchronouslyNotifyStateChanged(state); 3388 if (m_force_next_event_delivery) 3389 return_value = true; 3390 else { 3391 switch (m_last_broadcast_state) { 3392 case eStateRunning: 3393 case eStateStepping: 3394 // We always suppress multiple runnings with no PUBLIC stop in between. 3395 return_value = false; 3396 break; 3397 default: 3398 // TODO: make this work correctly. For now always report 3399 // run if we aren't running so we don't miss any running events. If I 3400 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3401 // and hit the breakpoints on multiple threads, then somehow during the 3402 // stepping over of all breakpoints no run gets reported. 3403 3404 // This is a transition from stop to run. 3405 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3406 case eVoteYes: 3407 case eVoteNoOpinion: 3408 return_value = true; 3409 break; 3410 case eVoteNo: 3411 return_value = false; 3412 break; 3413 } 3414 break; 3415 } 3416 } 3417 break; 3418 case eStateStopped: 3419 case eStateCrashed: 3420 case eStateSuspended: 3421 // We've stopped. First see if we're going to restart the target. If we 3422 // are going to stop, then we always broadcast the event. If we aren't 3423 // going to stop, let the thread plans decide if we're going to report this 3424 // event. If no thread has an opinion, we don't report it. 3425 3426 m_stdio_communication.SynchronizeWithReadThread(); 3427 RefreshStateAfterStop(); 3428 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3429 LLDB_LOGF(log, 3430 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3431 "interrupt, state: %s", 3432 static_cast<void *>(event_ptr), StateAsCString(state)); 3433 // Even though we know we are going to stop, we should let the threads 3434 // have a look at the stop, so they can properly set their state. 3435 m_thread_list.ShouldStop(event_ptr); 3436 return_value = true; 3437 } else { 3438 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3439 bool should_resume = false; 3440 3441 // It makes no sense to ask "ShouldStop" if we've already been 3442 // restarted... Asking the thread list is also not likely to go well, 3443 // since we are running again. So in that case just report the event. 3444 3445 if (!was_restarted) 3446 should_resume = !m_thread_list.ShouldStop(event_ptr); 3447 3448 if (was_restarted || should_resume || m_resume_requested) { 3449 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3450 LLDB_LOGF(log, 3451 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3452 "%s was_restarted: %i report_stop_vote: %d.", 3453 should_resume, StateAsCString(state), was_restarted, 3454 report_stop_vote); 3455 3456 switch (report_stop_vote) { 3457 case eVoteYes: 3458 return_value = true; 3459 break; 3460 case eVoteNoOpinion: 3461 case eVoteNo: 3462 return_value = false; 3463 break; 3464 } 3465 3466 if (!was_restarted) { 3467 LLDB_LOGF(log, 3468 "Process::ShouldBroadcastEvent (%p) Restarting process " 3469 "from state: %s", 3470 static_cast<void *>(event_ptr), StateAsCString(state)); 3471 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3472 PrivateResume(); 3473 } 3474 } else { 3475 return_value = true; 3476 SynchronouslyNotifyStateChanged(state); 3477 } 3478 } 3479 break; 3480 } 3481 3482 // Forcing the next event delivery is a one shot deal. So reset it here. 3483 m_force_next_event_delivery = false; 3484 3485 // We do some coalescing of events (for instance two consecutive running 3486 // events get coalesced.) But we only coalesce against events we actually 3487 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3488 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3489 // done, because the PublicState reflects the last event pulled off the 3490 // queue, and there may be several events stacked up on the queue unserviced. 3491 // So the PublicState may not reflect the last broadcasted event yet. 3492 // m_last_broadcast_state gets updated here. 3493 3494 if (return_value) 3495 m_last_broadcast_state = state; 3496 3497 LLDB_LOGF(log, 3498 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3499 "broadcast state: %s - %s", 3500 static_cast<void *>(event_ptr), StateAsCString(state), 3501 StateAsCString(m_last_broadcast_state), 3502 return_value ? "YES" : "NO"); 3503 return return_value; 3504 } 3505 3506 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3507 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3508 3509 bool already_running = PrivateStateThreadIsValid(); 3510 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3511 already_running ? " already running" 3512 : " starting private state thread"); 3513 3514 if (!is_secondary_thread && already_running) 3515 return true; 3516 3517 // Create a thread that watches our internal state and controls which events 3518 // make it to clients (into the DCProcess event queue). 3519 char thread_name[1024]; 3520 uint32_t max_len = llvm::get_max_thread_name_length(); 3521 if (max_len > 0 && max_len <= 30) { 3522 // On platforms with abbreviated thread name lengths, choose thread names 3523 // that fit within the limit. 3524 if (already_running) 3525 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3526 else 3527 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3528 } else { 3529 if (already_running) 3530 snprintf(thread_name, sizeof(thread_name), 3531 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3532 GetID()); 3533 else 3534 snprintf(thread_name, sizeof(thread_name), 3535 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3536 } 3537 3538 // Create the private state thread, and start it running. 3539 PrivateStateThreadArgs *args_ptr = 3540 new PrivateStateThreadArgs(this, is_secondary_thread); 3541 llvm::Expected<HostThread> private_state_thread = 3542 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3543 (void *)args_ptr, 8 * 1024 * 1024); 3544 if (!private_state_thread) { 3545 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3546 "failed to launch host thread: {}", 3547 llvm::toString(private_state_thread.takeError())); 3548 return false; 3549 } 3550 3551 assert(private_state_thread->IsJoinable()); 3552 m_private_state_thread = *private_state_thread; 3553 ResumePrivateStateThread(); 3554 return true; 3555 } 3556 3557 void Process::PausePrivateStateThread() { 3558 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3559 } 3560 3561 void Process::ResumePrivateStateThread() { 3562 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3563 } 3564 3565 void Process::StopPrivateStateThread() { 3566 if (m_private_state_thread.IsJoinable()) 3567 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3568 else { 3569 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3570 LLDB_LOGF( 3571 log, 3572 "Went to stop the private state thread, but it was already invalid."); 3573 } 3574 } 3575 3576 void Process::ControlPrivateStateThread(uint32_t signal) { 3577 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3578 3579 assert(signal == eBroadcastInternalStateControlStop || 3580 signal == eBroadcastInternalStateControlPause || 3581 signal == eBroadcastInternalStateControlResume); 3582 3583 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3584 3585 // Signal the private state thread 3586 if (m_private_state_thread.IsJoinable()) { 3587 // Broadcast the event. 3588 // It is important to do this outside of the if below, because it's 3589 // possible that the thread state is invalid but that the thread is waiting 3590 // on a control event instead of simply being on its way out (this should 3591 // not happen, but it apparently can). 3592 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3593 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3594 m_private_state_control_broadcaster.BroadcastEvent(signal, 3595 event_receipt_sp); 3596 3597 // Wait for the event receipt or for the private state thread to exit 3598 bool receipt_received = false; 3599 if (PrivateStateThreadIsValid()) { 3600 while (!receipt_received) { 3601 // Check for a receipt for n seconds and then check if the private 3602 // state thread is still around. 3603 receipt_received = 3604 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3605 if (!receipt_received) { 3606 // Check if the private state thread is still around. If it isn't 3607 // then we are done waiting 3608 if (!PrivateStateThreadIsValid()) 3609 break; // Private state thread exited or is exiting, we are done 3610 } 3611 } 3612 } 3613 3614 if (signal == eBroadcastInternalStateControlStop) { 3615 thread_result_t result = {}; 3616 m_private_state_thread.Join(&result); 3617 m_private_state_thread.Reset(); 3618 } 3619 } else { 3620 LLDB_LOGF( 3621 log, 3622 "Private state thread already dead, no need to signal it to stop."); 3623 } 3624 } 3625 3626 void Process::SendAsyncInterrupt() { 3627 if (PrivateStateThreadIsValid()) 3628 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3629 nullptr); 3630 else 3631 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3632 } 3633 3634 void Process::HandlePrivateEvent(EventSP &event_sp) { 3635 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3636 m_resume_requested = false; 3637 3638 const StateType new_state = 3639 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3640 3641 // First check to see if anybody wants a shot at this event: 3642 if (m_next_event_action_up) { 3643 NextEventAction::EventActionResult action_result = 3644 m_next_event_action_up->PerformAction(event_sp); 3645 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3646 3647 switch (action_result) { 3648 case NextEventAction::eEventActionSuccess: 3649 SetNextEventAction(nullptr); 3650 break; 3651 3652 case NextEventAction::eEventActionRetry: 3653 break; 3654 3655 case NextEventAction::eEventActionExit: 3656 // Handle Exiting Here. If we already got an exited event, we should 3657 // just propagate it. Otherwise, swallow this event, and set our state 3658 // to exit so the next event will kill us. 3659 if (new_state != eStateExited) { 3660 // FIXME: should cons up an exited event, and discard this one. 3661 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3662 SetNextEventAction(nullptr); 3663 return; 3664 } 3665 SetNextEventAction(nullptr); 3666 break; 3667 } 3668 } 3669 3670 // See if we should broadcast this state to external clients? 3671 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3672 3673 if (should_broadcast) { 3674 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3675 if (log) { 3676 LLDB_LOGF(log, 3677 "Process::%s (pid = %" PRIu64 3678 ") broadcasting new state %s (old state %s) to %s", 3679 __FUNCTION__, GetID(), StateAsCString(new_state), 3680 StateAsCString(GetState()), 3681 is_hijacked ? "hijacked" : "public"); 3682 } 3683 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3684 if (StateIsRunningState(new_state)) { 3685 // Only push the input handler if we aren't fowarding events, as this 3686 // means the curses GUI is in use... Or don't push it if we are launching 3687 // since it will come up stopped. 3688 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3689 new_state != eStateLaunching && new_state != eStateAttaching) { 3690 PushProcessIOHandler(); 3691 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3692 eBroadcastAlways); 3693 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3694 __FUNCTION__, m_iohandler_sync.GetValue()); 3695 } 3696 } else if (StateIsStoppedState(new_state, false)) { 3697 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3698 // If the lldb_private::Debugger is handling the events, we don't want 3699 // to pop the process IOHandler here, we want to do it when we receive 3700 // the stopped event so we can carefully control when the process 3701 // IOHandler is popped because when we stop we want to display some 3702 // text stating how and why we stopped, then maybe some 3703 // process/thread/frame info, and then we want the "(lldb) " prompt to 3704 // show up. If we pop the process IOHandler here, then we will cause 3705 // the command interpreter to become the top IOHandler after the 3706 // process pops off and it will update its prompt right away... See the 3707 // Debugger.cpp file where it calls the function as 3708 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3709 // Otherwise we end up getting overlapping "(lldb) " prompts and 3710 // garbled output. 3711 // 3712 // If we aren't handling the events in the debugger (which is indicated 3713 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3714 // we are hijacked, then we always pop the process IO handler manually. 3715 // Hijacking happens when the internal process state thread is running 3716 // thread plans, or when commands want to run in synchronous mode and 3717 // they call "process->WaitForProcessToStop()". An example of something 3718 // that will hijack the events is a simple expression: 3719 // 3720 // (lldb) expr (int)puts("hello") 3721 // 3722 // This will cause the internal process state thread to resume and halt 3723 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3724 // events) and we do need the IO handler to be pushed and popped 3725 // correctly. 3726 3727 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3728 PopProcessIOHandler(); 3729 } 3730 } 3731 3732 BroadcastEvent(event_sp); 3733 } else { 3734 if (log) { 3735 LLDB_LOGF( 3736 log, 3737 "Process::%s (pid = %" PRIu64 3738 ") suppressing state %s (old state %s): should_broadcast == false", 3739 __FUNCTION__, GetID(), StateAsCString(new_state), 3740 StateAsCString(GetState())); 3741 } 3742 } 3743 } 3744 3745 Status Process::HaltPrivate() { 3746 EventSP event_sp; 3747 Status error(WillHalt()); 3748 if (error.Fail()) 3749 return error; 3750 3751 // Ask the process subclass to actually halt our process 3752 bool caused_stop; 3753 error = DoHalt(caused_stop); 3754 3755 DidHalt(); 3756 return error; 3757 } 3758 3759 thread_result_t Process::PrivateStateThread(void *arg) { 3760 std::unique_ptr<PrivateStateThreadArgs> args_up( 3761 static_cast<PrivateStateThreadArgs *>(arg)); 3762 thread_result_t result = 3763 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3764 return result; 3765 } 3766 3767 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3768 bool control_only = true; 3769 3770 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3771 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3772 __FUNCTION__, static_cast<void *>(this), GetID()); 3773 3774 bool exit_now = false; 3775 bool interrupt_requested = false; 3776 while (!exit_now) { 3777 EventSP event_sp; 3778 GetEventsPrivate(event_sp, llvm::None, control_only); 3779 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3780 LLDB_LOGF(log, 3781 "Process::%s (arg = %p, pid = %" PRIu64 3782 ") got a control event: %d", 3783 __FUNCTION__, static_cast<void *>(this), GetID(), 3784 event_sp->GetType()); 3785 3786 switch (event_sp->GetType()) { 3787 case eBroadcastInternalStateControlStop: 3788 exit_now = true; 3789 break; // doing any internal state management below 3790 3791 case eBroadcastInternalStateControlPause: 3792 control_only = true; 3793 break; 3794 3795 case eBroadcastInternalStateControlResume: 3796 control_only = false; 3797 break; 3798 } 3799 3800 continue; 3801 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3802 if (m_public_state.GetValue() == eStateAttaching) { 3803 LLDB_LOGF(log, 3804 "Process::%s (arg = %p, pid = %" PRIu64 3805 ") woke up with an interrupt while attaching - " 3806 "forwarding interrupt.", 3807 __FUNCTION__, static_cast<void *>(this), GetID()); 3808 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3809 } else if (StateIsRunningState(m_last_broadcast_state)) { 3810 LLDB_LOGF(log, 3811 "Process::%s (arg = %p, pid = %" PRIu64 3812 ") woke up with an interrupt - Halting.", 3813 __FUNCTION__, static_cast<void *>(this), GetID()); 3814 Status error = HaltPrivate(); 3815 if (error.Fail() && log) 3816 LLDB_LOGF(log, 3817 "Process::%s (arg = %p, pid = %" PRIu64 3818 ") failed to halt the process: %s", 3819 __FUNCTION__, static_cast<void *>(this), GetID(), 3820 error.AsCString()); 3821 // Halt should generate a stopped event. Make a note of the fact that 3822 // we were doing the interrupt, so we can set the interrupted flag 3823 // after we receive the event. We deliberately set this to true even if 3824 // HaltPrivate failed, so that we can interrupt on the next natural 3825 // stop. 3826 interrupt_requested = true; 3827 } else { 3828 // This can happen when someone (e.g. Process::Halt) sees that we are 3829 // running and sends an interrupt request, but the process actually 3830 // stops before we receive it. In that case, we can just ignore the 3831 // request. We use m_last_broadcast_state, because the Stopped event 3832 // may not have been popped of the event queue yet, which is when the 3833 // public state gets updated. 3834 LLDB_LOGF(log, 3835 "Process::%s ignoring interrupt as we have already stopped.", 3836 __FUNCTION__); 3837 } 3838 continue; 3839 } 3840 3841 const StateType internal_state = 3842 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3843 3844 if (internal_state != eStateInvalid) { 3845 if (m_clear_thread_plans_on_stop && 3846 StateIsStoppedState(internal_state, true)) { 3847 m_clear_thread_plans_on_stop = false; 3848 m_thread_list.DiscardThreadPlans(); 3849 } 3850 3851 if (interrupt_requested) { 3852 if (StateIsStoppedState(internal_state, true)) { 3853 // We requested the interrupt, so mark this as such in the stop event 3854 // so clients can tell an interrupted process from a natural stop 3855 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3856 interrupt_requested = false; 3857 } else if (log) { 3858 LLDB_LOGF(log, 3859 "Process::%s interrupt_requested, but a non-stopped " 3860 "state '%s' received.", 3861 __FUNCTION__, StateAsCString(internal_state)); 3862 } 3863 } 3864 3865 HandlePrivateEvent(event_sp); 3866 } 3867 3868 if (internal_state == eStateInvalid || internal_state == eStateExited || 3869 internal_state == eStateDetached) { 3870 LLDB_LOGF(log, 3871 "Process::%s (arg = %p, pid = %" PRIu64 3872 ") about to exit with internal state %s...", 3873 __FUNCTION__, static_cast<void *>(this), GetID(), 3874 StateAsCString(internal_state)); 3875 3876 break; 3877 } 3878 } 3879 3880 // Verify log is still enabled before attempting to write to it... 3881 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3882 __FUNCTION__, static_cast<void *>(this), GetID()); 3883 3884 // If we are a secondary thread, then the primary thread we are working for 3885 // will have already acquired the public_run_lock, and isn't done with what 3886 // it was doing yet, so don't try to change it on the way out. 3887 if (!is_secondary_thread) 3888 m_public_run_lock.SetStopped(); 3889 return {}; 3890 } 3891 3892 // Process Event Data 3893 3894 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 3895 3896 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3897 StateType state) 3898 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3899 m_update_state(0), m_interrupted(false) { 3900 if (process_sp) 3901 m_process_wp = process_sp; 3902 } 3903 3904 Process::ProcessEventData::~ProcessEventData() = default; 3905 3906 ConstString Process::ProcessEventData::GetFlavorString() { 3907 static ConstString g_flavor("Process::ProcessEventData"); 3908 return g_flavor; 3909 } 3910 3911 ConstString Process::ProcessEventData::GetFlavor() const { 3912 return ProcessEventData::GetFlavorString(); 3913 } 3914 3915 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3916 bool &found_valid_stopinfo) { 3917 found_valid_stopinfo = false; 3918 3919 ProcessSP process_sp(m_process_wp.lock()); 3920 if (!process_sp) 3921 return false; 3922 3923 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3924 uint32_t num_threads = curr_thread_list.GetSize(); 3925 uint32_t idx; 3926 3927 // The actions might change one of the thread's stop_info's opinions about 3928 // whether we should stop the process, so we need to query that as we go. 3929 3930 // One other complication here, is that we try to catch any case where the 3931 // target has run (except for expressions) and immediately exit, but if we 3932 // get that wrong (which is possible) then the thread list might have 3933 // changed, and that would cause our iteration here to crash. We could 3934 // make a copy of the thread list, but we'd really like to also know if it 3935 // has changed at all, so we make up a vector of the thread ID's and check 3936 // what we get back against this list & bag out if anything differs. 3937 ThreadList not_suspended_thread_list(process_sp.get()); 3938 std::vector<uint32_t> thread_index_array(num_threads); 3939 uint32_t not_suspended_idx = 0; 3940 for (idx = 0; idx < num_threads; ++idx) { 3941 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3942 3943 /* 3944 Filter out all suspended threads, they could not be the reason 3945 of stop and no need to perform any actions on them. 3946 */ 3947 if (thread_sp->GetResumeState() != eStateSuspended) { 3948 not_suspended_thread_list.AddThread(thread_sp); 3949 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3950 not_suspended_idx++; 3951 } 3952 } 3953 3954 // Use this to track whether we should continue from here. We will only 3955 // continue the target running if no thread says we should stop. Of course 3956 // if some thread's PerformAction actually sets the target running, then it 3957 // doesn't matter what the other threads say... 3958 3959 bool still_should_stop = false; 3960 3961 // Sometimes - for instance if we have a bug in the stub we are talking to, 3962 // we stop but no thread has a valid stop reason. In that case we should 3963 // just stop, because we have no way of telling what the right thing to do 3964 // is, and it's better to let the user decide than continue behind their 3965 // backs. 3966 3967 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3968 curr_thread_list = process_sp->GetThreadList(); 3969 if (curr_thread_list.GetSize() != num_threads) { 3970 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3971 LIBLLDB_LOG_PROCESS)); 3972 LLDB_LOGF( 3973 log, 3974 "Number of threads changed from %u to %u while processing event.", 3975 num_threads, curr_thread_list.GetSize()); 3976 break; 3977 } 3978 3979 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3980 3981 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3982 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3983 LIBLLDB_LOG_PROCESS)); 3984 LLDB_LOGF(log, 3985 "The thread at position %u changed from %u to %u while " 3986 "processing event.", 3987 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3988 break; 3989 } 3990 3991 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3992 if (stop_info_sp && stop_info_sp->IsValid()) { 3993 found_valid_stopinfo = true; 3994 bool this_thread_wants_to_stop; 3995 if (stop_info_sp->GetOverrideShouldStop()) { 3996 this_thread_wants_to_stop = 3997 stop_info_sp->GetOverriddenShouldStopValue(); 3998 } else { 3999 stop_info_sp->PerformAction(event_ptr); 4000 // The stop action might restart the target. If it does, then we 4001 // want to mark that in the event so that whoever is receiving it 4002 // will know to wait for the running event and reflect that state 4003 // appropriately. We also need to stop processing actions, since they 4004 // aren't expecting the target to be running. 4005 4006 // FIXME: we might have run. 4007 if (stop_info_sp->HasTargetRunSinceMe()) { 4008 SetRestarted(true); 4009 break; 4010 } 4011 4012 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4013 } 4014 4015 if (!still_should_stop) 4016 still_should_stop = this_thread_wants_to_stop; 4017 } 4018 } 4019 4020 return still_should_stop; 4021 } 4022 4023 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4024 ProcessSP process_sp(m_process_wp.lock()); 4025 4026 if (!process_sp) 4027 return; 4028 4029 // This function gets called twice for each event, once when the event gets 4030 // pulled off of the private process event queue, and then any number of 4031 // times, first when it gets pulled off of the public event queue, then other 4032 // times when we're pretending that this is where we stopped at the end of 4033 // expression evaluation. m_update_state is used to distinguish these three 4034 // cases; it is 0 when we're just pulling it off for private handling, and > 4035 // 1 for expression evaluation, and we don't want to do the breakpoint 4036 // command handling then. 4037 if (m_update_state != 1) 4038 return; 4039 4040 process_sp->SetPublicState( 4041 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4042 4043 if (m_state == eStateStopped && !m_restarted) { 4044 // Let process subclasses know we are about to do a public stop and do 4045 // anything they might need to in order to speed up register and memory 4046 // accesses. 4047 process_sp->WillPublicStop(); 4048 } 4049 4050 // If this is a halt event, even if the halt stopped with some reason other 4051 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4052 // the halt request came through) don't do the StopInfo actions, as they may 4053 // end up restarting the process. 4054 if (m_interrupted) 4055 return; 4056 4057 // If we're not stopped or have restarted, then skip the StopInfo actions: 4058 if (m_state != eStateStopped || m_restarted) { 4059 return; 4060 } 4061 4062 bool does_anybody_have_an_opinion = false; 4063 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4064 4065 if (GetRestarted()) { 4066 return; 4067 } 4068 4069 if (!still_should_stop && does_anybody_have_an_opinion) { 4070 // We've been asked to continue, so do that here. 4071 SetRestarted(true); 4072 // Use the public resume method here, since this is just extending a 4073 // public resume. 4074 process_sp->PrivateResume(); 4075 } else { 4076 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4077 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4078 4079 if (!hijacked) { 4080 // If we didn't restart, run the Stop Hooks here. 4081 // Don't do that if state changed events aren't hooked up to the 4082 // public (or SyncResume) broadcasters. StopHooks are just for 4083 // real public stops. They might also restart the target, 4084 // so watch for that. 4085 if (process_sp->GetTarget().RunStopHooks()) 4086 SetRestarted(true); 4087 } 4088 } 4089 } 4090 4091 void Process::ProcessEventData::Dump(Stream *s) const { 4092 ProcessSP process_sp(m_process_wp.lock()); 4093 4094 if (process_sp) 4095 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4096 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4097 else 4098 s->PutCString(" process = NULL, "); 4099 4100 s->Printf("state = %s", StateAsCString(GetState())); 4101 } 4102 4103 const Process::ProcessEventData * 4104 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4105 if (event_ptr) { 4106 const EventData *event_data = event_ptr->GetData(); 4107 if (event_data && 4108 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4109 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4110 } 4111 return nullptr; 4112 } 4113 4114 ProcessSP 4115 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4116 ProcessSP process_sp; 4117 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4118 if (data) 4119 process_sp = data->GetProcessSP(); 4120 return process_sp; 4121 } 4122 4123 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4124 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4125 if (data == nullptr) 4126 return eStateInvalid; 4127 else 4128 return data->GetState(); 4129 } 4130 4131 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4132 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4133 if (data == nullptr) 4134 return false; 4135 else 4136 return data->GetRestarted(); 4137 } 4138 4139 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4140 bool new_value) { 4141 ProcessEventData *data = 4142 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4143 if (data != nullptr) 4144 data->SetRestarted(new_value); 4145 } 4146 4147 size_t 4148 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4149 ProcessEventData *data = 4150 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4151 if (data != nullptr) 4152 return data->GetNumRestartedReasons(); 4153 else 4154 return 0; 4155 } 4156 4157 const char * 4158 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4159 size_t idx) { 4160 ProcessEventData *data = 4161 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4162 if (data != nullptr) 4163 return data->GetRestartedReasonAtIndex(idx); 4164 else 4165 return nullptr; 4166 } 4167 4168 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4169 const char *reason) { 4170 ProcessEventData *data = 4171 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4172 if (data != nullptr) 4173 data->AddRestartedReason(reason); 4174 } 4175 4176 bool Process::ProcessEventData::GetInterruptedFromEvent( 4177 const Event *event_ptr) { 4178 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4179 if (data == nullptr) 4180 return false; 4181 else 4182 return data->GetInterrupted(); 4183 } 4184 4185 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4186 bool new_value) { 4187 ProcessEventData *data = 4188 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4189 if (data != nullptr) 4190 data->SetInterrupted(new_value); 4191 } 4192 4193 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4194 ProcessEventData *data = 4195 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4196 if (data) { 4197 data->SetUpdateStateOnRemoval(); 4198 return true; 4199 } 4200 return false; 4201 } 4202 4203 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4204 4205 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4206 exe_ctx.SetTargetPtr(&GetTarget()); 4207 exe_ctx.SetProcessPtr(this); 4208 exe_ctx.SetThreadPtr(nullptr); 4209 exe_ctx.SetFramePtr(nullptr); 4210 } 4211 4212 // uint32_t 4213 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4214 // std::vector<lldb::pid_t> &pids) 4215 //{ 4216 // return 0; 4217 //} 4218 // 4219 // ArchSpec 4220 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4221 //{ 4222 // return Host::GetArchSpecForExistingProcess (pid); 4223 //} 4224 // 4225 // ArchSpec 4226 // Process::GetArchSpecForExistingProcess (const char *process_name) 4227 //{ 4228 // return Host::GetArchSpecForExistingProcess (process_name); 4229 //} 4230 4231 void Process::AppendSTDOUT(const char *s, size_t len) { 4232 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4233 m_stdout_data.append(s, len); 4234 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4235 new ProcessEventData(shared_from_this(), GetState())); 4236 } 4237 4238 void Process::AppendSTDERR(const char *s, size_t len) { 4239 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4240 m_stderr_data.append(s, len); 4241 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4242 new ProcessEventData(shared_from_this(), GetState())); 4243 } 4244 4245 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4246 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4247 m_profile_data.push_back(one_profile_data); 4248 BroadcastEventIfUnique(eBroadcastBitProfileData, 4249 new ProcessEventData(shared_from_this(), GetState())); 4250 } 4251 4252 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4253 const StructuredDataPluginSP &plugin_sp) { 4254 BroadcastEvent( 4255 eBroadcastBitStructuredData, 4256 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4257 } 4258 4259 StructuredDataPluginSP 4260 Process::GetStructuredDataPlugin(ConstString type_name) const { 4261 auto find_it = m_structured_data_plugin_map.find(type_name); 4262 if (find_it != m_structured_data_plugin_map.end()) 4263 return find_it->second; 4264 else 4265 return StructuredDataPluginSP(); 4266 } 4267 4268 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4269 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4270 if (m_profile_data.empty()) 4271 return 0; 4272 4273 std::string &one_profile_data = m_profile_data.front(); 4274 size_t bytes_available = one_profile_data.size(); 4275 if (bytes_available > 0) { 4276 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4277 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4278 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4279 if (bytes_available > buf_size) { 4280 memcpy(buf, one_profile_data.c_str(), buf_size); 4281 one_profile_data.erase(0, buf_size); 4282 bytes_available = buf_size; 4283 } else { 4284 memcpy(buf, one_profile_data.c_str(), bytes_available); 4285 m_profile_data.erase(m_profile_data.begin()); 4286 } 4287 } 4288 return bytes_available; 4289 } 4290 4291 // Process STDIO 4292 4293 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4294 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4295 size_t bytes_available = m_stdout_data.size(); 4296 if (bytes_available > 0) { 4297 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4298 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4299 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4300 if (bytes_available > buf_size) { 4301 memcpy(buf, m_stdout_data.c_str(), buf_size); 4302 m_stdout_data.erase(0, buf_size); 4303 bytes_available = buf_size; 4304 } else { 4305 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4306 m_stdout_data.clear(); 4307 } 4308 } 4309 return bytes_available; 4310 } 4311 4312 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4313 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4314 size_t bytes_available = m_stderr_data.size(); 4315 if (bytes_available > 0) { 4316 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4317 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4318 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4319 if (bytes_available > buf_size) { 4320 memcpy(buf, m_stderr_data.c_str(), buf_size); 4321 m_stderr_data.erase(0, buf_size); 4322 bytes_available = buf_size; 4323 } else { 4324 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4325 m_stderr_data.clear(); 4326 } 4327 } 4328 return bytes_available; 4329 } 4330 4331 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4332 size_t src_len) { 4333 Process *process = (Process *)baton; 4334 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4335 } 4336 4337 class IOHandlerProcessSTDIO : public IOHandler { 4338 public: 4339 IOHandlerProcessSTDIO(Process *process, int write_fd) 4340 : IOHandler(process->GetTarget().GetDebugger(), 4341 IOHandler::Type::ProcessIO), 4342 m_process(process), 4343 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4344 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4345 m_pipe.CreateNew(false); 4346 } 4347 4348 ~IOHandlerProcessSTDIO() override = default; 4349 4350 // Each IOHandler gets to run until it is done. It should read data from the 4351 // "in" and place output into "out" and "err and return when done. 4352 void Run() override { 4353 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4354 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4355 SetIsDone(true); 4356 return; 4357 } 4358 4359 SetIsDone(false); 4360 const int read_fd = m_read_file.GetDescriptor(); 4361 Terminal terminal(read_fd); 4362 TerminalState terminal_state(terminal, false); 4363 // FIXME: error handling? 4364 llvm::consumeError(terminal.SetCanonical(false)); 4365 llvm::consumeError(terminal.SetEcho(false)); 4366 // FD_ZERO, FD_SET are not supported on windows 4367 #ifndef _WIN32 4368 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4369 m_is_running = true; 4370 while (!GetIsDone()) { 4371 SelectHelper select_helper; 4372 select_helper.FDSetRead(read_fd); 4373 select_helper.FDSetRead(pipe_read_fd); 4374 Status error = select_helper.Select(); 4375 4376 if (error.Fail()) { 4377 SetIsDone(true); 4378 } else { 4379 char ch = 0; 4380 size_t n; 4381 if (select_helper.FDIsSetRead(read_fd)) { 4382 n = 1; 4383 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4384 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4385 SetIsDone(true); 4386 } else 4387 SetIsDone(true); 4388 } 4389 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4390 size_t bytes_read; 4391 // Consume the interrupt byte 4392 Status error = m_pipe.Read(&ch, 1, bytes_read); 4393 if (error.Success()) { 4394 switch (ch) { 4395 case 'q': 4396 SetIsDone(true); 4397 break; 4398 case 'i': 4399 if (StateIsRunningState(m_process->GetState())) 4400 m_process->SendAsyncInterrupt(); 4401 break; 4402 } 4403 } 4404 } 4405 } 4406 } 4407 m_is_running = false; 4408 #endif 4409 } 4410 4411 void Cancel() override { 4412 SetIsDone(true); 4413 // Only write to our pipe to cancel if we are in 4414 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4415 // is being run from the command interpreter: 4416 // 4417 // (lldb) step_process_thousands_of_times 4418 // 4419 // In this case the command interpreter will be in the middle of handling 4420 // the command and if the process pushes and pops the IOHandler thousands 4421 // of times, we can end up writing to m_pipe without ever consuming the 4422 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4423 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4424 if (m_is_running) { 4425 char ch = 'q'; // Send 'q' for quit 4426 size_t bytes_written = 0; 4427 m_pipe.Write(&ch, 1, bytes_written); 4428 } 4429 } 4430 4431 bool Interrupt() override { 4432 // Do only things that are safe to do in an interrupt context (like in a 4433 // SIGINT handler), like write 1 byte to a file descriptor. This will 4434 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4435 // that was written to the pipe and then call 4436 // m_process->SendAsyncInterrupt() from a much safer location in code. 4437 if (m_active) { 4438 char ch = 'i'; // Send 'i' for interrupt 4439 size_t bytes_written = 0; 4440 Status result = m_pipe.Write(&ch, 1, bytes_written); 4441 return result.Success(); 4442 } else { 4443 // This IOHandler might be pushed on the stack, but not being run 4444 // currently so do the right thing if we aren't actively watching for 4445 // STDIN by sending the interrupt to the process. Otherwise the write to 4446 // the pipe above would do nothing. This can happen when the command 4447 // interpreter is running and gets a "expression ...". It will be on the 4448 // IOHandler thread and sending the input is complete to the delegate 4449 // which will cause the expression to run, which will push the process IO 4450 // handler, but not run it. 4451 4452 if (StateIsRunningState(m_process->GetState())) { 4453 m_process->SendAsyncInterrupt(); 4454 return true; 4455 } 4456 } 4457 return false; 4458 } 4459 4460 void GotEOF() override {} 4461 4462 protected: 4463 Process *m_process; 4464 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4465 NativeFile m_write_file; // Write to this file (usually the master pty for 4466 // getting io to debuggee) 4467 Pipe m_pipe; 4468 std::atomic<bool> m_is_running{false}; 4469 }; 4470 4471 void Process::SetSTDIOFileDescriptor(int fd) { 4472 // First set up the Read Thread for reading/handling process I/O 4473 m_stdio_communication.SetConnection( 4474 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4475 if (m_stdio_communication.IsConnected()) { 4476 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4477 STDIOReadThreadBytesReceived, this); 4478 m_stdio_communication.StartReadThread(); 4479 4480 // Now read thread is set up, set up input reader. 4481 4482 if (!m_process_input_reader) 4483 m_process_input_reader = 4484 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4485 } 4486 } 4487 4488 bool Process::ProcessIOHandlerIsActive() { 4489 IOHandlerSP io_handler_sp(m_process_input_reader); 4490 if (io_handler_sp) 4491 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4492 return false; 4493 } 4494 bool Process::PushProcessIOHandler() { 4495 IOHandlerSP io_handler_sp(m_process_input_reader); 4496 if (io_handler_sp) { 4497 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4498 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4499 4500 io_handler_sp->SetIsDone(false); 4501 // If we evaluate an utility function, then we don't cancel the current 4502 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4503 // existing IOHandler that potentially provides the user interface (e.g. 4504 // the IOHandler for Editline). 4505 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4506 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4507 cancel_top_handler); 4508 return true; 4509 } 4510 return false; 4511 } 4512 4513 bool Process::PopProcessIOHandler() { 4514 IOHandlerSP io_handler_sp(m_process_input_reader); 4515 if (io_handler_sp) 4516 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4517 return false; 4518 } 4519 4520 // The process needs to know about installed plug-ins 4521 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4522 4523 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4524 4525 namespace { 4526 // RestorePlanState is used to record the "is private", "is master" and "okay 4527 // to discard" fields of the plan we are running, and reset it on Clean or on 4528 // destruction. It will only reset the state once, so you can call Clean and 4529 // then monkey with the state and it won't get reset on you again. 4530 4531 class RestorePlanState { 4532 public: 4533 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4534 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4535 if (m_thread_plan_sp) { 4536 m_private = m_thread_plan_sp->GetPrivate(); 4537 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4538 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4539 } 4540 } 4541 4542 ~RestorePlanState() { Clean(); } 4543 4544 void Clean() { 4545 if (!m_already_reset && m_thread_plan_sp) { 4546 m_already_reset = true; 4547 m_thread_plan_sp->SetPrivate(m_private); 4548 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4549 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4550 } 4551 } 4552 4553 private: 4554 lldb::ThreadPlanSP m_thread_plan_sp; 4555 bool m_already_reset; 4556 bool m_private; 4557 bool m_is_master; 4558 bool m_okay_to_discard; 4559 }; 4560 } // anonymous namespace 4561 4562 static microseconds 4563 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4564 const milliseconds default_one_thread_timeout(250); 4565 4566 // If the overall wait is forever, then we don't need to worry about it. 4567 if (!options.GetTimeout()) { 4568 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4569 : default_one_thread_timeout; 4570 } 4571 4572 // If the one thread timeout is set, use it. 4573 if (options.GetOneThreadTimeout()) 4574 return *options.GetOneThreadTimeout(); 4575 4576 // Otherwise use half the total timeout, bounded by the 4577 // default_one_thread_timeout. 4578 return std::min<microseconds>(default_one_thread_timeout, 4579 *options.GetTimeout() / 2); 4580 } 4581 4582 static Timeout<std::micro> 4583 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4584 bool before_first_timeout) { 4585 // If we are going to run all threads the whole time, or if we are only going 4586 // to run one thread, we can just return the overall timeout. 4587 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4588 return options.GetTimeout(); 4589 4590 if (before_first_timeout) 4591 return GetOneThreadExpressionTimeout(options); 4592 4593 if (!options.GetTimeout()) 4594 return llvm::None; 4595 else 4596 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4597 } 4598 4599 static llvm::Optional<ExpressionResults> 4600 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4601 RestorePlanState &restorer, const EventSP &event_sp, 4602 EventSP &event_to_broadcast_sp, 4603 const EvaluateExpressionOptions &options, 4604 bool handle_interrupts) { 4605 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4606 4607 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4608 .GetProcessSP() 4609 ->GetThreadList() 4610 .FindThreadByID(thread_id); 4611 if (!thread_sp) { 4612 LLDB_LOG(log, 4613 "The thread on which we were running the " 4614 "expression: tid = {0}, exited while " 4615 "the expression was running.", 4616 thread_id); 4617 return eExpressionThreadVanished; 4618 } 4619 4620 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4621 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4622 LLDB_LOG(log, "execution completed successfully"); 4623 4624 // Restore the plan state so it will get reported as intended when we are 4625 // done. 4626 restorer.Clean(); 4627 return eExpressionCompleted; 4628 } 4629 4630 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4631 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4632 stop_info_sp->ShouldNotify(event_sp.get())) { 4633 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4634 if (!options.DoesIgnoreBreakpoints()) { 4635 // Restore the plan state and then force Private to false. We are going 4636 // to stop because of this plan so we need it to become a public plan or 4637 // it won't report correctly when we continue to its termination later 4638 // on. 4639 restorer.Clean(); 4640 thread_plan_sp->SetPrivate(false); 4641 event_to_broadcast_sp = event_sp; 4642 } 4643 return eExpressionHitBreakpoint; 4644 } 4645 4646 if (!handle_interrupts && 4647 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4648 return llvm::None; 4649 4650 LLDB_LOG(log, "thread plan did not successfully complete"); 4651 if (!options.DoesUnwindOnError()) 4652 event_to_broadcast_sp = event_sp; 4653 return eExpressionInterrupted; 4654 } 4655 4656 ExpressionResults 4657 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4658 lldb::ThreadPlanSP &thread_plan_sp, 4659 const EvaluateExpressionOptions &options, 4660 DiagnosticManager &diagnostic_manager) { 4661 ExpressionResults return_value = eExpressionSetupError; 4662 4663 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4664 4665 if (!thread_plan_sp) { 4666 diagnostic_manager.PutString( 4667 eDiagnosticSeverityError, 4668 "RunThreadPlan called with empty thread plan."); 4669 return eExpressionSetupError; 4670 } 4671 4672 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4673 diagnostic_manager.PutString( 4674 eDiagnosticSeverityError, 4675 "RunThreadPlan called with an invalid thread plan."); 4676 return eExpressionSetupError; 4677 } 4678 4679 if (exe_ctx.GetProcessPtr() != this) { 4680 diagnostic_manager.PutString(eDiagnosticSeverityError, 4681 "RunThreadPlan called on wrong process."); 4682 return eExpressionSetupError; 4683 } 4684 4685 Thread *thread = exe_ctx.GetThreadPtr(); 4686 if (thread == nullptr) { 4687 diagnostic_manager.PutString(eDiagnosticSeverityError, 4688 "RunThreadPlan called with invalid thread."); 4689 return eExpressionSetupError; 4690 } 4691 4692 // Record the thread's id so we can tell when a thread we were using 4693 // to run the expression exits during the expression evaluation. 4694 lldb::tid_t expr_thread_id = thread->GetID(); 4695 4696 // We need to change some of the thread plan attributes for the thread plan 4697 // runner. This will restore them when we are done: 4698 4699 RestorePlanState thread_plan_restorer(thread_plan_sp); 4700 4701 // We rely on the thread plan we are running returning "PlanCompleted" if 4702 // when it successfully completes. For that to be true the plan can't be 4703 // private - since private plans suppress themselves in the GetCompletedPlan 4704 // call. 4705 4706 thread_plan_sp->SetPrivate(false); 4707 4708 // The plans run with RunThreadPlan also need to be terminal master plans or 4709 // when they are done we will end up asking the plan above us whether we 4710 // should stop, which may give the wrong answer. 4711 4712 thread_plan_sp->SetIsMasterPlan(true); 4713 thread_plan_sp->SetOkayToDiscard(false); 4714 4715 // If we are running some utility expression for LLDB, we now have to mark 4716 // this in the ProcesModID of this process. This RAII takes care of marking 4717 // and reverting the mark it once we are done running the expression. 4718 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4719 4720 if (m_private_state.GetValue() != eStateStopped) { 4721 diagnostic_manager.PutString( 4722 eDiagnosticSeverityError, 4723 "RunThreadPlan called while the private state was not stopped."); 4724 return eExpressionSetupError; 4725 } 4726 4727 // Save the thread & frame from the exe_ctx for restoration after we run 4728 const uint32_t thread_idx_id = thread->GetIndexID(); 4729 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4730 if (!selected_frame_sp) { 4731 thread->SetSelectedFrame(nullptr); 4732 selected_frame_sp = thread->GetSelectedFrame(); 4733 if (!selected_frame_sp) { 4734 diagnostic_manager.Printf( 4735 eDiagnosticSeverityError, 4736 "RunThreadPlan called without a selected frame on thread %d", 4737 thread_idx_id); 4738 return eExpressionSetupError; 4739 } 4740 } 4741 4742 // Make sure the timeout values make sense. The one thread timeout needs to 4743 // be smaller than the overall timeout. 4744 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4745 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4746 diagnostic_manager.PutString(eDiagnosticSeverityError, 4747 "RunThreadPlan called with one thread " 4748 "timeout greater than total timeout"); 4749 return eExpressionSetupError; 4750 } 4751 4752 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4753 4754 // N.B. Running the target may unset the currently selected thread and frame. 4755 // We don't want to do that either, so we should arrange to reset them as 4756 // well. 4757 4758 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4759 4760 uint32_t selected_tid; 4761 StackID selected_stack_id; 4762 if (selected_thread_sp) { 4763 selected_tid = selected_thread_sp->GetIndexID(); 4764 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4765 } else { 4766 selected_tid = LLDB_INVALID_THREAD_ID; 4767 } 4768 4769 HostThread backup_private_state_thread; 4770 lldb::StateType old_state = eStateInvalid; 4771 lldb::ThreadPlanSP stopper_base_plan_sp; 4772 4773 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4774 LIBLLDB_LOG_PROCESS)); 4775 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4776 // Yikes, we are running on the private state thread! So we can't wait for 4777 // public events on this thread, since we are the thread that is generating 4778 // public events. The simplest thing to do is to spin up a temporary thread 4779 // to handle private state thread events while we are fielding public 4780 // events here. 4781 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4782 "another state thread to handle the events."); 4783 4784 backup_private_state_thread = m_private_state_thread; 4785 4786 // One other bit of business: we want to run just this thread plan and 4787 // anything it pushes, and then stop, returning control here. But in the 4788 // normal course of things, the plan above us on the stack would be given a 4789 // shot at the stop event before deciding to stop, and we don't want that. 4790 // So we insert a "stopper" base plan on the stack before the plan we want 4791 // to run. Since base plans always stop and return control to the user, 4792 // that will do just what we want. 4793 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4794 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4795 // Have to make sure our public state is stopped, since otherwise the 4796 // reporting logic below doesn't work correctly. 4797 old_state = m_public_state.GetValue(); 4798 m_public_state.SetValueNoLock(eStateStopped); 4799 4800 // Now spin up the private state thread: 4801 StartPrivateStateThread(true); 4802 } 4803 4804 thread->QueueThreadPlan( 4805 thread_plan_sp, false); // This used to pass "true" does that make sense? 4806 4807 if (options.GetDebug()) { 4808 // In this case, we aren't actually going to run, we just want to stop 4809 // right away. Flush this thread so we will refetch the stacks and show the 4810 // correct backtrace. 4811 // FIXME: To make this prettier we should invent some stop reason for this, 4812 // but that 4813 // is only cosmetic, and this functionality is only of use to lldb 4814 // developers who can live with not pretty... 4815 thread->Flush(); 4816 return eExpressionStoppedForDebug; 4817 } 4818 4819 ListenerSP listener_sp( 4820 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4821 4822 lldb::EventSP event_to_broadcast_sp; 4823 4824 { 4825 // This process event hijacker Hijacks the Public events and its destructor 4826 // makes sure that the process events get restored on exit to the function. 4827 // 4828 // If the event needs to propagate beyond the hijacker (e.g., the process 4829 // exits during execution), then the event is put into 4830 // event_to_broadcast_sp for rebroadcasting. 4831 4832 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4833 4834 if (log) { 4835 StreamString s; 4836 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4837 LLDB_LOGF(log, 4838 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4839 " to run thread plan \"%s\".", 4840 thread_idx_id, expr_thread_id, s.GetData()); 4841 } 4842 4843 bool got_event; 4844 lldb::EventSP event_sp; 4845 lldb::StateType stop_state = lldb::eStateInvalid; 4846 4847 bool before_first_timeout = true; // This is set to false the first time 4848 // that we have to halt the target. 4849 bool do_resume = true; 4850 bool handle_running_event = true; 4851 4852 // This is just for accounting: 4853 uint32_t num_resumes = 0; 4854 4855 // If we are going to run all threads the whole time, or if we are only 4856 // going to run one thread, then we don't need the first timeout. So we 4857 // pretend we are after the first timeout already. 4858 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4859 before_first_timeout = false; 4860 4861 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4862 options.GetStopOthers(), options.GetTryAllThreads(), 4863 before_first_timeout); 4864 4865 // This isn't going to work if there are unfetched events on the queue. Are 4866 // there cases where we might want to run the remaining events here, and 4867 // then try to call the function? That's probably being too tricky for our 4868 // own good. 4869 4870 Event *other_events = listener_sp->PeekAtNextEvent(); 4871 if (other_events != nullptr) { 4872 diagnostic_manager.PutString( 4873 eDiagnosticSeverityError, 4874 "RunThreadPlan called with pending events on the queue."); 4875 return eExpressionSetupError; 4876 } 4877 4878 // We also need to make sure that the next event is delivered. We might be 4879 // calling a function as part of a thread plan, in which case the last 4880 // delivered event could be the running event, and we don't want event 4881 // coalescing to cause us to lose OUR running event... 4882 ForceNextEventDelivery(); 4883 4884 // This while loop must exit out the bottom, there's cleanup that we need to do 4885 // when we are done. So don't call return anywhere within it. 4886 4887 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4888 // It's pretty much impossible to write test cases for things like: One 4889 // thread timeout expires, I go to halt, but the process already stopped on 4890 // the function call stop breakpoint. Turning on this define will make us 4891 // not fetch the first event till after the halt. So if you run a quick 4892 // function, it will have completed, and the completion event will be 4893 // waiting, when you interrupt for halt. The expression evaluation should 4894 // still succeed. 4895 bool miss_first_event = true; 4896 #endif 4897 while (true) { 4898 // We usually want to resume the process if we get to the top of the 4899 // loop. The only exception is if we get two running events with no 4900 // intervening stop, which can happen, we will just wait for then next 4901 // stop event. 4902 LLDB_LOGF(log, 4903 "Top of while loop: do_resume: %i handle_running_event: %i " 4904 "before_first_timeout: %i.", 4905 do_resume, handle_running_event, before_first_timeout); 4906 4907 if (do_resume || handle_running_event) { 4908 // Do the initial resume and wait for the running event before going 4909 // further. 4910 4911 if (do_resume) { 4912 num_resumes++; 4913 Status resume_error = PrivateResume(); 4914 if (!resume_error.Success()) { 4915 diagnostic_manager.Printf( 4916 eDiagnosticSeverityError, 4917 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4918 resume_error.AsCString()); 4919 return_value = eExpressionSetupError; 4920 break; 4921 } 4922 } 4923 4924 got_event = 4925 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4926 if (!got_event) { 4927 LLDB_LOGF(log, 4928 "Process::RunThreadPlan(): didn't get any event after " 4929 "resume %" PRIu32 ", exiting.", 4930 num_resumes); 4931 4932 diagnostic_manager.Printf(eDiagnosticSeverityError, 4933 "didn't get any event after resume %" PRIu32 4934 ", exiting.", 4935 num_resumes); 4936 return_value = eExpressionSetupError; 4937 break; 4938 } 4939 4940 stop_state = 4941 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4942 4943 if (stop_state != eStateRunning) { 4944 bool restarted = false; 4945 4946 if (stop_state == eStateStopped) { 4947 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4948 event_sp.get()); 4949 LLDB_LOGF( 4950 log, 4951 "Process::RunThreadPlan(): didn't get running event after " 4952 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4953 "handle_running_event: %i).", 4954 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4955 handle_running_event); 4956 } 4957 4958 if (restarted) { 4959 // This is probably an overabundance of caution, I don't think I 4960 // should ever get a stopped & restarted event here. But if I do, 4961 // the best thing is to Halt and then get out of here. 4962 const bool clear_thread_plans = false; 4963 const bool use_run_lock = false; 4964 Halt(clear_thread_plans, use_run_lock); 4965 } 4966 4967 diagnostic_manager.Printf( 4968 eDiagnosticSeverityError, 4969 "didn't get running event after initial resume, got %s instead.", 4970 StateAsCString(stop_state)); 4971 return_value = eExpressionSetupError; 4972 break; 4973 } 4974 4975 if (log) 4976 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4977 // We need to call the function synchronously, so spin waiting for it 4978 // to return. If we get interrupted while executing, we're going to 4979 // lose our context, and won't be able to gather the result at this 4980 // point. We set the timeout AFTER the resume, since the resume takes 4981 // some time and we don't want to charge that to the timeout. 4982 } else { 4983 if (log) 4984 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4985 } 4986 4987 do_resume = true; 4988 handle_running_event = true; 4989 4990 // Now wait for the process to stop again: 4991 event_sp.reset(); 4992 4993 Timeout<std::micro> timeout = 4994 GetExpressionTimeout(options, before_first_timeout); 4995 if (log) { 4996 if (timeout) { 4997 auto now = system_clock::now(); 4998 LLDB_LOGF(log, 4999 "Process::RunThreadPlan(): about to wait - now is %s - " 5000 "endpoint is %s", 5001 llvm::to_string(now).c_str(), 5002 llvm::to_string(now + *timeout).c_str()); 5003 } else { 5004 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5005 } 5006 } 5007 5008 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5009 // See comment above... 5010 if (miss_first_event) { 5011 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5012 miss_first_event = false; 5013 got_event = false; 5014 } else 5015 #endif 5016 got_event = listener_sp->GetEvent(event_sp, timeout); 5017 5018 if (got_event) { 5019 if (event_sp) { 5020 bool keep_going = false; 5021 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5022 const bool clear_thread_plans = false; 5023 const bool use_run_lock = false; 5024 Halt(clear_thread_plans, use_run_lock); 5025 return_value = eExpressionInterrupted; 5026 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5027 "execution halted by user interrupt."); 5028 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5029 "eBroadcastBitInterrupted, exiting."); 5030 break; 5031 } else { 5032 stop_state = 5033 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5034 LLDB_LOGF(log, 5035 "Process::RunThreadPlan(): in while loop, got event: %s.", 5036 StateAsCString(stop_state)); 5037 5038 switch (stop_state) { 5039 case lldb::eStateStopped: { 5040 if (Process::ProcessEventData::GetRestartedFromEvent( 5041 event_sp.get())) { 5042 // If we were restarted, we just need to go back up to fetch 5043 // another event. 5044 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5045 "restart, so we'll continue waiting."); 5046 keep_going = true; 5047 do_resume = false; 5048 handle_running_event = true; 5049 } else { 5050 const bool handle_interrupts = true; 5051 return_value = *HandleStoppedEvent( 5052 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5053 event_sp, event_to_broadcast_sp, options, 5054 handle_interrupts); 5055 if (return_value == eExpressionThreadVanished) 5056 keep_going = false; 5057 } 5058 } break; 5059 5060 case lldb::eStateRunning: 5061 // This shouldn't really happen, but sometimes we do get two 5062 // running events without an intervening stop, and in that case 5063 // we should just go back to waiting for the stop. 5064 do_resume = false; 5065 keep_going = true; 5066 handle_running_event = false; 5067 break; 5068 5069 default: 5070 LLDB_LOGF(log, 5071 "Process::RunThreadPlan(): execution stopped with " 5072 "unexpected state: %s.", 5073 StateAsCString(stop_state)); 5074 5075 if (stop_state == eStateExited) 5076 event_to_broadcast_sp = event_sp; 5077 5078 diagnostic_manager.PutString( 5079 eDiagnosticSeverityError, 5080 "execution stopped with unexpected state."); 5081 return_value = eExpressionInterrupted; 5082 break; 5083 } 5084 } 5085 5086 if (keep_going) 5087 continue; 5088 else 5089 break; 5090 } else { 5091 if (log) 5092 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5093 "the event pointer was null. How odd..."); 5094 return_value = eExpressionInterrupted; 5095 break; 5096 } 5097 } else { 5098 // If we didn't get an event that means we've timed out... We will 5099 // interrupt the process here. Depending on what we were asked to do 5100 // we will either exit, or try with all threads running for the same 5101 // timeout. 5102 5103 if (log) { 5104 if (options.GetTryAllThreads()) { 5105 if (before_first_timeout) { 5106 LLDB_LOG(log, 5107 "Running function with one thread timeout timed out."); 5108 } else 5109 LLDB_LOG(log, "Restarting function with all threads enabled and " 5110 "timeout: {0} timed out, abandoning execution.", 5111 timeout); 5112 } else 5113 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5114 "abandoning execution.", 5115 timeout); 5116 } 5117 5118 // It is possible that between the time we issued the Halt, and we get 5119 // around to calling Halt the target could have stopped. That's fine, 5120 // Halt will figure that out and send the appropriate Stopped event. 5121 // BUT it is also possible that we stopped & restarted (e.g. hit a 5122 // signal with "stop" set to false.) In 5123 // that case, we'll get the stopped & restarted event, and we should go 5124 // back to waiting for the Halt's stopped event. That's what this 5125 // while loop does. 5126 5127 bool back_to_top = true; 5128 uint32_t try_halt_again = 0; 5129 bool do_halt = true; 5130 const uint32_t num_retries = 5; 5131 while (try_halt_again < num_retries) { 5132 Status halt_error; 5133 if (do_halt) { 5134 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5135 const bool clear_thread_plans = false; 5136 const bool use_run_lock = false; 5137 Halt(clear_thread_plans, use_run_lock); 5138 } 5139 if (halt_error.Success()) { 5140 if (log) 5141 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5142 5143 got_event = 5144 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5145 5146 if (got_event) { 5147 stop_state = 5148 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5149 if (log) { 5150 LLDB_LOGF(log, 5151 "Process::RunThreadPlan(): Stopped with event: %s", 5152 StateAsCString(stop_state)); 5153 if (stop_state == lldb::eStateStopped && 5154 Process::ProcessEventData::GetInterruptedFromEvent( 5155 event_sp.get())) 5156 log->PutCString(" Event was the Halt interruption event."); 5157 } 5158 5159 if (stop_state == lldb::eStateStopped) { 5160 if (Process::ProcessEventData::GetRestartedFromEvent( 5161 event_sp.get())) { 5162 if (log) 5163 log->PutCString("Process::RunThreadPlan(): Went to halt " 5164 "but got a restarted event, there must be " 5165 "an un-restarted stopped event so try " 5166 "again... " 5167 "Exiting wait loop."); 5168 try_halt_again++; 5169 do_halt = false; 5170 continue; 5171 } 5172 5173 // Between the time we initiated the Halt and the time we 5174 // delivered it, the process could have already finished its 5175 // job. Check that here: 5176 const bool handle_interrupts = false; 5177 if (auto result = HandleStoppedEvent( 5178 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5179 event_sp, event_to_broadcast_sp, options, 5180 handle_interrupts)) { 5181 return_value = *result; 5182 back_to_top = false; 5183 break; 5184 } 5185 5186 if (!options.GetTryAllThreads()) { 5187 if (log) 5188 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5189 "was false, we stopped so now we're " 5190 "quitting."); 5191 return_value = eExpressionInterrupted; 5192 back_to_top = false; 5193 break; 5194 } 5195 5196 if (before_first_timeout) { 5197 // Set all the other threads to run, and return to the top of 5198 // the loop, which will continue; 5199 before_first_timeout = false; 5200 thread_plan_sp->SetStopOthers(false); 5201 if (log) 5202 log->PutCString( 5203 "Process::RunThreadPlan(): about to resume."); 5204 5205 back_to_top = true; 5206 break; 5207 } else { 5208 // Running all threads failed, so return Interrupted. 5209 if (log) 5210 log->PutCString("Process::RunThreadPlan(): running all " 5211 "threads timed out."); 5212 return_value = eExpressionInterrupted; 5213 back_to_top = false; 5214 break; 5215 } 5216 } 5217 } else { 5218 if (log) 5219 log->PutCString("Process::RunThreadPlan(): halt said it " 5220 "succeeded, but I got no event. " 5221 "I'm getting out of here passing Interrupted."); 5222 return_value = eExpressionInterrupted; 5223 back_to_top = false; 5224 break; 5225 } 5226 } else { 5227 try_halt_again++; 5228 continue; 5229 } 5230 } 5231 5232 if (!back_to_top || try_halt_again > num_retries) 5233 break; 5234 else 5235 continue; 5236 } 5237 } // END WAIT LOOP 5238 5239 // If we had to start up a temporary private state thread to run this 5240 // thread plan, shut it down now. 5241 if (backup_private_state_thread.IsJoinable()) { 5242 StopPrivateStateThread(); 5243 Status error; 5244 m_private_state_thread = backup_private_state_thread; 5245 if (stopper_base_plan_sp) { 5246 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5247 } 5248 if (old_state != eStateInvalid) 5249 m_public_state.SetValueNoLock(old_state); 5250 } 5251 5252 // If our thread went away on us, we need to get out of here without 5253 // doing any more work. We don't have to clean up the thread plan, that 5254 // will have happened when the Thread was destroyed. 5255 if (return_value == eExpressionThreadVanished) { 5256 return return_value; 5257 } 5258 5259 if (return_value != eExpressionCompleted && log) { 5260 // Print a backtrace into the log so we can figure out where we are: 5261 StreamString s; 5262 s.PutCString("Thread state after unsuccessful completion: \n"); 5263 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5264 log->PutString(s.GetString()); 5265 } 5266 // Restore the thread state if we are going to discard the plan execution. 5267 // There are three cases where this could happen: 1) The execution 5268 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5269 // was true 3) We got some other error, and discard_on_error was true 5270 bool should_unwind = (return_value == eExpressionInterrupted && 5271 options.DoesUnwindOnError()) || 5272 (return_value == eExpressionHitBreakpoint && 5273 options.DoesIgnoreBreakpoints()); 5274 5275 if (return_value == eExpressionCompleted || should_unwind) { 5276 thread_plan_sp->RestoreThreadState(); 5277 } 5278 5279 // Now do some processing on the results of the run: 5280 if (return_value == eExpressionInterrupted || 5281 return_value == eExpressionHitBreakpoint) { 5282 if (log) { 5283 StreamString s; 5284 if (event_sp) 5285 event_sp->Dump(&s); 5286 else { 5287 log->PutCString("Process::RunThreadPlan(): Stop event that " 5288 "interrupted us is NULL."); 5289 } 5290 5291 StreamString ts; 5292 5293 const char *event_explanation = nullptr; 5294 5295 do { 5296 if (!event_sp) { 5297 event_explanation = "<no event>"; 5298 break; 5299 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5300 event_explanation = "<user interrupt>"; 5301 break; 5302 } else { 5303 const Process::ProcessEventData *event_data = 5304 Process::ProcessEventData::GetEventDataFromEvent( 5305 event_sp.get()); 5306 5307 if (!event_data) { 5308 event_explanation = "<no event data>"; 5309 break; 5310 } 5311 5312 Process *process = event_data->GetProcessSP().get(); 5313 5314 if (!process) { 5315 event_explanation = "<no process>"; 5316 break; 5317 } 5318 5319 ThreadList &thread_list = process->GetThreadList(); 5320 5321 uint32_t num_threads = thread_list.GetSize(); 5322 uint32_t thread_index; 5323 5324 ts.Printf("<%u threads> ", num_threads); 5325 5326 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5327 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5328 5329 if (!thread) { 5330 ts.Printf("<?> "); 5331 continue; 5332 } 5333 5334 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5335 RegisterContext *register_context = 5336 thread->GetRegisterContext().get(); 5337 5338 if (register_context) 5339 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5340 else 5341 ts.Printf("[ip unknown] "); 5342 5343 // Show the private stop info here, the public stop info will be 5344 // from the last natural stop. 5345 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5346 if (stop_info_sp) { 5347 const char *stop_desc = stop_info_sp->GetDescription(); 5348 if (stop_desc) 5349 ts.PutCString(stop_desc); 5350 } 5351 ts.Printf(">"); 5352 } 5353 5354 event_explanation = ts.GetData(); 5355 } 5356 } while (false); 5357 5358 if (event_explanation) 5359 LLDB_LOGF(log, 5360 "Process::RunThreadPlan(): execution interrupted: %s %s", 5361 s.GetData(), event_explanation); 5362 else 5363 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5364 s.GetData()); 5365 } 5366 5367 if (should_unwind) { 5368 LLDB_LOGF(log, 5369 "Process::RunThreadPlan: ExecutionInterrupted - " 5370 "discarding thread plans up to %p.", 5371 static_cast<void *>(thread_plan_sp.get())); 5372 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5373 } else { 5374 LLDB_LOGF(log, 5375 "Process::RunThreadPlan: ExecutionInterrupted - for " 5376 "plan: %p not discarding.", 5377 static_cast<void *>(thread_plan_sp.get())); 5378 } 5379 } else if (return_value == eExpressionSetupError) { 5380 if (log) 5381 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5382 5383 if (options.DoesUnwindOnError()) { 5384 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5385 } 5386 } else { 5387 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5388 if (log) 5389 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5390 return_value = eExpressionCompleted; 5391 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5392 if (log) 5393 log->PutCString( 5394 "Process::RunThreadPlan(): thread plan was discarded"); 5395 return_value = eExpressionDiscarded; 5396 } else { 5397 if (log) 5398 log->PutCString( 5399 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5400 if (options.DoesUnwindOnError() && thread_plan_sp) { 5401 if (log) 5402 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5403 "'cause unwind_on_error is set."); 5404 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5405 } 5406 } 5407 } 5408 5409 // Thread we ran the function in may have gone away because we ran the 5410 // target Check that it's still there, and if it is put it back in the 5411 // context. Also restore the frame in the context if it is still present. 5412 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5413 if (thread) { 5414 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5415 } 5416 5417 // Also restore the current process'es selected frame & thread, since this 5418 // function calling may be done behind the user's back. 5419 5420 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5421 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5422 selected_stack_id.IsValid()) { 5423 // We were able to restore the selected thread, now restore the frame: 5424 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5425 StackFrameSP old_frame_sp = 5426 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5427 selected_stack_id); 5428 if (old_frame_sp) 5429 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5430 old_frame_sp.get()); 5431 } 5432 } 5433 } 5434 5435 // If the process exited during the run of the thread plan, notify everyone. 5436 5437 if (event_to_broadcast_sp) { 5438 if (log) 5439 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5440 BroadcastEvent(event_to_broadcast_sp); 5441 } 5442 5443 return return_value; 5444 } 5445 5446 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5447 const char *result_name = "<unknown>"; 5448 5449 switch (result) { 5450 case eExpressionCompleted: 5451 result_name = "eExpressionCompleted"; 5452 break; 5453 case eExpressionDiscarded: 5454 result_name = "eExpressionDiscarded"; 5455 break; 5456 case eExpressionInterrupted: 5457 result_name = "eExpressionInterrupted"; 5458 break; 5459 case eExpressionHitBreakpoint: 5460 result_name = "eExpressionHitBreakpoint"; 5461 break; 5462 case eExpressionSetupError: 5463 result_name = "eExpressionSetupError"; 5464 break; 5465 case eExpressionParseError: 5466 result_name = "eExpressionParseError"; 5467 break; 5468 case eExpressionResultUnavailable: 5469 result_name = "eExpressionResultUnavailable"; 5470 break; 5471 case eExpressionTimedOut: 5472 result_name = "eExpressionTimedOut"; 5473 break; 5474 case eExpressionStoppedForDebug: 5475 result_name = "eExpressionStoppedForDebug"; 5476 break; 5477 case eExpressionThreadVanished: 5478 result_name = "eExpressionThreadVanished"; 5479 } 5480 return result_name; 5481 } 5482 5483 void Process::GetStatus(Stream &strm) { 5484 const StateType state = GetState(); 5485 if (StateIsStoppedState(state, false)) { 5486 if (state == eStateExited) { 5487 int exit_status = GetExitStatus(); 5488 const char *exit_description = GetExitDescription(); 5489 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5490 GetID(), exit_status, exit_status, 5491 exit_description ? exit_description : ""); 5492 } else { 5493 if (state == eStateConnected) 5494 strm.Printf("Connected to remote target.\n"); 5495 else 5496 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5497 } 5498 } else { 5499 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5500 } 5501 } 5502 5503 size_t Process::GetThreadStatus(Stream &strm, 5504 bool only_threads_with_stop_reason, 5505 uint32_t start_frame, uint32_t num_frames, 5506 uint32_t num_frames_with_source, 5507 bool stop_format) { 5508 size_t num_thread_infos_dumped = 0; 5509 5510 // You can't hold the thread list lock while calling Thread::GetStatus. That 5511 // very well might run code (e.g. if we need it to get return values or 5512 // arguments.) For that to work the process has to be able to acquire it. 5513 // So instead copy the thread ID's, and look them up one by one: 5514 5515 uint32_t num_threads; 5516 std::vector<lldb::tid_t> thread_id_array; 5517 // Scope for thread list locker; 5518 { 5519 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5520 ThreadList &curr_thread_list = GetThreadList(); 5521 num_threads = curr_thread_list.GetSize(); 5522 uint32_t idx; 5523 thread_id_array.resize(num_threads); 5524 for (idx = 0; idx < num_threads; ++idx) 5525 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5526 } 5527 5528 for (uint32_t i = 0; i < num_threads; i++) { 5529 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5530 if (thread_sp) { 5531 if (only_threads_with_stop_reason) { 5532 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5533 if (!stop_info_sp || !stop_info_sp->IsValid()) 5534 continue; 5535 } 5536 thread_sp->GetStatus(strm, start_frame, num_frames, 5537 num_frames_with_source, 5538 stop_format); 5539 ++num_thread_infos_dumped; 5540 } else { 5541 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5542 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5543 " vanished while running Thread::GetStatus."); 5544 } 5545 } 5546 return num_thread_infos_dumped; 5547 } 5548 5549 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5550 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5551 } 5552 5553 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5554 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5555 region.GetByteSize()); 5556 } 5557 5558 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5559 void *baton) { 5560 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5561 } 5562 5563 bool Process::RunPreResumeActions() { 5564 bool result = true; 5565 while (!m_pre_resume_actions.empty()) { 5566 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5567 m_pre_resume_actions.pop_back(); 5568 bool this_result = action.callback(action.baton); 5569 if (result) 5570 result = this_result; 5571 } 5572 return result; 5573 } 5574 5575 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5576 5577 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5578 { 5579 PreResumeCallbackAndBaton element(callback, baton); 5580 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5581 if (found_iter != m_pre_resume_actions.end()) 5582 { 5583 m_pre_resume_actions.erase(found_iter); 5584 } 5585 } 5586 5587 ProcessRunLock &Process::GetRunLock() { 5588 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5589 return m_private_run_lock; 5590 else 5591 return m_public_run_lock; 5592 } 5593 5594 bool Process::CurrentThreadIsPrivateStateThread() 5595 { 5596 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5597 } 5598 5599 5600 void Process::Flush() { 5601 m_thread_list.Flush(); 5602 m_extended_thread_list.Flush(); 5603 m_extended_thread_stop_id = 0; 5604 m_queue_list.Clear(); 5605 m_queue_list_stop_id = 0; 5606 } 5607 5608 lldb::addr_t Process::GetCodeAddressMask() { 5609 if (m_code_address_mask == 0) { 5610 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5611 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5612 SetCodeAddressMask(address_mask); 5613 } 5614 } 5615 return m_code_address_mask; 5616 } 5617 5618 lldb::addr_t Process::GetDataAddressMask() { 5619 if (m_data_address_mask == 0) { 5620 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5621 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5622 SetDataAddressMask(address_mask); 5623 } 5624 } 5625 return m_data_address_mask; 5626 } 5627 5628 void Process::DidExec() { 5629 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5630 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5631 5632 Target &target = GetTarget(); 5633 target.CleanupProcess(); 5634 target.ClearModules(false); 5635 m_dynamic_checkers_up.reset(); 5636 m_abi_sp.reset(); 5637 m_system_runtime_up.reset(); 5638 m_os_up.reset(); 5639 m_dyld_up.reset(); 5640 m_jit_loaders_up.reset(); 5641 m_image_tokens.clear(); 5642 m_allocated_memory_cache.Clear(); 5643 { 5644 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5645 m_language_runtimes.clear(); 5646 } 5647 m_instrumentation_runtimes.clear(); 5648 m_thread_list.DiscardThreadPlans(); 5649 m_memory_cache.Clear(true); 5650 DoDidExec(); 5651 CompleteAttach(); 5652 // Flush the process (threads and all stack frames) after running 5653 // CompleteAttach() in case the dynamic loader loaded things in new 5654 // locations. 5655 Flush(); 5656 5657 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5658 // let the target know so it can do any cleanup it needs to. 5659 target.DidExec(); 5660 } 5661 5662 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5663 if (address == nullptr) { 5664 error.SetErrorString("Invalid address argument"); 5665 return LLDB_INVALID_ADDRESS; 5666 } 5667 5668 addr_t function_addr = LLDB_INVALID_ADDRESS; 5669 5670 addr_t addr = address->GetLoadAddress(&GetTarget()); 5671 std::map<addr_t, addr_t>::const_iterator iter = 5672 m_resolved_indirect_addresses.find(addr); 5673 if (iter != m_resolved_indirect_addresses.end()) { 5674 function_addr = (*iter).second; 5675 } else { 5676 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5677 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5678 error.SetErrorStringWithFormat( 5679 "Unable to call resolver for indirect function %s", 5680 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5681 function_addr = LLDB_INVALID_ADDRESS; 5682 } else { 5683 if (ABISP abi_sp = GetABI()) 5684 function_addr = abi_sp->FixCodeAddress(function_addr); 5685 m_resolved_indirect_addresses.insert( 5686 std::pair<addr_t, addr_t>(addr, function_addr)); 5687 } 5688 } 5689 return function_addr; 5690 } 5691 5692 void Process::ModulesDidLoad(ModuleList &module_list) { 5693 // Inform the system runtime of the modified modules. 5694 SystemRuntime *sys_runtime = GetSystemRuntime(); 5695 if (sys_runtime) 5696 sys_runtime->ModulesDidLoad(module_list); 5697 5698 GetJITLoaders().ModulesDidLoad(module_list); 5699 5700 // Give the instrumentation runtimes a chance to be created before informing 5701 // them of the modified modules. 5702 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5703 m_instrumentation_runtimes); 5704 for (auto &runtime : m_instrumentation_runtimes) 5705 runtime.second->ModulesDidLoad(module_list); 5706 5707 // Give the language runtimes a chance to be created before informing them of 5708 // the modified modules. 5709 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5710 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5711 runtime->ModulesDidLoad(module_list); 5712 } 5713 5714 // If we don't have an operating system plug-in, try to load one since 5715 // loading shared libraries might cause a new one to try and load 5716 if (!m_os_up) 5717 LoadOperatingSystemPlugin(false); 5718 5719 // Inform the structured-data plugins of the modified modules. 5720 for (auto pair : m_structured_data_plugin_map) { 5721 if (pair.second) 5722 pair.second->ModulesDidLoad(*this, module_list); 5723 } 5724 } 5725 5726 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5727 const char *fmt, ...) { 5728 bool print_warning = true; 5729 5730 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5731 if (!stream_sp) 5732 return; 5733 5734 if (repeat_key != nullptr) { 5735 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5736 if (it == m_warnings_issued.end()) { 5737 m_warnings_issued[warning_type] = WarningsPointerSet(); 5738 m_warnings_issued[warning_type].insert(repeat_key); 5739 } else { 5740 if (it->second.find(repeat_key) != it->second.end()) { 5741 print_warning = false; 5742 } else { 5743 it->second.insert(repeat_key); 5744 } 5745 } 5746 } 5747 5748 if (print_warning) { 5749 va_list args; 5750 va_start(args, fmt); 5751 stream_sp->PrintfVarArg(fmt, args); 5752 va_end(args); 5753 } 5754 } 5755 5756 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5757 if (!GetWarningsOptimization()) 5758 return; 5759 if (!sc.module_sp) 5760 return; 5761 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5762 sc.function->GetIsOptimized()) { 5763 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5764 "%s was compiled with optimization - stepping may behave " 5765 "oddly; variables may not be available.\n", 5766 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5767 } 5768 } 5769 5770 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5771 if (!GetWarningsUnsupportedLanguage()) 5772 return; 5773 if (!sc.module_sp) 5774 return; 5775 LanguageType language = sc.GetLanguage(); 5776 if (language == eLanguageTypeUnknown) 5777 return; 5778 LanguageSet plugins = 5779 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5780 if (!plugins[language]) { 5781 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5782 sc.module_sp.get(), 5783 "This version of LLDB has no plugin for the language \"%s\". " 5784 "Inspection of frame variables will be limited.\n", 5785 Language::GetNameForLanguageType(language)); 5786 } 5787 } 5788 5789 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5790 info.Clear(); 5791 5792 PlatformSP platform_sp = GetTarget().GetPlatform(); 5793 if (!platform_sp) 5794 return false; 5795 5796 return platform_sp->GetProcessInfo(GetID(), info); 5797 } 5798 5799 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5800 ThreadCollectionSP threads; 5801 5802 const MemoryHistorySP &memory_history = 5803 MemoryHistory::FindPlugin(shared_from_this()); 5804 5805 if (!memory_history) { 5806 return threads; 5807 } 5808 5809 threads = std::make_shared<ThreadCollection>( 5810 memory_history->GetHistoryThreads(addr)); 5811 5812 return threads; 5813 } 5814 5815 InstrumentationRuntimeSP 5816 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5817 InstrumentationRuntimeCollection::iterator pos; 5818 pos = m_instrumentation_runtimes.find(type); 5819 if (pos == m_instrumentation_runtimes.end()) { 5820 return InstrumentationRuntimeSP(); 5821 } else 5822 return (*pos).second; 5823 } 5824 5825 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5826 const ArchSpec &arch, ModuleSpec &module_spec) { 5827 module_spec.Clear(); 5828 return false; 5829 } 5830 5831 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5832 m_image_tokens.push_back(image_ptr); 5833 return m_image_tokens.size() - 1; 5834 } 5835 5836 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5837 if (token < m_image_tokens.size()) 5838 return m_image_tokens[token]; 5839 return LLDB_INVALID_ADDRESS; 5840 } 5841 5842 void Process::ResetImageToken(size_t token) { 5843 if (token < m_image_tokens.size()) 5844 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5845 } 5846 5847 Address 5848 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5849 AddressRange range_bounds) { 5850 Target &target = GetTarget(); 5851 DisassemblerSP disassembler_sp; 5852 InstructionList *insn_list = nullptr; 5853 5854 Address retval = default_stop_addr; 5855 5856 if (!target.GetUseFastStepping()) 5857 return retval; 5858 if (!default_stop_addr.IsValid()) 5859 return retval; 5860 5861 const char *plugin_name = nullptr; 5862 const char *flavor = nullptr; 5863 disassembler_sp = Disassembler::DisassembleRange( 5864 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5865 if (disassembler_sp) 5866 insn_list = &disassembler_sp->GetInstructionList(); 5867 5868 if (insn_list == nullptr) { 5869 return retval; 5870 } 5871 5872 size_t insn_offset = 5873 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5874 if (insn_offset == UINT32_MAX) { 5875 return retval; 5876 } 5877 5878 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5879 insn_offset, false /* ignore_calls*/, nullptr); 5880 if (branch_index == UINT32_MAX) { 5881 return retval; 5882 } 5883 5884 if (branch_index > insn_offset) { 5885 Address next_branch_insn_address = 5886 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5887 if (next_branch_insn_address.IsValid() && 5888 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5889 retval = next_branch_insn_address; 5890 } 5891 } 5892 5893 return retval; 5894 } 5895 5896 Status 5897 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5898 5899 Status error; 5900 5901 lldb::addr_t range_end = 0; 5902 5903 region_list.clear(); 5904 do { 5905 lldb_private::MemoryRegionInfo region_info; 5906 error = GetMemoryRegionInfo(range_end, region_info); 5907 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5908 if (error.Fail()) { 5909 region_list.clear(); 5910 break; 5911 } 5912 5913 range_end = region_info.GetRange().GetRangeEnd(); 5914 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5915 region_list.push_back(std::move(region_info)); 5916 } 5917 } while (range_end != LLDB_INVALID_ADDRESS); 5918 5919 return error; 5920 } 5921 5922 Status 5923 Process::ConfigureStructuredData(ConstString type_name, 5924 const StructuredData::ObjectSP &config_sp) { 5925 // If you get this, the Process-derived class needs to implement a method to 5926 // enable an already-reported asynchronous structured data feature. See 5927 // ProcessGDBRemote for an example implementation over gdb-remote. 5928 return Status("unimplemented"); 5929 } 5930 5931 void Process::MapSupportedStructuredDataPlugins( 5932 const StructuredData::Array &supported_type_names) { 5933 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5934 5935 // Bail out early if there are no type names to map. 5936 if (supported_type_names.GetSize() == 0) { 5937 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5938 __FUNCTION__); 5939 return; 5940 } 5941 5942 // Convert StructuredData type names to ConstString instances. 5943 std::set<ConstString> const_type_names; 5944 5945 LLDB_LOGF(log, 5946 "Process::%s(): the process supports the following async " 5947 "structured data types:", 5948 __FUNCTION__); 5949 5950 supported_type_names.ForEach( 5951 [&const_type_names, &log](StructuredData::Object *object) { 5952 if (!object) { 5953 // Invalid - shouldn't be null objects in the array. 5954 return false; 5955 } 5956 5957 auto type_name = object->GetAsString(); 5958 if (!type_name) { 5959 // Invalid format - all type names should be strings. 5960 return false; 5961 } 5962 5963 const_type_names.insert(ConstString(type_name->GetValue())); 5964 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5965 return true; 5966 }); 5967 5968 // For each StructuredDataPlugin, if the plugin handles any of the types in 5969 // the supported_type_names, map that type name to that plugin. Stop when 5970 // we've consumed all the type names. 5971 // FIXME: should we return an error if there are type names nobody 5972 // supports? 5973 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5974 auto create_instance = 5975 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5976 plugin_index); 5977 if (!create_instance) 5978 break; 5979 5980 // Create the plugin. 5981 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5982 if (!plugin_sp) { 5983 // This plugin doesn't think it can work with the process. Move on to the 5984 // next. 5985 continue; 5986 } 5987 5988 // For any of the remaining type names, map any that this plugin supports. 5989 std::vector<ConstString> names_to_remove; 5990 for (auto &type_name : const_type_names) { 5991 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5992 m_structured_data_plugin_map.insert( 5993 std::make_pair(type_name, plugin_sp)); 5994 names_to_remove.push_back(type_name); 5995 LLDB_LOG(log, "using plugin {0} for type name {1}", 5996 plugin_sp->GetPluginName(), type_name); 5997 } 5998 } 5999 6000 // Remove the type names that were consumed by this plugin. 6001 for (auto &type_name : names_to_remove) 6002 const_type_names.erase(type_name); 6003 } 6004 } 6005 6006 bool Process::RouteAsyncStructuredData( 6007 const StructuredData::ObjectSP object_sp) { 6008 // Nothing to do if there's no data. 6009 if (!object_sp) 6010 return false; 6011 6012 // The contract is this must be a dictionary, so we can look up the routing 6013 // key via the top-level 'type' string value within the dictionary. 6014 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6015 if (!dictionary) 6016 return false; 6017 6018 // Grab the async structured type name (i.e. the feature/plugin name). 6019 ConstString type_name; 6020 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6021 return false; 6022 6023 // Check if there's a plugin registered for this type name. 6024 auto find_it = m_structured_data_plugin_map.find(type_name); 6025 if (find_it == m_structured_data_plugin_map.end()) { 6026 // We don't have a mapping for this structured data type. 6027 return false; 6028 } 6029 6030 // Route the structured data to the plugin. 6031 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6032 return true; 6033 } 6034 6035 Status Process::UpdateAutomaticSignalFiltering() { 6036 // Default implementation does nothign. 6037 // No automatic signal filtering to speak of. 6038 return Status(); 6039 } 6040 6041 UtilityFunction *Process::GetLoadImageUtilityFunction( 6042 Platform *platform, 6043 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6044 if (platform != GetTarget().GetPlatform().get()) 6045 return nullptr; 6046 llvm::call_once(m_dlopen_utility_func_flag_once, 6047 [&] { m_dlopen_utility_func_up = factory(); }); 6048 return m_dlopen_utility_func_up.get(); 6049 } 6050 6051 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6052 if (!IsLiveDebugSession()) 6053 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6054 "Can't trace a non-live process."); 6055 return llvm::make_error<UnimplementedError>(); 6056 } 6057 6058 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6059 addr_t &returned_func, 6060 bool trap_exceptions) { 6061 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6062 if (thread == nullptr || address == nullptr) 6063 return false; 6064 6065 EvaluateExpressionOptions options; 6066 options.SetStopOthers(true); 6067 options.SetUnwindOnError(true); 6068 options.SetIgnoreBreakpoints(true); 6069 options.SetTryAllThreads(true); 6070 options.SetDebug(false); 6071 options.SetTimeout(GetUtilityExpressionTimeout()); 6072 options.SetTrapExceptions(trap_exceptions); 6073 6074 auto type_system_or_err = 6075 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6076 if (!type_system_or_err) { 6077 llvm::consumeError(type_system_or_err.takeError()); 6078 return false; 6079 } 6080 CompilerType void_ptr_type = 6081 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6082 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6083 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6084 if (call_plan_sp) { 6085 DiagnosticManager diagnostics; 6086 6087 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6088 if (frame) { 6089 ExecutionContext exe_ctx; 6090 frame->CalculateExecutionContext(exe_ctx); 6091 ExpressionResults result = 6092 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6093 if (result == eExpressionCompleted) { 6094 returned_func = 6095 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6096 LLDB_INVALID_ADDRESS); 6097 6098 if (GetAddressByteSize() == 4) { 6099 if (returned_func == UINT32_MAX) 6100 return false; 6101 } else if (GetAddressByteSize() == 8) { 6102 if (returned_func == UINT64_MAX) 6103 return false; 6104 } 6105 return true; 6106 } 6107 } 6108 } 6109 6110 return false; 6111 } 6112 6113 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6114 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6115 const MemoryTagManager *tag_manager = 6116 arch ? arch->GetMemoryTagManager() : nullptr; 6117 if (!arch || !tag_manager) { 6118 return llvm::createStringError( 6119 llvm::inconvertibleErrorCode(), 6120 "This architecture does not support memory tagging"); 6121 } 6122 6123 if (!SupportsMemoryTagging()) { 6124 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6125 "Process does not support memory tagging"); 6126 } 6127 6128 return tag_manager; 6129 } 6130 6131 llvm::Expected<std::vector<lldb::addr_t>> 6132 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6133 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6134 GetMemoryTagManager(); 6135 if (!tag_manager_or_err) 6136 return tag_manager_or_err.takeError(); 6137 6138 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6139 llvm::Expected<std::vector<uint8_t>> tag_data = 6140 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6141 if (!tag_data) 6142 return tag_data.takeError(); 6143 6144 return tag_manager->UnpackTagsData(*tag_data, 6145 len / tag_manager->GetGranuleSize()); 6146 } 6147 6148 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6149 const std::vector<lldb::addr_t> &tags) { 6150 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6151 GetMemoryTagManager(); 6152 if (!tag_manager_or_err) 6153 return Status(tag_manager_or_err.takeError()); 6154 6155 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6156 llvm::Expected<std::vector<uint8_t>> packed_tags = 6157 tag_manager->PackTags(tags); 6158 if (!packed_tags) { 6159 return Status(packed_tags.takeError()); 6160 } 6161 6162 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6163 *packed_tags); 6164 } 6165