1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 #include "llvm/Support/ScopedPrinter.h" 17 #include "llvm/Support/Threading.h" 18 19 // Project includes 20 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 21 #include "lldb/Breakpoint/BreakpointLocation.h" 22 #include "lldb/Breakpoint/StoppointCallbackContext.h" 23 #include "lldb/Core/Debugger.h" 24 #include "lldb/Core/Event.h" 25 #include "lldb/Core/Module.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Core/PluginManager.h" 28 #include "lldb/Core/State.h" 29 #include "lldb/Core/StreamFile.h" 30 #include "lldb/Expression/DiagnosticManager.h" 31 #include "lldb/Expression/IRDynamicChecks.h" 32 #include "lldb/Expression/UserExpression.h" 33 #include "lldb/Host/ConnectionFileDescriptor.h" 34 #include "lldb/Host/FileSystem.h" 35 #include "lldb/Host/Host.h" 36 #include "lldb/Host/HostInfo.h" 37 #include "lldb/Host/Pipe.h" 38 #include "lldb/Host/Terminal.h" 39 #include "lldb/Host/ThreadLauncher.h" 40 #include "lldb/Interpreter/CommandInterpreter.h" 41 #include "lldb/Interpreter/OptionValueProperties.h" 42 #include "lldb/Symbol/Function.h" 43 #include "lldb/Symbol/Symbol.h" 44 #include "lldb/Target/ABI.h" 45 #include "lldb/Target/CPPLanguageRuntime.h" 46 #include "lldb/Target/DynamicLoader.h" 47 #include "lldb/Target/InstrumentationRuntime.h" 48 #include "lldb/Target/JITLoader.h" 49 #include "lldb/Target/JITLoaderList.h" 50 #include "lldb/Target/LanguageRuntime.h" 51 #include "lldb/Target/MemoryHistory.h" 52 #include "lldb/Target/MemoryRegionInfo.h" 53 #include "lldb/Target/ObjCLanguageRuntime.h" 54 #include "lldb/Target/OperatingSystem.h" 55 #include "lldb/Target/Platform.h" 56 #include "lldb/Target/Process.h" 57 #include "lldb/Target/RegisterContext.h" 58 #include "lldb/Target/StopInfo.h" 59 #include "lldb/Target/StructuredDataPlugin.h" 60 #include "lldb/Target/SystemRuntime.h" 61 #include "lldb/Target/Target.h" 62 #include "lldb/Target/TargetList.h" 63 #include "lldb/Target/Thread.h" 64 #include "lldb/Target/ThreadPlan.h" 65 #include "lldb/Target/ThreadPlanBase.h" 66 #include "lldb/Target/UnixSignals.h" 67 #include "lldb/Utility/Log.h" 68 #include "lldb/Utility/NameMatches.h" 69 #include "lldb/Utility/SelectHelper.h" 70 71 using namespace lldb; 72 using namespace lldb_private; 73 using namespace std::chrono; 74 75 // Comment out line below to disable memory caching, overriding the process 76 // setting target.process.disable-memory-cache 77 #define ENABLE_MEMORY_CACHING 78 79 #ifdef ENABLE_MEMORY_CACHING 80 #define DISABLE_MEM_CACHE_DEFAULT false 81 #else 82 #define DISABLE_MEM_CACHE_DEFAULT true 83 #endif 84 85 class ProcessOptionValueProperties : public OptionValueProperties { 86 public: 87 ProcessOptionValueProperties(const ConstString &name) 88 : OptionValueProperties(name) {} 89 90 // This constructor is used when creating ProcessOptionValueProperties when it 91 // is part of a new lldb_private::Process instance. It will copy all current 92 // global property values as needed 93 ProcessOptionValueProperties(ProcessProperties *global_properties) 94 : OptionValueProperties(*global_properties->GetValueProperties()) {} 95 96 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 97 bool will_modify, 98 uint32_t idx) const override { 99 // When getting the value for a key from the process options, we will always 100 // try and grab the setting from the current process if there is one. Else 101 // we just 102 // use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 static PropertyDefinition g_properties[] = { 118 {"disable-memory-cache", OptionValue::eTypeBoolean, false, 119 DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, 120 "Disable reading and caching of memory in fixed-size units."}, 121 {"extra-startup-command", OptionValue::eTypeArray, false, 122 OptionValue::eTypeString, nullptr, nullptr, 123 "A list containing extra commands understood by the particular process " 124 "plugin used. " 125 "For instance, to turn on debugserver logging set this to " 126 "\"QSetLogging:bitmask=LOG_DEFAULT;\""}, 127 {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, 128 nullptr, nullptr, 129 "If true, breakpoints will be ignored during expression evaluation."}, 130 {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, 131 nullptr, nullptr, "If true, errors in expression evaluation will unwind " 132 "the stack back to the state before the call."}, 133 {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, 134 nullptr, "A path to a python OS plug-in module file that contains a " 135 "OperatingSystemPlugIn class."}, 136 {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false, 137 nullptr, nullptr, 138 "If true, stop when a shared library is loaded or unloaded."}, 139 {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr, 140 nullptr, "If true, detach will attempt to keep the process stopped."}, 141 {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr, 142 nullptr, "The memory cache line size"}, 143 {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr, 144 nullptr, "If true, warn when stopped in code that is optimized where " 145 "stepping and variable availability may not behave as expected."}, 146 {nullptr, OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr}}; 147 148 enum { 149 ePropertyDisableMemCache, 150 ePropertyExtraStartCommand, 151 ePropertyIgnoreBreakpointsInExpressions, 152 ePropertyUnwindOnErrorInExpressions, 153 ePropertyPythonOSPluginPath, 154 ePropertyStopOnSharedLibraryEvents, 155 ePropertyDetachKeepsStopped, 156 ePropertyMemCacheLineSize, 157 ePropertyWarningOptimization 158 }; 159 160 ProcessProperties::ProcessProperties(lldb_private::Process *process) 161 : Properties(), 162 m_process(process) // Can be nullptr for global ProcessProperties 163 { 164 if (process == nullptr) { 165 // Global process properties, set them up one time 166 m_collection_sp.reset( 167 new ProcessOptionValueProperties(ConstString("process"))); 168 m_collection_sp->Initialize(g_properties); 169 m_collection_sp->AppendProperty( 170 ConstString("thread"), ConstString("Settings specific to threads."), 171 true, Thread::GetGlobalProperties()->GetValueProperties()); 172 } else { 173 m_collection_sp.reset( 174 new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 175 m_collection_sp->SetValueChangedCallback( 176 ePropertyPythonOSPluginPath, 177 ProcessProperties::OptionValueChangedCallback, this); 178 } 179 } 180 181 ProcessProperties::~ProcessProperties() = default; 182 183 void ProcessProperties::OptionValueChangedCallback(void *baton, 184 OptionValue *option_value) { 185 ProcessProperties *properties = (ProcessProperties *)baton; 186 if (properties->m_process) 187 properties->m_process->LoadOperatingSystemPlugin(true); 188 } 189 190 bool ProcessProperties::GetDisableMemoryCache() const { 191 const uint32_t idx = ePropertyDisableMemCache; 192 return m_collection_sp->GetPropertyAtIndexAsBoolean( 193 nullptr, idx, g_properties[idx].default_uint_value != 0); 194 } 195 196 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 197 const uint32_t idx = ePropertyMemCacheLineSize; 198 return m_collection_sp->GetPropertyAtIndexAsUInt64( 199 nullptr, idx, g_properties[idx].default_uint_value); 200 } 201 202 Args ProcessProperties::GetExtraStartupCommands() const { 203 Args args; 204 const uint32_t idx = ePropertyExtraStartCommand; 205 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 206 return args; 207 } 208 209 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 210 const uint32_t idx = ePropertyExtraStartCommand; 211 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 212 } 213 214 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 215 const uint32_t idx = ePropertyPythonOSPluginPath; 216 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 217 } 218 219 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 220 const uint32_t idx = ePropertyPythonOSPluginPath; 221 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 222 } 223 224 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 225 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 226 return m_collection_sp->GetPropertyAtIndexAsBoolean( 227 nullptr, idx, g_properties[idx].default_uint_value != 0); 228 } 229 230 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 231 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 232 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 233 } 234 235 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 236 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 237 return m_collection_sp->GetPropertyAtIndexAsBoolean( 238 nullptr, idx, g_properties[idx].default_uint_value != 0); 239 } 240 241 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 242 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 243 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 244 } 245 246 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 247 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 248 return m_collection_sp->GetPropertyAtIndexAsBoolean( 249 nullptr, idx, g_properties[idx].default_uint_value != 0); 250 } 251 252 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 253 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 254 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 255 } 256 257 bool ProcessProperties::GetDetachKeepsStopped() const { 258 const uint32_t idx = ePropertyDetachKeepsStopped; 259 return m_collection_sp->GetPropertyAtIndexAsBoolean( 260 nullptr, idx, g_properties[idx].default_uint_value != 0); 261 } 262 263 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 264 const uint32_t idx = ePropertyDetachKeepsStopped; 265 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 266 } 267 268 bool ProcessProperties::GetWarningsOptimization() const { 269 const uint32_t idx = ePropertyWarningOptimization; 270 return m_collection_sp->GetPropertyAtIndexAsBoolean( 271 nullptr, idx, g_properties[idx].default_uint_value != 0); 272 } 273 274 void ProcessInstanceInfo::Dump(Stream &s, Platform *platform) const { 275 const char *cstr; 276 if (m_pid != LLDB_INVALID_PROCESS_ID) 277 s.Printf(" pid = %" PRIu64 "\n", m_pid); 278 279 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 280 s.Printf(" parent = %" PRIu64 "\n", m_parent_pid); 281 282 if (m_executable) { 283 s.Printf(" name = %s\n", m_executable.GetFilename().GetCString()); 284 s.PutCString(" file = "); 285 m_executable.Dump(&s); 286 s.EOL(); 287 } 288 const uint32_t argc = m_arguments.GetArgumentCount(); 289 if (argc > 0) { 290 for (uint32_t i = 0; i < argc; i++) { 291 const char *arg = m_arguments.GetArgumentAtIndex(i); 292 if (i < 10) 293 s.Printf(" arg[%u] = %s\n", i, arg); 294 else 295 s.Printf("arg[%u] = %s\n", i, arg); 296 } 297 } 298 299 const uint32_t envc = m_environment.GetArgumentCount(); 300 if (envc > 0) { 301 for (uint32_t i = 0; i < envc; i++) { 302 const char *env = m_environment.GetArgumentAtIndex(i); 303 if (i < 10) 304 s.Printf(" env[%u] = %s\n", i, env); 305 else 306 s.Printf("env[%u] = %s\n", i, env); 307 } 308 } 309 310 if (m_arch.IsValid()) { 311 s.Printf(" arch = "); 312 m_arch.DumpTriple(s); 313 s.EOL(); 314 } 315 316 if (m_uid != UINT32_MAX) { 317 cstr = platform->GetUserName(m_uid); 318 s.Printf(" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 319 } 320 if (m_gid != UINT32_MAX) { 321 cstr = platform->GetGroupName(m_gid); 322 s.Printf(" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 323 } 324 if (m_euid != UINT32_MAX) { 325 cstr = platform->GetUserName(m_euid); 326 s.Printf(" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 327 } 328 if (m_egid != UINT32_MAX) { 329 cstr = platform->GetGroupName(m_egid); 330 s.Printf(" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 331 } 332 } 333 334 void ProcessInstanceInfo::DumpTableHeader(Stream &s, Platform *platform, 335 bool show_args, bool verbose) { 336 const char *label; 337 if (show_args || verbose) 338 label = "ARGUMENTS"; 339 else 340 label = "NAME"; 341 342 if (verbose) { 343 s.Printf("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE " 344 " %s\n", 345 label); 346 s.PutCString("====== ====== ========== ========== ========== ========== " 347 "======================== ============================\n"); 348 } else { 349 s.Printf("PID PARENT USER TRIPLE %s\n", label); 350 s.PutCString("====== ====== ========== ======================== " 351 "============================\n"); 352 } 353 } 354 355 void ProcessInstanceInfo::DumpAsTableRow(Stream &s, Platform *platform, 356 bool show_args, bool verbose) const { 357 if (m_pid != LLDB_INVALID_PROCESS_ID) { 358 const char *cstr; 359 s.Printf("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 360 361 StreamString arch_strm; 362 if (m_arch.IsValid()) 363 m_arch.DumpTriple(arch_strm); 364 365 if (verbose) { 366 cstr = platform->GetUserName(m_uid); 367 if (cstr && 368 cstr[0]) // Watch for empty string that indicates lookup failed 369 s.Printf("%-10s ", cstr); 370 else 371 s.Printf("%-10u ", m_uid); 372 373 cstr = platform->GetGroupName(m_gid); 374 if (cstr && 375 cstr[0]) // Watch for empty string that indicates lookup failed 376 s.Printf("%-10s ", cstr); 377 else 378 s.Printf("%-10u ", m_gid); 379 380 cstr = platform->GetUserName(m_euid); 381 if (cstr && 382 cstr[0]) // Watch for empty string that indicates lookup failed 383 s.Printf("%-10s ", cstr); 384 else 385 s.Printf("%-10u ", m_euid); 386 387 cstr = platform->GetGroupName(m_egid); 388 if (cstr && 389 cstr[0]) // Watch for empty string that indicates lookup failed 390 s.Printf("%-10s ", cstr); 391 else 392 s.Printf("%-10u ", m_egid); 393 394 s.Printf("%-24s ", arch_strm.GetData()); 395 } else { 396 s.Printf("%-10s %-24s ", platform->GetUserName(m_euid), 397 arch_strm.GetData()); 398 } 399 400 if (verbose || show_args) { 401 const uint32_t argc = m_arguments.GetArgumentCount(); 402 if (argc > 0) { 403 for (uint32_t i = 0; i < argc; i++) { 404 if (i > 0) 405 s.PutChar(' '); 406 s.PutCString(m_arguments.GetArgumentAtIndex(i)); 407 } 408 } 409 } else { 410 s.PutCString(GetName()); 411 } 412 413 s.EOL(); 414 } 415 } 416 417 Error ProcessLaunchCommandOptions::SetOptionValue( 418 uint32_t option_idx, llvm::StringRef option_arg, 419 ExecutionContext *execution_context) { 420 Error error; 421 const int short_option = m_getopt_table[option_idx].val; 422 423 switch (short_option) { 424 case 's': // Stop at program entry point 425 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 426 break; 427 428 case 'i': // STDIN for read only 429 { 430 FileAction action; 431 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 432 launch_info.AppendFileAction(action); 433 break; 434 } 435 436 case 'o': // Open STDOUT for write only 437 { 438 FileAction action; 439 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 440 launch_info.AppendFileAction(action); 441 break; 442 } 443 444 case 'e': // STDERR for write only 445 { 446 FileAction action; 447 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 448 launch_info.AppendFileAction(action); 449 break; 450 } 451 452 case 'p': // Process plug-in name 453 launch_info.SetProcessPluginName(option_arg); 454 break; 455 456 case 'n': // Disable STDIO 457 { 458 FileAction action; 459 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 460 if (action.Open(STDIN_FILENO, dev_null, true, false)) 461 launch_info.AppendFileAction(action); 462 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 463 launch_info.AppendFileAction(action); 464 if (action.Open(STDERR_FILENO, dev_null, false, true)) 465 launch_info.AppendFileAction(action); 466 break; 467 } 468 469 case 'w': 470 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 471 break; 472 473 case 't': // Open process in new terminal window 474 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 475 break; 476 477 case 'a': { 478 TargetSP target_sp = 479 execution_context ? execution_context->GetTargetSP() : TargetSP(); 480 PlatformSP platform_sp = 481 target_sp ? target_sp->GetPlatform() : PlatformSP(); 482 if (!launch_info.GetArchitecture().SetTriple(option_arg, platform_sp.get())) 483 launch_info.GetArchitecture().SetTriple(option_arg); 484 } break; 485 486 case 'A': // Disable ASLR. 487 { 488 bool success; 489 const bool disable_aslr_arg = 490 Args::StringToBoolean(option_arg, true, &success); 491 if (success) 492 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 493 else 494 error.SetErrorStringWithFormat( 495 "Invalid boolean value for disable-aslr option: '%s'", 496 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 497 break; 498 } 499 500 case 'X': // shell expand args. 501 { 502 bool success; 503 const bool expand_args = Args::StringToBoolean(option_arg, true, &success); 504 if (success) 505 launch_info.SetShellExpandArguments(expand_args); 506 else 507 error.SetErrorStringWithFormat( 508 "Invalid boolean value for shell-expand-args option: '%s'", 509 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 510 break; 511 } 512 513 case 'c': 514 if (!option_arg.empty()) 515 launch_info.SetShell(FileSpec(option_arg, false)); 516 else 517 launch_info.SetShell(HostInfo::GetDefaultShell()); 518 break; 519 520 case 'v': 521 launch_info.GetEnvironmentEntries().AppendArgument(option_arg); 522 break; 523 524 default: 525 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 526 short_option); 527 break; 528 } 529 return error; 530 } 531 532 static OptionDefinition g_process_launch_options[] = { 533 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 534 nullptr, nullptr, 0, eArgTypeNone, 535 "Stop at the entry point of the program when launching a process."}, 536 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 537 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 538 "Set whether to disable address space layout randomization when launching " 539 "a process."}, 540 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 541 nullptr, nullptr, 0, eArgTypePlugin, 542 "Name of the process plugin you want to use."}, 543 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 544 OptionParser::eRequiredArgument, nullptr, nullptr, 0, 545 eArgTypeDirectoryName, 546 "Set the current working directory to <path> when running the inferior."}, 547 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 548 nullptr, nullptr, 0, eArgTypeArchitecture, 549 "Set the architecture for the process to launch when ambiguous."}, 550 {LLDB_OPT_SET_ALL, false, "environment", 'v', 551 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, 552 "Specify an environment variable name/value string (--environment " 553 "NAME=VALUE). Can be specified multiple times for subsequent environment " 554 "entries."}, 555 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 556 OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, 557 "Run the process in a shell (not supported on all platforms)."}, 558 559 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 560 nullptr, nullptr, 0, eArgTypeFilename, 561 "Redirect stdin for the process to <filename>."}, 562 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 563 nullptr, nullptr, 0, eArgTypeFilename, 564 "Redirect stdout for the process to <filename>."}, 565 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 566 nullptr, nullptr, 0, eArgTypeFilename, 567 "Redirect stderr for the process to <filename>."}, 568 569 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 570 nullptr, 0, eArgTypeNone, 571 "Start the process in a terminal (not supported on all platforms)."}, 572 573 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 574 nullptr, 0, eArgTypeNone, 575 "Do not set up for terminal I/O to go to running process."}, 576 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 577 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 578 "Set whether to shell expand arguments to the process when launching."}, 579 }; 580 581 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 582 return llvm::makeArrayRef(g_process_launch_options); 583 } 584 585 bool ProcessInstanceInfoMatch::NameMatches(const char *process_name) const { 586 if (m_name_match_type == NameMatch::Ignore || process_name == nullptr) 587 return true; 588 const char *match_name = m_match_info.GetName(); 589 if (!match_name) 590 return true; 591 592 return lldb_private::NameMatches(process_name, m_name_match_type, match_name); 593 } 594 595 bool ProcessInstanceInfoMatch::Matches( 596 const ProcessInstanceInfo &proc_info) const { 597 if (!NameMatches(proc_info.GetName())) 598 return false; 599 600 if (m_match_info.ProcessIDIsValid() && 601 m_match_info.GetProcessID() != proc_info.GetProcessID()) 602 return false; 603 604 if (m_match_info.ParentProcessIDIsValid() && 605 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 606 return false; 607 608 if (m_match_info.UserIDIsValid() && 609 m_match_info.GetUserID() != proc_info.GetUserID()) 610 return false; 611 612 if (m_match_info.GroupIDIsValid() && 613 m_match_info.GetGroupID() != proc_info.GetGroupID()) 614 return false; 615 616 if (m_match_info.EffectiveUserIDIsValid() && 617 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 618 return false; 619 620 if (m_match_info.EffectiveGroupIDIsValid() && 621 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 622 return false; 623 624 if (m_match_info.GetArchitecture().IsValid() && 625 !m_match_info.GetArchitecture().IsCompatibleMatch( 626 proc_info.GetArchitecture())) 627 return false; 628 return true; 629 } 630 631 bool ProcessInstanceInfoMatch::MatchAllProcesses() const { 632 if (m_name_match_type != NameMatch::Ignore) 633 return false; 634 635 if (m_match_info.ProcessIDIsValid()) 636 return false; 637 638 if (m_match_info.ParentProcessIDIsValid()) 639 return false; 640 641 if (m_match_info.UserIDIsValid()) 642 return false; 643 644 if (m_match_info.GroupIDIsValid()) 645 return false; 646 647 if (m_match_info.EffectiveUserIDIsValid()) 648 return false; 649 650 if (m_match_info.EffectiveGroupIDIsValid()) 651 return false; 652 653 if (m_match_info.GetArchitecture().IsValid()) 654 return false; 655 656 if (m_match_all_users) 657 return false; 658 659 return true; 660 } 661 662 void ProcessInstanceInfoMatch::Clear() { 663 m_match_info.Clear(); 664 m_name_match_type = NameMatch::Ignore; 665 m_match_all_users = false; 666 } 667 668 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 669 llvm::StringRef plugin_name, 670 ListenerSP listener_sp, 671 const FileSpec *crash_file_path) { 672 static uint32_t g_process_unique_id = 0; 673 674 ProcessSP process_sp; 675 ProcessCreateInstance create_callback = nullptr; 676 if (!plugin_name.empty()) { 677 ConstString const_plugin_name(plugin_name); 678 create_callback = 679 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 680 if (create_callback) { 681 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 682 if (process_sp) { 683 if (process_sp->CanDebug(target_sp, true)) { 684 process_sp->m_process_unique_id = ++g_process_unique_id; 685 } else 686 process_sp.reset(); 687 } 688 } 689 } else { 690 for (uint32_t idx = 0; 691 (create_callback = 692 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 693 ++idx) { 694 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 695 if (process_sp) { 696 if (process_sp->CanDebug(target_sp, false)) { 697 process_sp->m_process_unique_id = ++g_process_unique_id; 698 break; 699 } else 700 process_sp.reset(); 701 } 702 } 703 } 704 return process_sp; 705 } 706 707 ConstString &Process::GetStaticBroadcasterClass() { 708 static ConstString class_name("lldb.process"); 709 return class_name; 710 } 711 712 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 713 : Process(target_sp, listener_sp, 714 UnixSignals::Create(HostInfo::GetArchitecture())) { 715 // This constructor just delegates to the full Process constructor, 716 // defaulting to using the Host's UnixSignals. 717 } 718 719 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 720 const UnixSignalsSP &unix_signals_sp) 721 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 722 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 723 Process::GetStaticBroadcasterClass().AsCString()), 724 m_target_sp(target_sp), m_public_state(eStateUnloaded), 725 m_private_state(eStateUnloaded), 726 m_private_state_broadcaster(nullptr, 727 "lldb.process.internal_state_broadcaster"), 728 m_private_state_control_broadcaster( 729 nullptr, "lldb.process.internal_state_control_broadcaster"), 730 m_private_state_listener_sp( 731 Listener::MakeListener("lldb.process.internal_state_listener")), 732 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 733 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 734 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 735 m_thread_list(this), m_extended_thread_list(this), 736 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 737 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 738 m_breakpoint_site_list(), m_dynamic_checkers_ap(), 739 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 740 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 741 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 742 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 743 m_memory_cache(*this), m_allocated_memory_cache(*this), 744 m_should_detach(false), m_next_event_action_ap(), m_public_run_lock(), 745 m_private_run_lock(), m_stop_info_override_callback(nullptr), 746 m_finalizing(false), m_finalize_called(false), 747 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 748 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 749 m_can_interpret_function_calls(false), m_warnings_issued(), 750 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 751 CheckInWithManager(); 752 753 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 754 if (log) 755 log->Printf("%p Process::Process()", static_cast<void *>(this)); 756 757 if (!m_unix_signals_sp) 758 m_unix_signals_sp = std::make_shared<UnixSignals>(); 759 760 SetEventName(eBroadcastBitStateChanged, "state-changed"); 761 SetEventName(eBroadcastBitInterrupt, "interrupt"); 762 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 763 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 764 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 765 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 766 767 m_private_state_control_broadcaster.SetEventName( 768 eBroadcastInternalStateControlStop, "control-stop"); 769 m_private_state_control_broadcaster.SetEventName( 770 eBroadcastInternalStateControlPause, "control-pause"); 771 m_private_state_control_broadcaster.SetEventName( 772 eBroadcastInternalStateControlResume, "control-resume"); 773 774 m_listener_sp->StartListeningForEvents( 775 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 776 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 777 eBroadcastBitProfileData | eBroadcastBitStructuredData); 778 779 m_private_state_listener_sp->StartListeningForEvents( 780 &m_private_state_broadcaster, 781 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 782 783 m_private_state_listener_sp->StartListeningForEvents( 784 &m_private_state_control_broadcaster, 785 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 786 eBroadcastInternalStateControlResume); 787 // We need something valid here, even if just the default UnixSignalsSP. 788 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 789 790 // Allow the platform to override the default cache line size 791 OptionValueSP value_sp = 792 m_collection_sp 793 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 794 ->GetValue(); 795 uint32_t platform_cache_line_size = 796 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 797 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 798 value_sp->SetUInt64Value(platform_cache_line_size); 799 } 800 801 Process::~Process() { 802 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 803 if (log) 804 log->Printf("%p Process::~Process()", static_cast<void *>(this)); 805 StopPrivateStateThread(); 806 807 // ThreadList::Clear() will try to acquire this process's mutex, so 808 // explicitly clear the thread list here to ensure that the mutex 809 // is not destroyed before the thread list. 810 m_thread_list.Clear(); 811 } 812 813 const ProcessPropertiesSP &Process::GetGlobalProperties() { 814 // NOTE: intentional leak so we don't crash if global destructor chain gets 815 // called as other threads still use the result of this function 816 static ProcessPropertiesSP *g_settings_sp_ptr = 817 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 818 return *g_settings_sp_ptr; 819 } 820 821 void Process::Finalize() { 822 m_finalizing = true; 823 824 // Destroy this process if needed 825 switch (GetPrivateState()) { 826 case eStateConnected: 827 case eStateAttaching: 828 case eStateLaunching: 829 case eStateStopped: 830 case eStateRunning: 831 case eStateStepping: 832 case eStateCrashed: 833 case eStateSuspended: 834 Destroy(false); 835 break; 836 837 case eStateInvalid: 838 case eStateUnloaded: 839 case eStateDetached: 840 case eStateExited: 841 break; 842 } 843 844 // Clear our broadcaster before we proceed with destroying 845 Broadcaster::Clear(); 846 847 // Do any cleanup needed prior to being destructed... Subclasses 848 // that override this method should call this superclass method as well. 849 850 // We need to destroy the loader before the derived Process class gets 851 // destroyed 852 // since it is very likely that undoing the loader will require access to the 853 // real process. 854 m_dynamic_checkers_ap.reset(); 855 m_abi_sp.reset(); 856 m_os_ap.reset(); 857 m_system_runtime_ap.reset(); 858 m_dyld_ap.reset(); 859 m_jit_loaders_ap.reset(); 860 m_thread_list_real.Destroy(); 861 m_thread_list.Destroy(); 862 m_extended_thread_list.Destroy(); 863 m_queue_list.Clear(); 864 m_queue_list_stop_id = 0; 865 std::vector<Notifications> empty_notifications; 866 m_notifications.swap(empty_notifications); 867 m_image_tokens.clear(); 868 m_memory_cache.Clear(); 869 m_allocated_memory_cache.Clear(); 870 m_language_runtimes.clear(); 871 m_instrumentation_runtimes.clear(); 872 m_next_event_action_ap.reset(); 873 m_stop_info_override_callback = nullptr; 874 // Clear the last natural stop ID since it has a strong 875 // reference to this process 876 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 877 //#ifdef LLDB_CONFIGURATION_DEBUG 878 // StreamFile s(stdout, false); 879 // EventSP event_sp; 880 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 881 // { 882 // event_sp->Dump (&s); 883 // s.EOL(); 884 // } 885 //#endif 886 // We have to be very careful here as the m_private_state_listener might 887 // contain events that have ProcessSP values in them which can keep this 888 // process around forever. These events need to be cleared out. 889 m_private_state_listener_sp->Clear(); 890 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 891 m_public_run_lock.SetStopped(); 892 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 893 m_private_run_lock.SetStopped(); 894 m_structured_data_plugin_map.clear(); 895 m_finalize_called = true; 896 } 897 898 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 899 m_notifications.push_back(callbacks); 900 if (callbacks.initialize != nullptr) 901 callbacks.initialize(callbacks.baton, this); 902 } 903 904 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 905 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 906 for (pos = m_notifications.begin(); pos != end; ++pos) { 907 if (pos->baton == callbacks.baton && 908 pos->initialize == callbacks.initialize && 909 pos->process_state_changed == callbacks.process_state_changed) { 910 m_notifications.erase(pos); 911 return true; 912 } 913 } 914 return false; 915 } 916 917 void Process::SynchronouslyNotifyStateChanged(StateType state) { 918 std::vector<Notifications>::iterator notification_pos, 919 notification_end = m_notifications.end(); 920 for (notification_pos = m_notifications.begin(); 921 notification_pos != notification_end; ++notification_pos) { 922 if (notification_pos->process_state_changed) 923 notification_pos->process_state_changed(notification_pos->baton, this, 924 state); 925 } 926 } 927 928 // FIXME: We need to do some work on events before the general Listener sees 929 // them. 930 // For instance if we are continuing from a breakpoint, we need to ensure that 931 // we do 932 // the little "insert real insn, step & stop" trick. But we can't do that when 933 // the 934 // event is delivered by the broadcaster - since that is done on the thread that 935 // is 936 // waiting for new events, so if we needed more than one event for our handling, 937 // we would 938 // stall. So instead we do it when we fetch the event off of the queue. 939 // 940 941 StateType Process::GetNextEvent(EventSP &event_sp) { 942 StateType state = eStateInvalid; 943 944 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 945 std::chrono::seconds(0)) && 946 event_sp) 947 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 948 949 return state; 950 } 951 952 void Process::SyncIOHandler(uint32_t iohandler_id, uint64_t timeout_msec) { 953 // don't sync (potentially context switch) in case where there is no process 954 // IO 955 if (!m_process_input_reader) 956 return; 957 958 uint32_t new_iohandler_id = 0; 959 m_iohandler_sync.WaitForValueNotEqualTo( 960 iohandler_id, new_iohandler_id, std::chrono::milliseconds(timeout_msec)); 961 962 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 963 if (log) 964 log->Printf("Process::%s waited for m_iohandler_sync to change from %u, " 965 "new value is %u", 966 __FUNCTION__, iohandler_id, new_iohandler_id); 967 } 968 969 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 970 EventSP *event_sp_ptr, bool wait_always, 971 ListenerSP hijack_listener_sp, 972 Stream *stream, bool use_run_lock) { 973 // We can't just wait for a "stopped" event, because the stopped event may 974 // have restarted the target. 975 // We have to actually check each event, and in the case of a stopped event 976 // check the restarted flag 977 // on the event. 978 if (event_sp_ptr) 979 event_sp_ptr->reset(); 980 StateType state = GetState(); 981 // If we are exited or detached, we won't ever get back to any 982 // other valid state... 983 if (state == eStateDetached || state == eStateExited) 984 return state; 985 986 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 987 LLDB_LOG(log, "timeout = {0}", timeout); 988 989 if (!wait_always && StateIsStoppedState(state, true) && 990 StateIsStoppedState(GetPrivateState(), true)) { 991 if (log) 992 log->Printf("Process::%s returning without waiting for events; process " 993 "private and public states are already 'stopped'.", 994 __FUNCTION__); 995 // We need to toggle the run lock as this won't get done in 996 // SetPublicState() if the process is hijacked. 997 if (hijack_listener_sp && use_run_lock) 998 m_public_run_lock.SetStopped(); 999 return state; 1000 } 1001 1002 while (state != eStateInvalid) { 1003 EventSP event_sp; 1004 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 1005 if (event_sp_ptr && event_sp) 1006 *event_sp_ptr = event_sp; 1007 1008 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1009 Process::HandleProcessStateChangedEvent(event_sp, stream, 1010 pop_process_io_handler); 1011 1012 switch (state) { 1013 case eStateCrashed: 1014 case eStateDetached: 1015 case eStateExited: 1016 case eStateUnloaded: 1017 // We need to toggle the run lock as this won't get done in 1018 // SetPublicState() if the process is hijacked. 1019 if (hijack_listener_sp && use_run_lock) 1020 m_public_run_lock.SetStopped(); 1021 return state; 1022 case eStateStopped: 1023 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1024 continue; 1025 else { 1026 // We need to toggle the run lock as this won't get done in 1027 // SetPublicState() if the process is hijacked. 1028 if (hijack_listener_sp && use_run_lock) 1029 m_public_run_lock.SetStopped(); 1030 return state; 1031 } 1032 default: 1033 continue; 1034 } 1035 } 1036 return state; 1037 } 1038 1039 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 1040 Stream *stream, 1041 bool &pop_process_io_handler) { 1042 const bool handle_pop = pop_process_io_handler; 1043 1044 pop_process_io_handler = false; 1045 ProcessSP process_sp = 1046 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1047 1048 if (!process_sp) 1049 return false; 1050 1051 StateType event_state = 1052 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1053 if (event_state == eStateInvalid) 1054 return false; 1055 1056 switch (event_state) { 1057 case eStateInvalid: 1058 case eStateUnloaded: 1059 case eStateAttaching: 1060 case eStateLaunching: 1061 case eStateStepping: 1062 case eStateDetached: 1063 if (stream) 1064 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 1065 StateAsCString(event_state)); 1066 if (event_state == eStateDetached) 1067 pop_process_io_handler = true; 1068 break; 1069 1070 case eStateConnected: 1071 case eStateRunning: 1072 // Don't be chatty when we run... 1073 break; 1074 1075 case eStateExited: 1076 if (stream) 1077 process_sp->GetStatus(*stream); 1078 pop_process_io_handler = true; 1079 break; 1080 1081 case eStateStopped: 1082 case eStateCrashed: 1083 case eStateSuspended: 1084 // Make sure the program hasn't been auto-restarted: 1085 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 1086 if (stream) { 1087 size_t num_reasons = 1088 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1089 if (num_reasons > 0) { 1090 // FIXME: Do we want to report this, or would that just be annoyingly 1091 // chatty? 1092 if (num_reasons == 1) { 1093 const char *reason = 1094 Process::ProcessEventData::GetRestartedReasonAtIndex( 1095 event_sp.get(), 0); 1096 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 1097 process_sp->GetID(), 1098 reason ? reason : "<UNKNOWN REASON>"); 1099 } else { 1100 stream->Printf("Process %" PRIu64 1101 " stopped and restarted, reasons:\n", 1102 process_sp->GetID()); 1103 1104 for (size_t i = 0; i < num_reasons; i++) { 1105 const char *reason = 1106 Process::ProcessEventData::GetRestartedReasonAtIndex( 1107 event_sp.get(), i); 1108 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1109 } 1110 } 1111 } 1112 } 1113 } else { 1114 StopInfoSP curr_thread_stop_info_sp; 1115 // Lock the thread list so it doesn't change on us, this is the scope for 1116 // the locker: 1117 { 1118 ThreadList &thread_list = process_sp->GetThreadList(); 1119 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1120 1121 ThreadSP curr_thread(thread_list.GetSelectedThread()); 1122 ThreadSP thread; 1123 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1124 if (curr_thread) { 1125 curr_thread_stop_reason = curr_thread->GetStopReason(); 1126 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 1127 } 1128 if (!curr_thread || !curr_thread->IsValid() || 1129 curr_thread_stop_reason == eStopReasonInvalid || 1130 curr_thread_stop_reason == eStopReasonNone) { 1131 // Prefer a thread that has just completed its plan over another 1132 // thread as current thread. 1133 ThreadSP plan_thread; 1134 ThreadSP other_thread; 1135 1136 const size_t num_threads = thread_list.GetSize(); 1137 size_t i; 1138 for (i = 0; i < num_threads; ++i) { 1139 thread = thread_list.GetThreadAtIndex(i); 1140 StopReason thread_stop_reason = thread->GetStopReason(); 1141 switch (thread_stop_reason) { 1142 case eStopReasonInvalid: 1143 case eStopReasonNone: 1144 break; 1145 1146 case eStopReasonSignal: { 1147 // Don't select a signal thread if we weren't going to stop at 1148 // that 1149 // signal. We have to have had another reason for stopping here, 1150 // and 1151 // the user doesn't want to see this thread. 1152 uint64_t signo = thread->GetStopInfo()->GetValue(); 1153 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 1154 if (!other_thread) 1155 other_thread = thread; 1156 } 1157 break; 1158 } 1159 case eStopReasonTrace: 1160 case eStopReasonBreakpoint: 1161 case eStopReasonWatchpoint: 1162 case eStopReasonException: 1163 case eStopReasonExec: 1164 case eStopReasonThreadExiting: 1165 case eStopReasonInstrumentation: 1166 if (!other_thread) 1167 other_thread = thread; 1168 break; 1169 case eStopReasonPlanComplete: 1170 if (!plan_thread) 1171 plan_thread = thread; 1172 break; 1173 } 1174 } 1175 if (plan_thread) 1176 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 1177 else if (other_thread) 1178 thread_list.SetSelectedThreadByID(other_thread->GetID()); 1179 else { 1180 if (curr_thread && curr_thread->IsValid()) 1181 thread = curr_thread; 1182 else 1183 thread = thread_list.GetThreadAtIndex(0); 1184 1185 if (thread) 1186 thread_list.SetSelectedThreadByID(thread->GetID()); 1187 } 1188 } 1189 } 1190 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1191 // have to run code, 1192 // e.g. for Data formatters, and if we hold the ThreadList mutex, then the 1193 // process is going to 1194 // have a hard time restarting the process. 1195 if (stream) { 1196 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1197 if (debugger.GetTargetList().GetSelectedTarget().get() == 1198 &process_sp->GetTarget()) { 1199 const bool only_threads_with_stop_reason = true; 1200 const uint32_t start_frame = 0; 1201 const uint32_t num_frames = 1; 1202 const uint32_t num_frames_with_source = 1; 1203 const bool stop_format = true; 1204 process_sp->GetStatus(*stream); 1205 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1206 start_frame, num_frames, 1207 num_frames_with_source, 1208 stop_format); 1209 if (curr_thread_stop_info_sp) { 1210 lldb::addr_t crashing_address; 1211 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1212 curr_thread_stop_info_sp, &crashing_address); 1213 if (valobj_sp) { 1214 const bool qualify_cxx_base_classes = false; 1215 1216 const ValueObject::GetExpressionPathFormat format = 1217 ValueObject::GetExpressionPathFormat:: 1218 eGetExpressionPathFormatHonorPointers; 1219 stream->PutCString("Likely cause: "); 1220 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 1221 format); 1222 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1223 } 1224 } 1225 } else { 1226 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1227 process_sp->GetTarget().shared_from_this()); 1228 if (target_idx != UINT32_MAX) 1229 stream->Printf("Target %d: (", target_idx); 1230 else 1231 stream->Printf("Target <unknown index>: ("); 1232 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1233 stream->Printf(") stopped.\n"); 1234 } 1235 } 1236 1237 // Pop the process IO handler 1238 pop_process_io_handler = true; 1239 } 1240 break; 1241 } 1242 1243 if (handle_pop && pop_process_io_handler) 1244 process_sp->PopProcessIOHandler(); 1245 1246 return true; 1247 } 1248 1249 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1250 if (listener_sp) { 1251 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1252 eBroadcastBitInterrupt); 1253 } else 1254 return false; 1255 } 1256 1257 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1258 1259 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1260 const Timeout<std::micro> &timeout, 1261 ListenerSP hijack_listener_sp) { 1262 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1263 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1264 1265 ListenerSP listener_sp = hijack_listener_sp; 1266 if (!listener_sp) 1267 listener_sp = m_listener_sp; 1268 1269 StateType state = eStateInvalid; 1270 if (listener_sp->GetEventForBroadcasterWithType( 1271 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1272 timeout)) { 1273 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1274 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1275 else 1276 LLDB_LOG(log, "got no event or was interrupted."); 1277 } 1278 1279 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1280 return state; 1281 } 1282 1283 Event *Process::PeekAtStateChangedEvents() { 1284 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1285 1286 if (log) 1287 log->Printf("Process::%s...", __FUNCTION__); 1288 1289 Event *event_ptr; 1290 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1291 this, eBroadcastBitStateChanged); 1292 if (log) { 1293 if (event_ptr) { 1294 log->Printf( 1295 "Process::%s (event_ptr) => %s", __FUNCTION__, 1296 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1297 } else { 1298 log->Printf("Process::%s no events found", __FUNCTION__); 1299 } 1300 } 1301 return event_ptr; 1302 } 1303 1304 StateType 1305 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1306 const Timeout<std::micro> &timeout) { 1307 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1308 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1309 1310 StateType state = eStateInvalid; 1311 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1312 &m_private_state_broadcaster, 1313 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1314 timeout)) 1315 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1316 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1317 1318 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1319 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1320 return state; 1321 } 1322 1323 bool Process::GetEventsPrivate(EventSP &event_sp, 1324 const Timeout<std::micro> &timeout, 1325 bool control_only) { 1326 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1327 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1328 1329 if (control_only) 1330 return m_private_state_listener_sp->GetEventForBroadcaster( 1331 &m_private_state_control_broadcaster, event_sp, timeout); 1332 else 1333 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1334 } 1335 1336 bool Process::IsRunning() const { 1337 return StateIsRunningState(m_public_state.GetValue()); 1338 } 1339 1340 int Process::GetExitStatus() { 1341 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1342 1343 if (m_public_state.GetValue() == eStateExited) 1344 return m_exit_status; 1345 return -1; 1346 } 1347 1348 const char *Process::GetExitDescription() { 1349 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1350 1351 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1352 return m_exit_string.c_str(); 1353 return nullptr; 1354 } 1355 1356 bool Process::SetExitStatus(int status, const char *cstr) { 1357 // Use a mutex to protect setting the exit status. 1358 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1359 1360 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1361 LIBLLDB_LOG_PROCESS)); 1362 if (log) 1363 log->Printf( 1364 "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1365 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", 1366 cstr ? "\"" : ""); 1367 1368 // We were already in the exited state 1369 if (m_private_state.GetValue() == eStateExited) { 1370 if (log) 1371 log->Printf("Process::SetExitStatus () ignoring exit status because " 1372 "state was already set to eStateExited"); 1373 return false; 1374 } 1375 1376 m_exit_status = status; 1377 if (cstr) 1378 m_exit_string = cstr; 1379 else 1380 m_exit_string.clear(); 1381 1382 // Clear the last natural stop ID since it has a strong 1383 // reference to this process 1384 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1385 1386 SetPrivateState(eStateExited); 1387 1388 // Allow subclasses to do some cleanup 1389 DidExit(); 1390 1391 return true; 1392 } 1393 1394 bool Process::IsAlive() { 1395 switch (m_private_state.GetValue()) { 1396 case eStateConnected: 1397 case eStateAttaching: 1398 case eStateLaunching: 1399 case eStateStopped: 1400 case eStateRunning: 1401 case eStateStepping: 1402 case eStateCrashed: 1403 case eStateSuspended: 1404 return true; 1405 default: 1406 return false; 1407 } 1408 } 1409 1410 // This static callback can be used to watch for local child processes on 1411 // the current host. The child process exits, the process will be 1412 // found in the global target list (we want to be completely sure that the 1413 // lldb_private::Process doesn't go away before we can deliver the signal. 1414 bool Process::SetProcessExitStatus( 1415 lldb::pid_t pid, bool exited, 1416 int signo, // Zero for no signal 1417 int exit_status // Exit value of process if signal is zero 1418 ) { 1419 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1420 if (log) 1421 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 1422 ", exited=%i, signal=%i, exit_status=%i)\n", 1423 pid, exited, signo, exit_status); 1424 1425 if (exited) { 1426 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1427 if (target_sp) { 1428 ProcessSP process_sp(target_sp->GetProcessSP()); 1429 if (process_sp) { 1430 const char *signal_cstr = nullptr; 1431 if (signo) 1432 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1433 1434 process_sp->SetExitStatus(exit_status, signal_cstr); 1435 } 1436 } 1437 return true; 1438 } 1439 return false; 1440 } 1441 1442 void Process::UpdateThreadListIfNeeded() { 1443 const uint32_t stop_id = GetStopID(); 1444 if (m_thread_list.GetSize(false) == 0 || 1445 stop_id != m_thread_list.GetStopID()) { 1446 const StateType state = GetPrivateState(); 1447 if (StateIsStoppedState(state, true)) { 1448 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1449 // m_thread_list does have its own mutex, but we need to 1450 // hold onto the mutex between the call to UpdateThreadList(...) 1451 // and the os->UpdateThreadList(...) so it doesn't change on us 1452 ThreadList &old_thread_list = m_thread_list; 1453 ThreadList real_thread_list(this); 1454 ThreadList new_thread_list(this); 1455 // Always update the thread list with the protocol specific 1456 // thread list, but only update if "true" is returned 1457 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1458 // Don't call into the OperatingSystem to update the thread list if we 1459 // are shutting down, since 1460 // that may call back into the SBAPI's, requiring the API lock which is 1461 // already held by whoever is 1462 // shutting us down, causing a deadlock. 1463 OperatingSystem *os = GetOperatingSystem(); 1464 if (os && !m_destroy_in_process) { 1465 // Clear any old backing threads where memory threads might have been 1466 // backed by actual threads from the lldb_private::Process subclass 1467 size_t num_old_threads = old_thread_list.GetSize(false); 1468 for (size_t i = 0; i < num_old_threads; ++i) 1469 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1470 1471 // Turn off dynamic types to ensure we don't run any expressions. 1472 // Objective C 1473 // can run an expression to determine if a SBValue is a dynamic type 1474 // or not 1475 // and we need to avoid this. OperatingSystem plug-ins can't run 1476 // expressions 1477 // that require running code... 1478 1479 Target &target = GetTarget(); 1480 const lldb::DynamicValueType saved_prefer_dynamic = 1481 target.GetPreferDynamicValue(); 1482 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1483 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1484 1485 // Now let the OperatingSystem plug-in update the thread list 1486 1487 os->UpdateThreadList( 1488 old_thread_list, // Old list full of threads created by OS plug-in 1489 real_thread_list, // The actual thread list full of threads 1490 // created by each lldb_private::Process 1491 // subclass 1492 new_thread_list); // The new thread list that we will show to the 1493 // user that gets filled in 1494 1495 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1496 target.SetPreferDynamicValue(saved_prefer_dynamic); 1497 } else { 1498 // No OS plug-in, the new thread list is the same as the real thread 1499 // list 1500 new_thread_list = real_thread_list; 1501 } 1502 1503 m_thread_list_real.Update(real_thread_list); 1504 m_thread_list.Update(new_thread_list); 1505 m_thread_list.SetStopID(stop_id); 1506 1507 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1508 // Clear any extended threads that we may have accumulated previously 1509 m_extended_thread_list.Clear(); 1510 m_extended_thread_stop_id = GetLastNaturalStopID(); 1511 1512 m_queue_list.Clear(); 1513 m_queue_list_stop_id = GetLastNaturalStopID(); 1514 } 1515 } 1516 } 1517 } 1518 } 1519 1520 void Process::UpdateQueueListIfNeeded() { 1521 if (m_system_runtime_ap) { 1522 if (m_queue_list.GetSize() == 0 || 1523 m_queue_list_stop_id != GetLastNaturalStopID()) { 1524 const StateType state = GetPrivateState(); 1525 if (StateIsStoppedState(state, true)) { 1526 m_system_runtime_ap->PopulateQueueList(m_queue_list); 1527 m_queue_list_stop_id = GetLastNaturalStopID(); 1528 } 1529 } 1530 } 1531 } 1532 1533 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1534 OperatingSystem *os = GetOperatingSystem(); 1535 if (os) 1536 return os->CreateThread(tid, context); 1537 return ThreadSP(); 1538 } 1539 1540 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1541 return AssignIndexIDToThread(thread_id); 1542 } 1543 1544 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1545 return (m_thread_id_to_index_id_map.find(thread_id) != 1546 m_thread_id_to_index_id_map.end()); 1547 } 1548 1549 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1550 uint32_t result = 0; 1551 std::map<uint64_t, uint32_t>::iterator iterator = 1552 m_thread_id_to_index_id_map.find(thread_id); 1553 if (iterator == m_thread_id_to_index_id_map.end()) { 1554 result = ++m_thread_index_id; 1555 m_thread_id_to_index_id_map[thread_id] = result; 1556 } else { 1557 result = iterator->second; 1558 } 1559 1560 return result; 1561 } 1562 1563 StateType Process::GetState() { 1564 // If any other threads access this we will need a mutex for it 1565 return m_public_state.GetValue(); 1566 } 1567 1568 bool Process::StateChangedIsExternallyHijacked() { 1569 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1570 const char *hijacking_name = GetHijackingListenerName(); 1571 if (hijacking_name && 1572 strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1573 return true; 1574 } 1575 return false; 1576 } 1577 1578 void Process::SetPublicState(StateType new_state, bool restarted) { 1579 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1580 LIBLLDB_LOG_PROCESS)); 1581 if (log) 1582 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", 1583 StateAsCString(new_state), restarted); 1584 const StateType old_state = m_public_state.GetValue(); 1585 m_public_state.SetValue(new_state); 1586 1587 // On the transition from Run to Stopped, we unlock the writer end of the 1588 // run lock. The lock gets locked in Resume, which is the public API 1589 // to tell the program to run. 1590 if (!StateChangedIsExternallyHijacked()) { 1591 if (new_state == eStateDetached) { 1592 if (log) 1593 log->Printf( 1594 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1595 StateAsCString(new_state)); 1596 m_public_run_lock.SetStopped(); 1597 } else { 1598 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1599 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1600 if ((old_state_is_stopped != new_state_is_stopped)) { 1601 if (new_state_is_stopped && !restarted) { 1602 if (log) 1603 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", 1604 StateAsCString(new_state)); 1605 m_public_run_lock.SetStopped(); 1606 } 1607 } 1608 } 1609 } 1610 } 1611 1612 Error Process::Resume() { 1613 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1614 LIBLLDB_LOG_PROCESS)); 1615 if (log) 1616 log->Printf("Process::Resume -- locking run lock"); 1617 if (!m_public_run_lock.TrySetRunning()) { 1618 Error error("Resume request failed - process still running."); 1619 if (log) 1620 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1621 return error; 1622 } 1623 return PrivateResume(); 1624 } 1625 1626 Error Process::ResumeSynchronous(Stream *stream) { 1627 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1628 LIBLLDB_LOG_PROCESS)); 1629 if (log) 1630 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1631 if (!m_public_run_lock.TrySetRunning()) { 1632 Error error("Resume request failed - process still running."); 1633 if (log) 1634 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1635 return error; 1636 } 1637 1638 ListenerSP listener_sp( 1639 Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1640 HijackProcessEvents(listener_sp); 1641 1642 Error error = PrivateResume(); 1643 if (error.Success()) { 1644 StateType state = 1645 WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream); 1646 const bool must_be_alive = 1647 false; // eStateExited is ok, so this must be false 1648 if (!StateIsStoppedState(state, must_be_alive)) 1649 error.SetErrorStringWithFormat( 1650 "process not in stopped state after synchronous resume: %s", 1651 StateAsCString(state)); 1652 } 1653 1654 // Undo the hijacking of process events... 1655 RestoreProcessEvents(); 1656 1657 return error; 1658 } 1659 1660 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1661 1662 void Process::SetPrivateState(StateType new_state) { 1663 if (m_finalize_called) 1664 return; 1665 1666 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1667 LIBLLDB_LOG_PROCESS)); 1668 bool state_changed = false; 1669 1670 if (log) 1671 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1672 1673 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1674 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1675 1676 const StateType old_state = m_private_state.GetValueNoLock(); 1677 state_changed = old_state != new_state; 1678 1679 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1680 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1681 if (old_state_is_stopped != new_state_is_stopped) { 1682 if (new_state_is_stopped) 1683 m_private_run_lock.SetStopped(); 1684 else 1685 m_private_run_lock.SetRunning(); 1686 } 1687 1688 if (state_changed) { 1689 m_private_state.SetValueNoLock(new_state); 1690 EventSP event_sp( 1691 new Event(eBroadcastBitStateChanged, 1692 new ProcessEventData(shared_from_this(), new_state))); 1693 if (StateIsStoppedState(new_state, false)) { 1694 // Note, this currently assumes that all threads in the list 1695 // stop when the process stops. In the future we will want to 1696 // support a debugging model where some threads continue to run 1697 // while others are stopped. When that happens we will either need 1698 // a way for the thread list to identify which threads are stopping 1699 // or create a special thread list containing only threads which 1700 // actually stopped. 1701 // 1702 // The process plugin is responsible for managing the actual 1703 // behavior of the threads and should have stopped any threads 1704 // that are going to stop before we get here. 1705 m_thread_list.DidStop(); 1706 1707 m_mod_id.BumpStopID(); 1708 if (!m_mod_id.IsLastResumeForUserExpression()) 1709 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1710 m_memory_cache.Clear(); 1711 if (log) 1712 log->Printf("Process::SetPrivateState (%s) stop_id = %u", 1713 StateAsCString(new_state), m_mod_id.GetStopID()); 1714 } 1715 1716 // Use our target to get a shared pointer to ourselves... 1717 if (m_finalize_called && !PrivateStateThreadIsValid()) 1718 BroadcastEvent(event_sp); 1719 else 1720 m_private_state_broadcaster.BroadcastEvent(event_sp); 1721 } else { 1722 if (log) 1723 log->Printf( 1724 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1725 StateAsCString(new_state)); 1726 } 1727 } 1728 1729 void Process::SetRunningUserExpression(bool on) { 1730 m_mod_id.SetRunningUserExpression(on); 1731 } 1732 1733 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1734 1735 const lldb::ABISP &Process::GetABI() { 1736 if (!m_abi_sp) 1737 m_abi_sp = ABI::FindPlugin(GetTarget().GetArchitecture()); 1738 return m_abi_sp; 1739 } 1740 1741 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language, 1742 bool retry_if_null) { 1743 if (m_finalizing) 1744 return nullptr; 1745 1746 LanguageRuntimeCollection::iterator pos; 1747 pos = m_language_runtimes.find(language); 1748 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { 1749 lldb::LanguageRuntimeSP runtime_sp( 1750 LanguageRuntime::FindPlugin(this, language)); 1751 1752 m_language_runtimes[language] = runtime_sp; 1753 return runtime_sp.get(); 1754 } else 1755 return (*pos).second.get(); 1756 } 1757 1758 CPPLanguageRuntime *Process::GetCPPLanguageRuntime(bool retry_if_null) { 1759 LanguageRuntime *runtime = 1760 GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1761 if (runtime != nullptr && 1762 runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1763 return static_cast<CPPLanguageRuntime *>(runtime); 1764 return nullptr; 1765 } 1766 1767 ObjCLanguageRuntime *Process::GetObjCLanguageRuntime(bool retry_if_null) { 1768 LanguageRuntime *runtime = 1769 GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1770 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1771 return static_cast<ObjCLanguageRuntime *>(runtime); 1772 return nullptr; 1773 } 1774 1775 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1776 if (m_finalizing) 1777 return false; 1778 1779 if (in_value.IsDynamic()) 1780 return false; 1781 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1782 1783 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1784 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1785 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1786 } 1787 1788 LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus); 1789 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1790 return true; 1791 1792 LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC); 1793 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1794 } 1795 1796 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1797 m_dynamic_checkers_ap.reset(dynamic_checkers); 1798 } 1799 1800 BreakpointSiteList &Process::GetBreakpointSiteList() { 1801 return m_breakpoint_site_list; 1802 } 1803 1804 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1805 return m_breakpoint_site_list; 1806 } 1807 1808 void Process::DisableAllBreakpointSites() { 1809 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1810 // bp_site->SetEnabled(true); 1811 DisableBreakpointSite(bp_site); 1812 }); 1813 } 1814 1815 Error Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1816 Error error(DisableBreakpointSiteByID(break_id)); 1817 1818 if (error.Success()) 1819 m_breakpoint_site_list.Remove(break_id); 1820 1821 return error; 1822 } 1823 1824 Error Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1825 Error error; 1826 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1827 if (bp_site_sp) { 1828 if (bp_site_sp->IsEnabled()) 1829 error = DisableBreakpointSite(bp_site_sp.get()); 1830 } else { 1831 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1832 break_id); 1833 } 1834 1835 return error; 1836 } 1837 1838 Error Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1839 Error error; 1840 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1841 if (bp_site_sp) { 1842 if (!bp_site_sp->IsEnabled()) 1843 error = EnableBreakpointSite(bp_site_sp.get()); 1844 } else { 1845 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1846 break_id); 1847 } 1848 return error; 1849 } 1850 1851 lldb::break_id_t 1852 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1853 bool use_hardware) { 1854 addr_t load_addr = LLDB_INVALID_ADDRESS; 1855 1856 bool show_error = true; 1857 switch (GetState()) { 1858 case eStateInvalid: 1859 case eStateUnloaded: 1860 case eStateConnected: 1861 case eStateAttaching: 1862 case eStateLaunching: 1863 case eStateDetached: 1864 case eStateExited: 1865 show_error = false; 1866 break; 1867 1868 case eStateStopped: 1869 case eStateRunning: 1870 case eStateStepping: 1871 case eStateCrashed: 1872 case eStateSuspended: 1873 show_error = IsAlive(); 1874 break; 1875 } 1876 1877 // Reset the IsIndirect flag here, in case the location changes from 1878 // pointing to a indirect symbol to a regular symbol. 1879 owner->SetIsIndirect(false); 1880 1881 if (owner->ShouldResolveIndirectFunctions()) { 1882 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1883 if (symbol && symbol->IsIndirect()) { 1884 Error error; 1885 Address symbol_address = symbol->GetAddress(); 1886 load_addr = ResolveIndirectFunction(&symbol_address, error); 1887 if (!error.Success() && show_error) { 1888 GetTarget().GetDebugger().GetErrorFile()->Printf( 1889 "warning: failed to resolve indirect function at 0x%" PRIx64 1890 " for breakpoint %i.%i: %s\n", 1891 symbol->GetLoadAddress(&GetTarget()), 1892 owner->GetBreakpoint().GetID(), owner->GetID(), 1893 error.AsCString() ? error.AsCString() : "unknown error"); 1894 return LLDB_INVALID_BREAK_ID; 1895 } 1896 Address resolved_address(load_addr); 1897 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1898 owner->SetIsIndirect(true); 1899 } else 1900 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1901 } else 1902 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1903 1904 if (load_addr != LLDB_INVALID_ADDRESS) { 1905 BreakpointSiteSP bp_site_sp; 1906 1907 // Look up this breakpoint site. If it exists, then add this new owner, 1908 // otherwise 1909 // create a new breakpoint site and add it. 1910 1911 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1912 1913 if (bp_site_sp) { 1914 bp_site_sp->AddOwner(owner); 1915 owner->SetBreakpointSite(bp_site_sp); 1916 return bp_site_sp->GetID(); 1917 } else { 1918 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1919 load_addr, use_hardware)); 1920 if (bp_site_sp) { 1921 Error error = EnableBreakpointSite(bp_site_sp.get()); 1922 if (error.Success()) { 1923 owner->SetBreakpointSite(bp_site_sp); 1924 return m_breakpoint_site_list.Add(bp_site_sp); 1925 } else { 1926 if (show_error) { 1927 // Report error for setting breakpoint... 1928 GetTarget().GetDebugger().GetErrorFile()->Printf( 1929 "warning: failed to set breakpoint site at 0x%" PRIx64 1930 " for breakpoint %i.%i: %s\n", 1931 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1932 error.AsCString() ? error.AsCString() : "unknown error"); 1933 } 1934 } 1935 } 1936 } 1937 } 1938 // We failed to enable the breakpoint 1939 return LLDB_INVALID_BREAK_ID; 1940 } 1941 1942 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1943 lldb::user_id_t owner_loc_id, 1944 BreakpointSiteSP &bp_site_sp) { 1945 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1946 if (num_owners == 0) { 1947 // Don't try to disable the site if we don't have a live process anymore. 1948 if (IsAlive()) 1949 DisableBreakpointSite(bp_site_sp.get()); 1950 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1951 } 1952 } 1953 1954 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1955 uint8_t *buf) const { 1956 size_t bytes_removed = 0; 1957 BreakpointSiteList bp_sites_in_range; 1958 1959 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1960 bp_sites_in_range)) { 1961 bp_sites_in_range.ForEach([bp_addr, size, 1962 buf](BreakpointSite *bp_site) -> void { 1963 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1964 addr_t intersect_addr; 1965 size_t intersect_size; 1966 size_t opcode_offset; 1967 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1968 &intersect_size, &opcode_offset)) { 1969 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1970 assert(bp_addr < intersect_addr + intersect_size && 1971 intersect_addr + intersect_size <= bp_addr + size); 1972 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1973 size_t buf_offset = intersect_addr - bp_addr; 1974 ::memcpy(buf + buf_offset, 1975 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1976 intersect_size); 1977 } 1978 } 1979 }); 1980 } 1981 return bytes_removed; 1982 } 1983 1984 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1985 PlatformSP platform_sp(GetTarget().GetPlatform()); 1986 if (platform_sp) 1987 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1988 return 0; 1989 } 1990 1991 Error Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1992 Error error; 1993 assert(bp_site != nullptr); 1994 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1995 const addr_t bp_addr = bp_site->GetLoadAddress(); 1996 if (log) 1997 log->Printf( 1998 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1999 bp_site->GetID(), (uint64_t)bp_addr); 2000 if (bp_site->IsEnabled()) { 2001 if (log) 2002 log->Printf( 2003 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2004 " -- already enabled", 2005 bp_site->GetID(), (uint64_t)bp_addr); 2006 return error; 2007 } 2008 2009 if (bp_addr == LLDB_INVALID_ADDRESS) { 2010 error.SetErrorString("BreakpointSite contains an invalid load address."); 2011 return error; 2012 } 2013 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2014 // trap for the breakpoint site 2015 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2016 2017 if (bp_opcode_size == 0) { 2018 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 2019 "returned zero, unable to get breakpoint " 2020 "trap for address 0x%" PRIx64, 2021 bp_addr); 2022 } else { 2023 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2024 2025 if (bp_opcode_bytes == nullptr) { 2026 error.SetErrorString( 2027 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2028 return error; 2029 } 2030 2031 // Save the original opcode by reading it 2032 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 2033 error) == bp_opcode_size) { 2034 // Write a software breakpoint in place of the original opcode 2035 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 2036 bp_opcode_size) { 2037 uint8_t verify_bp_opcode_bytes[64]; 2038 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 2039 error) == bp_opcode_size) { 2040 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 2041 bp_opcode_size) == 0) { 2042 bp_site->SetEnabled(true); 2043 bp_site->SetType(BreakpointSite::eSoftware); 2044 if (log) 2045 log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) " 2046 "addr = 0x%" PRIx64 " -- SUCCESS", 2047 bp_site->GetID(), (uint64_t)bp_addr); 2048 } else 2049 error.SetErrorString( 2050 "failed to verify the breakpoint trap in memory."); 2051 } else 2052 error.SetErrorString( 2053 "Unable to read memory to verify breakpoint trap."); 2054 } else 2055 error.SetErrorString("Unable to write breakpoint trap to memory."); 2056 } else 2057 error.SetErrorString("Unable to read memory at breakpoint address."); 2058 } 2059 if (log && error.Fail()) 2060 log->Printf( 2061 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2062 " -- FAILED: %s", 2063 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2064 return error; 2065 } 2066 2067 Error Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 2068 Error error; 2069 assert(bp_site != nullptr); 2070 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 2071 addr_t bp_addr = bp_site->GetLoadAddress(); 2072 lldb::user_id_t breakID = bp_site->GetID(); 2073 if (log) 2074 log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 2075 ") addr = 0x%" PRIx64, 2076 breakID, (uint64_t)bp_addr); 2077 2078 if (bp_site->IsHardware()) { 2079 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2080 } else if (bp_site->IsEnabled()) { 2081 const size_t break_op_size = bp_site->GetByteSize(); 2082 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 2083 if (break_op_size > 0) { 2084 // Clear a software breakpoint instruction 2085 uint8_t curr_break_op[8]; 2086 assert(break_op_size <= sizeof(curr_break_op)); 2087 bool break_op_found = false; 2088 2089 // Read the breakpoint opcode 2090 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 2091 break_op_size) { 2092 bool verify = false; 2093 // Make sure the breakpoint opcode exists at this address 2094 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 2095 break_op_found = true; 2096 // We found a valid breakpoint opcode at this address, now restore 2097 // the saved opcode. 2098 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 2099 break_op_size, error) == break_op_size) { 2100 verify = true; 2101 } else 2102 error.SetErrorString( 2103 "Memory write failed when restoring original opcode."); 2104 } else { 2105 error.SetErrorString( 2106 "Original breakpoint trap is no longer in memory."); 2107 // Set verify to true and so we can check if the original opcode has 2108 // already been restored 2109 verify = true; 2110 } 2111 2112 if (verify) { 2113 uint8_t verify_opcode[8]; 2114 assert(break_op_size < sizeof(verify_opcode)); 2115 // Verify that our original opcode made it back to the inferior 2116 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 2117 break_op_size) { 2118 // compare the memory we just read with the original opcode 2119 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 2120 break_op_size) == 0) { 2121 // SUCCESS 2122 bp_site->SetEnabled(false); 2123 if (log) 2124 log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) " 2125 "addr = 0x%" PRIx64 " -- SUCCESS", 2126 bp_site->GetID(), (uint64_t)bp_addr); 2127 return error; 2128 } else { 2129 if (break_op_found) 2130 error.SetErrorString("Failed to restore original opcode."); 2131 } 2132 } else 2133 error.SetErrorString("Failed to read memory to verify that " 2134 "breakpoint trap was restored."); 2135 } 2136 } else 2137 error.SetErrorString( 2138 "Unable to read memory that should contain the breakpoint trap."); 2139 } 2140 } else { 2141 if (log) 2142 log->Printf( 2143 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2144 " -- already disabled", 2145 bp_site->GetID(), (uint64_t)bp_addr); 2146 return error; 2147 } 2148 2149 if (log) 2150 log->Printf( 2151 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2152 " -- FAILED: %s", 2153 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2154 return error; 2155 } 2156 2157 // Uncomment to verify memory caching works after making changes to caching code 2158 //#define VERIFY_MEMORY_READS 2159 2160 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Error &error) { 2161 error.Clear(); 2162 if (!GetDisableMemoryCache()) { 2163 #if defined(VERIFY_MEMORY_READS) 2164 // Memory caching is enabled, with debug verification 2165 2166 if (buf && size) { 2167 // Uncomment the line below to make sure memory caching is working. 2168 // I ran this through the test suite and got no assertions, so I am 2169 // pretty confident this is working well. If any changes are made to 2170 // memory caching, uncomment the line below and test your changes! 2171 2172 // Verify all memory reads by using the cache first, then redundantly 2173 // reading the same memory from the inferior and comparing to make sure 2174 // everything is exactly the same. 2175 std::string verify_buf(size, '\0'); 2176 assert(verify_buf.size() == size); 2177 const size_t cache_bytes_read = 2178 m_memory_cache.Read(this, addr, buf, size, error); 2179 Error verify_error; 2180 const size_t verify_bytes_read = 2181 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2182 verify_buf.size(), verify_error); 2183 assert(cache_bytes_read == verify_bytes_read); 2184 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2185 assert(verify_error.Success() == error.Success()); 2186 return cache_bytes_read; 2187 } 2188 return 0; 2189 #else // !defined(VERIFY_MEMORY_READS) 2190 // Memory caching is enabled, without debug verification 2191 2192 return m_memory_cache.Read(addr, buf, size, error); 2193 #endif // defined (VERIFY_MEMORY_READS) 2194 } else { 2195 // Memory caching is disabled 2196 2197 return ReadMemoryFromInferior(addr, buf, size, error); 2198 } 2199 } 2200 2201 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2202 Error &error) { 2203 char buf[256]; 2204 out_str.clear(); 2205 addr_t curr_addr = addr; 2206 while (true) { 2207 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2208 if (length == 0) 2209 break; 2210 out_str.append(buf, length); 2211 // If we got "length - 1" bytes, we didn't get the whole C string, we 2212 // need to read some more characters 2213 if (length == sizeof(buf) - 1) 2214 curr_addr += length; 2215 else 2216 break; 2217 } 2218 return out_str.size(); 2219 } 2220 2221 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2222 Error &error, size_t type_width) { 2223 size_t total_bytes_read = 0; 2224 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2225 // Ensure a null terminator independent of the number of bytes that is read. 2226 memset(dst, 0, max_bytes); 2227 size_t bytes_left = max_bytes - type_width; 2228 2229 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2230 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2231 "string with more than 4 bytes " 2232 "per character!"); 2233 2234 addr_t curr_addr = addr; 2235 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2236 char *curr_dst = dst; 2237 2238 error.Clear(); 2239 while (bytes_left > 0 && error.Success()) { 2240 addr_t cache_line_bytes_left = 2241 cache_line_size - (curr_addr % cache_line_size); 2242 addr_t bytes_to_read = 2243 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2244 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2245 2246 if (bytes_read == 0) 2247 break; 2248 2249 // Search for a null terminator of correct size and alignment in 2250 // bytes_read 2251 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2252 for (size_t i = aligned_start; 2253 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2254 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2255 error.Clear(); 2256 return i; 2257 } 2258 2259 total_bytes_read += bytes_read; 2260 curr_dst += bytes_read; 2261 curr_addr += bytes_read; 2262 bytes_left -= bytes_read; 2263 } 2264 } else { 2265 if (max_bytes) 2266 error.SetErrorString("invalid arguments"); 2267 } 2268 return total_bytes_read; 2269 } 2270 2271 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2272 // correct code to find 2273 // null terminators. 2274 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2275 size_t dst_max_len, Error &result_error) { 2276 size_t total_cstr_len = 0; 2277 if (dst && dst_max_len) { 2278 result_error.Clear(); 2279 // NULL out everything just to be safe 2280 memset(dst, 0, dst_max_len); 2281 Error error; 2282 addr_t curr_addr = addr; 2283 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2284 size_t bytes_left = dst_max_len - 1; 2285 char *curr_dst = dst; 2286 2287 while (bytes_left > 0) { 2288 addr_t cache_line_bytes_left = 2289 cache_line_size - (curr_addr % cache_line_size); 2290 addr_t bytes_to_read = 2291 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2292 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2293 2294 if (bytes_read == 0) { 2295 result_error = error; 2296 dst[total_cstr_len] = '\0'; 2297 break; 2298 } 2299 const size_t len = strlen(curr_dst); 2300 2301 total_cstr_len += len; 2302 2303 if (len < bytes_to_read) 2304 break; 2305 2306 curr_dst += bytes_read; 2307 curr_addr += bytes_read; 2308 bytes_left -= bytes_read; 2309 } 2310 } else { 2311 if (dst == nullptr) 2312 result_error.SetErrorString("invalid arguments"); 2313 else 2314 result_error.Clear(); 2315 } 2316 return total_cstr_len; 2317 } 2318 2319 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2320 Error &error) { 2321 if (buf == nullptr || size == 0) 2322 return 0; 2323 2324 size_t bytes_read = 0; 2325 uint8_t *bytes = (uint8_t *)buf; 2326 2327 while (bytes_read < size) { 2328 const size_t curr_size = size - bytes_read; 2329 const size_t curr_bytes_read = 2330 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2331 bytes_read += curr_bytes_read; 2332 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2333 break; 2334 } 2335 2336 // Replace any software breakpoint opcodes that fall into this range back 2337 // into "buf" before we return 2338 if (bytes_read > 0) 2339 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2340 return bytes_read; 2341 } 2342 2343 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2344 size_t integer_byte_size, 2345 uint64_t fail_value, 2346 Error &error) { 2347 Scalar scalar; 2348 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2349 error)) 2350 return scalar.ULongLong(fail_value); 2351 return fail_value; 2352 } 2353 2354 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2355 size_t integer_byte_size, 2356 int64_t fail_value, Error &error) { 2357 Scalar scalar; 2358 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2359 error)) 2360 return scalar.SLongLong(fail_value); 2361 return fail_value; 2362 } 2363 2364 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Error &error) { 2365 Scalar scalar; 2366 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2367 error)) 2368 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2369 return LLDB_INVALID_ADDRESS; 2370 } 2371 2372 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2373 Error &error) { 2374 Scalar scalar; 2375 const uint32_t addr_byte_size = GetAddressByteSize(); 2376 if (addr_byte_size <= 4) 2377 scalar = (uint32_t)ptr_value; 2378 else 2379 scalar = ptr_value; 2380 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2381 addr_byte_size; 2382 } 2383 2384 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2385 Error &error) { 2386 size_t bytes_written = 0; 2387 const uint8_t *bytes = (const uint8_t *)buf; 2388 2389 while (bytes_written < size) { 2390 const size_t curr_size = size - bytes_written; 2391 const size_t curr_bytes_written = DoWriteMemory( 2392 addr + bytes_written, bytes + bytes_written, curr_size, error); 2393 bytes_written += curr_bytes_written; 2394 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2395 break; 2396 } 2397 return bytes_written; 2398 } 2399 2400 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2401 Error &error) { 2402 #if defined(ENABLE_MEMORY_CACHING) 2403 m_memory_cache.Flush(addr, size); 2404 #endif 2405 2406 if (buf == nullptr || size == 0) 2407 return 0; 2408 2409 m_mod_id.BumpMemoryID(); 2410 2411 // We need to write any data that would go where any current software traps 2412 // (enabled software breakpoints) any software traps (breakpoints) that we 2413 // may have placed in our tasks memory. 2414 2415 BreakpointSiteList bp_sites_in_range; 2416 2417 if (m_breakpoint_site_list.FindInRange(addr, addr + size, 2418 bp_sites_in_range)) { 2419 // No breakpoint sites overlap 2420 if (bp_sites_in_range.IsEmpty()) 2421 return WriteMemoryPrivate(addr, buf, size, error); 2422 else { 2423 const uint8_t *ubuf = (const uint8_t *)buf; 2424 uint64_t bytes_written = 0; 2425 2426 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2427 &error](BreakpointSite *bp) -> void { 2428 2429 if (error.Success()) { 2430 addr_t intersect_addr; 2431 size_t intersect_size; 2432 size_t opcode_offset; 2433 const bool intersects = bp->IntersectsRange( 2434 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2435 UNUSED_IF_ASSERT_DISABLED(intersects); 2436 assert(intersects); 2437 assert(addr <= intersect_addr && intersect_addr < addr + size); 2438 assert(addr < intersect_addr + intersect_size && 2439 intersect_addr + intersect_size <= addr + size); 2440 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2441 2442 // Check for bytes before this breakpoint 2443 const addr_t curr_addr = addr + bytes_written; 2444 if (intersect_addr > curr_addr) { 2445 // There are some bytes before this breakpoint that we need to 2446 // just write to memory 2447 size_t curr_size = intersect_addr - curr_addr; 2448 size_t curr_bytes_written = WriteMemoryPrivate( 2449 curr_addr, ubuf + bytes_written, curr_size, error); 2450 bytes_written += curr_bytes_written; 2451 if (curr_bytes_written != curr_size) { 2452 // We weren't able to write all of the requested bytes, we 2453 // are done looping and will return the number of bytes that 2454 // we have written so far. 2455 if (error.Success()) 2456 error.SetErrorToGenericError(); 2457 } 2458 } 2459 // Now write any bytes that would cover up any software breakpoints 2460 // directly into the breakpoint opcode buffer 2461 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, 2462 ubuf + bytes_written, intersect_size); 2463 bytes_written += intersect_size; 2464 } 2465 }); 2466 2467 if (bytes_written < size) 2468 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2469 size - bytes_written, error); 2470 } 2471 } else { 2472 return WriteMemoryPrivate(addr, buf, size, error); 2473 } 2474 2475 // Write any remaining bytes after the last breakpoint if we have any left 2476 return 0; // bytes_written; 2477 } 2478 2479 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2480 size_t byte_size, Error &error) { 2481 if (byte_size == UINT32_MAX) 2482 byte_size = scalar.GetByteSize(); 2483 if (byte_size > 0) { 2484 uint8_t buf[32]; 2485 const size_t mem_size = 2486 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2487 if (mem_size > 0) 2488 return WriteMemory(addr, buf, mem_size, error); 2489 else 2490 error.SetErrorString("failed to get scalar as memory data"); 2491 } else { 2492 error.SetErrorString("invalid scalar value"); 2493 } 2494 return 0; 2495 } 2496 2497 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2498 bool is_signed, Scalar &scalar, 2499 Error &error) { 2500 uint64_t uval = 0; 2501 if (byte_size == 0) { 2502 error.SetErrorString("byte size is zero"); 2503 } else if (byte_size & (byte_size - 1)) { 2504 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2505 byte_size); 2506 } else if (byte_size <= sizeof(uval)) { 2507 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2508 if (bytes_read == byte_size) { 2509 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2510 GetAddressByteSize()); 2511 lldb::offset_t offset = 0; 2512 if (byte_size <= 4) 2513 scalar = data.GetMaxU32(&offset, byte_size); 2514 else 2515 scalar = data.GetMaxU64(&offset, byte_size); 2516 if (is_signed) 2517 scalar.SignExtend(byte_size * 8); 2518 return bytes_read; 2519 } 2520 } else { 2521 error.SetErrorStringWithFormat( 2522 "byte size of %u is too large for integer scalar type", byte_size); 2523 } 2524 return 0; 2525 } 2526 2527 #define USE_ALLOCATE_MEMORY_CACHE 1 2528 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2529 Error &error) { 2530 if (GetPrivateState() != eStateStopped) 2531 return LLDB_INVALID_ADDRESS; 2532 2533 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2534 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2535 #else 2536 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2537 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2538 if (log) 2539 log->Printf("Process::AllocateMemory(size=%" PRIu64 2540 ", permissions=%s) => 0x%16.16" PRIx64 2541 " (m_stop_id = %u m_memory_id = %u)", 2542 (uint64_t)size, GetPermissionsAsCString(permissions), 2543 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2544 m_mod_id.GetMemoryID()); 2545 return allocated_addr; 2546 #endif 2547 } 2548 2549 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2550 Error &error) { 2551 addr_t return_addr = AllocateMemory(size, permissions, error); 2552 if (error.Success()) { 2553 std::string buffer(size, 0); 2554 WriteMemory(return_addr, buffer.c_str(), size, error); 2555 } 2556 return return_addr; 2557 } 2558 2559 bool Process::CanJIT() { 2560 if (m_can_jit == eCanJITDontKnow) { 2561 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2562 Error err; 2563 2564 uint64_t allocated_memory = AllocateMemory( 2565 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2566 err); 2567 2568 if (err.Success()) { 2569 m_can_jit = eCanJITYes; 2570 if (log) 2571 log->Printf("Process::%s pid %" PRIu64 2572 " allocation test passed, CanJIT () is true", 2573 __FUNCTION__, GetID()); 2574 } else { 2575 m_can_jit = eCanJITNo; 2576 if (log) 2577 log->Printf("Process::%s pid %" PRIu64 2578 " allocation test failed, CanJIT () is false: %s", 2579 __FUNCTION__, GetID(), err.AsCString()); 2580 } 2581 2582 DeallocateMemory(allocated_memory); 2583 } 2584 2585 return m_can_jit == eCanJITYes; 2586 } 2587 2588 void Process::SetCanJIT(bool can_jit) { 2589 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2590 } 2591 2592 void Process::SetCanRunCode(bool can_run_code) { 2593 SetCanJIT(can_run_code); 2594 m_can_interpret_function_calls = can_run_code; 2595 } 2596 2597 Error Process::DeallocateMemory(addr_t ptr) { 2598 Error error; 2599 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2600 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2601 error.SetErrorStringWithFormat( 2602 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2603 } 2604 #else 2605 error = DoDeallocateMemory(ptr); 2606 2607 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2608 if (log) 2609 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 2610 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2611 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2612 m_mod_id.GetMemoryID()); 2613 #endif 2614 return error; 2615 } 2616 2617 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2618 lldb::addr_t header_addr, 2619 size_t size_to_read) { 2620 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2621 if (log) { 2622 log->Printf("Process::ReadModuleFromMemory reading %s binary from memory", 2623 file_spec.GetPath().c_str()); 2624 } 2625 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2626 if (module_sp) { 2627 Error error; 2628 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2629 shared_from_this(), header_addr, error, size_to_read); 2630 if (objfile) 2631 return module_sp; 2632 } 2633 return ModuleSP(); 2634 } 2635 2636 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2637 uint32_t &permissions) { 2638 MemoryRegionInfo range_info; 2639 permissions = 0; 2640 Error error(GetMemoryRegionInfo(load_addr, range_info)); 2641 if (!error.Success()) 2642 return false; 2643 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2644 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2645 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2646 return false; 2647 } 2648 2649 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2650 permissions |= lldb::ePermissionsReadable; 2651 2652 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2653 permissions |= lldb::ePermissionsWritable; 2654 2655 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2656 permissions |= lldb::ePermissionsExecutable; 2657 2658 return true; 2659 } 2660 2661 Error Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2662 Error error; 2663 error.SetErrorString("watchpoints are not supported"); 2664 return error; 2665 } 2666 2667 Error Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2668 Error error; 2669 error.SetErrorString("watchpoints are not supported"); 2670 return error; 2671 } 2672 2673 StateType 2674 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2675 const Timeout<std::micro> &timeout) { 2676 StateType state; 2677 // Now wait for the process to launch and return control to us, and then 2678 // call DidLaunch: 2679 while (true) { 2680 event_sp.reset(); 2681 state = GetStateChangedEventsPrivate(event_sp, timeout); 2682 2683 if (StateIsStoppedState(state, false)) 2684 break; 2685 2686 // If state is invalid, then we timed out 2687 if (state == eStateInvalid) 2688 break; 2689 2690 if (event_sp) 2691 HandlePrivateEvent(event_sp); 2692 } 2693 return state; 2694 } 2695 2696 void Process::LoadOperatingSystemPlugin(bool flush) { 2697 if (flush) 2698 m_thread_list.Clear(); 2699 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2700 if (flush) 2701 Flush(); 2702 } 2703 2704 Error Process::Launch(ProcessLaunchInfo &launch_info) { 2705 Error error; 2706 m_abi_sp.reset(); 2707 m_dyld_ap.reset(); 2708 m_jit_loaders_ap.reset(); 2709 m_system_runtime_ap.reset(); 2710 m_os_ap.reset(); 2711 m_process_input_reader.reset(); 2712 m_stop_info_override_callback = nullptr; 2713 2714 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2715 if (exe_module) { 2716 char local_exec_file_path[PATH_MAX]; 2717 char platform_exec_file_path[PATH_MAX]; 2718 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2719 sizeof(local_exec_file_path)); 2720 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2721 sizeof(platform_exec_file_path)); 2722 if (exe_module->GetFileSpec().Exists()) { 2723 // Install anything that might need to be installed prior to launching. 2724 // For host systems, this will do nothing, but if we are connected to a 2725 // remote platform it will install any needed binaries 2726 error = GetTarget().Install(&launch_info); 2727 if (error.Fail()) 2728 return error; 2729 2730 if (PrivateStateThreadIsValid()) 2731 PausePrivateStateThread(); 2732 2733 error = WillLaunch(exe_module); 2734 if (error.Success()) { 2735 const bool restarted = false; 2736 SetPublicState(eStateLaunching, restarted); 2737 m_should_detach = false; 2738 2739 if (m_public_run_lock.TrySetRunning()) { 2740 // Now launch using these arguments. 2741 error = DoLaunch(exe_module, launch_info); 2742 } else { 2743 // This shouldn't happen 2744 error.SetErrorString("failed to acquire process run lock"); 2745 } 2746 2747 if (error.Fail()) { 2748 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2749 SetID(LLDB_INVALID_PROCESS_ID); 2750 const char *error_string = error.AsCString(); 2751 if (error_string == nullptr) 2752 error_string = "launch failed"; 2753 SetExitStatus(-1, error_string); 2754 } 2755 } else { 2756 EventSP event_sp; 2757 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2758 2759 if (state == eStateInvalid || !event_sp) { 2760 // We were able to launch the process, but we failed to 2761 // catch the initial stop. 2762 error.SetErrorString("failed to catch stop after launch"); 2763 SetExitStatus(0, "failed to catch stop after launch"); 2764 Destroy(false); 2765 } else if (state == eStateStopped || state == eStateCrashed) { 2766 DidLaunch(); 2767 2768 DynamicLoader *dyld = GetDynamicLoader(); 2769 if (dyld) 2770 dyld->DidLaunch(); 2771 2772 GetJITLoaders().DidLaunch(); 2773 2774 SystemRuntime *system_runtime = GetSystemRuntime(); 2775 if (system_runtime) 2776 system_runtime->DidLaunch(); 2777 2778 if (!m_os_ap) 2779 LoadOperatingSystemPlugin(false); 2780 2781 // We successfully launched the process and stopped, 2782 // now it the right time to set up signal filters before resuming. 2783 UpdateAutomaticSignalFiltering(); 2784 2785 // Note, the stop event was consumed above, but not handled. This 2786 // was done 2787 // to give DidLaunch a chance to run. The target is either stopped 2788 // or crashed. 2789 // Directly set the state. This is done to prevent a stop message 2790 // with a bunch 2791 // of spurious output on thread status, as well as not pop a 2792 // ProcessIOHandler. 2793 SetPublicState(state, false); 2794 2795 if (PrivateStateThreadIsValid()) 2796 ResumePrivateStateThread(); 2797 else 2798 StartPrivateStateThread(); 2799 2800 m_stop_info_override_callback = 2801 GetTarget().GetArchitecture().GetStopInfoOverrideCallback(); 2802 2803 // Target was stopped at entry as was intended. Need to notify the 2804 // listeners 2805 // about it. 2806 if (state == eStateStopped && 2807 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2808 HandlePrivateEvent(event_sp); 2809 } else if (state == eStateExited) { 2810 // We exited while trying to launch somehow. Don't call DidLaunch 2811 // as that's 2812 // not likely to work, and return an invalid pid. 2813 HandlePrivateEvent(event_sp); 2814 } 2815 } 2816 } 2817 } else { 2818 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2819 local_exec_file_path); 2820 } 2821 } 2822 return error; 2823 } 2824 2825 Error Process::LoadCore() { 2826 Error error = DoLoadCore(); 2827 if (error.Success()) { 2828 ListenerSP listener_sp( 2829 Listener::MakeListener("lldb.process.load_core_listener")); 2830 HijackProcessEvents(listener_sp); 2831 2832 if (PrivateStateThreadIsValid()) 2833 ResumePrivateStateThread(); 2834 else 2835 StartPrivateStateThread(); 2836 2837 DynamicLoader *dyld = GetDynamicLoader(); 2838 if (dyld) 2839 dyld->DidAttach(); 2840 2841 GetJITLoaders().DidAttach(); 2842 2843 SystemRuntime *system_runtime = GetSystemRuntime(); 2844 if (system_runtime) 2845 system_runtime->DidAttach(); 2846 2847 if (!m_os_ap) 2848 LoadOperatingSystemPlugin(false); 2849 2850 // We successfully loaded a core file, now pretend we stopped so we can 2851 // show all of the threads in the core file and explore the crashed 2852 // state. 2853 SetPrivateState(eStateStopped); 2854 2855 // Wait indefinitely for a stopped event since we just posted one above... 2856 lldb::EventSP event_sp; 2857 listener_sp->GetEvent(event_sp, llvm::None); 2858 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2859 2860 if (!StateIsStoppedState(state, false)) { 2861 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2862 if (log) 2863 log->Printf("Process::Halt() failed to stop, state is: %s", 2864 StateAsCString(state)); 2865 error.SetErrorString( 2866 "Did not get stopped event after loading the core file."); 2867 } 2868 RestoreProcessEvents(); 2869 } 2870 return error; 2871 } 2872 2873 DynamicLoader *Process::GetDynamicLoader() { 2874 if (!m_dyld_ap) 2875 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 2876 return m_dyld_ap.get(); 2877 } 2878 2879 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); } 2880 2881 JITLoaderList &Process::GetJITLoaders() { 2882 if (!m_jit_loaders_ap) { 2883 m_jit_loaders_ap.reset(new JITLoaderList()); 2884 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 2885 } 2886 return *m_jit_loaders_ap; 2887 } 2888 2889 SystemRuntime *Process::GetSystemRuntime() { 2890 if (!m_system_runtime_ap) 2891 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 2892 return m_system_runtime_ap.get(); 2893 } 2894 2895 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2896 uint32_t exec_count) 2897 : NextEventAction(process), m_exec_count(exec_count) { 2898 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2899 if (log) 2900 log->Printf( 2901 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2902 __FUNCTION__, static_cast<void *>(process), exec_count); 2903 } 2904 2905 Process::NextEventAction::EventActionResult 2906 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2907 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2908 2909 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2910 if (log) 2911 log->Printf( 2912 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2913 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2914 2915 switch (state) { 2916 case eStateAttaching: 2917 return eEventActionSuccess; 2918 2919 case eStateRunning: 2920 case eStateConnected: 2921 return eEventActionRetry; 2922 2923 case eStateStopped: 2924 case eStateCrashed: 2925 // During attach, prior to sending the eStateStopped event, 2926 // lldb_private::Process subclasses must set the new process ID. 2927 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2928 // We don't want these events to be reported, so go set the ShouldReportStop 2929 // here: 2930 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2931 2932 if (m_exec_count > 0) { 2933 --m_exec_count; 2934 2935 if (log) 2936 log->Printf("Process::AttachCompletionHandler::%s state %s: reduced " 2937 "remaining exec count to %" PRIu32 ", requesting resume", 2938 __FUNCTION__, StateAsCString(state), m_exec_count); 2939 2940 RequestResume(); 2941 return eEventActionRetry; 2942 } else { 2943 if (log) 2944 log->Printf("Process::AttachCompletionHandler::%s state %s: no more " 2945 "execs expected to start, continuing with attach", 2946 __FUNCTION__, StateAsCString(state)); 2947 2948 m_process->CompleteAttach(); 2949 return eEventActionSuccess; 2950 } 2951 break; 2952 2953 default: 2954 case eStateExited: 2955 case eStateInvalid: 2956 break; 2957 } 2958 2959 m_exit_string.assign("No valid Process"); 2960 return eEventActionExit; 2961 } 2962 2963 Process::NextEventAction::EventActionResult 2964 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2965 return eEventActionSuccess; 2966 } 2967 2968 const char *Process::AttachCompletionHandler::GetExitString() { 2969 return m_exit_string.c_str(); 2970 } 2971 2972 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2973 if (m_listener_sp) 2974 return m_listener_sp; 2975 else 2976 return debugger.GetListener(); 2977 } 2978 2979 Error Process::Attach(ProcessAttachInfo &attach_info) { 2980 m_abi_sp.reset(); 2981 m_process_input_reader.reset(); 2982 m_dyld_ap.reset(); 2983 m_jit_loaders_ap.reset(); 2984 m_system_runtime_ap.reset(); 2985 m_os_ap.reset(); 2986 m_stop_info_override_callback = nullptr; 2987 2988 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2989 Error error; 2990 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2991 char process_name[PATH_MAX]; 2992 2993 if (attach_info.GetExecutableFile().GetPath(process_name, 2994 sizeof(process_name))) { 2995 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2996 2997 if (wait_for_launch) { 2998 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2999 if (error.Success()) { 3000 if (m_public_run_lock.TrySetRunning()) { 3001 m_should_detach = true; 3002 const bool restarted = false; 3003 SetPublicState(eStateAttaching, restarted); 3004 // Now attach using these arguments. 3005 error = DoAttachToProcessWithName(process_name, attach_info); 3006 } else { 3007 // This shouldn't happen 3008 error.SetErrorString("failed to acquire process run lock"); 3009 } 3010 3011 if (error.Fail()) { 3012 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3013 SetID(LLDB_INVALID_PROCESS_ID); 3014 if (error.AsCString() == nullptr) 3015 error.SetErrorString("attach failed"); 3016 3017 SetExitStatus(-1, error.AsCString()); 3018 } 3019 } else { 3020 SetNextEventAction(new Process::AttachCompletionHandler( 3021 this, attach_info.GetResumeCount())); 3022 StartPrivateStateThread(); 3023 } 3024 return error; 3025 } 3026 } else { 3027 ProcessInstanceInfoList process_infos; 3028 PlatformSP platform_sp(GetTarget().GetPlatform()); 3029 3030 if (platform_sp) { 3031 ProcessInstanceInfoMatch match_info; 3032 match_info.GetProcessInfo() = attach_info; 3033 match_info.SetNameMatchType(NameMatch::Equals); 3034 platform_sp->FindProcesses(match_info, process_infos); 3035 const uint32_t num_matches = process_infos.GetSize(); 3036 if (num_matches == 1) { 3037 attach_pid = process_infos.GetProcessIDAtIndex(0); 3038 // Fall through and attach using the above process ID 3039 } else { 3040 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3041 process_name, sizeof(process_name)); 3042 if (num_matches > 1) { 3043 StreamString s; 3044 ProcessInstanceInfo::DumpTableHeader(s, platform_sp.get(), true, 3045 false); 3046 for (size_t i = 0; i < num_matches; i++) { 3047 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 3048 s, platform_sp.get(), true, false); 3049 } 3050 error.SetErrorStringWithFormat( 3051 "more than one process named %s:\n%s", process_name, 3052 s.GetData()); 3053 } else 3054 error.SetErrorStringWithFormat( 3055 "could not find a process named %s", process_name); 3056 } 3057 } else { 3058 error.SetErrorString( 3059 "invalid platform, can't find processes by name"); 3060 return error; 3061 } 3062 } 3063 } else { 3064 error.SetErrorString("invalid process name"); 3065 } 3066 } 3067 3068 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3069 error = WillAttachToProcessWithID(attach_pid); 3070 if (error.Success()) { 3071 3072 if (m_public_run_lock.TrySetRunning()) { 3073 // Now attach using these arguments. 3074 m_should_detach = true; 3075 const bool restarted = false; 3076 SetPublicState(eStateAttaching, restarted); 3077 error = DoAttachToProcessWithID(attach_pid, attach_info); 3078 } else { 3079 // This shouldn't happen 3080 error.SetErrorString("failed to acquire process run lock"); 3081 } 3082 3083 if (error.Success()) { 3084 SetNextEventAction(new Process::AttachCompletionHandler( 3085 this, attach_info.GetResumeCount())); 3086 StartPrivateStateThread(); 3087 } else { 3088 if (GetID() != LLDB_INVALID_PROCESS_ID) 3089 SetID(LLDB_INVALID_PROCESS_ID); 3090 3091 const char *error_string = error.AsCString(); 3092 if (error_string == nullptr) 3093 error_string = "attach failed"; 3094 3095 SetExitStatus(-1, error_string); 3096 } 3097 } 3098 } 3099 return error; 3100 } 3101 3102 void Process::CompleteAttach() { 3103 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3104 LIBLLDB_LOG_TARGET)); 3105 if (log) 3106 log->Printf("Process::%s()", __FUNCTION__); 3107 3108 // Let the process subclass figure out at much as it can about the process 3109 // before we go looking for a dynamic loader plug-in. 3110 ArchSpec process_arch; 3111 DidAttach(process_arch); 3112 3113 if (process_arch.IsValid()) { 3114 GetTarget().SetArchitecture(process_arch); 3115 if (log) { 3116 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 3117 log->Printf("Process::%s replacing process architecture with DidAttach() " 3118 "architecture: %s", 3119 __FUNCTION__, triple_str ? triple_str : "<null>"); 3120 } 3121 } 3122 3123 // We just attached. If we have a platform, ask it for the process 3124 // architecture, and if it isn't 3125 // the same as the one we've already set, switch architectures. 3126 PlatformSP platform_sp(GetTarget().GetPlatform()); 3127 assert(platform_sp); 3128 if (platform_sp) { 3129 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3130 if (target_arch.IsValid() && 3131 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3132 ArchSpec platform_arch; 3133 platform_sp = 3134 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3135 if (platform_sp) { 3136 GetTarget().SetPlatform(platform_sp); 3137 GetTarget().SetArchitecture(platform_arch); 3138 if (log) 3139 log->Printf("Process::%s switching platform to %s and architecture " 3140 "to %s based on info from attach", 3141 __FUNCTION__, platform_sp->GetName().AsCString(""), 3142 platform_arch.GetTriple().getTriple().c_str()); 3143 } 3144 } else if (!process_arch.IsValid()) { 3145 ProcessInstanceInfo process_info; 3146 GetProcessInfo(process_info); 3147 const ArchSpec &process_arch = process_info.GetArchitecture(); 3148 if (process_arch.IsValid() && 3149 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3150 GetTarget().SetArchitecture(process_arch); 3151 if (log) 3152 log->Printf("Process::%s switching architecture to %s based on info " 3153 "the platform retrieved for pid %" PRIu64, 3154 __FUNCTION__, 3155 process_arch.GetTriple().getTriple().c_str(), GetID()); 3156 } 3157 } 3158 } 3159 3160 // We have completed the attach, now it is time to find the dynamic loader 3161 // plug-in 3162 DynamicLoader *dyld = GetDynamicLoader(); 3163 if (dyld) { 3164 dyld->DidAttach(); 3165 if (log) { 3166 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3167 log->Printf("Process::%s after DynamicLoader::DidAttach(), target " 3168 "executable is %s (using %s plugin)", 3169 __FUNCTION__, 3170 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3171 : "<none>", 3172 dyld->GetPluginName().AsCString("<unnamed>")); 3173 } 3174 } 3175 3176 GetJITLoaders().DidAttach(); 3177 3178 SystemRuntime *system_runtime = GetSystemRuntime(); 3179 if (system_runtime) { 3180 system_runtime->DidAttach(); 3181 if (log) { 3182 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3183 log->Printf("Process::%s after SystemRuntime::DidAttach(), target " 3184 "executable is %s (using %s plugin)", 3185 __FUNCTION__, 3186 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3187 : "<none>", 3188 system_runtime->GetPluginName().AsCString("<unnamed>")); 3189 } 3190 } 3191 3192 if (!m_os_ap) 3193 LoadOperatingSystemPlugin(false); 3194 // Figure out which one is the executable, and set that in our target: 3195 const ModuleList &target_modules = GetTarget().GetImages(); 3196 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3197 size_t num_modules = target_modules.GetSize(); 3198 ModuleSP new_executable_module_sp; 3199 3200 for (size_t i = 0; i < num_modules; i++) { 3201 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3202 if (module_sp && module_sp->IsExecutable()) { 3203 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3204 new_executable_module_sp = module_sp; 3205 break; 3206 } 3207 } 3208 if (new_executable_module_sp) { 3209 GetTarget().SetExecutableModule(new_executable_module_sp, false); 3210 if (log) { 3211 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3212 log->Printf( 3213 "Process::%s after looping through modules, target executable is %s", 3214 __FUNCTION__, 3215 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3216 : "<none>"); 3217 } 3218 } 3219 3220 m_stop_info_override_callback = process_arch.GetStopInfoOverrideCallback(); 3221 } 3222 3223 Error Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3224 m_abi_sp.reset(); 3225 m_process_input_reader.reset(); 3226 3227 // Find the process and its architecture. Make sure it matches the 3228 // architecture of the current Target, and if not adjust it. 3229 3230 Error error(DoConnectRemote(strm, remote_url)); 3231 if (error.Success()) { 3232 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3233 EventSP event_sp; 3234 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3235 3236 if (state == eStateStopped || state == eStateCrashed) { 3237 // If we attached and actually have a process on the other end, then 3238 // this ended up being the equivalent of an attach. 3239 CompleteAttach(); 3240 3241 // This delays passing the stopped event to listeners till 3242 // CompleteAttach gets a chance to complete... 3243 HandlePrivateEvent(event_sp); 3244 } 3245 } 3246 3247 if (PrivateStateThreadIsValid()) 3248 ResumePrivateStateThread(); 3249 else 3250 StartPrivateStateThread(); 3251 } 3252 return error; 3253 } 3254 3255 Error Process::PrivateResume() { 3256 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3257 LIBLLDB_LOG_STEP)); 3258 if (log) 3259 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s " 3260 "private state: %s", 3261 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3262 StateAsCString(m_private_state.GetValue())); 3263 3264 // If signals handing status changed we might want to update 3265 // our signal filters before resuming. 3266 UpdateAutomaticSignalFiltering(); 3267 3268 Error error(WillResume()); 3269 // Tell the process it is about to resume before the thread list 3270 if (error.Success()) { 3271 // Now let the thread list know we are about to resume so it 3272 // can let all of our threads know that they are about to be 3273 // resumed. Threads will each be called with 3274 // Thread::WillResume(StateType) where StateType contains the state 3275 // that they are supposed to have when the process is resumed 3276 // (suspended/running/stepping). Threads should also check 3277 // their resume signal in lldb::Thread::GetResumeSignal() 3278 // to see if they are supposed to start back up with a signal. 3279 if (m_thread_list.WillResume()) { 3280 // Last thing, do the PreResumeActions. 3281 if (!RunPreResumeActions()) { 3282 error.SetErrorStringWithFormat( 3283 "Process::PrivateResume PreResumeActions failed, not resuming."); 3284 } else { 3285 m_mod_id.BumpResumeID(); 3286 error = DoResume(); 3287 if (error.Success()) { 3288 DidResume(); 3289 m_thread_list.DidResume(); 3290 if (log) 3291 log->Printf("Process thinks the process has resumed."); 3292 } 3293 } 3294 } else { 3295 // Somebody wanted to run without running (e.g. we were faking a step from 3296 // one frame of a set of inlined 3297 // frames that share the same PC to another.) So generate a continue & a 3298 // stopped event, 3299 // and let the world handle them. 3300 if (log) 3301 log->Printf( 3302 "Process::PrivateResume() asked to simulate a start & stop."); 3303 3304 SetPrivateState(eStateRunning); 3305 SetPrivateState(eStateStopped); 3306 } 3307 } else if (log) 3308 log->Printf("Process::PrivateResume() got an error \"%s\".", 3309 error.AsCString("<unknown error>")); 3310 return error; 3311 } 3312 3313 Error Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3314 if (!StateIsRunningState(m_public_state.GetValue())) 3315 return Error("Process is not running."); 3316 3317 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if 3318 // in case it was already set and some thread plan logic calls halt on its 3319 // own. 3320 m_clear_thread_plans_on_stop |= clear_thread_plans; 3321 3322 ListenerSP halt_listener_sp( 3323 Listener::MakeListener("lldb.process.halt_listener")); 3324 HijackProcessEvents(halt_listener_sp); 3325 3326 EventSP event_sp; 3327 3328 SendAsyncInterrupt(); 3329 3330 if (m_public_state.GetValue() == eStateAttaching) { 3331 // Don't hijack and eat the eStateExited as the code that was doing 3332 // the attach will be waiting for this event... 3333 RestoreProcessEvents(); 3334 SetExitStatus(SIGKILL, "Cancelled async attach."); 3335 Destroy(false); 3336 return Error(); 3337 } 3338 3339 // Wait for 10 second for the process to stop. 3340 StateType state = WaitForProcessToStop( 3341 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3342 RestoreProcessEvents(); 3343 3344 if (state == eStateInvalid || !event_sp) { 3345 // We timed out and didn't get a stop event... 3346 return Error("Halt timed out. State = %s", StateAsCString(GetState())); 3347 } 3348 3349 BroadcastEvent(event_sp); 3350 3351 return Error(); 3352 } 3353 3354 Error Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3355 Error error; 3356 3357 // Check both the public & private states here. If we're hung evaluating an 3358 // expression, for instance, then 3359 // the public state will be stopped, but we still need to interrupt. 3360 if (m_public_state.GetValue() == eStateRunning || 3361 m_private_state.GetValue() == eStateRunning) { 3362 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3363 if (log) 3364 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3365 3366 ListenerSP listener_sp( 3367 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3368 HijackProcessEvents(listener_sp); 3369 3370 SendAsyncInterrupt(); 3371 3372 // Consume the interrupt event. 3373 StateType state = 3374 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3375 3376 RestoreProcessEvents(); 3377 3378 // If the process exited while we were waiting for it to stop, put the 3379 // exited event into 3380 // the shared pointer passed in and return. Our caller doesn't need to do 3381 // anything else, since 3382 // they don't have a process anymore... 3383 3384 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3385 if (log) 3386 log->Printf("Process::%s() Process exited while waiting to stop.", 3387 __FUNCTION__); 3388 return error; 3389 } else 3390 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3391 3392 if (state != eStateStopped) { 3393 if (log) 3394 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, 3395 StateAsCString(state)); 3396 // If we really couldn't stop the process then we should just error out 3397 // here, but if the 3398 // lower levels just bobbled sending the event and we really are stopped, 3399 // then continue on. 3400 StateType private_state = m_private_state.GetValue(); 3401 if (private_state != eStateStopped) { 3402 return Error("Attempt to stop the target in order to detach timed out. " 3403 "State = %s", 3404 StateAsCString(GetState())); 3405 } 3406 } 3407 } 3408 return error; 3409 } 3410 3411 Error Process::Detach(bool keep_stopped) { 3412 EventSP exit_event_sp; 3413 Error error; 3414 m_destroy_in_process = true; 3415 3416 error = WillDetach(); 3417 3418 if (error.Success()) { 3419 if (DetachRequiresHalt()) { 3420 error = StopForDestroyOrDetach(exit_event_sp); 3421 if (!error.Success()) { 3422 m_destroy_in_process = false; 3423 return error; 3424 } else if (exit_event_sp) { 3425 // We shouldn't need to do anything else here. There's no process left 3426 // to detach from... 3427 StopPrivateStateThread(); 3428 m_destroy_in_process = false; 3429 return error; 3430 } 3431 } 3432 3433 m_thread_list.DiscardThreadPlans(); 3434 DisableAllBreakpointSites(); 3435 3436 error = DoDetach(keep_stopped); 3437 if (error.Success()) { 3438 DidDetach(); 3439 StopPrivateStateThread(); 3440 } else { 3441 return error; 3442 } 3443 } 3444 m_destroy_in_process = false; 3445 3446 // If we exited when we were waiting for a process to stop, then 3447 // forward the event here so we don't lose the event 3448 if (exit_event_sp) { 3449 // Directly broadcast our exited event because we shut down our 3450 // private state thread above 3451 BroadcastEvent(exit_event_sp); 3452 } 3453 3454 // If we have been interrupted (to kill us) in the middle of running, we may 3455 // not end up propagating 3456 // the last events through the event system, in which case we might strand the 3457 // write lock. Unlock 3458 // it here so when we do to tear down the process we don't get an error 3459 // destroying the lock. 3460 3461 m_public_run_lock.SetStopped(); 3462 return error; 3463 } 3464 3465 Error Process::Destroy(bool force_kill) { 3466 3467 // Tell ourselves we are in the process of destroying the process, so that we 3468 // don't do any unnecessary work 3469 // that might hinder the destruction. Remember to set this back to false when 3470 // we are done. That way if the attempt 3471 // failed and the process stays around for some reason it won't be in a 3472 // confused state. 3473 3474 if (force_kill) 3475 m_should_detach = false; 3476 3477 if (GetShouldDetach()) { 3478 // FIXME: This will have to be a process setting: 3479 bool keep_stopped = false; 3480 Detach(keep_stopped); 3481 } 3482 3483 m_destroy_in_process = true; 3484 3485 Error error(WillDestroy()); 3486 if (error.Success()) { 3487 EventSP exit_event_sp; 3488 if (DestroyRequiresHalt()) { 3489 error = StopForDestroyOrDetach(exit_event_sp); 3490 } 3491 3492 if (m_public_state.GetValue() != eStateRunning) { 3493 // Ditch all thread plans, and remove all our breakpoints: in case we have 3494 // to restart the target to 3495 // kill it, we don't want it hitting a breakpoint... 3496 // Only do this if we've stopped, however, since if we didn't manage to 3497 // halt it above, then 3498 // we're not going to have much luck doing this now. 3499 m_thread_list.DiscardThreadPlans(); 3500 DisableAllBreakpointSites(); 3501 } 3502 3503 error = DoDestroy(); 3504 if (error.Success()) { 3505 DidDestroy(); 3506 StopPrivateStateThread(); 3507 } 3508 m_stdio_communication.Disconnect(); 3509 m_stdio_communication.StopReadThread(); 3510 m_stdin_forward = false; 3511 3512 if (m_process_input_reader) { 3513 m_process_input_reader->SetIsDone(true); 3514 m_process_input_reader->Cancel(); 3515 m_process_input_reader.reset(); 3516 } 3517 3518 // If we exited when we were waiting for a process to stop, then 3519 // forward the event here so we don't lose the event 3520 if (exit_event_sp) { 3521 // Directly broadcast our exited event because we shut down our 3522 // private state thread above 3523 BroadcastEvent(exit_event_sp); 3524 } 3525 3526 // If we have been interrupted (to kill us) in the middle of running, we may 3527 // not end up propagating 3528 // the last events through the event system, in which case we might strand 3529 // the write lock. Unlock 3530 // it here so when we do to tear down the process we don't get an error 3531 // destroying the lock. 3532 m_public_run_lock.SetStopped(); 3533 } 3534 3535 m_destroy_in_process = false; 3536 3537 return error; 3538 } 3539 3540 Error Process::Signal(int signal) { 3541 Error error(WillSignal()); 3542 if (error.Success()) { 3543 error = DoSignal(signal); 3544 if (error.Success()) 3545 DidSignal(); 3546 } 3547 return error; 3548 } 3549 3550 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3551 assert(signals_sp && "null signals_sp"); 3552 m_unix_signals_sp = signals_sp; 3553 } 3554 3555 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3556 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3557 return m_unix_signals_sp; 3558 } 3559 3560 lldb::ByteOrder Process::GetByteOrder() const { 3561 return GetTarget().GetArchitecture().GetByteOrder(); 3562 } 3563 3564 uint32_t Process::GetAddressByteSize() const { 3565 return GetTarget().GetArchitecture().GetAddressByteSize(); 3566 } 3567 3568 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3569 const StateType state = 3570 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3571 bool return_value = true; 3572 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3573 LIBLLDB_LOG_PROCESS)); 3574 3575 switch (state) { 3576 case eStateDetached: 3577 case eStateExited: 3578 case eStateUnloaded: 3579 m_stdio_communication.SynchronizeWithReadThread(); 3580 m_stdio_communication.Disconnect(); 3581 m_stdio_communication.StopReadThread(); 3582 m_stdin_forward = false; 3583 3584 LLVM_FALLTHROUGH; 3585 case eStateConnected: 3586 case eStateAttaching: 3587 case eStateLaunching: 3588 // These events indicate changes in the state of the debugging session, 3589 // always report them. 3590 return_value = true; 3591 break; 3592 case eStateInvalid: 3593 // We stopped for no apparent reason, don't report it. 3594 return_value = false; 3595 break; 3596 case eStateRunning: 3597 case eStateStepping: 3598 // If we've started the target running, we handle the cases where we 3599 // are already running and where there is a transition from stopped to 3600 // running differently. 3601 // running -> running: Automatically suppress extra running events 3602 // stopped -> running: Report except when there is one or more no votes 3603 // and no yes votes. 3604 SynchronouslyNotifyStateChanged(state); 3605 if (m_force_next_event_delivery) 3606 return_value = true; 3607 else { 3608 switch (m_last_broadcast_state) { 3609 case eStateRunning: 3610 case eStateStepping: 3611 // We always suppress multiple runnings with no PUBLIC stop in between. 3612 return_value = false; 3613 break; 3614 default: 3615 // TODO: make this work correctly. For now always report 3616 // run if we aren't running so we don't miss any running 3617 // events. If I run the lldb/test/thread/a.out file and 3618 // break at main.cpp:58, run and hit the breakpoints on 3619 // multiple threads, then somehow during the stepping over 3620 // of all breakpoints no run gets reported. 3621 3622 // This is a transition from stop to run. 3623 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3624 case eVoteYes: 3625 case eVoteNoOpinion: 3626 return_value = true; 3627 break; 3628 case eVoteNo: 3629 return_value = false; 3630 break; 3631 } 3632 break; 3633 } 3634 } 3635 break; 3636 case eStateStopped: 3637 case eStateCrashed: 3638 case eStateSuspended: 3639 // We've stopped. First see if we're going to restart the target. 3640 // If we are going to stop, then we always broadcast the event. 3641 // If we aren't going to stop, let the thread plans decide if we're going to 3642 // report this event. 3643 // If no thread has an opinion, we don't report it. 3644 3645 m_stdio_communication.SynchronizeWithReadThread(); 3646 RefreshStateAfterStop(); 3647 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3648 if (log) 3649 log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an " 3650 "interrupt, state: %s", 3651 static_cast<void *>(event_ptr), StateAsCString(state)); 3652 // Even though we know we are going to stop, we should let the threads 3653 // have a look at the stop, 3654 // so they can properly set their state. 3655 m_thread_list.ShouldStop(event_ptr); 3656 return_value = true; 3657 } else { 3658 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3659 bool should_resume = false; 3660 3661 // It makes no sense to ask "ShouldStop" if we've already been 3662 // restarted... 3663 // Asking the thread list is also not likely to go well, since we are 3664 // running again. 3665 // So in that case just report the event. 3666 3667 if (!was_restarted) 3668 should_resume = !m_thread_list.ShouldStop(event_ptr); 3669 3670 if (was_restarted || should_resume || m_resume_requested) { 3671 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3672 if (log) 3673 log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: " 3674 "%s was_restarted: %i stop_vote: %d.", 3675 should_resume, StateAsCString(state), was_restarted, 3676 stop_vote); 3677 3678 switch (stop_vote) { 3679 case eVoteYes: 3680 return_value = true; 3681 break; 3682 case eVoteNoOpinion: 3683 case eVoteNo: 3684 return_value = false; 3685 break; 3686 } 3687 3688 if (!was_restarted) { 3689 if (log) 3690 log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process " 3691 "from state: %s", 3692 static_cast<void *>(event_ptr), StateAsCString(state)); 3693 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3694 PrivateResume(); 3695 } 3696 } else { 3697 return_value = true; 3698 SynchronouslyNotifyStateChanged(state); 3699 } 3700 } 3701 break; 3702 } 3703 3704 // Forcing the next event delivery is a one shot deal. So reset it here. 3705 m_force_next_event_delivery = false; 3706 3707 // We do some coalescing of events (for instance two consecutive running 3708 // events get coalesced.) 3709 // But we only coalesce against events we actually broadcast. So we use 3710 // m_last_broadcast_state 3711 // to track that. NB - you can't use "m_public_state.GetValue()" for that 3712 // purpose, as was originally done, 3713 // because the PublicState reflects the last event pulled off the queue, and 3714 // there may be several 3715 // events stacked up on the queue unserviced. So the PublicState may not 3716 // reflect the last broadcasted event 3717 // yet. m_last_broadcast_state gets updated here. 3718 3719 if (return_value) 3720 m_last_broadcast_state = state; 3721 3722 if (log) 3723 log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3724 "broadcast state: %s - %s", 3725 static_cast<void *>(event_ptr), StateAsCString(state), 3726 StateAsCString(m_last_broadcast_state), 3727 return_value ? "YES" : "NO"); 3728 return return_value; 3729 } 3730 3731 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3732 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3733 3734 bool already_running = PrivateStateThreadIsValid(); 3735 if (log) 3736 log->Printf("Process::%s()%s ", __FUNCTION__, 3737 already_running ? " already running" 3738 : " starting private state thread"); 3739 3740 if (!is_secondary_thread && already_running) 3741 return true; 3742 3743 // Create a thread that watches our internal state and controls which 3744 // events make it to clients (into the DCProcess event queue). 3745 char thread_name[1024]; 3746 uint32_t max_len = llvm::get_max_thread_name_length(); 3747 if (max_len > 0 && max_len <= 30) { 3748 // On platforms with abbreviated thread name lengths, choose thread names 3749 // that fit within the limit. 3750 if (already_running) 3751 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3752 else 3753 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3754 } else { 3755 if (already_running) 3756 snprintf(thread_name, sizeof(thread_name), 3757 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3758 GetID()); 3759 else 3760 snprintf(thread_name, sizeof(thread_name), 3761 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3762 } 3763 3764 // Create the private state thread, and start it running. 3765 PrivateStateThreadArgs *args_ptr = 3766 new PrivateStateThreadArgs(this, is_secondary_thread); 3767 m_private_state_thread = 3768 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3769 (void *)args_ptr, nullptr, 8 * 1024 * 1024); 3770 if (m_private_state_thread.IsJoinable()) { 3771 ResumePrivateStateThread(); 3772 return true; 3773 } else 3774 return false; 3775 } 3776 3777 void Process::PausePrivateStateThread() { 3778 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3779 } 3780 3781 void Process::ResumePrivateStateThread() { 3782 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3783 } 3784 3785 void Process::StopPrivateStateThread() { 3786 if (m_private_state_thread.IsJoinable()) 3787 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3788 else { 3789 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3790 if (log) 3791 log->Printf( 3792 "Went to stop the private state thread, but it was already invalid."); 3793 } 3794 } 3795 3796 void Process::ControlPrivateStateThread(uint32_t signal) { 3797 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3798 3799 assert(signal == eBroadcastInternalStateControlStop || 3800 signal == eBroadcastInternalStateControlPause || 3801 signal == eBroadcastInternalStateControlResume); 3802 3803 if (log) 3804 log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal); 3805 3806 // Signal the private state thread 3807 if (m_private_state_thread.IsJoinable()) { 3808 // Broadcast the event. 3809 // It is important to do this outside of the if below, because 3810 // it's possible that the thread state is invalid but that the 3811 // thread is waiting on a control event instead of simply being 3812 // on its way out (this should not happen, but it apparently can). 3813 if (log) 3814 log->Printf("Sending control event of type: %d.", signal); 3815 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3816 m_private_state_control_broadcaster.BroadcastEvent(signal, 3817 event_receipt_sp); 3818 3819 // Wait for the event receipt or for the private state thread to exit 3820 bool receipt_received = false; 3821 if (PrivateStateThreadIsValid()) { 3822 while (!receipt_received) { 3823 bool timed_out = false; 3824 // Check for a receipt for 2 seconds and then check if the private state 3825 // thread is still around. 3826 receipt_received = event_receipt_sp->WaitForEventReceived( 3827 std::chrono::seconds(2), &timed_out); 3828 if (!receipt_received) { 3829 // Check if the private state thread is still around. If it isn't then 3830 // we are done waiting 3831 if (!PrivateStateThreadIsValid()) 3832 break; // Private state thread exited or is exiting, we are done 3833 } 3834 } 3835 } 3836 3837 if (signal == eBroadcastInternalStateControlStop) { 3838 thread_result_t result = NULL; 3839 m_private_state_thread.Join(&result); 3840 m_private_state_thread.Reset(); 3841 } 3842 } else { 3843 if (log) 3844 log->Printf( 3845 "Private state thread already dead, no need to signal it to stop."); 3846 } 3847 } 3848 3849 void Process::SendAsyncInterrupt() { 3850 if (PrivateStateThreadIsValid()) 3851 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3852 nullptr); 3853 else 3854 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3855 } 3856 3857 void Process::HandlePrivateEvent(EventSP &event_sp) { 3858 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3859 m_resume_requested = false; 3860 3861 const StateType new_state = 3862 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3863 3864 // First check to see if anybody wants a shot at this event: 3865 if (m_next_event_action_ap) { 3866 NextEventAction::EventActionResult action_result = 3867 m_next_event_action_ap->PerformAction(event_sp); 3868 if (log) 3869 log->Printf("Ran next event action, result was %d.", action_result); 3870 3871 switch (action_result) { 3872 case NextEventAction::eEventActionSuccess: 3873 SetNextEventAction(nullptr); 3874 break; 3875 3876 case NextEventAction::eEventActionRetry: 3877 break; 3878 3879 case NextEventAction::eEventActionExit: 3880 // Handle Exiting Here. If we already got an exited event, 3881 // we should just propagate it. Otherwise, swallow this event, 3882 // and set our state to exit so the next event will kill us. 3883 if (new_state != eStateExited) { 3884 // FIXME: should cons up an exited event, and discard this one. 3885 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 3886 SetNextEventAction(nullptr); 3887 return; 3888 } 3889 SetNextEventAction(nullptr); 3890 break; 3891 } 3892 } 3893 3894 // See if we should broadcast this state to external clients? 3895 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3896 3897 if (should_broadcast) { 3898 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3899 if (log) { 3900 log->Printf("Process::%s (pid = %" PRIu64 3901 ") broadcasting new state %s (old state %s) to %s", 3902 __FUNCTION__, GetID(), StateAsCString(new_state), 3903 StateAsCString(GetState()), 3904 is_hijacked ? "hijacked" : "public"); 3905 } 3906 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3907 if (StateIsRunningState(new_state)) { 3908 // Only push the input handler if we aren't fowarding events, 3909 // as this means the curses GUI is in use... 3910 // Or don't push it if we are launching since it will come up stopped. 3911 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3912 new_state != eStateLaunching && new_state != eStateAttaching) { 3913 PushProcessIOHandler(); 3914 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3915 eBroadcastAlways); 3916 if (log) 3917 log->Printf("Process::%s updated m_iohandler_sync to %d", 3918 __FUNCTION__, m_iohandler_sync.GetValue()); 3919 } 3920 } else if (StateIsStoppedState(new_state, false)) { 3921 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3922 // If the lldb_private::Debugger is handling the events, we don't 3923 // want to pop the process IOHandler here, we want to do it when 3924 // we receive the stopped event so we can carefully control when 3925 // the process IOHandler is popped because when we stop we want to 3926 // display some text stating how and why we stopped, then maybe some 3927 // process/thread/frame info, and then we want the "(lldb) " prompt 3928 // to show up. If we pop the process IOHandler here, then we will 3929 // cause the command interpreter to become the top IOHandler after 3930 // the process pops off and it will update its prompt right away... 3931 // See the Debugger.cpp file where it calls the function as 3932 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3933 // Otherwise we end up getting overlapping "(lldb) " prompts and 3934 // garbled output. 3935 // 3936 // If we aren't handling the events in the debugger (which is indicated 3937 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or we 3938 // are hijacked, then we always pop the process IO handler manually. 3939 // Hijacking happens when the internal process state thread is running 3940 // thread plans, or when commands want to run in synchronous mode 3941 // and they call "process->WaitForProcessToStop()". An example of 3942 // something 3943 // that will hijack the events is a simple expression: 3944 // 3945 // (lldb) expr (int)puts("hello") 3946 // 3947 // This will cause the internal process state thread to resume and halt 3948 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3949 // events) and we do need the IO handler to be pushed and popped 3950 // correctly. 3951 3952 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3953 PopProcessIOHandler(); 3954 } 3955 } 3956 3957 BroadcastEvent(event_sp); 3958 } else { 3959 if (log) { 3960 log->Printf( 3961 "Process::%s (pid = %" PRIu64 3962 ") suppressing state %s (old state %s): should_broadcast == false", 3963 __FUNCTION__, GetID(), StateAsCString(new_state), 3964 StateAsCString(GetState())); 3965 } 3966 } 3967 } 3968 3969 Error Process::HaltPrivate() { 3970 EventSP event_sp; 3971 Error error(WillHalt()); 3972 if (error.Fail()) 3973 return error; 3974 3975 // Ask the process subclass to actually halt our process 3976 bool caused_stop; 3977 error = DoHalt(caused_stop); 3978 3979 DidHalt(); 3980 return error; 3981 } 3982 3983 thread_result_t Process::PrivateStateThread(void *arg) { 3984 std::unique_ptr<PrivateStateThreadArgs> args_up( 3985 static_cast<PrivateStateThreadArgs *>(arg)); 3986 thread_result_t result = 3987 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3988 return result; 3989 } 3990 3991 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3992 bool control_only = true; 3993 3994 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3995 if (log) 3996 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3997 __FUNCTION__, static_cast<void *>(this), GetID()); 3998 3999 bool exit_now = false; 4000 bool interrupt_requested = false; 4001 while (!exit_now) { 4002 EventSP event_sp; 4003 GetEventsPrivate(event_sp, llvm::None, control_only); 4004 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 4005 if (log) 4006 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4007 ") got a control event: %d", 4008 __FUNCTION__, static_cast<void *>(this), GetID(), 4009 event_sp->GetType()); 4010 4011 switch (event_sp->GetType()) { 4012 case eBroadcastInternalStateControlStop: 4013 exit_now = true; 4014 break; // doing any internal state management below 4015 4016 case eBroadcastInternalStateControlPause: 4017 control_only = true; 4018 break; 4019 4020 case eBroadcastInternalStateControlResume: 4021 control_only = false; 4022 break; 4023 } 4024 4025 continue; 4026 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4027 if (m_public_state.GetValue() == eStateAttaching) { 4028 if (log) 4029 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4030 ") woke up with an interrupt while attaching - " 4031 "forwarding interrupt.", 4032 __FUNCTION__, static_cast<void *>(this), GetID()); 4033 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4034 } else if (StateIsRunningState(m_last_broadcast_state)) { 4035 if (log) 4036 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4037 ") woke up with an interrupt - Halting.", 4038 __FUNCTION__, static_cast<void *>(this), GetID()); 4039 Error error = HaltPrivate(); 4040 if (error.Fail() && log) 4041 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4042 ") failed to halt the process: %s", 4043 __FUNCTION__, static_cast<void *>(this), GetID(), 4044 error.AsCString()); 4045 // Halt should generate a stopped event. Make a note of the fact that we 4046 // were 4047 // doing the interrupt, so we can set the interrupted flag after we 4048 // receive the 4049 // event. We deliberately set this to true even if HaltPrivate failed, 4050 // so that we 4051 // can interrupt on the next natural stop. 4052 interrupt_requested = true; 4053 } else { 4054 // This can happen when someone (e.g. Process::Halt) sees that we are 4055 // running and 4056 // sends an interrupt request, but the process actually stops before we 4057 // receive 4058 // it. In that case, we can just ignore the request. We use 4059 // m_last_broadcast_state, because the Stopped event may not have been 4060 // popped of 4061 // the event queue yet, which is when the public state gets updated. 4062 if (log) 4063 log->Printf( 4064 "Process::%s ignoring interrupt as we have already stopped.", 4065 __FUNCTION__); 4066 } 4067 continue; 4068 } 4069 4070 const StateType internal_state = 4071 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4072 4073 if (internal_state != eStateInvalid) { 4074 if (m_clear_thread_plans_on_stop && 4075 StateIsStoppedState(internal_state, true)) { 4076 m_clear_thread_plans_on_stop = false; 4077 m_thread_list.DiscardThreadPlans(); 4078 } 4079 4080 if (interrupt_requested) { 4081 if (StateIsStoppedState(internal_state, true)) { 4082 // We requested the interrupt, so mark this as such in the stop event 4083 // so 4084 // clients can tell an interrupted process from a natural stop 4085 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4086 interrupt_requested = false; 4087 } else if (log) { 4088 log->Printf("Process::%s interrupt_requested, but a non-stopped " 4089 "state '%s' received.", 4090 __FUNCTION__, StateAsCString(internal_state)); 4091 } 4092 } 4093 4094 HandlePrivateEvent(event_sp); 4095 } 4096 4097 if (internal_state == eStateInvalid || internal_state == eStateExited || 4098 internal_state == eStateDetached) { 4099 if (log) 4100 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4101 ") about to exit with internal state %s...", 4102 __FUNCTION__, static_cast<void *>(this), GetID(), 4103 StateAsCString(internal_state)); 4104 4105 break; 4106 } 4107 } 4108 4109 // Verify log is still enabled before attempting to write to it... 4110 if (log) 4111 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4112 __FUNCTION__, static_cast<void *>(this), GetID()); 4113 4114 // If we are a secondary thread, then the primary thread we are working for 4115 // will have already 4116 // acquired the public_run_lock, and isn't done with what it was doing yet, so 4117 // don't 4118 // try to change it on the way out. 4119 if (!is_secondary_thread) 4120 m_public_run_lock.SetStopped(); 4121 return NULL; 4122 } 4123 4124 //------------------------------------------------------------------ 4125 // Process Event Data 4126 //------------------------------------------------------------------ 4127 4128 Process::ProcessEventData::ProcessEventData() 4129 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 4130 m_update_state(0), m_interrupted(false) {} 4131 4132 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4133 StateType state) 4134 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 4135 m_update_state(0), m_interrupted(false) { 4136 if (process_sp) 4137 m_process_wp = process_sp; 4138 } 4139 4140 Process::ProcessEventData::~ProcessEventData() = default; 4141 4142 const ConstString &Process::ProcessEventData::GetFlavorString() { 4143 static ConstString g_flavor("Process::ProcessEventData"); 4144 return g_flavor; 4145 } 4146 4147 const ConstString &Process::ProcessEventData::GetFlavor() const { 4148 return ProcessEventData::GetFlavorString(); 4149 } 4150 4151 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4152 ProcessSP process_sp(m_process_wp.lock()); 4153 4154 if (!process_sp) 4155 return; 4156 4157 // This function gets called twice for each event, once when the event gets 4158 // pulled 4159 // off of the private process event queue, and then any number of times, first 4160 // when it gets pulled off of 4161 // the public event queue, then other times when we're pretending that this is 4162 // where we stopped at the 4163 // end of expression evaluation. m_update_state is used to distinguish these 4164 // three cases; it is 0 when we're just pulling it off for private handling, 4165 // and > 1 for expression evaluation, and we don't want to do the breakpoint 4166 // command handling then. 4167 if (m_update_state != 1) 4168 return; 4169 4170 process_sp->SetPublicState( 4171 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4172 4173 if (m_state == eStateStopped && !m_restarted) { 4174 // Let process subclasses know we are about to do a public stop and 4175 // do anything they might need to in order to speed up register and 4176 // memory accesses. 4177 process_sp->WillPublicStop(); 4178 } 4179 4180 // If this is a halt event, even if the halt stopped with some reason other 4181 // than a plain interrupt (e.g. we had 4182 // already stopped for a breakpoint when the halt request came through) don't 4183 // do the StopInfo actions, as they may 4184 // end up restarting the process. 4185 if (m_interrupted) 4186 return; 4187 4188 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4189 if (m_state == eStateStopped && !m_restarted) { 4190 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4191 uint32_t num_threads = curr_thread_list.GetSize(); 4192 uint32_t idx; 4193 4194 // The actions might change one of the thread's stop_info's opinions about 4195 // whether we should 4196 // stop the process, so we need to query that as we go. 4197 4198 // One other complication here, is that we try to catch any case where the 4199 // target has run (except for expressions) 4200 // and immediately exit, but if we get that wrong (which is possible) then 4201 // the thread list might have changed, and 4202 // that would cause our iteration here to crash. We could make a copy of 4203 // the thread list, but we'd really like 4204 // to also know if it has changed at all, so we make up a vector of the 4205 // thread ID's and check what we get back 4206 // against this list & bag out if anything differs. 4207 std::vector<uint32_t> thread_index_array(num_threads); 4208 for (idx = 0; idx < num_threads; ++idx) 4209 thread_index_array[idx] = 4210 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4211 4212 // Use this to track whether we should continue from here. We will only 4213 // continue the target running if 4214 // no thread says we should stop. Of course if some thread's PerformAction 4215 // actually sets the target running, 4216 // then it doesn't matter what the other threads say... 4217 4218 bool still_should_stop = false; 4219 4220 // Sometimes - for instance if we have a bug in the stub we are talking to, 4221 // we stop but no thread has a 4222 // valid stop reason. In that case we should just stop, because we have no 4223 // way of telling what the right 4224 // thing to do is, and it's better to let the user decide than continue 4225 // behind their backs. 4226 4227 bool does_anybody_have_an_opinion = false; 4228 4229 for (idx = 0; idx < num_threads; ++idx) { 4230 curr_thread_list = process_sp->GetThreadList(); 4231 if (curr_thread_list.GetSize() != num_threads) { 4232 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4233 LIBLLDB_LOG_PROCESS)); 4234 if (log) 4235 log->Printf( 4236 "Number of threads changed from %u to %u while processing event.", 4237 num_threads, curr_thread_list.GetSize()); 4238 break; 4239 } 4240 4241 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4242 4243 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4244 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4245 LIBLLDB_LOG_PROCESS)); 4246 if (log) 4247 log->Printf("The thread at position %u changed from %u to %u while " 4248 "processing event.", 4249 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4250 break; 4251 } 4252 4253 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4254 if (stop_info_sp && stop_info_sp->IsValid()) { 4255 does_anybody_have_an_opinion = true; 4256 bool this_thread_wants_to_stop; 4257 if (stop_info_sp->GetOverrideShouldStop()) { 4258 this_thread_wants_to_stop = 4259 stop_info_sp->GetOverriddenShouldStopValue(); 4260 } else { 4261 stop_info_sp->PerformAction(event_ptr); 4262 // The stop action might restart the target. If it does, then we want 4263 // to mark that in the 4264 // event so that whoever is receiving it will know to wait for the 4265 // running event and reflect 4266 // that state appropriately. 4267 // We also need to stop processing actions, since they aren't 4268 // expecting the target to be running. 4269 4270 // FIXME: we might have run. 4271 if (stop_info_sp->HasTargetRunSinceMe()) { 4272 SetRestarted(true); 4273 break; 4274 } 4275 4276 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4277 } 4278 4279 if (!still_should_stop) 4280 still_should_stop = this_thread_wants_to_stop; 4281 } 4282 } 4283 4284 if (!GetRestarted()) { 4285 if (!still_should_stop && does_anybody_have_an_opinion) { 4286 // We've been asked to continue, so do that here. 4287 SetRestarted(true); 4288 // Use the public resume method here, since this is just 4289 // extending a public resume. 4290 process_sp->PrivateResume(); 4291 } else { 4292 // If we didn't restart, run the Stop Hooks here: 4293 // They might also restart the target, so watch for that. 4294 process_sp->GetTarget().RunStopHooks(); 4295 if (process_sp->GetPrivateState() == eStateRunning) 4296 SetRestarted(true); 4297 } 4298 } 4299 } 4300 } 4301 4302 void Process::ProcessEventData::Dump(Stream *s) const { 4303 ProcessSP process_sp(m_process_wp.lock()); 4304 4305 if (process_sp) 4306 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4307 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4308 else 4309 s->PutCString(" process = NULL, "); 4310 4311 s->Printf("state = %s", StateAsCString(GetState())); 4312 } 4313 4314 const Process::ProcessEventData * 4315 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4316 if (event_ptr) { 4317 const EventData *event_data = event_ptr->GetData(); 4318 if (event_data && 4319 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4320 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4321 } 4322 return nullptr; 4323 } 4324 4325 ProcessSP 4326 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4327 ProcessSP process_sp; 4328 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4329 if (data) 4330 process_sp = data->GetProcessSP(); 4331 return process_sp; 4332 } 4333 4334 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4335 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4336 if (data == nullptr) 4337 return eStateInvalid; 4338 else 4339 return data->GetState(); 4340 } 4341 4342 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4343 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4344 if (data == nullptr) 4345 return false; 4346 else 4347 return data->GetRestarted(); 4348 } 4349 4350 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4351 bool new_value) { 4352 ProcessEventData *data = 4353 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4354 if (data != nullptr) 4355 data->SetRestarted(new_value); 4356 } 4357 4358 size_t 4359 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4360 ProcessEventData *data = 4361 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4362 if (data != nullptr) 4363 return data->GetNumRestartedReasons(); 4364 else 4365 return 0; 4366 } 4367 4368 const char * 4369 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4370 size_t idx) { 4371 ProcessEventData *data = 4372 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4373 if (data != nullptr) 4374 return data->GetRestartedReasonAtIndex(idx); 4375 else 4376 return nullptr; 4377 } 4378 4379 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4380 const char *reason) { 4381 ProcessEventData *data = 4382 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4383 if (data != nullptr) 4384 data->AddRestartedReason(reason); 4385 } 4386 4387 bool Process::ProcessEventData::GetInterruptedFromEvent( 4388 const Event *event_ptr) { 4389 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4390 if (data == nullptr) 4391 return false; 4392 else 4393 return data->GetInterrupted(); 4394 } 4395 4396 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4397 bool new_value) { 4398 ProcessEventData *data = 4399 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4400 if (data != nullptr) 4401 data->SetInterrupted(new_value); 4402 } 4403 4404 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4405 ProcessEventData *data = 4406 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4407 if (data) { 4408 data->SetUpdateStateOnRemoval(); 4409 return true; 4410 } 4411 return false; 4412 } 4413 4414 lldb::TargetSP Process::CalculateTarget() { return m_target_sp.lock(); } 4415 4416 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4417 exe_ctx.SetTargetPtr(&GetTarget()); 4418 exe_ctx.SetProcessPtr(this); 4419 exe_ctx.SetThreadPtr(nullptr); 4420 exe_ctx.SetFramePtr(nullptr); 4421 } 4422 4423 // uint32_t 4424 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4425 // std::vector<lldb::pid_t> &pids) 4426 //{ 4427 // return 0; 4428 //} 4429 // 4430 // ArchSpec 4431 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4432 //{ 4433 // return Host::GetArchSpecForExistingProcess (pid); 4434 //} 4435 // 4436 // ArchSpec 4437 // Process::GetArchSpecForExistingProcess (const char *process_name) 4438 //{ 4439 // return Host::GetArchSpecForExistingProcess (process_name); 4440 //} 4441 4442 void Process::AppendSTDOUT(const char *s, size_t len) { 4443 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4444 m_stdout_data.append(s, len); 4445 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4446 new ProcessEventData(shared_from_this(), GetState())); 4447 } 4448 4449 void Process::AppendSTDERR(const char *s, size_t len) { 4450 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4451 m_stderr_data.append(s, len); 4452 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4453 new ProcessEventData(shared_from_this(), GetState())); 4454 } 4455 4456 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4457 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4458 m_profile_data.push_back(one_profile_data); 4459 BroadcastEventIfUnique(eBroadcastBitProfileData, 4460 new ProcessEventData(shared_from_this(), GetState())); 4461 } 4462 4463 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4464 const StructuredDataPluginSP &plugin_sp) { 4465 BroadcastEvent( 4466 eBroadcastBitStructuredData, 4467 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4468 } 4469 4470 StructuredDataPluginSP 4471 Process::GetStructuredDataPlugin(const ConstString &type_name) const { 4472 auto find_it = m_structured_data_plugin_map.find(type_name); 4473 if (find_it != m_structured_data_plugin_map.end()) 4474 return find_it->second; 4475 else 4476 return StructuredDataPluginSP(); 4477 } 4478 4479 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Error &error) { 4480 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4481 if (m_profile_data.empty()) 4482 return 0; 4483 4484 std::string &one_profile_data = m_profile_data.front(); 4485 size_t bytes_available = one_profile_data.size(); 4486 if (bytes_available > 0) { 4487 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4488 if (log) 4489 log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4490 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4491 if (bytes_available > buf_size) { 4492 memcpy(buf, one_profile_data.c_str(), buf_size); 4493 one_profile_data.erase(0, buf_size); 4494 bytes_available = buf_size; 4495 } else { 4496 memcpy(buf, one_profile_data.c_str(), bytes_available); 4497 m_profile_data.erase(m_profile_data.begin()); 4498 } 4499 } 4500 return bytes_available; 4501 } 4502 4503 //------------------------------------------------------------------ 4504 // Process STDIO 4505 //------------------------------------------------------------------ 4506 4507 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Error &error) { 4508 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4509 size_t bytes_available = m_stdout_data.size(); 4510 if (bytes_available > 0) { 4511 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4512 if (log) 4513 log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4514 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4515 if (bytes_available > buf_size) { 4516 memcpy(buf, m_stdout_data.c_str(), buf_size); 4517 m_stdout_data.erase(0, buf_size); 4518 bytes_available = buf_size; 4519 } else { 4520 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4521 m_stdout_data.clear(); 4522 } 4523 } 4524 return bytes_available; 4525 } 4526 4527 size_t Process::GetSTDERR(char *buf, size_t buf_size, Error &error) { 4528 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4529 size_t bytes_available = m_stderr_data.size(); 4530 if (bytes_available > 0) { 4531 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4532 if (log) 4533 log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4534 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4535 if (bytes_available > buf_size) { 4536 memcpy(buf, m_stderr_data.c_str(), buf_size); 4537 m_stderr_data.erase(0, buf_size); 4538 bytes_available = buf_size; 4539 } else { 4540 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4541 m_stderr_data.clear(); 4542 } 4543 } 4544 return bytes_available; 4545 } 4546 4547 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4548 size_t src_len) { 4549 Process *process = (Process *)baton; 4550 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4551 } 4552 4553 class IOHandlerProcessSTDIO : public IOHandler { 4554 public: 4555 IOHandlerProcessSTDIO(Process *process, int write_fd) 4556 : IOHandler(process->GetTarget().GetDebugger(), 4557 IOHandler::Type::ProcessIO), 4558 m_process(process), m_write_file(write_fd, false) { 4559 m_pipe.CreateNew(false); 4560 m_read_file.SetDescriptor(GetInputFD(), false); 4561 } 4562 4563 ~IOHandlerProcessSTDIO() override = default; 4564 4565 // Each IOHandler gets to run until it is done. It should read data 4566 // from the "in" and place output into "out" and "err and return 4567 // when done. 4568 void Run() override { 4569 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4570 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4571 SetIsDone(true); 4572 return; 4573 } 4574 4575 SetIsDone(false); 4576 const int read_fd = m_read_file.GetDescriptor(); 4577 TerminalState terminal_state; 4578 terminal_state.Save(read_fd, false); 4579 Terminal terminal(read_fd); 4580 terminal.SetCanonical(false); 4581 terminal.SetEcho(false); 4582 // FD_ZERO, FD_SET are not supported on windows 4583 #ifndef _WIN32 4584 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4585 m_is_running = true; 4586 while (!GetIsDone()) { 4587 SelectHelper select_helper; 4588 select_helper.FDSetRead(read_fd); 4589 select_helper.FDSetRead(pipe_read_fd); 4590 Error error = select_helper.Select(); 4591 4592 if (error.Fail()) { 4593 SetIsDone(true); 4594 } else { 4595 char ch = 0; 4596 size_t n; 4597 if (select_helper.FDIsSetRead(read_fd)) { 4598 n = 1; 4599 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4600 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4601 SetIsDone(true); 4602 } else 4603 SetIsDone(true); 4604 } 4605 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4606 size_t bytes_read; 4607 // Consume the interrupt byte 4608 Error error = m_pipe.Read(&ch, 1, bytes_read); 4609 if (error.Success()) { 4610 switch (ch) { 4611 case 'q': 4612 SetIsDone(true); 4613 break; 4614 case 'i': 4615 if (StateIsRunningState(m_process->GetState())) 4616 m_process->SendAsyncInterrupt(); 4617 break; 4618 } 4619 } 4620 } 4621 } 4622 } 4623 m_is_running = false; 4624 #endif 4625 terminal_state.Restore(); 4626 } 4627 4628 void Cancel() override { 4629 SetIsDone(true); 4630 // Only write to our pipe to cancel if we are in 4631 // IOHandlerProcessSTDIO::Run(). 4632 // We can end up with a python command that is being run from the command 4633 // interpreter: 4634 // 4635 // (lldb) step_process_thousands_of_times 4636 // 4637 // In this case the command interpreter will be in the middle of handling 4638 // the command and if the process pushes and pops the IOHandler thousands 4639 // of times, we can end up writing to m_pipe without ever consuming the 4640 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4641 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4642 if (m_is_running) { 4643 char ch = 'q'; // Send 'q' for quit 4644 size_t bytes_written = 0; 4645 m_pipe.Write(&ch, 1, bytes_written); 4646 } 4647 } 4648 4649 bool Interrupt() override { 4650 // Do only things that are safe to do in an interrupt context (like in 4651 // a SIGINT handler), like write 1 byte to a file descriptor. This will 4652 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4653 // that was written to the pipe and then call 4654 // m_process->SendAsyncInterrupt() 4655 // from a much safer location in code. 4656 if (m_active) { 4657 char ch = 'i'; // Send 'i' for interrupt 4658 size_t bytes_written = 0; 4659 Error result = m_pipe.Write(&ch, 1, bytes_written); 4660 return result.Success(); 4661 } else { 4662 // This IOHandler might be pushed on the stack, but not being run 4663 // currently 4664 // so do the right thing if we aren't actively watching for STDIN by 4665 // sending 4666 // the interrupt to the process. Otherwise the write to the pipe above 4667 // would 4668 // do nothing. This can happen when the command interpreter is running and 4669 // gets a "expression ...". It will be on the IOHandler thread and sending 4670 // the input is complete to the delegate which will cause the expression 4671 // to 4672 // run, which will push the process IO handler, but not run it. 4673 4674 if (StateIsRunningState(m_process->GetState())) { 4675 m_process->SendAsyncInterrupt(); 4676 return true; 4677 } 4678 } 4679 return false; 4680 } 4681 4682 void GotEOF() override {} 4683 4684 protected: 4685 Process *m_process; 4686 File m_read_file; // Read from this file (usually actual STDIN for LLDB 4687 File m_write_file; // Write to this file (usually the master pty for getting 4688 // io to debuggee) 4689 Pipe m_pipe; 4690 std::atomic<bool> m_is_running{false}; 4691 }; 4692 4693 void Process::SetSTDIOFileDescriptor(int fd) { 4694 // First set up the Read Thread for reading/handling process I/O 4695 4696 std::unique_ptr<ConnectionFileDescriptor> conn_ap( 4697 new ConnectionFileDescriptor(fd, true)); 4698 4699 if (conn_ap) { 4700 m_stdio_communication.SetConnection(conn_ap.release()); 4701 if (m_stdio_communication.IsConnected()) { 4702 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4703 STDIOReadThreadBytesReceived, this); 4704 m_stdio_communication.StartReadThread(); 4705 4706 // Now read thread is set up, set up input reader. 4707 4708 if (!m_process_input_reader) 4709 m_process_input_reader.reset(new IOHandlerProcessSTDIO(this, fd)); 4710 } 4711 } 4712 } 4713 4714 bool Process::ProcessIOHandlerIsActive() { 4715 IOHandlerSP io_handler_sp(m_process_input_reader); 4716 if (io_handler_sp) 4717 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4718 return false; 4719 } 4720 bool Process::PushProcessIOHandler() { 4721 IOHandlerSP io_handler_sp(m_process_input_reader); 4722 if (io_handler_sp) { 4723 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4724 if (log) 4725 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 4726 4727 io_handler_sp->SetIsDone(false); 4728 GetTarget().GetDebugger().PushIOHandler(io_handler_sp); 4729 return true; 4730 } 4731 return false; 4732 } 4733 4734 bool Process::PopProcessIOHandler() { 4735 IOHandlerSP io_handler_sp(m_process_input_reader); 4736 if (io_handler_sp) 4737 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4738 return false; 4739 } 4740 4741 // The process needs to know about installed plug-ins 4742 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4743 4744 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4745 4746 namespace { 4747 // RestorePlanState is used to record the "is private", "is master" and "okay to 4748 // discard" fields of 4749 // the plan we are running, and reset it on Clean or on destruction. 4750 // It will only reset the state once, so you can call Clean and then monkey with 4751 // the state and it 4752 // won't get reset on you again. 4753 4754 class RestorePlanState { 4755 public: 4756 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4757 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4758 if (m_thread_plan_sp) { 4759 m_private = m_thread_plan_sp->GetPrivate(); 4760 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4761 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4762 } 4763 } 4764 4765 ~RestorePlanState() { Clean(); } 4766 4767 void Clean() { 4768 if (!m_already_reset && m_thread_plan_sp) { 4769 m_already_reset = true; 4770 m_thread_plan_sp->SetPrivate(m_private); 4771 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4772 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4773 } 4774 } 4775 4776 private: 4777 lldb::ThreadPlanSP m_thread_plan_sp; 4778 bool m_already_reset; 4779 bool m_private; 4780 bool m_is_master; 4781 bool m_okay_to_discard; 4782 }; 4783 } // anonymous namespace 4784 4785 static microseconds 4786 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4787 const milliseconds default_one_thread_timeout(250); 4788 4789 // If the overall wait is forever, then we don't need to worry about it. 4790 if (!options.GetTimeout()) { 4791 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4792 : default_one_thread_timeout; 4793 } 4794 4795 // If the one thread timeout is set, use it. 4796 if (options.GetOneThreadTimeout()) 4797 return *options.GetOneThreadTimeout(); 4798 4799 // Otherwise use half the total timeout, bounded by the 4800 // default_one_thread_timeout. 4801 return std::min<microseconds>(default_one_thread_timeout, 4802 *options.GetTimeout() / 2); 4803 } 4804 4805 static Timeout<std::micro> 4806 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4807 bool before_first_timeout) { 4808 // If we are going to run all threads the whole time, or if we are only 4809 // going to run one thread, we can just return the overall timeout. 4810 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4811 return options.GetTimeout(); 4812 4813 if (before_first_timeout) 4814 return GetOneThreadExpressionTimeout(options); 4815 4816 if (!options.GetTimeout()) 4817 return llvm::None; 4818 else 4819 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4820 } 4821 4822 ExpressionResults 4823 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4824 lldb::ThreadPlanSP &thread_plan_sp, 4825 const EvaluateExpressionOptions &options, 4826 DiagnosticManager &diagnostic_manager) { 4827 ExpressionResults return_value = eExpressionSetupError; 4828 4829 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4830 4831 if (!thread_plan_sp) { 4832 diagnostic_manager.PutString( 4833 eDiagnosticSeverityError, 4834 "RunThreadPlan called with empty thread plan."); 4835 return eExpressionSetupError; 4836 } 4837 4838 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4839 diagnostic_manager.PutString( 4840 eDiagnosticSeverityError, 4841 "RunThreadPlan called with an invalid thread plan."); 4842 return eExpressionSetupError; 4843 } 4844 4845 if (exe_ctx.GetProcessPtr() != this) { 4846 diagnostic_manager.PutString(eDiagnosticSeverityError, 4847 "RunThreadPlan called on wrong process."); 4848 return eExpressionSetupError; 4849 } 4850 4851 Thread *thread = exe_ctx.GetThreadPtr(); 4852 if (thread == nullptr) { 4853 diagnostic_manager.PutString(eDiagnosticSeverityError, 4854 "RunThreadPlan called with invalid thread."); 4855 return eExpressionSetupError; 4856 } 4857 4858 // We need to change some of the thread plan attributes for the thread plan 4859 // runner. This will restore them 4860 // when we are done: 4861 4862 RestorePlanState thread_plan_restorer(thread_plan_sp); 4863 4864 // We rely on the thread plan we are running returning "PlanCompleted" if when 4865 // it successfully completes. 4866 // For that to be true the plan can't be private - since private plans 4867 // suppress themselves in the 4868 // GetCompletedPlan call. 4869 4870 thread_plan_sp->SetPrivate(false); 4871 4872 // The plans run with RunThreadPlan also need to be terminal master plans or 4873 // when they are done we will end 4874 // up asking the plan above us whether we should stop, which may give the 4875 // wrong answer. 4876 4877 thread_plan_sp->SetIsMasterPlan(true); 4878 thread_plan_sp->SetOkayToDiscard(false); 4879 4880 if (m_private_state.GetValue() != eStateStopped) { 4881 diagnostic_manager.PutString( 4882 eDiagnosticSeverityError, 4883 "RunThreadPlan called while the private state was not stopped."); 4884 return eExpressionSetupError; 4885 } 4886 4887 // Save the thread & frame from the exe_ctx for restoration after we run 4888 const uint32_t thread_idx_id = thread->GetIndexID(); 4889 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4890 if (!selected_frame_sp) { 4891 thread->SetSelectedFrame(nullptr); 4892 selected_frame_sp = thread->GetSelectedFrame(); 4893 if (!selected_frame_sp) { 4894 diagnostic_manager.Printf( 4895 eDiagnosticSeverityError, 4896 "RunThreadPlan called without a selected frame on thread %d", 4897 thread_idx_id); 4898 return eExpressionSetupError; 4899 } 4900 } 4901 4902 // Make sure the timeout values make sense. The one thread timeout needs to be 4903 // smaller than the overall timeout. 4904 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4905 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4906 diagnostic_manager.PutString(eDiagnosticSeverityError, 4907 "RunThreadPlan called with one thread " 4908 "timeout greater than total timeout"); 4909 return eExpressionSetupError; 4910 } 4911 4912 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4913 4914 // N.B. Running the target may unset the currently selected thread and frame. 4915 // We don't want to do that either, 4916 // so we should arrange to reset them as well. 4917 4918 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4919 4920 uint32_t selected_tid; 4921 StackID selected_stack_id; 4922 if (selected_thread_sp) { 4923 selected_tid = selected_thread_sp->GetIndexID(); 4924 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4925 } else { 4926 selected_tid = LLDB_INVALID_THREAD_ID; 4927 } 4928 4929 HostThread backup_private_state_thread; 4930 lldb::StateType old_state = eStateInvalid; 4931 lldb::ThreadPlanSP stopper_base_plan_sp; 4932 4933 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4934 LIBLLDB_LOG_PROCESS)); 4935 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4936 // Yikes, we are running on the private state thread! So we can't wait for 4937 // public events on this thread, since 4938 // we are the thread that is generating public events. 4939 // The simplest thing to do is to spin up a temporary thread to handle 4940 // private state thread events while 4941 // we are fielding public events here. 4942 if (log) 4943 log->Printf("Running thread plan on private state thread, spinning up " 4944 "another state thread to handle the events."); 4945 4946 backup_private_state_thread = m_private_state_thread; 4947 4948 // One other bit of business: we want to run just this thread plan and 4949 // anything it pushes, and then stop, 4950 // returning control here. 4951 // But in the normal course of things, the plan above us on the stack would 4952 // be given a shot at the stop 4953 // event before deciding to stop, and we don't want that. So we insert a 4954 // "stopper" base plan on the stack 4955 // before the plan we want to run. Since base plans always stop and return 4956 // control to the user, that will 4957 // do just what we want. 4958 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4959 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4960 // Have to make sure our public state is stopped, since otherwise the 4961 // reporting logic below doesn't work correctly. 4962 old_state = m_public_state.GetValue(); 4963 m_public_state.SetValueNoLock(eStateStopped); 4964 4965 // Now spin up the private state thread: 4966 StartPrivateStateThread(true); 4967 } 4968 4969 thread->QueueThreadPlan( 4970 thread_plan_sp, false); // This used to pass "true" does that make sense? 4971 4972 if (options.GetDebug()) { 4973 // In this case, we aren't actually going to run, we just want to stop right 4974 // away. 4975 // Flush this thread so we will refetch the stacks and show the correct 4976 // backtrace. 4977 // FIXME: To make this prettier we should invent some stop reason for this, 4978 // but that 4979 // is only cosmetic, and this functionality is only of use to lldb 4980 // developers who can 4981 // live with not pretty... 4982 thread->Flush(); 4983 return eExpressionStoppedForDebug; 4984 } 4985 4986 ListenerSP listener_sp( 4987 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4988 4989 lldb::EventSP event_to_broadcast_sp; 4990 4991 { 4992 // This process event hijacker Hijacks the Public events and its destructor 4993 // makes sure that the process events get 4994 // restored on exit to the function. 4995 // 4996 // If the event needs to propagate beyond the hijacker (e.g., the process 4997 // exits during execution), then the event 4998 // is put into event_to_broadcast_sp for rebroadcasting. 4999 5000 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 5001 5002 if (log) { 5003 StreamString s; 5004 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5005 log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 5006 " to run thread plan \"%s\".", 5007 thread->GetIndexID(), thread->GetID(), s.GetData()); 5008 } 5009 5010 bool got_event; 5011 lldb::EventSP event_sp; 5012 lldb::StateType stop_state = lldb::eStateInvalid; 5013 5014 bool before_first_timeout = true; // This is set to false the first time 5015 // that we have to halt the target. 5016 bool do_resume = true; 5017 bool handle_running_event = true; 5018 5019 // This is just for accounting: 5020 uint32_t num_resumes = 0; 5021 5022 // If we are going to run all threads the whole time, or if we are only 5023 // going to run one thread, then we don't need the first timeout. So we 5024 // pretend we are after the first timeout already. 5025 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5026 before_first_timeout = false; 5027 5028 if (log) 5029 log->Printf("Stop others: %u, try all: %u, before_first: %u.\n", 5030 options.GetStopOthers(), options.GetTryAllThreads(), 5031 before_first_timeout); 5032 5033 // This isn't going to work if there are unfetched events on the queue. 5034 // Are there cases where we might want to run the remaining events here, and 5035 // then try to 5036 // call the function? That's probably being too tricky for our own good. 5037 5038 Event *other_events = listener_sp->PeekAtNextEvent(); 5039 if (other_events != nullptr) { 5040 diagnostic_manager.PutString( 5041 eDiagnosticSeverityError, 5042 "RunThreadPlan called with pending events on the queue."); 5043 return eExpressionSetupError; 5044 } 5045 5046 // We also need to make sure that the next event is delivered. We might be 5047 // calling a function as part of 5048 // a thread plan, in which case the last delivered event could be the 5049 // running event, and we don't want 5050 // event coalescing to cause us to lose OUR running event... 5051 ForceNextEventDelivery(); 5052 5053 // This while loop must exit out the bottom, there's cleanup that we need to do 5054 // when we are done. 5055 // So don't call return anywhere within it. 5056 5057 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5058 // It's pretty much impossible to write test cases for things like: 5059 // One thread timeout expires, I go to halt, but the process already stopped 5060 // on the function call stop breakpoint. Turning on this define will make 5061 // us not 5062 // fetch the first event till after the halt. So if you run a quick 5063 // function, it will have 5064 // completed, and the completion event will be waiting, when you interrupt 5065 // for halt. 5066 // The expression evaluation should still succeed. 5067 bool miss_first_event = true; 5068 #endif 5069 while (true) { 5070 // We usually want to resume the process if we get to the top of the loop. 5071 // The only exception is if we get two running events with no intervening 5072 // stop, which can happen, we will just wait for then next stop event. 5073 if (log) 5074 log->Printf("Top of while loop: do_resume: %i handle_running_event: %i " 5075 "before_first_timeout: %i.", 5076 do_resume, handle_running_event, before_first_timeout); 5077 5078 if (do_resume || handle_running_event) { 5079 // Do the initial resume and wait for the running event before going 5080 // further. 5081 5082 if (do_resume) { 5083 num_resumes++; 5084 Error resume_error = PrivateResume(); 5085 if (!resume_error.Success()) { 5086 diagnostic_manager.Printf( 5087 eDiagnosticSeverityError, 5088 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5089 resume_error.AsCString()); 5090 return_value = eExpressionSetupError; 5091 break; 5092 } 5093 } 5094 5095 got_event = 5096 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5097 if (!got_event) { 5098 if (log) 5099 log->Printf("Process::RunThreadPlan(): didn't get any event after " 5100 "resume %" PRIu32 ", exiting.", 5101 num_resumes); 5102 5103 diagnostic_manager.Printf(eDiagnosticSeverityError, 5104 "didn't get any event after resume %" PRIu32 5105 ", exiting.", 5106 num_resumes); 5107 return_value = eExpressionSetupError; 5108 break; 5109 } 5110 5111 stop_state = 5112 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5113 5114 if (stop_state != eStateRunning) { 5115 bool restarted = false; 5116 5117 if (stop_state == eStateStopped) { 5118 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5119 event_sp.get()); 5120 if (log) 5121 log->Printf( 5122 "Process::RunThreadPlan(): didn't get running event after " 5123 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5124 "handle_running_event: %i).", 5125 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5126 handle_running_event); 5127 } 5128 5129 if (restarted) { 5130 // This is probably an overabundance of caution, I don't think I 5131 // should ever get a stopped & restarted 5132 // event here. But if I do, the best thing is to Halt and then get 5133 // out of here. 5134 const bool clear_thread_plans = false; 5135 const bool use_run_lock = false; 5136 Halt(clear_thread_plans, use_run_lock); 5137 } 5138 5139 diagnostic_manager.Printf( 5140 eDiagnosticSeverityError, 5141 "didn't get running event after initial resume, got %s instead.", 5142 StateAsCString(stop_state)); 5143 return_value = eExpressionSetupError; 5144 break; 5145 } 5146 5147 if (log) 5148 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5149 // We need to call the function synchronously, so spin waiting for it to 5150 // return. 5151 // If we get interrupted while executing, we're going to lose our 5152 // context, and 5153 // won't be able to gather the result at this point. 5154 // We set the timeout AFTER the resume, since the resume takes some time 5155 // and we 5156 // don't want to charge that to the timeout. 5157 } else { 5158 if (log) 5159 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5160 } 5161 5162 do_resume = true; 5163 handle_running_event = true; 5164 5165 // Now wait for the process to stop again: 5166 event_sp.reset(); 5167 5168 Timeout<std::micro> timeout = 5169 GetExpressionTimeout(options, before_first_timeout); 5170 if (log) { 5171 if (timeout) { 5172 auto now = system_clock::now(); 5173 log->Printf("Process::RunThreadPlan(): about to wait - now is %s - " 5174 "endpoint is %s", 5175 llvm::to_string(now).c_str(), 5176 llvm::to_string(now + *timeout).c_str()); 5177 } else { 5178 log->Printf("Process::RunThreadPlan(): about to wait forever."); 5179 } 5180 } 5181 5182 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5183 // See comment above... 5184 if (miss_first_event) { 5185 usleep(1000); 5186 miss_first_event = false; 5187 got_event = false; 5188 } else 5189 #endif 5190 got_event = listener_sp->GetEvent(event_sp, timeout); 5191 5192 if (got_event) { 5193 if (event_sp) { 5194 bool keep_going = false; 5195 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5196 const bool clear_thread_plans = false; 5197 const bool use_run_lock = false; 5198 Halt(clear_thread_plans, use_run_lock); 5199 return_value = eExpressionInterrupted; 5200 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5201 "execution halted by user interrupt."); 5202 if (log) 5203 log->Printf("Process::RunThreadPlan(): Got interrupted by " 5204 "eBroadcastBitInterrupted, exiting."); 5205 break; 5206 } else { 5207 stop_state = 5208 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5209 if (log) 5210 log->Printf( 5211 "Process::RunThreadPlan(): in while loop, got event: %s.", 5212 StateAsCString(stop_state)); 5213 5214 switch (stop_state) { 5215 case lldb::eStateStopped: { 5216 // We stopped, figure out what we are going to do now. 5217 ThreadSP thread_sp = 5218 GetThreadList().FindThreadByIndexID(thread_idx_id); 5219 if (!thread_sp) { 5220 // Ooh, our thread has vanished. Unlikely that this was 5221 // successful execution... 5222 if (log) 5223 log->Printf("Process::RunThreadPlan(): execution completed " 5224 "but our thread (index-id=%u) has vanished.", 5225 thread_idx_id); 5226 return_value = eExpressionInterrupted; 5227 } else { 5228 // If we were restarted, we just need to go back up to fetch 5229 // another event. 5230 if (Process::ProcessEventData::GetRestartedFromEvent( 5231 event_sp.get())) { 5232 if (log) { 5233 log->Printf("Process::RunThreadPlan(): Got a stop and " 5234 "restart, so we'll continue waiting."); 5235 } 5236 keep_going = true; 5237 do_resume = false; 5238 handle_running_event = true; 5239 } else { 5240 ThreadPlanSP plan = thread->GetCompletedPlan(); 5241 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 5242 5243 if (log) 5244 log->PutCString("Process::RunThreadPlan(): execution " 5245 "completed successfully."); 5246 5247 // Restore the plan state so it will get reported as 5248 // intended when we are done. 5249 thread_plan_restorer.Clean(); 5250 5251 return_value = eExpressionCompleted; 5252 } else { 5253 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5254 // Something restarted the target, so just wait for it to 5255 // stop for real. 5256 if (stop_info_sp && 5257 stop_info_sp->GetStopReason() == eStopReasonBreakpoint) { 5258 if (log) 5259 log->Printf("Process::RunThreadPlan() stopped for " 5260 "breakpoint: %s.", 5261 stop_info_sp->GetDescription()); 5262 return_value = eExpressionHitBreakpoint; 5263 if (!options.DoesIgnoreBreakpoints()) { 5264 // Restore the plan state and then force Private to 5265 // false. We are 5266 // going to stop because of this plan so we need it to 5267 // become a public 5268 // plan or it won't report correctly when we continue to 5269 // its termination 5270 // later on. 5271 thread_plan_restorer.Clean(); 5272 if (thread_plan_sp) 5273 thread_plan_sp->SetPrivate(false); 5274 event_to_broadcast_sp = event_sp; 5275 } 5276 } else { 5277 if (log) 5278 log->PutCString("Process::RunThreadPlan(): thread plan " 5279 "didn't successfully complete."); 5280 if (!options.DoesUnwindOnError()) 5281 event_to_broadcast_sp = event_sp; 5282 return_value = eExpressionInterrupted; 5283 } 5284 } 5285 } 5286 } 5287 } break; 5288 5289 case lldb::eStateRunning: 5290 // This shouldn't really happen, but sometimes we do get two 5291 // running events without an 5292 // intervening stop, and in that case we should just go back to 5293 // waiting for the stop. 5294 do_resume = false; 5295 keep_going = true; 5296 handle_running_event = false; 5297 break; 5298 5299 default: 5300 if (log) 5301 log->Printf("Process::RunThreadPlan(): execution stopped with " 5302 "unexpected state: %s.", 5303 StateAsCString(stop_state)); 5304 5305 if (stop_state == eStateExited) 5306 event_to_broadcast_sp = event_sp; 5307 5308 diagnostic_manager.PutString( 5309 eDiagnosticSeverityError, 5310 "execution stopped with unexpected state."); 5311 return_value = eExpressionInterrupted; 5312 break; 5313 } 5314 } 5315 5316 if (keep_going) 5317 continue; 5318 else 5319 break; 5320 } else { 5321 if (log) 5322 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5323 "the event pointer was null. How odd..."); 5324 return_value = eExpressionInterrupted; 5325 break; 5326 } 5327 } else { 5328 // If we didn't get an event that means we've timed out... 5329 // We will interrupt the process here. Depending on what we were asked 5330 // to do we will 5331 // either exit, or try with all threads running for the same timeout. 5332 5333 if (log) { 5334 if (options.GetTryAllThreads()) { 5335 if (before_first_timeout) { 5336 LLDB_LOG(log, 5337 "Running function with one thread timeout timed out."); 5338 } else 5339 LLDB_LOG(log, "Restarting function with all threads enabled and " 5340 "timeout: {0} timed out, abandoning execution.", 5341 timeout); 5342 } else 5343 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5344 "abandoning execution.", 5345 timeout); 5346 } 5347 5348 // It is possible that between the time we issued the Halt, and we get 5349 // around to calling Halt the target 5350 // could have stopped. That's fine, Halt will figure that out and send 5351 // the appropriate Stopped event. 5352 // BUT it is also possible that we stopped & restarted (e.g. hit a 5353 // signal with "stop" set to false.) In 5354 // that case, we'll get the stopped & restarted event, and we should go 5355 // back to waiting for the Halt's 5356 // stopped event. That's what this while loop does. 5357 5358 bool back_to_top = true; 5359 uint32_t try_halt_again = 0; 5360 bool do_halt = true; 5361 const uint32_t num_retries = 5; 5362 while (try_halt_again < num_retries) { 5363 Error halt_error; 5364 if (do_halt) { 5365 if (log) 5366 log->Printf("Process::RunThreadPlan(): Running Halt."); 5367 const bool clear_thread_plans = false; 5368 const bool use_run_lock = false; 5369 Halt(clear_thread_plans, use_run_lock); 5370 } 5371 if (halt_error.Success()) { 5372 if (log) 5373 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5374 5375 got_event = 5376 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5377 5378 if (got_event) { 5379 stop_state = 5380 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5381 if (log) { 5382 log->Printf("Process::RunThreadPlan(): Stopped with event: %s", 5383 StateAsCString(stop_state)); 5384 if (stop_state == lldb::eStateStopped && 5385 Process::ProcessEventData::GetInterruptedFromEvent( 5386 event_sp.get())) 5387 log->PutCString(" Event was the Halt interruption event."); 5388 } 5389 5390 if (stop_state == lldb::eStateStopped) { 5391 // Between the time we initiated the Halt and the time we 5392 // delivered it, the process could have 5393 // already finished its job. Check that here: 5394 5395 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5396 if (log) 5397 log->PutCString("Process::RunThreadPlan(): Even though we " 5398 "timed out, the call plan was done. " 5399 "Exiting wait loop."); 5400 return_value = eExpressionCompleted; 5401 back_to_top = false; 5402 break; 5403 } 5404 5405 if (Process::ProcessEventData::GetRestartedFromEvent( 5406 event_sp.get())) { 5407 if (log) 5408 log->PutCString("Process::RunThreadPlan(): Went to halt " 5409 "but got a restarted event, there must be " 5410 "an un-restarted stopped event so try " 5411 "again... " 5412 "Exiting wait loop."); 5413 try_halt_again++; 5414 do_halt = false; 5415 continue; 5416 } 5417 5418 if (!options.GetTryAllThreads()) { 5419 if (log) 5420 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5421 "was false, we stopped so now we're " 5422 "quitting."); 5423 return_value = eExpressionInterrupted; 5424 back_to_top = false; 5425 break; 5426 } 5427 5428 if (before_first_timeout) { 5429 // Set all the other threads to run, and return to the top of 5430 // the loop, which will continue; 5431 before_first_timeout = false; 5432 thread_plan_sp->SetStopOthers(false); 5433 if (log) 5434 log->PutCString( 5435 "Process::RunThreadPlan(): about to resume."); 5436 5437 back_to_top = true; 5438 break; 5439 } else { 5440 // Running all threads failed, so return Interrupted. 5441 if (log) 5442 log->PutCString("Process::RunThreadPlan(): running all " 5443 "threads timed out."); 5444 return_value = eExpressionInterrupted; 5445 back_to_top = false; 5446 break; 5447 } 5448 } 5449 } else { 5450 if (log) 5451 log->PutCString("Process::RunThreadPlan(): halt said it " 5452 "succeeded, but I got no event. " 5453 "I'm getting out of here passing Interrupted."); 5454 return_value = eExpressionInterrupted; 5455 back_to_top = false; 5456 break; 5457 } 5458 } else { 5459 try_halt_again++; 5460 continue; 5461 } 5462 } 5463 5464 if (!back_to_top || try_halt_again > num_retries) 5465 break; 5466 else 5467 continue; 5468 } 5469 } // END WAIT LOOP 5470 5471 // If we had to start up a temporary private state thread to run this thread 5472 // plan, shut it down now. 5473 if (backup_private_state_thread.IsJoinable()) { 5474 StopPrivateStateThread(); 5475 Error error; 5476 m_private_state_thread = backup_private_state_thread; 5477 if (stopper_base_plan_sp) { 5478 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5479 } 5480 if (old_state != eStateInvalid) 5481 m_public_state.SetValueNoLock(old_state); 5482 } 5483 5484 if (return_value != eExpressionCompleted && log) { 5485 // Print a backtrace into the log so we can figure out where we are: 5486 StreamString s; 5487 s.PutCString("Thread state after unsuccessful completion: \n"); 5488 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5489 log->PutString(s.GetString()); 5490 } 5491 // Restore the thread state if we are going to discard the plan execution. 5492 // There are three cases where this 5493 // could happen: 5494 // 1) The execution successfully completed 5495 // 2) We hit a breakpoint, and ignore_breakpoints was true 5496 // 3) We got some other error, and discard_on_error was true 5497 bool should_unwind = (return_value == eExpressionInterrupted && 5498 options.DoesUnwindOnError()) || 5499 (return_value == eExpressionHitBreakpoint && 5500 options.DoesIgnoreBreakpoints()); 5501 5502 if (return_value == eExpressionCompleted || should_unwind) { 5503 thread_plan_sp->RestoreThreadState(); 5504 } 5505 5506 // Now do some processing on the results of the run: 5507 if (return_value == eExpressionInterrupted || 5508 return_value == eExpressionHitBreakpoint) { 5509 if (log) { 5510 StreamString s; 5511 if (event_sp) 5512 event_sp->Dump(&s); 5513 else { 5514 log->PutCString("Process::RunThreadPlan(): Stop event that " 5515 "interrupted us is NULL."); 5516 } 5517 5518 StreamString ts; 5519 5520 const char *event_explanation = nullptr; 5521 5522 do { 5523 if (!event_sp) { 5524 event_explanation = "<no event>"; 5525 break; 5526 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5527 event_explanation = "<user interrupt>"; 5528 break; 5529 } else { 5530 const Process::ProcessEventData *event_data = 5531 Process::ProcessEventData::GetEventDataFromEvent( 5532 event_sp.get()); 5533 5534 if (!event_data) { 5535 event_explanation = "<no event data>"; 5536 break; 5537 } 5538 5539 Process *process = event_data->GetProcessSP().get(); 5540 5541 if (!process) { 5542 event_explanation = "<no process>"; 5543 break; 5544 } 5545 5546 ThreadList &thread_list = process->GetThreadList(); 5547 5548 uint32_t num_threads = thread_list.GetSize(); 5549 uint32_t thread_index; 5550 5551 ts.Printf("<%u threads> ", num_threads); 5552 5553 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5554 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5555 5556 if (!thread) { 5557 ts.Printf("<?> "); 5558 continue; 5559 } 5560 5561 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5562 RegisterContext *register_context = 5563 thread->GetRegisterContext().get(); 5564 5565 if (register_context) 5566 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5567 else 5568 ts.Printf("[ip unknown] "); 5569 5570 // Show the private stop info here, the public stop info will be 5571 // from the last natural stop. 5572 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5573 if (stop_info_sp) { 5574 const char *stop_desc = stop_info_sp->GetDescription(); 5575 if (stop_desc) 5576 ts.PutCString(stop_desc); 5577 } 5578 ts.Printf(">"); 5579 } 5580 5581 event_explanation = ts.GetData(); 5582 } 5583 } while (0); 5584 5585 if (event_explanation) 5586 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", 5587 s.GetData(), event_explanation); 5588 else 5589 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", 5590 s.GetData()); 5591 } 5592 5593 if (should_unwind) { 5594 if (log) 5595 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - " 5596 "discarding thread plans up to %p.", 5597 static_cast<void *>(thread_plan_sp.get())); 5598 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5599 } else { 5600 if (log) 5601 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for " 5602 "plan: %p not discarding.", 5603 static_cast<void *>(thread_plan_sp.get())); 5604 } 5605 } else if (return_value == eExpressionSetupError) { 5606 if (log) 5607 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5608 5609 if (options.DoesUnwindOnError()) { 5610 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5611 } 5612 } else { 5613 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5614 if (log) 5615 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5616 return_value = eExpressionCompleted; 5617 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5618 if (log) 5619 log->PutCString( 5620 "Process::RunThreadPlan(): thread plan was discarded"); 5621 return_value = eExpressionDiscarded; 5622 } else { 5623 if (log) 5624 log->PutCString( 5625 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5626 if (options.DoesUnwindOnError() && thread_plan_sp) { 5627 if (log) 5628 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5629 "'cause unwind_on_error is set."); 5630 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5631 } 5632 } 5633 } 5634 5635 // Thread we ran the function in may have gone away because we ran the 5636 // target 5637 // Check that it's still there, and if it is put it back in the context. 5638 // Also restore the 5639 // frame in the context if it is still present. 5640 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5641 if (thread) { 5642 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5643 } 5644 5645 // Also restore the current process'es selected frame & thread, since this 5646 // function calling may 5647 // be done behind the user's back. 5648 5649 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5650 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5651 selected_stack_id.IsValid()) { 5652 // We were able to restore the selected thread, now restore the frame: 5653 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5654 StackFrameSP old_frame_sp = 5655 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5656 selected_stack_id); 5657 if (old_frame_sp) 5658 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5659 old_frame_sp.get()); 5660 } 5661 } 5662 } 5663 5664 // If the process exited during the run of the thread plan, notify everyone. 5665 5666 if (event_to_broadcast_sp) { 5667 if (log) 5668 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5669 BroadcastEvent(event_to_broadcast_sp); 5670 } 5671 5672 return return_value; 5673 } 5674 5675 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5676 const char *result_name; 5677 5678 switch (result) { 5679 case eExpressionCompleted: 5680 result_name = "eExpressionCompleted"; 5681 break; 5682 case eExpressionDiscarded: 5683 result_name = "eExpressionDiscarded"; 5684 break; 5685 case eExpressionInterrupted: 5686 result_name = "eExpressionInterrupted"; 5687 break; 5688 case eExpressionHitBreakpoint: 5689 result_name = "eExpressionHitBreakpoint"; 5690 break; 5691 case eExpressionSetupError: 5692 result_name = "eExpressionSetupError"; 5693 break; 5694 case eExpressionParseError: 5695 result_name = "eExpressionParseError"; 5696 break; 5697 case eExpressionResultUnavailable: 5698 result_name = "eExpressionResultUnavailable"; 5699 break; 5700 case eExpressionTimedOut: 5701 result_name = "eExpressionTimedOut"; 5702 break; 5703 case eExpressionStoppedForDebug: 5704 result_name = "eExpressionStoppedForDebug"; 5705 break; 5706 } 5707 return result_name; 5708 } 5709 5710 void Process::GetStatus(Stream &strm) { 5711 const StateType state = GetState(); 5712 if (StateIsStoppedState(state, false)) { 5713 if (state == eStateExited) { 5714 int exit_status = GetExitStatus(); 5715 const char *exit_description = GetExitDescription(); 5716 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5717 GetID(), exit_status, exit_status, 5718 exit_description ? exit_description : ""); 5719 } else { 5720 if (state == eStateConnected) 5721 strm.Printf("Connected to remote target.\n"); 5722 else 5723 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5724 } 5725 } else { 5726 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5727 } 5728 } 5729 5730 size_t Process::GetThreadStatus(Stream &strm, 5731 bool only_threads_with_stop_reason, 5732 uint32_t start_frame, uint32_t num_frames, 5733 uint32_t num_frames_with_source, 5734 bool stop_format) { 5735 size_t num_thread_infos_dumped = 0; 5736 5737 // You can't hold the thread list lock while calling Thread::GetStatus. That 5738 // very well might run code (e.g. if we need it 5739 // to get return values or arguments.) For that to work the process has to be 5740 // able to acquire it. So instead copy the thread 5741 // ID's, and look them up one by one: 5742 5743 uint32_t num_threads; 5744 std::vector<lldb::tid_t> thread_id_array; 5745 // Scope for thread list locker; 5746 { 5747 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5748 ThreadList &curr_thread_list = GetThreadList(); 5749 num_threads = curr_thread_list.GetSize(); 5750 uint32_t idx; 5751 thread_id_array.resize(num_threads); 5752 for (idx = 0; idx < num_threads; ++idx) 5753 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5754 } 5755 5756 for (uint32_t i = 0; i < num_threads; i++) { 5757 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5758 if (thread_sp) { 5759 if (only_threads_with_stop_reason) { 5760 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5761 if (!stop_info_sp || !stop_info_sp->IsValid()) 5762 continue; 5763 } 5764 thread_sp->GetStatus(strm, start_frame, num_frames, 5765 num_frames_with_source, 5766 stop_format); 5767 ++num_thread_infos_dumped; 5768 } else { 5769 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5770 if (log) 5771 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 5772 " vanished while running Thread::GetStatus."); 5773 } 5774 } 5775 return num_thread_infos_dumped; 5776 } 5777 5778 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5779 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5780 } 5781 5782 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5783 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5784 region.GetByteSize()); 5785 } 5786 5787 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5788 void *baton) { 5789 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5790 } 5791 5792 bool Process::RunPreResumeActions() { 5793 bool result = true; 5794 while (!m_pre_resume_actions.empty()) { 5795 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5796 m_pre_resume_actions.pop_back(); 5797 bool this_result = action.callback(action.baton); 5798 if (result) 5799 result = this_result; 5800 } 5801 return result; 5802 } 5803 5804 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5805 5806 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5807 { 5808 PreResumeCallbackAndBaton element(callback, baton); 5809 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5810 if (found_iter != m_pre_resume_actions.end()) 5811 { 5812 m_pre_resume_actions.erase(found_iter); 5813 } 5814 } 5815 5816 ProcessRunLock &Process::GetRunLock() { 5817 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5818 return m_private_run_lock; 5819 else 5820 return m_public_run_lock; 5821 } 5822 5823 void Process::Flush() { 5824 m_thread_list.Flush(); 5825 m_extended_thread_list.Flush(); 5826 m_extended_thread_stop_id = 0; 5827 m_queue_list.Clear(); 5828 m_queue_list_stop_id = 0; 5829 } 5830 5831 void Process::DidExec() { 5832 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5833 if (log) 5834 log->Printf("Process::%s()", __FUNCTION__); 5835 5836 Target &target = GetTarget(); 5837 target.CleanupProcess(); 5838 target.ClearModules(false); 5839 m_dynamic_checkers_ap.reset(); 5840 m_abi_sp.reset(); 5841 m_system_runtime_ap.reset(); 5842 m_os_ap.reset(); 5843 m_dyld_ap.reset(); 5844 m_jit_loaders_ap.reset(); 5845 m_image_tokens.clear(); 5846 m_allocated_memory_cache.Clear(); 5847 m_language_runtimes.clear(); 5848 m_instrumentation_runtimes.clear(); 5849 m_thread_list.DiscardThreadPlans(); 5850 m_memory_cache.Clear(true); 5851 m_stop_info_override_callback = nullptr; 5852 DoDidExec(); 5853 CompleteAttach(); 5854 // Flush the process (threads and all stack frames) after running 5855 // CompleteAttach() 5856 // in case the dynamic loader loaded things in new locations. 5857 Flush(); 5858 5859 // After we figure out what was loaded/unloaded in CompleteAttach, 5860 // we need to let the target know so it can do any cleanup it needs to. 5861 target.DidExec(); 5862 } 5863 5864 addr_t Process::ResolveIndirectFunction(const Address *address, Error &error) { 5865 if (address == nullptr) { 5866 error.SetErrorString("Invalid address argument"); 5867 return LLDB_INVALID_ADDRESS; 5868 } 5869 5870 addr_t function_addr = LLDB_INVALID_ADDRESS; 5871 5872 addr_t addr = address->GetLoadAddress(&GetTarget()); 5873 std::map<addr_t, addr_t>::const_iterator iter = 5874 m_resolved_indirect_addresses.find(addr); 5875 if (iter != m_resolved_indirect_addresses.end()) { 5876 function_addr = (*iter).second; 5877 } else { 5878 if (!InferiorCall(this, address, function_addr)) { 5879 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5880 error.SetErrorStringWithFormat( 5881 "Unable to call resolver for indirect function %s", 5882 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5883 function_addr = LLDB_INVALID_ADDRESS; 5884 } else { 5885 m_resolved_indirect_addresses.insert( 5886 std::pair<addr_t, addr_t>(addr, function_addr)); 5887 } 5888 } 5889 return function_addr; 5890 } 5891 5892 void Process::ModulesDidLoad(ModuleList &module_list) { 5893 SystemRuntime *sys_runtime = GetSystemRuntime(); 5894 if (sys_runtime) { 5895 sys_runtime->ModulesDidLoad(module_list); 5896 } 5897 5898 GetJITLoaders().ModulesDidLoad(module_list); 5899 5900 // Give runtimes a chance to be created. 5901 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5902 m_instrumentation_runtimes); 5903 5904 // Tell runtimes about new modules. 5905 for (auto pos = m_instrumentation_runtimes.begin(); 5906 pos != m_instrumentation_runtimes.end(); ++pos) { 5907 InstrumentationRuntimeSP runtime = pos->second; 5908 runtime->ModulesDidLoad(module_list); 5909 } 5910 5911 // Let any language runtimes we have already created know 5912 // about the modules that loaded. 5913 5914 // Iterate over a copy of this language runtime list in case 5915 // the language runtime ModulesDidLoad somehow causes the language 5916 // riuntime to be unloaded. 5917 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5918 for (const auto &pair : language_runtimes) { 5919 // We must check language_runtime_sp to make sure it is not 5920 // nullptr as we might cache the fact that we didn't have a 5921 // language runtime for a language. 5922 LanguageRuntimeSP language_runtime_sp = pair.second; 5923 if (language_runtime_sp) 5924 language_runtime_sp->ModulesDidLoad(module_list); 5925 } 5926 5927 // If we don't have an operating system plug-in, try to load one since 5928 // loading shared libraries might cause a new one to try and load 5929 if (!m_os_ap) 5930 LoadOperatingSystemPlugin(false); 5931 5932 // Give structured-data plugins a chance to see the modified modules. 5933 for (auto pair : m_structured_data_plugin_map) { 5934 if (pair.second) 5935 pair.second->ModulesDidLoad(*this, module_list); 5936 } 5937 } 5938 5939 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5940 const char *fmt, ...) { 5941 bool print_warning = true; 5942 5943 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5944 if (!stream_sp) 5945 return; 5946 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5947 return; 5948 } 5949 5950 if (repeat_key != nullptr) { 5951 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5952 if (it == m_warnings_issued.end()) { 5953 m_warnings_issued[warning_type] = WarningsPointerSet(); 5954 m_warnings_issued[warning_type].insert(repeat_key); 5955 } else { 5956 if (it->second.find(repeat_key) != it->second.end()) { 5957 print_warning = false; 5958 } else { 5959 it->second.insert(repeat_key); 5960 } 5961 } 5962 } 5963 5964 if (print_warning) { 5965 va_list args; 5966 va_start(args, fmt); 5967 stream_sp->PrintfVarArg(fmt, args); 5968 va_end(args); 5969 } 5970 } 5971 5972 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5973 if (GetWarningsOptimization() && sc.module_sp && 5974 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5975 sc.function->GetIsOptimized()) { 5976 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5977 "%s was compiled with optimization - stepping may behave " 5978 "oddly; variables may not be available.\n", 5979 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5980 } 5981 } 5982 5983 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5984 info.Clear(); 5985 5986 PlatformSP platform_sp = GetTarget().GetPlatform(); 5987 if (!platform_sp) 5988 return false; 5989 5990 return platform_sp->GetProcessInfo(GetID(), info); 5991 } 5992 5993 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5994 ThreadCollectionSP threads; 5995 5996 const MemoryHistorySP &memory_history = 5997 MemoryHistory::FindPlugin(shared_from_this()); 5998 5999 if (!memory_history) { 6000 return threads; 6001 } 6002 6003 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 6004 6005 return threads; 6006 } 6007 6008 InstrumentationRuntimeSP 6009 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 6010 InstrumentationRuntimeCollection::iterator pos; 6011 pos = m_instrumentation_runtimes.find(type); 6012 if (pos == m_instrumentation_runtimes.end()) { 6013 return InstrumentationRuntimeSP(); 6014 } else 6015 return (*pos).second; 6016 } 6017 6018 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 6019 const ArchSpec &arch, ModuleSpec &module_spec) { 6020 module_spec.Clear(); 6021 return false; 6022 } 6023 6024 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 6025 m_image_tokens.push_back(image_ptr); 6026 return m_image_tokens.size() - 1; 6027 } 6028 6029 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 6030 if (token < m_image_tokens.size()) 6031 return m_image_tokens[token]; 6032 return LLDB_INVALID_IMAGE_TOKEN; 6033 } 6034 6035 void Process::ResetImageToken(size_t token) { 6036 if (token < m_image_tokens.size()) 6037 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 6038 } 6039 6040 Address 6041 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 6042 AddressRange range_bounds) { 6043 Target &target = GetTarget(); 6044 DisassemblerSP disassembler_sp; 6045 InstructionList *insn_list = nullptr; 6046 6047 Address retval = default_stop_addr; 6048 6049 if (!target.GetUseFastStepping()) 6050 return retval; 6051 if (!default_stop_addr.IsValid()) 6052 return retval; 6053 6054 ExecutionContext exe_ctx(this); 6055 const char *plugin_name = nullptr; 6056 const char *flavor = nullptr; 6057 const bool prefer_file_cache = true; 6058 disassembler_sp = Disassembler::DisassembleRange( 6059 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 6060 prefer_file_cache); 6061 if (disassembler_sp) 6062 insn_list = &disassembler_sp->GetInstructionList(); 6063 6064 if (insn_list == nullptr) { 6065 return retval; 6066 } 6067 6068 size_t insn_offset = 6069 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 6070 if (insn_offset == UINT32_MAX) { 6071 return retval; 6072 } 6073 6074 uint32_t branch_index = 6075 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target); 6076 if (branch_index == UINT32_MAX) { 6077 return retval; 6078 } 6079 6080 if (branch_index > insn_offset) { 6081 Address next_branch_insn_address = 6082 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6083 if (next_branch_insn_address.IsValid() && 6084 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6085 retval = next_branch_insn_address; 6086 } 6087 } 6088 6089 return retval; 6090 } 6091 6092 Error Process::GetMemoryRegions( 6093 std::vector<lldb::MemoryRegionInfoSP> ®ion_list) { 6094 6095 Error error; 6096 6097 lldb::addr_t range_end = 0; 6098 6099 region_list.clear(); 6100 do { 6101 lldb::MemoryRegionInfoSP region_info(new lldb_private::MemoryRegionInfo()); 6102 error = GetMemoryRegionInfo(range_end, *region_info); 6103 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6104 if (error.Fail()) { 6105 region_list.clear(); 6106 break; 6107 } 6108 6109 range_end = region_info->GetRange().GetRangeEnd(); 6110 if (region_info->GetMapped() == MemoryRegionInfo::eYes) { 6111 region_list.push_back(region_info); 6112 } 6113 } while (range_end != LLDB_INVALID_ADDRESS); 6114 6115 return error; 6116 } 6117 6118 Error Process::ConfigureStructuredData( 6119 const ConstString &type_name, const StructuredData::ObjectSP &config_sp) { 6120 // If you get this, the Process-derived class needs to implement a method 6121 // to enable an already-reported asynchronous structured data feature. 6122 // See ProcessGDBRemote for an example implementation over gdb-remote. 6123 return Error("unimplemented"); 6124 } 6125 6126 void Process::MapSupportedStructuredDataPlugins( 6127 const StructuredData::Array &supported_type_names) { 6128 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6129 6130 // Bail out early if there are no type names to map. 6131 if (supported_type_names.GetSize() == 0) { 6132 if (log) 6133 log->Printf("Process::%s(): no structured data types supported", 6134 __FUNCTION__); 6135 return; 6136 } 6137 6138 // Convert StructuredData type names to ConstString instances. 6139 std::set<ConstString> const_type_names; 6140 6141 if (log) 6142 log->Printf("Process::%s(): the process supports the following async " 6143 "structured data types:", 6144 __FUNCTION__); 6145 6146 supported_type_names.ForEach( 6147 [&const_type_names, &log](StructuredData::Object *object) { 6148 if (!object) { 6149 // Invalid - shouldn't be null objects in the array. 6150 return false; 6151 } 6152 6153 auto type_name = object->GetAsString(); 6154 if (!type_name) { 6155 // Invalid format - all type names should be strings. 6156 return false; 6157 } 6158 6159 const_type_names.insert(ConstString(type_name->GetValue())); 6160 if (log) 6161 log->Printf("- %s", type_name->GetValue().c_str()); 6162 return true; 6163 }); 6164 6165 // For each StructuredDataPlugin, if the plugin handles any of the 6166 // types in the supported_type_names, map that type name to that plugin. 6167 uint32_t plugin_index = 0; 6168 for (auto create_instance = 6169 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6170 plugin_index); 6171 create_instance && !const_type_names.empty(); ++plugin_index) { 6172 // Create the plugin. 6173 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6174 if (!plugin_sp) { 6175 // This plugin doesn't think it can work with the process. 6176 // Move on to the next. 6177 continue; 6178 } 6179 6180 // For any of the remaining type names, map any that this plugin 6181 // supports. 6182 std::vector<ConstString> names_to_remove; 6183 for (auto &type_name : const_type_names) { 6184 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6185 m_structured_data_plugin_map.insert( 6186 std::make_pair(type_name, plugin_sp)); 6187 names_to_remove.push_back(type_name); 6188 if (log) 6189 log->Printf("Process::%s(): using plugin %s for type name " 6190 "%s", 6191 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6192 type_name.GetCString()); 6193 } 6194 } 6195 6196 // Remove the type names that were consumed by this plugin. 6197 for (auto &type_name : names_to_remove) 6198 const_type_names.erase(type_name); 6199 } 6200 } 6201 6202 bool Process::RouteAsyncStructuredData( 6203 const StructuredData::ObjectSP object_sp) { 6204 // Nothing to do if there's no data. 6205 if (!object_sp) 6206 return false; 6207 6208 // The contract is this must be a dictionary, so we can look up the 6209 // routing key via the top-level 'type' string value within the dictionary. 6210 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6211 if (!dictionary) 6212 return false; 6213 6214 // Grab the async structured type name (i.e. the feature/plugin name). 6215 ConstString type_name; 6216 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6217 return false; 6218 6219 // Check if there's a plugin registered for this type name. 6220 auto find_it = m_structured_data_plugin_map.find(type_name); 6221 if (find_it == m_structured_data_plugin_map.end()) { 6222 // We don't have a mapping for this structured data type. 6223 return false; 6224 } 6225 6226 // Route the structured data to the plugin. 6227 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6228 return true; 6229 } 6230 6231 Error Process::UpdateAutomaticSignalFiltering() { 6232 // Default implementation does nothign. 6233 // No automatic signal filtering to speak of. 6234 return Error(); 6235 } 6236