1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/ADT/ScopeExit.h" 14 #include "llvm/Support/ScopedPrinter.h" 15 #include "llvm/Support/Threading.h" 16 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/DynamicCheckerFunctions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/AssertFrameRecognizer.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/Language.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/ThreadPlanCallFunction.h" 64 #include "lldb/Target/ThreadPlanStack.h" 65 #include "lldb/Target/UnixSignals.h" 66 #include "lldb/Utility/Event.h" 67 #include "lldb/Utility/Log.h" 68 #include "lldb/Utility/NameMatches.h" 69 #include "lldb/Utility/ProcessInfo.h" 70 #include "lldb/Utility/SelectHelper.h" 71 #include "lldb/Utility/State.h" 72 #include "lldb/Utility/Timer.h" 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace std::chrono; 77 78 // Comment out line below to disable memory caching, overriding the process 79 // setting target.process.disable-memory-cache 80 #define ENABLE_MEMORY_CACHING 81 82 #ifdef ENABLE_MEMORY_CACHING 83 #define DISABLE_MEM_CACHE_DEFAULT false 84 #else 85 #define DISABLE_MEM_CACHE_DEFAULT true 86 #endif 87 88 class ProcessOptionValueProperties 89 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 90 public: 91 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 92 93 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 94 bool will_modify, 95 uint32_t idx) const override { 96 // When getting the value for a key from the process options, we will 97 // always try and grab the setting from the current process if there is 98 // one. Else we just use the one from this instance. 99 if (exe_ctx) { 100 Process *process = exe_ctx->GetProcessPtr(); 101 if (process) { 102 ProcessOptionValueProperties *instance_properties = 103 static_cast<ProcessOptionValueProperties *>( 104 process->GetValueProperties().get()); 105 if (this != instance_properties) 106 return instance_properties->ProtectedGetPropertyAtIndex(idx); 107 } 108 } 109 return ProtectedGetPropertyAtIndex(idx); 110 } 111 }; 112 113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 114 { 115 eFollowParent, 116 "parent", 117 "Continue tracing the parent process and detach the child.", 118 }, 119 { 120 eFollowChild, 121 "child", 122 "Trace the child process and detach the parent.", 123 }, 124 }; 125 126 #define LLDB_PROPERTIES_process 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process 131 #include "TargetPropertiesEnum.inc" 132 ePropertyExperimental, 133 }; 134 135 #define LLDB_PROPERTIES_process_experimental 136 #include "TargetProperties.inc" 137 138 enum { 139 #define LLDB_PROPERTIES_process_experimental 140 #include "TargetPropertiesEnum.inc" 141 }; 142 143 class ProcessExperimentalOptionValueProperties 144 : public Cloneable<ProcessExperimentalOptionValueProperties, 145 OptionValueProperties> { 146 public: 147 ProcessExperimentalOptionValueProperties() 148 : Cloneable( 149 ConstString(Properties::GetExperimentalSettingsName())) {} 150 }; 151 152 ProcessExperimentalProperties::ProcessExperimentalProperties() 153 : Properties(OptionValuePropertiesSP( 154 new ProcessExperimentalOptionValueProperties())) { 155 m_collection_sp->Initialize(g_process_experimental_properties); 156 } 157 158 ProcessProperties::ProcessProperties(lldb_private::Process *process) 159 : Properties(), 160 m_process(process) // Can be nullptr for global ProcessProperties 161 { 162 if (process == nullptr) { 163 // Global process properties, set them up one time 164 m_collection_sp = 165 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 166 m_collection_sp->Initialize(g_process_properties); 167 m_collection_sp->AppendProperty( 168 ConstString("thread"), ConstString("Settings specific to threads."), 169 true, Thread::GetGlobalProperties().GetValueProperties()); 170 } else { 171 m_collection_sp = 172 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 173 m_collection_sp->SetValueChangedCallback( 174 ePropertyPythonOSPluginPath, 175 [this] { m_process->LoadOperatingSystemPlugin(true); }); 176 } 177 178 m_experimental_properties_up = 179 std::make_unique<ProcessExperimentalProperties>(); 180 m_collection_sp->AppendProperty( 181 ConstString(Properties::GetExperimentalSettingsName()), 182 ConstString("Experimental settings - setting these won't produce " 183 "errors if the setting is not present."), 184 true, m_experimental_properties_up->GetValueProperties()); 185 } 186 187 ProcessProperties::~ProcessProperties() = default; 188 189 bool ProcessProperties::GetDisableMemoryCache() const { 190 const uint32_t idx = ePropertyDisableMemCache; 191 return m_collection_sp->GetPropertyAtIndexAsBoolean( 192 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 193 } 194 195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 196 const uint32_t idx = ePropertyMemCacheLineSize; 197 return m_collection_sp->GetPropertyAtIndexAsUInt64( 198 nullptr, idx, g_process_properties[idx].default_uint_value); 199 } 200 201 Args ProcessProperties::GetExtraStartupCommands() const { 202 Args args; 203 const uint32_t idx = ePropertyExtraStartCommand; 204 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 205 return args; 206 } 207 208 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 209 const uint32_t idx = ePropertyExtraStartCommand; 210 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 211 } 212 213 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 214 const uint32_t idx = ePropertyPythonOSPluginPath; 215 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 216 } 217 218 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 219 const uint32_t idx = ePropertyVirtualAddressableBits; 220 return m_collection_sp->GetPropertyAtIndexAsUInt64( 221 nullptr, idx, g_process_properties[idx].default_uint_value); 222 } 223 224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 225 const uint32_t idx = ePropertyVirtualAddressableBits; 226 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 227 } 228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 229 const uint32_t idx = ePropertyPythonOSPluginPath; 230 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 231 } 232 233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 234 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 235 return m_collection_sp->GetPropertyAtIndexAsBoolean( 236 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 237 } 238 239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 240 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 241 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 242 } 243 244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 245 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 246 return m_collection_sp->GetPropertyAtIndexAsBoolean( 247 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 248 } 249 250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 251 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 252 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 253 } 254 255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 256 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 257 return m_collection_sp->GetPropertyAtIndexAsBoolean( 258 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 259 } 260 261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 262 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 263 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 264 } 265 266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 267 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 268 return m_collection_sp->GetPropertyAtIndexAsBoolean( 269 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 270 } 271 272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 273 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 274 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 275 m_process->Flush(); 276 } 277 278 bool ProcessProperties::GetDetachKeepsStopped() const { 279 const uint32_t idx = ePropertyDetachKeepsStopped; 280 return m_collection_sp->GetPropertyAtIndexAsBoolean( 281 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 282 } 283 284 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 285 const uint32_t idx = ePropertyDetachKeepsStopped; 286 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 287 } 288 289 bool ProcessProperties::GetWarningsOptimization() const { 290 const uint32_t idx = ePropertyWarningOptimization; 291 return m_collection_sp->GetPropertyAtIndexAsBoolean( 292 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 293 } 294 295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 296 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 297 return m_collection_sp->GetPropertyAtIndexAsBoolean( 298 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 299 } 300 301 bool ProcessProperties::GetStopOnExec() const { 302 const uint32_t idx = ePropertyStopOnExec; 303 return m_collection_sp->GetPropertyAtIndexAsBoolean( 304 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 305 } 306 307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 308 const uint32_t idx = ePropertyUtilityExpressionTimeout; 309 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 310 nullptr, idx, g_process_properties[idx].default_uint_value); 311 return std::chrono::seconds(value); 312 } 313 314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 315 const uint32_t idx = ePropertyInterruptTimeout; 316 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 317 nullptr, idx, g_process_properties[idx].default_uint_value); 318 return std::chrono::seconds(value); 319 } 320 321 bool ProcessProperties::GetSteppingRunsAllThreads() const { 322 const uint32_t idx = ePropertySteppingRunsAllThreads; 323 return m_collection_sp->GetPropertyAtIndexAsBoolean( 324 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 325 } 326 327 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 328 const bool fail_value = true; 329 const Property *exp_property = 330 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 331 OptionValueProperties *exp_values = 332 exp_property->GetValue()->GetAsProperties(); 333 if (!exp_values) 334 return fail_value; 335 336 return exp_values->GetPropertyAtIndexAsBoolean( 337 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 338 } 339 340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 341 const Property *exp_property = 342 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 343 OptionValueProperties *exp_values = 344 exp_property->GetValue()->GetAsProperties(); 345 if (exp_values) 346 exp_values->SetPropertyAtIndexAsBoolean( 347 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 348 } 349 350 FollowForkMode ProcessProperties::GetFollowForkMode() const { 351 const uint32_t idx = ePropertyFollowForkMode; 352 return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration( 353 nullptr, idx, g_process_properties[idx].default_uint_value); 354 } 355 356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 357 llvm::StringRef plugin_name, 358 ListenerSP listener_sp, 359 const FileSpec *crash_file_path, 360 bool can_connect) { 361 static uint32_t g_process_unique_id = 0; 362 363 ProcessSP process_sp; 364 ProcessCreateInstance create_callback = nullptr; 365 if (!plugin_name.empty()) { 366 create_callback = 367 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); 368 if (create_callback) { 369 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 370 can_connect); 371 if (process_sp) { 372 if (process_sp->CanDebug(target_sp, true)) { 373 process_sp->m_process_unique_id = ++g_process_unique_id; 374 } else 375 process_sp.reset(); 376 } 377 } 378 } else { 379 for (uint32_t idx = 0; 380 (create_callback = 381 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 382 ++idx) { 383 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 384 can_connect); 385 if (process_sp) { 386 if (process_sp->CanDebug(target_sp, false)) { 387 process_sp->m_process_unique_id = ++g_process_unique_id; 388 break; 389 } else 390 process_sp.reset(); 391 } 392 } 393 } 394 return process_sp; 395 } 396 397 ConstString &Process::GetStaticBroadcasterClass() { 398 static ConstString class_name("lldb.process"); 399 return class_name; 400 } 401 402 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 403 : Process(target_sp, listener_sp, 404 UnixSignals::Create(HostInfo::GetArchitecture())) { 405 // This constructor just delegates to the full Process constructor, 406 // defaulting to using the Host's UnixSignals. 407 } 408 409 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 410 const UnixSignalsSP &unix_signals_sp) 411 : ProcessProperties(this), 412 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 413 Process::GetStaticBroadcasterClass().AsCString()), 414 m_target_wp(target_sp), m_public_state(eStateUnloaded), 415 m_private_state(eStateUnloaded), 416 m_private_state_broadcaster(nullptr, 417 "lldb.process.internal_state_broadcaster"), 418 m_private_state_control_broadcaster( 419 nullptr, "lldb.process.internal_state_control_broadcaster"), 420 m_private_state_listener_sp( 421 Listener::MakeListener("lldb.process.internal_state_listener")), 422 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 423 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 424 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 425 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 426 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 427 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 428 m_breakpoint_site_list(), m_dynamic_checkers_up(), 429 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 430 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 431 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 432 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 433 m_memory_cache(*this), m_allocated_memory_cache(*this), 434 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 435 m_private_run_lock(), m_finalizing(false), 436 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 437 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 438 m_can_interpret_function_calls(false), m_warnings_issued(), 439 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 440 CheckInWithManager(); 441 442 Log *log = GetLog(LLDBLog::Object); 443 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 444 445 if (!m_unix_signals_sp) 446 m_unix_signals_sp = std::make_shared<UnixSignals>(); 447 448 SetEventName(eBroadcastBitStateChanged, "state-changed"); 449 SetEventName(eBroadcastBitInterrupt, "interrupt"); 450 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 451 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 452 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 453 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 454 455 m_private_state_control_broadcaster.SetEventName( 456 eBroadcastInternalStateControlStop, "control-stop"); 457 m_private_state_control_broadcaster.SetEventName( 458 eBroadcastInternalStateControlPause, "control-pause"); 459 m_private_state_control_broadcaster.SetEventName( 460 eBroadcastInternalStateControlResume, "control-resume"); 461 462 m_listener_sp->StartListeningForEvents( 463 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 464 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 465 eBroadcastBitProfileData | eBroadcastBitStructuredData); 466 467 m_private_state_listener_sp->StartListeningForEvents( 468 &m_private_state_broadcaster, 469 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 470 471 m_private_state_listener_sp->StartListeningForEvents( 472 &m_private_state_control_broadcaster, 473 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 474 eBroadcastInternalStateControlResume); 475 // We need something valid here, even if just the default UnixSignalsSP. 476 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 477 478 // Allow the platform to override the default cache line size 479 OptionValueSP value_sp = 480 m_collection_sp 481 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 482 ->GetValue(); 483 uint32_t platform_cache_line_size = 484 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 485 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 486 value_sp->SetUInt64Value(platform_cache_line_size); 487 488 RegisterAssertFrameRecognizer(this); 489 } 490 491 Process::~Process() { 492 Log *log = GetLog(LLDBLog::Object); 493 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 494 StopPrivateStateThread(); 495 496 // ThreadList::Clear() will try to acquire this process's mutex, so 497 // explicitly clear the thread list here to ensure that the mutex is not 498 // destroyed before the thread list. 499 m_thread_list.Clear(); 500 } 501 502 ProcessProperties &Process::GetGlobalProperties() { 503 // NOTE: intentional leak so we don't crash if global destructor chain gets 504 // called as other threads still use the result of this function 505 static ProcessProperties *g_settings_ptr = 506 new ProcessProperties(nullptr); 507 return *g_settings_ptr; 508 } 509 510 void Process::Finalize() { 511 if (m_finalizing.exchange(true)) 512 return; 513 514 // Destroy the process. This will call the virtual function DoDestroy under 515 // the hood, giving our derived class a chance to do the ncessary tear down. 516 DestroyImpl(false); 517 518 // Clear our broadcaster before we proceed with destroying 519 Broadcaster::Clear(); 520 521 // Do any cleanup needed prior to being destructed... Subclasses that 522 // override this method should call this superclass method as well. 523 524 // We need to destroy the loader before the derived Process class gets 525 // destroyed since it is very likely that undoing the loader will require 526 // access to the real process. 527 m_dynamic_checkers_up.reset(); 528 m_abi_sp.reset(); 529 m_os_up.reset(); 530 m_system_runtime_up.reset(); 531 m_dyld_up.reset(); 532 m_jit_loaders_up.reset(); 533 m_thread_plans.Clear(); 534 m_thread_list_real.Destroy(); 535 m_thread_list.Destroy(); 536 m_extended_thread_list.Destroy(); 537 m_queue_list.Clear(); 538 m_queue_list_stop_id = 0; 539 std::vector<Notifications> empty_notifications; 540 m_notifications.swap(empty_notifications); 541 m_image_tokens.clear(); 542 m_memory_cache.Clear(); 543 m_allocated_memory_cache.Clear(); 544 { 545 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 546 m_language_runtimes.clear(); 547 } 548 m_instrumentation_runtimes.clear(); 549 m_next_event_action_up.reset(); 550 // Clear the last natural stop ID since it has a strong reference to this 551 // process 552 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 553 //#ifdef LLDB_CONFIGURATION_DEBUG 554 // StreamFile s(stdout, false); 555 // EventSP event_sp; 556 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 557 // { 558 // event_sp->Dump (&s); 559 // s.EOL(); 560 // } 561 //#endif 562 // We have to be very careful here as the m_private_state_listener might 563 // contain events that have ProcessSP values in them which can keep this 564 // process around forever. These events need to be cleared out. 565 m_private_state_listener_sp->Clear(); 566 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 567 m_public_run_lock.SetStopped(); 568 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 569 m_private_run_lock.SetStopped(); 570 m_structured_data_plugin_map.clear(); 571 } 572 573 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 574 m_notifications.push_back(callbacks); 575 if (callbacks.initialize != nullptr) 576 callbacks.initialize(callbacks.baton, this); 577 } 578 579 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 580 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 581 for (pos = m_notifications.begin(); pos != end; ++pos) { 582 if (pos->baton == callbacks.baton && 583 pos->initialize == callbacks.initialize && 584 pos->process_state_changed == callbacks.process_state_changed) { 585 m_notifications.erase(pos); 586 return true; 587 } 588 } 589 return false; 590 } 591 592 void Process::SynchronouslyNotifyStateChanged(StateType state) { 593 std::vector<Notifications>::iterator notification_pos, 594 notification_end = m_notifications.end(); 595 for (notification_pos = m_notifications.begin(); 596 notification_pos != notification_end; ++notification_pos) { 597 if (notification_pos->process_state_changed) 598 notification_pos->process_state_changed(notification_pos->baton, this, 599 state); 600 } 601 } 602 603 // FIXME: We need to do some work on events before the general Listener sees 604 // them. 605 // For instance if we are continuing from a breakpoint, we need to ensure that 606 // we do the little "insert real insn, step & stop" trick. But we can't do 607 // that when the event is delivered by the broadcaster - since that is done on 608 // the thread that is waiting for new events, so if we needed more than one 609 // event for our handling, we would stall. So instead we do it when we fetch 610 // the event off of the queue. 611 // 612 613 StateType Process::GetNextEvent(EventSP &event_sp) { 614 StateType state = eStateInvalid; 615 616 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 617 std::chrono::seconds(0)) && 618 event_sp) 619 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 620 621 return state; 622 } 623 624 void Process::SyncIOHandler(uint32_t iohandler_id, 625 const Timeout<std::micro> &timeout) { 626 // don't sync (potentially context switch) in case where there is no process 627 // IO 628 if (!m_process_input_reader) 629 return; 630 631 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 632 633 Log *log = GetLog(LLDBLog::Process); 634 if (Result) { 635 LLDB_LOG( 636 log, 637 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 638 iohandler_id, *Result); 639 } else { 640 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 641 iohandler_id); 642 } 643 } 644 645 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 646 EventSP *event_sp_ptr, bool wait_always, 647 ListenerSP hijack_listener_sp, 648 Stream *stream, bool use_run_lock) { 649 // We can't just wait for a "stopped" event, because the stopped event may 650 // have restarted the target. We have to actually check each event, and in 651 // the case of a stopped event check the restarted flag on the event. 652 if (event_sp_ptr) 653 event_sp_ptr->reset(); 654 StateType state = GetState(); 655 // If we are exited or detached, we won't ever get back to any other valid 656 // state... 657 if (state == eStateDetached || state == eStateExited) 658 return state; 659 660 Log *log = GetLog(LLDBLog::Process); 661 LLDB_LOG(log, "timeout = {0}", timeout); 662 663 if (!wait_always && StateIsStoppedState(state, true) && 664 StateIsStoppedState(GetPrivateState(), true)) { 665 LLDB_LOGF(log, 666 "Process::%s returning without waiting for events; process " 667 "private and public states are already 'stopped'.", 668 __FUNCTION__); 669 // We need to toggle the run lock as this won't get done in 670 // SetPublicState() if the process is hijacked. 671 if (hijack_listener_sp && use_run_lock) 672 m_public_run_lock.SetStopped(); 673 return state; 674 } 675 676 while (state != eStateInvalid) { 677 EventSP event_sp; 678 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 679 if (event_sp_ptr && event_sp) 680 *event_sp_ptr = event_sp; 681 682 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 683 Process::HandleProcessStateChangedEvent(event_sp, stream, 684 pop_process_io_handler); 685 686 switch (state) { 687 case eStateCrashed: 688 case eStateDetached: 689 case eStateExited: 690 case eStateUnloaded: 691 // We need to toggle the run lock as this won't get done in 692 // SetPublicState() if the process is hijacked. 693 if (hijack_listener_sp && use_run_lock) 694 m_public_run_lock.SetStopped(); 695 return state; 696 case eStateStopped: 697 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 698 continue; 699 else { 700 // We need to toggle the run lock as this won't get done in 701 // SetPublicState() if the process is hijacked. 702 if (hijack_listener_sp && use_run_lock) 703 m_public_run_lock.SetStopped(); 704 return state; 705 } 706 default: 707 continue; 708 } 709 } 710 return state; 711 } 712 713 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 714 Stream *stream, 715 bool &pop_process_io_handler) { 716 const bool handle_pop = pop_process_io_handler; 717 718 pop_process_io_handler = false; 719 ProcessSP process_sp = 720 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 721 722 if (!process_sp) 723 return false; 724 725 StateType event_state = 726 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 727 if (event_state == eStateInvalid) 728 return false; 729 730 switch (event_state) { 731 case eStateInvalid: 732 case eStateUnloaded: 733 case eStateAttaching: 734 case eStateLaunching: 735 case eStateStepping: 736 case eStateDetached: 737 if (stream) 738 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 739 StateAsCString(event_state)); 740 if (event_state == eStateDetached) 741 pop_process_io_handler = true; 742 break; 743 744 case eStateConnected: 745 case eStateRunning: 746 // Don't be chatty when we run... 747 break; 748 749 case eStateExited: 750 if (stream) 751 process_sp->GetStatus(*stream); 752 pop_process_io_handler = true; 753 break; 754 755 case eStateStopped: 756 case eStateCrashed: 757 case eStateSuspended: 758 // Make sure the program hasn't been auto-restarted: 759 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 760 if (stream) { 761 size_t num_reasons = 762 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 763 if (num_reasons > 0) { 764 // FIXME: Do we want to report this, or would that just be annoyingly 765 // chatty? 766 if (num_reasons == 1) { 767 const char *reason = 768 Process::ProcessEventData::GetRestartedReasonAtIndex( 769 event_sp.get(), 0); 770 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 771 process_sp->GetID(), 772 reason ? reason : "<UNKNOWN REASON>"); 773 } else { 774 stream->Printf("Process %" PRIu64 775 " stopped and restarted, reasons:\n", 776 process_sp->GetID()); 777 778 for (size_t i = 0; i < num_reasons; i++) { 779 const char *reason = 780 Process::ProcessEventData::GetRestartedReasonAtIndex( 781 event_sp.get(), i); 782 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 783 } 784 } 785 } 786 } 787 } else { 788 StopInfoSP curr_thread_stop_info_sp; 789 // Lock the thread list so it doesn't change on us, this is the scope for 790 // the locker: 791 { 792 ThreadList &thread_list = process_sp->GetThreadList(); 793 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 794 795 ThreadSP curr_thread(thread_list.GetSelectedThread()); 796 ThreadSP thread; 797 StopReason curr_thread_stop_reason = eStopReasonInvalid; 798 bool prefer_curr_thread = false; 799 if (curr_thread && curr_thread->IsValid()) { 800 curr_thread_stop_reason = curr_thread->GetStopReason(); 801 switch (curr_thread_stop_reason) { 802 case eStopReasonNone: 803 case eStopReasonInvalid: 804 // Don't prefer the current thread if it didn't stop for a reason. 805 break; 806 case eStopReasonSignal: { 807 // We need to do the same computation we do for other threads 808 // below in case the current thread happens to be the one that 809 // stopped for the no-stop signal. 810 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 811 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 812 prefer_curr_thread = true; 813 } break; 814 default: 815 prefer_curr_thread = true; 816 break; 817 } 818 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 819 } 820 821 if (!prefer_curr_thread) { 822 // Prefer a thread that has just completed its plan over another 823 // thread as current thread. 824 ThreadSP plan_thread; 825 ThreadSP other_thread; 826 827 const size_t num_threads = thread_list.GetSize(); 828 size_t i; 829 for (i = 0; i < num_threads; ++i) { 830 thread = thread_list.GetThreadAtIndex(i); 831 StopReason thread_stop_reason = thread->GetStopReason(); 832 switch (thread_stop_reason) { 833 case eStopReasonInvalid: 834 case eStopReasonNone: 835 break; 836 837 case eStopReasonSignal: { 838 // Don't select a signal thread if we weren't going to stop at 839 // that signal. We have to have had another reason for stopping 840 // here, and the user doesn't want to see this thread. 841 uint64_t signo = thread->GetStopInfo()->GetValue(); 842 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 843 if (!other_thread) 844 other_thread = thread; 845 } 846 break; 847 } 848 case eStopReasonTrace: 849 case eStopReasonBreakpoint: 850 case eStopReasonWatchpoint: 851 case eStopReasonException: 852 case eStopReasonExec: 853 case eStopReasonFork: 854 case eStopReasonVFork: 855 case eStopReasonVForkDone: 856 case eStopReasonThreadExiting: 857 case eStopReasonInstrumentation: 858 case eStopReasonProcessorTrace: 859 if (!other_thread) 860 other_thread = thread; 861 break; 862 case eStopReasonPlanComplete: 863 if (!plan_thread) 864 plan_thread = thread; 865 break; 866 } 867 } 868 if (plan_thread) 869 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 870 else if (other_thread) 871 thread_list.SetSelectedThreadByID(other_thread->GetID()); 872 else { 873 if (curr_thread && curr_thread->IsValid()) 874 thread = curr_thread; 875 else 876 thread = thread_list.GetThreadAtIndex(0); 877 878 if (thread) 879 thread_list.SetSelectedThreadByID(thread->GetID()); 880 } 881 } 882 } 883 // Drop the ThreadList mutex by here, since GetThreadStatus below might 884 // have to run code, e.g. for Data formatters, and if we hold the 885 // ThreadList mutex, then the process is going to have a hard time 886 // restarting the process. 887 if (stream) { 888 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 889 if (debugger.GetTargetList().GetSelectedTarget().get() == 890 &process_sp->GetTarget()) { 891 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 892 893 if (!thread_sp || !thread_sp->IsValid()) 894 return false; 895 896 const bool only_threads_with_stop_reason = true; 897 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 898 const uint32_t num_frames = 1; 899 const uint32_t num_frames_with_source = 1; 900 const bool stop_format = true; 901 902 process_sp->GetStatus(*stream); 903 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 904 start_frame, num_frames, 905 num_frames_with_source, 906 stop_format); 907 if (curr_thread_stop_info_sp) { 908 lldb::addr_t crashing_address; 909 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 910 curr_thread_stop_info_sp, &crashing_address); 911 if (valobj_sp) { 912 const ValueObject::GetExpressionPathFormat format = 913 ValueObject::GetExpressionPathFormat:: 914 eGetExpressionPathFormatHonorPointers; 915 stream->PutCString("Likely cause: "); 916 valobj_sp->GetExpressionPath(*stream, format); 917 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 918 } 919 } 920 } else { 921 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 922 process_sp->GetTarget().shared_from_this()); 923 if (target_idx != UINT32_MAX) 924 stream->Printf("Target %d: (", target_idx); 925 else 926 stream->Printf("Target <unknown index>: ("); 927 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 928 stream->Printf(") stopped.\n"); 929 } 930 } 931 932 // Pop the process IO handler 933 pop_process_io_handler = true; 934 } 935 break; 936 } 937 938 if (handle_pop && pop_process_io_handler) 939 process_sp->PopProcessIOHandler(); 940 941 return true; 942 } 943 944 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 945 if (listener_sp) { 946 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 947 eBroadcastBitInterrupt); 948 } else 949 return false; 950 } 951 952 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 953 954 StateType Process::GetStateChangedEvents(EventSP &event_sp, 955 const Timeout<std::micro> &timeout, 956 ListenerSP hijack_listener_sp) { 957 Log *log = GetLog(LLDBLog::Process); 958 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 959 960 ListenerSP listener_sp = hijack_listener_sp; 961 if (!listener_sp) 962 listener_sp = m_listener_sp; 963 964 StateType state = eStateInvalid; 965 if (listener_sp->GetEventForBroadcasterWithType( 966 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 967 timeout)) { 968 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 969 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 970 else 971 LLDB_LOG(log, "got no event or was interrupted."); 972 } 973 974 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 975 return state; 976 } 977 978 Event *Process::PeekAtStateChangedEvents() { 979 Log *log = GetLog(LLDBLog::Process); 980 981 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 982 983 Event *event_ptr; 984 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 985 this, eBroadcastBitStateChanged); 986 if (log) { 987 if (event_ptr) { 988 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 989 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 990 } else { 991 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 992 } 993 } 994 return event_ptr; 995 } 996 997 StateType 998 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 999 const Timeout<std::micro> &timeout) { 1000 Log *log = GetLog(LLDBLog::Process); 1001 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1002 1003 StateType state = eStateInvalid; 1004 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1005 &m_private_state_broadcaster, 1006 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1007 timeout)) 1008 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1009 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1010 1011 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1012 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1013 return state; 1014 } 1015 1016 bool Process::GetEventsPrivate(EventSP &event_sp, 1017 const Timeout<std::micro> &timeout, 1018 bool control_only) { 1019 Log *log = GetLog(LLDBLog::Process); 1020 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1021 1022 if (control_only) 1023 return m_private_state_listener_sp->GetEventForBroadcaster( 1024 &m_private_state_control_broadcaster, event_sp, timeout); 1025 else 1026 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1027 } 1028 1029 bool Process::IsRunning() const { 1030 return StateIsRunningState(m_public_state.GetValue()); 1031 } 1032 1033 int Process::GetExitStatus() { 1034 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1035 1036 if (m_public_state.GetValue() == eStateExited) 1037 return m_exit_status; 1038 return -1; 1039 } 1040 1041 const char *Process::GetExitDescription() { 1042 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1043 1044 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1045 return m_exit_string.c_str(); 1046 return nullptr; 1047 } 1048 1049 bool Process::SetExitStatus(int status, const char *cstr) { 1050 // Use a mutex to protect setting the exit status. 1051 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1052 1053 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1054 LLDB_LOGF( 1055 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1056 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1057 1058 // We were already in the exited state 1059 if (m_private_state.GetValue() == eStateExited) { 1060 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1061 "state was already set to eStateExited"); 1062 return false; 1063 } 1064 1065 m_exit_status = status; 1066 if (cstr) 1067 m_exit_string = cstr; 1068 else 1069 m_exit_string.clear(); 1070 1071 // Clear the last natural stop ID since it has a strong reference to this 1072 // process 1073 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1074 1075 SetPrivateState(eStateExited); 1076 1077 // Allow subclasses to do some cleanup 1078 DidExit(); 1079 1080 return true; 1081 } 1082 1083 bool Process::IsAlive() { 1084 switch (m_private_state.GetValue()) { 1085 case eStateConnected: 1086 case eStateAttaching: 1087 case eStateLaunching: 1088 case eStateStopped: 1089 case eStateRunning: 1090 case eStateStepping: 1091 case eStateCrashed: 1092 case eStateSuspended: 1093 return true; 1094 default: 1095 return false; 1096 } 1097 } 1098 1099 // This static callback can be used to watch for local child processes on the 1100 // current host. The child process exits, the process will be found in the 1101 // global target list (we want to be completely sure that the 1102 // lldb_private::Process doesn't go away before we can deliver the signal. 1103 bool Process::SetProcessExitStatus( 1104 lldb::pid_t pid, bool exited, 1105 int signo, // Zero for no signal 1106 int exit_status // Exit value of process if signal is zero 1107 ) { 1108 Log *log = GetLog(LLDBLog::Process); 1109 LLDB_LOGF(log, 1110 "Process::SetProcessExitStatus (pid=%" PRIu64 1111 ", exited=%i, signal=%i, exit_status=%i)\n", 1112 pid, exited, signo, exit_status); 1113 1114 if (exited) { 1115 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1116 if (target_sp) { 1117 ProcessSP process_sp(target_sp->GetProcessSP()); 1118 if (process_sp) { 1119 const char *signal_cstr = nullptr; 1120 if (signo) 1121 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1122 1123 process_sp->SetExitStatus(exit_status, signal_cstr); 1124 } 1125 } 1126 return true; 1127 } 1128 return false; 1129 } 1130 1131 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1132 ThreadList &new_thread_list) { 1133 m_thread_plans.ClearThreadCache(); 1134 return DoUpdateThreadList(old_thread_list, new_thread_list); 1135 } 1136 1137 void Process::UpdateThreadListIfNeeded() { 1138 const uint32_t stop_id = GetStopID(); 1139 if (m_thread_list.GetSize(false) == 0 || 1140 stop_id != m_thread_list.GetStopID()) { 1141 bool clear_unused_threads = true; 1142 const StateType state = GetPrivateState(); 1143 if (StateIsStoppedState(state, true)) { 1144 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1145 m_thread_list.SetStopID(stop_id); 1146 1147 // m_thread_list does have its own mutex, but we need to hold onto the 1148 // mutex between the call to UpdateThreadList(...) and the 1149 // os->UpdateThreadList(...) so it doesn't change on us 1150 ThreadList &old_thread_list = m_thread_list; 1151 ThreadList real_thread_list(this); 1152 ThreadList new_thread_list(this); 1153 // Always update the thread list with the protocol specific thread list, 1154 // but only update if "true" is returned 1155 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1156 // Don't call into the OperatingSystem to update the thread list if we 1157 // are shutting down, since that may call back into the SBAPI's, 1158 // requiring the API lock which is already held by whoever is shutting 1159 // us down, causing a deadlock. 1160 OperatingSystem *os = GetOperatingSystem(); 1161 if (os && !m_destroy_in_process) { 1162 // Clear any old backing threads where memory threads might have been 1163 // backed by actual threads from the lldb_private::Process subclass 1164 size_t num_old_threads = old_thread_list.GetSize(false); 1165 for (size_t i = 0; i < num_old_threads; ++i) 1166 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1167 // See if the OS plugin reports all threads. If it does, then 1168 // it is safe to clear unseen thread's plans here. Otherwise we 1169 // should preserve them in case they show up again: 1170 clear_unused_threads = GetOSPluginReportsAllThreads(); 1171 1172 // Turn off dynamic types to ensure we don't run any expressions. 1173 // Objective-C can run an expression to determine if a SBValue is a 1174 // dynamic type or not and we need to avoid this. OperatingSystem 1175 // plug-ins can't run expressions that require running code... 1176 1177 Target &target = GetTarget(); 1178 const lldb::DynamicValueType saved_prefer_dynamic = 1179 target.GetPreferDynamicValue(); 1180 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1181 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1182 1183 // Now let the OperatingSystem plug-in update the thread list 1184 1185 os->UpdateThreadList( 1186 old_thread_list, // Old list full of threads created by OS plug-in 1187 real_thread_list, // The actual thread list full of threads 1188 // created by each lldb_private::Process 1189 // subclass 1190 new_thread_list); // The new thread list that we will show to the 1191 // user that gets filled in 1192 1193 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1194 target.SetPreferDynamicValue(saved_prefer_dynamic); 1195 } else { 1196 // No OS plug-in, the new thread list is the same as the real thread 1197 // list. 1198 new_thread_list = real_thread_list; 1199 } 1200 1201 m_thread_list_real.Update(real_thread_list); 1202 m_thread_list.Update(new_thread_list); 1203 m_thread_list.SetStopID(stop_id); 1204 1205 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1206 // Clear any extended threads that we may have accumulated previously 1207 m_extended_thread_list.Clear(); 1208 m_extended_thread_stop_id = GetLastNaturalStopID(); 1209 1210 m_queue_list.Clear(); 1211 m_queue_list_stop_id = GetLastNaturalStopID(); 1212 } 1213 } 1214 // Now update the plan stack map. 1215 // If we do have an OS plugin, any absent real threads in the 1216 // m_thread_list have already been removed from the ThreadPlanStackMap. 1217 // So any remaining threads are OS Plugin threads, and those we want to 1218 // preserve in case they show up again. 1219 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1220 } 1221 } 1222 } 1223 1224 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1225 return m_thread_plans.Find(tid); 1226 } 1227 1228 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1229 return m_thread_plans.PrunePlansForTID(tid); 1230 } 1231 1232 void Process::PruneThreadPlans() { 1233 m_thread_plans.Update(GetThreadList(), true, false); 1234 } 1235 1236 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1237 lldb::DescriptionLevel desc_level, 1238 bool internal, bool condense_trivial, 1239 bool skip_unreported_plans) { 1240 return m_thread_plans.DumpPlansForTID( 1241 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1242 } 1243 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1244 bool internal, bool condense_trivial, 1245 bool skip_unreported_plans) { 1246 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1247 skip_unreported_plans); 1248 } 1249 1250 void Process::UpdateQueueListIfNeeded() { 1251 if (m_system_runtime_up) { 1252 if (m_queue_list.GetSize() == 0 || 1253 m_queue_list_stop_id != GetLastNaturalStopID()) { 1254 const StateType state = GetPrivateState(); 1255 if (StateIsStoppedState(state, true)) { 1256 m_system_runtime_up->PopulateQueueList(m_queue_list); 1257 m_queue_list_stop_id = GetLastNaturalStopID(); 1258 } 1259 } 1260 } 1261 } 1262 1263 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1264 OperatingSystem *os = GetOperatingSystem(); 1265 if (os) 1266 return os->CreateThread(tid, context); 1267 return ThreadSP(); 1268 } 1269 1270 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1271 return AssignIndexIDToThread(thread_id); 1272 } 1273 1274 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1275 return (m_thread_id_to_index_id_map.find(thread_id) != 1276 m_thread_id_to_index_id_map.end()); 1277 } 1278 1279 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1280 uint32_t result = 0; 1281 std::map<uint64_t, uint32_t>::iterator iterator = 1282 m_thread_id_to_index_id_map.find(thread_id); 1283 if (iterator == m_thread_id_to_index_id_map.end()) { 1284 result = ++m_thread_index_id; 1285 m_thread_id_to_index_id_map[thread_id] = result; 1286 } else { 1287 result = iterator->second; 1288 } 1289 1290 return result; 1291 } 1292 1293 StateType Process::GetState() { 1294 return m_public_state.GetValue(); 1295 } 1296 1297 void Process::SetPublicState(StateType new_state, bool restarted) { 1298 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1299 if (new_state_is_stopped) { 1300 // This will only set the time if the public stop time has no value, so 1301 // it is ok to call this multiple times. With a public stop we can't look 1302 // at the stop ID because many private stops might have happened, so we 1303 // can't check for a stop ID of zero. This allows the "statistics" command 1304 // to dump the time it takes to reach somewhere in your code, like a 1305 // breakpoint you set. 1306 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1307 } 1308 1309 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1310 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1311 StateAsCString(new_state), restarted); 1312 const StateType old_state = m_public_state.GetValue(); 1313 m_public_state.SetValue(new_state); 1314 1315 // On the transition from Run to Stopped, we unlock the writer end of the run 1316 // lock. The lock gets locked in Resume, which is the public API to tell the 1317 // program to run. 1318 if (!StateChangedIsExternallyHijacked()) { 1319 if (new_state == eStateDetached) { 1320 LLDB_LOGF(log, 1321 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1322 StateAsCString(new_state)); 1323 m_public_run_lock.SetStopped(); 1324 } else { 1325 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1326 if ((old_state_is_stopped != new_state_is_stopped)) { 1327 if (new_state_is_stopped && !restarted) { 1328 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1329 StateAsCString(new_state)); 1330 m_public_run_lock.SetStopped(); 1331 } 1332 } 1333 } 1334 } 1335 } 1336 1337 Status Process::Resume() { 1338 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1339 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1340 if (!m_public_run_lock.TrySetRunning()) { 1341 Status error("Resume request failed - process still running."); 1342 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1343 return error; 1344 } 1345 Status error = PrivateResume(); 1346 if (!error.Success()) { 1347 // Undo running state change 1348 m_public_run_lock.SetStopped(); 1349 } 1350 return error; 1351 } 1352 1353 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1354 1355 Status Process::ResumeSynchronous(Stream *stream) { 1356 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1357 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1358 if (!m_public_run_lock.TrySetRunning()) { 1359 Status error("Resume request failed - process still running."); 1360 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1361 return error; 1362 } 1363 1364 ListenerSP listener_sp( 1365 Listener::MakeListener(g_resume_sync_name)); 1366 HijackProcessEvents(listener_sp); 1367 1368 Status error = PrivateResume(); 1369 if (error.Success()) { 1370 StateType state = WaitForProcessToStop(llvm::None, nullptr, true, 1371 listener_sp, stream); 1372 const bool must_be_alive = 1373 false; // eStateExited is ok, so this must be false 1374 if (!StateIsStoppedState(state, must_be_alive)) 1375 error.SetErrorStringWithFormat( 1376 "process not in stopped state after synchronous resume: %s", 1377 StateAsCString(state)); 1378 } else { 1379 // Undo running state change 1380 m_public_run_lock.SetStopped(); 1381 } 1382 1383 // Undo the hijacking of process events... 1384 RestoreProcessEvents(); 1385 1386 return error; 1387 } 1388 1389 bool Process::StateChangedIsExternallyHijacked() { 1390 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1391 const char *hijacking_name = GetHijackingListenerName(); 1392 if (hijacking_name && 1393 strcmp(hijacking_name, g_resume_sync_name)) 1394 return true; 1395 } 1396 return false; 1397 } 1398 1399 bool Process::StateChangedIsHijackedForSynchronousResume() { 1400 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1401 const char *hijacking_name = GetHijackingListenerName(); 1402 if (hijacking_name && 1403 strcmp(hijacking_name, g_resume_sync_name) == 0) 1404 return true; 1405 } 1406 return false; 1407 } 1408 1409 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1410 1411 void Process::SetPrivateState(StateType new_state) { 1412 if (m_finalizing) 1413 return; 1414 1415 Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); 1416 bool state_changed = false; 1417 1418 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1419 1420 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1421 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1422 1423 const StateType old_state = m_private_state.GetValueNoLock(); 1424 state_changed = old_state != new_state; 1425 1426 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1427 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1428 if (old_state_is_stopped != new_state_is_stopped) { 1429 if (new_state_is_stopped) 1430 m_private_run_lock.SetStopped(); 1431 else 1432 m_private_run_lock.SetRunning(); 1433 } 1434 1435 if (state_changed) { 1436 m_private_state.SetValueNoLock(new_state); 1437 EventSP event_sp( 1438 new Event(eBroadcastBitStateChanged, 1439 new ProcessEventData(shared_from_this(), new_state))); 1440 if (StateIsStoppedState(new_state, false)) { 1441 // Note, this currently assumes that all threads in the list stop when 1442 // the process stops. In the future we will want to support a debugging 1443 // model where some threads continue to run while others are stopped. 1444 // When that happens we will either need a way for the thread list to 1445 // identify which threads are stopping or create a special thread list 1446 // containing only threads which actually stopped. 1447 // 1448 // The process plugin is responsible for managing the actual behavior of 1449 // the threads and should have stopped any threads that are going to stop 1450 // before we get here. 1451 m_thread_list.DidStop(); 1452 1453 if (m_mod_id.BumpStopID() == 0) 1454 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1455 1456 if (!m_mod_id.IsLastResumeForUserExpression()) 1457 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1458 m_memory_cache.Clear(); 1459 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1460 StateAsCString(new_state), m_mod_id.GetStopID()); 1461 } 1462 1463 m_private_state_broadcaster.BroadcastEvent(event_sp); 1464 } else { 1465 LLDB_LOGF(log, 1466 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1467 StateAsCString(new_state)); 1468 } 1469 } 1470 1471 void Process::SetRunningUserExpression(bool on) { 1472 m_mod_id.SetRunningUserExpression(on); 1473 } 1474 1475 void Process::SetRunningUtilityFunction(bool on) { 1476 m_mod_id.SetRunningUtilityFunction(on); 1477 } 1478 1479 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1480 1481 const lldb::ABISP &Process::GetABI() { 1482 if (!m_abi_sp) 1483 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1484 return m_abi_sp; 1485 } 1486 1487 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1488 std::vector<LanguageRuntime *> language_runtimes; 1489 1490 if (m_finalizing) 1491 return language_runtimes; 1492 1493 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1494 // Before we pass off a copy of the language runtimes, we must make sure that 1495 // our collection is properly populated. It's possible that some of the 1496 // language runtimes were not loaded yet, either because nobody requested it 1497 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1498 // hadn't been loaded). 1499 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1500 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1501 language_runtimes.emplace_back(runtime); 1502 } 1503 1504 return language_runtimes; 1505 } 1506 1507 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1508 if (m_finalizing) 1509 return nullptr; 1510 1511 LanguageRuntime *runtime = nullptr; 1512 1513 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1514 LanguageRuntimeCollection::iterator pos; 1515 pos = m_language_runtimes.find(language); 1516 if (pos == m_language_runtimes.end() || !pos->second) { 1517 lldb::LanguageRuntimeSP runtime_sp( 1518 LanguageRuntime::FindPlugin(this, language)); 1519 1520 m_language_runtimes[language] = runtime_sp; 1521 runtime = runtime_sp.get(); 1522 } else 1523 runtime = pos->second.get(); 1524 1525 if (runtime) 1526 // It's possible that a language runtime can support multiple LanguageTypes, 1527 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1528 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1529 // primary language type and make sure that our runtime supports it. 1530 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1531 1532 return runtime; 1533 } 1534 1535 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1536 if (m_finalizing) 1537 return false; 1538 1539 if (in_value.IsDynamic()) 1540 return false; 1541 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1542 1543 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1544 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1545 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1546 } 1547 1548 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1549 if (runtime->CouldHaveDynamicValue(in_value)) 1550 return true; 1551 } 1552 1553 return false; 1554 } 1555 1556 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1557 m_dynamic_checkers_up.reset(dynamic_checkers); 1558 } 1559 1560 BreakpointSiteList &Process::GetBreakpointSiteList() { 1561 return m_breakpoint_site_list; 1562 } 1563 1564 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1565 return m_breakpoint_site_list; 1566 } 1567 1568 void Process::DisableAllBreakpointSites() { 1569 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1570 // bp_site->SetEnabled(true); 1571 DisableBreakpointSite(bp_site); 1572 }); 1573 } 1574 1575 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1576 Status error(DisableBreakpointSiteByID(break_id)); 1577 1578 if (error.Success()) 1579 m_breakpoint_site_list.Remove(break_id); 1580 1581 return error; 1582 } 1583 1584 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1585 Status error; 1586 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1587 if (bp_site_sp) { 1588 if (bp_site_sp->IsEnabled()) 1589 error = DisableBreakpointSite(bp_site_sp.get()); 1590 } else { 1591 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1592 break_id); 1593 } 1594 1595 return error; 1596 } 1597 1598 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1599 Status error; 1600 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1601 if (bp_site_sp) { 1602 if (!bp_site_sp->IsEnabled()) 1603 error = EnableBreakpointSite(bp_site_sp.get()); 1604 } else { 1605 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1606 break_id); 1607 } 1608 return error; 1609 } 1610 1611 lldb::break_id_t 1612 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1613 bool use_hardware) { 1614 addr_t load_addr = LLDB_INVALID_ADDRESS; 1615 1616 bool show_error = true; 1617 switch (GetState()) { 1618 case eStateInvalid: 1619 case eStateUnloaded: 1620 case eStateConnected: 1621 case eStateAttaching: 1622 case eStateLaunching: 1623 case eStateDetached: 1624 case eStateExited: 1625 show_error = false; 1626 break; 1627 1628 case eStateStopped: 1629 case eStateRunning: 1630 case eStateStepping: 1631 case eStateCrashed: 1632 case eStateSuspended: 1633 show_error = IsAlive(); 1634 break; 1635 } 1636 1637 // Reset the IsIndirect flag here, in case the location changes from pointing 1638 // to a indirect symbol to a regular symbol. 1639 owner->SetIsIndirect(false); 1640 1641 if (owner->ShouldResolveIndirectFunctions()) { 1642 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1643 if (symbol && symbol->IsIndirect()) { 1644 Status error; 1645 Address symbol_address = symbol->GetAddress(); 1646 load_addr = ResolveIndirectFunction(&symbol_address, error); 1647 if (!error.Success() && show_error) { 1648 GetTarget().GetDebugger().GetErrorStream().Printf( 1649 "warning: failed to resolve indirect function at 0x%" PRIx64 1650 " for breakpoint %i.%i: %s\n", 1651 symbol->GetLoadAddress(&GetTarget()), 1652 owner->GetBreakpoint().GetID(), owner->GetID(), 1653 error.AsCString() ? error.AsCString() : "unknown error"); 1654 return LLDB_INVALID_BREAK_ID; 1655 } 1656 Address resolved_address(load_addr); 1657 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1658 owner->SetIsIndirect(true); 1659 } else 1660 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1661 } else 1662 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1663 1664 if (load_addr != LLDB_INVALID_ADDRESS) { 1665 BreakpointSiteSP bp_site_sp; 1666 1667 // Look up this breakpoint site. If it exists, then add this new owner, 1668 // otherwise create a new breakpoint site and add it. 1669 1670 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1671 1672 if (bp_site_sp) { 1673 bp_site_sp->AddOwner(owner); 1674 owner->SetBreakpointSite(bp_site_sp); 1675 return bp_site_sp->GetID(); 1676 } else { 1677 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1678 load_addr, use_hardware)); 1679 if (bp_site_sp) { 1680 Status error = EnableBreakpointSite(bp_site_sp.get()); 1681 if (error.Success()) { 1682 owner->SetBreakpointSite(bp_site_sp); 1683 return m_breakpoint_site_list.Add(bp_site_sp); 1684 } else { 1685 if (show_error || use_hardware) { 1686 // Report error for setting breakpoint... 1687 GetTarget().GetDebugger().GetErrorStream().Printf( 1688 "warning: failed to set breakpoint site at 0x%" PRIx64 1689 " for breakpoint %i.%i: %s\n", 1690 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1691 error.AsCString() ? error.AsCString() : "unknown error"); 1692 } 1693 } 1694 } 1695 } 1696 } 1697 // We failed to enable the breakpoint 1698 return LLDB_INVALID_BREAK_ID; 1699 } 1700 1701 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1702 lldb::user_id_t owner_loc_id, 1703 BreakpointSiteSP &bp_site_sp) { 1704 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1705 if (num_owners == 0) { 1706 // Don't try to disable the site if we don't have a live process anymore. 1707 if (IsAlive()) 1708 DisableBreakpointSite(bp_site_sp.get()); 1709 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1710 } 1711 } 1712 1713 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1714 uint8_t *buf) const { 1715 size_t bytes_removed = 0; 1716 BreakpointSiteList bp_sites_in_range; 1717 1718 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1719 bp_sites_in_range)) { 1720 bp_sites_in_range.ForEach([bp_addr, size, 1721 buf](BreakpointSite *bp_site) -> void { 1722 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1723 addr_t intersect_addr; 1724 size_t intersect_size; 1725 size_t opcode_offset; 1726 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1727 &intersect_size, &opcode_offset)) { 1728 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1729 assert(bp_addr < intersect_addr + intersect_size && 1730 intersect_addr + intersect_size <= bp_addr + size); 1731 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1732 size_t buf_offset = intersect_addr - bp_addr; 1733 ::memcpy(buf + buf_offset, 1734 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1735 intersect_size); 1736 } 1737 } 1738 }); 1739 } 1740 return bytes_removed; 1741 } 1742 1743 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1744 PlatformSP platform_sp(GetTarget().GetPlatform()); 1745 if (platform_sp) 1746 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1747 return 0; 1748 } 1749 1750 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1751 Status error; 1752 assert(bp_site != nullptr); 1753 Log *log = GetLog(LLDBLog::Breakpoints); 1754 const addr_t bp_addr = bp_site->GetLoadAddress(); 1755 LLDB_LOGF( 1756 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1757 bp_site->GetID(), (uint64_t)bp_addr); 1758 if (bp_site->IsEnabled()) { 1759 LLDB_LOGF( 1760 log, 1761 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1762 " -- already enabled", 1763 bp_site->GetID(), (uint64_t)bp_addr); 1764 return error; 1765 } 1766 1767 if (bp_addr == LLDB_INVALID_ADDRESS) { 1768 error.SetErrorString("BreakpointSite contains an invalid load address."); 1769 return error; 1770 } 1771 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1772 // trap for the breakpoint site 1773 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1774 1775 if (bp_opcode_size == 0) { 1776 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1777 "returned zero, unable to get breakpoint " 1778 "trap for address 0x%" PRIx64, 1779 bp_addr); 1780 } else { 1781 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1782 1783 if (bp_opcode_bytes == nullptr) { 1784 error.SetErrorString( 1785 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1786 return error; 1787 } 1788 1789 // Save the original opcode by reading it 1790 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1791 error) == bp_opcode_size) { 1792 // Write a software breakpoint in place of the original opcode 1793 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1794 bp_opcode_size) { 1795 uint8_t verify_bp_opcode_bytes[64]; 1796 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1797 error) == bp_opcode_size) { 1798 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1799 bp_opcode_size) == 0) { 1800 bp_site->SetEnabled(true); 1801 bp_site->SetType(BreakpointSite::eSoftware); 1802 LLDB_LOGF(log, 1803 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1804 "addr = 0x%" PRIx64 " -- SUCCESS", 1805 bp_site->GetID(), (uint64_t)bp_addr); 1806 } else 1807 error.SetErrorString( 1808 "failed to verify the breakpoint trap in memory."); 1809 } else 1810 error.SetErrorString( 1811 "Unable to read memory to verify breakpoint trap."); 1812 } else 1813 error.SetErrorString("Unable to write breakpoint trap to memory."); 1814 } else 1815 error.SetErrorString("Unable to read memory at breakpoint address."); 1816 } 1817 if (log && error.Fail()) 1818 LLDB_LOGF( 1819 log, 1820 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1821 " -- FAILED: %s", 1822 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1823 return error; 1824 } 1825 1826 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1827 Status error; 1828 assert(bp_site != nullptr); 1829 Log *log = GetLog(LLDBLog::Breakpoints); 1830 addr_t bp_addr = bp_site->GetLoadAddress(); 1831 lldb::user_id_t breakID = bp_site->GetID(); 1832 LLDB_LOGF(log, 1833 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1834 ") addr = 0x%" PRIx64, 1835 breakID, (uint64_t)bp_addr); 1836 1837 if (bp_site->IsHardware()) { 1838 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1839 } else if (bp_site->IsEnabled()) { 1840 const size_t break_op_size = bp_site->GetByteSize(); 1841 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1842 if (break_op_size > 0) { 1843 // Clear a software breakpoint instruction 1844 uint8_t curr_break_op[8]; 1845 assert(break_op_size <= sizeof(curr_break_op)); 1846 bool break_op_found = false; 1847 1848 // Read the breakpoint opcode 1849 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1850 break_op_size) { 1851 bool verify = false; 1852 // Make sure the breakpoint opcode exists at this address 1853 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1854 break_op_found = true; 1855 // We found a valid breakpoint opcode at this address, now restore 1856 // the saved opcode. 1857 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1858 break_op_size, error) == break_op_size) { 1859 verify = true; 1860 } else 1861 error.SetErrorString( 1862 "Memory write failed when restoring original opcode."); 1863 } else { 1864 error.SetErrorString( 1865 "Original breakpoint trap is no longer in memory."); 1866 // Set verify to true and so we can check if the original opcode has 1867 // already been restored 1868 verify = true; 1869 } 1870 1871 if (verify) { 1872 uint8_t verify_opcode[8]; 1873 assert(break_op_size < sizeof(verify_opcode)); 1874 // Verify that our original opcode made it back to the inferior 1875 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1876 break_op_size) { 1877 // compare the memory we just read with the original opcode 1878 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1879 break_op_size) == 0) { 1880 // SUCCESS 1881 bp_site->SetEnabled(false); 1882 LLDB_LOGF(log, 1883 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1884 "addr = 0x%" PRIx64 " -- SUCCESS", 1885 bp_site->GetID(), (uint64_t)bp_addr); 1886 return error; 1887 } else { 1888 if (break_op_found) 1889 error.SetErrorString("Failed to restore original opcode."); 1890 } 1891 } else 1892 error.SetErrorString("Failed to read memory to verify that " 1893 "breakpoint trap was restored."); 1894 } 1895 } else 1896 error.SetErrorString( 1897 "Unable to read memory that should contain the breakpoint trap."); 1898 } 1899 } else { 1900 LLDB_LOGF( 1901 log, 1902 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1903 " -- already disabled", 1904 bp_site->GetID(), (uint64_t)bp_addr); 1905 return error; 1906 } 1907 1908 LLDB_LOGF( 1909 log, 1910 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1911 " -- FAILED: %s", 1912 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1913 return error; 1914 } 1915 1916 // Uncomment to verify memory caching works after making changes to caching 1917 // code 1918 //#define VERIFY_MEMORY_READS 1919 1920 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1921 error.Clear(); 1922 if (!GetDisableMemoryCache()) { 1923 #if defined(VERIFY_MEMORY_READS) 1924 // Memory caching is enabled, with debug verification 1925 1926 if (buf && size) { 1927 // Uncomment the line below to make sure memory caching is working. 1928 // I ran this through the test suite and got no assertions, so I am 1929 // pretty confident this is working well. If any changes are made to 1930 // memory caching, uncomment the line below and test your changes! 1931 1932 // Verify all memory reads by using the cache first, then redundantly 1933 // reading the same memory from the inferior and comparing to make sure 1934 // everything is exactly the same. 1935 std::string verify_buf(size, '\0'); 1936 assert(verify_buf.size() == size); 1937 const size_t cache_bytes_read = 1938 m_memory_cache.Read(this, addr, buf, size, error); 1939 Status verify_error; 1940 const size_t verify_bytes_read = 1941 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1942 verify_buf.size(), verify_error); 1943 assert(cache_bytes_read == verify_bytes_read); 1944 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1945 assert(verify_error.Success() == error.Success()); 1946 return cache_bytes_read; 1947 } 1948 return 0; 1949 #else // !defined(VERIFY_MEMORY_READS) 1950 // Memory caching is enabled, without debug verification 1951 1952 return m_memory_cache.Read(addr, buf, size, error); 1953 #endif // defined (VERIFY_MEMORY_READS) 1954 } else { 1955 // Memory caching is disabled 1956 1957 return ReadMemoryFromInferior(addr, buf, size, error); 1958 } 1959 } 1960 1961 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1962 Status &error) { 1963 char buf[256]; 1964 out_str.clear(); 1965 addr_t curr_addr = addr; 1966 while (true) { 1967 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1968 if (length == 0) 1969 break; 1970 out_str.append(buf, length); 1971 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1972 // to read some more characters 1973 if (length == sizeof(buf) - 1) 1974 curr_addr += length; 1975 else 1976 break; 1977 } 1978 return out_str.size(); 1979 } 1980 1981 // Deprecated in favor of ReadStringFromMemory which has wchar support and 1982 // correct code to find null terminators. 1983 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 1984 size_t dst_max_len, 1985 Status &result_error) { 1986 size_t total_cstr_len = 0; 1987 if (dst && dst_max_len) { 1988 result_error.Clear(); 1989 // NULL out everything just to be safe 1990 memset(dst, 0, dst_max_len); 1991 Status error; 1992 addr_t curr_addr = addr; 1993 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1994 size_t bytes_left = dst_max_len - 1; 1995 char *curr_dst = dst; 1996 1997 while (bytes_left > 0) { 1998 addr_t cache_line_bytes_left = 1999 cache_line_size - (curr_addr % cache_line_size); 2000 addr_t bytes_to_read = 2001 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2002 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2003 2004 if (bytes_read == 0) { 2005 result_error = error; 2006 dst[total_cstr_len] = '\0'; 2007 break; 2008 } 2009 const size_t len = strlen(curr_dst); 2010 2011 total_cstr_len += len; 2012 2013 if (len < bytes_to_read) 2014 break; 2015 2016 curr_dst += bytes_read; 2017 curr_addr += bytes_read; 2018 bytes_left -= bytes_read; 2019 } 2020 } else { 2021 if (dst == nullptr) 2022 result_error.SetErrorString("invalid arguments"); 2023 else 2024 result_error.Clear(); 2025 } 2026 return total_cstr_len; 2027 } 2028 2029 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2030 Status &error) { 2031 LLDB_SCOPED_TIMER(); 2032 2033 if (buf == nullptr || size == 0) 2034 return 0; 2035 2036 size_t bytes_read = 0; 2037 uint8_t *bytes = (uint8_t *)buf; 2038 2039 while (bytes_read < size) { 2040 const size_t curr_size = size - bytes_read; 2041 const size_t curr_bytes_read = 2042 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2043 bytes_read += curr_bytes_read; 2044 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2045 break; 2046 } 2047 2048 // Replace any software breakpoint opcodes that fall into this range back 2049 // into "buf" before we return 2050 if (bytes_read > 0) 2051 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2052 return bytes_read; 2053 } 2054 2055 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2056 size_t integer_byte_size, 2057 uint64_t fail_value, 2058 Status &error) { 2059 Scalar scalar; 2060 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2061 error)) 2062 return scalar.ULongLong(fail_value); 2063 return fail_value; 2064 } 2065 2066 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2067 size_t integer_byte_size, 2068 int64_t fail_value, 2069 Status &error) { 2070 Scalar scalar; 2071 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2072 error)) 2073 return scalar.SLongLong(fail_value); 2074 return fail_value; 2075 } 2076 2077 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2078 Scalar scalar; 2079 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2080 error)) 2081 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2082 return LLDB_INVALID_ADDRESS; 2083 } 2084 2085 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2086 Status &error) { 2087 Scalar scalar; 2088 const uint32_t addr_byte_size = GetAddressByteSize(); 2089 if (addr_byte_size <= 4) 2090 scalar = (uint32_t)ptr_value; 2091 else 2092 scalar = ptr_value; 2093 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2094 addr_byte_size; 2095 } 2096 2097 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2098 Status &error) { 2099 size_t bytes_written = 0; 2100 const uint8_t *bytes = (const uint8_t *)buf; 2101 2102 while (bytes_written < size) { 2103 const size_t curr_size = size - bytes_written; 2104 const size_t curr_bytes_written = DoWriteMemory( 2105 addr + bytes_written, bytes + bytes_written, curr_size, error); 2106 bytes_written += curr_bytes_written; 2107 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2108 break; 2109 } 2110 return bytes_written; 2111 } 2112 2113 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2114 Status &error) { 2115 #if defined(ENABLE_MEMORY_CACHING) 2116 m_memory_cache.Flush(addr, size); 2117 #endif 2118 2119 if (buf == nullptr || size == 0) 2120 return 0; 2121 2122 m_mod_id.BumpMemoryID(); 2123 2124 // We need to write any data that would go where any current software traps 2125 // (enabled software breakpoints) any software traps (breakpoints) that we 2126 // may have placed in our tasks memory. 2127 2128 BreakpointSiteList bp_sites_in_range; 2129 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2130 return WriteMemoryPrivate(addr, buf, size, error); 2131 2132 // No breakpoint sites overlap 2133 if (bp_sites_in_range.IsEmpty()) 2134 return WriteMemoryPrivate(addr, buf, size, error); 2135 2136 const uint8_t *ubuf = (const uint8_t *)buf; 2137 uint64_t bytes_written = 0; 2138 2139 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2140 &error](BreakpointSite *bp) -> void { 2141 if (error.Fail()) 2142 return; 2143 2144 if (bp->GetType() != BreakpointSite::eSoftware) 2145 return; 2146 2147 addr_t intersect_addr; 2148 size_t intersect_size; 2149 size_t opcode_offset; 2150 const bool intersects = bp->IntersectsRange( 2151 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2152 UNUSED_IF_ASSERT_DISABLED(intersects); 2153 assert(intersects); 2154 assert(addr <= intersect_addr && intersect_addr < addr + size); 2155 assert(addr < intersect_addr + intersect_size && 2156 intersect_addr + intersect_size <= addr + size); 2157 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2158 2159 // Check for bytes before this breakpoint 2160 const addr_t curr_addr = addr + bytes_written; 2161 if (intersect_addr > curr_addr) { 2162 // There are some bytes before this breakpoint that we need to just 2163 // write to memory 2164 size_t curr_size = intersect_addr - curr_addr; 2165 size_t curr_bytes_written = 2166 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2167 bytes_written += curr_bytes_written; 2168 if (curr_bytes_written != curr_size) { 2169 // We weren't able to write all of the requested bytes, we are 2170 // done looping and will return the number of bytes that we have 2171 // written so far. 2172 if (error.Success()) 2173 error.SetErrorToGenericError(); 2174 } 2175 } 2176 // Now write any bytes that would cover up any software breakpoints 2177 // directly into the breakpoint opcode buffer 2178 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2179 intersect_size); 2180 bytes_written += intersect_size; 2181 }); 2182 2183 // Write any remaining bytes after the last breakpoint if we have any left 2184 if (bytes_written < size) 2185 bytes_written += 2186 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2187 size - bytes_written, error); 2188 2189 return bytes_written; 2190 } 2191 2192 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2193 size_t byte_size, Status &error) { 2194 if (byte_size == UINT32_MAX) 2195 byte_size = scalar.GetByteSize(); 2196 if (byte_size > 0) { 2197 uint8_t buf[32]; 2198 const size_t mem_size = 2199 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2200 if (mem_size > 0) 2201 return WriteMemory(addr, buf, mem_size, error); 2202 else 2203 error.SetErrorString("failed to get scalar as memory data"); 2204 } else { 2205 error.SetErrorString("invalid scalar value"); 2206 } 2207 return 0; 2208 } 2209 2210 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2211 bool is_signed, Scalar &scalar, 2212 Status &error) { 2213 uint64_t uval = 0; 2214 if (byte_size == 0) { 2215 error.SetErrorString("byte size is zero"); 2216 } else if (byte_size & (byte_size - 1)) { 2217 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2218 byte_size); 2219 } else if (byte_size <= sizeof(uval)) { 2220 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2221 if (bytes_read == byte_size) { 2222 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2223 GetAddressByteSize()); 2224 lldb::offset_t offset = 0; 2225 if (byte_size <= 4) 2226 scalar = data.GetMaxU32(&offset, byte_size); 2227 else 2228 scalar = data.GetMaxU64(&offset, byte_size); 2229 if (is_signed) 2230 scalar.SignExtend(byte_size * 8); 2231 return bytes_read; 2232 } 2233 } else { 2234 error.SetErrorStringWithFormat( 2235 "byte size of %u is too large for integer scalar type", byte_size); 2236 } 2237 return 0; 2238 } 2239 2240 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2241 Status error; 2242 for (const auto &Entry : entries) { 2243 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2244 error); 2245 if (!error.Success()) 2246 break; 2247 } 2248 return error; 2249 } 2250 2251 #define USE_ALLOCATE_MEMORY_CACHE 1 2252 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2253 Status &error) { 2254 if (GetPrivateState() != eStateStopped) { 2255 error.SetErrorToGenericError(); 2256 return LLDB_INVALID_ADDRESS; 2257 } 2258 2259 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2260 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2261 #else 2262 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2263 Log *log = GetLog(LLDBLog::Process); 2264 LLDB_LOGF(log, 2265 "Process::AllocateMemory(size=%" PRIu64 2266 ", permissions=%s) => 0x%16.16" PRIx64 2267 " (m_stop_id = %u m_memory_id = %u)", 2268 (uint64_t)size, GetPermissionsAsCString(permissions), 2269 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2270 m_mod_id.GetMemoryID()); 2271 return allocated_addr; 2272 #endif 2273 } 2274 2275 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2276 Status &error) { 2277 addr_t return_addr = AllocateMemory(size, permissions, error); 2278 if (error.Success()) { 2279 std::string buffer(size, 0); 2280 WriteMemory(return_addr, buffer.c_str(), size, error); 2281 } 2282 return return_addr; 2283 } 2284 2285 bool Process::CanJIT() { 2286 if (m_can_jit == eCanJITDontKnow) { 2287 Log *log = GetLog(LLDBLog::Process); 2288 Status err; 2289 2290 uint64_t allocated_memory = AllocateMemory( 2291 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2292 err); 2293 2294 if (err.Success()) { 2295 m_can_jit = eCanJITYes; 2296 LLDB_LOGF(log, 2297 "Process::%s pid %" PRIu64 2298 " allocation test passed, CanJIT () is true", 2299 __FUNCTION__, GetID()); 2300 } else { 2301 m_can_jit = eCanJITNo; 2302 LLDB_LOGF(log, 2303 "Process::%s pid %" PRIu64 2304 " allocation test failed, CanJIT () is false: %s", 2305 __FUNCTION__, GetID(), err.AsCString()); 2306 } 2307 2308 DeallocateMemory(allocated_memory); 2309 } 2310 2311 return m_can_jit == eCanJITYes; 2312 } 2313 2314 void Process::SetCanJIT(bool can_jit) { 2315 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2316 } 2317 2318 void Process::SetCanRunCode(bool can_run_code) { 2319 SetCanJIT(can_run_code); 2320 m_can_interpret_function_calls = can_run_code; 2321 } 2322 2323 Status Process::DeallocateMemory(addr_t ptr) { 2324 Status error; 2325 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2326 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2327 error.SetErrorStringWithFormat( 2328 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2329 } 2330 #else 2331 error = DoDeallocateMemory(ptr); 2332 2333 Log *log = GetLog(LLDBLog::Process); 2334 LLDB_LOGF(log, 2335 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2336 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2337 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2338 m_mod_id.GetMemoryID()); 2339 #endif 2340 return error; 2341 } 2342 2343 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2344 lldb::addr_t header_addr, 2345 size_t size_to_read) { 2346 Log *log = GetLog(LLDBLog::Host); 2347 if (log) { 2348 LLDB_LOGF(log, 2349 "Process::ReadModuleFromMemory reading %s binary from memory", 2350 file_spec.GetPath().c_str()); 2351 } 2352 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2353 if (module_sp) { 2354 Status error; 2355 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2356 shared_from_this(), header_addr, error, size_to_read); 2357 if (objfile) 2358 return module_sp; 2359 } 2360 return ModuleSP(); 2361 } 2362 2363 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2364 uint32_t &permissions) { 2365 MemoryRegionInfo range_info; 2366 permissions = 0; 2367 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2368 if (!error.Success()) 2369 return false; 2370 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2371 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2372 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2373 return false; 2374 } 2375 2376 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2377 permissions |= lldb::ePermissionsReadable; 2378 2379 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2380 permissions |= lldb::ePermissionsWritable; 2381 2382 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2383 permissions |= lldb::ePermissionsExecutable; 2384 2385 return true; 2386 } 2387 2388 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2389 Status error; 2390 error.SetErrorString("watchpoints are not supported"); 2391 return error; 2392 } 2393 2394 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2395 Status error; 2396 error.SetErrorString("watchpoints are not supported"); 2397 return error; 2398 } 2399 2400 StateType 2401 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2402 const Timeout<std::micro> &timeout) { 2403 StateType state; 2404 2405 while (true) { 2406 event_sp.reset(); 2407 state = GetStateChangedEventsPrivate(event_sp, timeout); 2408 2409 if (StateIsStoppedState(state, false)) 2410 break; 2411 2412 // If state is invalid, then we timed out 2413 if (state == eStateInvalid) 2414 break; 2415 2416 if (event_sp) 2417 HandlePrivateEvent(event_sp); 2418 } 2419 return state; 2420 } 2421 2422 void Process::LoadOperatingSystemPlugin(bool flush) { 2423 if (flush) 2424 m_thread_list.Clear(); 2425 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2426 if (flush) 2427 Flush(); 2428 } 2429 2430 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2431 Status error; 2432 m_abi_sp.reset(); 2433 m_dyld_up.reset(); 2434 m_jit_loaders_up.reset(); 2435 m_system_runtime_up.reset(); 2436 m_os_up.reset(); 2437 m_process_input_reader.reset(); 2438 2439 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2440 2441 // The "remote executable path" is hooked up to the local Executable 2442 // module. But we should be able to debug a remote process even if the 2443 // executable module only exists on the remote. However, there needs to 2444 // be a way to express this path, without actually having a module. 2445 // The way to do that is to set the ExecutableFile in the LaunchInfo. 2446 // Figure that out here: 2447 2448 FileSpec exe_spec_to_use; 2449 if (!exe_module) { 2450 if (!launch_info.GetExecutableFile()) { 2451 error.SetErrorString("executable module does not exist"); 2452 return error; 2453 } 2454 exe_spec_to_use = launch_info.GetExecutableFile(); 2455 } else 2456 exe_spec_to_use = exe_module->GetFileSpec(); 2457 2458 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2459 // Install anything that might need to be installed prior to launching. 2460 // For host systems, this will do nothing, but if we are connected to a 2461 // remote platform it will install any needed binaries 2462 error = GetTarget().Install(&launch_info); 2463 if (error.Fail()) 2464 return error; 2465 } 2466 // Listen and queue events that are broadcasted during the process launch. 2467 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2468 HijackProcessEvents(listener_sp); 2469 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2470 2471 if (PrivateStateThreadIsValid()) 2472 PausePrivateStateThread(); 2473 2474 error = WillLaunch(exe_module); 2475 if (error.Success()) { 2476 const bool restarted = false; 2477 SetPublicState(eStateLaunching, restarted); 2478 m_should_detach = false; 2479 2480 if (m_public_run_lock.TrySetRunning()) { 2481 // Now launch using these arguments. 2482 error = DoLaunch(exe_module, launch_info); 2483 } else { 2484 // This shouldn't happen 2485 error.SetErrorString("failed to acquire process run lock"); 2486 } 2487 2488 if (error.Fail()) { 2489 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2490 SetID(LLDB_INVALID_PROCESS_ID); 2491 const char *error_string = error.AsCString(); 2492 if (error_string == nullptr) 2493 error_string = "launch failed"; 2494 SetExitStatus(-1, error_string); 2495 } 2496 } else { 2497 EventSP event_sp; 2498 2499 // Now wait for the process to launch and return control to us, and then 2500 // call DidLaunch: 2501 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2502 2503 if (state == eStateInvalid || !event_sp) { 2504 // We were able to launch the process, but we failed to catch the 2505 // initial stop. 2506 error.SetErrorString("failed to catch stop after launch"); 2507 SetExitStatus(0, "failed to catch stop after launch"); 2508 Destroy(false); 2509 } else if (state == eStateStopped || state == eStateCrashed) { 2510 DidLaunch(); 2511 2512 DynamicLoader *dyld = GetDynamicLoader(); 2513 if (dyld) 2514 dyld->DidLaunch(); 2515 2516 GetJITLoaders().DidLaunch(); 2517 2518 SystemRuntime *system_runtime = GetSystemRuntime(); 2519 if (system_runtime) 2520 system_runtime->DidLaunch(); 2521 2522 if (!m_os_up) 2523 LoadOperatingSystemPlugin(false); 2524 2525 // We successfully launched the process and stopped, now it the 2526 // right time to set up signal filters before resuming. 2527 UpdateAutomaticSignalFiltering(); 2528 2529 // Note, the stop event was consumed above, but not handled. This 2530 // was done to give DidLaunch a chance to run. The target is either 2531 // stopped or crashed. Directly set the state. This is done to 2532 // prevent a stop message with a bunch of spurious output on thread 2533 // status, as well as not pop a ProcessIOHandler. 2534 // We are done with the launch hijack listener, and this stop should 2535 // go to the public state listener: 2536 RestoreProcessEvents(); 2537 SetPublicState(state, false); 2538 2539 if (PrivateStateThreadIsValid()) 2540 ResumePrivateStateThread(); 2541 else 2542 StartPrivateStateThread(); 2543 2544 // Target was stopped at entry as was intended. Need to notify the 2545 // listeners about it. 2546 if (state == eStateStopped && 2547 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2548 HandlePrivateEvent(event_sp); 2549 } else if (state == eStateExited) { 2550 // We exited while trying to launch somehow. Don't call DidLaunch 2551 // as that's not likely to work, and return an invalid pid. 2552 HandlePrivateEvent(event_sp); 2553 } 2554 } 2555 } else { 2556 std::string local_exec_file_path = exe_spec_to_use.GetPath(); 2557 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2558 local_exec_file_path.c_str()); 2559 } 2560 2561 return error; 2562 } 2563 2564 Status Process::LoadCore() { 2565 Status error = DoLoadCore(); 2566 if (error.Success()) { 2567 ListenerSP listener_sp( 2568 Listener::MakeListener("lldb.process.load_core_listener")); 2569 HijackProcessEvents(listener_sp); 2570 2571 if (PrivateStateThreadIsValid()) 2572 ResumePrivateStateThread(); 2573 else 2574 StartPrivateStateThread(); 2575 2576 DynamicLoader *dyld = GetDynamicLoader(); 2577 if (dyld) 2578 dyld->DidAttach(); 2579 2580 GetJITLoaders().DidAttach(); 2581 2582 SystemRuntime *system_runtime = GetSystemRuntime(); 2583 if (system_runtime) 2584 system_runtime->DidAttach(); 2585 2586 if (!m_os_up) 2587 LoadOperatingSystemPlugin(false); 2588 2589 // We successfully loaded a core file, now pretend we stopped so we can 2590 // show all of the threads in the core file and explore the crashed state. 2591 SetPrivateState(eStateStopped); 2592 2593 // Wait for a stopped event since we just posted one above... 2594 lldb::EventSP event_sp; 2595 StateType state = 2596 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2597 2598 if (!StateIsStoppedState(state, false)) { 2599 Log *log = GetLog(LLDBLog::Process); 2600 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2601 StateAsCString(state)); 2602 error.SetErrorString( 2603 "Did not get stopped event after loading the core file."); 2604 } 2605 RestoreProcessEvents(); 2606 } 2607 return error; 2608 } 2609 2610 DynamicLoader *Process::GetDynamicLoader() { 2611 if (!m_dyld_up) 2612 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2613 return m_dyld_up.get(); 2614 } 2615 2616 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2617 2618 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2619 return false; 2620 } 2621 2622 JITLoaderList &Process::GetJITLoaders() { 2623 if (!m_jit_loaders_up) { 2624 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2625 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2626 } 2627 return *m_jit_loaders_up; 2628 } 2629 2630 SystemRuntime *Process::GetSystemRuntime() { 2631 if (!m_system_runtime_up) 2632 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2633 return m_system_runtime_up.get(); 2634 } 2635 2636 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2637 uint32_t exec_count) 2638 : NextEventAction(process), m_exec_count(exec_count) { 2639 Log *log = GetLog(LLDBLog::Process); 2640 LLDB_LOGF( 2641 log, 2642 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2643 __FUNCTION__, static_cast<void *>(process), exec_count); 2644 } 2645 2646 Process::NextEventAction::EventActionResult 2647 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2648 Log *log = GetLog(LLDBLog::Process); 2649 2650 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2651 LLDB_LOGF(log, 2652 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2653 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2654 2655 switch (state) { 2656 case eStateAttaching: 2657 return eEventActionSuccess; 2658 2659 case eStateRunning: 2660 case eStateConnected: 2661 return eEventActionRetry; 2662 2663 case eStateStopped: 2664 case eStateCrashed: 2665 // During attach, prior to sending the eStateStopped event, 2666 // lldb_private::Process subclasses must set the new process ID. 2667 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2668 // We don't want these events to be reported, so go set the 2669 // ShouldReportStop here: 2670 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2671 2672 if (m_exec_count > 0) { 2673 --m_exec_count; 2674 2675 LLDB_LOGF(log, 2676 "Process::AttachCompletionHandler::%s state %s: reduced " 2677 "remaining exec count to %" PRIu32 ", requesting resume", 2678 __FUNCTION__, StateAsCString(state), m_exec_count); 2679 2680 RequestResume(); 2681 return eEventActionRetry; 2682 } else { 2683 LLDB_LOGF(log, 2684 "Process::AttachCompletionHandler::%s state %s: no more " 2685 "execs expected to start, continuing with attach", 2686 __FUNCTION__, StateAsCString(state)); 2687 2688 m_process->CompleteAttach(); 2689 return eEventActionSuccess; 2690 } 2691 break; 2692 2693 default: 2694 case eStateExited: 2695 case eStateInvalid: 2696 break; 2697 } 2698 2699 m_exit_string.assign("No valid Process"); 2700 return eEventActionExit; 2701 } 2702 2703 Process::NextEventAction::EventActionResult 2704 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2705 return eEventActionSuccess; 2706 } 2707 2708 const char *Process::AttachCompletionHandler::GetExitString() { 2709 return m_exit_string.c_str(); 2710 } 2711 2712 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2713 if (m_listener_sp) 2714 return m_listener_sp; 2715 else 2716 return debugger.GetListener(); 2717 } 2718 2719 Status Process::Attach(ProcessAttachInfo &attach_info) { 2720 m_abi_sp.reset(); 2721 m_process_input_reader.reset(); 2722 m_dyld_up.reset(); 2723 m_jit_loaders_up.reset(); 2724 m_system_runtime_up.reset(); 2725 m_os_up.reset(); 2726 2727 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2728 Status error; 2729 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2730 char process_name[PATH_MAX]; 2731 2732 if (attach_info.GetExecutableFile().GetPath(process_name, 2733 sizeof(process_name))) { 2734 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2735 2736 if (wait_for_launch) { 2737 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2738 if (error.Success()) { 2739 if (m_public_run_lock.TrySetRunning()) { 2740 m_should_detach = true; 2741 const bool restarted = false; 2742 SetPublicState(eStateAttaching, restarted); 2743 // Now attach using these arguments. 2744 error = DoAttachToProcessWithName(process_name, attach_info); 2745 } else { 2746 // This shouldn't happen 2747 error.SetErrorString("failed to acquire process run lock"); 2748 } 2749 2750 if (error.Fail()) { 2751 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2752 SetID(LLDB_INVALID_PROCESS_ID); 2753 if (error.AsCString() == nullptr) 2754 error.SetErrorString("attach failed"); 2755 2756 SetExitStatus(-1, error.AsCString()); 2757 } 2758 } else { 2759 SetNextEventAction(new Process::AttachCompletionHandler( 2760 this, attach_info.GetResumeCount())); 2761 StartPrivateStateThread(); 2762 } 2763 return error; 2764 } 2765 } else { 2766 ProcessInstanceInfoList process_infos; 2767 PlatformSP platform_sp(GetTarget().GetPlatform()); 2768 2769 if (platform_sp) { 2770 ProcessInstanceInfoMatch match_info; 2771 match_info.GetProcessInfo() = attach_info; 2772 match_info.SetNameMatchType(NameMatch::Equals); 2773 platform_sp->FindProcesses(match_info, process_infos); 2774 const uint32_t num_matches = process_infos.size(); 2775 if (num_matches == 1) { 2776 attach_pid = process_infos[0].GetProcessID(); 2777 // Fall through and attach using the above process ID 2778 } else { 2779 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2780 process_name, sizeof(process_name)); 2781 if (num_matches > 1) { 2782 StreamString s; 2783 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2784 for (size_t i = 0; i < num_matches; i++) { 2785 process_infos[i].DumpAsTableRow( 2786 s, platform_sp->GetUserIDResolver(), true, false); 2787 } 2788 error.SetErrorStringWithFormat( 2789 "more than one process named %s:\n%s", process_name, 2790 s.GetData()); 2791 } else 2792 error.SetErrorStringWithFormat( 2793 "could not find a process named %s", process_name); 2794 } 2795 } else { 2796 error.SetErrorString( 2797 "invalid platform, can't find processes by name"); 2798 return error; 2799 } 2800 } 2801 } else { 2802 error.SetErrorString("invalid process name"); 2803 } 2804 } 2805 2806 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2807 error = WillAttachToProcessWithID(attach_pid); 2808 if (error.Success()) { 2809 2810 if (m_public_run_lock.TrySetRunning()) { 2811 // Now attach using these arguments. 2812 m_should_detach = true; 2813 const bool restarted = false; 2814 SetPublicState(eStateAttaching, restarted); 2815 error = DoAttachToProcessWithID(attach_pid, attach_info); 2816 } else { 2817 // This shouldn't happen 2818 error.SetErrorString("failed to acquire process run lock"); 2819 } 2820 2821 if (error.Success()) { 2822 SetNextEventAction(new Process::AttachCompletionHandler( 2823 this, attach_info.GetResumeCount())); 2824 StartPrivateStateThread(); 2825 } else { 2826 if (GetID() != LLDB_INVALID_PROCESS_ID) 2827 SetID(LLDB_INVALID_PROCESS_ID); 2828 2829 const char *error_string = error.AsCString(); 2830 if (error_string == nullptr) 2831 error_string = "attach failed"; 2832 2833 SetExitStatus(-1, error_string); 2834 } 2835 } 2836 } 2837 return error; 2838 } 2839 2840 void Process::CompleteAttach() { 2841 Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); 2842 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2843 2844 // Let the process subclass figure out at much as it can about the process 2845 // before we go looking for a dynamic loader plug-in. 2846 ArchSpec process_arch; 2847 DidAttach(process_arch); 2848 2849 if (process_arch.IsValid()) { 2850 GetTarget().SetArchitecture(process_arch); 2851 if (log) { 2852 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2853 LLDB_LOGF(log, 2854 "Process::%s replacing process architecture with DidAttach() " 2855 "architecture: %s", 2856 __FUNCTION__, triple_str ? triple_str : "<null>"); 2857 } 2858 } 2859 2860 // We just attached. If we have a platform, ask it for the process 2861 // architecture, and if it isn't the same as the one we've already set, 2862 // switch architectures. 2863 PlatformSP platform_sp(GetTarget().GetPlatform()); 2864 assert(platform_sp); 2865 if (platform_sp) { 2866 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2867 if (target_arch.IsValid() && 2868 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2869 ArchSpec platform_arch; 2870 platform_sp = 2871 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2872 if (platform_sp) { 2873 GetTarget().SetPlatform(platform_sp); 2874 GetTarget().SetArchitecture(platform_arch); 2875 LLDB_LOGF(log, 2876 "Process::%s switching platform to %s and architecture " 2877 "to %s based on info from attach", 2878 __FUNCTION__, platform_sp->GetName().AsCString(""), 2879 platform_arch.GetTriple().getTriple().c_str()); 2880 } 2881 } else if (!process_arch.IsValid()) { 2882 ProcessInstanceInfo process_info; 2883 GetProcessInfo(process_info); 2884 const ArchSpec &process_arch = process_info.GetArchitecture(); 2885 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2886 if (process_arch.IsValid() && 2887 target_arch.IsCompatibleMatch(process_arch) && 2888 !target_arch.IsExactMatch(process_arch)) { 2889 GetTarget().SetArchitecture(process_arch); 2890 LLDB_LOGF(log, 2891 "Process::%s switching architecture to %s based on info " 2892 "the platform retrieved for pid %" PRIu64, 2893 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2894 GetID()); 2895 } 2896 } 2897 } 2898 2899 // We have completed the attach, now it is time to find the dynamic loader 2900 // plug-in 2901 DynamicLoader *dyld = GetDynamicLoader(); 2902 if (dyld) { 2903 dyld->DidAttach(); 2904 if (log) { 2905 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2906 LLDB_LOG(log, 2907 "after DynamicLoader::DidAttach(), target " 2908 "executable is {0} (using {1} plugin)", 2909 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2910 dyld->GetPluginName()); 2911 } 2912 } 2913 2914 GetJITLoaders().DidAttach(); 2915 2916 SystemRuntime *system_runtime = GetSystemRuntime(); 2917 if (system_runtime) { 2918 system_runtime->DidAttach(); 2919 if (log) { 2920 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2921 LLDB_LOG(log, 2922 "after SystemRuntime::DidAttach(), target " 2923 "executable is {0} (using {1} plugin)", 2924 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2925 system_runtime->GetPluginName()); 2926 } 2927 } 2928 2929 if (!m_os_up) { 2930 LoadOperatingSystemPlugin(false); 2931 if (m_os_up) { 2932 // Somebody might have gotten threads before now, but we need to force the 2933 // update after we've loaded the OperatingSystem plugin or it won't get a 2934 // chance to process the threads. 2935 m_thread_list.Clear(); 2936 UpdateThreadListIfNeeded(); 2937 } 2938 } 2939 // Figure out which one is the executable, and set that in our target: 2940 ModuleSP new_executable_module_sp; 2941 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2942 if (module_sp && module_sp->IsExecutable()) { 2943 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2944 new_executable_module_sp = module_sp; 2945 break; 2946 } 2947 } 2948 if (new_executable_module_sp) { 2949 GetTarget().SetExecutableModule(new_executable_module_sp, 2950 eLoadDependentsNo); 2951 if (log) { 2952 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2953 LLDB_LOGF( 2954 log, 2955 "Process::%s after looping through modules, target executable is %s", 2956 __FUNCTION__, 2957 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2958 : "<none>"); 2959 } 2960 } 2961 } 2962 2963 Status Process::ConnectRemote(llvm::StringRef remote_url) { 2964 m_abi_sp.reset(); 2965 m_process_input_reader.reset(); 2966 2967 // Find the process and its architecture. Make sure it matches the 2968 // architecture of the current Target, and if not adjust it. 2969 2970 Status error(DoConnectRemote(remote_url)); 2971 if (error.Success()) { 2972 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2973 EventSP event_sp; 2974 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 2975 2976 if (state == eStateStopped || state == eStateCrashed) { 2977 // If we attached and actually have a process on the other end, then 2978 // this ended up being the equivalent of an attach. 2979 CompleteAttach(); 2980 2981 // This delays passing the stopped event to listeners till 2982 // CompleteAttach gets a chance to complete... 2983 HandlePrivateEvent(event_sp); 2984 } 2985 } 2986 2987 if (PrivateStateThreadIsValid()) 2988 ResumePrivateStateThread(); 2989 else 2990 StartPrivateStateThread(); 2991 } 2992 return error; 2993 } 2994 2995 Status Process::PrivateResume() { 2996 Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); 2997 LLDB_LOGF(log, 2998 "Process::PrivateResume() m_stop_id = %u, public state: %s " 2999 "private state: %s", 3000 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3001 StateAsCString(m_private_state.GetValue())); 3002 3003 // If signals handing status changed we might want to update our signal 3004 // filters before resuming. 3005 UpdateAutomaticSignalFiltering(); 3006 3007 Status error(WillResume()); 3008 // Tell the process it is about to resume before the thread list 3009 if (error.Success()) { 3010 // Now let the thread list know we are about to resume so it can let all of 3011 // our threads know that they are about to be resumed. Threads will each be 3012 // called with Thread::WillResume(StateType) where StateType contains the 3013 // state that they are supposed to have when the process is resumed 3014 // (suspended/running/stepping). Threads should also check their resume 3015 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3016 // start back up with a signal. 3017 if (m_thread_list.WillResume()) { 3018 // Last thing, do the PreResumeActions. 3019 if (!RunPreResumeActions()) { 3020 error.SetErrorString( 3021 "Process::PrivateResume PreResumeActions failed, not resuming."); 3022 } else { 3023 m_mod_id.BumpResumeID(); 3024 error = DoResume(); 3025 if (error.Success()) { 3026 DidResume(); 3027 m_thread_list.DidResume(); 3028 LLDB_LOGF(log, "Process thinks the process has resumed."); 3029 } else { 3030 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3031 return error; 3032 } 3033 } 3034 } else { 3035 // Somebody wanted to run without running (e.g. we were faking a step 3036 // from one frame of a set of inlined frames that share the same PC to 3037 // another.) So generate a continue & a stopped event, and let the world 3038 // handle them. 3039 LLDB_LOGF(log, 3040 "Process::PrivateResume() asked to simulate a start & stop."); 3041 3042 SetPrivateState(eStateRunning); 3043 SetPrivateState(eStateStopped); 3044 } 3045 } else 3046 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3047 error.AsCString("<unknown error>")); 3048 return error; 3049 } 3050 3051 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3052 if (!StateIsRunningState(m_public_state.GetValue())) 3053 return Status("Process is not running."); 3054 3055 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3056 // case it was already set and some thread plan logic calls halt on its own. 3057 m_clear_thread_plans_on_stop |= clear_thread_plans; 3058 3059 ListenerSP halt_listener_sp( 3060 Listener::MakeListener("lldb.process.halt_listener")); 3061 HijackProcessEvents(halt_listener_sp); 3062 3063 EventSP event_sp; 3064 3065 SendAsyncInterrupt(); 3066 3067 if (m_public_state.GetValue() == eStateAttaching) { 3068 // Don't hijack and eat the eStateExited as the code that was doing the 3069 // attach will be waiting for this event... 3070 RestoreProcessEvents(); 3071 SetExitStatus(SIGKILL, "Cancelled async attach."); 3072 Destroy(false); 3073 return Status(); 3074 } 3075 3076 // Wait for the process halt timeout seconds for the process to stop. 3077 StateType state = 3078 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3079 halt_listener_sp, nullptr, use_run_lock); 3080 RestoreProcessEvents(); 3081 3082 if (state == eStateInvalid || !event_sp) { 3083 // We timed out and didn't get a stop event... 3084 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3085 } 3086 3087 BroadcastEvent(event_sp); 3088 3089 return Status(); 3090 } 3091 3092 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3093 Status error; 3094 3095 // Check both the public & private states here. If we're hung evaluating an 3096 // expression, for instance, then the public state will be stopped, but we 3097 // still need to interrupt. 3098 if (m_public_state.GetValue() == eStateRunning || 3099 m_private_state.GetValue() == eStateRunning) { 3100 Log *log = GetLog(LLDBLog::Process); 3101 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3102 3103 ListenerSP listener_sp( 3104 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3105 HijackProcessEvents(listener_sp); 3106 3107 SendAsyncInterrupt(); 3108 3109 // Consume the interrupt event. 3110 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3111 &exit_event_sp, true, listener_sp); 3112 3113 RestoreProcessEvents(); 3114 3115 // If the process exited while we were waiting for it to stop, put the 3116 // exited event into the shared pointer passed in and return. Our caller 3117 // doesn't need to do anything else, since they don't have a process 3118 // anymore... 3119 3120 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3121 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3122 __FUNCTION__); 3123 return error; 3124 } else 3125 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3126 3127 if (state != eStateStopped) { 3128 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3129 StateAsCString(state)); 3130 // If we really couldn't stop the process then we should just error out 3131 // here, but if the lower levels just bobbled sending the event and we 3132 // really are stopped, then continue on. 3133 StateType private_state = m_private_state.GetValue(); 3134 if (private_state != eStateStopped) { 3135 return Status( 3136 "Attempt to stop the target in order to detach timed out. " 3137 "State = %s", 3138 StateAsCString(GetState())); 3139 } 3140 } 3141 } 3142 return error; 3143 } 3144 3145 Status Process::Detach(bool keep_stopped) { 3146 EventSP exit_event_sp; 3147 Status error; 3148 m_destroy_in_process = true; 3149 3150 error = WillDetach(); 3151 3152 if (error.Success()) { 3153 if (DetachRequiresHalt()) { 3154 error = StopForDestroyOrDetach(exit_event_sp); 3155 if (!error.Success()) { 3156 m_destroy_in_process = false; 3157 return error; 3158 } else if (exit_event_sp) { 3159 // We shouldn't need to do anything else here. There's no process left 3160 // to detach from... 3161 StopPrivateStateThread(); 3162 m_destroy_in_process = false; 3163 return error; 3164 } 3165 } 3166 3167 m_thread_list.DiscardThreadPlans(); 3168 DisableAllBreakpointSites(); 3169 3170 error = DoDetach(keep_stopped); 3171 if (error.Success()) { 3172 DidDetach(); 3173 StopPrivateStateThread(); 3174 } else { 3175 return error; 3176 } 3177 } 3178 m_destroy_in_process = false; 3179 3180 // If we exited when we were waiting for a process to stop, then forward the 3181 // event here so we don't lose the event 3182 if (exit_event_sp) { 3183 // Directly broadcast our exited event because we shut down our private 3184 // state thread above 3185 BroadcastEvent(exit_event_sp); 3186 } 3187 3188 // If we have been interrupted (to kill us) in the middle of running, we may 3189 // not end up propagating the last events through the event system, in which 3190 // case we might strand the write lock. Unlock it here so when we do to tear 3191 // down the process we don't get an error destroying the lock. 3192 3193 m_public_run_lock.SetStopped(); 3194 return error; 3195 } 3196 3197 Status Process::Destroy(bool force_kill) { 3198 // If we've already called Process::Finalize then there's nothing useful to 3199 // be done here. Finalize has actually called Destroy already. 3200 if (m_finalizing) 3201 return {}; 3202 return DestroyImpl(force_kill); 3203 } 3204 3205 Status Process::DestroyImpl(bool force_kill) { 3206 // Tell ourselves we are in the process of destroying the process, so that we 3207 // don't do any unnecessary work that might hinder the destruction. Remember 3208 // to set this back to false when we are done. That way if the attempt 3209 // failed and the process stays around for some reason it won't be in a 3210 // confused state. 3211 3212 if (force_kill) 3213 m_should_detach = false; 3214 3215 if (GetShouldDetach()) { 3216 // FIXME: This will have to be a process setting: 3217 bool keep_stopped = false; 3218 Detach(keep_stopped); 3219 } 3220 3221 m_destroy_in_process = true; 3222 3223 Status error(WillDestroy()); 3224 if (error.Success()) { 3225 EventSP exit_event_sp; 3226 if (DestroyRequiresHalt()) { 3227 error = StopForDestroyOrDetach(exit_event_sp); 3228 } 3229 3230 if (m_public_state.GetValue() == eStateStopped) { 3231 // Ditch all thread plans, and remove all our breakpoints: in case we 3232 // have to restart the target to kill it, we don't want it hitting a 3233 // breakpoint... Only do this if we've stopped, however, since if we 3234 // didn't manage to halt it above, then we're not going to have much luck 3235 // doing this now. 3236 m_thread_list.DiscardThreadPlans(); 3237 DisableAllBreakpointSites(); 3238 } 3239 3240 error = DoDestroy(); 3241 if (error.Success()) { 3242 DidDestroy(); 3243 StopPrivateStateThread(); 3244 } 3245 m_stdio_communication.StopReadThread(); 3246 m_stdio_communication.Disconnect(); 3247 m_stdin_forward = false; 3248 3249 if (m_process_input_reader) { 3250 m_process_input_reader->SetIsDone(true); 3251 m_process_input_reader->Cancel(); 3252 m_process_input_reader.reset(); 3253 } 3254 3255 // If we exited when we were waiting for a process to stop, then forward 3256 // the event here so we don't lose the event 3257 if (exit_event_sp) { 3258 // Directly broadcast our exited event because we shut down our private 3259 // state thread above 3260 BroadcastEvent(exit_event_sp); 3261 } 3262 3263 // If we have been interrupted (to kill us) in the middle of running, we 3264 // may not end up propagating the last events through the event system, in 3265 // which case we might strand the write lock. Unlock it here so when we do 3266 // to tear down the process we don't get an error destroying the lock. 3267 m_public_run_lock.SetStopped(); 3268 } 3269 3270 m_destroy_in_process = false; 3271 3272 return error; 3273 } 3274 3275 Status Process::Signal(int signal) { 3276 Status error(WillSignal()); 3277 if (error.Success()) { 3278 error = DoSignal(signal); 3279 if (error.Success()) 3280 DidSignal(); 3281 } 3282 return error; 3283 } 3284 3285 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3286 assert(signals_sp && "null signals_sp"); 3287 m_unix_signals_sp = signals_sp; 3288 } 3289 3290 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3291 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3292 return m_unix_signals_sp; 3293 } 3294 3295 lldb::ByteOrder Process::GetByteOrder() const { 3296 return GetTarget().GetArchitecture().GetByteOrder(); 3297 } 3298 3299 uint32_t Process::GetAddressByteSize() const { 3300 return GetTarget().GetArchitecture().GetAddressByteSize(); 3301 } 3302 3303 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3304 const StateType state = 3305 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3306 bool return_value = true; 3307 Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); 3308 3309 switch (state) { 3310 case eStateDetached: 3311 case eStateExited: 3312 case eStateUnloaded: 3313 m_stdio_communication.SynchronizeWithReadThread(); 3314 m_stdio_communication.StopReadThread(); 3315 m_stdio_communication.Disconnect(); 3316 m_stdin_forward = false; 3317 3318 LLVM_FALLTHROUGH; 3319 case eStateConnected: 3320 case eStateAttaching: 3321 case eStateLaunching: 3322 // These events indicate changes in the state of the debugging session, 3323 // always report them. 3324 return_value = true; 3325 break; 3326 case eStateInvalid: 3327 // We stopped for no apparent reason, don't report it. 3328 return_value = false; 3329 break; 3330 case eStateRunning: 3331 case eStateStepping: 3332 // If we've started the target running, we handle the cases where we are 3333 // already running and where there is a transition from stopped to running 3334 // differently. running -> running: Automatically suppress extra running 3335 // events stopped -> running: Report except when there is one or more no 3336 // votes 3337 // and no yes votes. 3338 SynchronouslyNotifyStateChanged(state); 3339 if (m_force_next_event_delivery) 3340 return_value = true; 3341 else { 3342 switch (m_last_broadcast_state) { 3343 case eStateRunning: 3344 case eStateStepping: 3345 // We always suppress multiple runnings with no PUBLIC stop in between. 3346 return_value = false; 3347 break; 3348 default: 3349 // TODO: make this work correctly. For now always report 3350 // run if we aren't running so we don't miss any running events. If I 3351 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3352 // and hit the breakpoints on multiple threads, then somehow during the 3353 // stepping over of all breakpoints no run gets reported. 3354 3355 // This is a transition from stop to run. 3356 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3357 case eVoteYes: 3358 case eVoteNoOpinion: 3359 return_value = true; 3360 break; 3361 case eVoteNo: 3362 return_value = false; 3363 break; 3364 } 3365 break; 3366 } 3367 } 3368 break; 3369 case eStateStopped: 3370 case eStateCrashed: 3371 case eStateSuspended: 3372 // We've stopped. First see if we're going to restart the target. If we 3373 // are going to stop, then we always broadcast the event. If we aren't 3374 // going to stop, let the thread plans decide if we're going to report this 3375 // event. If no thread has an opinion, we don't report it. 3376 3377 m_stdio_communication.SynchronizeWithReadThread(); 3378 RefreshStateAfterStop(); 3379 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3380 LLDB_LOGF(log, 3381 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3382 "interrupt, state: %s", 3383 static_cast<void *>(event_ptr), StateAsCString(state)); 3384 // Even though we know we are going to stop, we should let the threads 3385 // have a look at the stop, so they can properly set their state. 3386 m_thread_list.ShouldStop(event_ptr); 3387 return_value = true; 3388 } else { 3389 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3390 bool should_resume = false; 3391 3392 // It makes no sense to ask "ShouldStop" if we've already been 3393 // restarted... Asking the thread list is also not likely to go well, 3394 // since we are running again. So in that case just report the event. 3395 3396 if (!was_restarted) 3397 should_resume = !m_thread_list.ShouldStop(event_ptr); 3398 3399 if (was_restarted || should_resume || m_resume_requested) { 3400 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3401 LLDB_LOGF(log, 3402 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3403 "%s was_restarted: %i report_stop_vote: %d.", 3404 should_resume, StateAsCString(state), was_restarted, 3405 report_stop_vote); 3406 3407 switch (report_stop_vote) { 3408 case eVoteYes: 3409 return_value = true; 3410 break; 3411 case eVoteNoOpinion: 3412 case eVoteNo: 3413 return_value = false; 3414 break; 3415 } 3416 3417 if (!was_restarted) { 3418 LLDB_LOGF(log, 3419 "Process::ShouldBroadcastEvent (%p) Restarting process " 3420 "from state: %s", 3421 static_cast<void *>(event_ptr), StateAsCString(state)); 3422 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3423 PrivateResume(); 3424 } 3425 } else { 3426 return_value = true; 3427 SynchronouslyNotifyStateChanged(state); 3428 } 3429 } 3430 break; 3431 } 3432 3433 // Forcing the next event delivery is a one shot deal. So reset it here. 3434 m_force_next_event_delivery = false; 3435 3436 // We do some coalescing of events (for instance two consecutive running 3437 // events get coalesced.) But we only coalesce against events we actually 3438 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3439 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3440 // done, because the PublicState reflects the last event pulled off the 3441 // queue, and there may be several events stacked up on the queue unserviced. 3442 // So the PublicState may not reflect the last broadcasted event yet. 3443 // m_last_broadcast_state gets updated here. 3444 3445 if (return_value) 3446 m_last_broadcast_state = state; 3447 3448 LLDB_LOGF(log, 3449 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3450 "broadcast state: %s - %s", 3451 static_cast<void *>(event_ptr), StateAsCString(state), 3452 StateAsCString(m_last_broadcast_state), 3453 return_value ? "YES" : "NO"); 3454 return return_value; 3455 } 3456 3457 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3458 Log *log = GetLog(LLDBLog::Events); 3459 3460 bool already_running = PrivateStateThreadIsValid(); 3461 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3462 already_running ? " already running" 3463 : " starting private state thread"); 3464 3465 if (!is_secondary_thread && already_running) 3466 return true; 3467 3468 // Create a thread that watches our internal state and controls which events 3469 // make it to clients (into the DCProcess event queue). 3470 char thread_name[1024]; 3471 uint32_t max_len = llvm::get_max_thread_name_length(); 3472 if (max_len > 0 && max_len <= 30) { 3473 // On platforms with abbreviated thread name lengths, choose thread names 3474 // that fit within the limit. 3475 if (already_running) 3476 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3477 else 3478 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3479 } else { 3480 if (already_running) 3481 snprintf(thread_name, sizeof(thread_name), 3482 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3483 GetID()); 3484 else 3485 snprintf(thread_name, sizeof(thread_name), 3486 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3487 } 3488 3489 // Create the private state thread, and start it running. 3490 PrivateStateThreadArgs *args_ptr = 3491 new PrivateStateThreadArgs(this, is_secondary_thread); 3492 llvm::Expected<HostThread> private_state_thread = 3493 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3494 (void *)args_ptr, 8 * 1024 * 1024); 3495 if (!private_state_thread) { 3496 LLDB_LOG(GetLog(LLDBLog::Host), "failed to launch host thread: {}", 3497 llvm::toString(private_state_thread.takeError())); 3498 return false; 3499 } 3500 3501 assert(private_state_thread->IsJoinable()); 3502 m_private_state_thread = *private_state_thread; 3503 ResumePrivateStateThread(); 3504 return true; 3505 } 3506 3507 void Process::PausePrivateStateThread() { 3508 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3509 } 3510 3511 void Process::ResumePrivateStateThread() { 3512 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3513 } 3514 3515 void Process::StopPrivateStateThread() { 3516 if (m_private_state_thread.IsJoinable()) 3517 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3518 else { 3519 Log *log = GetLog(LLDBLog::Process); 3520 LLDB_LOGF( 3521 log, 3522 "Went to stop the private state thread, but it was already invalid."); 3523 } 3524 } 3525 3526 void Process::ControlPrivateStateThread(uint32_t signal) { 3527 Log *log = GetLog(LLDBLog::Process); 3528 3529 assert(signal == eBroadcastInternalStateControlStop || 3530 signal == eBroadcastInternalStateControlPause || 3531 signal == eBroadcastInternalStateControlResume); 3532 3533 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3534 3535 // Signal the private state thread 3536 if (m_private_state_thread.IsJoinable()) { 3537 // Broadcast the event. 3538 // It is important to do this outside of the if below, because it's 3539 // possible that the thread state is invalid but that the thread is waiting 3540 // on a control event instead of simply being on its way out (this should 3541 // not happen, but it apparently can). 3542 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3543 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3544 m_private_state_control_broadcaster.BroadcastEvent(signal, 3545 event_receipt_sp); 3546 3547 // Wait for the event receipt or for the private state thread to exit 3548 bool receipt_received = false; 3549 if (PrivateStateThreadIsValid()) { 3550 while (!receipt_received) { 3551 // Check for a receipt for n seconds and then check if the private 3552 // state thread is still around. 3553 receipt_received = 3554 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3555 if (!receipt_received) { 3556 // Check if the private state thread is still around. If it isn't 3557 // then we are done waiting 3558 if (!PrivateStateThreadIsValid()) 3559 break; // Private state thread exited or is exiting, we are done 3560 } 3561 } 3562 } 3563 3564 if (signal == eBroadcastInternalStateControlStop) { 3565 thread_result_t result = {}; 3566 m_private_state_thread.Join(&result); 3567 m_private_state_thread.Reset(); 3568 } 3569 } else { 3570 LLDB_LOGF( 3571 log, 3572 "Private state thread already dead, no need to signal it to stop."); 3573 } 3574 } 3575 3576 void Process::SendAsyncInterrupt() { 3577 if (PrivateStateThreadIsValid()) 3578 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3579 nullptr); 3580 else 3581 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3582 } 3583 3584 void Process::HandlePrivateEvent(EventSP &event_sp) { 3585 Log *log = GetLog(LLDBLog::Process); 3586 m_resume_requested = false; 3587 3588 const StateType new_state = 3589 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3590 3591 // First check to see if anybody wants a shot at this event: 3592 if (m_next_event_action_up) { 3593 NextEventAction::EventActionResult action_result = 3594 m_next_event_action_up->PerformAction(event_sp); 3595 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3596 3597 switch (action_result) { 3598 case NextEventAction::eEventActionSuccess: 3599 SetNextEventAction(nullptr); 3600 break; 3601 3602 case NextEventAction::eEventActionRetry: 3603 break; 3604 3605 case NextEventAction::eEventActionExit: 3606 // Handle Exiting Here. If we already got an exited event, we should 3607 // just propagate it. Otherwise, swallow this event, and set our state 3608 // to exit so the next event will kill us. 3609 if (new_state != eStateExited) { 3610 // FIXME: should cons up an exited event, and discard this one. 3611 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3612 SetNextEventAction(nullptr); 3613 return; 3614 } 3615 SetNextEventAction(nullptr); 3616 break; 3617 } 3618 } 3619 3620 // See if we should broadcast this state to external clients? 3621 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3622 3623 if (should_broadcast) { 3624 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3625 if (log) { 3626 LLDB_LOGF(log, 3627 "Process::%s (pid = %" PRIu64 3628 ") broadcasting new state %s (old state %s) to %s", 3629 __FUNCTION__, GetID(), StateAsCString(new_state), 3630 StateAsCString(GetState()), 3631 is_hijacked ? "hijacked" : "public"); 3632 } 3633 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3634 if (StateIsRunningState(new_state)) { 3635 // Only push the input handler if we aren't fowarding events, as this 3636 // means the curses GUI is in use... Or don't push it if we are launching 3637 // since it will come up stopped. 3638 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3639 new_state != eStateLaunching && new_state != eStateAttaching) { 3640 PushProcessIOHandler(); 3641 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3642 eBroadcastAlways); 3643 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3644 __FUNCTION__, m_iohandler_sync.GetValue()); 3645 } 3646 } else if (StateIsStoppedState(new_state, false)) { 3647 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3648 // If the lldb_private::Debugger is handling the events, we don't want 3649 // to pop the process IOHandler here, we want to do it when we receive 3650 // the stopped event so we can carefully control when the process 3651 // IOHandler is popped because when we stop we want to display some 3652 // text stating how and why we stopped, then maybe some 3653 // process/thread/frame info, and then we want the "(lldb) " prompt to 3654 // show up. If we pop the process IOHandler here, then we will cause 3655 // the command interpreter to become the top IOHandler after the 3656 // process pops off and it will update its prompt right away... See the 3657 // Debugger.cpp file where it calls the function as 3658 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3659 // Otherwise we end up getting overlapping "(lldb) " prompts and 3660 // garbled output. 3661 // 3662 // If we aren't handling the events in the debugger (which is indicated 3663 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3664 // we are hijacked, then we always pop the process IO handler manually. 3665 // Hijacking happens when the internal process state thread is running 3666 // thread plans, or when commands want to run in synchronous mode and 3667 // they call "process->WaitForProcessToStop()". An example of something 3668 // that will hijack the events is a simple expression: 3669 // 3670 // (lldb) expr (int)puts("hello") 3671 // 3672 // This will cause the internal process state thread to resume and halt 3673 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3674 // events) and we do need the IO handler to be pushed and popped 3675 // correctly. 3676 3677 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3678 PopProcessIOHandler(); 3679 } 3680 } 3681 3682 BroadcastEvent(event_sp); 3683 } else { 3684 if (log) { 3685 LLDB_LOGF( 3686 log, 3687 "Process::%s (pid = %" PRIu64 3688 ") suppressing state %s (old state %s): should_broadcast == false", 3689 __FUNCTION__, GetID(), StateAsCString(new_state), 3690 StateAsCString(GetState())); 3691 } 3692 } 3693 } 3694 3695 Status Process::HaltPrivate() { 3696 EventSP event_sp; 3697 Status error(WillHalt()); 3698 if (error.Fail()) 3699 return error; 3700 3701 // Ask the process subclass to actually halt our process 3702 bool caused_stop; 3703 error = DoHalt(caused_stop); 3704 3705 DidHalt(); 3706 return error; 3707 } 3708 3709 thread_result_t Process::PrivateStateThread(void *arg) { 3710 std::unique_ptr<PrivateStateThreadArgs> args_up( 3711 static_cast<PrivateStateThreadArgs *>(arg)); 3712 thread_result_t result = 3713 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3714 return result; 3715 } 3716 3717 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3718 bool control_only = true; 3719 3720 Log *log = GetLog(LLDBLog::Process); 3721 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3722 __FUNCTION__, static_cast<void *>(this), GetID()); 3723 3724 bool exit_now = false; 3725 bool interrupt_requested = false; 3726 while (!exit_now) { 3727 EventSP event_sp; 3728 GetEventsPrivate(event_sp, llvm::None, control_only); 3729 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3730 LLDB_LOGF(log, 3731 "Process::%s (arg = %p, pid = %" PRIu64 3732 ") got a control event: %d", 3733 __FUNCTION__, static_cast<void *>(this), GetID(), 3734 event_sp->GetType()); 3735 3736 switch (event_sp->GetType()) { 3737 case eBroadcastInternalStateControlStop: 3738 exit_now = true; 3739 break; // doing any internal state management below 3740 3741 case eBroadcastInternalStateControlPause: 3742 control_only = true; 3743 break; 3744 3745 case eBroadcastInternalStateControlResume: 3746 control_only = false; 3747 break; 3748 } 3749 3750 continue; 3751 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3752 if (m_public_state.GetValue() == eStateAttaching) { 3753 LLDB_LOGF(log, 3754 "Process::%s (arg = %p, pid = %" PRIu64 3755 ") woke up with an interrupt while attaching - " 3756 "forwarding interrupt.", 3757 __FUNCTION__, static_cast<void *>(this), GetID()); 3758 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3759 } else if (StateIsRunningState(m_last_broadcast_state)) { 3760 LLDB_LOGF(log, 3761 "Process::%s (arg = %p, pid = %" PRIu64 3762 ") woke up with an interrupt - Halting.", 3763 __FUNCTION__, static_cast<void *>(this), GetID()); 3764 Status error = HaltPrivate(); 3765 if (error.Fail() && log) 3766 LLDB_LOGF(log, 3767 "Process::%s (arg = %p, pid = %" PRIu64 3768 ") failed to halt the process: %s", 3769 __FUNCTION__, static_cast<void *>(this), GetID(), 3770 error.AsCString()); 3771 // Halt should generate a stopped event. Make a note of the fact that 3772 // we were doing the interrupt, so we can set the interrupted flag 3773 // after we receive the event. We deliberately set this to true even if 3774 // HaltPrivate failed, so that we can interrupt on the next natural 3775 // stop. 3776 interrupt_requested = true; 3777 } else { 3778 // This can happen when someone (e.g. Process::Halt) sees that we are 3779 // running and sends an interrupt request, but the process actually 3780 // stops before we receive it. In that case, we can just ignore the 3781 // request. We use m_last_broadcast_state, because the Stopped event 3782 // may not have been popped of the event queue yet, which is when the 3783 // public state gets updated. 3784 LLDB_LOGF(log, 3785 "Process::%s ignoring interrupt as we have already stopped.", 3786 __FUNCTION__); 3787 } 3788 continue; 3789 } 3790 3791 const StateType internal_state = 3792 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3793 3794 if (internal_state != eStateInvalid) { 3795 if (m_clear_thread_plans_on_stop && 3796 StateIsStoppedState(internal_state, true)) { 3797 m_clear_thread_plans_on_stop = false; 3798 m_thread_list.DiscardThreadPlans(); 3799 } 3800 3801 if (interrupt_requested) { 3802 if (StateIsStoppedState(internal_state, true)) { 3803 // We requested the interrupt, so mark this as such in the stop event 3804 // so clients can tell an interrupted process from a natural stop 3805 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3806 interrupt_requested = false; 3807 } else if (log) { 3808 LLDB_LOGF(log, 3809 "Process::%s interrupt_requested, but a non-stopped " 3810 "state '%s' received.", 3811 __FUNCTION__, StateAsCString(internal_state)); 3812 } 3813 } 3814 3815 HandlePrivateEvent(event_sp); 3816 } 3817 3818 if (internal_state == eStateInvalid || internal_state == eStateExited || 3819 internal_state == eStateDetached) { 3820 LLDB_LOGF(log, 3821 "Process::%s (arg = %p, pid = %" PRIu64 3822 ") about to exit with internal state %s...", 3823 __FUNCTION__, static_cast<void *>(this), GetID(), 3824 StateAsCString(internal_state)); 3825 3826 break; 3827 } 3828 } 3829 3830 // Verify log is still enabled before attempting to write to it... 3831 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3832 __FUNCTION__, static_cast<void *>(this), GetID()); 3833 3834 // If we are a secondary thread, then the primary thread we are working for 3835 // will have already acquired the public_run_lock, and isn't done with what 3836 // it was doing yet, so don't try to change it on the way out. 3837 if (!is_secondary_thread) 3838 m_public_run_lock.SetStopped(); 3839 return {}; 3840 } 3841 3842 // Process Event Data 3843 3844 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 3845 3846 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3847 StateType state) 3848 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3849 m_update_state(0), m_interrupted(false) { 3850 if (process_sp) 3851 m_process_wp = process_sp; 3852 } 3853 3854 Process::ProcessEventData::~ProcessEventData() = default; 3855 3856 ConstString Process::ProcessEventData::GetFlavorString() { 3857 static ConstString g_flavor("Process::ProcessEventData"); 3858 return g_flavor; 3859 } 3860 3861 ConstString Process::ProcessEventData::GetFlavor() const { 3862 return ProcessEventData::GetFlavorString(); 3863 } 3864 3865 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3866 bool &found_valid_stopinfo) { 3867 found_valid_stopinfo = false; 3868 3869 ProcessSP process_sp(m_process_wp.lock()); 3870 if (!process_sp) 3871 return false; 3872 3873 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3874 uint32_t num_threads = curr_thread_list.GetSize(); 3875 uint32_t idx; 3876 3877 // The actions might change one of the thread's stop_info's opinions about 3878 // whether we should stop the process, so we need to query that as we go. 3879 3880 // One other complication here, is that we try to catch any case where the 3881 // target has run (except for expressions) and immediately exit, but if we 3882 // get that wrong (which is possible) then the thread list might have 3883 // changed, and that would cause our iteration here to crash. We could 3884 // make a copy of the thread list, but we'd really like to also know if it 3885 // has changed at all, so we make up a vector of the thread ID's and check 3886 // what we get back against this list & bag out if anything differs. 3887 ThreadList not_suspended_thread_list(process_sp.get()); 3888 std::vector<uint32_t> thread_index_array(num_threads); 3889 uint32_t not_suspended_idx = 0; 3890 for (idx = 0; idx < num_threads; ++idx) { 3891 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3892 3893 /* 3894 Filter out all suspended threads, they could not be the reason 3895 of stop and no need to perform any actions on them. 3896 */ 3897 if (thread_sp->GetResumeState() != eStateSuspended) { 3898 not_suspended_thread_list.AddThread(thread_sp); 3899 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3900 not_suspended_idx++; 3901 } 3902 } 3903 3904 // Use this to track whether we should continue from here. We will only 3905 // continue the target running if no thread says we should stop. Of course 3906 // if some thread's PerformAction actually sets the target running, then it 3907 // doesn't matter what the other threads say... 3908 3909 bool still_should_stop = false; 3910 3911 // Sometimes - for instance if we have a bug in the stub we are talking to, 3912 // we stop but no thread has a valid stop reason. In that case we should 3913 // just stop, because we have no way of telling what the right thing to do 3914 // is, and it's better to let the user decide than continue behind their 3915 // backs. 3916 3917 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3918 curr_thread_list = process_sp->GetThreadList(); 3919 if (curr_thread_list.GetSize() != num_threads) { 3920 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 3921 LLDB_LOGF( 3922 log, 3923 "Number of threads changed from %u to %u while processing event.", 3924 num_threads, curr_thread_list.GetSize()); 3925 break; 3926 } 3927 3928 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3929 3930 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3931 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 3932 LLDB_LOGF(log, 3933 "The thread at position %u changed from %u to %u while " 3934 "processing event.", 3935 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3936 break; 3937 } 3938 3939 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3940 if (stop_info_sp && stop_info_sp->IsValid()) { 3941 found_valid_stopinfo = true; 3942 bool this_thread_wants_to_stop; 3943 if (stop_info_sp->GetOverrideShouldStop()) { 3944 this_thread_wants_to_stop = 3945 stop_info_sp->GetOverriddenShouldStopValue(); 3946 } else { 3947 stop_info_sp->PerformAction(event_ptr); 3948 // The stop action might restart the target. If it does, then we 3949 // want to mark that in the event so that whoever is receiving it 3950 // will know to wait for the running event and reflect that state 3951 // appropriately. We also need to stop processing actions, since they 3952 // aren't expecting the target to be running. 3953 3954 // FIXME: we might have run. 3955 if (stop_info_sp->HasTargetRunSinceMe()) { 3956 SetRestarted(true); 3957 break; 3958 } 3959 3960 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 3961 } 3962 3963 if (!still_should_stop) 3964 still_should_stop = this_thread_wants_to_stop; 3965 } 3966 } 3967 3968 return still_should_stop; 3969 } 3970 3971 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3972 ProcessSP process_sp(m_process_wp.lock()); 3973 3974 if (!process_sp) 3975 return; 3976 3977 // This function gets called twice for each event, once when the event gets 3978 // pulled off of the private process event queue, and then any number of 3979 // times, first when it gets pulled off of the public event queue, then other 3980 // times when we're pretending that this is where we stopped at the end of 3981 // expression evaluation. m_update_state is used to distinguish these three 3982 // cases; it is 0 when we're just pulling it off for private handling, and > 3983 // 1 for expression evaluation, and we don't want to do the breakpoint 3984 // command handling then. 3985 if (m_update_state != 1) 3986 return; 3987 3988 process_sp->SetPublicState( 3989 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 3990 3991 if (m_state == eStateStopped && !m_restarted) { 3992 // Let process subclasses know we are about to do a public stop and do 3993 // anything they might need to in order to speed up register and memory 3994 // accesses. 3995 process_sp->WillPublicStop(); 3996 } 3997 3998 // If this is a halt event, even if the halt stopped with some reason other 3999 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4000 // the halt request came through) don't do the StopInfo actions, as they may 4001 // end up restarting the process. 4002 if (m_interrupted) 4003 return; 4004 4005 // If we're not stopped or have restarted, then skip the StopInfo actions: 4006 if (m_state != eStateStopped || m_restarted) { 4007 return; 4008 } 4009 4010 bool does_anybody_have_an_opinion = false; 4011 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4012 4013 if (GetRestarted()) { 4014 return; 4015 } 4016 4017 if (!still_should_stop && does_anybody_have_an_opinion) { 4018 // We've been asked to continue, so do that here. 4019 SetRestarted(true); 4020 // Use the public resume method here, since this is just extending a 4021 // public resume. 4022 process_sp->PrivateResume(); 4023 } else { 4024 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4025 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4026 4027 if (!hijacked) { 4028 // If we didn't restart, run the Stop Hooks here. 4029 // Don't do that if state changed events aren't hooked up to the 4030 // public (or SyncResume) broadcasters. StopHooks are just for 4031 // real public stops. They might also restart the target, 4032 // so watch for that. 4033 if (process_sp->GetTarget().RunStopHooks()) 4034 SetRestarted(true); 4035 } 4036 } 4037 } 4038 4039 void Process::ProcessEventData::Dump(Stream *s) const { 4040 ProcessSP process_sp(m_process_wp.lock()); 4041 4042 if (process_sp) 4043 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4044 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4045 else 4046 s->PutCString(" process = NULL, "); 4047 4048 s->Printf("state = %s", StateAsCString(GetState())); 4049 } 4050 4051 const Process::ProcessEventData * 4052 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4053 if (event_ptr) { 4054 const EventData *event_data = event_ptr->GetData(); 4055 if (event_data && 4056 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4057 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4058 } 4059 return nullptr; 4060 } 4061 4062 ProcessSP 4063 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4064 ProcessSP process_sp; 4065 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4066 if (data) 4067 process_sp = data->GetProcessSP(); 4068 return process_sp; 4069 } 4070 4071 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4072 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4073 if (data == nullptr) 4074 return eStateInvalid; 4075 else 4076 return data->GetState(); 4077 } 4078 4079 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4080 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4081 if (data == nullptr) 4082 return false; 4083 else 4084 return data->GetRestarted(); 4085 } 4086 4087 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4088 bool new_value) { 4089 ProcessEventData *data = 4090 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4091 if (data != nullptr) 4092 data->SetRestarted(new_value); 4093 } 4094 4095 size_t 4096 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4097 ProcessEventData *data = 4098 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4099 if (data != nullptr) 4100 return data->GetNumRestartedReasons(); 4101 else 4102 return 0; 4103 } 4104 4105 const char * 4106 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4107 size_t idx) { 4108 ProcessEventData *data = 4109 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4110 if (data != nullptr) 4111 return data->GetRestartedReasonAtIndex(idx); 4112 else 4113 return nullptr; 4114 } 4115 4116 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4117 const char *reason) { 4118 ProcessEventData *data = 4119 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4120 if (data != nullptr) 4121 data->AddRestartedReason(reason); 4122 } 4123 4124 bool Process::ProcessEventData::GetInterruptedFromEvent( 4125 const Event *event_ptr) { 4126 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4127 if (data == nullptr) 4128 return false; 4129 else 4130 return data->GetInterrupted(); 4131 } 4132 4133 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4134 bool new_value) { 4135 ProcessEventData *data = 4136 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4137 if (data != nullptr) 4138 data->SetInterrupted(new_value); 4139 } 4140 4141 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4142 ProcessEventData *data = 4143 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4144 if (data) { 4145 data->SetUpdateStateOnRemoval(); 4146 return true; 4147 } 4148 return false; 4149 } 4150 4151 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4152 4153 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4154 exe_ctx.SetTargetPtr(&GetTarget()); 4155 exe_ctx.SetProcessPtr(this); 4156 exe_ctx.SetThreadPtr(nullptr); 4157 exe_ctx.SetFramePtr(nullptr); 4158 } 4159 4160 // uint32_t 4161 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4162 // std::vector<lldb::pid_t> &pids) 4163 //{ 4164 // return 0; 4165 //} 4166 // 4167 // ArchSpec 4168 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4169 //{ 4170 // return Host::GetArchSpecForExistingProcess (pid); 4171 //} 4172 // 4173 // ArchSpec 4174 // Process::GetArchSpecForExistingProcess (const char *process_name) 4175 //{ 4176 // return Host::GetArchSpecForExistingProcess (process_name); 4177 //} 4178 4179 void Process::AppendSTDOUT(const char *s, size_t len) { 4180 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4181 m_stdout_data.append(s, len); 4182 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4183 new ProcessEventData(shared_from_this(), GetState())); 4184 } 4185 4186 void Process::AppendSTDERR(const char *s, size_t len) { 4187 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4188 m_stderr_data.append(s, len); 4189 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4190 new ProcessEventData(shared_from_this(), GetState())); 4191 } 4192 4193 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4194 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4195 m_profile_data.push_back(one_profile_data); 4196 BroadcastEventIfUnique(eBroadcastBitProfileData, 4197 new ProcessEventData(shared_from_this(), GetState())); 4198 } 4199 4200 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4201 const StructuredDataPluginSP &plugin_sp) { 4202 BroadcastEvent( 4203 eBroadcastBitStructuredData, 4204 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4205 } 4206 4207 StructuredDataPluginSP 4208 Process::GetStructuredDataPlugin(ConstString type_name) const { 4209 auto find_it = m_structured_data_plugin_map.find(type_name); 4210 if (find_it != m_structured_data_plugin_map.end()) 4211 return find_it->second; 4212 else 4213 return StructuredDataPluginSP(); 4214 } 4215 4216 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4217 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4218 if (m_profile_data.empty()) 4219 return 0; 4220 4221 std::string &one_profile_data = m_profile_data.front(); 4222 size_t bytes_available = one_profile_data.size(); 4223 if (bytes_available > 0) { 4224 Log *log = GetLog(LLDBLog::Process); 4225 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4226 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4227 if (bytes_available > buf_size) { 4228 memcpy(buf, one_profile_data.c_str(), buf_size); 4229 one_profile_data.erase(0, buf_size); 4230 bytes_available = buf_size; 4231 } else { 4232 memcpy(buf, one_profile_data.c_str(), bytes_available); 4233 m_profile_data.erase(m_profile_data.begin()); 4234 } 4235 } 4236 return bytes_available; 4237 } 4238 4239 // Process STDIO 4240 4241 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4242 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4243 size_t bytes_available = m_stdout_data.size(); 4244 if (bytes_available > 0) { 4245 Log *log = GetLog(LLDBLog::Process); 4246 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4247 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4248 if (bytes_available > buf_size) { 4249 memcpy(buf, m_stdout_data.c_str(), buf_size); 4250 m_stdout_data.erase(0, buf_size); 4251 bytes_available = buf_size; 4252 } else { 4253 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4254 m_stdout_data.clear(); 4255 } 4256 } 4257 return bytes_available; 4258 } 4259 4260 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4261 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4262 size_t bytes_available = m_stderr_data.size(); 4263 if (bytes_available > 0) { 4264 Log *log = GetLog(LLDBLog::Process); 4265 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4266 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4267 if (bytes_available > buf_size) { 4268 memcpy(buf, m_stderr_data.c_str(), buf_size); 4269 m_stderr_data.erase(0, buf_size); 4270 bytes_available = buf_size; 4271 } else { 4272 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4273 m_stderr_data.clear(); 4274 } 4275 } 4276 return bytes_available; 4277 } 4278 4279 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4280 size_t src_len) { 4281 Process *process = (Process *)baton; 4282 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4283 } 4284 4285 class IOHandlerProcessSTDIO : public IOHandler { 4286 public: 4287 IOHandlerProcessSTDIO(Process *process, int write_fd) 4288 : IOHandler(process->GetTarget().GetDebugger(), 4289 IOHandler::Type::ProcessIO), 4290 m_process(process), 4291 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4292 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4293 m_pipe.CreateNew(false); 4294 } 4295 4296 ~IOHandlerProcessSTDIO() override = default; 4297 4298 // Each IOHandler gets to run until it is done. It should read data from the 4299 // "in" and place output into "out" and "err and return when done. 4300 void Run() override { 4301 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4302 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4303 SetIsDone(true); 4304 return; 4305 } 4306 4307 SetIsDone(false); 4308 const int read_fd = m_read_file.GetDescriptor(); 4309 Terminal terminal(read_fd); 4310 TerminalState terminal_state(terminal, false); 4311 // FIXME: error handling? 4312 llvm::consumeError(terminal.SetCanonical(false)); 4313 llvm::consumeError(terminal.SetEcho(false)); 4314 // FD_ZERO, FD_SET are not supported on windows 4315 #ifndef _WIN32 4316 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4317 m_is_running = true; 4318 while (!GetIsDone()) { 4319 SelectHelper select_helper; 4320 select_helper.FDSetRead(read_fd); 4321 select_helper.FDSetRead(pipe_read_fd); 4322 Status error = select_helper.Select(); 4323 4324 if (error.Fail()) { 4325 SetIsDone(true); 4326 } else { 4327 char ch = 0; 4328 size_t n; 4329 if (select_helper.FDIsSetRead(read_fd)) { 4330 n = 1; 4331 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4332 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4333 SetIsDone(true); 4334 } else 4335 SetIsDone(true); 4336 } 4337 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4338 size_t bytes_read; 4339 // Consume the interrupt byte 4340 Status error = m_pipe.Read(&ch, 1, bytes_read); 4341 if (error.Success()) { 4342 switch (ch) { 4343 case 'q': 4344 SetIsDone(true); 4345 break; 4346 case 'i': 4347 if (StateIsRunningState(m_process->GetState())) 4348 m_process->SendAsyncInterrupt(); 4349 break; 4350 } 4351 } 4352 } 4353 } 4354 } 4355 m_is_running = false; 4356 #endif 4357 } 4358 4359 void Cancel() override { 4360 SetIsDone(true); 4361 // Only write to our pipe to cancel if we are in 4362 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4363 // is being run from the command interpreter: 4364 // 4365 // (lldb) step_process_thousands_of_times 4366 // 4367 // In this case the command interpreter will be in the middle of handling 4368 // the command and if the process pushes and pops the IOHandler thousands 4369 // of times, we can end up writing to m_pipe without ever consuming the 4370 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4371 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4372 if (m_is_running) { 4373 char ch = 'q'; // Send 'q' for quit 4374 size_t bytes_written = 0; 4375 m_pipe.Write(&ch, 1, bytes_written); 4376 } 4377 } 4378 4379 bool Interrupt() override { 4380 // Do only things that are safe to do in an interrupt context (like in a 4381 // SIGINT handler), like write 1 byte to a file descriptor. This will 4382 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4383 // that was written to the pipe and then call 4384 // m_process->SendAsyncInterrupt() from a much safer location in code. 4385 if (m_active) { 4386 char ch = 'i'; // Send 'i' for interrupt 4387 size_t bytes_written = 0; 4388 Status result = m_pipe.Write(&ch, 1, bytes_written); 4389 return result.Success(); 4390 } else { 4391 // This IOHandler might be pushed on the stack, but not being run 4392 // currently so do the right thing if we aren't actively watching for 4393 // STDIN by sending the interrupt to the process. Otherwise the write to 4394 // the pipe above would do nothing. This can happen when the command 4395 // interpreter is running and gets a "expression ...". It will be on the 4396 // IOHandler thread and sending the input is complete to the delegate 4397 // which will cause the expression to run, which will push the process IO 4398 // handler, but not run it. 4399 4400 if (StateIsRunningState(m_process->GetState())) { 4401 m_process->SendAsyncInterrupt(); 4402 return true; 4403 } 4404 } 4405 return false; 4406 } 4407 4408 void GotEOF() override {} 4409 4410 protected: 4411 Process *m_process; 4412 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4413 NativeFile m_write_file; // Write to this file (usually the primary pty for 4414 // getting io to debuggee) 4415 Pipe m_pipe; 4416 std::atomic<bool> m_is_running{false}; 4417 }; 4418 4419 void Process::SetSTDIOFileDescriptor(int fd) { 4420 // First set up the Read Thread for reading/handling process I/O 4421 m_stdio_communication.SetConnection( 4422 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4423 if (m_stdio_communication.IsConnected()) { 4424 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4425 STDIOReadThreadBytesReceived, this); 4426 m_stdio_communication.StartReadThread(); 4427 4428 // Now read thread is set up, set up input reader. 4429 4430 if (!m_process_input_reader) 4431 m_process_input_reader = 4432 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4433 } 4434 } 4435 4436 bool Process::ProcessIOHandlerIsActive() { 4437 IOHandlerSP io_handler_sp(m_process_input_reader); 4438 if (io_handler_sp) 4439 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4440 return false; 4441 } 4442 bool Process::PushProcessIOHandler() { 4443 IOHandlerSP io_handler_sp(m_process_input_reader); 4444 if (io_handler_sp) { 4445 Log *log = GetLog(LLDBLog::Process); 4446 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4447 4448 io_handler_sp->SetIsDone(false); 4449 // If we evaluate an utility function, then we don't cancel the current 4450 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4451 // existing IOHandler that potentially provides the user interface (e.g. 4452 // the IOHandler for Editline). 4453 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4454 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4455 cancel_top_handler); 4456 return true; 4457 } 4458 return false; 4459 } 4460 4461 bool Process::PopProcessIOHandler() { 4462 IOHandlerSP io_handler_sp(m_process_input_reader); 4463 if (io_handler_sp) 4464 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4465 return false; 4466 } 4467 4468 // The process needs to know about installed plug-ins 4469 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4470 4471 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4472 4473 namespace { 4474 // RestorePlanState is used to record the "is private", "is controlling" and 4475 // "okay 4476 // to discard" fields of the plan we are running, and reset it on Clean or on 4477 // destruction. It will only reset the state once, so you can call Clean and 4478 // then monkey with the state and it won't get reset on you again. 4479 4480 class RestorePlanState { 4481 public: 4482 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4483 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4484 if (m_thread_plan_sp) { 4485 m_private = m_thread_plan_sp->GetPrivate(); 4486 m_is_controlling = m_thread_plan_sp->IsControllingPlan(); 4487 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4488 } 4489 } 4490 4491 ~RestorePlanState() { Clean(); } 4492 4493 void Clean() { 4494 if (!m_already_reset && m_thread_plan_sp) { 4495 m_already_reset = true; 4496 m_thread_plan_sp->SetPrivate(m_private); 4497 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); 4498 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4499 } 4500 } 4501 4502 private: 4503 lldb::ThreadPlanSP m_thread_plan_sp; 4504 bool m_already_reset; 4505 bool m_private; 4506 bool m_is_controlling; 4507 bool m_okay_to_discard; 4508 }; 4509 } // anonymous namespace 4510 4511 static microseconds 4512 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4513 const milliseconds default_one_thread_timeout(250); 4514 4515 // If the overall wait is forever, then we don't need to worry about it. 4516 if (!options.GetTimeout()) { 4517 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4518 : default_one_thread_timeout; 4519 } 4520 4521 // If the one thread timeout is set, use it. 4522 if (options.GetOneThreadTimeout()) 4523 return *options.GetOneThreadTimeout(); 4524 4525 // Otherwise use half the total timeout, bounded by the 4526 // default_one_thread_timeout. 4527 return std::min<microseconds>(default_one_thread_timeout, 4528 *options.GetTimeout() / 2); 4529 } 4530 4531 static Timeout<std::micro> 4532 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4533 bool before_first_timeout) { 4534 // If we are going to run all threads the whole time, or if we are only going 4535 // to run one thread, we can just return the overall timeout. 4536 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4537 return options.GetTimeout(); 4538 4539 if (before_first_timeout) 4540 return GetOneThreadExpressionTimeout(options); 4541 4542 if (!options.GetTimeout()) 4543 return llvm::None; 4544 else 4545 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4546 } 4547 4548 static llvm::Optional<ExpressionResults> 4549 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4550 RestorePlanState &restorer, const EventSP &event_sp, 4551 EventSP &event_to_broadcast_sp, 4552 const EvaluateExpressionOptions &options, 4553 bool handle_interrupts) { 4554 Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); 4555 4556 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4557 .GetProcessSP() 4558 ->GetThreadList() 4559 .FindThreadByID(thread_id); 4560 if (!thread_sp) { 4561 LLDB_LOG(log, 4562 "The thread on which we were running the " 4563 "expression: tid = {0}, exited while " 4564 "the expression was running.", 4565 thread_id); 4566 return eExpressionThreadVanished; 4567 } 4568 4569 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4570 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4571 LLDB_LOG(log, "execution completed successfully"); 4572 4573 // Restore the plan state so it will get reported as intended when we are 4574 // done. 4575 restorer.Clean(); 4576 return eExpressionCompleted; 4577 } 4578 4579 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4580 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4581 stop_info_sp->ShouldNotify(event_sp.get())) { 4582 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4583 if (!options.DoesIgnoreBreakpoints()) { 4584 // Restore the plan state and then force Private to false. We are going 4585 // to stop because of this plan so we need it to become a public plan or 4586 // it won't report correctly when we continue to its termination later 4587 // on. 4588 restorer.Clean(); 4589 thread_plan_sp->SetPrivate(false); 4590 event_to_broadcast_sp = event_sp; 4591 } 4592 return eExpressionHitBreakpoint; 4593 } 4594 4595 if (!handle_interrupts && 4596 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4597 return llvm::None; 4598 4599 LLDB_LOG(log, "thread plan did not successfully complete"); 4600 if (!options.DoesUnwindOnError()) 4601 event_to_broadcast_sp = event_sp; 4602 return eExpressionInterrupted; 4603 } 4604 4605 ExpressionResults 4606 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4607 lldb::ThreadPlanSP &thread_plan_sp, 4608 const EvaluateExpressionOptions &options, 4609 DiagnosticManager &diagnostic_manager) { 4610 ExpressionResults return_value = eExpressionSetupError; 4611 4612 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4613 4614 if (!thread_plan_sp) { 4615 diagnostic_manager.PutString( 4616 eDiagnosticSeverityError, 4617 "RunThreadPlan called with empty thread plan."); 4618 return eExpressionSetupError; 4619 } 4620 4621 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4622 diagnostic_manager.PutString( 4623 eDiagnosticSeverityError, 4624 "RunThreadPlan called with an invalid thread plan."); 4625 return eExpressionSetupError; 4626 } 4627 4628 if (exe_ctx.GetProcessPtr() != this) { 4629 diagnostic_manager.PutString(eDiagnosticSeverityError, 4630 "RunThreadPlan called on wrong process."); 4631 return eExpressionSetupError; 4632 } 4633 4634 Thread *thread = exe_ctx.GetThreadPtr(); 4635 if (thread == nullptr) { 4636 diagnostic_manager.PutString(eDiagnosticSeverityError, 4637 "RunThreadPlan called with invalid thread."); 4638 return eExpressionSetupError; 4639 } 4640 4641 // Record the thread's id so we can tell when a thread we were using 4642 // to run the expression exits during the expression evaluation. 4643 lldb::tid_t expr_thread_id = thread->GetID(); 4644 4645 // We need to change some of the thread plan attributes for the thread plan 4646 // runner. This will restore them when we are done: 4647 4648 RestorePlanState thread_plan_restorer(thread_plan_sp); 4649 4650 // We rely on the thread plan we are running returning "PlanCompleted" if 4651 // when it successfully completes. For that to be true the plan can't be 4652 // private - since private plans suppress themselves in the GetCompletedPlan 4653 // call. 4654 4655 thread_plan_sp->SetPrivate(false); 4656 4657 // The plans run with RunThreadPlan also need to be terminal controlling plans 4658 // or when they are done we will end up asking the plan above us whether we 4659 // should stop, which may give the wrong answer. 4660 4661 thread_plan_sp->SetIsControllingPlan(true); 4662 thread_plan_sp->SetOkayToDiscard(false); 4663 4664 // If we are running some utility expression for LLDB, we now have to mark 4665 // this in the ProcesModID of this process. This RAII takes care of marking 4666 // and reverting the mark it once we are done running the expression. 4667 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4668 4669 if (m_private_state.GetValue() != eStateStopped) { 4670 diagnostic_manager.PutString( 4671 eDiagnosticSeverityError, 4672 "RunThreadPlan called while the private state was not stopped."); 4673 return eExpressionSetupError; 4674 } 4675 4676 // Save the thread & frame from the exe_ctx for restoration after we run 4677 const uint32_t thread_idx_id = thread->GetIndexID(); 4678 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4679 if (!selected_frame_sp) { 4680 thread->SetSelectedFrame(nullptr); 4681 selected_frame_sp = thread->GetSelectedFrame(); 4682 if (!selected_frame_sp) { 4683 diagnostic_manager.Printf( 4684 eDiagnosticSeverityError, 4685 "RunThreadPlan called without a selected frame on thread %d", 4686 thread_idx_id); 4687 return eExpressionSetupError; 4688 } 4689 } 4690 4691 // Make sure the timeout values make sense. The one thread timeout needs to 4692 // be smaller than the overall timeout. 4693 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4694 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4695 diagnostic_manager.PutString(eDiagnosticSeverityError, 4696 "RunThreadPlan called with one thread " 4697 "timeout greater than total timeout"); 4698 return eExpressionSetupError; 4699 } 4700 4701 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4702 4703 // N.B. Running the target may unset the currently selected thread and frame. 4704 // We don't want to do that either, so we should arrange to reset them as 4705 // well. 4706 4707 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4708 4709 uint32_t selected_tid; 4710 StackID selected_stack_id; 4711 if (selected_thread_sp) { 4712 selected_tid = selected_thread_sp->GetIndexID(); 4713 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4714 } else { 4715 selected_tid = LLDB_INVALID_THREAD_ID; 4716 } 4717 4718 HostThread backup_private_state_thread; 4719 lldb::StateType old_state = eStateInvalid; 4720 lldb::ThreadPlanSP stopper_base_plan_sp; 4721 4722 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4723 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4724 // Yikes, we are running on the private state thread! So we can't wait for 4725 // public events on this thread, since we are the thread that is generating 4726 // public events. The simplest thing to do is to spin up a temporary thread 4727 // to handle private state thread events while we are fielding public 4728 // events here. 4729 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4730 "another state thread to handle the events."); 4731 4732 backup_private_state_thread = m_private_state_thread; 4733 4734 // One other bit of business: we want to run just this thread plan and 4735 // anything it pushes, and then stop, returning control here. But in the 4736 // normal course of things, the plan above us on the stack would be given a 4737 // shot at the stop event before deciding to stop, and we don't want that. 4738 // So we insert a "stopper" base plan on the stack before the plan we want 4739 // to run. Since base plans always stop and return control to the user, 4740 // that will do just what we want. 4741 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4742 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4743 // Have to make sure our public state is stopped, since otherwise the 4744 // reporting logic below doesn't work correctly. 4745 old_state = m_public_state.GetValue(); 4746 m_public_state.SetValueNoLock(eStateStopped); 4747 4748 // Now spin up the private state thread: 4749 StartPrivateStateThread(true); 4750 } 4751 4752 thread->QueueThreadPlan( 4753 thread_plan_sp, false); // This used to pass "true" does that make sense? 4754 4755 if (options.GetDebug()) { 4756 // In this case, we aren't actually going to run, we just want to stop 4757 // right away. Flush this thread so we will refetch the stacks and show the 4758 // correct backtrace. 4759 // FIXME: To make this prettier we should invent some stop reason for this, 4760 // but that 4761 // is only cosmetic, and this functionality is only of use to lldb 4762 // developers who can live with not pretty... 4763 thread->Flush(); 4764 return eExpressionStoppedForDebug; 4765 } 4766 4767 ListenerSP listener_sp( 4768 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4769 4770 lldb::EventSP event_to_broadcast_sp; 4771 4772 { 4773 // This process event hijacker Hijacks the Public events and its destructor 4774 // makes sure that the process events get restored on exit to the function. 4775 // 4776 // If the event needs to propagate beyond the hijacker (e.g., the process 4777 // exits during execution), then the event is put into 4778 // event_to_broadcast_sp for rebroadcasting. 4779 4780 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4781 4782 if (log) { 4783 StreamString s; 4784 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4785 LLDB_LOGF(log, 4786 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4787 " to run thread plan \"%s\".", 4788 thread_idx_id, expr_thread_id, s.GetData()); 4789 } 4790 4791 bool got_event; 4792 lldb::EventSP event_sp; 4793 lldb::StateType stop_state = lldb::eStateInvalid; 4794 4795 bool before_first_timeout = true; // This is set to false the first time 4796 // that we have to halt the target. 4797 bool do_resume = true; 4798 bool handle_running_event = true; 4799 4800 // This is just for accounting: 4801 uint32_t num_resumes = 0; 4802 4803 // If we are going to run all threads the whole time, or if we are only 4804 // going to run one thread, then we don't need the first timeout. So we 4805 // pretend we are after the first timeout already. 4806 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4807 before_first_timeout = false; 4808 4809 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4810 options.GetStopOthers(), options.GetTryAllThreads(), 4811 before_first_timeout); 4812 4813 // This isn't going to work if there are unfetched events on the queue. Are 4814 // there cases where we might want to run the remaining events here, and 4815 // then try to call the function? That's probably being too tricky for our 4816 // own good. 4817 4818 Event *other_events = listener_sp->PeekAtNextEvent(); 4819 if (other_events != nullptr) { 4820 diagnostic_manager.PutString( 4821 eDiagnosticSeverityError, 4822 "RunThreadPlan called with pending events on the queue."); 4823 return eExpressionSetupError; 4824 } 4825 4826 // We also need to make sure that the next event is delivered. We might be 4827 // calling a function as part of a thread plan, in which case the last 4828 // delivered event could be the running event, and we don't want event 4829 // coalescing to cause us to lose OUR running event... 4830 ForceNextEventDelivery(); 4831 4832 // This while loop must exit out the bottom, there's cleanup that we need to do 4833 // when we are done. So don't call return anywhere within it. 4834 4835 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4836 // It's pretty much impossible to write test cases for things like: One 4837 // thread timeout expires, I go to halt, but the process already stopped on 4838 // the function call stop breakpoint. Turning on this define will make us 4839 // not fetch the first event till after the halt. So if you run a quick 4840 // function, it will have completed, and the completion event will be 4841 // waiting, when you interrupt for halt. The expression evaluation should 4842 // still succeed. 4843 bool miss_first_event = true; 4844 #endif 4845 while (true) { 4846 // We usually want to resume the process if we get to the top of the 4847 // loop. The only exception is if we get two running events with no 4848 // intervening stop, which can happen, we will just wait for then next 4849 // stop event. 4850 LLDB_LOGF(log, 4851 "Top of while loop: do_resume: %i handle_running_event: %i " 4852 "before_first_timeout: %i.", 4853 do_resume, handle_running_event, before_first_timeout); 4854 4855 if (do_resume || handle_running_event) { 4856 // Do the initial resume and wait for the running event before going 4857 // further. 4858 4859 if (do_resume) { 4860 num_resumes++; 4861 Status resume_error = PrivateResume(); 4862 if (!resume_error.Success()) { 4863 diagnostic_manager.Printf( 4864 eDiagnosticSeverityError, 4865 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4866 resume_error.AsCString()); 4867 return_value = eExpressionSetupError; 4868 break; 4869 } 4870 } 4871 4872 got_event = 4873 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4874 if (!got_event) { 4875 LLDB_LOGF(log, 4876 "Process::RunThreadPlan(): didn't get any event after " 4877 "resume %" PRIu32 ", exiting.", 4878 num_resumes); 4879 4880 diagnostic_manager.Printf(eDiagnosticSeverityError, 4881 "didn't get any event after resume %" PRIu32 4882 ", exiting.", 4883 num_resumes); 4884 return_value = eExpressionSetupError; 4885 break; 4886 } 4887 4888 stop_state = 4889 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4890 4891 if (stop_state != eStateRunning) { 4892 bool restarted = false; 4893 4894 if (stop_state == eStateStopped) { 4895 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4896 event_sp.get()); 4897 LLDB_LOGF( 4898 log, 4899 "Process::RunThreadPlan(): didn't get running event after " 4900 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4901 "handle_running_event: %i).", 4902 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4903 handle_running_event); 4904 } 4905 4906 if (restarted) { 4907 // This is probably an overabundance of caution, I don't think I 4908 // should ever get a stopped & restarted event here. But if I do, 4909 // the best thing is to Halt and then get out of here. 4910 const bool clear_thread_plans = false; 4911 const bool use_run_lock = false; 4912 Halt(clear_thread_plans, use_run_lock); 4913 } 4914 4915 diagnostic_manager.Printf( 4916 eDiagnosticSeverityError, 4917 "didn't get running event after initial resume, got %s instead.", 4918 StateAsCString(stop_state)); 4919 return_value = eExpressionSetupError; 4920 break; 4921 } 4922 4923 if (log) 4924 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4925 // We need to call the function synchronously, so spin waiting for it 4926 // to return. If we get interrupted while executing, we're going to 4927 // lose our context, and won't be able to gather the result at this 4928 // point. We set the timeout AFTER the resume, since the resume takes 4929 // some time and we don't want to charge that to the timeout. 4930 } else { 4931 if (log) 4932 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4933 } 4934 4935 do_resume = true; 4936 handle_running_event = true; 4937 4938 // Now wait for the process to stop again: 4939 event_sp.reset(); 4940 4941 Timeout<std::micro> timeout = 4942 GetExpressionTimeout(options, before_first_timeout); 4943 if (log) { 4944 if (timeout) { 4945 auto now = system_clock::now(); 4946 LLDB_LOGF(log, 4947 "Process::RunThreadPlan(): about to wait - now is %s - " 4948 "endpoint is %s", 4949 llvm::to_string(now).c_str(), 4950 llvm::to_string(now + *timeout).c_str()); 4951 } else { 4952 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4953 } 4954 } 4955 4956 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4957 // See comment above... 4958 if (miss_first_event) { 4959 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4960 miss_first_event = false; 4961 got_event = false; 4962 } else 4963 #endif 4964 got_event = listener_sp->GetEvent(event_sp, timeout); 4965 4966 if (got_event) { 4967 if (event_sp) { 4968 bool keep_going = false; 4969 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4970 const bool clear_thread_plans = false; 4971 const bool use_run_lock = false; 4972 Halt(clear_thread_plans, use_run_lock); 4973 return_value = eExpressionInterrupted; 4974 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 4975 "execution halted by user interrupt."); 4976 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 4977 "eBroadcastBitInterrupted, exiting."); 4978 break; 4979 } else { 4980 stop_state = 4981 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4982 LLDB_LOGF(log, 4983 "Process::RunThreadPlan(): in while loop, got event: %s.", 4984 StateAsCString(stop_state)); 4985 4986 switch (stop_state) { 4987 case lldb::eStateStopped: { 4988 if (Process::ProcessEventData::GetRestartedFromEvent( 4989 event_sp.get())) { 4990 // If we were restarted, we just need to go back up to fetch 4991 // another event. 4992 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 4993 "restart, so we'll continue waiting."); 4994 keep_going = true; 4995 do_resume = false; 4996 handle_running_event = true; 4997 } else { 4998 const bool handle_interrupts = true; 4999 return_value = *HandleStoppedEvent( 5000 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5001 event_sp, event_to_broadcast_sp, options, 5002 handle_interrupts); 5003 if (return_value == eExpressionThreadVanished) 5004 keep_going = false; 5005 } 5006 } break; 5007 5008 case lldb::eStateRunning: 5009 // This shouldn't really happen, but sometimes we do get two 5010 // running events without an intervening stop, and in that case 5011 // we should just go back to waiting for the stop. 5012 do_resume = false; 5013 keep_going = true; 5014 handle_running_event = false; 5015 break; 5016 5017 default: 5018 LLDB_LOGF(log, 5019 "Process::RunThreadPlan(): execution stopped with " 5020 "unexpected state: %s.", 5021 StateAsCString(stop_state)); 5022 5023 if (stop_state == eStateExited) 5024 event_to_broadcast_sp = event_sp; 5025 5026 diagnostic_manager.PutString( 5027 eDiagnosticSeverityError, 5028 "execution stopped with unexpected state."); 5029 return_value = eExpressionInterrupted; 5030 break; 5031 } 5032 } 5033 5034 if (keep_going) 5035 continue; 5036 else 5037 break; 5038 } else { 5039 if (log) 5040 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5041 "the event pointer was null. How odd..."); 5042 return_value = eExpressionInterrupted; 5043 break; 5044 } 5045 } else { 5046 // If we didn't get an event that means we've timed out... We will 5047 // interrupt the process here. Depending on what we were asked to do 5048 // we will either exit, or try with all threads running for the same 5049 // timeout. 5050 5051 if (log) { 5052 if (options.GetTryAllThreads()) { 5053 if (before_first_timeout) { 5054 LLDB_LOG(log, 5055 "Running function with one thread timeout timed out."); 5056 } else 5057 LLDB_LOG(log, "Restarting function with all threads enabled and " 5058 "timeout: {0} timed out, abandoning execution.", 5059 timeout); 5060 } else 5061 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5062 "abandoning execution.", 5063 timeout); 5064 } 5065 5066 // It is possible that between the time we issued the Halt, and we get 5067 // around to calling Halt the target could have stopped. That's fine, 5068 // Halt will figure that out and send the appropriate Stopped event. 5069 // BUT it is also possible that we stopped & restarted (e.g. hit a 5070 // signal with "stop" set to false.) In 5071 // that case, we'll get the stopped & restarted event, and we should go 5072 // back to waiting for the Halt's stopped event. That's what this 5073 // while loop does. 5074 5075 bool back_to_top = true; 5076 uint32_t try_halt_again = 0; 5077 bool do_halt = true; 5078 const uint32_t num_retries = 5; 5079 while (try_halt_again < num_retries) { 5080 Status halt_error; 5081 if (do_halt) { 5082 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5083 const bool clear_thread_plans = false; 5084 const bool use_run_lock = false; 5085 Halt(clear_thread_plans, use_run_lock); 5086 } 5087 if (halt_error.Success()) { 5088 if (log) 5089 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5090 5091 got_event = 5092 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5093 5094 if (got_event) { 5095 stop_state = 5096 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5097 if (log) { 5098 LLDB_LOGF(log, 5099 "Process::RunThreadPlan(): Stopped with event: %s", 5100 StateAsCString(stop_state)); 5101 if (stop_state == lldb::eStateStopped && 5102 Process::ProcessEventData::GetInterruptedFromEvent( 5103 event_sp.get())) 5104 log->PutCString(" Event was the Halt interruption event."); 5105 } 5106 5107 if (stop_state == lldb::eStateStopped) { 5108 if (Process::ProcessEventData::GetRestartedFromEvent( 5109 event_sp.get())) { 5110 if (log) 5111 log->PutCString("Process::RunThreadPlan(): Went to halt " 5112 "but got a restarted event, there must be " 5113 "an un-restarted stopped event so try " 5114 "again... " 5115 "Exiting wait loop."); 5116 try_halt_again++; 5117 do_halt = false; 5118 continue; 5119 } 5120 5121 // Between the time we initiated the Halt and the time we 5122 // delivered it, the process could have already finished its 5123 // job. Check that here: 5124 const bool handle_interrupts = false; 5125 if (auto result = HandleStoppedEvent( 5126 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5127 event_sp, event_to_broadcast_sp, options, 5128 handle_interrupts)) { 5129 return_value = *result; 5130 back_to_top = false; 5131 break; 5132 } 5133 5134 if (!options.GetTryAllThreads()) { 5135 if (log) 5136 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5137 "was false, we stopped so now we're " 5138 "quitting."); 5139 return_value = eExpressionInterrupted; 5140 back_to_top = false; 5141 break; 5142 } 5143 5144 if (before_first_timeout) { 5145 // Set all the other threads to run, and return to the top of 5146 // the loop, which will continue; 5147 before_first_timeout = false; 5148 thread_plan_sp->SetStopOthers(false); 5149 if (log) 5150 log->PutCString( 5151 "Process::RunThreadPlan(): about to resume."); 5152 5153 back_to_top = true; 5154 break; 5155 } else { 5156 // Running all threads failed, so return Interrupted. 5157 if (log) 5158 log->PutCString("Process::RunThreadPlan(): running all " 5159 "threads timed out."); 5160 return_value = eExpressionInterrupted; 5161 back_to_top = false; 5162 break; 5163 } 5164 } 5165 } else { 5166 if (log) 5167 log->PutCString("Process::RunThreadPlan(): halt said it " 5168 "succeeded, but I got no event. " 5169 "I'm getting out of here passing Interrupted."); 5170 return_value = eExpressionInterrupted; 5171 back_to_top = false; 5172 break; 5173 } 5174 } else { 5175 try_halt_again++; 5176 continue; 5177 } 5178 } 5179 5180 if (!back_to_top || try_halt_again > num_retries) 5181 break; 5182 else 5183 continue; 5184 } 5185 } // END WAIT LOOP 5186 5187 // If we had to start up a temporary private state thread to run this 5188 // thread plan, shut it down now. 5189 if (backup_private_state_thread.IsJoinable()) { 5190 StopPrivateStateThread(); 5191 Status error; 5192 m_private_state_thread = backup_private_state_thread; 5193 if (stopper_base_plan_sp) { 5194 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5195 } 5196 if (old_state != eStateInvalid) 5197 m_public_state.SetValueNoLock(old_state); 5198 } 5199 5200 // If our thread went away on us, we need to get out of here without 5201 // doing any more work. We don't have to clean up the thread plan, that 5202 // will have happened when the Thread was destroyed. 5203 if (return_value == eExpressionThreadVanished) { 5204 return return_value; 5205 } 5206 5207 if (return_value != eExpressionCompleted && log) { 5208 // Print a backtrace into the log so we can figure out where we are: 5209 StreamString s; 5210 s.PutCString("Thread state after unsuccessful completion: \n"); 5211 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5212 log->PutString(s.GetString()); 5213 } 5214 // Restore the thread state if we are going to discard the plan execution. 5215 // There are three cases where this could happen: 1) The execution 5216 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5217 // was true 3) We got some other error, and discard_on_error was true 5218 bool should_unwind = (return_value == eExpressionInterrupted && 5219 options.DoesUnwindOnError()) || 5220 (return_value == eExpressionHitBreakpoint && 5221 options.DoesIgnoreBreakpoints()); 5222 5223 if (return_value == eExpressionCompleted || should_unwind) { 5224 thread_plan_sp->RestoreThreadState(); 5225 } 5226 5227 // Now do some processing on the results of the run: 5228 if (return_value == eExpressionInterrupted || 5229 return_value == eExpressionHitBreakpoint) { 5230 if (log) { 5231 StreamString s; 5232 if (event_sp) 5233 event_sp->Dump(&s); 5234 else { 5235 log->PutCString("Process::RunThreadPlan(): Stop event that " 5236 "interrupted us is NULL."); 5237 } 5238 5239 StreamString ts; 5240 5241 const char *event_explanation = nullptr; 5242 5243 do { 5244 if (!event_sp) { 5245 event_explanation = "<no event>"; 5246 break; 5247 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5248 event_explanation = "<user interrupt>"; 5249 break; 5250 } else { 5251 const Process::ProcessEventData *event_data = 5252 Process::ProcessEventData::GetEventDataFromEvent( 5253 event_sp.get()); 5254 5255 if (!event_data) { 5256 event_explanation = "<no event data>"; 5257 break; 5258 } 5259 5260 Process *process = event_data->GetProcessSP().get(); 5261 5262 if (!process) { 5263 event_explanation = "<no process>"; 5264 break; 5265 } 5266 5267 ThreadList &thread_list = process->GetThreadList(); 5268 5269 uint32_t num_threads = thread_list.GetSize(); 5270 uint32_t thread_index; 5271 5272 ts.Printf("<%u threads> ", num_threads); 5273 5274 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5275 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5276 5277 if (!thread) { 5278 ts.Printf("<?> "); 5279 continue; 5280 } 5281 5282 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5283 RegisterContext *register_context = 5284 thread->GetRegisterContext().get(); 5285 5286 if (register_context) 5287 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5288 else 5289 ts.Printf("[ip unknown] "); 5290 5291 // Show the private stop info here, the public stop info will be 5292 // from the last natural stop. 5293 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5294 if (stop_info_sp) { 5295 const char *stop_desc = stop_info_sp->GetDescription(); 5296 if (stop_desc) 5297 ts.PutCString(stop_desc); 5298 } 5299 ts.Printf(">"); 5300 } 5301 5302 event_explanation = ts.GetData(); 5303 } 5304 } while (false); 5305 5306 if (event_explanation) 5307 LLDB_LOGF(log, 5308 "Process::RunThreadPlan(): execution interrupted: %s %s", 5309 s.GetData(), event_explanation); 5310 else 5311 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5312 s.GetData()); 5313 } 5314 5315 if (should_unwind) { 5316 LLDB_LOGF(log, 5317 "Process::RunThreadPlan: ExecutionInterrupted - " 5318 "discarding thread plans up to %p.", 5319 static_cast<void *>(thread_plan_sp.get())); 5320 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5321 } else { 5322 LLDB_LOGF(log, 5323 "Process::RunThreadPlan: ExecutionInterrupted - for " 5324 "plan: %p not discarding.", 5325 static_cast<void *>(thread_plan_sp.get())); 5326 } 5327 } else if (return_value == eExpressionSetupError) { 5328 if (log) 5329 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5330 5331 if (options.DoesUnwindOnError()) { 5332 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5333 } 5334 } else { 5335 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5336 if (log) 5337 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5338 return_value = eExpressionCompleted; 5339 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5340 if (log) 5341 log->PutCString( 5342 "Process::RunThreadPlan(): thread plan was discarded"); 5343 return_value = eExpressionDiscarded; 5344 } else { 5345 if (log) 5346 log->PutCString( 5347 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5348 if (options.DoesUnwindOnError() && thread_plan_sp) { 5349 if (log) 5350 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5351 "'cause unwind_on_error is set."); 5352 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5353 } 5354 } 5355 } 5356 5357 // Thread we ran the function in may have gone away because we ran the 5358 // target Check that it's still there, and if it is put it back in the 5359 // context. Also restore the frame in the context if it is still present. 5360 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5361 if (thread) { 5362 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5363 } 5364 5365 // Also restore the current process'es selected frame & thread, since this 5366 // function calling may be done behind the user's back. 5367 5368 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5369 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5370 selected_stack_id.IsValid()) { 5371 // We were able to restore the selected thread, now restore the frame: 5372 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5373 StackFrameSP old_frame_sp = 5374 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5375 selected_stack_id); 5376 if (old_frame_sp) 5377 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5378 old_frame_sp.get()); 5379 } 5380 } 5381 } 5382 5383 // If the process exited during the run of the thread plan, notify everyone. 5384 5385 if (event_to_broadcast_sp) { 5386 if (log) 5387 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5388 BroadcastEvent(event_to_broadcast_sp); 5389 } 5390 5391 return return_value; 5392 } 5393 5394 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5395 const char *result_name = "<unknown>"; 5396 5397 switch (result) { 5398 case eExpressionCompleted: 5399 result_name = "eExpressionCompleted"; 5400 break; 5401 case eExpressionDiscarded: 5402 result_name = "eExpressionDiscarded"; 5403 break; 5404 case eExpressionInterrupted: 5405 result_name = "eExpressionInterrupted"; 5406 break; 5407 case eExpressionHitBreakpoint: 5408 result_name = "eExpressionHitBreakpoint"; 5409 break; 5410 case eExpressionSetupError: 5411 result_name = "eExpressionSetupError"; 5412 break; 5413 case eExpressionParseError: 5414 result_name = "eExpressionParseError"; 5415 break; 5416 case eExpressionResultUnavailable: 5417 result_name = "eExpressionResultUnavailable"; 5418 break; 5419 case eExpressionTimedOut: 5420 result_name = "eExpressionTimedOut"; 5421 break; 5422 case eExpressionStoppedForDebug: 5423 result_name = "eExpressionStoppedForDebug"; 5424 break; 5425 case eExpressionThreadVanished: 5426 result_name = "eExpressionThreadVanished"; 5427 } 5428 return result_name; 5429 } 5430 5431 void Process::GetStatus(Stream &strm) { 5432 const StateType state = GetState(); 5433 if (StateIsStoppedState(state, false)) { 5434 if (state == eStateExited) { 5435 int exit_status = GetExitStatus(); 5436 const char *exit_description = GetExitDescription(); 5437 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5438 GetID(), exit_status, exit_status, 5439 exit_description ? exit_description : ""); 5440 } else { 5441 if (state == eStateConnected) 5442 strm.Printf("Connected to remote target.\n"); 5443 else 5444 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5445 } 5446 } else { 5447 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5448 } 5449 } 5450 5451 size_t Process::GetThreadStatus(Stream &strm, 5452 bool only_threads_with_stop_reason, 5453 uint32_t start_frame, uint32_t num_frames, 5454 uint32_t num_frames_with_source, 5455 bool stop_format) { 5456 size_t num_thread_infos_dumped = 0; 5457 5458 // You can't hold the thread list lock while calling Thread::GetStatus. That 5459 // very well might run code (e.g. if we need it to get return values or 5460 // arguments.) For that to work the process has to be able to acquire it. 5461 // So instead copy the thread ID's, and look them up one by one: 5462 5463 uint32_t num_threads; 5464 std::vector<lldb::tid_t> thread_id_array; 5465 // Scope for thread list locker; 5466 { 5467 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5468 ThreadList &curr_thread_list = GetThreadList(); 5469 num_threads = curr_thread_list.GetSize(); 5470 uint32_t idx; 5471 thread_id_array.resize(num_threads); 5472 for (idx = 0; idx < num_threads; ++idx) 5473 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5474 } 5475 5476 for (uint32_t i = 0; i < num_threads; i++) { 5477 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5478 if (thread_sp) { 5479 if (only_threads_with_stop_reason) { 5480 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5481 if (!stop_info_sp || !stop_info_sp->IsValid()) 5482 continue; 5483 } 5484 thread_sp->GetStatus(strm, start_frame, num_frames, 5485 num_frames_with_source, 5486 stop_format); 5487 ++num_thread_infos_dumped; 5488 } else { 5489 Log *log = GetLog(LLDBLog::Process); 5490 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5491 " vanished while running Thread::GetStatus."); 5492 } 5493 } 5494 return num_thread_infos_dumped; 5495 } 5496 5497 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5498 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5499 } 5500 5501 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5502 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5503 region.GetByteSize()); 5504 } 5505 5506 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5507 void *baton) { 5508 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5509 } 5510 5511 bool Process::RunPreResumeActions() { 5512 bool result = true; 5513 while (!m_pre_resume_actions.empty()) { 5514 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5515 m_pre_resume_actions.pop_back(); 5516 bool this_result = action.callback(action.baton); 5517 if (result) 5518 result = this_result; 5519 } 5520 return result; 5521 } 5522 5523 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5524 5525 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5526 { 5527 PreResumeCallbackAndBaton element(callback, baton); 5528 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5529 if (found_iter != m_pre_resume_actions.end()) 5530 { 5531 m_pre_resume_actions.erase(found_iter); 5532 } 5533 } 5534 5535 ProcessRunLock &Process::GetRunLock() { 5536 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5537 return m_private_run_lock; 5538 else 5539 return m_public_run_lock; 5540 } 5541 5542 bool Process::CurrentThreadIsPrivateStateThread() 5543 { 5544 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5545 } 5546 5547 5548 void Process::Flush() { 5549 m_thread_list.Flush(); 5550 m_extended_thread_list.Flush(); 5551 m_extended_thread_stop_id = 0; 5552 m_queue_list.Clear(); 5553 m_queue_list_stop_id = 0; 5554 } 5555 5556 lldb::addr_t Process::GetCodeAddressMask() { 5557 if (m_code_address_mask == 0) { 5558 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5559 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5560 SetCodeAddressMask(address_mask); 5561 } 5562 } 5563 return m_code_address_mask; 5564 } 5565 5566 lldb::addr_t Process::GetDataAddressMask() { 5567 if (m_data_address_mask == 0) { 5568 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5569 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5570 SetDataAddressMask(address_mask); 5571 } 5572 } 5573 return m_data_address_mask; 5574 } 5575 5576 void Process::DidExec() { 5577 Log *log = GetLog(LLDBLog::Process); 5578 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5579 5580 Target &target = GetTarget(); 5581 target.CleanupProcess(); 5582 target.ClearModules(false); 5583 m_dynamic_checkers_up.reset(); 5584 m_abi_sp.reset(); 5585 m_system_runtime_up.reset(); 5586 m_os_up.reset(); 5587 m_dyld_up.reset(); 5588 m_jit_loaders_up.reset(); 5589 m_image_tokens.clear(); 5590 m_allocated_memory_cache.Clear(); 5591 { 5592 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5593 m_language_runtimes.clear(); 5594 } 5595 m_instrumentation_runtimes.clear(); 5596 m_thread_list.DiscardThreadPlans(); 5597 m_memory_cache.Clear(true); 5598 DoDidExec(); 5599 CompleteAttach(); 5600 // Flush the process (threads and all stack frames) after running 5601 // CompleteAttach() in case the dynamic loader loaded things in new 5602 // locations. 5603 Flush(); 5604 5605 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5606 // let the target know so it can do any cleanup it needs to. 5607 target.DidExec(); 5608 } 5609 5610 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5611 if (address == nullptr) { 5612 error.SetErrorString("Invalid address argument"); 5613 return LLDB_INVALID_ADDRESS; 5614 } 5615 5616 addr_t function_addr = LLDB_INVALID_ADDRESS; 5617 5618 addr_t addr = address->GetLoadAddress(&GetTarget()); 5619 std::map<addr_t, addr_t>::const_iterator iter = 5620 m_resolved_indirect_addresses.find(addr); 5621 if (iter != m_resolved_indirect_addresses.end()) { 5622 function_addr = (*iter).second; 5623 } else { 5624 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5625 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5626 error.SetErrorStringWithFormat( 5627 "Unable to call resolver for indirect function %s", 5628 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5629 function_addr = LLDB_INVALID_ADDRESS; 5630 } else { 5631 if (ABISP abi_sp = GetABI()) 5632 function_addr = abi_sp->FixCodeAddress(function_addr); 5633 m_resolved_indirect_addresses.insert( 5634 std::pair<addr_t, addr_t>(addr, function_addr)); 5635 } 5636 } 5637 return function_addr; 5638 } 5639 5640 void Process::ModulesDidLoad(ModuleList &module_list) { 5641 // Inform the system runtime of the modified modules. 5642 SystemRuntime *sys_runtime = GetSystemRuntime(); 5643 if (sys_runtime) 5644 sys_runtime->ModulesDidLoad(module_list); 5645 5646 GetJITLoaders().ModulesDidLoad(module_list); 5647 5648 // Give the instrumentation runtimes a chance to be created before informing 5649 // them of the modified modules. 5650 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5651 m_instrumentation_runtimes); 5652 for (auto &runtime : m_instrumentation_runtimes) 5653 runtime.second->ModulesDidLoad(module_list); 5654 5655 // Give the language runtimes a chance to be created before informing them of 5656 // the modified modules. 5657 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5658 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5659 runtime->ModulesDidLoad(module_list); 5660 } 5661 5662 // If we don't have an operating system plug-in, try to load one since 5663 // loading shared libraries might cause a new one to try and load 5664 if (!m_os_up) 5665 LoadOperatingSystemPlugin(false); 5666 5667 // Inform the structured-data plugins of the modified modules. 5668 for (auto pair : m_structured_data_plugin_map) { 5669 if (pair.second) 5670 pair.second->ModulesDidLoad(*this, module_list); 5671 } 5672 } 5673 5674 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5675 const char *fmt, ...) { 5676 bool print_warning = true; 5677 5678 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5679 if (!stream_sp) 5680 return; 5681 5682 if (repeat_key != nullptr) { 5683 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5684 if (it == m_warnings_issued.end()) { 5685 m_warnings_issued[warning_type] = WarningsPointerSet(); 5686 m_warnings_issued[warning_type].insert(repeat_key); 5687 } else { 5688 if (it->second.find(repeat_key) != it->second.end()) { 5689 print_warning = false; 5690 } else { 5691 it->second.insert(repeat_key); 5692 } 5693 } 5694 } 5695 5696 if (print_warning) { 5697 va_list args; 5698 va_start(args, fmt); 5699 stream_sp->PrintfVarArg(fmt, args); 5700 va_end(args); 5701 } 5702 } 5703 5704 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5705 if (!GetWarningsOptimization()) 5706 return; 5707 if (!sc.module_sp) 5708 return; 5709 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5710 sc.function->GetIsOptimized()) { 5711 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5712 "%s was compiled with optimization - stepping may behave " 5713 "oddly; variables may not be available.\n", 5714 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5715 } 5716 } 5717 5718 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5719 if (!GetWarningsUnsupportedLanguage()) 5720 return; 5721 if (!sc.module_sp) 5722 return; 5723 LanguageType language = sc.GetLanguage(); 5724 if (language == eLanguageTypeUnknown) 5725 return; 5726 LanguageSet plugins = 5727 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5728 if (!plugins[language]) { 5729 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5730 sc.module_sp.get(), 5731 "This version of LLDB has no plugin for the language \"%s\". " 5732 "Inspection of frame variables will be limited.\n", 5733 Language::GetNameForLanguageType(language)); 5734 } 5735 } 5736 5737 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5738 info.Clear(); 5739 5740 PlatformSP platform_sp = GetTarget().GetPlatform(); 5741 if (!platform_sp) 5742 return false; 5743 5744 return platform_sp->GetProcessInfo(GetID(), info); 5745 } 5746 5747 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5748 ThreadCollectionSP threads; 5749 5750 const MemoryHistorySP &memory_history = 5751 MemoryHistory::FindPlugin(shared_from_this()); 5752 5753 if (!memory_history) { 5754 return threads; 5755 } 5756 5757 threads = std::make_shared<ThreadCollection>( 5758 memory_history->GetHistoryThreads(addr)); 5759 5760 return threads; 5761 } 5762 5763 InstrumentationRuntimeSP 5764 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5765 InstrumentationRuntimeCollection::iterator pos; 5766 pos = m_instrumentation_runtimes.find(type); 5767 if (pos == m_instrumentation_runtimes.end()) { 5768 return InstrumentationRuntimeSP(); 5769 } else 5770 return (*pos).second; 5771 } 5772 5773 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5774 const ArchSpec &arch, ModuleSpec &module_spec) { 5775 module_spec.Clear(); 5776 return false; 5777 } 5778 5779 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5780 m_image_tokens.push_back(image_ptr); 5781 return m_image_tokens.size() - 1; 5782 } 5783 5784 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5785 if (token < m_image_tokens.size()) 5786 return m_image_tokens[token]; 5787 return LLDB_INVALID_ADDRESS; 5788 } 5789 5790 void Process::ResetImageToken(size_t token) { 5791 if (token < m_image_tokens.size()) 5792 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5793 } 5794 5795 Address 5796 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5797 AddressRange range_bounds) { 5798 Target &target = GetTarget(); 5799 DisassemblerSP disassembler_sp; 5800 InstructionList *insn_list = nullptr; 5801 5802 Address retval = default_stop_addr; 5803 5804 if (!target.GetUseFastStepping()) 5805 return retval; 5806 if (!default_stop_addr.IsValid()) 5807 return retval; 5808 5809 const char *plugin_name = nullptr; 5810 const char *flavor = nullptr; 5811 disassembler_sp = Disassembler::DisassembleRange( 5812 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5813 if (disassembler_sp) 5814 insn_list = &disassembler_sp->GetInstructionList(); 5815 5816 if (insn_list == nullptr) { 5817 return retval; 5818 } 5819 5820 size_t insn_offset = 5821 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5822 if (insn_offset == UINT32_MAX) { 5823 return retval; 5824 } 5825 5826 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5827 insn_offset, false /* ignore_calls*/, nullptr); 5828 if (branch_index == UINT32_MAX) { 5829 return retval; 5830 } 5831 5832 if (branch_index > insn_offset) { 5833 Address next_branch_insn_address = 5834 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5835 if (next_branch_insn_address.IsValid() && 5836 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5837 retval = next_branch_insn_address; 5838 } 5839 } 5840 5841 return retval; 5842 } 5843 5844 Status 5845 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5846 5847 Status error; 5848 5849 lldb::addr_t range_end = 0; 5850 5851 region_list.clear(); 5852 do { 5853 lldb_private::MemoryRegionInfo region_info; 5854 error = GetMemoryRegionInfo(range_end, region_info); 5855 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5856 if (error.Fail()) { 5857 region_list.clear(); 5858 break; 5859 } 5860 5861 range_end = region_info.GetRange().GetRangeEnd(); 5862 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5863 region_list.push_back(std::move(region_info)); 5864 } 5865 } while (range_end != LLDB_INVALID_ADDRESS); 5866 5867 return error; 5868 } 5869 5870 Status 5871 Process::ConfigureStructuredData(ConstString type_name, 5872 const StructuredData::ObjectSP &config_sp) { 5873 // If you get this, the Process-derived class needs to implement a method to 5874 // enable an already-reported asynchronous structured data feature. See 5875 // ProcessGDBRemote for an example implementation over gdb-remote. 5876 return Status("unimplemented"); 5877 } 5878 5879 void Process::MapSupportedStructuredDataPlugins( 5880 const StructuredData::Array &supported_type_names) { 5881 Log *log = GetLog(LLDBLog::Process); 5882 5883 // Bail out early if there are no type names to map. 5884 if (supported_type_names.GetSize() == 0) { 5885 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5886 __FUNCTION__); 5887 return; 5888 } 5889 5890 // Convert StructuredData type names to ConstString instances. 5891 std::set<ConstString> const_type_names; 5892 5893 LLDB_LOGF(log, 5894 "Process::%s(): the process supports the following async " 5895 "structured data types:", 5896 __FUNCTION__); 5897 5898 supported_type_names.ForEach( 5899 [&const_type_names, &log](StructuredData::Object *object) { 5900 if (!object) { 5901 // Invalid - shouldn't be null objects in the array. 5902 return false; 5903 } 5904 5905 auto type_name = object->GetAsString(); 5906 if (!type_name) { 5907 // Invalid format - all type names should be strings. 5908 return false; 5909 } 5910 5911 const_type_names.insert(ConstString(type_name->GetValue())); 5912 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5913 return true; 5914 }); 5915 5916 // For each StructuredDataPlugin, if the plugin handles any of the types in 5917 // the supported_type_names, map that type name to that plugin. Stop when 5918 // we've consumed all the type names. 5919 // FIXME: should we return an error if there are type names nobody 5920 // supports? 5921 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5922 auto create_instance = 5923 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5924 plugin_index); 5925 if (!create_instance) 5926 break; 5927 5928 // Create the plugin. 5929 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5930 if (!plugin_sp) { 5931 // This plugin doesn't think it can work with the process. Move on to the 5932 // next. 5933 continue; 5934 } 5935 5936 // For any of the remaining type names, map any that this plugin supports. 5937 std::vector<ConstString> names_to_remove; 5938 for (auto &type_name : const_type_names) { 5939 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5940 m_structured_data_plugin_map.insert( 5941 std::make_pair(type_name, plugin_sp)); 5942 names_to_remove.push_back(type_name); 5943 LLDB_LOG(log, "using plugin {0} for type name {1}", 5944 plugin_sp->GetPluginName(), type_name); 5945 } 5946 } 5947 5948 // Remove the type names that were consumed by this plugin. 5949 for (auto &type_name : names_to_remove) 5950 const_type_names.erase(type_name); 5951 } 5952 } 5953 5954 bool Process::RouteAsyncStructuredData( 5955 const StructuredData::ObjectSP object_sp) { 5956 // Nothing to do if there's no data. 5957 if (!object_sp) 5958 return false; 5959 5960 // The contract is this must be a dictionary, so we can look up the routing 5961 // key via the top-level 'type' string value within the dictionary. 5962 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5963 if (!dictionary) 5964 return false; 5965 5966 // Grab the async structured type name (i.e. the feature/plugin name). 5967 ConstString type_name; 5968 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5969 return false; 5970 5971 // Check if there's a plugin registered for this type name. 5972 auto find_it = m_structured_data_plugin_map.find(type_name); 5973 if (find_it == m_structured_data_plugin_map.end()) { 5974 // We don't have a mapping for this structured data type. 5975 return false; 5976 } 5977 5978 // Route the structured data to the plugin. 5979 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5980 return true; 5981 } 5982 5983 Status Process::UpdateAutomaticSignalFiltering() { 5984 // Default implementation does nothign. 5985 // No automatic signal filtering to speak of. 5986 return Status(); 5987 } 5988 5989 UtilityFunction *Process::GetLoadImageUtilityFunction( 5990 Platform *platform, 5991 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 5992 if (platform != GetTarget().GetPlatform().get()) 5993 return nullptr; 5994 llvm::call_once(m_dlopen_utility_func_flag_once, 5995 [&] { m_dlopen_utility_func_up = factory(); }); 5996 return m_dlopen_utility_func_up.get(); 5997 } 5998 5999 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6000 if (!IsLiveDebugSession()) 6001 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6002 "Can't trace a non-live process."); 6003 return llvm::make_error<UnimplementedError>(); 6004 } 6005 6006 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6007 addr_t &returned_func, 6008 bool trap_exceptions) { 6009 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6010 if (thread == nullptr || address == nullptr) 6011 return false; 6012 6013 EvaluateExpressionOptions options; 6014 options.SetStopOthers(true); 6015 options.SetUnwindOnError(true); 6016 options.SetIgnoreBreakpoints(true); 6017 options.SetTryAllThreads(true); 6018 options.SetDebug(false); 6019 options.SetTimeout(GetUtilityExpressionTimeout()); 6020 options.SetTrapExceptions(trap_exceptions); 6021 6022 auto type_system_or_err = 6023 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6024 if (!type_system_or_err) { 6025 llvm::consumeError(type_system_or_err.takeError()); 6026 return false; 6027 } 6028 CompilerType void_ptr_type = 6029 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6030 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6031 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6032 if (call_plan_sp) { 6033 DiagnosticManager diagnostics; 6034 6035 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6036 if (frame) { 6037 ExecutionContext exe_ctx; 6038 frame->CalculateExecutionContext(exe_ctx); 6039 ExpressionResults result = 6040 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6041 if (result == eExpressionCompleted) { 6042 returned_func = 6043 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6044 LLDB_INVALID_ADDRESS); 6045 6046 if (GetAddressByteSize() == 4) { 6047 if (returned_func == UINT32_MAX) 6048 return false; 6049 } else if (GetAddressByteSize() == 8) { 6050 if (returned_func == UINT64_MAX) 6051 return false; 6052 } 6053 return true; 6054 } 6055 } 6056 } 6057 6058 return false; 6059 } 6060 6061 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6062 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6063 const MemoryTagManager *tag_manager = 6064 arch ? arch->GetMemoryTagManager() : nullptr; 6065 if (!arch || !tag_manager) { 6066 return llvm::createStringError( 6067 llvm::inconvertibleErrorCode(), 6068 "This architecture does not support memory tagging"); 6069 } 6070 6071 if (!SupportsMemoryTagging()) { 6072 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6073 "Process does not support memory tagging"); 6074 } 6075 6076 return tag_manager; 6077 } 6078 6079 llvm::Expected<std::vector<lldb::addr_t>> 6080 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6081 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6082 GetMemoryTagManager(); 6083 if (!tag_manager_or_err) 6084 return tag_manager_or_err.takeError(); 6085 6086 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6087 llvm::Expected<std::vector<uint8_t>> tag_data = 6088 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6089 if (!tag_data) 6090 return tag_data.takeError(); 6091 6092 return tag_manager->UnpackTagsData(*tag_data, 6093 len / tag_manager->GetGranuleSize()); 6094 } 6095 6096 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6097 const std::vector<lldb::addr_t> &tags) { 6098 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6099 GetMemoryTagManager(); 6100 if (!tag_manager_or_err) 6101 return Status(tag_manager_or_err.takeError()); 6102 6103 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6104 llvm::Expected<std::vector<uint8_t>> packed_tags = 6105 tag_manager->PackTags(tags); 6106 if (!packed_tags) { 6107 return Status(packed_tags.takeError()); 6108 } 6109 6110 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6111 *packed_tags); 6112 } 6113