1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/ThreadPlanStack.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/Event.h" 66 #include "lldb/Utility/Log.h" 67 #include "lldb/Utility/NameMatches.h" 68 #include "lldb/Utility/ProcessInfo.h" 69 #include "lldb/Utility/SelectHelper.h" 70 #include "lldb/Utility/State.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties : public OptionValueProperties { 87 public: 88 ProcessOptionValueProperties(ConstString name) 89 : OptionValueProperties(name) {} 90 91 // This constructor is used when creating ProcessOptionValueProperties when 92 // it is part of a new lldb_private::Process instance. It will copy all 93 // current global property values as needed 94 ProcessOptionValueProperties(ProcessProperties *global_properties) 95 : OptionValueProperties(*global_properties->GetValueProperties()) {} 96 97 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 98 bool will_modify, 99 uint32_t idx) const override { 100 // When getting the value for a key from the process options, we will 101 // always try and grab the setting from the current process if there is 102 // one. Else we just use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 #define LLDB_PROPERTIES_process 118 #include "TargetProperties.inc" 119 120 enum { 121 #define LLDB_PROPERTIES_process 122 #include "TargetPropertiesEnum.inc" 123 ePropertyExperimental, 124 }; 125 126 #define LLDB_PROPERTIES_process_experimental 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process_experimental 131 #include "TargetPropertiesEnum.inc" 132 }; 133 134 class ProcessExperimentalOptionValueProperties : public OptionValueProperties { 135 public: 136 ProcessExperimentalOptionValueProperties() 137 : OptionValueProperties( 138 ConstString(Properties::GetExperimentalSettingsName())) {} 139 }; 140 141 ProcessExperimentalProperties::ProcessExperimentalProperties() 142 : Properties(OptionValuePropertiesSP( 143 new ProcessExperimentalOptionValueProperties())) { 144 m_collection_sp->Initialize(g_process_experimental_properties); 145 } 146 147 ProcessProperties::ProcessProperties(lldb_private::Process *process) 148 : Properties(), 149 m_process(process) // Can be nullptr for global ProcessProperties 150 { 151 if (process == nullptr) { 152 // Global process properties, set them up one time 153 m_collection_sp = 154 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 155 m_collection_sp->Initialize(g_process_properties); 156 m_collection_sp->AppendProperty( 157 ConstString("thread"), ConstString("Settings specific to threads."), 158 true, Thread::GetGlobalProperties()->GetValueProperties()); 159 } else { 160 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 161 Process::GetGlobalProperties().get()); 162 m_collection_sp->SetValueChangedCallback( 163 ePropertyPythonOSPluginPath, 164 [this] { m_process->LoadOperatingSystemPlugin(true); }); 165 } 166 167 m_experimental_properties_up = 168 std::make_unique<ProcessExperimentalProperties>(); 169 m_collection_sp->AppendProperty( 170 ConstString(Properties::GetExperimentalSettingsName()), 171 ConstString("Experimental settings - setting these won't produce " 172 "errors if the setting is not present."), 173 true, m_experimental_properties_up->GetValueProperties()); 174 } 175 176 ProcessProperties::~ProcessProperties() = default; 177 178 bool ProcessProperties::GetDisableMemoryCache() const { 179 const uint32_t idx = ePropertyDisableMemCache; 180 return m_collection_sp->GetPropertyAtIndexAsBoolean( 181 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 182 } 183 184 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 185 const uint32_t idx = ePropertyMemCacheLineSize; 186 return m_collection_sp->GetPropertyAtIndexAsUInt64( 187 nullptr, idx, g_process_properties[idx].default_uint_value); 188 } 189 190 Args ProcessProperties::GetExtraStartupCommands() const { 191 Args args; 192 const uint32_t idx = ePropertyExtraStartCommand; 193 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 194 return args; 195 } 196 197 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 198 const uint32_t idx = ePropertyExtraStartCommand; 199 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 200 } 201 202 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 203 const uint32_t idx = ePropertyPythonOSPluginPath; 204 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 205 } 206 207 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 208 const uint32_t idx = ePropertyPythonOSPluginPath; 209 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 210 } 211 212 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 213 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 214 return m_collection_sp->GetPropertyAtIndexAsBoolean( 215 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 216 } 217 218 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 219 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 220 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 221 } 222 223 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 224 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 225 return m_collection_sp->GetPropertyAtIndexAsBoolean( 226 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 227 } 228 229 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 230 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 231 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 232 } 233 234 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 235 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 236 return m_collection_sp->GetPropertyAtIndexAsBoolean( 237 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 238 } 239 240 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 241 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 242 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 243 } 244 245 bool ProcessProperties::GetDetachKeepsStopped() const { 246 const uint32_t idx = ePropertyDetachKeepsStopped; 247 return m_collection_sp->GetPropertyAtIndexAsBoolean( 248 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 249 } 250 251 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 252 const uint32_t idx = ePropertyDetachKeepsStopped; 253 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 254 } 255 256 bool ProcessProperties::GetWarningsOptimization() const { 257 const uint32_t idx = ePropertyWarningOptimization; 258 return m_collection_sp->GetPropertyAtIndexAsBoolean( 259 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 260 } 261 262 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 263 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 264 return m_collection_sp->GetPropertyAtIndexAsBoolean( 265 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 266 } 267 268 bool ProcessProperties::GetStopOnExec() const { 269 const uint32_t idx = ePropertyStopOnExec; 270 return m_collection_sp->GetPropertyAtIndexAsBoolean( 271 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 272 } 273 274 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 275 const uint32_t idx = ePropertyUtilityExpressionTimeout; 276 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 277 nullptr, idx, g_process_properties[idx].default_uint_value); 278 return std::chrono::seconds(value); 279 } 280 281 bool ProcessProperties::GetSteppingRunsAllThreads() const { 282 const uint32_t idx = ePropertySteppingRunsAllThreads; 283 return m_collection_sp->GetPropertyAtIndexAsBoolean( 284 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 285 } 286 287 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 288 const bool fail_value = true; 289 const Property *exp_property = 290 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 291 OptionValueProperties *exp_values = 292 exp_property->GetValue()->GetAsProperties(); 293 if (!exp_values) 294 return fail_value; 295 296 return exp_values->GetPropertyAtIndexAsBoolean( 297 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 298 } 299 300 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 301 const Property *exp_property = 302 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 303 OptionValueProperties *exp_values = 304 exp_property->GetValue()->GetAsProperties(); 305 if (exp_values) 306 exp_values->SetPropertyAtIndexAsBoolean( 307 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 308 } 309 310 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 311 llvm::StringRef plugin_name, 312 ListenerSP listener_sp, 313 const FileSpec *crash_file_path, 314 bool can_connect) { 315 static uint32_t g_process_unique_id = 0; 316 317 ProcessSP process_sp; 318 ProcessCreateInstance create_callback = nullptr; 319 if (!plugin_name.empty()) { 320 ConstString const_plugin_name(plugin_name); 321 create_callback = 322 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 323 if (create_callback) { 324 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 325 can_connect); 326 if (process_sp) { 327 if (process_sp->CanDebug(target_sp, true)) { 328 process_sp->m_process_unique_id = ++g_process_unique_id; 329 } else 330 process_sp.reset(); 331 } 332 } 333 } else { 334 for (uint32_t idx = 0; 335 (create_callback = 336 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 337 ++idx) { 338 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 339 can_connect); 340 if (process_sp) { 341 if (process_sp->CanDebug(target_sp, false)) { 342 process_sp->m_process_unique_id = ++g_process_unique_id; 343 break; 344 } else 345 process_sp.reset(); 346 } 347 } 348 } 349 return process_sp; 350 } 351 352 ConstString &Process::GetStaticBroadcasterClass() { 353 static ConstString class_name("lldb.process"); 354 return class_name; 355 } 356 357 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 358 : Process(target_sp, listener_sp, 359 UnixSignals::Create(HostInfo::GetArchitecture())) { 360 // This constructor just delegates to the full Process constructor, 361 // defaulting to using the Host's UnixSignals. 362 } 363 364 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 365 const UnixSignalsSP &unix_signals_sp) 366 : ProcessProperties(this), 367 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 368 Process::GetStaticBroadcasterClass().AsCString()), 369 m_target_wp(target_sp), m_public_state(eStateUnloaded), 370 m_private_state(eStateUnloaded), 371 m_private_state_broadcaster(nullptr, 372 "lldb.process.internal_state_broadcaster"), 373 m_private_state_control_broadcaster( 374 nullptr, "lldb.process.internal_state_control_broadcaster"), 375 m_private_state_listener_sp( 376 Listener::MakeListener("lldb.process.internal_state_listener")), 377 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 378 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 379 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 380 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 381 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 382 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 383 m_breakpoint_site_list(), m_dynamic_checkers_up(), 384 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 385 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 386 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 387 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 388 m_memory_cache(*this), m_allocated_memory_cache(*this), 389 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 390 m_private_run_lock(), m_finalizing(false), 391 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 392 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 393 m_can_interpret_function_calls(false), m_warnings_issued(), 394 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 395 CheckInWithManager(); 396 397 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 398 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 399 400 if (!m_unix_signals_sp) 401 m_unix_signals_sp = std::make_shared<UnixSignals>(); 402 403 SetEventName(eBroadcastBitStateChanged, "state-changed"); 404 SetEventName(eBroadcastBitInterrupt, "interrupt"); 405 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 406 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 407 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 408 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 409 410 m_private_state_control_broadcaster.SetEventName( 411 eBroadcastInternalStateControlStop, "control-stop"); 412 m_private_state_control_broadcaster.SetEventName( 413 eBroadcastInternalStateControlPause, "control-pause"); 414 m_private_state_control_broadcaster.SetEventName( 415 eBroadcastInternalStateControlResume, "control-resume"); 416 417 m_listener_sp->StartListeningForEvents( 418 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 419 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 420 eBroadcastBitProfileData | eBroadcastBitStructuredData); 421 422 m_private_state_listener_sp->StartListeningForEvents( 423 &m_private_state_broadcaster, 424 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 425 426 m_private_state_listener_sp->StartListeningForEvents( 427 &m_private_state_control_broadcaster, 428 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 429 eBroadcastInternalStateControlResume); 430 // We need something valid here, even if just the default UnixSignalsSP. 431 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 432 433 // Allow the platform to override the default cache line size 434 OptionValueSP value_sp = 435 m_collection_sp 436 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 437 ->GetValue(); 438 uint32_t platform_cache_line_size = 439 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 440 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 441 value_sp->SetUInt64Value(platform_cache_line_size); 442 443 RegisterAssertFrameRecognizer(this); 444 } 445 446 Process::~Process() { 447 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 448 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 449 StopPrivateStateThread(); 450 451 // ThreadList::Clear() will try to acquire this process's mutex, so 452 // explicitly clear the thread list here to ensure that the mutex is not 453 // destroyed before the thread list. 454 m_thread_list.Clear(); 455 } 456 457 const ProcessPropertiesSP &Process::GetGlobalProperties() { 458 // NOTE: intentional leak so we don't crash if global destructor chain gets 459 // called as other threads still use the result of this function 460 static ProcessPropertiesSP *g_settings_sp_ptr = 461 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 462 return *g_settings_sp_ptr; 463 } 464 465 void Process::Finalize() { 466 if (m_finalizing.exchange(true)) 467 return; 468 469 // Destroy this process if needed 470 switch (GetPrivateState()) { 471 case eStateConnected: 472 case eStateAttaching: 473 case eStateLaunching: 474 case eStateStopped: 475 case eStateRunning: 476 case eStateStepping: 477 case eStateCrashed: 478 case eStateSuspended: 479 DestroyImpl(false); 480 break; 481 482 case eStateInvalid: 483 case eStateUnloaded: 484 case eStateDetached: 485 case eStateExited: 486 break; 487 } 488 489 // Clear our broadcaster before we proceed with destroying 490 Broadcaster::Clear(); 491 492 // Do any cleanup needed prior to being destructed... Subclasses that 493 // override this method should call this superclass method as well. 494 495 // We need to destroy the loader before the derived Process class gets 496 // destroyed since it is very likely that undoing the loader will require 497 // access to the real process. 498 m_dynamic_checkers_up.reset(); 499 m_abi_sp.reset(); 500 m_os_up.reset(); 501 m_system_runtime_up.reset(); 502 m_dyld_up.reset(); 503 m_jit_loaders_up.reset(); 504 m_thread_plans.Clear(); 505 m_thread_list_real.Destroy(); 506 m_thread_list.Destroy(); 507 m_extended_thread_list.Destroy(); 508 m_queue_list.Clear(); 509 m_queue_list_stop_id = 0; 510 std::vector<Notifications> empty_notifications; 511 m_notifications.swap(empty_notifications); 512 m_image_tokens.clear(); 513 m_memory_cache.Clear(); 514 m_allocated_memory_cache.Clear(); 515 { 516 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 517 m_language_runtimes.clear(); 518 } 519 m_instrumentation_runtimes.clear(); 520 m_next_event_action_up.reset(); 521 // Clear the last natural stop ID since it has a strong reference to this 522 // process 523 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 524 //#ifdef LLDB_CONFIGURATION_DEBUG 525 // StreamFile s(stdout, false); 526 // EventSP event_sp; 527 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 528 // { 529 // event_sp->Dump (&s); 530 // s.EOL(); 531 // } 532 //#endif 533 // We have to be very careful here as the m_private_state_listener might 534 // contain events that have ProcessSP values in them which can keep this 535 // process around forever. These events need to be cleared out. 536 m_private_state_listener_sp->Clear(); 537 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 538 m_public_run_lock.SetStopped(); 539 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 540 m_private_run_lock.SetStopped(); 541 m_structured_data_plugin_map.clear(); 542 } 543 544 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 545 m_notifications.push_back(callbacks); 546 if (callbacks.initialize != nullptr) 547 callbacks.initialize(callbacks.baton, this); 548 } 549 550 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 551 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 552 for (pos = m_notifications.begin(); pos != end; ++pos) { 553 if (pos->baton == callbacks.baton && 554 pos->initialize == callbacks.initialize && 555 pos->process_state_changed == callbacks.process_state_changed) { 556 m_notifications.erase(pos); 557 return true; 558 } 559 } 560 return false; 561 } 562 563 void Process::SynchronouslyNotifyStateChanged(StateType state) { 564 std::vector<Notifications>::iterator notification_pos, 565 notification_end = m_notifications.end(); 566 for (notification_pos = m_notifications.begin(); 567 notification_pos != notification_end; ++notification_pos) { 568 if (notification_pos->process_state_changed) 569 notification_pos->process_state_changed(notification_pos->baton, this, 570 state); 571 } 572 } 573 574 // FIXME: We need to do some work on events before the general Listener sees 575 // them. 576 // For instance if we are continuing from a breakpoint, we need to ensure that 577 // we do the little "insert real insn, step & stop" trick. But we can't do 578 // that when the event is delivered by the broadcaster - since that is done on 579 // the thread that is waiting for new events, so if we needed more than one 580 // event for our handling, we would stall. So instead we do it when we fetch 581 // the event off of the queue. 582 // 583 584 StateType Process::GetNextEvent(EventSP &event_sp) { 585 StateType state = eStateInvalid; 586 587 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 588 std::chrono::seconds(0)) && 589 event_sp) 590 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 591 592 return state; 593 } 594 595 void Process::SyncIOHandler(uint32_t iohandler_id, 596 const Timeout<std::micro> &timeout) { 597 // don't sync (potentially context switch) in case where there is no process 598 // IO 599 if (!m_process_input_reader) 600 return; 601 602 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 603 604 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 605 if (Result) { 606 LLDB_LOG( 607 log, 608 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 609 iohandler_id, *Result); 610 } else { 611 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 612 iohandler_id); 613 } 614 } 615 616 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 617 EventSP *event_sp_ptr, bool wait_always, 618 ListenerSP hijack_listener_sp, 619 Stream *stream, bool use_run_lock) { 620 // We can't just wait for a "stopped" event, because the stopped event may 621 // have restarted the target. We have to actually check each event, and in 622 // the case of a stopped event check the restarted flag on the event. 623 if (event_sp_ptr) 624 event_sp_ptr->reset(); 625 StateType state = GetState(); 626 // If we are exited or detached, we won't ever get back to any other valid 627 // state... 628 if (state == eStateDetached || state == eStateExited) 629 return state; 630 631 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 632 LLDB_LOG(log, "timeout = {0}", timeout); 633 634 if (!wait_always && StateIsStoppedState(state, true) && 635 StateIsStoppedState(GetPrivateState(), true)) { 636 LLDB_LOGF(log, 637 "Process::%s returning without waiting for events; process " 638 "private and public states are already 'stopped'.", 639 __FUNCTION__); 640 // We need to toggle the run lock as this won't get done in 641 // SetPublicState() if the process is hijacked. 642 if (hijack_listener_sp && use_run_lock) 643 m_public_run_lock.SetStopped(); 644 return state; 645 } 646 647 while (state != eStateInvalid) { 648 EventSP event_sp; 649 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 650 if (event_sp_ptr && event_sp) 651 *event_sp_ptr = event_sp; 652 653 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 654 Process::HandleProcessStateChangedEvent(event_sp, stream, 655 pop_process_io_handler); 656 657 switch (state) { 658 case eStateCrashed: 659 case eStateDetached: 660 case eStateExited: 661 case eStateUnloaded: 662 // We need to toggle the run lock as this won't get done in 663 // SetPublicState() if the process is hijacked. 664 if (hijack_listener_sp && use_run_lock) 665 m_public_run_lock.SetStopped(); 666 return state; 667 case eStateStopped: 668 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 669 continue; 670 else { 671 // We need to toggle the run lock as this won't get done in 672 // SetPublicState() if the process is hijacked. 673 if (hijack_listener_sp && use_run_lock) 674 m_public_run_lock.SetStopped(); 675 return state; 676 } 677 default: 678 continue; 679 } 680 } 681 return state; 682 } 683 684 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 685 Stream *stream, 686 bool &pop_process_io_handler) { 687 const bool handle_pop = pop_process_io_handler; 688 689 pop_process_io_handler = false; 690 ProcessSP process_sp = 691 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 692 693 if (!process_sp) 694 return false; 695 696 StateType event_state = 697 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 698 if (event_state == eStateInvalid) 699 return false; 700 701 switch (event_state) { 702 case eStateInvalid: 703 case eStateUnloaded: 704 case eStateAttaching: 705 case eStateLaunching: 706 case eStateStepping: 707 case eStateDetached: 708 if (stream) 709 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 710 StateAsCString(event_state)); 711 if (event_state == eStateDetached) 712 pop_process_io_handler = true; 713 break; 714 715 case eStateConnected: 716 case eStateRunning: 717 // Don't be chatty when we run... 718 break; 719 720 case eStateExited: 721 if (stream) 722 process_sp->GetStatus(*stream); 723 pop_process_io_handler = true; 724 break; 725 726 case eStateStopped: 727 case eStateCrashed: 728 case eStateSuspended: 729 // Make sure the program hasn't been auto-restarted: 730 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 731 if (stream) { 732 size_t num_reasons = 733 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 734 if (num_reasons > 0) { 735 // FIXME: Do we want to report this, or would that just be annoyingly 736 // chatty? 737 if (num_reasons == 1) { 738 const char *reason = 739 Process::ProcessEventData::GetRestartedReasonAtIndex( 740 event_sp.get(), 0); 741 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 742 process_sp->GetID(), 743 reason ? reason : "<UNKNOWN REASON>"); 744 } else { 745 stream->Printf("Process %" PRIu64 746 " stopped and restarted, reasons:\n", 747 process_sp->GetID()); 748 749 for (size_t i = 0; i < num_reasons; i++) { 750 const char *reason = 751 Process::ProcessEventData::GetRestartedReasonAtIndex( 752 event_sp.get(), i); 753 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 754 } 755 } 756 } 757 } 758 } else { 759 StopInfoSP curr_thread_stop_info_sp; 760 // Lock the thread list so it doesn't change on us, this is the scope for 761 // the locker: 762 { 763 ThreadList &thread_list = process_sp->GetThreadList(); 764 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 765 766 ThreadSP curr_thread(thread_list.GetSelectedThread()); 767 ThreadSP thread; 768 StopReason curr_thread_stop_reason = eStopReasonInvalid; 769 if (curr_thread) { 770 curr_thread_stop_reason = curr_thread->GetStopReason(); 771 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 772 } 773 if (!curr_thread || !curr_thread->IsValid() || 774 curr_thread_stop_reason == eStopReasonInvalid || 775 curr_thread_stop_reason == eStopReasonNone) { 776 // Prefer a thread that has just completed its plan over another 777 // thread as current thread. 778 ThreadSP plan_thread; 779 ThreadSP other_thread; 780 781 const size_t num_threads = thread_list.GetSize(); 782 size_t i; 783 for (i = 0; i < num_threads; ++i) { 784 thread = thread_list.GetThreadAtIndex(i); 785 StopReason thread_stop_reason = thread->GetStopReason(); 786 switch (thread_stop_reason) { 787 case eStopReasonInvalid: 788 case eStopReasonNone: 789 break; 790 791 case eStopReasonSignal: { 792 // Don't select a signal thread if we weren't going to stop at 793 // that signal. We have to have had another reason for stopping 794 // here, and the user doesn't want to see this thread. 795 uint64_t signo = thread->GetStopInfo()->GetValue(); 796 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 797 if (!other_thread) 798 other_thread = thread; 799 } 800 break; 801 } 802 case eStopReasonTrace: 803 case eStopReasonBreakpoint: 804 case eStopReasonWatchpoint: 805 case eStopReasonException: 806 case eStopReasonExec: 807 case eStopReasonThreadExiting: 808 case eStopReasonInstrumentation: 809 if (!other_thread) 810 other_thread = thread; 811 break; 812 case eStopReasonPlanComplete: 813 if (!plan_thread) 814 plan_thread = thread; 815 break; 816 } 817 } 818 if (plan_thread) 819 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 820 else if (other_thread) 821 thread_list.SetSelectedThreadByID(other_thread->GetID()); 822 else { 823 if (curr_thread && curr_thread->IsValid()) 824 thread = curr_thread; 825 else 826 thread = thread_list.GetThreadAtIndex(0); 827 828 if (thread) 829 thread_list.SetSelectedThreadByID(thread->GetID()); 830 } 831 } 832 } 833 // Drop the ThreadList mutex by here, since GetThreadStatus below might 834 // have to run code, e.g. for Data formatters, and if we hold the 835 // ThreadList mutex, then the process is going to have a hard time 836 // restarting the process. 837 if (stream) { 838 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 839 if (debugger.GetTargetList().GetSelectedTarget().get() == 840 &process_sp->GetTarget()) { 841 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 842 843 if (!thread_sp || !thread_sp->IsValid()) 844 return false; 845 846 const bool only_threads_with_stop_reason = true; 847 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 848 const uint32_t num_frames = 1; 849 const uint32_t num_frames_with_source = 1; 850 const bool stop_format = true; 851 852 process_sp->GetStatus(*stream); 853 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 854 start_frame, num_frames, 855 num_frames_with_source, 856 stop_format); 857 if (curr_thread_stop_info_sp) { 858 lldb::addr_t crashing_address; 859 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 860 curr_thread_stop_info_sp, &crashing_address); 861 if (valobj_sp) { 862 const ValueObject::GetExpressionPathFormat format = 863 ValueObject::GetExpressionPathFormat:: 864 eGetExpressionPathFormatHonorPointers; 865 stream->PutCString("Likely cause: "); 866 valobj_sp->GetExpressionPath(*stream, format); 867 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 868 } 869 } 870 } else { 871 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 872 process_sp->GetTarget().shared_from_this()); 873 if (target_idx != UINT32_MAX) 874 stream->Printf("Target %d: (", target_idx); 875 else 876 stream->Printf("Target <unknown index>: ("); 877 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 878 stream->Printf(") stopped.\n"); 879 } 880 } 881 882 // Pop the process IO handler 883 pop_process_io_handler = true; 884 } 885 break; 886 } 887 888 if (handle_pop && pop_process_io_handler) 889 process_sp->PopProcessIOHandler(); 890 891 return true; 892 } 893 894 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 895 if (listener_sp) { 896 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 897 eBroadcastBitInterrupt); 898 } else 899 return false; 900 } 901 902 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 903 904 StateType Process::GetStateChangedEvents(EventSP &event_sp, 905 const Timeout<std::micro> &timeout, 906 ListenerSP hijack_listener_sp) { 907 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 908 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 909 910 ListenerSP listener_sp = hijack_listener_sp; 911 if (!listener_sp) 912 listener_sp = m_listener_sp; 913 914 StateType state = eStateInvalid; 915 if (listener_sp->GetEventForBroadcasterWithType( 916 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 917 timeout)) { 918 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 919 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 920 else 921 LLDB_LOG(log, "got no event or was interrupted."); 922 } 923 924 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 925 return state; 926 } 927 928 Event *Process::PeekAtStateChangedEvents() { 929 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 930 931 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 932 933 Event *event_ptr; 934 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 935 this, eBroadcastBitStateChanged); 936 if (log) { 937 if (event_ptr) { 938 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 939 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 940 } else { 941 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 942 } 943 } 944 return event_ptr; 945 } 946 947 StateType 948 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 949 const Timeout<std::micro> &timeout) { 950 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 951 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 952 953 StateType state = eStateInvalid; 954 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 955 &m_private_state_broadcaster, 956 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 957 timeout)) 958 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 959 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 960 961 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 962 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 963 return state; 964 } 965 966 bool Process::GetEventsPrivate(EventSP &event_sp, 967 const Timeout<std::micro> &timeout, 968 bool control_only) { 969 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 970 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 971 972 if (control_only) 973 return m_private_state_listener_sp->GetEventForBroadcaster( 974 &m_private_state_control_broadcaster, event_sp, timeout); 975 else 976 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 977 } 978 979 bool Process::IsRunning() const { 980 return StateIsRunningState(m_public_state.GetValue()); 981 } 982 983 int Process::GetExitStatus() { 984 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 985 986 if (m_public_state.GetValue() == eStateExited) 987 return m_exit_status; 988 return -1; 989 } 990 991 const char *Process::GetExitDescription() { 992 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 993 994 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 995 return m_exit_string.c_str(); 996 return nullptr; 997 } 998 999 bool Process::SetExitStatus(int status, const char *cstr) { 1000 // Use a mutex to protect setting the exit status. 1001 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1002 1003 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1004 LIBLLDB_LOG_PROCESS)); 1005 LLDB_LOGF( 1006 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1007 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1008 1009 // We were already in the exited state 1010 if (m_private_state.GetValue() == eStateExited) { 1011 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1012 "state was already set to eStateExited"); 1013 return false; 1014 } 1015 1016 m_exit_status = status; 1017 if (cstr) 1018 m_exit_string = cstr; 1019 else 1020 m_exit_string.clear(); 1021 1022 // Clear the last natural stop ID since it has a strong reference to this 1023 // process 1024 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1025 1026 SetPrivateState(eStateExited); 1027 1028 // Allow subclasses to do some cleanup 1029 DidExit(); 1030 1031 return true; 1032 } 1033 1034 bool Process::IsAlive() { 1035 switch (m_private_state.GetValue()) { 1036 case eStateConnected: 1037 case eStateAttaching: 1038 case eStateLaunching: 1039 case eStateStopped: 1040 case eStateRunning: 1041 case eStateStepping: 1042 case eStateCrashed: 1043 case eStateSuspended: 1044 return true; 1045 default: 1046 return false; 1047 } 1048 } 1049 1050 // This static callback can be used to watch for local child processes on the 1051 // current host. The child process exits, the process will be found in the 1052 // global target list (we want to be completely sure that the 1053 // lldb_private::Process doesn't go away before we can deliver the signal. 1054 bool Process::SetProcessExitStatus( 1055 lldb::pid_t pid, bool exited, 1056 int signo, // Zero for no signal 1057 int exit_status // Exit value of process if signal is zero 1058 ) { 1059 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1060 LLDB_LOGF(log, 1061 "Process::SetProcessExitStatus (pid=%" PRIu64 1062 ", exited=%i, signal=%i, exit_status=%i)\n", 1063 pid, exited, signo, exit_status); 1064 1065 if (exited) { 1066 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1067 if (target_sp) { 1068 ProcessSP process_sp(target_sp->GetProcessSP()); 1069 if (process_sp) { 1070 const char *signal_cstr = nullptr; 1071 if (signo) 1072 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1073 1074 process_sp->SetExitStatus(exit_status, signal_cstr); 1075 } 1076 } 1077 return true; 1078 } 1079 return false; 1080 } 1081 1082 void Process::UpdateThreadListIfNeeded() { 1083 const uint32_t stop_id = GetStopID(); 1084 if (m_thread_list.GetSize(false) == 0 || 1085 stop_id != m_thread_list.GetStopID()) { 1086 bool clear_unused_threads = true; 1087 const StateType state = GetPrivateState(); 1088 if (StateIsStoppedState(state, true)) { 1089 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1090 m_thread_list.SetStopID(stop_id); 1091 1092 // m_thread_list does have its own mutex, but we need to hold onto the 1093 // mutex between the call to UpdateThreadList(...) and the 1094 // os->UpdateThreadList(...) so it doesn't change on us 1095 ThreadList &old_thread_list = m_thread_list; 1096 ThreadList real_thread_list(this); 1097 ThreadList new_thread_list(this); 1098 // Always update the thread list with the protocol specific thread list, 1099 // but only update if "true" is returned 1100 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1101 // Don't call into the OperatingSystem to update the thread list if we 1102 // are shutting down, since that may call back into the SBAPI's, 1103 // requiring the API lock which is already held by whoever is shutting 1104 // us down, causing a deadlock. 1105 OperatingSystem *os = GetOperatingSystem(); 1106 if (os && !m_destroy_in_process) { 1107 // Clear any old backing threads where memory threads might have been 1108 // backed by actual threads from the lldb_private::Process subclass 1109 size_t num_old_threads = old_thread_list.GetSize(false); 1110 for (size_t i = 0; i < num_old_threads; ++i) 1111 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1112 // See if the OS plugin reports all threads. If it does, then 1113 // it is safe to clear unseen thread's plans here. Otherwise we 1114 // should preserve them in case they show up again: 1115 clear_unused_threads = GetOSPluginReportsAllThreads(); 1116 1117 // Turn off dynamic types to ensure we don't run any expressions. 1118 // Objective-C can run an expression to determine if a SBValue is a 1119 // dynamic type or not and we need to avoid this. OperatingSystem 1120 // plug-ins can't run expressions that require running code... 1121 1122 Target &target = GetTarget(); 1123 const lldb::DynamicValueType saved_prefer_dynamic = 1124 target.GetPreferDynamicValue(); 1125 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1126 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1127 1128 // Now let the OperatingSystem plug-in update the thread list 1129 1130 os->UpdateThreadList( 1131 old_thread_list, // Old list full of threads created by OS plug-in 1132 real_thread_list, // The actual thread list full of threads 1133 // created by each lldb_private::Process 1134 // subclass 1135 new_thread_list); // The new thread list that we will show to the 1136 // user that gets filled in 1137 1138 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1139 target.SetPreferDynamicValue(saved_prefer_dynamic); 1140 } else { 1141 // No OS plug-in, the new thread list is the same as the real thread 1142 // list. 1143 new_thread_list = real_thread_list; 1144 } 1145 1146 m_thread_list_real.Update(real_thread_list); 1147 m_thread_list.Update(new_thread_list); 1148 m_thread_list.SetStopID(stop_id); 1149 1150 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1151 // Clear any extended threads that we may have accumulated previously 1152 m_extended_thread_list.Clear(); 1153 m_extended_thread_stop_id = GetLastNaturalStopID(); 1154 1155 m_queue_list.Clear(); 1156 m_queue_list_stop_id = GetLastNaturalStopID(); 1157 } 1158 } 1159 // Now update the plan stack map. 1160 // If we do have an OS plugin, any absent real threads in the 1161 // m_thread_list have already been removed from the ThreadPlanStackMap. 1162 // So any remaining threads are OS Plugin threads, and those we want to 1163 // preserve in case they show up again. 1164 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1165 } 1166 } 1167 } 1168 1169 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1170 return m_thread_plans.Find(tid); 1171 } 1172 1173 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1174 return m_thread_plans.PrunePlansForTID(tid); 1175 } 1176 1177 void Process::PruneThreadPlans() { 1178 m_thread_plans.Update(GetThreadList(), true, false); 1179 } 1180 1181 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1182 lldb::DescriptionLevel desc_level, 1183 bool internal, bool condense_trivial, 1184 bool skip_unreported_plans) { 1185 return m_thread_plans.DumpPlansForTID( 1186 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1187 } 1188 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1189 bool internal, bool condense_trivial, 1190 bool skip_unreported_plans) { 1191 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1192 skip_unreported_plans); 1193 } 1194 1195 void Process::UpdateQueueListIfNeeded() { 1196 if (m_system_runtime_up) { 1197 if (m_queue_list.GetSize() == 0 || 1198 m_queue_list_stop_id != GetLastNaturalStopID()) { 1199 const StateType state = GetPrivateState(); 1200 if (StateIsStoppedState(state, true)) { 1201 m_system_runtime_up->PopulateQueueList(m_queue_list); 1202 m_queue_list_stop_id = GetLastNaturalStopID(); 1203 } 1204 } 1205 } 1206 } 1207 1208 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1209 OperatingSystem *os = GetOperatingSystem(); 1210 if (os) 1211 return os->CreateThread(tid, context); 1212 return ThreadSP(); 1213 } 1214 1215 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1216 return AssignIndexIDToThread(thread_id); 1217 } 1218 1219 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1220 return (m_thread_id_to_index_id_map.find(thread_id) != 1221 m_thread_id_to_index_id_map.end()); 1222 } 1223 1224 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1225 uint32_t result = 0; 1226 std::map<uint64_t, uint32_t>::iterator iterator = 1227 m_thread_id_to_index_id_map.find(thread_id); 1228 if (iterator == m_thread_id_to_index_id_map.end()) { 1229 result = ++m_thread_index_id; 1230 m_thread_id_to_index_id_map[thread_id] = result; 1231 } else { 1232 result = iterator->second; 1233 } 1234 1235 return result; 1236 } 1237 1238 StateType Process::GetState() { 1239 return m_public_state.GetValue(); 1240 } 1241 1242 void Process::SetPublicState(StateType new_state, bool restarted) { 1243 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1244 LIBLLDB_LOG_PROCESS)); 1245 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1246 StateAsCString(new_state), restarted); 1247 const StateType old_state = m_public_state.GetValue(); 1248 m_public_state.SetValue(new_state); 1249 1250 // On the transition from Run to Stopped, we unlock the writer end of the run 1251 // lock. The lock gets locked in Resume, which is the public API to tell the 1252 // program to run. 1253 if (!StateChangedIsExternallyHijacked()) { 1254 if (new_state == eStateDetached) { 1255 LLDB_LOGF(log, 1256 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1257 StateAsCString(new_state)); 1258 m_public_run_lock.SetStopped(); 1259 } else { 1260 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1261 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1262 if ((old_state_is_stopped != new_state_is_stopped)) { 1263 if (new_state_is_stopped && !restarted) { 1264 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1265 StateAsCString(new_state)); 1266 m_public_run_lock.SetStopped(); 1267 } 1268 } 1269 } 1270 } 1271 } 1272 1273 Status Process::Resume() { 1274 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1275 LIBLLDB_LOG_PROCESS)); 1276 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1277 if (!m_public_run_lock.TrySetRunning()) { 1278 Status error("Resume request failed - process still running."); 1279 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1280 return error; 1281 } 1282 Status error = PrivateResume(); 1283 if (!error.Success()) { 1284 // Undo running state change 1285 m_public_run_lock.SetStopped(); 1286 } 1287 return error; 1288 } 1289 1290 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1291 1292 Status Process::ResumeSynchronous(Stream *stream) { 1293 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1294 LIBLLDB_LOG_PROCESS)); 1295 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1296 if (!m_public_run_lock.TrySetRunning()) { 1297 Status error("Resume request failed - process still running."); 1298 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1299 return error; 1300 } 1301 1302 ListenerSP listener_sp( 1303 Listener::MakeListener(g_resume_sync_name)); 1304 HijackProcessEvents(listener_sp); 1305 1306 Status error = PrivateResume(); 1307 if (error.Success()) { 1308 StateType state = 1309 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1310 const bool must_be_alive = 1311 false; // eStateExited is ok, so this must be false 1312 if (!StateIsStoppedState(state, must_be_alive)) 1313 error.SetErrorStringWithFormat( 1314 "process not in stopped state after synchronous resume: %s", 1315 StateAsCString(state)); 1316 } else { 1317 // Undo running state change 1318 m_public_run_lock.SetStopped(); 1319 } 1320 1321 // Undo the hijacking of process events... 1322 RestoreProcessEvents(); 1323 1324 return error; 1325 } 1326 1327 bool Process::StateChangedIsExternallyHijacked() { 1328 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1329 const char *hijacking_name = GetHijackingListenerName(); 1330 if (hijacking_name && 1331 strcmp(hijacking_name, g_resume_sync_name)) 1332 return true; 1333 } 1334 return false; 1335 } 1336 1337 bool Process::StateChangedIsHijackedForSynchronousResume() { 1338 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1339 const char *hijacking_name = GetHijackingListenerName(); 1340 if (hijacking_name && 1341 strcmp(hijacking_name, g_resume_sync_name) == 0) 1342 return true; 1343 } 1344 return false; 1345 } 1346 1347 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1348 1349 void Process::SetPrivateState(StateType new_state) { 1350 if (m_finalizing) 1351 return; 1352 1353 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1354 LIBLLDB_LOG_PROCESS)); 1355 bool state_changed = false; 1356 1357 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1358 1359 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1360 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1361 1362 const StateType old_state = m_private_state.GetValueNoLock(); 1363 state_changed = old_state != new_state; 1364 1365 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1366 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1367 if (old_state_is_stopped != new_state_is_stopped) { 1368 if (new_state_is_stopped) 1369 m_private_run_lock.SetStopped(); 1370 else 1371 m_private_run_lock.SetRunning(); 1372 } 1373 1374 if (state_changed) { 1375 m_private_state.SetValueNoLock(new_state); 1376 EventSP event_sp( 1377 new Event(eBroadcastBitStateChanged, 1378 new ProcessEventData(shared_from_this(), new_state))); 1379 if (StateIsStoppedState(new_state, false)) { 1380 // Note, this currently assumes that all threads in the list stop when 1381 // the process stops. In the future we will want to support a debugging 1382 // model where some threads continue to run while others are stopped. 1383 // When that happens we will either need a way for the thread list to 1384 // identify which threads are stopping or create a special thread list 1385 // containing only threads which actually stopped. 1386 // 1387 // The process plugin is responsible for managing the actual behavior of 1388 // the threads and should have stopped any threads that are going to stop 1389 // before we get here. 1390 m_thread_list.DidStop(); 1391 1392 m_mod_id.BumpStopID(); 1393 if (!m_mod_id.IsLastResumeForUserExpression()) 1394 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1395 m_memory_cache.Clear(); 1396 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1397 StateAsCString(new_state), m_mod_id.GetStopID()); 1398 } 1399 1400 m_private_state_broadcaster.BroadcastEvent(event_sp); 1401 } else { 1402 LLDB_LOGF(log, 1403 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1404 StateAsCString(new_state)); 1405 } 1406 } 1407 1408 void Process::SetRunningUserExpression(bool on) { 1409 m_mod_id.SetRunningUserExpression(on); 1410 } 1411 1412 void Process::SetRunningUtilityFunction(bool on) { 1413 m_mod_id.SetRunningUtilityFunction(on); 1414 } 1415 1416 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1417 1418 const lldb::ABISP &Process::GetABI() { 1419 if (!m_abi_sp) 1420 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1421 return m_abi_sp; 1422 } 1423 1424 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1425 std::vector<LanguageRuntime *> language_runtimes; 1426 1427 if (m_finalizing) 1428 return language_runtimes; 1429 1430 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1431 // Before we pass off a copy of the language runtimes, we must make sure that 1432 // our collection is properly populated. It's possible that some of the 1433 // language runtimes were not loaded yet, either because nobody requested it 1434 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1435 // hadn't been loaded). 1436 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1437 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1438 language_runtimes.emplace_back(runtime); 1439 } 1440 1441 return language_runtimes; 1442 } 1443 1444 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1445 if (m_finalizing) 1446 return nullptr; 1447 1448 LanguageRuntime *runtime = nullptr; 1449 1450 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1451 LanguageRuntimeCollection::iterator pos; 1452 pos = m_language_runtimes.find(language); 1453 if (pos == m_language_runtimes.end() || !pos->second) { 1454 lldb::LanguageRuntimeSP runtime_sp( 1455 LanguageRuntime::FindPlugin(this, language)); 1456 1457 m_language_runtimes[language] = runtime_sp; 1458 runtime = runtime_sp.get(); 1459 } else 1460 runtime = pos->second.get(); 1461 1462 if (runtime) 1463 // It's possible that a language runtime can support multiple LanguageTypes, 1464 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1465 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1466 // primary language type and make sure that our runtime supports it. 1467 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1468 1469 return runtime; 1470 } 1471 1472 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1473 if (m_finalizing) 1474 return false; 1475 1476 if (in_value.IsDynamic()) 1477 return false; 1478 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1479 1480 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1481 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1482 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1483 } 1484 1485 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1486 if (runtime->CouldHaveDynamicValue(in_value)) 1487 return true; 1488 } 1489 1490 return false; 1491 } 1492 1493 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1494 m_dynamic_checkers_up.reset(dynamic_checkers); 1495 } 1496 1497 BreakpointSiteList &Process::GetBreakpointSiteList() { 1498 return m_breakpoint_site_list; 1499 } 1500 1501 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1502 return m_breakpoint_site_list; 1503 } 1504 1505 void Process::DisableAllBreakpointSites() { 1506 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1507 // bp_site->SetEnabled(true); 1508 DisableBreakpointSite(bp_site); 1509 }); 1510 } 1511 1512 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1513 Status error(DisableBreakpointSiteByID(break_id)); 1514 1515 if (error.Success()) 1516 m_breakpoint_site_list.Remove(break_id); 1517 1518 return error; 1519 } 1520 1521 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1522 Status error; 1523 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1524 if (bp_site_sp) { 1525 if (bp_site_sp->IsEnabled()) 1526 error = DisableBreakpointSite(bp_site_sp.get()); 1527 } else { 1528 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1529 break_id); 1530 } 1531 1532 return error; 1533 } 1534 1535 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1536 Status error; 1537 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1538 if (bp_site_sp) { 1539 if (!bp_site_sp->IsEnabled()) 1540 error = EnableBreakpointSite(bp_site_sp.get()); 1541 } else { 1542 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1543 break_id); 1544 } 1545 return error; 1546 } 1547 1548 lldb::break_id_t 1549 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1550 bool use_hardware) { 1551 addr_t load_addr = LLDB_INVALID_ADDRESS; 1552 1553 bool show_error = true; 1554 switch (GetState()) { 1555 case eStateInvalid: 1556 case eStateUnloaded: 1557 case eStateConnected: 1558 case eStateAttaching: 1559 case eStateLaunching: 1560 case eStateDetached: 1561 case eStateExited: 1562 show_error = false; 1563 break; 1564 1565 case eStateStopped: 1566 case eStateRunning: 1567 case eStateStepping: 1568 case eStateCrashed: 1569 case eStateSuspended: 1570 show_error = IsAlive(); 1571 break; 1572 } 1573 1574 // Reset the IsIndirect flag here, in case the location changes from pointing 1575 // to a indirect symbol to a regular symbol. 1576 owner->SetIsIndirect(false); 1577 1578 if (owner->ShouldResolveIndirectFunctions()) { 1579 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1580 if (symbol && symbol->IsIndirect()) { 1581 Status error; 1582 Address symbol_address = symbol->GetAddress(); 1583 load_addr = ResolveIndirectFunction(&symbol_address, error); 1584 if (!error.Success() && show_error) { 1585 GetTarget().GetDebugger().GetErrorStream().Printf( 1586 "warning: failed to resolve indirect function at 0x%" PRIx64 1587 " for breakpoint %i.%i: %s\n", 1588 symbol->GetLoadAddress(&GetTarget()), 1589 owner->GetBreakpoint().GetID(), owner->GetID(), 1590 error.AsCString() ? error.AsCString() : "unknown error"); 1591 return LLDB_INVALID_BREAK_ID; 1592 } 1593 Address resolved_address(load_addr); 1594 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1595 owner->SetIsIndirect(true); 1596 } else 1597 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1598 } else 1599 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1600 1601 if (load_addr != LLDB_INVALID_ADDRESS) { 1602 BreakpointSiteSP bp_site_sp; 1603 1604 // Look up this breakpoint site. If it exists, then add this new owner, 1605 // otherwise create a new breakpoint site and add it. 1606 1607 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1608 1609 if (bp_site_sp) { 1610 bp_site_sp->AddOwner(owner); 1611 owner->SetBreakpointSite(bp_site_sp); 1612 return bp_site_sp->GetID(); 1613 } else { 1614 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1615 load_addr, use_hardware)); 1616 if (bp_site_sp) { 1617 Status error = EnableBreakpointSite(bp_site_sp.get()); 1618 if (error.Success()) { 1619 owner->SetBreakpointSite(bp_site_sp); 1620 return m_breakpoint_site_list.Add(bp_site_sp); 1621 } else { 1622 if (show_error || use_hardware) { 1623 // Report error for setting breakpoint... 1624 GetTarget().GetDebugger().GetErrorStream().Printf( 1625 "warning: failed to set breakpoint site at 0x%" PRIx64 1626 " for breakpoint %i.%i: %s\n", 1627 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1628 error.AsCString() ? error.AsCString() : "unknown error"); 1629 } 1630 } 1631 } 1632 } 1633 } 1634 // We failed to enable the breakpoint 1635 return LLDB_INVALID_BREAK_ID; 1636 } 1637 1638 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1639 lldb::user_id_t owner_loc_id, 1640 BreakpointSiteSP &bp_site_sp) { 1641 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1642 if (num_owners == 0) { 1643 // Don't try to disable the site if we don't have a live process anymore. 1644 if (IsAlive()) 1645 DisableBreakpointSite(bp_site_sp.get()); 1646 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1647 } 1648 } 1649 1650 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1651 uint8_t *buf) const { 1652 size_t bytes_removed = 0; 1653 BreakpointSiteList bp_sites_in_range; 1654 1655 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1656 bp_sites_in_range)) { 1657 bp_sites_in_range.ForEach([bp_addr, size, 1658 buf](BreakpointSite *bp_site) -> void { 1659 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1660 addr_t intersect_addr; 1661 size_t intersect_size; 1662 size_t opcode_offset; 1663 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1664 &intersect_size, &opcode_offset)) { 1665 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1666 assert(bp_addr < intersect_addr + intersect_size && 1667 intersect_addr + intersect_size <= bp_addr + size); 1668 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1669 size_t buf_offset = intersect_addr - bp_addr; 1670 ::memcpy(buf + buf_offset, 1671 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1672 intersect_size); 1673 } 1674 } 1675 }); 1676 } 1677 return bytes_removed; 1678 } 1679 1680 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1681 PlatformSP platform_sp(GetTarget().GetPlatform()); 1682 if (platform_sp) 1683 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1684 return 0; 1685 } 1686 1687 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1688 Status error; 1689 assert(bp_site != nullptr); 1690 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1691 const addr_t bp_addr = bp_site->GetLoadAddress(); 1692 LLDB_LOGF( 1693 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1694 bp_site->GetID(), (uint64_t)bp_addr); 1695 if (bp_site->IsEnabled()) { 1696 LLDB_LOGF( 1697 log, 1698 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1699 " -- already enabled", 1700 bp_site->GetID(), (uint64_t)bp_addr); 1701 return error; 1702 } 1703 1704 if (bp_addr == LLDB_INVALID_ADDRESS) { 1705 error.SetErrorString("BreakpointSite contains an invalid load address."); 1706 return error; 1707 } 1708 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1709 // trap for the breakpoint site 1710 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1711 1712 if (bp_opcode_size == 0) { 1713 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1714 "returned zero, unable to get breakpoint " 1715 "trap for address 0x%" PRIx64, 1716 bp_addr); 1717 } else { 1718 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1719 1720 if (bp_opcode_bytes == nullptr) { 1721 error.SetErrorString( 1722 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1723 return error; 1724 } 1725 1726 // Save the original opcode by reading it 1727 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1728 error) == bp_opcode_size) { 1729 // Write a software breakpoint in place of the original opcode 1730 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1731 bp_opcode_size) { 1732 uint8_t verify_bp_opcode_bytes[64]; 1733 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1734 error) == bp_opcode_size) { 1735 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1736 bp_opcode_size) == 0) { 1737 bp_site->SetEnabled(true); 1738 bp_site->SetType(BreakpointSite::eSoftware); 1739 LLDB_LOGF(log, 1740 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1741 "addr = 0x%" PRIx64 " -- SUCCESS", 1742 bp_site->GetID(), (uint64_t)bp_addr); 1743 } else 1744 error.SetErrorString( 1745 "failed to verify the breakpoint trap in memory."); 1746 } else 1747 error.SetErrorString( 1748 "Unable to read memory to verify breakpoint trap."); 1749 } else 1750 error.SetErrorString("Unable to write breakpoint trap to memory."); 1751 } else 1752 error.SetErrorString("Unable to read memory at breakpoint address."); 1753 } 1754 if (log && error.Fail()) 1755 LLDB_LOGF( 1756 log, 1757 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1758 " -- FAILED: %s", 1759 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1760 return error; 1761 } 1762 1763 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1764 Status error; 1765 assert(bp_site != nullptr); 1766 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1767 addr_t bp_addr = bp_site->GetLoadAddress(); 1768 lldb::user_id_t breakID = bp_site->GetID(); 1769 LLDB_LOGF(log, 1770 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1771 ") addr = 0x%" PRIx64, 1772 breakID, (uint64_t)bp_addr); 1773 1774 if (bp_site->IsHardware()) { 1775 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1776 } else if (bp_site->IsEnabled()) { 1777 const size_t break_op_size = bp_site->GetByteSize(); 1778 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1779 if (break_op_size > 0) { 1780 // Clear a software breakpoint instruction 1781 uint8_t curr_break_op[8]; 1782 assert(break_op_size <= sizeof(curr_break_op)); 1783 bool break_op_found = false; 1784 1785 // Read the breakpoint opcode 1786 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1787 break_op_size) { 1788 bool verify = false; 1789 // Make sure the breakpoint opcode exists at this address 1790 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1791 break_op_found = true; 1792 // We found a valid breakpoint opcode at this address, now restore 1793 // the saved opcode. 1794 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1795 break_op_size, error) == break_op_size) { 1796 verify = true; 1797 } else 1798 error.SetErrorString( 1799 "Memory write failed when restoring original opcode."); 1800 } else { 1801 error.SetErrorString( 1802 "Original breakpoint trap is no longer in memory."); 1803 // Set verify to true and so we can check if the original opcode has 1804 // already been restored 1805 verify = true; 1806 } 1807 1808 if (verify) { 1809 uint8_t verify_opcode[8]; 1810 assert(break_op_size < sizeof(verify_opcode)); 1811 // Verify that our original opcode made it back to the inferior 1812 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1813 break_op_size) { 1814 // compare the memory we just read with the original opcode 1815 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1816 break_op_size) == 0) { 1817 // SUCCESS 1818 bp_site->SetEnabled(false); 1819 LLDB_LOGF(log, 1820 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1821 "addr = 0x%" PRIx64 " -- SUCCESS", 1822 bp_site->GetID(), (uint64_t)bp_addr); 1823 return error; 1824 } else { 1825 if (break_op_found) 1826 error.SetErrorString("Failed to restore original opcode."); 1827 } 1828 } else 1829 error.SetErrorString("Failed to read memory to verify that " 1830 "breakpoint trap was restored."); 1831 } 1832 } else 1833 error.SetErrorString( 1834 "Unable to read memory that should contain the breakpoint trap."); 1835 } 1836 } else { 1837 LLDB_LOGF( 1838 log, 1839 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1840 " -- already disabled", 1841 bp_site->GetID(), (uint64_t)bp_addr); 1842 return error; 1843 } 1844 1845 LLDB_LOGF( 1846 log, 1847 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1848 " -- FAILED: %s", 1849 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1850 return error; 1851 } 1852 1853 // Uncomment to verify memory caching works after making changes to caching 1854 // code 1855 //#define VERIFY_MEMORY_READS 1856 1857 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1858 error.Clear(); 1859 if (!GetDisableMemoryCache()) { 1860 #if defined(VERIFY_MEMORY_READS) 1861 // Memory caching is enabled, with debug verification 1862 1863 if (buf && size) { 1864 // Uncomment the line below to make sure memory caching is working. 1865 // I ran this through the test suite and got no assertions, so I am 1866 // pretty confident this is working well. If any changes are made to 1867 // memory caching, uncomment the line below and test your changes! 1868 1869 // Verify all memory reads by using the cache first, then redundantly 1870 // reading the same memory from the inferior and comparing to make sure 1871 // everything is exactly the same. 1872 std::string verify_buf(size, '\0'); 1873 assert(verify_buf.size() == size); 1874 const size_t cache_bytes_read = 1875 m_memory_cache.Read(this, addr, buf, size, error); 1876 Status verify_error; 1877 const size_t verify_bytes_read = 1878 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1879 verify_buf.size(), verify_error); 1880 assert(cache_bytes_read == verify_bytes_read); 1881 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1882 assert(verify_error.Success() == error.Success()); 1883 return cache_bytes_read; 1884 } 1885 return 0; 1886 #else // !defined(VERIFY_MEMORY_READS) 1887 // Memory caching is enabled, without debug verification 1888 1889 return m_memory_cache.Read(addr, buf, size, error); 1890 #endif // defined (VERIFY_MEMORY_READS) 1891 } else { 1892 // Memory caching is disabled 1893 1894 return ReadMemoryFromInferior(addr, buf, size, error); 1895 } 1896 } 1897 1898 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1899 Status &error) { 1900 char buf[256]; 1901 out_str.clear(); 1902 addr_t curr_addr = addr; 1903 while (true) { 1904 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1905 if (length == 0) 1906 break; 1907 out_str.append(buf, length); 1908 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1909 // to read some more characters 1910 if (length == sizeof(buf) - 1) 1911 curr_addr += length; 1912 else 1913 break; 1914 } 1915 return out_str.size(); 1916 } 1917 1918 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1919 Status &error, size_t type_width) { 1920 size_t total_bytes_read = 0; 1921 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1922 // Ensure a null terminator independent of the number of bytes that is 1923 // read. 1924 memset(dst, 0, max_bytes); 1925 size_t bytes_left = max_bytes - type_width; 1926 1927 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1928 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1929 "string with more than 4 bytes " 1930 "per character!"); 1931 1932 addr_t curr_addr = addr; 1933 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1934 char *curr_dst = dst; 1935 1936 error.Clear(); 1937 while (bytes_left > 0 && error.Success()) { 1938 addr_t cache_line_bytes_left = 1939 cache_line_size - (curr_addr % cache_line_size); 1940 addr_t bytes_to_read = 1941 std::min<addr_t>(bytes_left, cache_line_bytes_left); 1942 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 1943 1944 if (bytes_read == 0) 1945 break; 1946 1947 // Search for a null terminator of correct size and alignment in 1948 // bytes_read 1949 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 1950 for (size_t i = aligned_start; 1951 i + type_width <= total_bytes_read + bytes_read; i += type_width) 1952 if (::memcmp(&dst[i], terminator, type_width) == 0) { 1953 error.Clear(); 1954 return i; 1955 } 1956 1957 total_bytes_read += bytes_read; 1958 curr_dst += bytes_read; 1959 curr_addr += bytes_read; 1960 bytes_left -= bytes_read; 1961 } 1962 } else { 1963 if (max_bytes) 1964 error.SetErrorString("invalid arguments"); 1965 } 1966 return total_bytes_read; 1967 } 1968 1969 // Deprecated in favor of ReadStringFromMemory which has wchar support and 1970 // correct code to find null terminators. 1971 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 1972 size_t dst_max_len, 1973 Status &result_error) { 1974 size_t total_cstr_len = 0; 1975 if (dst && dst_max_len) { 1976 result_error.Clear(); 1977 // NULL out everything just to be safe 1978 memset(dst, 0, dst_max_len); 1979 Status error; 1980 addr_t curr_addr = addr; 1981 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1982 size_t bytes_left = dst_max_len - 1; 1983 char *curr_dst = dst; 1984 1985 while (bytes_left > 0) { 1986 addr_t cache_line_bytes_left = 1987 cache_line_size - (curr_addr % cache_line_size); 1988 addr_t bytes_to_read = 1989 std::min<addr_t>(bytes_left, cache_line_bytes_left); 1990 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 1991 1992 if (bytes_read == 0) { 1993 result_error = error; 1994 dst[total_cstr_len] = '\0'; 1995 break; 1996 } 1997 const size_t len = strlen(curr_dst); 1998 1999 total_cstr_len += len; 2000 2001 if (len < bytes_to_read) 2002 break; 2003 2004 curr_dst += bytes_read; 2005 curr_addr += bytes_read; 2006 bytes_left -= bytes_read; 2007 } 2008 } else { 2009 if (dst == nullptr) 2010 result_error.SetErrorString("invalid arguments"); 2011 else 2012 result_error.Clear(); 2013 } 2014 return total_cstr_len; 2015 } 2016 2017 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2018 Status &error) { 2019 if (buf == nullptr || size == 0) 2020 return 0; 2021 2022 size_t bytes_read = 0; 2023 uint8_t *bytes = (uint8_t *)buf; 2024 2025 while (bytes_read < size) { 2026 const size_t curr_size = size - bytes_read; 2027 const size_t curr_bytes_read = 2028 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2029 bytes_read += curr_bytes_read; 2030 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2031 break; 2032 } 2033 2034 // Replace any software breakpoint opcodes that fall into this range back 2035 // into "buf" before we return 2036 if (bytes_read > 0) 2037 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2038 return bytes_read; 2039 } 2040 2041 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2042 size_t integer_byte_size, 2043 uint64_t fail_value, 2044 Status &error) { 2045 Scalar scalar; 2046 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2047 error)) 2048 return scalar.ULongLong(fail_value); 2049 return fail_value; 2050 } 2051 2052 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2053 size_t integer_byte_size, 2054 int64_t fail_value, 2055 Status &error) { 2056 Scalar scalar; 2057 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2058 error)) 2059 return scalar.SLongLong(fail_value); 2060 return fail_value; 2061 } 2062 2063 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2064 Scalar scalar; 2065 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2066 error)) 2067 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2068 return LLDB_INVALID_ADDRESS; 2069 } 2070 2071 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2072 Status &error) { 2073 Scalar scalar; 2074 const uint32_t addr_byte_size = GetAddressByteSize(); 2075 if (addr_byte_size <= 4) 2076 scalar = (uint32_t)ptr_value; 2077 else 2078 scalar = ptr_value; 2079 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2080 addr_byte_size; 2081 } 2082 2083 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2084 Status &error) { 2085 size_t bytes_written = 0; 2086 const uint8_t *bytes = (const uint8_t *)buf; 2087 2088 while (bytes_written < size) { 2089 const size_t curr_size = size - bytes_written; 2090 const size_t curr_bytes_written = DoWriteMemory( 2091 addr + bytes_written, bytes + bytes_written, curr_size, error); 2092 bytes_written += curr_bytes_written; 2093 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2094 break; 2095 } 2096 return bytes_written; 2097 } 2098 2099 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2100 Status &error) { 2101 #if defined(ENABLE_MEMORY_CACHING) 2102 m_memory_cache.Flush(addr, size); 2103 #endif 2104 2105 if (buf == nullptr || size == 0) 2106 return 0; 2107 2108 m_mod_id.BumpMemoryID(); 2109 2110 // We need to write any data that would go where any current software traps 2111 // (enabled software breakpoints) any software traps (breakpoints) that we 2112 // may have placed in our tasks memory. 2113 2114 BreakpointSiteList bp_sites_in_range; 2115 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2116 return WriteMemoryPrivate(addr, buf, size, error); 2117 2118 // No breakpoint sites overlap 2119 if (bp_sites_in_range.IsEmpty()) 2120 return WriteMemoryPrivate(addr, buf, size, error); 2121 2122 const uint8_t *ubuf = (const uint8_t *)buf; 2123 uint64_t bytes_written = 0; 2124 2125 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2126 &error](BreakpointSite *bp) -> void { 2127 if (error.Fail()) 2128 return; 2129 2130 if (bp->GetType() != BreakpointSite::eSoftware) 2131 return; 2132 2133 addr_t intersect_addr; 2134 size_t intersect_size; 2135 size_t opcode_offset; 2136 const bool intersects = bp->IntersectsRange( 2137 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2138 UNUSED_IF_ASSERT_DISABLED(intersects); 2139 assert(intersects); 2140 assert(addr <= intersect_addr && intersect_addr < addr + size); 2141 assert(addr < intersect_addr + intersect_size && 2142 intersect_addr + intersect_size <= addr + size); 2143 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2144 2145 // Check for bytes before this breakpoint 2146 const addr_t curr_addr = addr + bytes_written; 2147 if (intersect_addr > curr_addr) { 2148 // There are some bytes before this breakpoint that we need to just 2149 // write to memory 2150 size_t curr_size = intersect_addr - curr_addr; 2151 size_t curr_bytes_written = 2152 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2153 bytes_written += curr_bytes_written; 2154 if (curr_bytes_written != curr_size) { 2155 // We weren't able to write all of the requested bytes, we are 2156 // done looping and will return the number of bytes that we have 2157 // written so far. 2158 if (error.Success()) 2159 error.SetErrorToGenericError(); 2160 } 2161 } 2162 // Now write any bytes that would cover up any software breakpoints 2163 // directly into the breakpoint opcode buffer 2164 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2165 intersect_size); 2166 bytes_written += intersect_size; 2167 }); 2168 2169 // Write any remaining bytes after the last breakpoint if we have any left 2170 if (bytes_written < size) 2171 bytes_written += 2172 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2173 size - bytes_written, error); 2174 2175 return bytes_written; 2176 } 2177 2178 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2179 size_t byte_size, Status &error) { 2180 if (byte_size == UINT32_MAX) 2181 byte_size = scalar.GetByteSize(); 2182 if (byte_size > 0) { 2183 uint8_t buf[32]; 2184 const size_t mem_size = 2185 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2186 if (mem_size > 0) 2187 return WriteMemory(addr, buf, mem_size, error); 2188 else 2189 error.SetErrorString("failed to get scalar as memory data"); 2190 } else { 2191 error.SetErrorString("invalid scalar value"); 2192 } 2193 return 0; 2194 } 2195 2196 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2197 bool is_signed, Scalar &scalar, 2198 Status &error) { 2199 uint64_t uval = 0; 2200 if (byte_size == 0) { 2201 error.SetErrorString("byte size is zero"); 2202 } else if (byte_size & (byte_size - 1)) { 2203 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2204 byte_size); 2205 } else if (byte_size <= sizeof(uval)) { 2206 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2207 if (bytes_read == byte_size) { 2208 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2209 GetAddressByteSize()); 2210 lldb::offset_t offset = 0; 2211 if (byte_size <= 4) 2212 scalar = data.GetMaxU32(&offset, byte_size); 2213 else 2214 scalar = data.GetMaxU64(&offset, byte_size); 2215 if (is_signed) 2216 scalar.SignExtend(byte_size * 8); 2217 return bytes_read; 2218 } 2219 } else { 2220 error.SetErrorStringWithFormat( 2221 "byte size of %u is too large for integer scalar type", byte_size); 2222 } 2223 return 0; 2224 } 2225 2226 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2227 Status error; 2228 for (const auto &Entry : entries) { 2229 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2230 error); 2231 if (!error.Success()) 2232 break; 2233 } 2234 return error; 2235 } 2236 2237 #define USE_ALLOCATE_MEMORY_CACHE 1 2238 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2239 Status &error) { 2240 if (GetPrivateState() != eStateStopped) { 2241 error.SetErrorToGenericError(); 2242 return LLDB_INVALID_ADDRESS; 2243 } 2244 2245 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2246 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2247 #else 2248 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2249 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2250 LLDB_LOGF(log, 2251 "Process::AllocateMemory(size=%" PRIu64 2252 ", permissions=%s) => 0x%16.16" PRIx64 2253 " (m_stop_id = %u m_memory_id = %u)", 2254 (uint64_t)size, GetPermissionsAsCString(permissions), 2255 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2256 m_mod_id.GetMemoryID()); 2257 return allocated_addr; 2258 #endif 2259 } 2260 2261 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2262 Status &error) { 2263 addr_t return_addr = AllocateMemory(size, permissions, error); 2264 if (error.Success()) { 2265 std::string buffer(size, 0); 2266 WriteMemory(return_addr, buffer.c_str(), size, error); 2267 } 2268 return return_addr; 2269 } 2270 2271 bool Process::CanJIT() { 2272 if (m_can_jit == eCanJITDontKnow) { 2273 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2274 Status err; 2275 2276 uint64_t allocated_memory = AllocateMemory( 2277 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2278 err); 2279 2280 if (err.Success()) { 2281 m_can_jit = eCanJITYes; 2282 LLDB_LOGF(log, 2283 "Process::%s pid %" PRIu64 2284 " allocation test passed, CanJIT () is true", 2285 __FUNCTION__, GetID()); 2286 } else { 2287 m_can_jit = eCanJITNo; 2288 LLDB_LOGF(log, 2289 "Process::%s pid %" PRIu64 2290 " allocation test failed, CanJIT () is false: %s", 2291 __FUNCTION__, GetID(), err.AsCString()); 2292 } 2293 2294 DeallocateMemory(allocated_memory); 2295 } 2296 2297 return m_can_jit == eCanJITYes; 2298 } 2299 2300 void Process::SetCanJIT(bool can_jit) { 2301 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2302 } 2303 2304 void Process::SetCanRunCode(bool can_run_code) { 2305 SetCanJIT(can_run_code); 2306 m_can_interpret_function_calls = can_run_code; 2307 } 2308 2309 Status Process::DeallocateMemory(addr_t ptr) { 2310 Status error; 2311 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2312 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2313 error.SetErrorStringWithFormat( 2314 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2315 } 2316 #else 2317 error = DoDeallocateMemory(ptr); 2318 2319 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2320 LLDB_LOGF(log, 2321 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2322 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2323 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2324 m_mod_id.GetMemoryID()); 2325 #endif 2326 return error; 2327 } 2328 2329 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2330 lldb::addr_t header_addr, 2331 size_t size_to_read) { 2332 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2333 if (log) { 2334 LLDB_LOGF(log, 2335 "Process::ReadModuleFromMemory reading %s binary from memory", 2336 file_spec.GetPath().c_str()); 2337 } 2338 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2339 if (module_sp) { 2340 Status error; 2341 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2342 shared_from_this(), header_addr, error, size_to_read); 2343 if (objfile) 2344 return module_sp; 2345 } 2346 return ModuleSP(); 2347 } 2348 2349 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2350 uint32_t &permissions) { 2351 MemoryRegionInfo range_info; 2352 permissions = 0; 2353 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2354 if (!error.Success()) 2355 return false; 2356 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2357 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2358 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2359 return false; 2360 } 2361 2362 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2363 permissions |= lldb::ePermissionsReadable; 2364 2365 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2366 permissions |= lldb::ePermissionsWritable; 2367 2368 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2369 permissions |= lldb::ePermissionsExecutable; 2370 2371 return true; 2372 } 2373 2374 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2375 Status error; 2376 error.SetErrorString("watchpoints are not supported"); 2377 return error; 2378 } 2379 2380 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2381 Status error; 2382 error.SetErrorString("watchpoints are not supported"); 2383 return error; 2384 } 2385 2386 StateType 2387 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2388 const Timeout<std::micro> &timeout) { 2389 StateType state; 2390 2391 while (true) { 2392 event_sp.reset(); 2393 state = GetStateChangedEventsPrivate(event_sp, timeout); 2394 2395 if (StateIsStoppedState(state, false)) 2396 break; 2397 2398 // If state is invalid, then we timed out 2399 if (state == eStateInvalid) 2400 break; 2401 2402 if (event_sp) 2403 HandlePrivateEvent(event_sp); 2404 } 2405 return state; 2406 } 2407 2408 void Process::LoadOperatingSystemPlugin(bool flush) { 2409 if (flush) 2410 m_thread_list.Clear(); 2411 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2412 if (flush) 2413 Flush(); 2414 } 2415 2416 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2417 Status error; 2418 m_abi_sp.reset(); 2419 m_dyld_up.reset(); 2420 m_jit_loaders_up.reset(); 2421 m_system_runtime_up.reset(); 2422 m_os_up.reset(); 2423 m_process_input_reader.reset(); 2424 2425 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2426 if (!exe_module) { 2427 error.SetErrorString("executable module does not exist"); 2428 return error; 2429 } 2430 2431 char local_exec_file_path[PATH_MAX]; 2432 char platform_exec_file_path[PATH_MAX]; 2433 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2434 sizeof(local_exec_file_path)); 2435 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2436 sizeof(platform_exec_file_path)); 2437 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2438 // Install anything that might need to be installed prior to launching. 2439 // For host systems, this will do nothing, but if we are connected to a 2440 // remote platform it will install any needed binaries 2441 error = GetTarget().Install(&launch_info); 2442 if (error.Fail()) 2443 return error; 2444 2445 if (PrivateStateThreadIsValid()) 2446 PausePrivateStateThread(); 2447 2448 error = WillLaunch(exe_module); 2449 if (error.Success()) { 2450 const bool restarted = false; 2451 SetPublicState(eStateLaunching, restarted); 2452 m_should_detach = false; 2453 2454 if (m_public_run_lock.TrySetRunning()) { 2455 // Now launch using these arguments. 2456 error = DoLaunch(exe_module, launch_info); 2457 } else { 2458 // This shouldn't happen 2459 error.SetErrorString("failed to acquire process run lock"); 2460 } 2461 2462 if (error.Fail()) { 2463 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2464 SetID(LLDB_INVALID_PROCESS_ID); 2465 const char *error_string = error.AsCString(); 2466 if (error_string == nullptr) 2467 error_string = "launch failed"; 2468 SetExitStatus(-1, error_string); 2469 } 2470 } else { 2471 EventSP event_sp; 2472 2473 // Now wait for the process to launch and return control to us, and then 2474 // call DidLaunch: 2475 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2476 2477 if (state == eStateInvalid || !event_sp) { 2478 // We were able to launch the process, but we failed to catch the 2479 // initial stop. 2480 error.SetErrorString("failed to catch stop after launch"); 2481 SetExitStatus(0, "failed to catch stop after launch"); 2482 Destroy(false); 2483 } else if (state == eStateStopped || state == eStateCrashed) { 2484 DidLaunch(); 2485 2486 DynamicLoader *dyld = GetDynamicLoader(); 2487 if (dyld) 2488 dyld->DidLaunch(); 2489 2490 GetJITLoaders().DidLaunch(); 2491 2492 SystemRuntime *system_runtime = GetSystemRuntime(); 2493 if (system_runtime) 2494 system_runtime->DidLaunch(); 2495 2496 if (!m_os_up) 2497 LoadOperatingSystemPlugin(false); 2498 2499 // We successfully launched the process and stopped, now it the 2500 // right time to set up signal filters before resuming. 2501 UpdateAutomaticSignalFiltering(); 2502 2503 // Note, the stop event was consumed above, but not handled. This 2504 // was done to give DidLaunch a chance to run. The target is either 2505 // stopped or crashed. Directly set the state. This is done to 2506 // prevent a stop message with a bunch of spurious output on thread 2507 // status, as well as not pop a ProcessIOHandler. 2508 SetPublicState(state, false); 2509 2510 if (PrivateStateThreadIsValid()) 2511 ResumePrivateStateThread(); 2512 else 2513 StartPrivateStateThread(); 2514 2515 // Target was stopped at entry as was intended. Need to notify the 2516 // listeners about it. 2517 if (state == eStateStopped && 2518 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2519 HandlePrivateEvent(event_sp); 2520 } else if (state == eStateExited) { 2521 // We exited while trying to launch somehow. Don't call DidLaunch 2522 // as that's not likely to work, and return an invalid pid. 2523 HandlePrivateEvent(event_sp); 2524 } 2525 } 2526 } 2527 } else { 2528 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2529 local_exec_file_path); 2530 } 2531 2532 return error; 2533 } 2534 2535 Status Process::LoadCore() { 2536 Status error = DoLoadCore(); 2537 if (error.Success()) { 2538 ListenerSP listener_sp( 2539 Listener::MakeListener("lldb.process.load_core_listener")); 2540 HijackProcessEvents(listener_sp); 2541 2542 if (PrivateStateThreadIsValid()) 2543 ResumePrivateStateThread(); 2544 else 2545 StartPrivateStateThread(); 2546 2547 DynamicLoader *dyld = GetDynamicLoader(); 2548 if (dyld) 2549 dyld->DidAttach(); 2550 2551 GetJITLoaders().DidAttach(); 2552 2553 SystemRuntime *system_runtime = GetSystemRuntime(); 2554 if (system_runtime) 2555 system_runtime->DidAttach(); 2556 2557 if (!m_os_up) 2558 LoadOperatingSystemPlugin(false); 2559 2560 // We successfully loaded a core file, now pretend we stopped so we can 2561 // show all of the threads in the core file and explore the crashed state. 2562 SetPrivateState(eStateStopped); 2563 2564 // Wait for a stopped event since we just posted one above... 2565 lldb::EventSP event_sp; 2566 StateType state = 2567 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2568 2569 if (!StateIsStoppedState(state, false)) { 2570 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2571 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2572 StateAsCString(state)); 2573 error.SetErrorString( 2574 "Did not get stopped event after loading the core file."); 2575 } 2576 RestoreProcessEvents(); 2577 } 2578 return error; 2579 } 2580 2581 DynamicLoader *Process::GetDynamicLoader() { 2582 if (!m_dyld_up) 2583 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2584 return m_dyld_up.get(); 2585 } 2586 2587 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2588 2589 JITLoaderList &Process::GetJITLoaders() { 2590 if (!m_jit_loaders_up) { 2591 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2592 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2593 } 2594 return *m_jit_loaders_up; 2595 } 2596 2597 SystemRuntime *Process::GetSystemRuntime() { 2598 if (!m_system_runtime_up) 2599 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2600 return m_system_runtime_up.get(); 2601 } 2602 2603 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2604 uint32_t exec_count) 2605 : NextEventAction(process), m_exec_count(exec_count) { 2606 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2607 LLDB_LOGF( 2608 log, 2609 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2610 __FUNCTION__, static_cast<void *>(process), exec_count); 2611 } 2612 2613 Process::NextEventAction::EventActionResult 2614 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2615 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2616 2617 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2618 LLDB_LOGF(log, 2619 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2620 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2621 2622 switch (state) { 2623 case eStateAttaching: 2624 return eEventActionSuccess; 2625 2626 case eStateRunning: 2627 case eStateConnected: 2628 return eEventActionRetry; 2629 2630 case eStateStopped: 2631 case eStateCrashed: 2632 // During attach, prior to sending the eStateStopped event, 2633 // lldb_private::Process subclasses must set the new process ID. 2634 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2635 // We don't want these events to be reported, so go set the 2636 // ShouldReportStop here: 2637 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2638 2639 if (m_exec_count > 0) { 2640 --m_exec_count; 2641 2642 LLDB_LOGF(log, 2643 "Process::AttachCompletionHandler::%s state %s: reduced " 2644 "remaining exec count to %" PRIu32 ", requesting resume", 2645 __FUNCTION__, StateAsCString(state), m_exec_count); 2646 2647 RequestResume(); 2648 return eEventActionRetry; 2649 } else { 2650 LLDB_LOGF(log, 2651 "Process::AttachCompletionHandler::%s state %s: no more " 2652 "execs expected to start, continuing with attach", 2653 __FUNCTION__, StateAsCString(state)); 2654 2655 m_process->CompleteAttach(); 2656 return eEventActionSuccess; 2657 } 2658 break; 2659 2660 default: 2661 case eStateExited: 2662 case eStateInvalid: 2663 break; 2664 } 2665 2666 m_exit_string.assign("No valid Process"); 2667 return eEventActionExit; 2668 } 2669 2670 Process::NextEventAction::EventActionResult 2671 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2672 return eEventActionSuccess; 2673 } 2674 2675 const char *Process::AttachCompletionHandler::GetExitString() { 2676 return m_exit_string.c_str(); 2677 } 2678 2679 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2680 if (m_listener_sp) 2681 return m_listener_sp; 2682 else 2683 return debugger.GetListener(); 2684 } 2685 2686 Status Process::Attach(ProcessAttachInfo &attach_info) { 2687 m_abi_sp.reset(); 2688 m_process_input_reader.reset(); 2689 m_dyld_up.reset(); 2690 m_jit_loaders_up.reset(); 2691 m_system_runtime_up.reset(); 2692 m_os_up.reset(); 2693 2694 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2695 Status error; 2696 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2697 char process_name[PATH_MAX]; 2698 2699 if (attach_info.GetExecutableFile().GetPath(process_name, 2700 sizeof(process_name))) { 2701 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2702 2703 if (wait_for_launch) { 2704 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2705 if (error.Success()) { 2706 if (m_public_run_lock.TrySetRunning()) { 2707 m_should_detach = true; 2708 const bool restarted = false; 2709 SetPublicState(eStateAttaching, restarted); 2710 // Now attach using these arguments. 2711 error = DoAttachToProcessWithName(process_name, attach_info); 2712 } else { 2713 // This shouldn't happen 2714 error.SetErrorString("failed to acquire process run lock"); 2715 } 2716 2717 if (error.Fail()) { 2718 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2719 SetID(LLDB_INVALID_PROCESS_ID); 2720 if (error.AsCString() == nullptr) 2721 error.SetErrorString("attach failed"); 2722 2723 SetExitStatus(-1, error.AsCString()); 2724 } 2725 } else { 2726 SetNextEventAction(new Process::AttachCompletionHandler( 2727 this, attach_info.GetResumeCount())); 2728 StartPrivateStateThread(); 2729 } 2730 return error; 2731 } 2732 } else { 2733 ProcessInstanceInfoList process_infos; 2734 PlatformSP platform_sp(GetTarget().GetPlatform()); 2735 2736 if (platform_sp) { 2737 ProcessInstanceInfoMatch match_info; 2738 match_info.GetProcessInfo() = attach_info; 2739 match_info.SetNameMatchType(NameMatch::Equals); 2740 platform_sp->FindProcesses(match_info, process_infos); 2741 const uint32_t num_matches = process_infos.size(); 2742 if (num_matches == 1) { 2743 attach_pid = process_infos[0].GetProcessID(); 2744 // Fall through and attach using the above process ID 2745 } else { 2746 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2747 process_name, sizeof(process_name)); 2748 if (num_matches > 1) { 2749 StreamString s; 2750 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2751 for (size_t i = 0; i < num_matches; i++) { 2752 process_infos[i].DumpAsTableRow( 2753 s, platform_sp->GetUserIDResolver(), true, false); 2754 } 2755 error.SetErrorStringWithFormat( 2756 "more than one process named %s:\n%s", process_name, 2757 s.GetData()); 2758 } else 2759 error.SetErrorStringWithFormat( 2760 "could not find a process named %s", process_name); 2761 } 2762 } else { 2763 error.SetErrorString( 2764 "invalid platform, can't find processes by name"); 2765 return error; 2766 } 2767 } 2768 } else { 2769 error.SetErrorString("invalid process name"); 2770 } 2771 } 2772 2773 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2774 error = WillAttachToProcessWithID(attach_pid); 2775 if (error.Success()) { 2776 2777 if (m_public_run_lock.TrySetRunning()) { 2778 // Now attach using these arguments. 2779 m_should_detach = true; 2780 const bool restarted = false; 2781 SetPublicState(eStateAttaching, restarted); 2782 error = DoAttachToProcessWithID(attach_pid, attach_info); 2783 } else { 2784 // This shouldn't happen 2785 error.SetErrorString("failed to acquire process run lock"); 2786 } 2787 2788 if (error.Success()) { 2789 SetNextEventAction(new Process::AttachCompletionHandler( 2790 this, attach_info.GetResumeCount())); 2791 StartPrivateStateThread(); 2792 } else { 2793 if (GetID() != LLDB_INVALID_PROCESS_ID) 2794 SetID(LLDB_INVALID_PROCESS_ID); 2795 2796 const char *error_string = error.AsCString(); 2797 if (error_string == nullptr) 2798 error_string = "attach failed"; 2799 2800 SetExitStatus(-1, error_string); 2801 } 2802 } 2803 } 2804 return error; 2805 } 2806 2807 void Process::CompleteAttach() { 2808 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2809 LIBLLDB_LOG_TARGET)); 2810 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2811 2812 // Let the process subclass figure out at much as it can about the process 2813 // before we go looking for a dynamic loader plug-in. 2814 ArchSpec process_arch; 2815 DidAttach(process_arch); 2816 2817 if (process_arch.IsValid()) { 2818 GetTarget().SetArchitecture(process_arch); 2819 if (log) { 2820 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2821 LLDB_LOGF(log, 2822 "Process::%s replacing process architecture with DidAttach() " 2823 "architecture: %s", 2824 __FUNCTION__, triple_str ? triple_str : "<null>"); 2825 } 2826 } 2827 2828 // We just attached. If we have a platform, ask it for the process 2829 // architecture, and if it isn't the same as the one we've already set, 2830 // switch architectures. 2831 PlatformSP platform_sp(GetTarget().GetPlatform()); 2832 assert(platform_sp); 2833 if (platform_sp) { 2834 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2835 if (target_arch.IsValid() && 2836 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2837 ArchSpec platform_arch; 2838 platform_sp = 2839 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2840 if (platform_sp) { 2841 GetTarget().SetPlatform(platform_sp); 2842 GetTarget().SetArchitecture(platform_arch); 2843 LLDB_LOGF(log, 2844 "Process::%s switching platform to %s and architecture " 2845 "to %s based on info from attach", 2846 __FUNCTION__, platform_sp->GetName().AsCString(""), 2847 platform_arch.GetTriple().getTriple().c_str()); 2848 } 2849 } else if (!process_arch.IsValid()) { 2850 ProcessInstanceInfo process_info; 2851 GetProcessInfo(process_info); 2852 const ArchSpec &process_arch = process_info.GetArchitecture(); 2853 if (process_arch.IsValid() && 2854 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 2855 GetTarget().SetArchitecture(process_arch); 2856 LLDB_LOGF(log, 2857 "Process::%s switching architecture to %s based on info " 2858 "the platform retrieved for pid %" PRIu64, 2859 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2860 GetID()); 2861 } 2862 } 2863 } 2864 2865 // We have completed the attach, now it is time to find the dynamic loader 2866 // plug-in 2867 DynamicLoader *dyld = GetDynamicLoader(); 2868 if (dyld) { 2869 dyld->DidAttach(); 2870 if (log) { 2871 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2872 LLDB_LOGF(log, 2873 "Process::%s after DynamicLoader::DidAttach(), target " 2874 "executable is %s (using %s plugin)", 2875 __FUNCTION__, 2876 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2877 : "<none>", 2878 dyld->GetPluginName().AsCString("<unnamed>")); 2879 } 2880 } 2881 2882 GetJITLoaders().DidAttach(); 2883 2884 SystemRuntime *system_runtime = GetSystemRuntime(); 2885 if (system_runtime) { 2886 system_runtime->DidAttach(); 2887 if (log) { 2888 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2889 LLDB_LOGF(log, 2890 "Process::%s after SystemRuntime::DidAttach(), target " 2891 "executable is %s (using %s plugin)", 2892 __FUNCTION__, 2893 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2894 : "<none>", 2895 system_runtime->GetPluginName().AsCString("<unnamed>")); 2896 } 2897 } 2898 2899 if (!m_os_up) { 2900 LoadOperatingSystemPlugin(false); 2901 if (m_os_up) { 2902 // Somebody might have gotten threads before now, but we need to force the 2903 // update after we've loaded the OperatingSystem plugin or it won't get a 2904 // chance to process the threads. 2905 m_thread_list.Clear(); 2906 UpdateThreadListIfNeeded(); 2907 } 2908 } 2909 // Figure out which one is the executable, and set that in our target: 2910 ModuleSP new_executable_module_sp; 2911 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2912 if (module_sp && module_sp->IsExecutable()) { 2913 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2914 new_executable_module_sp = module_sp; 2915 break; 2916 } 2917 } 2918 if (new_executable_module_sp) { 2919 GetTarget().SetExecutableModule(new_executable_module_sp, 2920 eLoadDependentsNo); 2921 if (log) { 2922 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2923 LLDB_LOGF( 2924 log, 2925 "Process::%s after looping through modules, target executable is %s", 2926 __FUNCTION__, 2927 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2928 : "<none>"); 2929 } 2930 } 2931 } 2932 2933 Status Process::ConnectRemote(llvm::StringRef remote_url) { 2934 m_abi_sp.reset(); 2935 m_process_input_reader.reset(); 2936 2937 // Find the process and its architecture. Make sure it matches the 2938 // architecture of the current Target, and if not adjust it. 2939 2940 Status error(DoConnectRemote(remote_url)); 2941 if (error.Success()) { 2942 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2943 EventSP event_sp; 2944 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 2945 2946 if (state == eStateStopped || state == eStateCrashed) { 2947 // If we attached and actually have a process on the other end, then 2948 // this ended up being the equivalent of an attach. 2949 CompleteAttach(); 2950 2951 // This delays passing the stopped event to listeners till 2952 // CompleteAttach gets a chance to complete... 2953 HandlePrivateEvent(event_sp); 2954 } 2955 } 2956 2957 if (PrivateStateThreadIsValid()) 2958 ResumePrivateStateThread(); 2959 else 2960 StartPrivateStateThread(); 2961 } 2962 return error; 2963 } 2964 2965 Status Process::PrivateResume() { 2966 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2967 LIBLLDB_LOG_STEP)); 2968 LLDB_LOGF(log, 2969 "Process::PrivateResume() m_stop_id = %u, public state: %s " 2970 "private state: %s", 2971 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 2972 StateAsCString(m_private_state.GetValue())); 2973 2974 // If signals handing status changed we might want to update our signal 2975 // filters before resuming. 2976 UpdateAutomaticSignalFiltering(); 2977 2978 Status error(WillResume()); 2979 // Tell the process it is about to resume before the thread list 2980 if (error.Success()) { 2981 // Now let the thread list know we are about to resume so it can let all of 2982 // our threads know that they are about to be resumed. Threads will each be 2983 // called with Thread::WillResume(StateType) where StateType contains the 2984 // state that they are supposed to have when the process is resumed 2985 // (suspended/running/stepping). Threads should also check their resume 2986 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 2987 // start back up with a signal. 2988 if (m_thread_list.WillResume()) { 2989 // Last thing, do the PreResumeActions. 2990 if (!RunPreResumeActions()) { 2991 error.SetErrorString( 2992 "Process::PrivateResume PreResumeActions failed, not resuming."); 2993 } else { 2994 m_mod_id.BumpResumeID(); 2995 error = DoResume(); 2996 if (error.Success()) { 2997 DidResume(); 2998 m_thread_list.DidResume(); 2999 LLDB_LOGF(log, "Process thinks the process has resumed."); 3000 } else { 3001 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3002 return error; 3003 } 3004 } 3005 } else { 3006 // Somebody wanted to run without running (e.g. we were faking a step 3007 // from one frame of a set of inlined frames that share the same PC to 3008 // another.) So generate a continue & a stopped event, and let the world 3009 // handle them. 3010 LLDB_LOGF(log, 3011 "Process::PrivateResume() asked to simulate a start & stop."); 3012 3013 SetPrivateState(eStateRunning); 3014 SetPrivateState(eStateStopped); 3015 } 3016 } else 3017 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3018 error.AsCString("<unknown error>")); 3019 return error; 3020 } 3021 3022 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3023 if (!StateIsRunningState(m_public_state.GetValue())) 3024 return Status("Process is not running."); 3025 3026 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3027 // case it was already set and some thread plan logic calls halt on its own. 3028 m_clear_thread_plans_on_stop |= clear_thread_plans; 3029 3030 ListenerSP halt_listener_sp( 3031 Listener::MakeListener("lldb.process.halt_listener")); 3032 HijackProcessEvents(halt_listener_sp); 3033 3034 EventSP event_sp; 3035 3036 SendAsyncInterrupt(); 3037 3038 if (m_public_state.GetValue() == eStateAttaching) { 3039 // Don't hijack and eat the eStateExited as the code that was doing the 3040 // attach will be waiting for this event... 3041 RestoreProcessEvents(); 3042 SetExitStatus(SIGKILL, "Cancelled async attach."); 3043 Destroy(false); 3044 return Status(); 3045 } 3046 3047 // Wait for 10 second for the process to stop. 3048 StateType state = WaitForProcessToStop( 3049 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3050 RestoreProcessEvents(); 3051 3052 if (state == eStateInvalid || !event_sp) { 3053 // We timed out and didn't get a stop event... 3054 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3055 } 3056 3057 BroadcastEvent(event_sp); 3058 3059 return Status(); 3060 } 3061 3062 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3063 Status error; 3064 3065 // Check both the public & private states here. If we're hung evaluating an 3066 // expression, for instance, then the public state will be stopped, but we 3067 // still need to interrupt. 3068 if (m_public_state.GetValue() == eStateRunning || 3069 m_private_state.GetValue() == eStateRunning) { 3070 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3071 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3072 3073 ListenerSP listener_sp( 3074 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3075 HijackProcessEvents(listener_sp); 3076 3077 SendAsyncInterrupt(); 3078 3079 // Consume the interrupt event. 3080 StateType state = 3081 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3082 3083 RestoreProcessEvents(); 3084 3085 // If the process exited while we were waiting for it to stop, put the 3086 // exited event into the shared pointer passed in and return. Our caller 3087 // doesn't need to do anything else, since they don't have a process 3088 // anymore... 3089 3090 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3091 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3092 __FUNCTION__); 3093 return error; 3094 } else 3095 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3096 3097 if (state != eStateStopped) { 3098 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3099 StateAsCString(state)); 3100 // If we really couldn't stop the process then we should just error out 3101 // here, but if the lower levels just bobbled sending the event and we 3102 // really are stopped, then continue on. 3103 StateType private_state = m_private_state.GetValue(); 3104 if (private_state != eStateStopped) { 3105 return Status( 3106 "Attempt to stop the target in order to detach timed out. " 3107 "State = %s", 3108 StateAsCString(GetState())); 3109 } 3110 } 3111 } 3112 return error; 3113 } 3114 3115 Status Process::Detach(bool keep_stopped) { 3116 EventSP exit_event_sp; 3117 Status error; 3118 m_destroy_in_process = true; 3119 3120 error = WillDetach(); 3121 3122 if (error.Success()) { 3123 if (DetachRequiresHalt()) { 3124 error = StopForDestroyOrDetach(exit_event_sp); 3125 if (!error.Success()) { 3126 m_destroy_in_process = false; 3127 return error; 3128 } else if (exit_event_sp) { 3129 // We shouldn't need to do anything else here. There's no process left 3130 // to detach from... 3131 StopPrivateStateThread(); 3132 m_destroy_in_process = false; 3133 return error; 3134 } 3135 } 3136 3137 m_thread_list.DiscardThreadPlans(); 3138 DisableAllBreakpointSites(); 3139 3140 error = DoDetach(keep_stopped); 3141 if (error.Success()) { 3142 DidDetach(); 3143 StopPrivateStateThread(); 3144 } else { 3145 return error; 3146 } 3147 } 3148 m_destroy_in_process = false; 3149 3150 // If we exited when we were waiting for a process to stop, then forward the 3151 // event here so we don't lose the event 3152 if (exit_event_sp) { 3153 // Directly broadcast our exited event because we shut down our private 3154 // state thread above 3155 BroadcastEvent(exit_event_sp); 3156 } 3157 3158 // If we have been interrupted (to kill us) in the middle of running, we may 3159 // not end up propagating the last events through the event system, in which 3160 // case we might strand the write lock. Unlock it here so when we do to tear 3161 // down the process we don't get an error destroying the lock. 3162 3163 m_public_run_lock.SetStopped(); 3164 return error; 3165 } 3166 3167 Status Process::Destroy(bool force_kill) { 3168 // If we've already called Process::Finalize then there's nothing useful to 3169 // be done here. Finalize has actually called Destroy already. 3170 if (m_finalizing) 3171 return {}; 3172 return DestroyImpl(force_kill); 3173 } 3174 3175 Status Process::DestroyImpl(bool force_kill) { 3176 // Tell ourselves we are in the process of destroying the process, so that we 3177 // don't do any unnecessary work that might hinder the destruction. Remember 3178 // to set this back to false when we are done. That way if the attempt 3179 // failed and the process stays around for some reason it won't be in a 3180 // confused state. 3181 3182 if (force_kill) 3183 m_should_detach = false; 3184 3185 if (GetShouldDetach()) { 3186 // FIXME: This will have to be a process setting: 3187 bool keep_stopped = false; 3188 Detach(keep_stopped); 3189 } 3190 3191 m_destroy_in_process = true; 3192 3193 Status error(WillDestroy()); 3194 if (error.Success()) { 3195 EventSP exit_event_sp; 3196 if (DestroyRequiresHalt()) { 3197 error = StopForDestroyOrDetach(exit_event_sp); 3198 } 3199 3200 if (m_public_state.GetValue() != eStateRunning) { 3201 // Ditch all thread plans, and remove all our breakpoints: in case we 3202 // have to restart the target to kill it, we don't want it hitting a 3203 // breakpoint... Only do this if we've stopped, however, since if we 3204 // didn't manage to halt it above, then we're not going to have much luck 3205 // doing this now. 3206 m_thread_list.DiscardThreadPlans(); 3207 DisableAllBreakpointSites(); 3208 } 3209 3210 error = DoDestroy(); 3211 if (error.Success()) { 3212 DidDestroy(); 3213 StopPrivateStateThread(); 3214 } 3215 m_stdio_communication.StopReadThread(); 3216 m_stdio_communication.Disconnect(); 3217 m_stdin_forward = false; 3218 3219 if (m_process_input_reader) { 3220 m_process_input_reader->SetIsDone(true); 3221 m_process_input_reader->Cancel(); 3222 m_process_input_reader.reset(); 3223 } 3224 3225 // If we exited when we were waiting for a process to stop, then forward 3226 // the event here so we don't lose the event 3227 if (exit_event_sp) { 3228 // Directly broadcast our exited event because we shut down our private 3229 // state thread above 3230 BroadcastEvent(exit_event_sp); 3231 } 3232 3233 // If we have been interrupted (to kill us) in the middle of running, we 3234 // may not end up propagating the last events through the event system, in 3235 // which case we might strand the write lock. Unlock it here so when we do 3236 // to tear down the process we don't get an error destroying the lock. 3237 m_public_run_lock.SetStopped(); 3238 } 3239 3240 m_destroy_in_process = false; 3241 3242 return error; 3243 } 3244 3245 Status Process::Signal(int signal) { 3246 Status error(WillSignal()); 3247 if (error.Success()) { 3248 error = DoSignal(signal); 3249 if (error.Success()) 3250 DidSignal(); 3251 } 3252 return error; 3253 } 3254 3255 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3256 assert(signals_sp && "null signals_sp"); 3257 m_unix_signals_sp = signals_sp; 3258 } 3259 3260 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3261 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3262 return m_unix_signals_sp; 3263 } 3264 3265 lldb::ByteOrder Process::GetByteOrder() const { 3266 return GetTarget().GetArchitecture().GetByteOrder(); 3267 } 3268 3269 uint32_t Process::GetAddressByteSize() const { 3270 return GetTarget().GetArchitecture().GetAddressByteSize(); 3271 } 3272 3273 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3274 const StateType state = 3275 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3276 bool return_value = true; 3277 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3278 LIBLLDB_LOG_PROCESS)); 3279 3280 switch (state) { 3281 case eStateDetached: 3282 case eStateExited: 3283 case eStateUnloaded: 3284 m_stdio_communication.SynchronizeWithReadThread(); 3285 m_stdio_communication.StopReadThread(); 3286 m_stdio_communication.Disconnect(); 3287 m_stdin_forward = false; 3288 3289 LLVM_FALLTHROUGH; 3290 case eStateConnected: 3291 case eStateAttaching: 3292 case eStateLaunching: 3293 // These events indicate changes in the state of the debugging session, 3294 // always report them. 3295 return_value = true; 3296 break; 3297 case eStateInvalid: 3298 // We stopped for no apparent reason, don't report it. 3299 return_value = false; 3300 break; 3301 case eStateRunning: 3302 case eStateStepping: 3303 // If we've started the target running, we handle the cases where we are 3304 // already running and where there is a transition from stopped to running 3305 // differently. running -> running: Automatically suppress extra running 3306 // events stopped -> running: Report except when there is one or more no 3307 // votes 3308 // and no yes votes. 3309 SynchronouslyNotifyStateChanged(state); 3310 if (m_force_next_event_delivery) 3311 return_value = true; 3312 else { 3313 switch (m_last_broadcast_state) { 3314 case eStateRunning: 3315 case eStateStepping: 3316 // We always suppress multiple runnings with no PUBLIC stop in between. 3317 return_value = false; 3318 break; 3319 default: 3320 // TODO: make this work correctly. For now always report 3321 // run if we aren't running so we don't miss any running events. If I 3322 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3323 // and hit the breakpoints on multiple threads, then somehow during the 3324 // stepping over of all breakpoints no run gets reported. 3325 3326 // This is a transition from stop to run. 3327 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3328 case eVoteYes: 3329 case eVoteNoOpinion: 3330 return_value = true; 3331 break; 3332 case eVoteNo: 3333 return_value = false; 3334 break; 3335 } 3336 break; 3337 } 3338 } 3339 break; 3340 case eStateStopped: 3341 case eStateCrashed: 3342 case eStateSuspended: 3343 // We've stopped. First see if we're going to restart the target. If we 3344 // are going to stop, then we always broadcast the event. If we aren't 3345 // going to stop, let the thread plans decide if we're going to report this 3346 // event. If no thread has an opinion, we don't report it. 3347 3348 m_stdio_communication.SynchronizeWithReadThread(); 3349 RefreshStateAfterStop(); 3350 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3351 LLDB_LOGF(log, 3352 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3353 "interrupt, state: %s", 3354 static_cast<void *>(event_ptr), StateAsCString(state)); 3355 // Even though we know we are going to stop, we should let the threads 3356 // have a look at the stop, so they can properly set their state. 3357 m_thread_list.ShouldStop(event_ptr); 3358 return_value = true; 3359 } else { 3360 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3361 bool should_resume = false; 3362 3363 // It makes no sense to ask "ShouldStop" if we've already been 3364 // restarted... Asking the thread list is also not likely to go well, 3365 // since we are running again. So in that case just report the event. 3366 3367 if (!was_restarted) 3368 should_resume = !m_thread_list.ShouldStop(event_ptr); 3369 3370 if (was_restarted || should_resume || m_resume_requested) { 3371 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3372 LLDB_LOGF(log, 3373 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3374 "%s was_restarted: %i stop_vote: %d.", 3375 should_resume, StateAsCString(state), was_restarted, 3376 stop_vote); 3377 3378 switch (stop_vote) { 3379 case eVoteYes: 3380 return_value = true; 3381 break; 3382 case eVoteNoOpinion: 3383 case eVoteNo: 3384 return_value = false; 3385 break; 3386 } 3387 3388 if (!was_restarted) { 3389 LLDB_LOGF(log, 3390 "Process::ShouldBroadcastEvent (%p) Restarting process " 3391 "from state: %s", 3392 static_cast<void *>(event_ptr), StateAsCString(state)); 3393 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3394 PrivateResume(); 3395 } 3396 } else { 3397 return_value = true; 3398 SynchronouslyNotifyStateChanged(state); 3399 } 3400 } 3401 break; 3402 } 3403 3404 // Forcing the next event delivery is a one shot deal. So reset it here. 3405 m_force_next_event_delivery = false; 3406 3407 // We do some coalescing of events (for instance two consecutive running 3408 // events get coalesced.) But we only coalesce against events we actually 3409 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3410 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3411 // done, because the PublicState reflects the last event pulled off the 3412 // queue, and there may be several events stacked up on the queue unserviced. 3413 // So the PublicState may not reflect the last broadcasted event yet. 3414 // m_last_broadcast_state gets updated here. 3415 3416 if (return_value) 3417 m_last_broadcast_state = state; 3418 3419 LLDB_LOGF(log, 3420 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3421 "broadcast state: %s - %s", 3422 static_cast<void *>(event_ptr), StateAsCString(state), 3423 StateAsCString(m_last_broadcast_state), 3424 return_value ? "YES" : "NO"); 3425 return return_value; 3426 } 3427 3428 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3429 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3430 3431 bool already_running = PrivateStateThreadIsValid(); 3432 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3433 already_running ? " already running" 3434 : " starting private state thread"); 3435 3436 if (!is_secondary_thread && already_running) 3437 return true; 3438 3439 // Create a thread that watches our internal state and controls which events 3440 // make it to clients (into the DCProcess event queue). 3441 char thread_name[1024]; 3442 uint32_t max_len = llvm::get_max_thread_name_length(); 3443 if (max_len > 0 && max_len <= 30) { 3444 // On platforms with abbreviated thread name lengths, choose thread names 3445 // that fit within the limit. 3446 if (already_running) 3447 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3448 else 3449 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3450 } else { 3451 if (already_running) 3452 snprintf(thread_name, sizeof(thread_name), 3453 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3454 GetID()); 3455 else 3456 snprintf(thread_name, sizeof(thread_name), 3457 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3458 } 3459 3460 // Create the private state thread, and start it running. 3461 PrivateStateThreadArgs *args_ptr = 3462 new PrivateStateThreadArgs(this, is_secondary_thread); 3463 llvm::Expected<HostThread> private_state_thread = 3464 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3465 (void *)args_ptr, 8 * 1024 * 1024); 3466 if (!private_state_thread) { 3467 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3468 "failed to launch host thread: {}", 3469 llvm::toString(private_state_thread.takeError())); 3470 return false; 3471 } 3472 3473 assert(private_state_thread->IsJoinable()); 3474 m_private_state_thread = *private_state_thread; 3475 ResumePrivateStateThread(); 3476 return true; 3477 } 3478 3479 void Process::PausePrivateStateThread() { 3480 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3481 } 3482 3483 void Process::ResumePrivateStateThread() { 3484 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3485 } 3486 3487 void Process::StopPrivateStateThread() { 3488 if (m_private_state_thread.IsJoinable()) 3489 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3490 else { 3491 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3492 LLDB_LOGF( 3493 log, 3494 "Went to stop the private state thread, but it was already invalid."); 3495 } 3496 } 3497 3498 void Process::ControlPrivateStateThread(uint32_t signal) { 3499 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3500 3501 assert(signal == eBroadcastInternalStateControlStop || 3502 signal == eBroadcastInternalStateControlPause || 3503 signal == eBroadcastInternalStateControlResume); 3504 3505 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3506 3507 // Signal the private state thread 3508 if (m_private_state_thread.IsJoinable()) { 3509 // Broadcast the event. 3510 // It is important to do this outside of the if below, because it's 3511 // possible that the thread state is invalid but that the thread is waiting 3512 // on a control event instead of simply being on its way out (this should 3513 // not happen, but it apparently can). 3514 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3515 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3516 m_private_state_control_broadcaster.BroadcastEvent(signal, 3517 event_receipt_sp); 3518 3519 // Wait for the event receipt or for the private state thread to exit 3520 bool receipt_received = false; 3521 if (PrivateStateThreadIsValid()) { 3522 while (!receipt_received) { 3523 // Check for a receipt for n seconds and then check if the private 3524 // state thread is still around. 3525 receipt_received = 3526 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3527 if (!receipt_received) { 3528 // Check if the private state thread is still around. If it isn't 3529 // then we are done waiting 3530 if (!PrivateStateThreadIsValid()) 3531 break; // Private state thread exited or is exiting, we are done 3532 } 3533 } 3534 } 3535 3536 if (signal == eBroadcastInternalStateControlStop) { 3537 thread_result_t result = {}; 3538 m_private_state_thread.Join(&result); 3539 m_private_state_thread.Reset(); 3540 } 3541 } else { 3542 LLDB_LOGF( 3543 log, 3544 "Private state thread already dead, no need to signal it to stop."); 3545 } 3546 } 3547 3548 void Process::SendAsyncInterrupt() { 3549 if (PrivateStateThreadIsValid()) 3550 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3551 nullptr); 3552 else 3553 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3554 } 3555 3556 void Process::HandlePrivateEvent(EventSP &event_sp) { 3557 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3558 m_resume_requested = false; 3559 3560 const StateType new_state = 3561 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3562 3563 // First check to see if anybody wants a shot at this event: 3564 if (m_next_event_action_up) { 3565 NextEventAction::EventActionResult action_result = 3566 m_next_event_action_up->PerformAction(event_sp); 3567 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3568 3569 switch (action_result) { 3570 case NextEventAction::eEventActionSuccess: 3571 SetNextEventAction(nullptr); 3572 break; 3573 3574 case NextEventAction::eEventActionRetry: 3575 break; 3576 3577 case NextEventAction::eEventActionExit: 3578 // Handle Exiting Here. If we already got an exited event, we should 3579 // just propagate it. Otherwise, swallow this event, and set our state 3580 // to exit so the next event will kill us. 3581 if (new_state != eStateExited) { 3582 // FIXME: should cons up an exited event, and discard this one. 3583 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3584 SetNextEventAction(nullptr); 3585 return; 3586 } 3587 SetNextEventAction(nullptr); 3588 break; 3589 } 3590 } 3591 3592 // See if we should broadcast this state to external clients? 3593 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3594 3595 if (should_broadcast) { 3596 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3597 if (log) { 3598 LLDB_LOGF(log, 3599 "Process::%s (pid = %" PRIu64 3600 ") broadcasting new state %s (old state %s) to %s", 3601 __FUNCTION__, GetID(), StateAsCString(new_state), 3602 StateAsCString(GetState()), 3603 is_hijacked ? "hijacked" : "public"); 3604 } 3605 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3606 if (StateIsRunningState(new_state)) { 3607 // Only push the input handler if we aren't fowarding events, as this 3608 // means the curses GUI is in use... Or don't push it if we are launching 3609 // since it will come up stopped. 3610 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3611 new_state != eStateLaunching && new_state != eStateAttaching) { 3612 PushProcessIOHandler(); 3613 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3614 eBroadcastAlways); 3615 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3616 __FUNCTION__, m_iohandler_sync.GetValue()); 3617 } 3618 } else if (StateIsStoppedState(new_state, false)) { 3619 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3620 // If the lldb_private::Debugger is handling the events, we don't want 3621 // to pop the process IOHandler here, we want to do it when we receive 3622 // the stopped event so we can carefully control when the process 3623 // IOHandler is popped because when we stop we want to display some 3624 // text stating how and why we stopped, then maybe some 3625 // process/thread/frame info, and then we want the "(lldb) " prompt to 3626 // show up. If we pop the process IOHandler here, then we will cause 3627 // the command interpreter to become the top IOHandler after the 3628 // process pops off and it will update its prompt right away... See the 3629 // Debugger.cpp file where it calls the function as 3630 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3631 // Otherwise we end up getting overlapping "(lldb) " prompts and 3632 // garbled output. 3633 // 3634 // If we aren't handling the events in the debugger (which is indicated 3635 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3636 // we are hijacked, then we always pop the process IO handler manually. 3637 // Hijacking happens when the internal process state thread is running 3638 // thread plans, or when commands want to run in synchronous mode and 3639 // they call "process->WaitForProcessToStop()". An example of something 3640 // that will hijack the events is a simple expression: 3641 // 3642 // (lldb) expr (int)puts("hello") 3643 // 3644 // This will cause the internal process state thread to resume and halt 3645 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3646 // events) and we do need the IO handler to be pushed and popped 3647 // correctly. 3648 3649 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3650 PopProcessIOHandler(); 3651 } 3652 } 3653 3654 BroadcastEvent(event_sp); 3655 } else { 3656 if (log) { 3657 LLDB_LOGF( 3658 log, 3659 "Process::%s (pid = %" PRIu64 3660 ") suppressing state %s (old state %s): should_broadcast == false", 3661 __FUNCTION__, GetID(), StateAsCString(new_state), 3662 StateAsCString(GetState())); 3663 } 3664 } 3665 } 3666 3667 Status Process::HaltPrivate() { 3668 EventSP event_sp; 3669 Status error(WillHalt()); 3670 if (error.Fail()) 3671 return error; 3672 3673 // Ask the process subclass to actually halt our process 3674 bool caused_stop; 3675 error = DoHalt(caused_stop); 3676 3677 DidHalt(); 3678 return error; 3679 } 3680 3681 thread_result_t Process::PrivateStateThread(void *arg) { 3682 std::unique_ptr<PrivateStateThreadArgs> args_up( 3683 static_cast<PrivateStateThreadArgs *>(arg)); 3684 thread_result_t result = 3685 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3686 return result; 3687 } 3688 3689 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3690 bool control_only = true; 3691 3692 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3693 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3694 __FUNCTION__, static_cast<void *>(this), GetID()); 3695 3696 bool exit_now = false; 3697 bool interrupt_requested = false; 3698 while (!exit_now) { 3699 EventSP event_sp; 3700 GetEventsPrivate(event_sp, llvm::None, control_only); 3701 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3702 LLDB_LOGF(log, 3703 "Process::%s (arg = %p, pid = %" PRIu64 3704 ") got a control event: %d", 3705 __FUNCTION__, static_cast<void *>(this), GetID(), 3706 event_sp->GetType()); 3707 3708 switch (event_sp->GetType()) { 3709 case eBroadcastInternalStateControlStop: 3710 exit_now = true; 3711 break; // doing any internal state management below 3712 3713 case eBroadcastInternalStateControlPause: 3714 control_only = true; 3715 break; 3716 3717 case eBroadcastInternalStateControlResume: 3718 control_only = false; 3719 break; 3720 } 3721 3722 continue; 3723 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3724 if (m_public_state.GetValue() == eStateAttaching) { 3725 LLDB_LOGF(log, 3726 "Process::%s (arg = %p, pid = %" PRIu64 3727 ") woke up with an interrupt while attaching - " 3728 "forwarding interrupt.", 3729 __FUNCTION__, static_cast<void *>(this), GetID()); 3730 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3731 } else if (StateIsRunningState(m_last_broadcast_state)) { 3732 LLDB_LOGF(log, 3733 "Process::%s (arg = %p, pid = %" PRIu64 3734 ") woke up with an interrupt - Halting.", 3735 __FUNCTION__, static_cast<void *>(this), GetID()); 3736 Status error = HaltPrivate(); 3737 if (error.Fail() && log) 3738 LLDB_LOGF(log, 3739 "Process::%s (arg = %p, pid = %" PRIu64 3740 ") failed to halt the process: %s", 3741 __FUNCTION__, static_cast<void *>(this), GetID(), 3742 error.AsCString()); 3743 // Halt should generate a stopped event. Make a note of the fact that 3744 // we were doing the interrupt, so we can set the interrupted flag 3745 // after we receive the event. We deliberately set this to true even if 3746 // HaltPrivate failed, so that we can interrupt on the next natural 3747 // stop. 3748 interrupt_requested = true; 3749 } else { 3750 // This can happen when someone (e.g. Process::Halt) sees that we are 3751 // running and sends an interrupt request, but the process actually 3752 // stops before we receive it. In that case, we can just ignore the 3753 // request. We use m_last_broadcast_state, because the Stopped event 3754 // may not have been popped of the event queue yet, which is when the 3755 // public state gets updated. 3756 LLDB_LOGF(log, 3757 "Process::%s ignoring interrupt as we have already stopped.", 3758 __FUNCTION__); 3759 } 3760 continue; 3761 } 3762 3763 const StateType internal_state = 3764 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3765 3766 if (internal_state != eStateInvalid) { 3767 if (m_clear_thread_plans_on_stop && 3768 StateIsStoppedState(internal_state, true)) { 3769 m_clear_thread_plans_on_stop = false; 3770 m_thread_list.DiscardThreadPlans(); 3771 } 3772 3773 if (interrupt_requested) { 3774 if (StateIsStoppedState(internal_state, true)) { 3775 // We requested the interrupt, so mark this as such in the stop event 3776 // so clients can tell an interrupted process from a natural stop 3777 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3778 interrupt_requested = false; 3779 } else if (log) { 3780 LLDB_LOGF(log, 3781 "Process::%s interrupt_requested, but a non-stopped " 3782 "state '%s' received.", 3783 __FUNCTION__, StateAsCString(internal_state)); 3784 } 3785 } 3786 3787 HandlePrivateEvent(event_sp); 3788 } 3789 3790 if (internal_state == eStateInvalid || internal_state == eStateExited || 3791 internal_state == eStateDetached) { 3792 LLDB_LOGF(log, 3793 "Process::%s (arg = %p, pid = %" PRIu64 3794 ") about to exit with internal state %s...", 3795 __FUNCTION__, static_cast<void *>(this), GetID(), 3796 StateAsCString(internal_state)); 3797 3798 break; 3799 } 3800 } 3801 3802 // Verify log is still enabled before attempting to write to it... 3803 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3804 __FUNCTION__, static_cast<void *>(this), GetID()); 3805 3806 // If we are a secondary thread, then the primary thread we are working for 3807 // will have already acquired the public_run_lock, and isn't done with what 3808 // it was doing yet, so don't try to change it on the way out. 3809 if (!is_secondary_thread) 3810 m_public_run_lock.SetStopped(); 3811 return {}; 3812 } 3813 3814 // Process Event Data 3815 3816 Process::ProcessEventData::ProcessEventData() 3817 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3818 m_update_state(0), m_interrupted(false) {} 3819 3820 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3821 StateType state) 3822 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3823 m_update_state(0), m_interrupted(false) { 3824 if (process_sp) 3825 m_process_wp = process_sp; 3826 } 3827 3828 Process::ProcessEventData::~ProcessEventData() = default; 3829 3830 ConstString Process::ProcessEventData::GetFlavorString() { 3831 static ConstString g_flavor("Process::ProcessEventData"); 3832 return g_flavor; 3833 } 3834 3835 ConstString Process::ProcessEventData::GetFlavor() const { 3836 return ProcessEventData::GetFlavorString(); 3837 } 3838 3839 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3840 bool &found_valid_stopinfo) { 3841 found_valid_stopinfo = false; 3842 3843 ProcessSP process_sp(m_process_wp.lock()); 3844 if (!process_sp) 3845 return false; 3846 3847 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3848 uint32_t num_threads = curr_thread_list.GetSize(); 3849 uint32_t idx; 3850 3851 // The actions might change one of the thread's stop_info's opinions about 3852 // whether we should stop the process, so we need to query that as we go. 3853 3854 // One other complication here, is that we try to catch any case where the 3855 // target has run (except for expressions) and immediately exit, but if we 3856 // get that wrong (which is possible) then the thread list might have 3857 // changed, and that would cause our iteration here to crash. We could 3858 // make a copy of the thread list, but we'd really like to also know if it 3859 // has changed at all, so we make up a vector of the thread ID's and check 3860 // what we get back against this list & bag out if anything differs. 3861 ThreadList not_suspended_thread_list(process_sp.get()); 3862 std::vector<uint32_t> thread_index_array(num_threads); 3863 uint32_t not_suspended_idx = 0; 3864 for (idx = 0; idx < num_threads; ++idx) { 3865 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3866 3867 /* 3868 Filter out all suspended threads, they could not be the reason 3869 of stop and no need to perform any actions on them. 3870 */ 3871 if (thread_sp->GetResumeState() != eStateSuspended) { 3872 not_suspended_thread_list.AddThread(thread_sp); 3873 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3874 not_suspended_idx++; 3875 } 3876 } 3877 3878 // Use this to track whether we should continue from here. We will only 3879 // continue the target running if no thread says we should stop. Of course 3880 // if some thread's PerformAction actually sets the target running, then it 3881 // doesn't matter what the other threads say... 3882 3883 bool still_should_stop = false; 3884 3885 // Sometimes - for instance if we have a bug in the stub we are talking to, 3886 // we stop but no thread has a valid stop reason. In that case we should 3887 // just stop, because we have no way of telling what the right thing to do 3888 // is, and it's better to let the user decide than continue behind their 3889 // backs. 3890 3891 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3892 curr_thread_list = process_sp->GetThreadList(); 3893 if (curr_thread_list.GetSize() != num_threads) { 3894 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3895 LIBLLDB_LOG_PROCESS)); 3896 LLDB_LOGF( 3897 log, 3898 "Number of threads changed from %u to %u while processing event.", 3899 num_threads, curr_thread_list.GetSize()); 3900 break; 3901 } 3902 3903 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3904 3905 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3906 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3907 LIBLLDB_LOG_PROCESS)); 3908 LLDB_LOGF(log, 3909 "The thread at position %u changed from %u to %u while " 3910 "processing event.", 3911 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3912 break; 3913 } 3914 3915 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3916 if (stop_info_sp && stop_info_sp->IsValid()) { 3917 found_valid_stopinfo = true; 3918 bool this_thread_wants_to_stop; 3919 if (stop_info_sp->GetOverrideShouldStop()) { 3920 this_thread_wants_to_stop = 3921 stop_info_sp->GetOverriddenShouldStopValue(); 3922 } else { 3923 stop_info_sp->PerformAction(event_ptr); 3924 // The stop action might restart the target. If it does, then we 3925 // want to mark that in the event so that whoever is receiving it 3926 // will know to wait for the running event and reflect that state 3927 // appropriately. We also need to stop processing actions, since they 3928 // aren't expecting the target to be running. 3929 3930 // FIXME: we might have run. 3931 if (stop_info_sp->HasTargetRunSinceMe()) { 3932 SetRestarted(true); 3933 break; 3934 } 3935 3936 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 3937 } 3938 3939 if (!still_should_stop) 3940 still_should_stop = this_thread_wants_to_stop; 3941 } 3942 } 3943 3944 return still_should_stop; 3945 } 3946 3947 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3948 ProcessSP process_sp(m_process_wp.lock()); 3949 3950 if (!process_sp) 3951 return; 3952 3953 // This function gets called twice for each event, once when the event gets 3954 // pulled off of the private process event queue, and then any number of 3955 // times, first when it gets pulled off of the public event queue, then other 3956 // times when we're pretending that this is where we stopped at the end of 3957 // expression evaluation. m_update_state is used to distinguish these three 3958 // cases; it is 0 when we're just pulling it off for private handling, and > 3959 // 1 for expression evaluation, and we don't want to do the breakpoint 3960 // command handling then. 3961 if (m_update_state != 1) 3962 return; 3963 3964 process_sp->SetPublicState( 3965 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 3966 3967 if (m_state == eStateStopped && !m_restarted) { 3968 // Let process subclasses know we are about to do a public stop and do 3969 // anything they might need to in order to speed up register and memory 3970 // accesses. 3971 process_sp->WillPublicStop(); 3972 } 3973 3974 // If this is a halt event, even if the halt stopped with some reason other 3975 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 3976 // the halt request came through) don't do the StopInfo actions, as they may 3977 // end up restarting the process. 3978 if (m_interrupted) 3979 return; 3980 3981 // If we're not stopped or have restarted, then skip the StopInfo actions: 3982 if (m_state != eStateStopped || m_restarted) { 3983 return; 3984 } 3985 3986 bool does_anybody_have_an_opinion = false; 3987 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 3988 3989 if (GetRestarted()) { 3990 return; 3991 } 3992 3993 if (!still_should_stop && does_anybody_have_an_opinion) { 3994 // We've been asked to continue, so do that here. 3995 SetRestarted(true); 3996 // Use the public resume method here, since this is just extending a 3997 // public resume. 3998 process_sp->PrivateResume(); 3999 } else { 4000 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4001 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4002 4003 if (!hijacked) { 4004 // If we didn't restart, run the Stop Hooks here. 4005 // Don't do that if state changed events aren't hooked up to the 4006 // public (or SyncResume) broadcasters. StopHooks are just for 4007 // real public stops. They might also restart the target, 4008 // so watch for that. 4009 if (process_sp->GetTarget().RunStopHooks()) 4010 SetRestarted(true); 4011 } 4012 } 4013 } 4014 4015 void Process::ProcessEventData::Dump(Stream *s) const { 4016 ProcessSP process_sp(m_process_wp.lock()); 4017 4018 if (process_sp) 4019 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4020 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4021 else 4022 s->PutCString(" process = NULL, "); 4023 4024 s->Printf("state = %s", StateAsCString(GetState())); 4025 } 4026 4027 const Process::ProcessEventData * 4028 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4029 if (event_ptr) { 4030 const EventData *event_data = event_ptr->GetData(); 4031 if (event_data && 4032 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4033 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4034 } 4035 return nullptr; 4036 } 4037 4038 ProcessSP 4039 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4040 ProcessSP process_sp; 4041 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4042 if (data) 4043 process_sp = data->GetProcessSP(); 4044 return process_sp; 4045 } 4046 4047 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4048 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4049 if (data == nullptr) 4050 return eStateInvalid; 4051 else 4052 return data->GetState(); 4053 } 4054 4055 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4056 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4057 if (data == nullptr) 4058 return false; 4059 else 4060 return data->GetRestarted(); 4061 } 4062 4063 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4064 bool new_value) { 4065 ProcessEventData *data = 4066 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4067 if (data != nullptr) 4068 data->SetRestarted(new_value); 4069 } 4070 4071 size_t 4072 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4073 ProcessEventData *data = 4074 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4075 if (data != nullptr) 4076 return data->GetNumRestartedReasons(); 4077 else 4078 return 0; 4079 } 4080 4081 const char * 4082 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4083 size_t idx) { 4084 ProcessEventData *data = 4085 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4086 if (data != nullptr) 4087 return data->GetRestartedReasonAtIndex(idx); 4088 else 4089 return nullptr; 4090 } 4091 4092 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4093 const char *reason) { 4094 ProcessEventData *data = 4095 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4096 if (data != nullptr) 4097 data->AddRestartedReason(reason); 4098 } 4099 4100 bool Process::ProcessEventData::GetInterruptedFromEvent( 4101 const Event *event_ptr) { 4102 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4103 if (data == nullptr) 4104 return false; 4105 else 4106 return data->GetInterrupted(); 4107 } 4108 4109 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4110 bool new_value) { 4111 ProcessEventData *data = 4112 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4113 if (data != nullptr) 4114 data->SetInterrupted(new_value); 4115 } 4116 4117 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4118 ProcessEventData *data = 4119 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4120 if (data) { 4121 data->SetUpdateStateOnRemoval(); 4122 return true; 4123 } 4124 return false; 4125 } 4126 4127 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4128 4129 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4130 exe_ctx.SetTargetPtr(&GetTarget()); 4131 exe_ctx.SetProcessPtr(this); 4132 exe_ctx.SetThreadPtr(nullptr); 4133 exe_ctx.SetFramePtr(nullptr); 4134 } 4135 4136 // uint32_t 4137 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4138 // std::vector<lldb::pid_t> &pids) 4139 //{ 4140 // return 0; 4141 //} 4142 // 4143 // ArchSpec 4144 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4145 //{ 4146 // return Host::GetArchSpecForExistingProcess (pid); 4147 //} 4148 // 4149 // ArchSpec 4150 // Process::GetArchSpecForExistingProcess (const char *process_name) 4151 //{ 4152 // return Host::GetArchSpecForExistingProcess (process_name); 4153 //} 4154 4155 void Process::AppendSTDOUT(const char *s, size_t len) { 4156 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4157 m_stdout_data.append(s, len); 4158 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4159 new ProcessEventData(shared_from_this(), GetState())); 4160 } 4161 4162 void Process::AppendSTDERR(const char *s, size_t len) { 4163 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4164 m_stderr_data.append(s, len); 4165 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4166 new ProcessEventData(shared_from_this(), GetState())); 4167 } 4168 4169 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4170 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4171 m_profile_data.push_back(one_profile_data); 4172 BroadcastEventIfUnique(eBroadcastBitProfileData, 4173 new ProcessEventData(shared_from_this(), GetState())); 4174 } 4175 4176 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4177 const StructuredDataPluginSP &plugin_sp) { 4178 BroadcastEvent( 4179 eBroadcastBitStructuredData, 4180 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4181 } 4182 4183 StructuredDataPluginSP 4184 Process::GetStructuredDataPlugin(ConstString type_name) const { 4185 auto find_it = m_structured_data_plugin_map.find(type_name); 4186 if (find_it != m_structured_data_plugin_map.end()) 4187 return find_it->second; 4188 else 4189 return StructuredDataPluginSP(); 4190 } 4191 4192 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4193 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4194 if (m_profile_data.empty()) 4195 return 0; 4196 4197 std::string &one_profile_data = m_profile_data.front(); 4198 size_t bytes_available = one_profile_data.size(); 4199 if (bytes_available > 0) { 4200 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4201 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4202 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4203 if (bytes_available > buf_size) { 4204 memcpy(buf, one_profile_data.c_str(), buf_size); 4205 one_profile_data.erase(0, buf_size); 4206 bytes_available = buf_size; 4207 } else { 4208 memcpy(buf, one_profile_data.c_str(), bytes_available); 4209 m_profile_data.erase(m_profile_data.begin()); 4210 } 4211 } 4212 return bytes_available; 4213 } 4214 4215 // Process STDIO 4216 4217 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4218 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4219 size_t bytes_available = m_stdout_data.size(); 4220 if (bytes_available > 0) { 4221 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4222 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4223 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4224 if (bytes_available > buf_size) { 4225 memcpy(buf, m_stdout_data.c_str(), buf_size); 4226 m_stdout_data.erase(0, buf_size); 4227 bytes_available = buf_size; 4228 } else { 4229 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4230 m_stdout_data.clear(); 4231 } 4232 } 4233 return bytes_available; 4234 } 4235 4236 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4237 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4238 size_t bytes_available = m_stderr_data.size(); 4239 if (bytes_available > 0) { 4240 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4241 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4242 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4243 if (bytes_available > buf_size) { 4244 memcpy(buf, m_stderr_data.c_str(), buf_size); 4245 m_stderr_data.erase(0, buf_size); 4246 bytes_available = buf_size; 4247 } else { 4248 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4249 m_stderr_data.clear(); 4250 } 4251 } 4252 return bytes_available; 4253 } 4254 4255 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4256 size_t src_len) { 4257 Process *process = (Process *)baton; 4258 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4259 } 4260 4261 class IOHandlerProcessSTDIO : public IOHandler { 4262 public: 4263 IOHandlerProcessSTDIO(Process *process, int write_fd) 4264 : IOHandler(process->GetTarget().GetDebugger(), 4265 IOHandler::Type::ProcessIO), 4266 m_process(process), 4267 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4268 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4269 m_pipe.CreateNew(false); 4270 } 4271 4272 ~IOHandlerProcessSTDIO() override = default; 4273 4274 // Each IOHandler gets to run until it is done. It should read data from the 4275 // "in" and place output into "out" and "err and return when done. 4276 void Run() override { 4277 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4278 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4279 SetIsDone(true); 4280 return; 4281 } 4282 4283 SetIsDone(false); 4284 const int read_fd = m_read_file.GetDescriptor(); 4285 TerminalState terminal_state; 4286 terminal_state.Save(read_fd, false); 4287 Terminal terminal(read_fd); 4288 terminal.SetCanonical(false); 4289 terminal.SetEcho(false); 4290 // FD_ZERO, FD_SET are not supported on windows 4291 #ifndef _WIN32 4292 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4293 m_is_running = true; 4294 while (!GetIsDone()) { 4295 SelectHelper select_helper; 4296 select_helper.FDSetRead(read_fd); 4297 select_helper.FDSetRead(pipe_read_fd); 4298 Status error = select_helper.Select(); 4299 4300 if (error.Fail()) { 4301 SetIsDone(true); 4302 } else { 4303 char ch = 0; 4304 size_t n; 4305 if (select_helper.FDIsSetRead(read_fd)) { 4306 n = 1; 4307 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4308 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4309 SetIsDone(true); 4310 } else 4311 SetIsDone(true); 4312 } 4313 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4314 size_t bytes_read; 4315 // Consume the interrupt byte 4316 Status error = m_pipe.Read(&ch, 1, bytes_read); 4317 if (error.Success()) { 4318 switch (ch) { 4319 case 'q': 4320 SetIsDone(true); 4321 break; 4322 case 'i': 4323 if (StateIsRunningState(m_process->GetState())) 4324 m_process->SendAsyncInterrupt(); 4325 break; 4326 } 4327 } 4328 } 4329 } 4330 } 4331 m_is_running = false; 4332 #endif 4333 terminal_state.Restore(); 4334 } 4335 4336 void Cancel() override { 4337 SetIsDone(true); 4338 // Only write to our pipe to cancel if we are in 4339 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4340 // is being run from the command interpreter: 4341 // 4342 // (lldb) step_process_thousands_of_times 4343 // 4344 // In this case the command interpreter will be in the middle of handling 4345 // the command and if the process pushes and pops the IOHandler thousands 4346 // of times, we can end up writing to m_pipe without ever consuming the 4347 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4348 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4349 if (m_is_running) { 4350 char ch = 'q'; // Send 'q' for quit 4351 size_t bytes_written = 0; 4352 m_pipe.Write(&ch, 1, bytes_written); 4353 } 4354 } 4355 4356 bool Interrupt() override { 4357 // Do only things that are safe to do in an interrupt context (like in a 4358 // SIGINT handler), like write 1 byte to a file descriptor. This will 4359 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4360 // that was written to the pipe and then call 4361 // m_process->SendAsyncInterrupt() from a much safer location in code. 4362 if (m_active) { 4363 char ch = 'i'; // Send 'i' for interrupt 4364 size_t bytes_written = 0; 4365 Status result = m_pipe.Write(&ch, 1, bytes_written); 4366 return result.Success(); 4367 } else { 4368 // This IOHandler might be pushed on the stack, but not being run 4369 // currently so do the right thing if we aren't actively watching for 4370 // STDIN by sending the interrupt to the process. Otherwise the write to 4371 // the pipe above would do nothing. This can happen when the command 4372 // interpreter is running and gets a "expression ...". It will be on the 4373 // IOHandler thread and sending the input is complete to the delegate 4374 // which will cause the expression to run, which will push the process IO 4375 // handler, but not run it. 4376 4377 if (StateIsRunningState(m_process->GetState())) { 4378 m_process->SendAsyncInterrupt(); 4379 return true; 4380 } 4381 } 4382 return false; 4383 } 4384 4385 void GotEOF() override {} 4386 4387 protected: 4388 Process *m_process; 4389 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4390 NativeFile m_write_file; // Write to this file (usually the master pty for 4391 // getting io to debuggee) 4392 Pipe m_pipe; 4393 std::atomic<bool> m_is_running{false}; 4394 }; 4395 4396 void Process::SetSTDIOFileDescriptor(int fd) { 4397 // First set up the Read Thread for reading/handling process I/O 4398 m_stdio_communication.SetConnection( 4399 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4400 if (m_stdio_communication.IsConnected()) { 4401 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4402 STDIOReadThreadBytesReceived, this); 4403 m_stdio_communication.StartReadThread(); 4404 4405 // Now read thread is set up, set up input reader. 4406 4407 if (!m_process_input_reader) 4408 m_process_input_reader = 4409 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4410 } 4411 } 4412 4413 bool Process::ProcessIOHandlerIsActive() { 4414 IOHandlerSP io_handler_sp(m_process_input_reader); 4415 if (io_handler_sp) 4416 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4417 return false; 4418 } 4419 bool Process::PushProcessIOHandler() { 4420 IOHandlerSP io_handler_sp(m_process_input_reader); 4421 if (io_handler_sp) { 4422 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4423 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4424 4425 io_handler_sp->SetIsDone(false); 4426 // If we evaluate an utility function, then we don't cancel the current 4427 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4428 // existing IOHandler that potentially provides the user interface (e.g. 4429 // the IOHandler for Editline). 4430 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4431 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4432 cancel_top_handler); 4433 return true; 4434 } 4435 return false; 4436 } 4437 4438 bool Process::PopProcessIOHandler() { 4439 IOHandlerSP io_handler_sp(m_process_input_reader); 4440 if (io_handler_sp) 4441 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4442 return false; 4443 } 4444 4445 // The process needs to know about installed plug-ins 4446 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4447 4448 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4449 4450 namespace { 4451 // RestorePlanState is used to record the "is private", "is master" and "okay 4452 // to discard" fields of the plan we are running, and reset it on Clean or on 4453 // destruction. It will only reset the state once, so you can call Clean and 4454 // then monkey with the state and it won't get reset on you again. 4455 4456 class RestorePlanState { 4457 public: 4458 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4459 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4460 if (m_thread_plan_sp) { 4461 m_private = m_thread_plan_sp->GetPrivate(); 4462 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4463 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4464 } 4465 } 4466 4467 ~RestorePlanState() { Clean(); } 4468 4469 void Clean() { 4470 if (!m_already_reset && m_thread_plan_sp) { 4471 m_already_reset = true; 4472 m_thread_plan_sp->SetPrivate(m_private); 4473 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4474 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4475 } 4476 } 4477 4478 private: 4479 lldb::ThreadPlanSP m_thread_plan_sp; 4480 bool m_already_reset; 4481 bool m_private; 4482 bool m_is_master; 4483 bool m_okay_to_discard; 4484 }; 4485 } // anonymous namespace 4486 4487 static microseconds 4488 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4489 const milliseconds default_one_thread_timeout(250); 4490 4491 // If the overall wait is forever, then we don't need to worry about it. 4492 if (!options.GetTimeout()) { 4493 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4494 : default_one_thread_timeout; 4495 } 4496 4497 // If the one thread timeout is set, use it. 4498 if (options.GetOneThreadTimeout()) 4499 return *options.GetOneThreadTimeout(); 4500 4501 // Otherwise use half the total timeout, bounded by the 4502 // default_one_thread_timeout. 4503 return std::min<microseconds>(default_one_thread_timeout, 4504 *options.GetTimeout() / 2); 4505 } 4506 4507 static Timeout<std::micro> 4508 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4509 bool before_first_timeout) { 4510 // If we are going to run all threads the whole time, or if we are only going 4511 // to run one thread, we can just return the overall timeout. 4512 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4513 return options.GetTimeout(); 4514 4515 if (before_first_timeout) 4516 return GetOneThreadExpressionTimeout(options); 4517 4518 if (!options.GetTimeout()) 4519 return llvm::None; 4520 else 4521 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4522 } 4523 4524 static llvm::Optional<ExpressionResults> 4525 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4526 RestorePlanState &restorer, const EventSP &event_sp, 4527 EventSP &event_to_broadcast_sp, 4528 const EvaluateExpressionOptions &options, 4529 bool handle_interrupts) { 4530 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4531 4532 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4533 .GetProcessSP() 4534 ->GetThreadList() 4535 .FindThreadByID(thread_id); 4536 if (!thread_sp) { 4537 LLDB_LOG(log, 4538 "The thread on which we were running the " 4539 "expression: tid = {0}, exited while " 4540 "the expression was running.", 4541 thread_id); 4542 return eExpressionThreadVanished; 4543 } 4544 4545 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4546 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4547 LLDB_LOG(log, "execution completed successfully"); 4548 4549 // Restore the plan state so it will get reported as intended when we are 4550 // done. 4551 restorer.Clean(); 4552 return eExpressionCompleted; 4553 } 4554 4555 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4556 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4557 stop_info_sp->ShouldNotify(event_sp.get())) { 4558 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4559 if (!options.DoesIgnoreBreakpoints()) { 4560 // Restore the plan state and then force Private to false. We are going 4561 // to stop because of this plan so we need it to become a public plan or 4562 // it won't report correctly when we continue to its termination later 4563 // on. 4564 restorer.Clean(); 4565 thread_plan_sp->SetPrivate(false); 4566 event_to_broadcast_sp = event_sp; 4567 } 4568 return eExpressionHitBreakpoint; 4569 } 4570 4571 if (!handle_interrupts && 4572 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4573 return llvm::None; 4574 4575 LLDB_LOG(log, "thread plan did not successfully complete"); 4576 if (!options.DoesUnwindOnError()) 4577 event_to_broadcast_sp = event_sp; 4578 return eExpressionInterrupted; 4579 } 4580 4581 ExpressionResults 4582 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4583 lldb::ThreadPlanSP &thread_plan_sp, 4584 const EvaluateExpressionOptions &options, 4585 DiagnosticManager &diagnostic_manager) { 4586 ExpressionResults return_value = eExpressionSetupError; 4587 4588 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4589 4590 if (!thread_plan_sp) { 4591 diagnostic_manager.PutString( 4592 eDiagnosticSeverityError, 4593 "RunThreadPlan called with empty thread plan."); 4594 return eExpressionSetupError; 4595 } 4596 4597 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4598 diagnostic_manager.PutString( 4599 eDiagnosticSeverityError, 4600 "RunThreadPlan called with an invalid thread plan."); 4601 return eExpressionSetupError; 4602 } 4603 4604 if (exe_ctx.GetProcessPtr() != this) { 4605 diagnostic_manager.PutString(eDiagnosticSeverityError, 4606 "RunThreadPlan called on wrong process."); 4607 return eExpressionSetupError; 4608 } 4609 4610 Thread *thread = exe_ctx.GetThreadPtr(); 4611 if (thread == nullptr) { 4612 diagnostic_manager.PutString(eDiagnosticSeverityError, 4613 "RunThreadPlan called with invalid thread."); 4614 return eExpressionSetupError; 4615 } 4616 4617 // Record the thread's id so we can tell when a thread we were using 4618 // to run the expression exits during the expression evaluation. 4619 lldb::tid_t expr_thread_id = thread->GetID(); 4620 4621 // We need to change some of the thread plan attributes for the thread plan 4622 // runner. This will restore them when we are done: 4623 4624 RestorePlanState thread_plan_restorer(thread_plan_sp); 4625 4626 // We rely on the thread plan we are running returning "PlanCompleted" if 4627 // when it successfully completes. For that to be true the plan can't be 4628 // private - since private plans suppress themselves in the GetCompletedPlan 4629 // call. 4630 4631 thread_plan_sp->SetPrivate(false); 4632 4633 // The plans run with RunThreadPlan also need to be terminal master plans or 4634 // when they are done we will end up asking the plan above us whether we 4635 // should stop, which may give the wrong answer. 4636 4637 thread_plan_sp->SetIsMasterPlan(true); 4638 thread_plan_sp->SetOkayToDiscard(false); 4639 4640 // If we are running some utility expression for LLDB, we now have to mark 4641 // this in the ProcesModID of this process. This RAII takes care of marking 4642 // and reverting the mark it once we are done running the expression. 4643 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4644 4645 if (m_private_state.GetValue() != eStateStopped) { 4646 diagnostic_manager.PutString( 4647 eDiagnosticSeverityError, 4648 "RunThreadPlan called while the private state was not stopped."); 4649 return eExpressionSetupError; 4650 } 4651 4652 // Save the thread & frame from the exe_ctx for restoration after we run 4653 const uint32_t thread_idx_id = thread->GetIndexID(); 4654 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4655 if (!selected_frame_sp) { 4656 thread->SetSelectedFrame(nullptr); 4657 selected_frame_sp = thread->GetSelectedFrame(); 4658 if (!selected_frame_sp) { 4659 diagnostic_manager.Printf( 4660 eDiagnosticSeverityError, 4661 "RunThreadPlan called without a selected frame on thread %d", 4662 thread_idx_id); 4663 return eExpressionSetupError; 4664 } 4665 } 4666 4667 // Make sure the timeout values make sense. The one thread timeout needs to 4668 // be smaller than the overall timeout. 4669 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4670 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4671 diagnostic_manager.PutString(eDiagnosticSeverityError, 4672 "RunThreadPlan called with one thread " 4673 "timeout greater than total timeout"); 4674 return eExpressionSetupError; 4675 } 4676 4677 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4678 4679 // N.B. Running the target may unset the currently selected thread and frame. 4680 // We don't want to do that either, so we should arrange to reset them as 4681 // well. 4682 4683 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4684 4685 uint32_t selected_tid; 4686 StackID selected_stack_id; 4687 if (selected_thread_sp) { 4688 selected_tid = selected_thread_sp->GetIndexID(); 4689 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4690 } else { 4691 selected_tid = LLDB_INVALID_THREAD_ID; 4692 } 4693 4694 HostThread backup_private_state_thread; 4695 lldb::StateType old_state = eStateInvalid; 4696 lldb::ThreadPlanSP stopper_base_plan_sp; 4697 4698 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4699 LIBLLDB_LOG_PROCESS)); 4700 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4701 // Yikes, we are running on the private state thread! So we can't wait for 4702 // public events on this thread, since we are the thread that is generating 4703 // public events. The simplest thing to do is to spin up a temporary thread 4704 // to handle private state thread events while we are fielding public 4705 // events here. 4706 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4707 "another state thread to handle the events."); 4708 4709 backup_private_state_thread = m_private_state_thread; 4710 4711 // One other bit of business: we want to run just this thread plan and 4712 // anything it pushes, and then stop, returning control here. But in the 4713 // normal course of things, the plan above us on the stack would be given a 4714 // shot at the stop event before deciding to stop, and we don't want that. 4715 // So we insert a "stopper" base plan on the stack before the plan we want 4716 // to run. Since base plans always stop and return control to the user, 4717 // that will do just what we want. 4718 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4719 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4720 // Have to make sure our public state is stopped, since otherwise the 4721 // reporting logic below doesn't work correctly. 4722 old_state = m_public_state.GetValue(); 4723 m_public_state.SetValueNoLock(eStateStopped); 4724 4725 // Now spin up the private state thread: 4726 StartPrivateStateThread(true); 4727 } 4728 4729 thread->QueueThreadPlan( 4730 thread_plan_sp, false); // This used to pass "true" does that make sense? 4731 4732 if (options.GetDebug()) { 4733 // In this case, we aren't actually going to run, we just want to stop 4734 // right away. Flush this thread so we will refetch the stacks and show the 4735 // correct backtrace. 4736 // FIXME: To make this prettier we should invent some stop reason for this, 4737 // but that 4738 // is only cosmetic, and this functionality is only of use to lldb 4739 // developers who can live with not pretty... 4740 thread->Flush(); 4741 return eExpressionStoppedForDebug; 4742 } 4743 4744 ListenerSP listener_sp( 4745 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4746 4747 lldb::EventSP event_to_broadcast_sp; 4748 4749 { 4750 // This process event hijacker Hijacks the Public events and its destructor 4751 // makes sure that the process events get restored on exit to the function. 4752 // 4753 // If the event needs to propagate beyond the hijacker (e.g., the process 4754 // exits during execution), then the event is put into 4755 // event_to_broadcast_sp for rebroadcasting. 4756 4757 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4758 4759 if (log) { 4760 StreamString s; 4761 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4762 LLDB_LOGF(log, 4763 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4764 " to run thread plan \"%s\".", 4765 thread_idx_id, expr_thread_id, s.GetData()); 4766 } 4767 4768 bool got_event; 4769 lldb::EventSP event_sp; 4770 lldb::StateType stop_state = lldb::eStateInvalid; 4771 4772 bool before_first_timeout = true; // This is set to false the first time 4773 // that we have to halt the target. 4774 bool do_resume = true; 4775 bool handle_running_event = true; 4776 4777 // This is just for accounting: 4778 uint32_t num_resumes = 0; 4779 4780 // If we are going to run all threads the whole time, or if we are only 4781 // going to run one thread, then we don't need the first timeout. So we 4782 // pretend we are after the first timeout already. 4783 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4784 before_first_timeout = false; 4785 4786 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4787 options.GetStopOthers(), options.GetTryAllThreads(), 4788 before_first_timeout); 4789 4790 // This isn't going to work if there are unfetched events on the queue. Are 4791 // there cases where we might want to run the remaining events here, and 4792 // then try to call the function? That's probably being too tricky for our 4793 // own good. 4794 4795 Event *other_events = listener_sp->PeekAtNextEvent(); 4796 if (other_events != nullptr) { 4797 diagnostic_manager.PutString( 4798 eDiagnosticSeverityError, 4799 "RunThreadPlan called with pending events on the queue."); 4800 return eExpressionSetupError; 4801 } 4802 4803 // We also need to make sure that the next event is delivered. We might be 4804 // calling a function as part of a thread plan, in which case the last 4805 // delivered event could be the running event, and we don't want event 4806 // coalescing to cause us to lose OUR running event... 4807 ForceNextEventDelivery(); 4808 4809 // This while loop must exit out the bottom, there's cleanup that we need to do 4810 // when we are done. So don't call return anywhere within it. 4811 4812 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4813 // It's pretty much impossible to write test cases for things like: One 4814 // thread timeout expires, I go to halt, but the process already stopped on 4815 // the function call stop breakpoint. Turning on this define will make us 4816 // not fetch the first event till after the halt. So if you run a quick 4817 // function, it will have completed, and the completion event will be 4818 // waiting, when you interrupt for halt. The expression evaluation should 4819 // still succeed. 4820 bool miss_first_event = true; 4821 #endif 4822 while (true) { 4823 // We usually want to resume the process if we get to the top of the 4824 // loop. The only exception is if we get two running events with no 4825 // intervening stop, which can happen, we will just wait for then next 4826 // stop event. 4827 LLDB_LOGF(log, 4828 "Top of while loop: do_resume: %i handle_running_event: %i " 4829 "before_first_timeout: %i.", 4830 do_resume, handle_running_event, before_first_timeout); 4831 4832 if (do_resume || handle_running_event) { 4833 // Do the initial resume and wait for the running event before going 4834 // further. 4835 4836 if (do_resume) { 4837 num_resumes++; 4838 Status resume_error = PrivateResume(); 4839 if (!resume_error.Success()) { 4840 diagnostic_manager.Printf( 4841 eDiagnosticSeverityError, 4842 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4843 resume_error.AsCString()); 4844 return_value = eExpressionSetupError; 4845 break; 4846 } 4847 } 4848 4849 got_event = 4850 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4851 if (!got_event) { 4852 LLDB_LOGF(log, 4853 "Process::RunThreadPlan(): didn't get any event after " 4854 "resume %" PRIu32 ", exiting.", 4855 num_resumes); 4856 4857 diagnostic_manager.Printf(eDiagnosticSeverityError, 4858 "didn't get any event after resume %" PRIu32 4859 ", exiting.", 4860 num_resumes); 4861 return_value = eExpressionSetupError; 4862 break; 4863 } 4864 4865 stop_state = 4866 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4867 4868 if (stop_state != eStateRunning) { 4869 bool restarted = false; 4870 4871 if (stop_state == eStateStopped) { 4872 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4873 event_sp.get()); 4874 LLDB_LOGF( 4875 log, 4876 "Process::RunThreadPlan(): didn't get running event after " 4877 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4878 "handle_running_event: %i).", 4879 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4880 handle_running_event); 4881 } 4882 4883 if (restarted) { 4884 // This is probably an overabundance of caution, I don't think I 4885 // should ever get a stopped & restarted event here. But if I do, 4886 // the best thing is to Halt and then get out of here. 4887 const bool clear_thread_plans = false; 4888 const bool use_run_lock = false; 4889 Halt(clear_thread_plans, use_run_lock); 4890 } 4891 4892 diagnostic_manager.Printf( 4893 eDiagnosticSeverityError, 4894 "didn't get running event after initial resume, got %s instead.", 4895 StateAsCString(stop_state)); 4896 return_value = eExpressionSetupError; 4897 break; 4898 } 4899 4900 if (log) 4901 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4902 // We need to call the function synchronously, so spin waiting for it 4903 // to return. If we get interrupted while executing, we're going to 4904 // lose our context, and won't be able to gather the result at this 4905 // point. We set the timeout AFTER the resume, since the resume takes 4906 // some time and we don't want to charge that to the timeout. 4907 } else { 4908 if (log) 4909 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4910 } 4911 4912 do_resume = true; 4913 handle_running_event = true; 4914 4915 // Now wait for the process to stop again: 4916 event_sp.reset(); 4917 4918 Timeout<std::micro> timeout = 4919 GetExpressionTimeout(options, before_first_timeout); 4920 if (log) { 4921 if (timeout) { 4922 auto now = system_clock::now(); 4923 LLDB_LOGF(log, 4924 "Process::RunThreadPlan(): about to wait - now is %s - " 4925 "endpoint is %s", 4926 llvm::to_string(now).c_str(), 4927 llvm::to_string(now + *timeout).c_str()); 4928 } else { 4929 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4930 } 4931 } 4932 4933 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4934 // See comment above... 4935 if (miss_first_event) { 4936 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4937 miss_first_event = false; 4938 got_event = false; 4939 } else 4940 #endif 4941 got_event = listener_sp->GetEvent(event_sp, timeout); 4942 4943 if (got_event) { 4944 if (event_sp) { 4945 bool keep_going = false; 4946 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4947 const bool clear_thread_plans = false; 4948 const bool use_run_lock = false; 4949 Halt(clear_thread_plans, use_run_lock); 4950 return_value = eExpressionInterrupted; 4951 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 4952 "execution halted by user interrupt."); 4953 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 4954 "eBroadcastBitInterrupted, exiting."); 4955 break; 4956 } else { 4957 stop_state = 4958 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4959 LLDB_LOGF(log, 4960 "Process::RunThreadPlan(): in while loop, got event: %s.", 4961 StateAsCString(stop_state)); 4962 4963 switch (stop_state) { 4964 case lldb::eStateStopped: { 4965 if (Process::ProcessEventData::GetRestartedFromEvent( 4966 event_sp.get())) { 4967 // If we were restarted, we just need to go back up to fetch 4968 // another event. 4969 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 4970 "restart, so we'll continue waiting."); 4971 keep_going = true; 4972 do_resume = false; 4973 handle_running_event = true; 4974 } else { 4975 const bool handle_interrupts = true; 4976 return_value = *HandleStoppedEvent( 4977 expr_thread_id, thread_plan_sp, thread_plan_restorer, 4978 event_sp, event_to_broadcast_sp, options, 4979 handle_interrupts); 4980 if (return_value == eExpressionThreadVanished) 4981 keep_going = false; 4982 } 4983 } break; 4984 4985 case lldb::eStateRunning: 4986 // This shouldn't really happen, but sometimes we do get two 4987 // running events without an intervening stop, and in that case 4988 // we should just go back to waiting for the stop. 4989 do_resume = false; 4990 keep_going = true; 4991 handle_running_event = false; 4992 break; 4993 4994 default: 4995 LLDB_LOGF(log, 4996 "Process::RunThreadPlan(): execution stopped with " 4997 "unexpected state: %s.", 4998 StateAsCString(stop_state)); 4999 5000 if (stop_state == eStateExited) 5001 event_to_broadcast_sp = event_sp; 5002 5003 diagnostic_manager.PutString( 5004 eDiagnosticSeverityError, 5005 "execution stopped with unexpected state."); 5006 return_value = eExpressionInterrupted; 5007 break; 5008 } 5009 } 5010 5011 if (keep_going) 5012 continue; 5013 else 5014 break; 5015 } else { 5016 if (log) 5017 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5018 "the event pointer was null. How odd..."); 5019 return_value = eExpressionInterrupted; 5020 break; 5021 } 5022 } else { 5023 // If we didn't get an event that means we've timed out... We will 5024 // interrupt the process here. Depending on what we were asked to do 5025 // we will either exit, or try with all threads running for the same 5026 // timeout. 5027 5028 if (log) { 5029 if (options.GetTryAllThreads()) { 5030 if (before_first_timeout) { 5031 LLDB_LOG(log, 5032 "Running function with one thread timeout timed out."); 5033 } else 5034 LLDB_LOG(log, "Restarting function with all threads enabled and " 5035 "timeout: {0} timed out, abandoning execution.", 5036 timeout); 5037 } else 5038 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5039 "abandoning execution.", 5040 timeout); 5041 } 5042 5043 // It is possible that between the time we issued the Halt, and we get 5044 // around to calling Halt the target could have stopped. That's fine, 5045 // Halt will figure that out and send the appropriate Stopped event. 5046 // BUT it is also possible that we stopped & restarted (e.g. hit a 5047 // signal with "stop" set to false.) In 5048 // that case, we'll get the stopped & restarted event, and we should go 5049 // back to waiting for the Halt's stopped event. That's what this 5050 // while loop does. 5051 5052 bool back_to_top = true; 5053 uint32_t try_halt_again = 0; 5054 bool do_halt = true; 5055 const uint32_t num_retries = 5; 5056 while (try_halt_again < num_retries) { 5057 Status halt_error; 5058 if (do_halt) { 5059 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5060 const bool clear_thread_plans = false; 5061 const bool use_run_lock = false; 5062 Halt(clear_thread_plans, use_run_lock); 5063 } 5064 if (halt_error.Success()) { 5065 if (log) 5066 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5067 5068 got_event = 5069 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5070 5071 if (got_event) { 5072 stop_state = 5073 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5074 if (log) { 5075 LLDB_LOGF(log, 5076 "Process::RunThreadPlan(): Stopped with event: %s", 5077 StateAsCString(stop_state)); 5078 if (stop_state == lldb::eStateStopped && 5079 Process::ProcessEventData::GetInterruptedFromEvent( 5080 event_sp.get())) 5081 log->PutCString(" Event was the Halt interruption event."); 5082 } 5083 5084 if (stop_state == lldb::eStateStopped) { 5085 if (Process::ProcessEventData::GetRestartedFromEvent( 5086 event_sp.get())) { 5087 if (log) 5088 log->PutCString("Process::RunThreadPlan(): Went to halt " 5089 "but got a restarted event, there must be " 5090 "an un-restarted stopped event so try " 5091 "again... " 5092 "Exiting wait loop."); 5093 try_halt_again++; 5094 do_halt = false; 5095 continue; 5096 } 5097 5098 // Between the time we initiated the Halt and the time we 5099 // delivered it, the process could have already finished its 5100 // job. Check that here: 5101 const bool handle_interrupts = false; 5102 if (auto result = HandleStoppedEvent( 5103 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5104 event_sp, event_to_broadcast_sp, options, 5105 handle_interrupts)) { 5106 return_value = *result; 5107 back_to_top = false; 5108 break; 5109 } 5110 5111 if (!options.GetTryAllThreads()) { 5112 if (log) 5113 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5114 "was false, we stopped so now we're " 5115 "quitting."); 5116 return_value = eExpressionInterrupted; 5117 back_to_top = false; 5118 break; 5119 } 5120 5121 if (before_first_timeout) { 5122 // Set all the other threads to run, and return to the top of 5123 // the loop, which will continue; 5124 before_first_timeout = false; 5125 thread_plan_sp->SetStopOthers(false); 5126 if (log) 5127 log->PutCString( 5128 "Process::RunThreadPlan(): about to resume."); 5129 5130 back_to_top = true; 5131 break; 5132 } else { 5133 // Running all threads failed, so return Interrupted. 5134 if (log) 5135 log->PutCString("Process::RunThreadPlan(): running all " 5136 "threads timed out."); 5137 return_value = eExpressionInterrupted; 5138 back_to_top = false; 5139 break; 5140 } 5141 } 5142 } else { 5143 if (log) 5144 log->PutCString("Process::RunThreadPlan(): halt said it " 5145 "succeeded, but I got no event. " 5146 "I'm getting out of here passing Interrupted."); 5147 return_value = eExpressionInterrupted; 5148 back_to_top = false; 5149 break; 5150 } 5151 } else { 5152 try_halt_again++; 5153 continue; 5154 } 5155 } 5156 5157 if (!back_to_top || try_halt_again > num_retries) 5158 break; 5159 else 5160 continue; 5161 } 5162 } // END WAIT LOOP 5163 5164 // If we had to start up a temporary private state thread to run this 5165 // thread plan, shut it down now. 5166 if (backup_private_state_thread.IsJoinable()) { 5167 StopPrivateStateThread(); 5168 Status error; 5169 m_private_state_thread = backup_private_state_thread; 5170 if (stopper_base_plan_sp) { 5171 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5172 } 5173 if (old_state != eStateInvalid) 5174 m_public_state.SetValueNoLock(old_state); 5175 } 5176 5177 // If our thread went away on us, we need to get out of here without 5178 // doing any more work. We don't have to clean up the thread plan, that 5179 // will have happened when the Thread was destroyed. 5180 if (return_value == eExpressionThreadVanished) { 5181 return return_value; 5182 } 5183 5184 if (return_value != eExpressionCompleted && log) { 5185 // Print a backtrace into the log so we can figure out where we are: 5186 StreamString s; 5187 s.PutCString("Thread state after unsuccessful completion: \n"); 5188 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5189 log->PutString(s.GetString()); 5190 } 5191 // Restore the thread state if we are going to discard the plan execution. 5192 // There are three cases where this could happen: 1) The execution 5193 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5194 // was true 3) We got some other error, and discard_on_error was true 5195 bool should_unwind = (return_value == eExpressionInterrupted && 5196 options.DoesUnwindOnError()) || 5197 (return_value == eExpressionHitBreakpoint && 5198 options.DoesIgnoreBreakpoints()); 5199 5200 if (return_value == eExpressionCompleted || should_unwind) { 5201 thread_plan_sp->RestoreThreadState(); 5202 } 5203 5204 // Now do some processing on the results of the run: 5205 if (return_value == eExpressionInterrupted || 5206 return_value == eExpressionHitBreakpoint) { 5207 if (log) { 5208 StreamString s; 5209 if (event_sp) 5210 event_sp->Dump(&s); 5211 else { 5212 log->PutCString("Process::RunThreadPlan(): Stop event that " 5213 "interrupted us is NULL."); 5214 } 5215 5216 StreamString ts; 5217 5218 const char *event_explanation = nullptr; 5219 5220 do { 5221 if (!event_sp) { 5222 event_explanation = "<no event>"; 5223 break; 5224 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5225 event_explanation = "<user interrupt>"; 5226 break; 5227 } else { 5228 const Process::ProcessEventData *event_data = 5229 Process::ProcessEventData::GetEventDataFromEvent( 5230 event_sp.get()); 5231 5232 if (!event_data) { 5233 event_explanation = "<no event data>"; 5234 break; 5235 } 5236 5237 Process *process = event_data->GetProcessSP().get(); 5238 5239 if (!process) { 5240 event_explanation = "<no process>"; 5241 break; 5242 } 5243 5244 ThreadList &thread_list = process->GetThreadList(); 5245 5246 uint32_t num_threads = thread_list.GetSize(); 5247 uint32_t thread_index; 5248 5249 ts.Printf("<%u threads> ", num_threads); 5250 5251 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5252 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5253 5254 if (!thread) { 5255 ts.Printf("<?> "); 5256 continue; 5257 } 5258 5259 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5260 RegisterContext *register_context = 5261 thread->GetRegisterContext().get(); 5262 5263 if (register_context) 5264 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5265 else 5266 ts.Printf("[ip unknown] "); 5267 5268 // Show the private stop info here, the public stop info will be 5269 // from the last natural stop. 5270 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5271 if (stop_info_sp) { 5272 const char *stop_desc = stop_info_sp->GetDescription(); 5273 if (stop_desc) 5274 ts.PutCString(stop_desc); 5275 } 5276 ts.Printf(">"); 5277 } 5278 5279 event_explanation = ts.GetData(); 5280 } 5281 } while (false); 5282 5283 if (event_explanation) 5284 LLDB_LOGF(log, 5285 "Process::RunThreadPlan(): execution interrupted: %s %s", 5286 s.GetData(), event_explanation); 5287 else 5288 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5289 s.GetData()); 5290 } 5291 5292 if (should_unwind) { 5293 LLDB_LOGF(log, 5294 "Process::RunThreadPlan: ExecutionInterrupted - " 5295 "discarding thread plans up to %p.", 5296 static_cast<void *>(thread_plan_sp.get())); 5297 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5298 } else { 5299 LLDB_LOGF(log, 5300 "Process::RunThreadPlan: ExecutionInterrupted - for " 5301 "plan: %p not discarding.", 5302 static_cast<void *>(thread_plan_sp.get())); 5303 } 5304 } else if (return_value == eExpressionSetupError) { 5305 if (log) 5306 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5307 5308 if (options.DoesUnwindOnError()) { 5309 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5310 } 5311 } else { 5312 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5313 if (log) 5314 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5315 return_value = eExpressionCompleted; 5316 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5317 if (log) 5318 log->PutCString( 5319 "Process::RunThreadPlan(): thread plan was discarded"); 5320 return_value = eExpressionDiscarded; 5321 } else { 5322 if (log) 5323 log->PutCString( 5324 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5325 if (options.DoesUnwindOnError() && thread_plan_sp) { 5326 if (log) 5327 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5328 "'cause unwind_on_error is set."); 5329 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5330 } 5331 } 5332 } 5333 5334 // Thread we ran the function in may have gone away because we ran the 5335 // target Check that it's still there, and if it is put it back in the 5336 // context. Also restore the frame in the context if it is still present. 5337 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5338 if (thread) { 5339 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5340 } 5341 5342 // Also restore the current process'es selected frame & thread, since this 5343 // function calling may be done behind the user's back. 5344 5345 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5346 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5347 selected_stack_id.IsValid()) { 5348 // We were able to restore the selected thread, now restore the frame: 5349 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5350 StackFrameSP old_frame_sp = 5351 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5352 selected_stack_id); 5353 if (old_frame_sp) 5354 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5355 old_frame_sp.get()); 5356 } 5357 } 5358 } 5359 5360 // If the process exited during the run of the thread plan, notify everyone. 5361 5362 if (event_to_broadcast_sp) { 5363 if (log) 5364 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5365 BroadcastEvent(event_to_broadcast_sp); 5366 } 5367 5368 return return_value; 5369 } 5370 5371 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5372 const char *result_name = "<unknown>"; 5373 5374 switch (result) { 5375 case eExpressionCompleted: 5376 result_name = "eExpressionCompleted"; 5377 break; 5378 case eExpressionDiscarded: 5379 result_name = "eExpressionDiscarded"; 5380 break; 5381 case eExpressionInterrupted: 5382 result_name = "eExpressionInterrupted"; 5383 break; 5384 case eExpressionHitBreakpoint: 5385 result_name = "eExpressionHitBreakpoint"; 5386 break; 5387 case eExpressionSetupError: 5388 result_name = "eExpressionSetupError"; 5389 break; 5390 case eExpressionParseError: 5391 result_name = "eExpressionParseError"; 5392 break; 5393 case eExpressionResultUnavailable: 5394 result_name = "eExpressionResultUnavailable"; 5395 break; 5396 case eExpressionTimedOut: 5397 result_name = "eExpressionTimedOut"; 5398 break; 5399 case eExpressionStoppedForDebug: 5400 result_name = "eExpressionStoppedForDebug"; 5401 break; 5402 case eExpressionThreadVanished: 5403 result_name = "eExpressionThreadVanished"; 5404 } 5405 return result_name; 5406 } 5407 5408 void Process::GetStatus(Stream &strm) { 5409 const StateType state = GetState(); 5410 if (StateIsStoppedState(state, false)) { 5411 if (state == eStateExited) { 5412 int exit_status = GetExitStatus(); 5413 const char *exit_description = GetExitDescription(); 5414 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5415 GetID(), exit_status, exit_status, 5416 exit_description ? exit_description : ""); 5417 } else { 5418 if (state == eStateConnected) 5419 strm.Printf("Connected to remote target.\n"); 5420 else 5421 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5422 } 5423 } else { 5424 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5425 } 5426 } 5427 5428 size_t Process::GetThreadStatus(Stream &strm, 5429 bool only_threads_with_stop_reason, 5430 uint32_t start_frame, uint32_t num_frames, 5431 uint32_t num_frames_with_source, 5432 bool stop_format) { 5433 size_t num_thread_infos_dumped = 0; 5434 5435 // You can't hold the thread list lock while calling Thread::GetStatus. That 5436 // very well might run code (e.g. if we need it to get return values or 5437 // arguments.) For that to work the process has to be able to acquire it. 5438 // So instead copy the thread ID's, and look them up one by one: 5439 5440 uint32_t num_threads; 5441 std::vector<lldb::tid_t> thread_id_array; 5442 // Scope for thread list locker; 5443 { 5444 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5445 ThreadList &curr_thread_list = GetThreadList(); 5446 num_threads = curr_thread_list.GetSize(); 5447 uint32_t idx; 5448 thread_id_array.resize(num_threads); 5449 for (idx = 0; idx < num_threads; ++idx) 5450 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5451 } 5452 5453 for (uint32_t i = 0; i < num_threads; i++) { 5454 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5455 if (thread_sp) { 5456 if (only_threads_with_stop_reason) { 5457 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5458 if (!stop_info_sp || !stop_info_sp->IsValid()) 5459 continue; 5460 } 5461 thread_sp->GetStatus(strm, start_frame, num_frames, 5462 num_frames_with_source, 5463 stop_format); 5464 ++num_thread_infos_dumped; 5465 } else { 5466 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5467 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5468 " vanished while running Thread::GetStatus."); 5469 } 5470 } 5471 return num_thread_infos_dumped; 5472 } 5473 5474 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5475 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5476 } 5477 5478 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5479 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5480 region.GetByteSize()); 5481 } 5482 5483 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5484 void *baton) { 5485 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5486 } 5487 5488 bool Process::RunPreResumeActions() { 5489 bool result = true; 5490 while (!m_pre_resume_actions.empty()) { 5491 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5492 m_pre_resume_actions.pop_back(); 5493 bool this_result = action.callback(action.baton); 5494 if (result) 5495 result = this_result; 5496 } 5497 return result; 5498 } 5499 5500 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5501 5502 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5503 { 5504 PreResumeCallbackAndBaton element(callback, baton); 5505 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5506 if (found_iter != m_pre_resume_actions.end()) 5507 { 5508 m_pre_resume_actions.erase(found_iter); 5509 } 5510 } 5511 5512 ProcessRunLock &Process::GetRunLock() { 5513 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5514 return m_private_run_lock; 5515 else 5516 return m_public_run_lock; 5517 } 5518 5519 bool Process::CurrentThreadIsPrivateStateThread() 5520 { 5521 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5522 } 5523 5524 5525 void Process::Flush() { 5526 m_thread_list.Flush(); 5527 m_extended_thread_list.Flush(); 5528 m_extended_thread_stop_id = 0; 5529 m_queue_list.Clear(); 5530 m_queue_list_stop_id = 0; 5531 } 5532 5533 void Process::DidExec() { 5534 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5535 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5536 5537 Target &target = GetTarget(); 5538 target.CleanupProcess(); 5539 target.ClearModules(false); 5540 m_dynamic_checkers_up.reset(); 5541 m_abi_sp.reset(); 5542 m_system_runtime_up.reset(); 5543 m_os_up.reset(); 5544 m_dyld_up.reset(); 5545 m_jit_loaders_up.reset(); 5546 m_image_tokens.clear(); 5547 m_allocated_memory_cache.Clear(); 5548 { 5549 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5550 m_language_runtimes.clear(); 5551 } 5552 m_instrumentation_runtimes.clear(); 5553 m_thread_list.DiscardThreadPlans(); 5554 m_memory_cache.Clear(true); 5555 DoDidExec(); 5556 CompleteAttach(); 5557 // Flush the process (threads and all stack frames) after running 5558 // CompleteAttach() in case the dynamic loader loaded things in new 5559 // locations. 5560 Flush(); 5561 5562 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5563 // let the target know so it can do any cleanup it needs to. 5564 target.DidExec(); 5565 } 5566 5567 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5568 if (address == nullptr) { 5569 error.SetErrorString("Invalid address argument"); 5570 return LLDB_INVALID_ADDRESS; 5571 } 5572 5573 addr_t function_addr = LLDB_INVALID_ADDRESS; 5574 5575 addr_t addr = address->GetLoadAddress(&GetTarget()); 5576 std::map<addr_t, addr_t>::const_iterator iter = 5577 m_resolved_indirect_addresses.find(addr); 5578 if (iter != m_resolved_indirect_addresses.end()) { 5579 function_addr = (*iter).second; 5580 } else { 5581 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5582 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5583 error.SetErrorStringWithFormat( 5584 "Unable to call resolver for indirect function %s", 5585 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5586 function_addr = LLDB_INVALID_ADDRESS; 5587 } else { 5588 m_resolved_indirect_addresses.insert( 5589 std::pair<addr_t, addr_t>(addr, function_addr)); 5590 } 5591 } 5592 return function_addr; 5593 } 5594 5595 void Process::ModulesDidLoad(ModuleList &module_list) { 5596 // Inform the system runtime of the modified modules. 5597 SystemRuntime *sys_runtime = GetSystemRuntime(); 5598 if (sys_runtime) 5599 sys_runtime->ModulesDidLoad(module_list); 5600 5601 GetJITLoaders().ModulesDidLoad(module_list); 5602 5603 // Give the instrumentation runtimes a chance to be created before informing 5604 // them of the modified modules. 5605 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5606 m_instrumentation_runtimes); 5607 for (auto &runtime : m_instrumentation_runtimes) 5608 runtime.second->ModulesDidLoad(module_list); 5609 5610 // Give the language runtimes a chance to be created before informing them of 5611 // the modified modules. 5612 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5613 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5614 runtime->ModulesDidLoad(module_list); 5615 } 5616 5617 // If we don't have an operating system plug-in, try to load one since 5618 // loading shared libraries might cause a new one to try and load 5619 if (!m_os_up) 5620 LoadOperatingSystemPlugin(false); 5621 5622 // Inform the structured-data plugins of the modified modules. 5623 for (auto pair : m_structured_data_plugin_map) { 5624 if (pair.second) 5625 pair.second->ModulesDidLoad(*this, module_list); 5626 } 5627 } 5628 5629 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5630 const char *fmt, ...) { 5631 bool print_warning = true; 5632 5633 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5634 if (!stream_sp) 5635 return; 5636 5637 if (repeat_key != nullptr) { 5638 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5639 if (it == m_warnings_issued.end()) { 5640 m_warnings_issued[warning_type] = WarningsPointerSet(); 5641 m_warnings_issued[warning_type].insert(repeat_key); 5642 } else { 5643 if (it->second.find(repeat_key) != it->second.end()) { 5644 print_warning = false; 5645 } else { 5646 it->second.insert(repeat_key); 5647 } 5648 } 5649 } 5650 5651 if (print_warning) { 5652 va_list args; 5653 va_start(args, fmt); 5654 stream_sp->PrintfVarArg(fmt, args); 5655 va_end(args); 5656 } 5657 } 5658 5659 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5660 if (!GetWarningsOptimization()) 5661 return; 5662 if (!sc.module_sp) 5663 return; 5664 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5665 sc.function->GetIsOptimized()) { 5666 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5667 "%s was compiled with optimization - stepping may behave " 5668 "oddly; variables may not be available.\n", 5669 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5670 } 5671 } 5672 5673 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5674 if (!GetWarningsUnsupportedLanguage()) 5675 return; 5676 if (!sc.module_sp) 5677 return; 5678 LanguageType language = sc.GetLanguage(); 5679 if (language == eLanguageTypeUnknown) 5680 return; 5681 auto type_system_or_err = sc.module_sp->GetTypeSystemForLanguage(language); 5682 if (auto err = type_system_or_err.takeError()) { 5683 llvm::consumeError(std::move(err)); 5684 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5685 sc.module_sp.get(), 5686 "This version of LLDB has no plugin for the %s language. " 5687 "Inspection of frame variables will be limited.\n", 5688 Language::GetNameForLanguageType(language)); 5689 } 5690 } 5691 5692 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5693 info.Clear(); 5694 5695 PlatformSP platform_sp = GetTarget().GetPlatform(); 5696 if (!platform_sp) 5697 return false; 5698 5699 return platform_sp->GetProcessInfo(GetID(), info); 5700 } 5701 5702 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5703 ThreadCollectionSP threads; 5704 5705 const MemoryHistorySP &memory_history = 5706 MemoryHistory::FindPlugin(shared_from_this()); 5707 5708 if (!memory_history) { 5709 return threads; 5710 } 5711 5712 threads = std::make_shared<ThreadCollection>( 5713 memory_history->GetHistoryThreads(addr)); 5714 5715 return threads; 5716 } 5717 5718 InstrumentationRuntimeSP 5719 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5720 InstrumentationRuntimeCollection::iterator pos; 5721 pos = m_instrumentation_runtimes.find(type); 5722 if (pos == m_instrumentation_runtimes.end()) { 5723 return InstrumentationRuntimeSP(); 5724 } else 5725 return (*pos).second; 5726 } 5727 5728 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5729 const ArchSpec &arch, ModuleSpec &module_spec) { 5730 module_spec.Clear(); 5731 return false; 5732 } 5733 5734 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5735 m_image_tokens.push_back(image_ptr); 5736 return m_image_tokens.size() - 1; 5737 } 5738 5739 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5740 if (token < m_image_tokens.size()) 5741 return m_image_tokens[token]; 5742 return LLDB_INVALID_ADDRESS; 5743 } 5744 5745 void Process::ResetImageToken(size_t token) { 5746 if (token < m_image_tokens.size()) 5747 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5748 } 5749 5750 Address 5751 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5752 AddressRange range_bounds) { 5753 Target &target = GetTarget(); 5754 DisassemblerSP disassembler_sp; 5755 InstructionList *insn_list = nullptr; 5756 5757 Address retval = default_stop_addr; 5758 5759 if (!target.GetUseFastStepping()) 5760 return retval; 5761 if (!default_stop_addr.IsValid()) 5762 return retval; 5763 5764 const char *plugin_name = nullptr; 5765 const char *flavor = nullptr; 5766 const bool prefer_file_cache = true; 5767 disassembler_sp = Disassembler::DisassembleRange( 5768 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds, 5769 prefer_file_cache); 5770 if (disassembler_sp) 5771 insn_list = &disassembler_sp->GetInstructionList(); 5772 5773 if (insn_list == nullptr) { 5774 return retval; 5775 } 5776 5777 size_t insn_offset = 5778 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5779 if (insn_offset == UINT32_MAX) { 5780 return retval; 5781 } 5782 5783 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5784 insn_offset, false /* ignore_calls*/, nullptr); 5785 if (branch_index == UINT32_MAX) { 5786 return retval; 5787 } 5788 5789 if (branch_index > insn_offset) { 5790 Address next_branch_insn_address = 5791 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5792 if (next_branch_insn_address.IsValid() && 5793 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5794 retval = next_branch_insn_address; 5795 } 5796 } 5797 5798 return retval; 5799 } 5800 5801 Status 5802 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5803 5804 Status error; 5805 5806 lldb::addr_t range_end = 0; 5807 5808 region_list.clear(); 5809 do { 5810 lldb_private::MemoryRegionInfo region_info; 5811 error = GetMemoryRegionInfo(range_end, region_info); 5812 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5813 if (error.Fail()) { 5814 region_list.clear(); 5815 break; 5816 } 5817 5818 range_end = region_info.GetRange().GetRangeEnd(); 5819 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5820 region_list.push_back(std::move(region_info)); 5821 } 5822 } while (range_end != LLDB_INVALID_ADDRESS); 5823 5824 return error; 5825 } 5826 5827 Status 5828 Process::ConfigureStructuredData(ConstString type_name, 5829 const StructuredData::ObjectSP &config_sp) { 5830 // If you get this, the Process-derived class needs to implement a method to 5831 // enable an already-reported asynchronous structured data feature. See 5832 // ProcessGDBRemote for an example implementation over gdb-remote. 5833 return Status("unimplemented"); 5834 } 5835 5836 void Process::MapSupportedStructuredDataPlugins( 5837 const StructuredData::Array &supported_type_names) { 5838 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5839 5840 // Bail out early if there are no type names to map. 5841 if (supported_type_names.GetSize() == 0) { 5842 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5843 __FUNCTION__); 5844 return; 5845 } 5846 5847 // Convert StructuredData type names to ConstString instances. 5848 std::set<ConstString> const_type_names; 5849 5850 LLDB_LOGF(log, 5851 "Process::%s(): the process supports the following async " 5852 "structured data types:", 5853 __FUNCTION__); 5854 5855 supported_type_names.ForEach( 5856 [&const_type_names, &log](StructuredData::Object *object) { 5857 if (!object) { 5858 // Invalid - shouldn't be null objects in the array. 5859 return false; 5860 } 5861 5862 auto type_name = object->GetAsString(); 5863 if (!type_name) { 5864 // Invalid format - all type names should be strings. 5865 return false; 5866 } 5867 5868 const_type_names.insert(ConstString(type_name->GetValue())); 5869 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5870 return true; 5871 }); 5872 5873 // For each StructuredDataPlugin, if the plugin handles any of the types in 5874 // the supported_type_names, map that type name to that plugin. Stop when 5875 // we've consumed all the type names. 5876 // FIXME: should we return an error if there are type names nobody 5877 // supports? 5878 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5879 auto create_instance = 5880 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5881 plugin_index); 5882 if (!create_instance) 5883 break; 5884 5885 // Create the plugin. 5886 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5887 if (!plugin_sp) { 5888 // This plugin doesn't think it can work with the process. Move on to the 5889 // next. 5890 continue; 5891 } 5892 5893 // For any of the remaining type names, map any that this plugin supports. 5894 std::vector<ConstString> names_to_remove; 5895 for (auto &type_name : const_type_names) { 5896 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5897 m_structured_data_plugin_map.insert( 5898 std::make_pair(type_name, plugin_sp)); 5899 names_to_remove.push_back(type_name); 5900 LLDB_LOGF(log, 5901 "Process::%s(): using plugin %s for type name " 5902 "%s", 5903 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5904 type_name.GetCString()); 5905 } 5906 } 5907 5908 // Remove the type names that were consumed by this plugin. 5909 for (auto &type_name : names_to_remove) 5910 const_type_names.erase(type_name); 5911 } 5912 } 5913 5914 bool Process::RouteAsyncStructuredData( 5915 const StructuredData::ObjectSP object_sp) { 5916 // Nothing to do if there's no data. 5917 if (!object_sp) 5918 return false; 5919 5920 // The contract is this must be a dictionary, so we can look up the routing 5921 // key via the top-level 'type' string value within the dictionary. 5922 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5923 if (!dictionary) 5924 return false; 5925 5926 // Grab the async structured type name (i.e. the feature/plugin name). 5927 ConstString type_name; 5928 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5929 return false; 5930 5931 // Check if there's a plugin registered for this type name. 5932 auto find_it = m_structured_data_plugin_map.find(type_name); 5933 if (find_it == m_structured_data_plugin_map.end()) { 5934 // We don't have a mapping for this structured data type. 5935 return false; 5936 } 5937 5938 // Route the structured data to the plugin. 5939 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5940 return true; 5941 } 5942 5943 Status Process::UpdateAutomaticSignalFiltering() { 5944 // Default implementation does nothign. 5945 // No automatic signal filtering to speak of. 5946 return Status(); 5947 } 5948 5949 UtilityFunction *Process::GetLoadImageUtilityFunction( 5950 Platform *platform, 5951 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 5952 if (platform != GetTarget().GetPlatform().get()) 5953 return nullptr; 5954 llvm::call_once(m_dlopen_utility_func_flag_once, 5955 [&] { m_dlopen_utility_func_up = factory(); }); 5956 return m_dlopen_utility_func_up.get(); 5957 } 5958 5959 llvm::Expected<TraceTypeInfo> Process::GetSupportedTraceType() { 5960 if (!IsLiveDebugSession()) 5961 return llvm::createStringError(llvm::inconvertibleErrorCode(), 5962 "Can't trace a non-live process."); 5963 return llvm::make_error<UnimplementedError>(); 5964 } 5965 5966 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 5967 addr_t &returned_func, 5968 bool trap_exceptions) { 5969 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 5970 if (thread == nullptr || address == nullptr) 5971 return false; 5972 5973 EvaluateExpressionOptions options; 5974 options.SetStopOthers(true); 5975 options.SetUnwindOnError(true); 5976 options.SetIgnoreBreakpoints(true); 5977 options.SetTryAllThreads(true); 5978 options.SetDebug(false); 5979 options.SetTimeout(GetUtilityExpressionTimeout()); 5980 options.SetTrapExceptions(trap_exceptions); 5981 5982 auto type_system_or_err = 5983 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 5984 if (!type_system_or_err) { 5985 llvm::consumeError(type_system_or_err.takeError()); 5986 return false; 5987 } 5988 CompilerType void_ptr_type = 5989 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 5990 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 5991 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 5992 if (call_plan_sp) { 5993 DiagnosticManager diagnostics; 5994 5995 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 5996 if (frame) { 5997 ExecutionContext exe_ctx; 5998 frame->CalculateExecutionContext(exe_ctx); 5999 ExpressionResults result = 6000 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6001 if (result == eExpressionCompleted) { 6002 returned_func = 6003 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6004 LLDB_INVALID_ADDRESS); 6005 6006 if (GetAddressByteSize() == 4) { 6007 if (returned_func == UINT32_MAX) 6008 return false; 6009 } else if (GetAddressByteSize() == 8) { 6010 if (returned_func == UINT64_MAX) 6011 return false; 6012 } 6013 return true; 6014 } 6015 } 6016 } 6017 6018 return false; 6019 } 6020