1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include <atomic> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/IRDynamicChecks.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/CPPLanguageRuntime.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/ObjCLanguageRuntime.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/UnixSignals.h" 64 #include "lldb/Utility/Event.h" 65 #include "lldb/Utility/Log.h" 66 #include "lldb/Utility/NameMatches.h" 67 #include "lldb/Utility/SelectHelper.h" 68 #include "lldb/Utility/State.h" 69 70 using namespace lldb; 71 using namespace lldb_private; 72 using namespace std::chrono; 73 74 // Comment out line below to disable memory caching, overriding the process 75 // setting target.process.disable-memory-cache 76 #define ENABLE_MEMORY_CACHING 77 78 #ifdef ENABLE_MEMORY_CACHING 79 #define DISABLE_MEM_CACHE_DEFAULT false 80 #else 81 #define DISABLE_MEM_CACHE_DEFAULT true 82 #endif 83 84 class ProcessOptionValueProperties : public OptionValueProperties { 85 public: 86 ProcessOptionValueProperties(const ConstString &name) 87 : OptionValueProperties(name) {} 88 89 // This constructor is used when creating ProcessOptionValueProperties when 90 // it is part of a new lldb_private::Process instance. It will copy all 91 // current global property values as needed 92 ProcessOptionValueProperties(ProcessProperties *global_properties) 93 : OptionValueProperties(*global_properties->GetValueProperties()) {} 94 95 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 96 bool will_modify, 97 uint32_t idx) const override { 98 // When getting the value for a key from the process options, we will 99 // always try and grab the setting from the current process if there is 100 // one. Else we just use the one from this instance. 101 if (exe_ctx) { 102 Process *process = exe_ctx->GetProcessPtr(); 103 if (process) { 104 ProcessOptionValueProperties *instance_properties = 105 static_cast<ProcessOptionValueProperties *>( 106 process->GetValueProperties().get()); 107 if (this != instance_properties) 108 return instance_properties->ProtectedGetPropertyAtIndex(idx); 109 } 110 } 111 return ProtectedGetPropertyAtIndex(idx); 112 } 113 }; 114 115 static constexpr PropertyDefinition g_properties[] = { 116 {"disable-memory-cache", OptionValue::eTypeBoolean, false, 117 DISABLE_MEM_CACHE_DEFAULT, nullptr, {}, 118 "Disable reading and caching of memory in fixed-size units."}, 119 {"extra-startup-command", OptionValue::eTypeArray, false, 120 OptionValue::eTypeString, nullptr, {}, 121 "A list containing extra commands understood by the particular process " 122 "plugin used. " 123 "For instance, to turn on debugserver logging set this to " 124 "\"QSetLogging:bitmask=LOG_DEFAULT;\""}, 125 {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, 126 nullptr, {}, 127 "If true, breakpoints will be ignored during expression evaluation."}, 128 {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, 129 nullptr, {}, "If true, errors in expression evaluation will unwind " 130 "the stack back to the state before the call."}, 131 {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, 132 {}, "A path to a python OS plug-in module file that contains a " 133 "OperatingSystemPlugIn class."}, 134 {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false, 135 nullptr, {}, 136 "If true, stop when a shared library is loaded or unloaded."}, 137 {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr, 138 {}, "If true, detach will attempt to keep the process stopped."}, 139 {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr, 140 {}, "The memory cache line size"}, 141 {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr, 142 {}, "If true, warn when stopped in code that is optimized where " 143 "stepping and variable availability may not behave as expected."}, 144 {"stop-on-exec", OptionValue::eTypeBoolean, true, true, 145 nullptr, {}, 146 "If true, stop when a shared library is loaded or unloaded."}}; 147 148 enum { 149 ePropertyDisableMemCache, 150 ePropertyExtraStartCommand, 151 ePropertyIgnoreBreakpointsInExpressions, 152 ePropertyUnwindOnErrorInExpressions, 153 ePropertyPythonOSPluginPath, 154 ePropertyStopOnSharedLibraryEvents, 155 ePropertyDetachKeepsStopped, 156 ePropertyMemCacheLineSize, 157 ePropertyWarningOptimization, 158 ePropertyStopOnExec 159 }; 160 161 ProcessProperties::ProcessProperties(lldb_private::Process *process) 162 : Properties(), 163 m_process(process) // Can be nullptr for global ProcessProperties 164 { 165 if (process == nullptr) { 166 // Global process properties, set them up one time 167 m_collection_sp.reset( 168 new ProcessOptionValueProperties(ConstString("process"))); 169 m_collection_sp->Initialize(g_properties); 170 m_collection_sp->AppendProperty( 171 ConstString("thread"), ConstString("Settings specific to threads."), 172 true, Thread::GetGlobalProperties()->GetValueProperties()); 173 } else { 174 m_collection_sp.reset( 175 new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 176 m_collection_sp->SetValueChangedCallback( 177 ePropertyPythonOSPluginPath, 178 ProcessProperties::OptionValueChangedCallback, this); 179 } 180 } 181 182 ProcessProperties::~ProcessProperties() = default; 183 184 void ProcessProperties::OptionValueChangedCallback(void *baton, 185 OptionValue *option_value) { 186 ProcessProperties *properties = (ProcessProperties *)baton; 187 if (properties->m_process) 188 properties->m_process->LoadOperatingSystemPlugin(true); 189 } 190 191 bool ProcessProperties::GetDisableMemoryCache() const { 192 const uint32_t idx = ePropertyDisableMemCache; 193 return m_collection_sp->GetPropertyAtIndexAsBoolean( 194 nullptr, idx, g_properties[idx].default_uint_value != 0); 195 } 196 197 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 198 const uint32_t idx = ePropertyMemCacheLineSize; 199 return m_collection_sp->GetPropertyAtIndexAsUInt64( 200 nullptr, idx, g_properties[idx].default_uint_value); 201 } 202 203 Args ProcessProperties::GetExtraStartupCommands() const { 204 Args args; 205 const uint32_t idx = ePropertyExtraStartCommand; 206 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 207 return args; 208 } 209 210 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 211 const uint32_t idx = ePropertyExtraStartCommand; 212 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 213 } 214 215 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 216 const uint32_t idx = ePropertyPythonOSPluginPath; 217 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 218 } 219 220 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 221 const uint32_t idx = ePropertyPythonOSPluginPath; 222 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 223 } 224 225 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 226 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 227 return m_collection_sp->GetPropertyAtIndexAsBoolean( 228 nullptr, idx, g_properties[idx].default_uint_value != 0); 229 } 230 231 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 232 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 233 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 234 } 235 236 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 237 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 238 return m_collection_sp->GetPropertyAtIndexAsBoolean( 239 nullptr, idx, g_properties[idx].default_uint_value != 0); 240 } 241 242 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 243 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 244 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 245 } 246 247 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 248 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 249 return m_collection_sp->GetPropertyAtIndexAsBoolean( 250 nullptr, idx, g_properties[idx].default_uint_value != 0); 251 } 252 253 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 254 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 255 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 256 } 257 258 bool ProcessProperties::GetDetachKeepsStopped() const { 259 const uint32_t idx = ePropertyDetachKeepsStopped; 260 return m_collection_sp->GetPropertyAtIndexAsBoolean( 261 nullptr, idx, g_properties[idx].default_uint_value != 0); 262 } 263 264 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 265 const uint32_t idx = ePropertyDetachKeepsStopped; 266 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 267 } 268 269 bool ProcessProperties::GetWarningsOptimization() const { 270 const uint32_t idx = ePropertyWarningOptimization; 271 return m_collection_sp->GetPropertyAtIndexAsBoolean( 272 nullptr, idx, g_properties[idx].default_uint_value != 0); 273 } 274 275 bool ProcessProperties::GetStopOnExec() const { 276 const uint32_t idx = ePropertyStopOnExec; 277 return m_collection_sp->GetPropertyAtIndexAsBoolean( 278 nullptr, idx, g_properties[idx].default_uint_value != 0); 279 } 280 281 void ProcessInstanceInfo::Dump(Stream &s, Platform *platform) const { 282 const char *cstr; 283 if (m_pid != LLDB_INVALID_PROCESS_ID) 284 s.Printf(" pid = %" PRIu64 "\n", m_pid); 285 286 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 287 s.Printf(" parent = %" PRIu64 "\n", m_parent_pid); 288 289 if (m_executable) { 290 s.Printf(" name = %s\n", m_executable.GetFilename().GetCString()); 291 s.PutCString(" file = "); 292 m_executable.Dump(&s); 293 s.EOL(); 294 } 295 const uint32_t argc = m_arguments.GetArgumentCount(); 296 if (argc > 0) { 297 for (uint32_t i = 0; i < argc; i++) { 298 const char *arg = m_arguments.GetArgumentAtIndex(i); 299 if (i < 10) 300 s.Printf(" arg[%u] = %s\n", i, arg); 301 else 302 s.Printf("arg[%u] = %s\n", i, arg); 303 } 304 } 305 306 s.Format("{0}", m_environment); 307 308 if (m_arch.IsValid()) { 309 s.Printf(" arch = "); 310 m_arch.DumpTriple(s); 311 s.EOL(); 312 } 313 314 if (m_uid != UINT32_MAX) { 315 cstr = platform->GetUserName(m_uid); 316 s.Printf(" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 317 } 318 if (m_gid != UINT32_MAX) { 319 cstr = platform->GetGroupName(m_gid); 320 s.Printf(" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 321 } 322 if (m_euid != UINT32_MAX) { 323 cstr = platform->GetUserName(m_euid); 324 s.Printf(" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 325 } 326 if (m_egid != UINT32_MAX) { 327 cstr = platform->GetGroupName(m_egid); 328 s.Printf(" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 329 } 330 } 331 332 void ProcessInstanceInfo::DumpTableHeader(Stream &s, Platform *platform, 333 bool show_args, bool verbose) { 334 const char *label; 335 if (show_args || verbose) 336 label = "ARGUMENTS"; 337 else 338 label = "NAME"; 339 340 if (verbose) { 341 s.Printf("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE " 342 " %s\n", 343 label); 344 s.PutCString("====== ====== ========== ========== ========== ========== " 345 "======================== ============================\n"); 346 } else { 347 s.Printf("PID PARENT USER TRIPLE %s\n", label); 348 s.PutCString("====== ====== ========== ======================== " 349 "============================\n"); 350 } 351 } 352 353 void ProcessInstanceInfo::DumpAsTableRow(Stream &s, Platform *platform, 354 bool show_args, bool verbose) const { 355 if (m_pid != LLDB_INVALID_PROCESS_ID) { 356 const char *cstr; 357 s.Printf("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 358 359 StreamString arch_strm; 360 if (m_arch.IsValid()) 361 m_arch.DumpTriple(arch_strm); 362 363 if (verbose) { 364 cstr = platform->GetUserName(m_uid); 365 if (cstr && 366 cstr[0]) // Watch for empty string that indicates lookup failed 367 s.Printf("%-10s ", cstr); 368 else 369 s.Printf("%-10u ", m_uid); 370 371 cstr = platform->GetGroupName(m_gid); 372 if (cstr && 373 cstr[0]) // Watch for empty string that indicates lookup failed 374 s.Printf("%-10s ", cstr); 375 else 376 s.Printf("%-10u ", m_gid); 377 378 cstr = platform->GetUserName(m_euid); 379 if (cstr && 380 cstr[0]) // Watch for empty string that indicates lookup failed 381 s.Printf("%-10s ", cstr); 382 else 383 s.Printf("%-10u ", m_euid); 384 385 cstr = platform->GetGroupName(m_egid); 386 if (cstr && 387 cstr[0]) // Watch for empty string that indicates lookup failed 388 s.Printf("%-10s ", cstr); 389 else 390 s.Printf("%-10u ", m_egid); 391 392 s.Printf("%-24s ", arch_strm.GetData()); 393 } else { 394 s.Printf("%-10s %-24s ", platform->GetUserName(m_euid), 395 arch_strm.GetData()); 396 } 397 398 if (verbose || show_args) { 399 const uint32_t argc = m_arguments.GetArgumentCount(); 400 if (argc > 0) { 401 for (uint32_t i = 0; i < argc; i++) { 402 if (i > 0) 403 s.PutChar(' '); 404 s.PutCString(m_arguments.GetArgumentAtIndex(i)); 405 } 406 } 407 } else { 408 s.PutCString(GetName()); 409 } 410 411 s.EOL(); 412 } 413 } 414 415 Status ProcessLaunchCommandOptions::SetOptionValue( 416 uint32_t option_idx, llvm::StringRef option_arg, 417 ExecutionContext *execution_context) { 418 Status error; 419 const int short_option = m_getopt_table[option_idx].val; 420 421 switch (short_option) { 422 case 's': // Stop at program entry point 423 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 424 break; 425 426 case 'i': // STDIN for read only 427 { 428 FileAction action; 429 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 430 launch_info.AppendFileAction(action); 431 break; 432 } 433 434 case 'o': // Open STDOUT for write only 435 { 436 FileAction action; 437 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 438 launch_info.AppendFileAction(action); 439 break; 440 } 441 442 case 'e': // STDERR for write only 443 { 444 FileAction action; 445 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 446 launch_info.AppendFileAction(action); 447 break; 448 } 449 450 case 'p': // Process plug-in name 451 launch_info.SetProcessPluginName(option_arg); 452 break; 453 454 case 'n': // Disable STDIO 455 { 456 FileAction action; 457 const FileSpec dev_null(FileSystem::DEV_NULL); 458 if (action.Open(STDIN_FILENO, dev_null, true, false)) 459 launch_info.AppendFileAction(action); 460 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 461 launch_info.AppendFileAction(action); 462 if (action.Open(STDERR_FILENO, dev_null, false, true)) 463 launch_info.AppendFileAction(action); 464 break; 465 } 466 467 case 'w': 468 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 469 break; 470 471 case 't': // Open process in new terminal window 472 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 473 break; 474 475 case 'a': { 476 TargetSP target_sp = 477 execution_context ? execution_context->GetTargetSP() : TargetSP(); 478 PlatformSP platform_sp = 479 target_sp ? target_sp->GetPlatform() : PlatformSP(); 480 launch_info.GetArchitecture() = 481 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 482 } break; 483 484 case 'A': // Disable ASLR. 485 { 486 bool success; 487 const bool disable_aslr_arg = 488 OptionArgParser::ToBoolean(option_arg, true, &success); 489 if (success) 490 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 491 else 492 error.SetErrorStringWithFormat( 493 "Invalid boolean value for disable-aslr option: '%s'", 494 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 495 break; 496 } 497 498 case 'X': // shell expand args. 499 { 500 bool success; 501 const bool expand_args = 502 OptionArgParser::ToBoolean(option_arg, true, &success); 503 if (success) 504 launch_info.SetShellExpandArguments(expand_args); 505 else 506 error.SetErrorStringWithFormat( 507 "Invalid boolean value for shell-expand-args option: '%s'", 508 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 509 break; 510 } 511 512 case 'c': 513 if (!option_arg.empty()) 514 launch_info.SetShell(FileSpec(option_arg)); 515 else 516 launch_info.SetShell(HostInfo::GetDefaultShell()); 517 break; 518 519 case 'v': 520 launch_info.GetEnvironment().insert(option_arg); 521 break; 522 523 default: 524 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 525 short_option); 526 break; 527 } 528 return error; 529 } 530 531 static constexpr OptionDefinition g_process_launch_options[] = { 532 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 533 nullptr, {}, 0, eArgTypeNone, 534 "Stop at the entry point of the program when launching a process."}, 535 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 536 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 537 "Set whether to disable address space layout randomization when launching " 538 "a process."}, 539 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 540 nullptr, {}, 0, eArgTypePlugin, 541 "Name of the process plugin you want to use."}, 542 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 543 OptionParser::eRequiredArgument, nullptr, {}, 0, 544 eArgTypeDirectoryName, 545 "Set the current working directory to <path> when running the inferior."}, 546 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 547 nullptr, {}, 0, eArgTypeArchitecture, 548 "Set the architecture for the process to launch when ambiguous."}, 549 {LLDB_OPT_SET_ALL, false, "environment", 'v', 550 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 551 "Specify an environment variable name/value string (--environment " 552 "NAME=VALUE). Can be specified multiple times for subsequent environment " 553 "entries."}, 554 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 555 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 556 "Run the process in a shell (not supported on all platforms)."}, 557 558 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 559 nullptr, {}, 0, eArgTypeFilename, 560 "Redirect stdin for the process to <filename>."}, 561 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 562 nullptr, {}, 0, eArgTypeFilename, 563 "Redirect stdout for the process to <filename>."}, 564 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 565 nullptr, {}, 0, eArgTypeFilename, 566 "Redirect stderr for the process to <filename>."}, 567 568 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 569 {}, 0, eArgTypeNone, 570 "Start the process in a terminal (not supported on all platforms)."}, 571 572 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 573 {}, 0, eArgTypeNone, 574 "Do not set up for terminal I/O to go to running process."}, 575 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 576 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 577 "Set whether to shell expand arguments to the process when launching."}, 578 }; 579 580 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 581 return llvm::makeArrayRef(g_process_launch_options); 582 } 583 584 bool ProcessInstanceInfoMatch::NameMatches(const char *process_name) const { 585 if (m_name_match_type == NameMatch::Ignore || process_name == nullptr) 586 return true; 587 const char *match_name = m_match_info.GetName(); 588 if (!match_name) 589 return true; 590 591 return lldb_private::NameMatches(process_name, m_name_match_type, match_name); 592 } 593 594 bool ProcessInstanceInfoMatch::Matches( 595 const ProcessInstanceInfo &proc_info) const { 596 if (!NameMatches(proc_info.GetName())) 597 return false; 598 599 if (m_match_info.ProcessIDIsValid() && 600 m_match_info.GetProcessID() != proc_info.GetProcessID()) 601 return false; 602 603 if (m_match_info.ParentProcessIDIsValid() && 604 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 605 return false; 606 607 if (m_match_info.UserIDIsValid() && 608 m_match_info.GetUserID() != proc_info.GetUserID()) 609 return false; 610 611 if (m_match_info.GroupIDIsValid() && 612 m_match_info.GetGroupID() != proc_info.GetGroupID()) 613 return false; 614 615 if (m_match_info.EffectiveUserIDIsValid() && 616 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 617 return false; 618 619 if (m_match_info.EffectiveGroupIDIsValid() && 620 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 621 return false; 622 623 if (m_match_info.GetArchitecture().IsValid() && 624 !m_match_info.GetArchitecture().IsCompatibleMatch( 625 proc_info.GetArchitecture())) 626 return false; 627 return true; 628 } 629 630 bool ProcessInstanceInfoMatch::MatchAllProcesses() const { 631 if (m_name_match_type != NameMatch::Ignore) 632 return false; 633 634 if (m_match_info.ProcessIDIsValid()) 635 return false; 636 637 if (m_match_info.ParentProcessIDIsValid()) 638 return false; 639 640 if (m_match_info.UserIDIsValid()) 641 return false; 642 643 if (m_match_info.GroupIDIsValid()) 644 return false; 645 646 if (m_match_info.EffectiveUserIDIsValid()) 647 return false; 648 649 if (m_match_info.EffectiveGroupIDIsValid()) 650 return false; 651 652 if (m_match_info.GetArchitecture().IsValid()) 653 return false; 654 655 if (m_match_all_users) 656 return false; 657 658 return true; 659 } 660 661 void ProcessInstanceInfoMatch::Clear() { 662 m_match_info.Clear(); 663 m_name_match_type = NameMatch::Ignore; 664 m_match_all_users = false; 665 } 666 667 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 668 llvm::StringRef plugin_name, 669 ListenerSP listener_sp, 670 const FileSpec *crash_file_path) { 671 static uint32_t g_process_unique_id = 0; 672 673 ProcessSP process_sp; 674 ProcessCreateInstance create_callback = nullptr; 675 if (!plugin_name.empty()) { 676 ConstString const_plugin_name(plugin_name); 677 create_callback = 678 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 679 if (create_callback) { 680 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 681 if (process_sp) { 682 if (process_sp->CanDebug(target_sp, true)) { 683 process_sp->m_process_unique_id = ++g_process_unique_id; 684 } else 685 process_sp.reset(); 686 } 687 } 688 } else { 689 for (uint32_t idx = 0; 690 (create_callback = 691 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 692 ++idx) { 693 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 694 if (process_sp) { 695 if (process_sp->CanDebug(target_sp, false)) { 696 process_sp->m_process_unique_id = ++g_process_unique_id; 697 break; 698 } else 699 process_sp.reset(); 700 } 701 } 702 } 703 return process_sp; 704 } 705 706 ConstString &Process::GetStaticBroadcasterClass() { 707 static ConstString class_name("lldb.process"); 708 return class_name; 709 } 710 711 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 712 : Process(target_sp, listener_sp, 713 UnixSignals::Create(HostInfo::GetArchitecture())) { 714 // This constructor just delegates to the full Process constructor, 715 // defaulting to using the Host's UnixSignals. 716 } 717 718 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 719 const UnixSignalsSP &unix_signals_sp) 720 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 721 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 722 Process::GetStaticBroadcasterClass().AsCString()), 723 m_target_wp(target_sp), m_public_state(eStateUnloaded), 724 m_private_state(eStateUnloaded), 725 m_private_state_broadcaster(nullptr, 726 "lldb.process.internal_state_broadcaster"), 727 m_private_state_control_broadcaster( 728 nullptr, "lldb.process.internal_state_control_broadcaster"), 729 m_private_state_listener_sp( 730 Listener::MakeListener("lldb.process.internal_state_listener")), 731 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 732 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 733 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 734 m_thread_list(this), m_extended_thread_list(this), 735 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 736 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 737 m_breakpoint_site_list(), m_dynamic_checkers_ap(), 738 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 739 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 740 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 741 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 742 m_memory_cache(*this), m_allocated_memory_cache(*this), 743 m_should_detach(false), m_next_event_action_ap(), m_public_run_lock(), 744 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 745 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 746 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 747 m_can_interpret_function_calls(false), m_warnings_issued(), 748 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 749 CheckInWithManager(); 750 751 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 752 if (log) 753 log->Printf("%p Process::Process()", static_cast<void *>(this)); 754 755 if (!m_unix_signals_sp) 756 m_unix_signals_sp = std::make_shared<UnixSignals>(); 757 758 SetEventName(eBroadcastBitStateChanged, "state-changed"); 759 SetEventName(eBroadcastBitInterrupt, "interrupt"); 760 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 761 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 762 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 763 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 764 765 m_private_state_control_broadcaster.SetEventName( 766 eBroadcastInternalStateControlStop, "control-stop"); 767 m_private_state_control_broadcaster.SetEventName( 768 eBroadcastInternalStateControlPause, "control-pause"); 769 m_private_state_control_broadcaster.SetEventName( 770 eBroadcastInternalStateControlResume, "control-resume"); 771 772 m_listener_sp->StartListeningForEvents( 773 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 774 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 775 eBroadcastBitProfileData | eBroadcastBitStructuredData); 776 777 m_private_state_listener_sp->StartListeningForEvents( 778 &m_private_state_broadcaster, 779 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 780 781 m_private_state_listener_sp->StartListeningForEvents( 782 &m_private_state_control_broadcaster, 783 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 784 eBroadcastInternalStateControlResume); 785 // We need something valid here, even if just the default UnixSignalsSP. 786 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 787 788 // Allow the platform to override the default cache line size 789 OptionValueSP value_sp = 790 m_collection_sp 791 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 792 ->GetValue(); 793 uint32_t platform_cache_line_size = 794 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 795 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 796 value_sp->SetUInt64Value(platform_cache_line_size); 797 } 798 799 Process::~Process() { 800 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 801 if (log) 802 log->Printf("%p Process::~Process()", static_cast<void *>(this)); 803 StopPrivateStateThread(); 804 805 // ThreadList::Clear() will try to acquire this process's mutex, so 806 // explicitly clear the thread list here to ensure that the mutex is not 807 // destroyed before the thread list. 808 m_thread_list.Clear(); 809 } 810 811 const ProcessPropertiesSP &Process::GetGlobalProperties() { 812 // NOTE: intentional leak so we don't crash if global destructor chain gets 813 // called as other threads still use the result of this function 814 static ProcessPropertiesSP *g_settings_sp_ptr = 815 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 816 return *g_settings_sp_ptr; 817 } 818 819 void Process::Finalize() { 820 m_finalizing = true; 821 822 // Destroy this process if needed 823 switch (GetPrivateState()) { 824 case eStateConnected: 825 case eStateAttaching: 826 case eStateLaunching: 827 case eStateStopped: 828 case eStateRunning: 829 case eStateStepping: 830 case eStateCrashed: 831 case eStateSuspended: 832 Destroy(false); 833 break; 834 835 case eStateInvalid: 836 case eStateUnloaded: 837 case eStateDetached: 838 case eStateExited: 839 break; 840 } 841 842 // Clear our broadcaster before we proceed with destroying 843 Broadcaster::Clear(); 844 845 // Do any cleanup needed prior to being destructed... Subclasses that 846 // override this method should call this superclass method as well. 847 848 // We need to destroy the loader before the derived Process class gets 849 // destroyed since it is very likely that undoing the loader will require 850 // access to the real process. 851 m_dynamic_checkers_ap.reset(); 852 m_abi_sp.reset(); 853 m_os_ap.reset(); 854 m_system_runtime_ap.reset(); 855 m_dyld_ap.reset(); 856 m_jit_loaders_ap.reset(); 857 m_thread_list_real.Destroy(); 858 m_thread_list.Destroy(); 859 m_extended_thread_list.Destroy(); 860 m_queue_list.Clear(); 861 m_queue_list_stop_id = 0; 862 std::vector<Notifications> empty_notifications; 863 m_notifications.swap(empty_notifications); 864 m_image_tokens.clear(); 865 m_memory_cache.Clear(); 866 m_allocated_memory_cache.Clear(); 867 m_language_runtimes.clear(); 868 m_instrumentation_runtimes.clear(); 869 m_next_event_action_ap.reset(); 870 // Clear the last natural stop ID since it has a strong reference to this 871 // process 872 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 873 //#ifdef LLDB_CONFIGURATION_DEBUG 874 // StreamFile s(stdout, false); 875 // EventSP event_sp; 876 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 877 // { 878 // event_sp->Dump (&s); 879 // s.EOL(); 880 // } 881 //#endif 882 // We have to be very careful here as the m_private_state_listener might 883 // contain events that have ProcessSP values in them which can keep this 884 // process around forever. These events need to be cleared out. 885 m_private_state_listener_sp->Clear(); 886 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 887 m_public_run_lock.SetStopped(); 888 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 889 m_private_run_lock.SetStopped(); 890 m_structured_data_plugin_map.clear(); 891 m_finalize_called = true; 892 } 893 894 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 895 m_notifications.push_back(callbacks); 896 if (callbacks.initialize != nullptr) 897 callbacks.initialize(callbacks.baton, this); 898 } 899 900 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 901 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 902 for (pos = m_notifications.begin(); pos != end; ++pos) { 903 if (pos->baton == callbacks.baton && 904 pos->initialize == callbacks.initialize && 905 pos->process_state_changed == callbacks.process_state_changed) { 906 m_notifications.erase(pos); 907 return true; 908 } 909 } 910 return false; 911 } 912 913 void Process::SynchronouslyNotifyStateChanged(StateType state) { 914 std::vector<Notifications>::iterator notification_pos, 915 notification_end = m_notifications.end(); 916 for (notification_pos = m_notifications.begin(); 917 notification_pos != notification_end; ++notification_pos) { 918 if (notification_pos->process_state_changed) 919 notification_pos->process_state_changed(notification_pos->baton, this, 920 state); 921 } 922 } 923 924 // FIXME: We need to do some work on events before the general Listener sees 925 // them. 926 // For instance if we are continuing from a breakpoint, we need to ensure that 927 // we do the little "insert real insn, step & stop" trick. But we can't do 928 // that when the event is delivered by the broadcaster - since that is done on 929 // the thread that is waiting for new events, so if we needed more than one 930 // event for our handling, we would stall. So instead we do it when we fetch 931 // the event off of the queue. 932 // 933 934 StateType Process::GetNextEvent(EventSP &event_sp) { 935 StateType state = eStateInvalid; 936 937 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 938 std::chrono::seconds(0)) && 939 event_sp) 940 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 941 942 return state; 943 } 944 945 void Process::SyncIOHandler(uint32_t iohandler_id, 946 const Timeout<std::micro> &timeout) { 947 // don't sync (potentially context switch) in case where there is no process 948 // IO 949 if (!m_process_input_reader) 950 return; 951 952 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 953 954 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 955 if (Result) { 956 LLDB_LOG( 957 log, 958 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 959 iohandler_id, *Result); 960 } else { 961 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 962 iohandler_id); 963 } 964 } 965 966 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 967 EventSP *event_sp_ptr, bool wait_always, 968 ListenerSP hijack_listener_sp, 969 Stream *stream, bool use_run_lock) { 970 // We can't just wait for a "stopped" event, because the stopped event may 971 // have restarted the target. We have to actually check each event, and in 972 // the case of a stopped event check the restarted flag on the event. 973 if (event_sp_ptr) 974 event_sp_ptr->reset(); 975 StateType state = GetState(); 976 // If we are exited or detached, we won't ever get back to any other valid 977 // state... 978 if (state == eStateDetached || state == eStateExited) 979 return state; 980 981 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 982 LLDB_LOG(log, "timeout = {0}", timeout); 983 984 if (!wait_always && StateIsStoppedState(state, true) && 985 StateIsStoppedState(GetPrivateState(), true)) { 986 if (log) 987 log->Printf("Process::%s returning without waiting for events; process " 988 "private and public states are already 'stopped'.", 989 __FUNCTION__); 990 // We need to toggle the run lock as this won't get done in 991 // SetPublicState() if the process is hijacked. 992 if (hijack_listener_sp && use_run_lock) 993 m_public_run_lock.SetStopped(); 994 return state; 995 } 996 997 while (state != eStateInvalid) { 998 EventSP event_sp; 999 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 1000 if (event_sp_ptr && event_sp) 1001 *event_sp_ptr = event_sp; 1002 1003 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1004 Process::HandleProcessStateChangedEvent(event_sp, stream, 1005 pop_process_io_handler); 1006 1007 switch (state) { 1008 case eStateCrashed: 1009 case eStateDetached: 1010 case eStateExited: 1011 case eStateUnloaded: 1012 // We need to toggle the run lock as this won't get done in 1013 // SetPublicState() if the process is hijacked. 1014 if (hijack_listener_sp && use_run_lock) 1015 m_public_run_lock.SetStopped(); 1016 return state; 1017 case eStateStopped: 1018 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1019 continue; 1020 else { 1021 // We need to toggle the run lock as this won't get done in 1022 // SetPublicState() if the process is hijacked. 1023 if (hijack_listener_sp && use_run_lock) 1024 m_public_run_lock.SetStopped(); 1025 return state; 1026 } 1027 default: 1028 continue; 1029 } 1030 } 1031 return state; 1032 } 1033 1034 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 1035 Stream *stream, 1036 bool &pop_process_io_handler) { 1037 const bool handle_pop = pop_process_io_handler; 1038 1039 pop_process_io_handler = false; 1040 ProcessSP process_sp = 1041 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1042 1043 if (!process_sp) 1044 return false; 1045 1046 StateType event_state = 1047 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1048 if (event_state == eStateInvalid) 1049 return false; 1050 1051 switch (event_state) { 1052 case eStateInvalid: 1053 case eStateUnloaded: 1054 case eStateAttaching: 1055 case eStateLaunching: 1056 case eStateStepping: 1057 case eStateDetached: 1058 if (stream) 1059 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 1060 StateAsCString(event_state)); 1061 if (event_state == eStateDetached) 1062 pop_process_io_handler = true; 1063 break; 1064 1065 case eStateConnected: 1066 case eStateRunning: 1067 // Don't be chatty when we run... 1068 break; 1069 1070 case eStateExited: 1071 if (stream) 1072 process_sp->GetStatus(*stream); 1073 pop_process_io_handler = true; 1074 break; 1075 1076 case eStateStopped: 1077 case eStateCrashed: 1078 case eStateSuspended: 1079 // Make sure the program hasn't been auto-restarted: 1080 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 1081 if (stream) { 1082 size_t num_reasons = 1083 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1084 if (num_reasons > 0) { 1085 // FIXME: Do we want to report this, or would that just be annoyingly 1086 // chatty? 1087 if (num_reasons == 1) { 1088 const char *reason = 1089 Process::ProcessEventData::GetRestartedReasonAtIndex( 1090 event_sp.get(), 0); 1091 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 1092 process_sp->GetID(), 1093 reason ? reason : "<UNKNOWN REASON>"); 1094 } else { 1095 stream->Printf("Process %" PRIu64 1096 " stopped and restarted, reasons:\n", 1097 process_sp->GetID()); 1098 1099 for (size_t i = 0; i < num_reasons; i++) { 1100 const char *reason = 1101 Process::ProcessEventData::GetRestartedReasonAtIndex( 1102 event_sp.get(), i); 1103 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1104 } 1105 } 1106 } 1107 } 1108 } else { 1109 StopInfoSP curr_thread_stop_info_sp; 1110 // Lock the thread list so it doesn't change on us, this is the scope for 1111 // the locker: 1112 { 1113 ThreadList &thread_list = process_sp->GetThreadList(); 1114 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1115 1116 ThreadSP curr_thread(thread_list.GetSelectedThread()); 1117 ThreadSP thread; 1118 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1119 if (curr_thread) { 1120 curr_thread_stop_reason = curr_thread->GetStopReason(); 1121 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 1122 } 1123 if (!curr_thread || !curr_thread->IsValid() || 1124 curr_thread_stop_reason == eStopReasonInvalid || 1125 curr_thread_stop_reason == eStopReasonNone) { 1126 // Prefer a thread that has just completed its plan over another 1127 // thread as current thread. 1128 ThreadSP plan_thread; 1129 ThreadSP other_thread; 1130 1131 const size_t num_threads = thread_list.GetSize(); 1132 size_t i; 1133 for (i = 0; i < num_threads; ++i) { 1134 thread = thread_list.GetThreadAtIndex(i); 1135 StopReason thread_stop_reason = thread->GetStopReason(); 1136 switch (thread_stop_reason) { 1137 case eStopReasonInvalid: 1138 case eStopReasonNone: 1139 break; 1140 1141 case eStopReasonSignal: { 1142 // Don't select a signal thread if we weren't going to stop at 1143 // that signal. We have to have had another reason for stopping 1144 // here, and the user doesn't want to see this thread. 1145 uint64_t signo = thread->GetStopInfo()->GetValue(); 1146 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 1147 if (!other_thread) 1148 other_thread = thread; 1149 } 1150 break; 1151 } 1152 case eStopReasonTrace: 1153 case eStopReasonBreakpoint: 1154 case eStopReasonWatchpoint: 1155 case eStopReasonException: 1156 case eStopReasonExec: 1157 case eStopReasonThreadExiting: 1158 case eStopReasonInstrumentation: 1159 if (!other_thread) 1160 other_thread = thread; 1161 break; 1162 case eStopReasonPlanComplete: 1163 if (!plan_thread) 1164 plan_thread = thread; 1165 break; 1166 } 1167 } 1168 if (plan_thread) 1169 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 1170 else if (other_thread) 1171 thread_list.SetSelectedThreadByID(other_thread->GetID()); 1172 else { 1173 if (curr_thread && curr_thread->IsValid()) 1174 thread = curr_thread; 1175 else 1176 thread = thread_list.GetThreadAtIndex(0); 1177 1178 if (thread) 1179 thread_list.SetSelectedThreadByID(thread->GetID()); 1180 } 1181 } 1182 } 1183 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1184 // have to run code, e.g. for Data formatters, and if we hold the 1185 // ThreadList mutex, then the process is going to have a hard time 1186 // restarting the process. 1187 if (stream) { 1188 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1189 if (debugger.GetTargetList().GetSelectedTarget().get() == 1190 &process_sp->GetTarget()) { 1191 const bool only_threads_with_stop_reason = true; 1192 const uint32_t start_frame = 0; 1193 const uint32_t num_frames = 1; 1194 const uint32_t num_frames_with_source = 1; 1195 const bool stop_format = true; 1196 process_sp->GetStatus(*stream); 1197 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1198 start_frame, num_frames, 1199 num_frames_with_source, 1200 stop_format); 1201 if (curr_thread_stop_info_sp) { 1202 lldb::addr_t crashing_address; 1203 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1204 curr_thread_stop_info_sp, &crashing_address); 1205 if (valobj_sp) { 1206 const bool qualify_cxx_base_classes = false; 1207 1208 const ValueObject::GetExpressionPathFormat format = 1209 ValueObject::GetExpressionPathFormat:: 1210 eGetExpressionPathFormatHonorPointers; 1211 stream->PutCString("Likely cause: "); 1212 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 1213 format); 1214 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1215 } 1216 } 1217 } else { 1218 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1219 process_sp->GetTarget().shared_from_this()); 1220 if (target_idx != UINT32_MAX) 1221 stream->Printf("Target %d: (", target_idx); 1222 else 1223 stream->Printf("Target <unknown index>: ("); 1224 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1225 stream->Printf(") stopped.\n"); 1226 } 1227 } 1228 1229 // Pop the process IO handler 1230 pop_process_io_handler = true; 1231 } 1232 break; 1233 } 1234 1235 if (handle_pop && pop_process_io_handler) 1236 process_sp->PopProcessIOHandler(); 1237 1238 return true; 1239 } 1240 1241 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1242 if (listener_sp) { 1243 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1244 eBroadcastBitInterrupt); 1245 } else 1246 return false; 1247 } 1248 1249 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1250 1251 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1252 const Timeout<std::micro> &timeout, 1253 ListenerSP hijack_listener_sp) { 1254 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1255 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1256 1257 ListenerSP listener_sp = hijack_listener_sp; 1258 if (!listener_sp) 1259 listener_sp = m_listener_sp; 1260 1261 StateType state = eStateInvalid; 1262 if (listener_sp->GetEventForBroadcasterWithType( 1263 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1264 timeout)) { 1265 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1266 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1267 else 1268 LLDB_LOG(log, "got no event or was interrupted."); 1269 } 1270 1271 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1272 return state; 1273 } 1274 1275 Event *Process::PeekAtStateChangedEvents() { 1276 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1277 1278 if (log) 1279 log->Printf("Process::%s...", __FUNCTION__); 1280 1281 Event *event_ptr; 1282 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1283 this, eBroadcastBitStateChanged); 1284 if (log) { 1285 if (event_ptr) { 1286 log->Printf( 1287 "Process::%s (event_ptr) => %s", __FUNCTION__, 1288 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1289 } else { 1290 log->Printf("Process::%s no events found", __FUNCTION__); 1291 } 1292 } 1293 return event_ptr; 1294 } 1295 1296 StateType 1297 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1298 const Timeout<std::micro> &timeout) { 1299 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1300 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1301 1302 StateType state = eStateInvalid; 1303 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1304 &m_private_state_broadcaster, 1305 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1306 timeout)) 1307 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1308 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1309 1310 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1311 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1312 return state; 1313 } 1314 1315 bool Process::GetEventsPrivate(EventSP &event_sp, 1316 const Timeout<std::micro> &timeout, 1317 bool control_only) { 1318 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1319 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1320 1321 if (control_only) 1322 return m_private_state_listener_sp->GetEventForBroadcaster( 1323 &m_private_state_control_broadcaster, event_sp, timeout); 1324 else 1325 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1326 } 1327 1328 bool Process::IsRunning() const { 1329 return StateIsRunningState(m_public_state.GetValue()); 1330 } 1331 1332 int Process::GetExitStatus() { 1333 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1334 1335 if (m_public_state.GetValue() == eStateExited) 1336 return m_exit_status; 1337 return -1; 1338 } 1339 1340 const char *Process::GetExitDescription() { 1341 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1342 1343 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1344 return m_exit_string.c_str(); 1345 return nullptr; 1346 } 1347 1348 bool Process::SetExitStatus(int status, const char *cstr) { 1349 // Use a mutex to protect setting the exit status. 1350 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1351 1352 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1353 LIBLLDB_LOG_PROCESS)); 1354 if (log) 1355 log->Printf( 1356 "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1357 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", 1358 cstr ? "\"" : ""); 1359 1360 // We were already in the exited state 1361 if (m_private_state.GetValue() == eStateExited) { 1362 if (log) 1363 log->Printf("Process::SetExitStatus () ignoring exit status because " 1364 "state was already set to eStateExited"); 1365 return false; 1366 } 1367 1368 m_exit_status = status; 1369 if (cstr) 1370 m_exit_string = cstr; 1371 else 1372 m_exit_string.clear(); 1373 1374 // Clear the last natural stop ID since it has a strong reference to this 1375 // process 1376 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1377 1378 SetPrivateState(eStateExited); 1379 1380 // Allow subclasses to do some cleanup 1381 DidExit(); 1382 1383 return true; 1384 } 1385 1386 bool Process::IsAlive() { 1387 switch (m_private_state.GetValue()) { 1388 case eStateConnected: 1389 case eStateAttaching: 1390 case eStateLaunching: 1391 case eStateStopped: 1392 case eStateRunning: 1393 case eStateStepping: 1394 case eStateCrashed: 1395 case eStateSuspended: 1396 return true; 1397 default: 1398 return false; 1399 } 1400 } 1401 1402 // This static callback can be used to watch for local child processes on the 1403 // current host. The child process exits, the process will be found in the 1404 // global target list (we want to be completely sure that the 1405 // lldb_private::Process doesn't go away before we can deliver the signal. 1406 bool Process::SetProcessExitStatus( 1407 lldb::pid_t pid, bool exited, 1408 int signo, // Zero for no signal 1409 int exit_status // Exit value of process if signal is zero 1410 ) { 1411 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1412 if (log) 1413 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 1414 ", exited=%i, signal=%i, exit_status=%i)\n", 1415 pid, exited, signo, exit_status); 1416 1417 if (exited) { 1418 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1419 if (target_sp) { 1420 ProcessSP process_sp(target_sp->GetProcessSP()); 1421 if (process_sp) { 1422 const char *signal_cstr = nullptr; 1423 if (signo) 1424 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1425 1426 process_sp->SetExitStatus(exit_status, signal_cstr); 1427 } 1428 } 1429 return true; 1430 } 1431 return false; 1432 } 1433 1434 void Process::UpdateThreadListIfNeeded() { 1435 const uint32_t stop_id = GetStopID(); 1436 if (m_thread_list.GetSize(false) == 0 || 1437 stop_id != m_thread_list.GetStopID()) { 1438 const StateType state = GetPrivateState(); 1439 if (StateIsStoppedState(state, true)) { 1440 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1441 // m_thread_list does have its own mutex, but we need to hold onto the 1442 // mutex between the call to UpdateThreadList(...) and the 1443 // os->UpdateThreadList(...) so it doesn't change on us 1444 ThreadList &old_thread_list = m_thread_list; 1445 ThreadList real_thread_list(this); 1446 ThreadList new_thread_list(this); 1447 // Always update the thread list with the protocol specific thread list, 1448 // but only update if "true" is returned 1449 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1450 // Don't call into the OperatingSystem to update the thread list if we 1451 // are shutting down, since that may call back into the SBAPI's, 1452 // requiring the API lock which is already held by whoever is shutting 1453 // us down, causing a deadlock. 1454 OperatingSystem *os = GetOperatingSystem(); 1455 if (os && !m_destroy_in_process) { 1456 // Clear any old backing threads where memory threads might have been 1457 // backed by actual threads from the lldb_private::Process subclass 1458 size_t num_old_threads = old_thread_list.GetSize(false); 1459 for (size_t i = 0; i < num_old_threads; ++i) 1460 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1461 1462 // Turn off dynamic types to ensure we don't run any expressions. 1463 // Objective-C can run an expression to determine if a SBValue is a 1464 // dynamic type or not and we need to avoid this. OperatingSystem 1465 // plug-ins can't run expressions that require running code... 1466 1467 Target &target = GetTarget(); 1468 const lldb::DynamicValueType saved_prefer_dynamic = 1469 target.GetPreferDynamicValue(); 1470 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1471 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1472 1473 // Now let the OperatingSystem plug-in update the thread list 1474 1475 os->UpdateThreadList( 1476 old_thread_list, // Old list full of threads created by OS plug-in 1477 real_thread_list, // The actual thread list full of threads 1478 // created by each lldb_private::Process 1479 // subclass 1480 new_thread_list); // The new thread list that we will show to the 1481 // user that gets filled in 1482 1483 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1484 target.SetPreferDynamicValue(saved_prefer_dynamic); 1485 } else { 1486 // No OS plug-in, the new thread list is the same as the real thread 1487 // list 1488 new_thread_list = real_thread_list; 1489 } 1490 1491 m_thread_list_real.Update(real_thread_list); 1492 m_thread_list.Update(new_thread_list); 1493 m_thread_list.SetStopID(stop_id); 1494 1495 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1496 // Clear any extended threads that we may have accumulated previously 1497 m_extended_thread_list.Clear(); 1498 m_extended_thread_stop_id = GetLastNaturalStopID(); 1499 1500 m_queue_list.Clear(); 1501 m_queue_list_stop_id = GetLastNaturalStopID(); 1502 } 1503 } 1504 } 1505 } 1506 } 1507 1508 void Process::UpdateQueueListIfNeeded() { 1509 if (m_system_runtime_ap) { 1510 if (m_queue_list.GetSize() == 0 || 1511 m_queue_list_stop_id != GetLastNaturalStopID()) { 1512 const StateType state = GetPrivateState(); 1513 if (StateIsStoppedState(state, true)) { 1514 m_system_runtime_ap->PopulateQueueList(m_queue_list); 1515 m_queue_list_stop_id = GetLastNaturalStopID(); 1516 } 1517 } 1518 } 1519 } 1520 1521 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1522 OperatingSystem *os = GetOperatingSystem(); 1523 if (os) 1524 return os->CreateThread(tid, context); 1525 return ThreadSP(); 1526 } 1527 1528 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1529 return AssignIndexIDToThread(thread_id); 1530 } 1531 1532 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1533 return (m_thread_id_to_index_id_map.find(thread_id) != 1534 m_thread_id_to_index_id_map.end()); 1535 } 1536 1537 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1538 uint32_t result = 0; 1539 std::map<uint64_t, uint32_t>::iterator iterator = 1540 m_thread_id_to_index_id_map.find(thread_id); 1541 if (iterator == m_thread_id_to_index_id_map.end()) { 1542 result = ++m_thread_index_id; 1543 m_thread_id_to_index_id_map[thread_id] = result; 1544 } else { 1545 result = iterator->second; 1546 } 1547 1548 return result; 1549 } 1550 1551 StateType Process::GetState() { 1552 return m_public_state.GetValue(); 1553 } 1554 1555 bool Process::StateChangedIsExternallyHijacked() { 1556 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1557 const char *hijacking_name = GetHijackingListenerName(); 1558 if (hijacking_name && 1559 strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1560 return true; 1561 } 1562 return false; 1563 } 1564 1565 void Process::SetPublicState(StateType new_state, bool restarted) { 1566 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1567 LIBLLDB_LOG_PROCESS)); 1568 if (log) 1569 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", 1570 StateAsCString(new_state), restarted); 1571 const StateType old_state = m_public_state.GetValue(); 1572 m_public_state.SetValue(new_state); 1573 1574 // On the transition from Run to Stopped, we unlock the writer end of the run 1575 // lock. The lock gets locked in Resume, which is the public API to tell the 1576 // program to run. 1577 if (!StateChangedIsExternallyHijacked()) { 1578 if (new_state == eStateDetached) { 1579 if (log) 1580 log->Printf( 1581 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1582 StateAsCString(new_state)); 1583 m_public_run_lock.SetStopped(); 1584 } else { 1585 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1586 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1587 if ((old_state_is_stopped != new_state_is_stopped)) { 1588 if (new_state_is_stopped && !restarted) { 1589 if (log) 1590 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", 1591 StateAsCString(new_state)); 1592 m_public_run_lock.SetStopped(); 1593 } 1594 } 1595 } 1596 } 1597 } 1598 1599 Status Process::Resume() { 1600 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1601 LIBLLDB_LOG_PROCESS)); 1602 if (log) 1603 log->Printf("Process::Resume -- locking run lock"); 1604 if (!m_public_run_lock.TrySetRunning()) { 1605 Status error("Resume request failed - process still running."); 1606 if (log) 1607 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1608 return error; 1609 } 1610 Status error = PrivateResume(); 1611 if (!error.Success()) { 1612 // Undo running state change 1613 m_public_run_lock.SetStopped(); 1614 } 1615 return error; 1616 } 1617 1618 Status Process::ResumeSynchronous(Stream *stream) { 1619 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1620 LIBLLDB_LOG_PROCESS)); 1621 if (log) 1622 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1623 if (!m_public_run_lock.TrySetRunning()) { 1624 Status error("Resume request failed - process still running."); 1625 if (log) 1626 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1627 return error; 1628 } 1629 1630 ListenerSP listener_sp( 1631 Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1632 HijackProcessEvents(listener_sp); 1633 1634 Status error = PrivateResume(); 1635 if (error.Success()) { 1636 StateType state = 1637 WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream); 1638 const bool must_be_alive = 1639 false; // eStateExited is ok, so this must be false 1640 if (!StateIsStoppedState(state, must_be_alive)) 1641 error.SetErrorStringWithFormat( 1642 "process not in stopped state after synchronous resume: %s", 1643 StateAsCString(state)); 1644 } else { 1645 // Undo running state change 1646 m_public_run_lock.SetStopped(); 1647 } 1648 1649 // Undo the hijacking of process events... 1650 RestoreProcessEvents(); 1651 1652 return error; 1653 } 1654 1655 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1656 1657 void Process::SetPrivateState(StateType new_state) { 1658 if (m_finalize_called) 1659 return; 1660 1661 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1662 LIBLLDB_LOG_PROCESS)); 1663 bool state_changed = false; 1664 1665 if (log) 1666 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1667 1668 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1669 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1670 1671 const StateType old_state = m_private_state.GetValueNoLock(); 1672 state_changed = old_state != new_state; 1673 1674 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1675 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1676 if (old_state_is_stopped != new_state_is_stopped) { 1677 if (new_state_is_stopped) 1678 m_private_run_lock.SetStopped(); 1679 else 1680 m_private_run_lock.SetRunning(); 1681 } 1682 1683 if (state_changed) { 1684 m_private_state.SetValueNoLock(new_state); 1685 EventSP event_sp( 1686 new Event(eBroadcastBitStateChanged, 1687 new ProcessEventData(shared_from_this(), new_state))); 1688 if (StateIsStoppedState(new_state, false)) { 1689 // Note, this currently assumes that all threads in the list stop when 1690 // the process stops. In the future we will want to support a debugging 1691 // model where some threads continue to run while others are stopped. 1692 // When that happens we will either need a way for the thread list to 1693 // identify which threads are stopping or create a special thread list 1694 // containing only threads which actually stopped. 1695 // 1696 // The process plugin is responsible for managing the actual behavior of 1697 // the threads and should have stopped any threads that are going to stop 1698 // before we get here. 1699 m_thread_list.DidStop(); 1700 1701 m_mod_id.BumpStopID(); 1702 if (!m_mod_id.IsLastResumeForUserExpression()) 1703 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1704 m_memory_cache.Clear(); 1705 if (log) 1706 log->Printf("Process::SetPrivateState (%s) stop_id = %u", 1707 StateAsCString(new_state), m_mod_id.GetStopID()); 1708 } 1709 1710 // Use our target to get a shared pointer to ourselves... 1711 if (m_finalize_called && !PrivateStateThreadIsValid()) 1712 BroadcastEvent(event_sp); 1713 else 1714 m_private_state_broadcaster.BroadcastEvent(event_sp); 1715 } else { 1716 if (log) 1717 log->Printf( 1718 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1719 StateAsCString(new_state)); 1720 } 1721 } 1722 1723 void Process::SetRunningUserExpression(bool on) { 1724 m_mod_id.SetRunningUserExpression(on); 1725 } 1726 1727 void Process::SetRunningUtilityFunction(bool on) { 1728 m_mod_id.SetRunningUtilityFunction(on); 1729 } 1730 1731 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1732 1733 const lldb::ABISP &Process::GetABI() { 1734 if (!m_abi_sp) 1735 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1736 return m_abi_sp; 1737 } 1738 1739 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language, 1740 bool retry_if_null) { 1741 if (m_finalizing) 1742 return nullptr; 1743 1744 LanguageRuntimeCollection::iterator pos; 1745 pos = m_language_runtimes.find(language); 1746 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { 1747 lldb::LanguageRuntimeSP runtime_sp( 1748 LanguageRuntime::FindPlugin(this, language)); 1749 1750 m_language_runtimes[language] = runtime_sp; 1751 return runtime_sp.get(); 1752 } else 1753 return (*pos).second.get(); 1754 } 1755 1756 CPPLanguageRuntime *Process::GetCPPLanguageRuntime(bool retry_if_null) { 1757 LanguageRuntime *runtime = 1758 GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1759 if (runtime != nullptr && 1760 runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1761 return static_cast<CPPLanguageRuntime *>(runtime); 1762 return nullptr; 1763 } 1764 1765 ObjCLanguageRuntime *Process::GetObjCLanguageRuntime(bool retry_if_null) { 1766 LanguageRuntime *runtime = 1767 GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1768 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1769 return static_cast<ObjCLanguageRuntime *>(runtime); 1770 return nullptr; 1771 } 1772 1773 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1774 if (m_finalizing) 1775 return false; 1776 1777 if (in_value.IsDynamic()) 1778 return false; 1779 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1780 1781 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1782 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1783 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1784 } 1785 1786 LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus); 1787 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1788 return true; 1789 1790 LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC); 1791 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1792 } 1793 1794 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1795 m_dynamic_checkers_ap.reset(dynamic_checkers); 1796 } 1797 1798 BreakpointSiteList &Process::GetBreakpointSiteList() { 1799 return m_breakpoint_site_list; 1800 } 1801 1802 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1803 return m_breakpoint_site_list; 1804 } 1805 1806 void Process::DisableAllBreakpointSites() { 1807 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1808 // bp_site->SetEnabled(true); 1809 DisableBreakpointSite(bp_site); 1810 }); 1811 } 1812 1813 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1814 Status error(DisableBreakpointSiteByID(break_id)); 1815 1816 if (error.Success()) 1817 m_breakpoint_site_list.Remove(break_id); 1818 1819 return error; 1820 } 1821 1822 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1823 Status error; 1824 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1825 if (bp_site_sp) { 1826 if (bp_site_sp->IsEnabled()) 1827 error = DisableBreakpointSite(bp_site_sp.get()); 1828 } else { 1829 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1830 break_id); 1831 } 1832 1833 return error; 1834 } 1835 1836 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1837 Status error; 1838 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1839 if (bp_site_sp) { 1840 if (!bp_site_sp->IsEnabled()) 1841 error = EnableBreakpointSite(bp_site_sp.get()); 1842 } else { 1843 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1844 break_id); 1845 } 1846 return error; 1847 } 1848 1849 lldb::break_id_t 1850 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1851 bool use_hardware) { 1852 addr_t load_addr = LLDB_INVALID_ADDRESS; 1853 1854 bool show_error = true; 1855 switch (GetState()) { 1856 case eStateInvalid: 1857 case eStateUnloaded: 1858 case eStateConnected: 1859 case eStateAttaching: 1860 case eStateLaunching: 1861 case eStateDetached: 1862 case eStateExited: 1863 show_error = false; 1864 break; 1865 1866 case eStateStopped: 1867 case eStateRunning: 1868 case eStateStepping: 1869 case eStateCrashed: 1870 case eStateSuspended: 1871 show_error = IsAlive(); 1872 break; 1873 } 1874 1875 // Reset the IsIndirect flag here, in case the location changes from pointing 1876 // to a indirect symbol to a regular symbol. 1877 owner->SetIsIndirect(false); 1878 1879 if (owner->ShouldResolveIndirectFunctions()) { 1880 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1881 if (symbol && symbol->IsIndirect()) { 1882 Status error; 1883 Address symbol_address = symbol->GetAddress(); 1884 load_addr = ResolveIndirectFunction(&symbol_address, error); 1885 if (!error.Success() && show_error) { 1886 GetTarget().GetDebugger().GetErrorFile()->Printf( 1887 "warning: failed to resolve indirect function at 0x%" PRIx64 1888 " for breakpoint %i.%i: %s\n", 1889 symbol->GetLoadAddress(&GetTarget()), 1890 owner->GetBreakpoint().GetID(), owner->GetID(), 1891 error.AsCString() ? error.AsCString() : "unknown error"); 1892 return LLDB_INVALID_BREAK_ID; 1893 } 1894 Address resolved_address(load_addr); 1895 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1896 owner->SetIsIndirect(true); 1897 } else 1898 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1899 } else 1900 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1901 1902 if (load_addr != LLDB_INVALID_ADDRESS) { 1903 BreakpointSiteSP bp_site_sp; 1904 1905 // Look up this breakpoint site. If it exists, then add this new owner, 1906 // otherwise create a new breakpoint site and add it. 1907 1908 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1909 1910 if (bp_site_sp) { 1911 bp_site_sp->AddOwner(owner); 1912 owner->SetBreakpointSite(bp_site_sp); 1913 return bp_site_sp->GetID(); 1914 } else { 1915 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1916 load_addr, use_hardware)); 1917 if (bp_site_sp) { 1918 Status error = EnableBreakpointSite(bp_site_sp.get()); 1919 if (error.Success()) { 1920 owner->SetBreakpointSite(bp_site_sp); 1921 return m_breakpoint_site_list.Add(bp_site_sp); 1922 } else { 1923 if (show_error || use_hardware) { 1924 // Report error for setting breakpoint... 1925 GetTarget().GetDebugger().GetErrorFile()->Printf( 1926 "warning: failed to set breakpoint site at 0x%" PRIx64 1927 " for breakpoint %i.%i: %s\n", 1928 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1929 error.AsCString() ? error.AsCString() : "unknown error"); 1930 } 1931 } 1932 } 1933 } 1934 } 1935 // We failed to enable the breakpoint 1936 return LLDB_INVALID_BREAK_ID; 1937 } 1938 1939 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1940 lldb::user_id_t owner_loc_id, 1941 BreakpointSiteSP &bp_site_sp) { 1942 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1943 if (num_owners == 0) { 1944 // Don't try to disable the site if we don't have a live process anymore. 1945 if (IsAlive()) 1946 DisableBreakpointSite(bp_site_sp.get()); 1947 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1948 } 1949 } 1950 1951 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1952 uint8_t *buf) const { 1953 size_t bytes_removed = 0; 1954 BreakpointSiteList bp_sites_in_range; 1955 1956 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1957 bp_sites_in_range)) { 1958 bp_sites_in_range.ForEach([bp_addr, size, 1959 buf](BreakpointSite *bp_site) -> void { 1960 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1961 addr_t intersect_addr; 1962 size_t intersect_size; 1963 size_t opcode_offset; 1964 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1965 &intersect_size, &opcode_offset)) { 1966 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1967 assert(bp_addr < intersect_addr + intersect_size && 1968 intersect_addr + intersect_size <= bp_addr + size); 1969 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1970 size_t buf_offset = intersect_addr - bp_addr; 1971 ::memcpy(buf + buf_offset, 1972 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1973 intersect_size); 1974 } 1975 } 1976 }); 1977 } 1978 return bytes_removed; 1979 } 1980 1981 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1982 PlatformSP platform_sp(GetTarget().GetPlatform()); 1983 if (platform_sp) 1984 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1985 return 0; 1986 } 1987 1988 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1989 Status error; 1990 assert(bp_site != nullptr); 1991 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1992 const addr_t bp_addr = bp_site->GetLoadAddress(); 1993 if (log) 1994 log->Printf( 1995 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1996 bp_site->GetID(), (uint64_t)bp_addr); 1997 if (bp_site->IsEnabled()) { 1998 if (log) 1999 log->Printf( 2000 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2001 " -- already enabled", 2002 bp_site->GetID(), (uint64_t)bp_addr); 2003 return error; 2004 } 2005 2006 if (bp_addr == LLDB_INVALID_ADDRESS) { 2007 error.SetErrorString("BreakpointSite contains an invalid load address."); 2008 return error; 2009 } 2010 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2011 // trap for the breakpoint site 2012 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2013 2014 if (bp_opcode_size == 0) { 2015 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 2016 "returned zero, unable to get breakpoint " 2017 "trap for address 0x%" PRIx64, 2018 bp_addr); 2019 } else { 2020 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2021 2022 if (bp_opcode_bytes == nullptr) { 2023 error.SetErrorString( 2024 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2025 return error; 2026 } 2027 2028 // Save the original opcode by reading it 2029 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 2030 error) == bp_opcode_size) { 2031 // Write a software breakpoint in place of the original opcode 2032 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 2033 bp_opcode_size) { 2034 uint8_t verify_bp_opcode_bytes[64]; 2035 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 2036 error) == bp_opcode_size) { 2037 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 2038 bp_opcode_size) == 0) { 2039 bp_site->SetEnabled(true); 2040 bp_site->SetType(BreakpointSite::eSoftware); 2041 if (log) 2042 log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) " 2043 "addr = 0x%" PRIx64 " -- SUCCESS", 2044 bp_site->GetID(), (uint64_t)bp_addr); 2045 } else 2046 error.SetErrorString( 2047 "failed to verify the breakpoint trap in memory."); 2048 } else 2049 error.SetErrorString( 2050 "Unable to read memory to verify breakpoint trap."); 2051 } else 2052 error.SetErrorString("Unable to write breakpoint trap to memory."); 2053 } else 2054 error.SetErrorString("Unable to read memory at breakpoint address."); 2055 } 2056 if (log && error.Fail()) 2057 log->Printf( 2058 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2059 " -- FAILED: %s", 2060 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2061 return error; 2062 } 2063 2064 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 2065 Status error; 2066 assert(bp_site != nullptr); 2067 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 2068 addr_t bp_addr = bp_site->GetLoadAddress(); 2069 lldb::user_id_t breakID = bp_site->GetID(); 2070 if (log) 2071 log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 2072 ") addr = 0x%" PRIx64, 2073 breakID, (uint64_t)bp_addr); 2074 2075 if (bp_site->IsHardware()) { 2076 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2077 } else if (bp_site->IsEnabled()) { 2078 const size_t break_op_size = bp_site->GetByteSize(); 2079 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 2080 if (break_op_size > 0) { 2081 // Clear a software breakpoint instruction 2082 uint8_t curr_break_op[8]; 2083 assert(break_op_size <= sizeof(curr_break_op)); 2084 bool break_op_found = false; 2085 2086 // Read the breakpoint opcode 2087 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 2088 break_op_size) { 2089 bool verify = false; 2090 // Make sure the breakpoint opcode exists at this address 2091 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 2092 break_op_found = true; 2093 // We found a valid breakpoint opcode at this address, now restore 2094 // the saved opcode. 2095 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 2096 break_op_size, error) == break_op_size) { 2097 verify = true; 2098 } else 2099 error.SetErrorString( 2100 "Memory write failed when restoring original opcode."); 2101 } else { 2102 error.SetErrorString( 2103 "Original breakpoint trap is no longer in memory."); 2104 // Set verify to true and so we can check if the original opcode has 2105 // already been restored 2106 verify = true; 2107 } 2108 2109 if (verify) { 2110 uint8_t verify_opcode[8]; 2111 assert(break_op_size < sizeof(verify_opcode)); 2112 // Verify that our original opcode made it back to the inferior 2113 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 2114 break_op_size) { 2115 // compare the memory we just read with the original opcode 2116 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 2117 break_op_size) == 0) { 2118 // SUCCESS 2119 bp_site->SetEnabled(false); 2120 if (log) 2121 log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) " 2122 "addr = 0x%" PRIx64 " -- SUCCESS", 2123 bp_site->GetID(), (uint64_t)bp_addr); 2124 return error; 2125 } else { 2126 if (break_op_found) 2127 error.SetErrorString("Failed to restore original opcode."); 2128 } 2129 } else 2130 error.SetErrorString("Failed to read memory to verify that " 2131 "breakpoint trap was restored."); 2132 } 2133 } else 2134 error.SetErrorString( 2135 "Unable to read memory that should contain the breakpoint trap."); 2136 } 2137 } else { 2138 if (log) 2139 log->Printf( 2140 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2141 " -- already disabled", 2142 bp_site->GetID(), (uint64_t)bp_addr); 2143 return error; 2144 } 2145 2146 if (log) 2147 log->Printf( 2148 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2149 " -- FAILED: %s", 2150 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2151 return error; 2152 } 2153 2154 // Uncomment to verify memory caching works after making changes to caching 2155 // code 2156 //#define VERIFY_MEMORY_READS 2157 2158 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2159 error.Clear(); 2160 if (!GetDisableMemoryCache()) { 2161 #if defined(VERIFY_MEMORY_READS) 2162 // Memory caching is enabled, with debug verification 2163 2164 if (buf && size) { 2165 // Uncomment the line below to make sure memory caching is working. 2166 // I ran this through the test suite and got no assertions, so I am 2167 // pretty confident this is working well. If any changes are made to 2168 // memory caching, uncomment the line below and test your changes! 2169 2170 // Verify all memory reads by using the cache first, then redundantly 2171 // reading the same memory from the inferior and comparing to make sure 2172 // everything is exactly the same. 2173 std::string verify_buf(size, '\0'); 2174 assert(verify_buf.size() == size); 2175 const size_t cache_bytes_read = 2176 m_memory_cache.Read(this, addr, buf, size, error); 2177 Status verify_error; 2178 const size_t verify_bytes_read = 2179 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2180 verify_buf.size(), verify_error); 2181 assert(cache_bytes_read == verify_bytes_read); 2182 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2183 assert(verify_error.Success() == error.Success()); 2184 return cache_bytes_read; 2185 } 2186 return 0; 2187 #else // !defined(VERIFY_MEMORY_READS) 2188 // Memory caching is enabled, without debug verification 2189 2190 return m_memory_cache.Read(addr, buf, size, error); 2191 #endif // defined (VERIFY_MEMORY_READS) 2192 } else { 2193 // Memory caching is disabled 2194 2195 return ReadMemoryFromInferior(addr, buf, size, error); 2196 } 2197 } 2198 2199 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2200 Status &error) { 2201 char buf[256]; 2202 out_str.clear(); 2203 addr_t curr_addr = addr; 2204 while (true) { 2205 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2206 if (length == 0) 2207 break; 2208 out_str.append(buf, length); 2209 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2210 // to read some more characters 2211 if (length == sizeof(buf) - 1) 2212 curr_addr += length; 2213 else 2214 break; 2215 } 2216 return out_str.size(); 2217 } 2218 2219 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2220 Status &error, size_t type_width) { 2221 size_t total_bytes_read = 0; 2222 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2223 // Ensure a null terminator independent of the number of bytes that is 2224 // read. 2225 memset(dst, 0, max_bytes); 2226 size_t bytes_left = max_bytes - type_width; 2227 2228 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2229 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2230 "string with more than 4 bytes " 2231 "per character!"); 2232 2233 addr_t curr_addr = addr; 2234 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2235 char *curr_dst = dst; 2236 2237 error.Clear(); 2238 while (bytes_left > 0 && error.Success()) { 2239 addr_t cache_line_bytes_left = 2240 cache_line_size - (curr_addr % cache_line_size); 2241 addr_t bytes_to_read = 2242 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2243 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2244 2245 if (bytes_read == 0) 2246 break; 2247 2248 // Search for a null terminator of correct size and alignment in 2249 // bytes_read 2250 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2251 for (size_t i = aligned_start; 2252 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2253 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2254 error.Clear(); 2255 return i; 2256 } 2257 2258 total_bytes_read += bytes_read; 2259 curr_dst += bytes_read; 2260 curr_addr += bytes_read; 2261 bytes_left -= bytes_read; 2262 } 2263 } else { 2264 if (max_bytes) 2265 error.SetErrorString("invalid arguments"); 2266 } 2267 return total_bytes_read; 2268 } 2269 2270 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2271 // correct code to find null terminators. 2272 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2273 size_t dst_max_len, 2274 Status &result_error) { 2275 size_t total_cstr_len = 0; 2276 if (dst && dst_max_len) { 2277 result_error.Clear(); 2278 // NULL out everything just to be safe 2279 memset(dst, 0, dst_max_len); 2280 Status error; 2281 addr_t curr_addr = addr; 2282 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2283 size_t bytes_left = dst_max_len - 1; 2284 char *curr_dst = dst; 2285 2286 while (bytes_left > 0) { 2287 addr_t cache_line_bytes_left = 2288 cache_line_size - (curr_addr % cache_line_size); 2289 addr_t bytes_to_read = 2290 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2291 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2292 2293 if (bytes_read == 0) { 2294 result_error = error; 2295 dst[total_cstr_len] = '\0'; 2296 break; 2297 } 2298 const size_t len = strlen(curr_dst); 2299 2300 total_cstr_len += len; 2301 2302 if (len < bytes_to_read) 2303 break; 2304 2305 curr_dst += bytes_read; 2306 curr_addr += bytes_read; 2307 bytes_left -= bytes_read; 2308 } 2309 } else { 2310 if (dst == nullptr) 2311 result_error.SetErrorString("invalid arguments"); 2312 else 2313 result_error.Clear(); 2314 } 2315 return total_cstr_len; 2316 } 2317 2318 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2319 Status &error) { 2320 if (buf == nullptr || size == 0) 2321 return 0; 2322 2323 size_t bytes_read = 0; 2324 uint8_t *bytes = (uint8_t *)buf; 2325 2326 while (bytes_read < size) { 2327 const size_t curr_size = size - bytes_read; 2328 const size_t curr_bytes_read = 2329 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2330 bytes_read += curr_bytes_read; 2331 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2332 break; 2333 } 2334 2335 // Replace any software breakpoint opcodes that fall into this range back 2336 // into "buf" before we return 2337 if (bytes_read > 0) 2338 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2339 return bytes_read; 2340 } 2341 2342 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2343 size_t integer_byte_size, 2344 uint64_t fail_value, 2345 Status &error) { 2346 Scalar scalar; 2347 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2348 error)) 2349 return scalar.ULongLong(fail_value); 2350 return fail_value; 2351 } 2352 2353 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2354 size_t integer_byte_size, 2355 int64_t fail_value, 2356 Status &error) { 2357 Scalar scalar; 2358 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2359 error)) 2360 return scalar.SLongLong(fail_value); 2361 return fail_value; 2362 } 2363 2364 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2365 Scalar scalar; 2366 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2367 error)) 2368 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2369 return LLDB_INVALID_ADDRESS; 2370 } 2371 2372 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2373 Status &error) { 2374 Scalar scalar; 2375 const uint32_t addr_byte_size = GetAddressByteSize(); 2376 if (addr_byte_size <= 4) 2377 scalar = (uint32_t)ptr_value; 2378 else 2379 scalar = ptr_value; 2380 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2381 addr_byte_size; 2382 } 2383 2384 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2385 Status &error) { 2386 size_t bytes_written = 0; 2387 const uint8_t *bytes = (const uint8_t *)buf; 2388 2389 while (bytes_written < size) { 2390 const size_t curr_size = size - bytes_written; 2391 const size_t curr_bytes_written = DoWriteMemory( 2392 addr + bytes_written, bytes + bytes_written, curr_size, error); 2393 bytes_written += curr_bytes_written; 2394 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2395 break; 2396 } 2397 return bytes_written; 2398 } 2399 2400 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2401 Status &error) { 2402 #if defined(ENABLE_MEMORY_CACHING) 2403 m_memory_cache.Flush(addr, size); 2404 #endif 2405 2406 if (buf == nullptr || size == 0) 2407 return 0; 2408 2409 m_mod_id.BumpMemoryID(); 2410 2411 // We need to write any data that would go where any current software traps 2412 // (enabled software breakpoints) any software traps (breakpoints) that we 2413 // may have placed in our tasks memory. 2414 2415 BreakpointSiteList bp_sites_in_range; 2416 2417 if (m_breakpoint_site_list.FindInRange(addr, addr + size, 2418 bp_sites_in_range)) { 2419 // No breakpoint sites overlap 2420 if (bp_sites_in_range.IsEmpty()) 2421 return WriteMemoryPrivate(addr, buf, size, error); 2422 else { 2423 const uint8_t *ubuf = (const uint8_t *)buf; 2424 uint64_t bytes_written = 0; 2425 2426 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2427 &error](BreakpointSite *bp) -> void { 2428 2429 if (error.Success()) { 2430 addr_t intersect_addr; 2431 size_t intersect_size; 2432 size_t opcode_offset; 2433 const bool intersects = bp->IntersectsRange( 2434 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2435 UNUSED_IF_ASSERT_DISABLED(intersects); 2436 assert(intersects); 2437 assert(addr <= intersect_addr && intersect_addr < addr + size); 2438 assert(addr < intersect_addr + intersect_size && 2439 intersect_addr + intersect_size <= addr + size); 2440 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2441 2442 // Check for bytes before this breakpoint 2443 const addr_t curr_addr = addr + bytes_written; 2444 if (intersect_addr > curr_addr) { 2445 // There are some bytes before this breakpoint that we need to just 2446 // write to memory 2447 size_t curr_size = intersect_addr - curr_addr; 2448 size_t curr_bytes_written = WriteMemoryPrivate( 2449 curr_addr, ubuf + bytes_written, curr_size, error); 2450 bytes_written += curr_bytes_written; 2451 if (curr_bytes_written != curr_size) { 2452 // We weren't able to write all of the requested bytes, we are 2453 // done looping and will return the number of bytes that we have 2454 // written so far. 2455 if (error.Success()) 2456 error.SetErrorToGenericError(); 2457 } 2458 } 2459 // Now write any bytes that would cover up any software breakpoints 2460 // directly into the breakpoint opcode buffer 2461 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, 2462 ubuf + bytes_written, intersect_size); 2463 bytes_written += intersect_size; 2464 } 2465 }); 2466 2467 if (bytes_written < size) 2468 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2469 size - bytes_written, error); 2470 } 2471 } else { 2472 return WriteMemoryPrivate(addr, buf, size, error); 2473 } 2474 2475 // Write any remaining bytes after the last breakpoint if we have any left 2476 return 0; // bytes_written; 2477 } 2478 2479 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2480 size_t byte_size, Status &error) { 2481 if (byte_size == UINT32_MAX) 2482 byte_size = scalar.GetByteSize(); 2483 if (byte_size > 0) { 2484 uint8_t buf[32]; 2485 const size_t mem_size = 2486 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2487 if (mem_size > 0) 2488 return WriteMemory(addr, buf, mem_size, error); 2489 else 2490 error.SetErrorString("failed to get scalar as memory data"); 2491 } else { 2492 error.SetErrorString("invalid scalar value"); 2493 } 2494 return 0; 2495 } 2496 2497 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2498 bool is_signed, Scalar &scalar, 2499 Status &error) { 2500 uint64_t uval = 0; 2501 if (byte_size == 0) { 2502 error.SetErrorString("byte size is zero"); 2503 } else if (byte_size & (byte_size - 1)) { 2504 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2505 byte_size); 2506 } else if (byte_size <= sizeof(uval)) { 2507 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2508 if (bytes_read == byte_size) { 2509 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2510 GetAddressByteSize()); 2511 lldb::offset_t offset = 0; 2512 if (byte_size <= 4) 2513 scalar = data.GetMaxU32(&offset, byte_size); 2514 else 2515 scalar = data.GetMaxU64(&offset, byte_size); 2516 if (is_signed) 2517 scalar.SignExtend(byte_size * 8); 2518 return bytes_read; 2519 } 2520 } else { 2521 error.SetErrorStringWithFormat( 2522 "byte size of %u is too large for integer scalar type", byte_size); 2523 } 2524 return 0; 2525 } 2526 2527 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2528 Status error; 2529 for (const auto &Entry : entries) { 2530 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2531 error); 2532 if (!error.Success()) 2533 break; 2534 } 2535 return error; 2536 } 2537 2538 #define USE_ALLOCATE_MEMORY_CACHE 1 2539 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2540 Status &error) { 2541 if (GetPrivateState() != eStateStopped) { 2542 error.SetErrorToGenericError(); 2543 return LLDB_INVALID_ADDRESS; 2544 } 2545 2546 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2547 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2548 #else 2549 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2550 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2551 if (log) 2552 log->Printf("Process::AllocateMemory(size=%" PRIu64 2553 ", permissions=%s) => 0x%16.16" PRIx64 2554 " (m_stop_id = %u m_memory_id = %u)", 2555 (uint64_t)size, GetPermissionsAsCString(permissions), 2556 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2557 m_mod_id.GetMemoryID()); 2558 return allocated_addr; 2559 #endif 2560 } 2561 2562 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2563 Status &error) { 2564 addr_t return_addr = AllocateMemory(size, permissions, error); 2565 if (error.Success()) { 2566 std::string buffer(size, 0); 2567 WriteMemory(return_addr, buffer.c_str(), size, error); 2568 } 2569 return return_addr; 2570 } 2571 2572 bool Process::CanJIT() { 2573 if (m_can_jit == eCanJITDontKnow) { 2574 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2575 Status err; 2576 2577 uint64_t allocated_memory = AllocateMemory( 2578 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2579 err); 2580 2581 if (err.Success()) { 2582 m_can_jit = eCanJITYes; 2583 if (log) 2584 log->Printf("Process::%s pid %" PRIu64 2585 " allocation test passed, CanJIT () is true", 2586 __FUNCTION__, GetID()); 2587 } else { 2588 m_can_jit = eCanJITNo; 2589 if (log) 2590 log->Printf("Process::%s pid %" PRIu64 2591 " allocation test failed, CanJIT () is false: %s", 2592 __FUNCTION__, GetID(), err.AsCString()); 2593 } 2594 2595 DeallocateMemory(allocated_memory); 2596 } 2597 2598 return m_can_jit == eCanJITYes; 2599 } 2600 2601 void Process::SetCanJIT(bool can_jit) { 2602 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2603 } 2604 2605 void Process::SetCanRunCode(bool can_run_code) { 2606 SetCanJIT(can_run_code); 2607 m_can_interpret_function_calls = can_run_code; 2608 } 2609 2610 Status Process::DeallocateMemory(addr_t ptr) { 2611 Status error; 2612 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2613 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2614 error.SetErrorStringWithFormat( 2615 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2616 } 2617 #else 2618 error = DoDeallocateMemory(ptr); 2619 2620 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2621 if (log) 2622 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 2623 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2624 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2625 m_mod_id.GetMemoryID()); 2626 #endif 2627 return error; 2628 } 2629 2630 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2631 lldb::addr_t header_addr, 2632 size_t size_to_read) { 2633 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2634 if (log) { 2635 log->Printf("Process::ReadModuleFromMemory reading %s binary from memory", 2636 file_spec.GetPath().c_str()); 2637 } 2638 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2639 if (module_sp) { 2640 Status error; 2641 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2642 shared_from_this(), header_addr, error, size_to_read); 2643 if (objfile) 2644 return module_sp; 2645 } 2646 return ModuleSP(); 2647 } 2648 2649 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2650 uint32_t &permissions) { 2651 MemoryRegionInfo range_info; 2652 permissions = 0; 2653 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2654 if (!error.Success()) 2655 return false; 2656 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2657 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2658 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2659 return false; 2660 } 2661 2662 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2663 permissions |= lldb::ePermissionsReadable; 2664 2665 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2666 permissions |= lldb::ePermissionsWritable; 2667 2668 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2669 permissions |= lldb::ePermissionsExecutable; 2670 2671 return true; 2672 } 2673 2674 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2675 Status error; 2676 error.SetErrorString("watchpoints are not supported"); 2677 return error; 2678 } 2679 2680 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2681 Status error; 2682 error.SetErrorString("watchpoints are not supported"); 2683 return error; 2684 } 2685 2686 StateType 2687 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2688 const Timeout<std::micro> &timeout) { 2689 StateType state; 2690 2691 while (true) { 2692 event_sp.reset(); 2693 state = GetStateChangedEventsPrivate(event_sp, timeout); 2694 2695 if (StateIsStoppedState(state, false)) 2696 break; 2697 2698 // If state is invalid, then we timed out 2699 if (state == eStateInvalid) 2700 break; 2701 2702 if (event_sp) 2703 HandlePrivateEvent(event_sp); 2704 } 2705 return state; 2706 } 2707 2708 void Process::LoadOperatingSystemPlugin(bool flush) { 2709 if (flush) 2710 m_thread_list.Clear(); 2711 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2712 if (flush) 2713 Flush(); 2714 } 2715 2716 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2717 Status error; 2718 m_abi_sp.reset(); 2719 m_dyld_ap.reset(); 2720 m_jit_loaders_ap.reset(); 2721 m_system_runtime_ap.reset(); 2722 m_os_ap.reset(); 2723 m_process_input_reader.reset(); 2724 2725 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2726 if (exe_module) { 2727 char local_exec_file_path[PATH_MAX]; 2728 char platform_exec_file_path[PATH_MAX]; 2729 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2730 sizeof(local_exec_file_path)); 2731 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2732 sizeof(platform_exec_file_path)); 2733 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2734 // Install anything that might need to be installed prior to launching. 2735 // For host systems, this will do nothing, but if we are connected to a 2736 // remote platform it will install any needed binaries 2737 error = GetTarget().Install(&launch_info); 2738 if (error.Fail()) 2739 return error; 2740 2741 if (PrivateStateThreadIsValid()) 2742 PausePrivateStateThread(); 2743 2744 error = WillLaunch(exe_module); 2745 if (error.Success()) { 2746 const bool restarted = false; 2747 SetPublicState(eStateLaunching, restarted); 2748 m_should_detach = false; 2749 2750 if (m_public_run_lock.TrySetRunning()) { 2751 // Now launch using these arguments. 2752 error = DoLaunch(exe_module, launch_info); 2753 } else { 2754 // This shouldn't happen 2755 error.SetErrorString("failed to acquire process run lock"); 2756 } 2757 2758 if (error.Fail()) { 2759 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2760 SetID(LLDB_INVALID_PROCESS_ID); 2761 const char *error_string = error.AsCString(); 2762 if (error_string == nullptr) 2763 error_string = "launch failed"; 2764 SetExitStatus(-1, error_string); 2765 } 2766 } else { 2767 EventSP event_sp; 2768 2769 // Now wait for the process to launch and return control to us, and then call 2770 // DidLaunch: 2771 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2772 2773 if (state == eStateInvalid || !event_sp) { 2774 // We were able to launch the process, but we failed to catch the 2775 // initial stop. 2776 error.SetErrorString("failed to catch stop after launch"); 2777 SetExitStatus(0, "failed to catch stop after launch"); 2778 Destroy(false); 2779 } else if (state == eStateStopped || state == eStateCrashed) { 2780 DidLaunch(); 2781 2782 DynamicLoader *dyld = GetDynamicLoader(); 2783 if (dyld) 2784 dyld->DidLaunch(); 2785 2786 GetJITLoaders().DidLaunch(); 2787 2788 SystemRuntime *system_runtime = GetSystemRuntime(); 2789 if (system_runtime) 2790 system_runtime->DidLaunch(); 2791 2792 if (!m_os_ap) 2793 LoadOperatingSystemPlugin(false); 2794 2795 // We successfully launched the process and stopped, now it the 2796 // right time to set up signal filters before resuming. 2797 UpdateAutomaticSignalFiltering(); 2798 2799 // Note, the stop event was consumed above, but not handled. This 2800 // was done to give DidLaunch a chance to run. The target is either 2801 // stopped or crashed. Directly set the state. This is done to 2802 // prevent a stop message with a bunch of spurious output on thread 2803 // status, as well as not pop a ProcessIOHandler. 2804 SetPublicState(state, false); 2805 2806 if (PrivateStateThreadIsValid()) 2807 ResumePrivateStateThread(); 2808 else 2809 StartPrivateStateThread(); 2810 2811 // Target was stopped at entry as was intended. Need to notify the 2812 // listeners about it. 2813 if (state == eStateStopped && 2814 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2815 HandlePrivateEvent(event_sp); 2816 } else if (state == eStateExited) { 2817 // We exited while trying to launch somehow. Don't call DidLaunch 2818 // as that's not likely to work, and return an invalid pid. 2819 HandlePrivateEvent(event_sp); 2820 } 2821 } 2822 } 2823 } else { 2824 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2825 local_exec_file_path); 2826 } 2827 } 2828 return error; 2829 } 2830 2831 Status Process::LoadCore() { 2832 Status error = DoLoadCore(); 2833 if (error.Success()) { 2834 ListenerSP listener_sp( 2835 Listener::MakeListener("lldb.process.load_core_listener")); 2836 HijackProcessEvents(listener_sp); 2837 2838 if (PrivateStateThreadIsValid()) 2839 ResumePrivateStateThread(); 2840 else 2841 StartPrivateStateThread(); 2842 2843 DynamicLoader *dyld = GetDynamicLoader(); 2844 if (dyld) 2845 dyld->DidAttach(); 2846 2847 GetJITLoaders().DidAttach(); 2848 2849 SystemRuntime *system_runtime = GetSystemRuntime(); 2850 if (system_runtime) 2851 system_runtime->DidAttach(); 2852 2853 if (!m_os_ap) 2854 LoadOperatingSystemPlugin(false); 2855 2856 // We successfully loaded a core file, now pretend we stopped so we can 2857 // show all of the threads in the core file and explore the crashed state. 2858 SetPrivateState(eStateStopped); 2859 2860 // Wait for a stopped event since we just posted one above... 2861 lldb::EventSP event_sp; 2862 StateType state = 2863 WaitForProcessToStop(seconds(10), &event_sp, true, listener_sp); 2864 2865 if (!StateIsStoppedState(state, false)) { 2866 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2867 if (log) 2868 log->Printf("Process::Halt() failed to stop, state is: %s", 2869 StateAsCString(state)); 2870 error.SetErrorString( 2871 "Did not get stopped event after loading the core file."); 2872 } 2873 RestoreProcessEvents(); 2874 } 2875 return error; 2876 } 2877 2878 DynamicLoader *Process::GetDynamicLoader() { 2879 if (!m_dyld_ap) 2880 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 2881 return m_dyld_ap.get(); 2882 } 2883 2884 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); } 2885 2886 JITLoaderList &Process::GetJITLoaders() { 2887 if (!m_jit_loaders_ap) { 2888 m_jit_loaders_ap.reset(new JITLoaderList()); 2889 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 2890 } 2891 return *m_jit_loaders_ap; 2892 } 2893 2894 SystemRuntime *Process::GetSystemRuntime() { 2895 if (!m_system_runtime_ap) 2896 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 2897 return m_system_runtime_ap.get(); 2898 } 2899 2900 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2901 uint32_t exec_count) 2902 : NextEventAction(process), m_exec_count(exec_count) { 2903 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2904 if (log) 2905 log->Printf( 2906 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2907 __FUNCTION__, static_cast<void *>(process), exec_count); 2908 } 2909 2910 Process::NextEventAction::EventActionResult 2911 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2912 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2913 2914 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2915 if (log) 2916 log->Printf( 2917 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2918 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2919 2920 switch (state) { 2921 case eStateAttaching: 2922 return eEventActionSuccess; 2923 2924 case eStateRunning: 2925 case eStateConnected: 2926 return eEventActionRetry; 2927 2928 case eStateStopped: 2929 case eStateCrashed: 2930 // During attach, prior to sending the eStateStopped event, 2931 // lldb_private::Process subclasses must set the new process ID. 2932 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2933 // We don't want these events to be reported, so go set the 2934 // ShouldReportStop here: 2935 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2936 2937 if (m_exec_count > 0) { 2938 --m_exec_count; 2939 2940 if (log) 2941 log->Printf("Process::AttachCompletionHandler::%s state %s: reduced " 2942 "remaining exec count to %" PRIu32 ", requesting resume", 2943 __FUNCTION__, StateAsCString(state), m_exec_count); 2944 2945 RequestResume(); 2946 return eEventActionRetry; 2947 } else { 2948 if (log) 2949 log->Printf("Process::AttachCompletionHandler::%s state %s: no more " 2950 "execs expected to start, continuing with attach", 2951 __FUNCTION__, StateAsCString(state)); 2952 2953 m_process->CompleteAttach(); 2954 return eEventActionSuccess; 2955 } 2956 break; 2957 2958 default: 2959 case eStateExited: 2960 case eStateInvalid: 2961 break; 2962 } 2963 2964 m_exit_string.assign("No valid Process"); 2965 return eEventActionExit; 2966 } 2967 2968 Process::NextEventAction::EventActionResult 2969 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2970 return eEventActionSuccess; 2971 } 2972 2973 const char *Process::AttachCompletionHandler::GetExitString() { 2974 return m_exit_string.c_str(); 2975 } 2976 2977 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2978 if (m_listener_sp) 2979 return m_listener_sp; 2980 else 2981 return debugger.GetListener(); 2982 } 2983 2984 Status Process::Attach(ProcessAttachInfo &attach_info) { 2985 m_abi_sp.reset(); 2986 m_process_input_reader.reset(); 2987 m_dyld_ap.reset(); 2988 m_jit_loaders_ap.reset(); 2989 m_system_runtime_ap.reset(); 2990 m_os_ap.reset(); 2991 2992 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2993 Status error; 2994 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2995 char process_name[PATH_MAX]; 2996 2997 if (attach_info.GetExecutableFile().GetPath(process_name, 2998 sizeof(process_name))) { 2999 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 3000 3001 if (wait_for_launch) { 3002 error = WillAttachToProcessWithName(process_name, wait_for_launch); 3003 if (error.Success()) { 3004 if (m_public_run_lock.TrySetRunning()) { 3005 m_should_detach = true; 3006 const bool restarted = false; 3007 SetPublicState(eStateAttaching, restarted); 3008 // Now attach using these arguments. 3009 error = DoAttachToProcessWithName(process_name, attach_info); 3010 } else { 3011 // This shouldn't happen 3012 error.SetErrorString("failed to acquire process run lock"); 3013 } 3014 3015 if (error.Fail()) { 3016 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3017 SetID(LLDB_INVALID_PROCESS_ID); 3018 if (error.AsCString() == nullptr) 3019 error.SetErrorString("attach failed"); 3020 3021 SetExitStatus(-1, error.AsCString()); 3022 } 3023 } else { 3024 SetNextEventAction(new Process::AttachCompletionHandler( 3025 this, attach_info.GetResumeCount())); 3026 StartPrivateStateThread(); 3027 } 3028 return error; 3029 } 3030 } else { 3031 ProcessInstanceInfoList process_infos; 3032 PlatformSP platform_sp(GetTarget().GetPlatform()); 3033 3034 if (platform_sp) { 3035 ProcessInstanceInfoMatch match_info; 3036 match_info.GetProcessInfo() = attach_info; 3037 match_info.SetNameMatchType(NameMatch::Equals); 3038 platform_sp->FindProcesses(match_info, process_infos); 3039 const uint32_t num_matches = process_infos.GetSize(); 3040 if (num_matches == 1) { 3041 attach_pid = process_infos.GetProcessIDAtIndex(0); 3042 // Fall through and attach using the above process ID 3043 } else { 3044 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3045 process_name, sizeof(process_name)); 3046 if (num_matches > 1) { 3047 StreamString s; 3048 ProcessInstanceInfo::DumpTableHeader(s, platform_sp.get(), true, 3049 false); 3050 for (size_t i = 0; i < num_matches; i++) { 3051 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 3052 s, platform_sp.get(), true, false); 3053 } 3054 error.SetErrorStringWithFormat( 3055 "more than one process named %s:\n%s", process_name, 3056 s.GetData()); 3057 } else 3058 error.SetErrorStringWithFormat( 3059 "could not find a process named %s", process_name); 3060 } 3061 } else { 3062 error.SetErrorString( 3063 "invalid platform, can't find processes by name"); 3064 return error; 3065 } 3066 } 3067 } else { 3068 error.SetErrorString("invalid process name"); 3069 } 3070 } 3071 3072 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3073 error = WillAttachToProcessWithID(attach_pid); 3074 if (error.Success()) { 3075 3076 if (m_public_run_lock.TrySetRunning()) { 3077 // Now attach using these arguments. 3078 m_should_detach = true; 3079 const bool restarted = false; 3080 SetPublicState(eStateAttaching, restarted); 3081 error = DoAttachToProcessWithID(attach_pid, attach_info); 3082 } else { 3083 // This shouldn't happen 3084 error.SetErrorString("failed to acquire process run lock"); 3085 } 3086 3087 if (error.Success()) { 3088 SetNextEventAction(new Process::AttachCompletionHandler( 3089 this, attach_info.GetResumeCount())); 3090 StartPrivateStateThread(); 3091 } else { 3092 if (GetID() != LLDB_INVALID_PROCESS_ID) 3093 SetID(LLDB_INVALID_PROCESS_ID); 3094 3095 const char *error_string = error.AsCString(); 3096 if (error_string == nullptr) 3097 error_string = "attach failed"; 3098 3099 SetExitStatus(-1, error_string); 3100 } 3101 } 3102 } 3103 return error; 3104 } 3105 3106 void Process::CompleteAttach() { 3107 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3108 LIBLLDB_LOG_TARGET)); 3109 if (log) 3110 log->Printf("Process::%s()", __FUNCTION__); 3111 3112 // Let the process subclass figure out at much as it can about the process 3113 // before we go looking for a dynamic loader plug-in. 3114 ArchSpec process_arch; 3115 DidAttach(process_arch); 3116 3117 if (process_arch.IsValid()) { 3118 GetTarget().SetArchitecture(process_arch); 3119 if (log) { 3120 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 3121 log->Printf("Process::%s replacing process architecture with DidAttach() " 3122 "architecture: %s", 3123 __FUNCTION__, triple_str ? triple_str : "<null>"); 3124 } 3125 } 3126 3127 // We just attached. If we have a platform, ask it for the process 3128 // architecture, and if it isn't the same as the one we've already set, 3129 // switch architectures. 3130 PlatformSP platform_sp(GetTarget().GetPlatform()); 3131 assert(platform_sp); 3132 if (platform_sp) { 3133 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3134 if (target_arch.IsValid() && 3135 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3136 ArchSpec platform_arch; 3137 platform_sp = 3138 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3139 if (platform_sp) { 3140 GetTarget().SetPlatform(platform_sp); 3141 GetTarget().SetArchitecture(platform_arch); 3142 if (log) 3143 log->Printf("Process::%s switching platform to %s and architecture " 3144 "to %s based on info from attach", 3145 __FUNCTION__, platform_sp->GetName().AsCString(""), 3146 platform_arch.GetTriple().getTriple().c_str()); 3147 } 3148 } else if (!process_arch.IsValid()) { 3149 ProcessInstanceInfo process_info; 3150 GetProcessInfo(process_info); 3151 const ArchSpec &process_arch = process_info.GetArchitecture(); 3152 if (process_arch.IsValid() && 3153 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3154 GetTarget().SetArchitecture(process_arch); 3155 if (log) 3156 log->Printf("Process::%s switching architecture to %s based on info " 3157 "the platform retrieved for pid %" PRIu64, 3158 __FUNCTION__, 3159 process_arch.GetTriple().getTriple().c_str(), GetID()); 3160 } 3161 } 3162 } 3163 3164 // We have completed the attach, now it is time to find the dynamic loader 3165 // plug-in 3166 DynamicLoader *dyld = GetDynamicLoader(); 3167 if (dyld) { 3168 dyld->DidAttach(); 3169 if (log) { 3170 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3171 log->Printf("Process::%s after DynamicLoader::DidAttach(), target " 3172 "executable is %s (using %s plugin)", 3173 __FUNCTION__, 3174 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3175 : "<none>", 3176 dyld->GetPluginName().AsCString("<unnamed>")); 3177 } 3178 } 3179 3180 GetJITLoaders().DidAttach(); 3181 3182 SystemRuntime *system_runtime = GetSystemRuntime(); 3183 if (system_runtime) { 3184 system_runtime->DidAttach(); 3185 if (log) { 3186 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3187 log->Printf("Process::%s after SystemRuntime::DidAttach(), target " 3188 "executable is %s (using %s plugin)", 3189 __FUNCTION__, 3190 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3191 : "<none>", 3192 system_runtime->GetPluginName().AsCString("<unnamed>")); 3193 } 3194 } 3195 3196 if (!m_os_ap) 3197 LoadOperatingSystemPlugin(false); 3198 // Figure out which one is the executable, and set that in our target: 3199 const ModuleList &target_modules = GetTarget().GetImages(); 3200 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3201 size_t num_modules = target_modules.GetSize(); 3202 ModuleSP new_executable_module_sp; 3203 3204 for (size_t i = 0; i < num_modules; i++) { 3205 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3206 if (module_sp && module_sp->IsExecutable()) { 3207 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3208 new_executable_module_sp = module_sp; 3209 break; 3210 } 3211 } 3212 if (new_executable_module_sp) { 3213 GetTarget().SetExecutableModule(new_executable_module_sp, 3214 eLoadDependentsNo); 3215 if (log) { 3216 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3217 log->Printf( 3218 "Process::%s after looping through modules, target executable is %s", 3219 __FUNCTION__, 3220 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3221 : "<none>"); 3222 } 3223 } 3224 } 3225 3226 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3227 m_abi_sp.reset(); 3228 m_process_input_reader.reset(); 3229 3230 // Find the process and its architecture. Make sure it matches the 3231 // architecture of the current Target, and if not adjust it. 3232 3233 Status error(DoConnectRemote(strm, remote_url)); 3234 if (error.Success()) { 3235 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3236 EventSP event_sp; 3237 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3238 3239 if (state == eStateStopped || state == eStateCrashed) { 3240 // If we attached and actually have a process on the other end, then 3241 // this ended up being the equivalent of an attach. 3242 CompleteAttach(); 3243 3244 // This delays passing the stopped event to listeners till 3245 // CompleteAttach gets a chance to complete... 3246 HandlePrivateEvent(event_sp); 3247 } 3248 } 3249 3250 if (PrivateStateThreadIsValid()) 3251 ResumePrivateStateThread(); 3252 else 3253 StartPrivateStateThread(); 3254 } 3255 return error; 3256 } 3257 3258 Status Process::PrivateResume() { 3259 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3260 LIBLLDB_LOG_STEP)); 3261 if (log) 3262 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s " 3263 "private state: %s", 3264 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3265 StateAsCString(m_private_state.GetValue())); 3266 3267 // If signals handing status changed we might want to update our signal 3268 // filters before resuming. 3269 UpdateAutomaticSignalFiltering(); 3270 3271 Status error(WillResume()); 3272 // Tell the process it is about to resume before the thread list 3273 if (error.Success()) { 3274 // Now let the thread list know we are about to resume so it can let all of 3275 // our threads know that they are about to be resumed. Threads will each be 3276 // called with Thread::WillResume(StateType) where StateType contains the 3277 // state that they are supposed to have when the process is resumed 3278 // (suspended/running/stepping). Threads should also check their resume 3279 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3280 // start back up with a signal. 3281 if (m_thread_list.WillResume()) { 3282 // Last thing, do the PreResumeActions. 3283 if (!RunPreResumeActions()) { 3284 error.SetErrorStringWithFormat( 3285 "Process::PrivateResume PreResumeActions failed, not resuming."); 3286 } else { 3287 m_mod_id.BumpResumeID(); 3288 error = DoResume(); 3289 if (error.Success()) { 3290 DidResume(); 3291 m_thread_list.DidResume(); 3292 if (log) 3293 log->Printf("Process thinks the process has resumed."); 3294 } else { 3295 if (log) 3296 log->Printf( 3297 "Process::PrivateResume() DoResume failed."); 3298 return error; 3299 } 3300 } 3301 } else { 3302 // Somebody wanted to run without running (e.g. we were faking a step 3303 // from one frame of a set of inlined frames that share the same PC to 3304 // another.) So generate a continue & a stopped event, and let the world 3305 // handle them. 3306 if (log) 3307 log->Printf( 3308 "Process::PrivateResume() asked to simulate a start & stop."); 3309 3310 SetPrivateState(eStateRunning); 3311 SetPrivateState(eStateStopped); 3312 } 3313 } else if (log) 3314 log->Printf("Process::PrivateResume() got an error \"%s\".", 3315 error.AsCString("<unknown error>")); 3316 return error; 3317 } 3318 3319 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3320 if (!StateIsRunningState(m_public_state.GetValue())) 3321 return Status("Process is not running."); 3322 3323 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3324 // case it was already set and some thread plan logic calls halt on its own. 3325 m_clear_thread_plans_on_stop |= clear_thread_plans; 3326 3327 ListenerSP halt_listener_sp( 3328 Listener::MakeListener("lldb.process.halt_listener")); 3329 HijackProcessEvents(halt_listener_sp); 3330 3331 EventSP event_sp; 3332 3333 SendAsyncInterrupt(); 3334 3335 if (m_public_state.GetValue() == eStateAttaching) { 3336 // Don't hijack and eat the eStateExited as the code that was doing the 3337 // attach will be waiting for this event... 3338 RestoreProcessEvents(); 3339 SetExitStatus(SIGKILL, "Cancelled async attach."); 3340 Destroy(false); 3341 return Status(); 3342 } 3343 3344 // Wait for 10 second for the process to stop. 3345 StateType state = WaitForProcessToStop( 3346 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3347 RestoreProcessEvents(); 3348 3349 if (state == eStateInvalid || !event_sp) { 3350 // We timed out and didn't get a stop event... 3351 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3352 } 3353 3354 BroadcastEvent(event_sp); 3355 3356 return Status(); 3357 } 3358 3359 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3360 Status error; 3361 3362 // Check both the public & private states here. If we're hung evaluating an 3363 // expression, for instance, then the public state will be stopped, but we 3364 // still need to interrupt. 3365 if (m_public_state.GetValue() == eStateRunning || 3366 m_private_state.GetValue() == eStateRunning) { 3367 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3368 if (log) 3369 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3370 3371 ListenerSP listener_sp( 3372 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3373 HijackProcessEvents(listener_sp); 3374 3375 SendAsyncInterrupt(); 3376 3377 // Consume the interrupt event. 3378 StateType state = 3379 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3380 3381 RestoreProcessEvents(); 3382 3383 // If the process exited while we were waiting for it to stop, put the 3384 // exited event into the shared pointer passed in and return. Our caller 3385 // doesn't need to do anything else, since they don't have a process 3386 // anymore... 3387 3388 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3389 if (log) 3390 log->Printf("Process::%s() Process exited while waiting to stop.", 3391 __FUNCTION__); 3392 return error; 3393 } else 3394 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3395 3396 if (state != eStateStopped) { 3397 if (log) 3398 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, 3399 StateAsCString(state)); 3400 // If we really couldn't stop the process then we should just error out 3401 // here, but if the lower levels just bobbled sending the event and we 3402 // really are stopped, then continue on. 3403 StateType private_state = m_private_state.GetValue(); 3404 if (private_state != eStateStopped) { 3405 return Status( 3406 "Attempt to stop the target in order to detach timed out. " 3407 "State = %s", 3408 StateAsCString(GetState())); 3409 } 3410 } 3411 } 3412 return error; 3413 } 3414 3415 Status Process::Detach(bool keep_stopped) { 3416 EventSP exit_event_sp; 3417 Status error; 3418 m_destroy_in_process = true; 3419 3420 error = WillDetach(); 3421 3422 if (error.Success()) { 3423 if (DetachRequiresHalt()) { 3424 error = StopForDestroyOrDetach(exit_event_sp); 3425 if (!error.Success()) { 3426 m_destroy_in_process = false; 3427 return error; 3428 } else if (exit_event_sp) { 3429 // We shouldn't need to do anything else here. There's no process left 3430 // to detach from... 3431 StopPrivateStateThread(); 3432 m_destroy_in_process = false; 3433 return error; 3434 } 3435 } 3436 3437 m_thread_list.DiscardThreadPlans(); 3438 DisableAllBreakpointSites(); 3439 3440 error = DoDetach(keep_stopped); 3441 if (error.Success()) { 3442 DidDetach(); 3443 StopPrivateStateThread(); 3444 } else { 3445 return error; 3446 } 3447 } 3448 m_destroy_in_process = false; 3449 3450 // If we exited when we were waiting for a process to stop, then forward the 3451 // event here so we don't lose the event 3452 if (exit_event_sp) { 3453 // Directly broadcast our exited event because we shut down our private 3454 // state thread above 3455 BroadcastEvent(exit_event_sp); 3456 } 3457 3458 // If we have been interrupted (to kill us) in the middle of running, we may 3459 // not end up propagating the last events through the event system, in which 3460 // case we might strand the write lock. Unlock it here so when we do to tear 3461 // down the process we don't get an error destroying the lock. 3462 3463 m_public_run_lock.SetStopped(); 3464 return error; 3465 } 3466 3467 Status Process::Destroy(bool force_kill) { 3468 3469 // Tell ourselves we are in the process of destroying the process, so that we 3470 // don't do any unnecessary work that might hinder the destruction. Remember 3471 // to set this back to false when we are done. That way if the attempt 3472 // failed and the process stays around for some reason it won't be in a 3473 // confused state. 3474 3475 if (force_kill) 3476 m_should_detach = false; 3477 3478 if (GetShouldDetach()) { 3479 // FIXME: This will have to be a process setting: 3480 bool keep_stopped = false; 3481 Detach(keep_stopped); 3482 } 3483 3484 m_destroy_in_process = true; 3485 3486 Status error(WillDestroy()); 3487 if (error.Success()) { 3488 EventSP exit_event_sp; 3489 if (DestroyRequiresHalt()) { 3490 error = StopForDestroyOrDetach(exit_event_sp); 3491 } 3492 3493 if (m_public_state.GetValue() != eStateRunning) { 3494 // Ditch all thread plans, and remove all our breakpoints: in case we 3495 // have to restart the target to kill it, we don't want it hitting a 3496 // breakpoint... Only do this if we've stopped, however, since if we 3497 // didn't manage to halt it above, then we're not going to have much luck 3498 // doing this now. 3499 m_thread_list.DiscardThreadPlans(); 3500 DisableAllBreakpointSites(); 3501 } 3502 3503 error = DoDestroy(); 3504 if (error.Success()) { 3505 DidDestroy(); 3506 StopPrivateStateThread(); 3507 } 3508 m_stdio_communication.Disconnect(); 3509 m_stdio_communication.StopReadThread(); 3510 m_stdin_forward = false; 3511 3512 if (m_process_input_reader) { 3513 m_process_input_reader->SetIsDone(true); 3514 m_process_input_reader->Cancel(); 3515 m_process_input_reader.reset(); 3516 } 3517 3518 // If we exited when we were waiting for a process to stop, then forward 3519 // the event here so we don't lose the event 3520 if (exit_event_sp) { 3521 // Directly broadcast our exited event because we shut down our private 3522 // state thread above 3523 BroadcastEvent(exit_event_sp); 3524 } 3525 3526 // If we have been interrupted (to kill us) in the middle of running, we 3527 // may not end up propagating the last events through the event system, in 3528 // which case we might strand the write lock. Unlock it here so when we do 3529 // to tear down the process we don't get an error destroying the lock. 3530 m_public_run_lock.SetStopped(); 3531 } 3532 3533 m_destroy_in_process = false; 3534 3535 return error; 3536 } 3537 3538 Status Process::Signal(int signal) { 3539 Status error(WillSignal()); 3540 if (error.Success()) { 3541 error = DoSignal(signal); 3542 if (error.Success()) 3543 DidSignal(); 3544 } 3545 return error; 3546 } 3547 3548 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3549 assert(signals_sp && "null signals_sp"); 3550 m_unix_signals_sp = signals_sp; 3551 } 3552 3553 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3554 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3555 return m_unix_signals_sp; 3556 } 3557 3558 lldb::ByteOrder Process::GetByteOrder() const { 3559 return GetTarget().GetArchitecture().GetByteOrder(); 3560 } 3561 3562 uint32_t Process::GetAddressByteSize() const { 3563 return GetTarget().GetArchitecture().GetAddressByteSize(); 3564 } 3565 3566 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3567 const StateType state = 3568 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3569 bool return_value = true; 3570 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3571 LIBLLDB_LOG_PROCESS)); 3572 3573 switch (state) { 3574 case eStateDetached: 3575 case eStateExited: 3576 case eStateUnloaded: 3577 m_stdio_communication.SynchronizeWithReadThread(); 3578 m_stdio_communication.Disconnect(); 3579 m_stdio_communication.StopReadThread(); 3580 m_stdin_forward = false; 3581 3582 LLVM_FALLTHROUGH; 3583 case eStateConnected: 3584 case eStateAttaching: 3585 case eStateLaunching: 3586 // These events indicate changes in the state of the debugging session, 3587 // always report them. 3588 return_value = true; 3589 break; 3590 case eStateInvalid: 3591 // We stopped for no apparent reason, don't report it. 3592 return_value = false; 3593 break; 3594 case eStateRunning: 3595 case eStateStepping: 3596 // If we've started the target running, we handle the cases where we are 3597 // already running and where there is a transition from stopped to running 3598 // differently. running -> running: Automatically suppress extra running 3599 // events stopped -> running: Report except when there is one or more no 3600 // votes 3601 // and no yes votes. 3602 SynchronouslyNotifyStateChanged(state); 3603 if (m_force_next_event_delivery) 3604 return_value = true; 3605 else { 3606 switch (m_last_broadcast_state) { 3607 case eStateRunning: 3608 case eStateStepping: 3609 // We always suppress multiple runnings with no PUBLIC stop in between. 3610 return_value = false; 3611 break; 3612 default: 3613 // TODO: make this work correctly. For now always report 3614 // run if we aren't running so we don't miss any running events. If I 3615 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3616 // and hit the breakpoints on multiple threads, then somehow during the 3617 // stepping over of all breakpoints no run gets reported. 3618 3619 // This is a transition from stop to run. 3620 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3621 case eVoteYes: 3622 case eVoteNoOpinion: 3623 return_value = true; 3624 break; 3625 case eVoteNo: 3626 return_value = false; 3627 break; 3628 } 3629 break; 3630 } 3631 } 3632 break; 3633 case eStateStopped: 3634 case eStateCrashed: 3635 case eStateSuspended: 3636 // We've stopped. First see if we're going to restart the target. If we 3637 // are going to stop, then we always broadcast the event. If we aren't 3638 // going to stop, let the thread plans decide if we're going to report this 3639 // event. If no thread has an opinion, we don't report it. 3640 3641 m_stdio_communication.SynchronizeWithReadThread(); 3642 RefreshStateAfterStop(); 3643 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3644 if (log) 3645 log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an " 3646 "interrupt, state: %s", 3647 static_cast<void *>(event_ptr), StateAsCString(state)); 3648 // Even though we know we are going to stop, we should let the threads 3649 // have a look at the stop, so they can properly set their state. 3650 m_thread_list.ShouldStop(event_ptr); 3651 return_value = true; 3652 } else { 3653 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3654 bool should_resume = false; 3655 3656 // It makes no sense to ask "ShouldStop" if we've already been 3657 // restarted... Asking the thread list is also not likely to go well, 3658 // since we are running again. So in that case just report the event. 3659 3660 if (!was_restarted) 3661 should_resume = !m_thread_list.ShouldStop(event_ptr); 3662 3663 if (was_restarted || should_resume || m_resume_requested) { 3664 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3665 if (log) 3666 log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: " 3667 "%s was_restarted: %i stop_vote: %d.", 3668 should_resume, StateAsCString(state), was_restarted, 3669 stop_vote); 3670 3671 switch (stop_vote) { 3672 case eVoteYes: 3673 return_value = true; 3674 break; 3675 case eVoteNoOpinion: 3676 case eVoteNo: 3677 return_value = false; 3678 break; 3679 } 3680 3681 if (!was_restarted) { 3682 if (log) 3683 log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process " 3684 "from state: %s", 3685 static_cast<void *>(event_ptr), StateAsCString(state)); 3686 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3687 PrivateResume(); 3688 } 3689 } else { 3690 return_value = true; 3691 SynchronouslyNotifyStateChanged(state); 3692 } 3693 } 3694 break; 3695 } 3696 3697 // Forcing the next event delivery is a one shot deal. So reset it here. 3698 m_force_next_event_delivery = false; 3699 3700 // We do some coalescing of events (for instance two consecutive running 3701 // events get coalesced.) But we only coalesce against events we actually 3702 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3703 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3704 // done, because the PublicState reflects the last event pulled off the 3705 // queue, and there may be several events stacked up on the queue unserviced. 3706 // So the PublicState may not reflect the last broadcasted event yet. 3707 // m_last_broadcast_state gets updated here. 3708 3709 if (return_value) 3710 m_last_broadcast_state = state; 3711 3712 if (log) 3713 log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3714 "broadcast state: %s - %s", 3715 static_cast<void *>(event_ptr), StateAsCString(state), 3716 StateAsCString(m_last_broadcast_state), 3717 return_value ? "YES" : "NO"); 3718 return return_value; 3719 } 3720 3721 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3722 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3723 3724 bool already_running = PrivateStateThreadIsValid(); 3725 if (log) 3726 log->Printf("Process::%s()%s ", __FUNCTION__, 3727 already_running ? " already running" 3728 : " starting private state thread"); 3729 3730 if (!is_secondary_thread && already_running) 3731 return true; 3732 3733 // Create a thread that watches our internal state and controls which events 3734 // make it to clients (into the DCProcess event queue). 3735 char thread_name[1024]; 3736 uint32_t max_len = llvm::get_max_thread_name_length(); 3737 if (max_len > 0 && max_len <= 30) { 3738 // On platforms with abbreviated thread name lengths, choose thread names 3739 // that fit within the limit. 3740 if (already_running) 3741 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3742 else 3743 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3744 } else { 3745 if (already_running) 3746 snprintf(thread_name, sizeof(thread_name), 3747 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3748 GetID()); 3749 else 3750 snprintf(thread_name, sizeof(thread_name), 3751 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3752 } 3753 3754 // Create the private state thread, and start it running. 3755 PrivateStateThreadArgs *args_ptr = 3756 new PrivateStateThreadArgs(this, is_secondary_thread); 3757 m_private_state_thread = 3758 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3759 (void *)args_ptr, nullptr, 8 * 1024 * 1024); 3760 if (m_private_state_thread.IsJoinable()) { 3761 ResumePrivateStateThread(); 3762 return true; 3763 } else 3764 return false; 3765 } 3766 3767 void Process::PausePrivateStateThread() { 3768 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3769 } 3770 3771 void Process::ResumePrivateStateThread() { 3772 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3773 } 3774 3775 void Process::StopPrivateStateThread() { 3776 if (m_private_state_thread.IsJoinable()) 3777 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3778 else { 3779 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3780 if (log) 3781 log->Printf( 3782 "Went to stop the private state thread, but it was already invalid."); 3783 } 3784 } 3785 3786 void Process::ControlPrivateStateThread(uint32_t signal) { 3787 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3788 3789 assert(signal == eBroadcastInternalStateControlStop || 3790 signal == eBroadcastInternalStateControlPause || 3791 signal == eBroadcastInternalStateControlResume); 3792 3793 if (log) 3794 log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal); 3795 3796 // Signal the private state thread 3797 if (m_private_state_thread.IsJoinable()) { 3798 // Broadcast the event. 3799 // It is important to do this outside of the if below, because it's 3800 // possible that the thread state is invalid but that the thread is waiting 3801 // on a control event instead of simply being on its way out (this should 3802 // not happen, but it apparently can). 3803 if (log) 3804 log->Printf("Sending control event of type: %d.", signal); 3805 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3806 m_private_state_control_broadcaster.BroadcastEvent(signal, 3807 event_receipt_sp); 3808 3809 // Wait for the event receipt or for the private state thread to exit 3810 bool receipt_received = false; 3811 if (PrivateStateThreadIsValid()) { 3812 while (!receipt_received) { 3813 // Check for a receipt for 2 seconds and then check if the private 3814 // state thread is still around. 3815 receipt_received = 3816 event_receipt_sp->WaitForEventReceived(std::chrono::seconds(2)); 3817 if (!receipt_received) { 3818 // Check if the private state thread is still around. If it isn't 3819 // then we are done waiting 3820 if (!PrivateStateThreadIsValid()) 3821 break; // Private state thread exited or is exiting, we are done 3822 } 3823 } 3824 } 3825 3826 if (signal == eBroadcastInternalStateControlStop) { 3827 thread_result_t result = NULL; 3828 m_private_state_thread.Join(&result); 3829 m_private_state_thread.Reset(); 3830 } 3831 } else { 3832 if (log) 3833 log->Printf( 3834 "Private state thread already dead, no need to signal it to stop."); 3835 } 3836 } 3837 3838 void Process::SendAsyncInterrupt() { 3839 if (PrivateStateThreadIsValid()) 3840 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3841 nullptr); 3842 else 3843 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3844 } 3845 3846 void Process::HandlePrivateEvent(EventSP &event_sp) { 3847 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3848 m_resume_requested = false; 3849 3850 const StateType new_state = 3851 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3852 3853 // First check to see if anybody wants a shot at this event: 3854 if (m_next_event_action_ap) { 3855 NextEventAction::EventActionResult action_result = 3856 m_next_event_action_ap->PerformAction(event_sp); 3857 if (log) 3858 log->Printf("Ran next event action, result was %d.", action_result); 3859 3860 switch (action_result) { 3861 case NextEventAction::eEventActionSuccess: 3862 SetNextEventAction(nullptr); 3863 break; 3864 3865 case NextEventAction::eEventActionRetry: 3866 break; 3867 3868 case NextEventAction::eEventActionExit: 3869 // Handle Exiting Here. If we already got an exited event, we should 3870 // just propagate it. Otherwise, swallow this event, and set our state 3871 // to exit so the next event will kill us. 3872 if (new_state != eStateExited) { 3873 // FIXME: should cons up an exited event, and discard this one. 3874 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 3875 SetNextEventAction(nullptr); 3876 return; 3877 } 3878 SetNextEventAction(nullptr); 3879 break; 3880 } 3881 } 3882 3883 // See if we should broadcast this state to external clients? 3884 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3885 3886 if (should_broadcast) { 3887 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3888 if (log) { 3889 log->Printf("Process::%s (pid = %" PRIu64 3890 ") broadcasting new state %s (old state %s) to %s", 3891 __FUNCTION__, GetID(), StateAsCString(new_state), 3892 StateAsCString(GetState()), 3893 is_hijacked ? "hijacked" : "public"); 3894 } 3895 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3896 if (StateIsRunningState(new_state)) { 3897 // Only push the input handler if we aren't fowarding events, as this 3898 // means the curses GUI is in use... Or don't push it if we are launching 3899 // since it will come up stopped. 3900 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3901 new_state != eStateLaunching && new_state != eStateAttaching) { 3902 PushProcessIOHandler(); 3903 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3904 eBroadcastAlways); 3905 if (log) 3906 log->Printf("Process::%s updated m_iohandler_sync to %d", 3907 __FUNCTION__, m_iohandler_sync.GetValue()); 3908 } 3909 } else if (StateIsStoppedState(new_state, false)) { 3910 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3911 // If the lldb_private::Debugger is handling the events, we don't want 3912 // to pop the process IOHandler here, we want to do it when we receive 3913 // the stopped event so we can carefully control when the process 3914 // IOHandler is popped because when we stop we want to display some 3915 // text stating how and why we stopped, then maybe some 3916 // process/thread/frame info, and then we want the "(lldb) " prompt to 3917 // show up. If we pop the process IOHandler here, then we will cause 3918 // the command interpreter to become the top IOHandler after the 3919 // process pops off and it will update its prompt right away... See the 3920 // Debugger.cpp file where it calls the function as 3921 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3922 // Otherwise we end up getting overlapping "(lldb) " prompts and 3923 // garbled output. 3924 // 3925 // If we aren't handling the events in the debugger (which is indicated 3926 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3927 // we are hijacked, then we always pop the process IO handler manually. 3928 // Hijacking happens when the internal process state thread is running 3929 // thread plans, or when commands want to run in synchronous mode and 3930 // they call "process->WaitForProcessToStop()". An example of something 3931 // that will hijack the events is a simple expression: 3932 // 3933 // (lldb) expr (int)puts("hello") 3934 // 3935 // This will cause the internal process state thread to resume and halt 3936 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3937 // events) and we do need the IO handler to be pushed and popped 3938 // correctly. 3939 3940 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3941 PopProcessIOHandler(); 3942 } 3943 } 3944 3945 BroadcastEvent(event_sp); 3946 } else { 3947 if (log) { 3948 log->Printf( 3949 "Process::%s (pid = %" PRIu64 3950 ") suppressing state %s (old state %s): should_broadcast == false", 3951 __FUNCTION__, GetID(), StateAsCString(new_state), 3952 StateAsCString(GetState())); 3953 } 3954 } 3955 } 3956 3957 Status Process::HaltPrivate() { 3958 EventSP event_sp; 3959 Status error(WillHalt()); 3960 if (error.Fail()) 3961 return error; 3962 3963 // Ask the process subclass to actually halt our process 3964 bool caused_stop; 3965 error = DoHalt(caused_stop); 3966 3967 DidHalt(); 3968 return error; 3969 } 3970 3971 thread_result_t Process::PrivateStateThread(void *arg) { 3972 std::unique_ptr<PrivateStateThreadArgs> args_up( 3973 static_cast<PrivateStateThreadArgs *>(arg)); 3974 thread_result_t result = 3975 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3976 return result; 3977 } 3978 3979 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3980 bool control_only = true; 3981 3982 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3983 if (log) 3984 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3985 __FUNCTION__, static_cast<void *>(this), GetID()); 3986 3987 bool exit_now = false; 3988 bool interrupt_requested = false; 3989 while (!exit_now) { 3990 EventSP event_sp; 3991 GetEventsPrivate(event_sp, llvm::None, control_only); 3992 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3993 if (log) 3994 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3995 ") got a control event: %d", 3996 __FUNCTION__, static_cast<void *>(this), GetID(), 3997 event_sp->GetType()); 3998 3999 switch (event_sp->GetType()) { 4000 case eBroadcastInternalStateControlStop: 4001 exit_now = true; 4002 break; // doing any internal state management below 4003 4004 case eBroadcastInternalStateControlPause: 4005 control_only = true; 4006 break; 4007 4008 case eBroadcastInternalStateControlResume: 4009 control_only = false; 4010 break; 4011 } 4012 4013 continue; 4014 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4015 if (m_public_state.GetValue() == eStateAttaching) { 4016 if (log) 4017 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4018 ") woke up with an interrupt while attaching - " 4019 "forwarding interrupt.", 4020 __FUNCTION__, static_cast<void *>(this), GetID()); 4021 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4022 } else if (StateIsRunningState(m_last_broadcast_state)) { 4023 if (log) 4024 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4025 ") woke up with an interrupt - Halting.", 4026 __FUNCTION__, static_cast<void *>(this), GetID()); 4027 Status error = HaltPrivate(); 4028 if (error.Fail() && log) 4029 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4030 ") failed to halt the process: %s", 4031 __FUNCTION__, static_cast<void *>(this), GetID(), 4032 error.AsCString()); 4033 // Halt should generate a stopped event. Make a note of the fact that 4034 // we were doing the interrupt, so we can set the interrupted flag 4035 // after we receive the event. We deliberately set this to true even if 4036 // HaltPrivate failed, so that we can interrupt on the next natural 4037 // stop. 4038 interrupt_requested = true; 4039 } else { 4040 // This can happen when someone (e.g. Process::Halt) sees that we are 4041 // running and sends an interrupt request, but the process actually 4042 // stops before we receive it. In that case, we can just ignore the 4043 // request. We use m_last_broadcast_state, because the Stopped event 4044 // may not have been popped of the event queue yet, which is when the 4045 // public state gets updated. 4046 if (log) 4047 log->Printf( 4048 "Process::%s ignoring interrupt as we have already stopped.", 4049 __FUNCTION__); 4050 } 4051 continue; 4052 } 4053 4054 const StateType internal_state = 4055 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4056 4057 if (internal_state != eStateInvalid) { 4058 if (m_clear_thread_plans_on_stop && 4059 StateIsStoppedState(internal_state, true)) { 4060 m_clear_thread_plans_on_stop = false; 4061 m_thread_list.DiscardThreadPlans(); 4062 } 4063 4064 if (interrupt_requested) { 4065 if (StateIsStoppedState(internal_state, true)) { 4066 // We requested the interrupt, so mark this as such in the stop event 4067 // so clients can tell an interrupted process from a natural stop 4068 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4069 interrupt_requested = false; 4070 } else if (log) { 4071 log->Printf("Process::%s interrupt_requested, but a non-stopped " 4072 "state '%s' received.", 4073 __FUNCTION__, StateAsCString(internal_state)); 4074 } 4075 } 4076 4077 HandlePrivateEvent(event_sp); 4078 } 4079 4080 if (internal_state == eStateInvalid || internal_state == eStateExited || 4081 internal_state == eStateDetached) { 4082 if (log) 4083 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4084 ") about to exit with internal state %s...", 4085 __FUNCTION__, static_cast<void *>(this), GetID(), 4086 StateAsCString(internal_state)); 4087 4088 break; 4089 } 4090 } 4091 4092 // Verify log is still enabled before attempting to write to it... 4093 if (log) 4094 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4095 __FUNCTION__, static_cast<void *>(this), GetID()); 4096 4097 // If we are a secondary thread, then the primary thread we are working for 4098 // will have already acquired the public_run_lock, and isn't done with what 4099 // it was doing yet, so don't try to change it on the way out. 4100 if (!is_secondary_thread) 4101 m_public_run_lock.SetStopped(); 4102 return NULL; 4103 } 4104 4105 //------------------------------------------------------------------ 4106 // Process Event Data 4107 //------------------------------------------------------------------ 4108 4109 Process::ProcessEventData::ProcessEventData() 4110 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 4111 m_update_state(0), m_interrupted(false) {} 4112 4113 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4114 StateType state) 4115 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 4116 m_update_state(0), m_interrupted(false) { 4117 if (process_sp) 4118 m_process_wp = process_sp; 4119 } 4120 4121 Process::ProcessEventData::~ProcessEventData() = default; 4122 4123 const ConstString &Process::ProcessEventData::GetFlavorString() { 4124 static ConstString g_flavor("Process::ProcessEventData"); 4125 return g_flavor; 4126 } 4127 4128 const ConstString &Process::ProcessEventData::GetFlavor() const { 4129 return ProcessEventData::GetFlavorString(); 4130 } 4131 4132 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4133 ProcessSP process_sp(m_process_wp.lock()); 4134 4135 if (!process_sp) 4136 return; 4137 4138 // This function gets called twice for each event, once when the event gets 4139 // pulled off of the private process event queue, and then any number of 4140 // times, first when it gets pulled off of the public event queue, then other 4141 // times when we're pretending that this is where we stopped at the end of 4142 // expression evaluation. m_update_state is used to distinguish these three 4143 // cases; it is 0 when we're just pulling it off for private handling, and > 4144 // 1 for expression evaluation, and we don't want to do the breakpoint 4145 // command handling then. 4146 if (m_update_state != 1) 4147 return; 4148 4149 process_sp->SetPublicState( 4150 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4151 4152 if (m_state == eStateStopped && !m_restarted) { 4153 // Let process subclasses know we are about to do a public stop and do 4154 // anything they might need to in order to speed up register and memory 4155 // accesses. 4156 process_sp->WillPublicStop(); 4157 } 4158 4159 // If this is a halt event, even if the halt stopped with some reason other 4160 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4161 // the halt request came through) don't do the StopInfo actions, as they may 4162 // end up restarting the process. 4163 if (m_interrupted) 4164 return; 4165 4166 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4167 if (m_state == eStateStopped && !m_restarted) { 4168 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4169 uint32_t num_threads = curr_thread_list.GetSize(); 4170 uint32_t idx; 4171 4172 // The actions might change one of the thread's stop_info's opinions about 4173 // whether we should stop the process, so we need to query that as we go. 4174 4175 // One other complication here, is that we try to catch any case where the 4176 // target has run (except for expressions) and immediately exit, but if we 4177 // get that wrong (which is possible) then the thread list might have 4178 // changed, and that would cause our iteration here to crash. We could 4179 // make a copy of the thread list, but we'd really like to also know if it 4180 // has changed at all, so we make up a vector of the thread ID's and check 4181 // what we get back against this list & bag out if anything differs. 4182 std::vector<uint32_t> thread_index_array(num_threads); 4183 for (idx = 0; idx < num_threads; ++idx) 4184 thread_index_array[idx] = 4185 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4186 4187 // Use this to track whether we should continue from here. We will only 4188 // continue the target running if no thread says we should stop. Of course 4189 // if some thread's PerformAction actually sets the target running, then it 4190 // doesn't matter what the other threads say... 4191 4192 bool still_should_stop = false; 4193 4194 // Sometimes - for instance if we have a bug in the stub we are talking to, 4195 // we stop but no thread has a valid stop reason. In that case we should 4196 // just stop, because we have no way of telling what the right thing to do 4197 // is, and it's better to let the user decide than continue behind their 4198 // backs. 4199 4200 bool does_anybody_have_an_opinion = false; 4201 4202 for (idx = 0; idx < num_threads; ++idx) { 4203 curr_thread_list = process_sp->GetThreadList(); 4204 if (curr_thread_list.GetSize() != num_threads) { 4205 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4206 LIBLLDB_LOG_PROCESS)); 4207 if (log) 4208 log->Printf( 4209 "Number of threads changed from %u to %u while processing event.", 4210 num_threads, curr_thread_list.GetSize()); 4211 break; 4212 } 4213 4214 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4215 4216 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4217 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4218 LIBLLDB_LOG_PROCESS)); 4219 if (log) 4220 log->Printf("The thread at position %u changed from %u to %u while " 4221 "processing event.", 4222 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4223 break; 4224 } 4225 4226 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4227 if (stop_info_sp && stop_info_sp->IsValid()) { 4228 does_anybody_have_an_opinion = true; 4229 bool this_thread_wants_to_stop; 4230 if (stop_info_sp->GetOverrideShouldStop()) { 4231 this_thread_wants_to_stop = 4232 stop_info_sp->GetOverriddenShouldStopValue(); 4233 } else { 4234 stop_info_sp->PerformAction(event_ptr); 4235 // The stop action might restart the target. If it does, then we 4236 // want to mark that in the event so that whoever is receiving it 4237 // will know to wait for the running event and reflect that state 4238 // appropriately. We also need to stop processing actions, since they 4239 // aren't expecting the target to be running. 4240 4241 // FIXME: we might have run. 4242 if (stop_info_sp->HasTargetRunSinceMe()) { 4243 SetRestarted(true); 4244 break; 4245 } 4246 4247 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4248 } 4249 4250 if (!still_should_stop) 4251 still_should_stop = this_thread_wants_to_stop; 4252 } 4253 } 4254 4255 if (!GetRestarted()) { 4256 if (!still_should_stop && does_anybody_have_an_opinion) { 4257 // We've been asked to continue, so do that here. 4258 SetRestarted(true); 4259 // Use the public resume method here, since this is just extending a 4260 // public resume. 4261 process_sp->PrivateResume(); 4262 } else { 4263 // If we didn't restart, run the Stop Hooks here: They might also 4264 // restart the target, so watch for that. 4265 process_sp->GetTarget().RunStopHooks(); 4266 if (process_sp->GetPrivateState() == eStateRunning) 4267 SetRestarted(true); 4268 } 4269 } 4270 } 4271 } 4272 4273 void Process::ProcessEventData::Dump(Stream *s) const { 4274 ProcessSP process_sp(m_process_wp.lock()); 4275 4276 if (process_sp) 4277 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4278 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4279 else 4280 s->PutCString(" process = NULL, "); 4281 4282 s->Printf("state = %s", StateAsCString(GetState())); 4283 } 4284 4285 const Process::ProcessEventData * 4286 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4287 if (event_ptr) { 4288 const EventData *event_data = event_ptr->GetData(); 4289 if (event_data && 4290 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4291 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4292 } 4293 return nullptr; 4294 } 4295 4296 ProcessSP 4297 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4298 ProcessSP process_sp; 4299 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4300 if (data) 4301 process_sp = data->GetProcessSP(); 4302 return process_sp; 4303 } 4304 4305 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4306 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4307 if (data == nullptr) 4308 return eStateInvalid; 4309 else 4310 return data->GetState(); 4311 } 4312 4313 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4314 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4315 if (data == nullptr) 4316 return false; 4317 else 4318 return data->GetRestarted(); 4319 } 4320 4321 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4322 bool new_value) { 4323 ProcessEventData *data = 4324 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4325 if (data != nullptr) 4326 data->SetRestarted(new_value); 4327 } 4328 4329 size_t 4330 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4331 ProcessEventData *data = 4332 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4333 if (data != nullptr) 4334 return data->GetNumRestartedReasons(); 4335 else 4336 return 0; 4337 } 4338 4339 const char * 4340 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4341 size_t idx) { 4342 ProcessEventData *data = 4343 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4344 if (data != nullptr) 4345 return data->GetRestartedReasonAtIndex(idx); 4346 else 4347 return nullptr; 4348 } 4349 4350 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4351 const char *reason) { 4352 ProcessEventData *data = 4353 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4354 if (data != nullptr) 4355 data->AddRestartedReason(reason); 4356 } 4357 4358 bool Process::ProcessEventData::GetInterruptedFromEvent( 4359 const Event *event_ptr) { 4360 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4361 if (data == nullptr) 4362 return false; 4363 else 4364 return data->GetInterrupted(); 4365 } 4366 4367 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4368 bool new_value) { 4369 ProcessEventData *data = 4370 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4371 if (data != nullptr) 4372 data->SetInterrupted(new_value); 4373 } 4374 4375 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4376 ProcessEventData *data = 4377 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4378 if (data) { 4379 data->SetUpdateStateOnRemoval(); 4380 return true; 4381 } 4382 return false; 4383 } 4384 4385 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4386 4387 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4388 exe_ctx.SetTargetPtr(&GetTarget()); 4389 exe_ctx.SetProcessPtr(this); 4390 exe_ctx.SetThreadPtr(nullptr); 4391 exe_ctx.SetFramePtr(nullptr); 4392 } 4393 4394 // uint32_t 4395 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4396 // std::vector<lldb::pid_t> &pids) 4397 //{ 4398 // return 0; 4399 //} 4400 // 4401 // ArchSpec 4402 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4403 //{ 4404 // return Host::GetArchSpecForExistingProcess (pid); 4405 //} 4406 // 4407 // ArchSpec 4408 // Process::GetArchSpecForExistingProcess (const char *process_name) 4409 //{ 4410 // return Host::GetArchSpecForExistingProcess (process_name); 4411 //} 4412 4413 void Process::AppendSTDOUT(const char *s, size_t len) { 4414 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4415 m_stdout_data.append(s, len); 4416 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4417 new ProcessEventData(shared_from_this(), GetState())); 4418 } 4419 4420 void Process::AppendSTDERR(const char *s, size_t len) { 4421 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4422 m_stderr_data.append(s, len); 4423 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4424 new ProcessEventData(shared_from_this(), GetState())); 4425 } 4426 4427 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4428 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4429 m_profile_data.push_back(one_profile_data); 4430 BroadcastEventIfUnique(eBroadcastBitProfileData, 4431 new ProcessEventData(shared_from_this(), GetState())); 4432 } 4433 4434 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4435 const StructuredDataPluginSP &plugin_sp) { 4436 BroadcastEvent( 4437 eBroadcastBitStructuredData, 4438 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4439 } 4440 4441 StructuredDataPluginSP 4442 Process::GetStructuredDataPlugin(const ConstString &type_name) const { 4443 auto find_it = m_structured_data_plugin_map.find(type_name); 4444 if (find_it != m_structured_data_plugin_map.end()) 4445 return find_it->second; 4446 else 4447 return StructuredDataPluginSP(); 4448 } 4449 4450 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4451 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4452 if (m_profile_data.empty()) 4453 return 0; 4454 4455 std::string &one_profile_data = m_profile_data.front(); 4456 size_t bytes_available = one_profile_data.size(); 4457 if (bytes_available > 0) { 4458 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4459 if (log) 4460 log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4461 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4462 if (bytes_available > buf_size) { 4463 memcpy(buf, one_profile_data.c_str(), buf_size); 4464 one_profile_data.erase(0, buf_size); 4465 bytes_available = buf_size; 4466 } else { 4467 memcpy(buf, one_profile_data.c_str(), bytes_available); 4468 m_profile_data.erase(m_profile_data.begin()); 4469 } 4470 } 4471 return bytes_available; 4472 } 4473 4474 //------------------------------------------------------------------ 4475 // Process STDIO 4476 //------------------------------------------------------------------ 4477 4478 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4479 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4480 size_t bytes_available = m_stdout_data.size(); 4481 if (bytes_available > 0) { 4482 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4483 if (log) 4484 log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4485 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4486 if (bytes_available > buf_size) { 4487 memcpy(buf, m_stdout_data.c_str(), buf_size); 4488 m_stdout_data.erase(0, buf_size); 4489 bytes_available = buf_size; 4490 } else { 4491 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4492 m_stdout_data.clear(); 4493 } 4494 } 4495 return bytes_available; 4496 } 4497 4498 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4499 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4500 size_t bytes_available = m_stderr_data.size(); 4501 if (bytes_available > 0) { 4502 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4503 if (log) 4504 log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4505 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4506 if (bytes_available > buf_size) { 4507 memcpy(buf, m_stderr_data.c_str(), buf_size); 4508 m_stderr_data.erase(0, buf_size); 4509 bytes_available = buf_size; 4510 } else { 4511 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4512 m_stderr_data.clear(); 4513 } 4514 } 4515 return bytes_available; 4516 } 4517 4518 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4519 size_t src_len) { 4520 Process *process = (Process *)baton; 4521 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4522 } 4523 4524 class IOHandlerProcessSTDIO : public IOHandler { 4525 public: 4526 IOHandlerProcessSTDIO(Process *process, int write_fd) 4527 : IOHandler(process->GetTarget().GetDebugger(), 4528 IOHandler::Type::ProcessIO), 4529 m_process(process), m_write_file(write_fd, false) { 4530 m_pipe.CreateNew(false); 4531 m_read_file.SetDescriptor(GetInputFD(), false); 4532 } 4533 4534 ~IOHandlerProcessSTDIO() override = default; 4535 4536 // Each IOHandler gets to run until it is done. It should read data from the 4537 // "in" and place output into "out" and "err and return when done. 4538 void Run() override { 4539 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4540 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4541 SetIsDone(true); 4542 return; 4543 } 4544 4545 SetIsDone(false); 4546 const int read_fd = m_read_file.GetDescriptor(); 4547 TerminalState terminal_state; 4548 terminal_state.Save(read_fd, false); 4549 Terminal terminal(read_fd); 4550 terminal.SetCanonical(false); 4551 terminal.SetEcho(false); 4552 // FD_ZERO, FD_SET are not supported on windows 4553 #ifndef _WIN32 4554 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4555 m_is_running = true; 4556 while (!GetIsDone()) { 4557 SelectHelper select_helper; 4558 select_helper.FDSetRead(read_fd); 4559 select_helper.FDSetRead(pipe_read_fd); 4560 Status error = select_helper.Select(); 4561 4562 if (error.Fail()) { 4563 SetIsDone(true); 4564 } else { 4565 char ch = 0; 4566 size_t n; 4567 if (select_helper.FDIsSetRead(read_fd)) { 4568 n = 1; 4569 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4570 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4571 SetIsDone(true); 4572 } else 4573 SetIsDone(true); 4574 } 4575 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4576 size_t bytes_read; 4577 // Consume the interrupt byte 4578 Status error = m_pipe.Read(&ch, 1, bytes_read); 4579 if (error.Success()) { 4580 switch (ch) { 4581 case 'q': 4582 SetIsDone(true); 4583 break; 4584 case 'i': 4585 if (StateIsRunningState(m_process->GetState())) 4586 m_process->SendAsyncInterrupt(); 4587 break; 4588 } 4589 } 4590 } 4591 } 4592 } 4593 m_is_running = false; 4594 #endif 4595 terminal_state.Restore(); 4596 } 4597 4598 void Cancel() override { 4599 SetIsDone(true); 4600 // Only write to our pipe to cancel if we are in 4601 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4602 // is being run from the command interpreter: 4603 // 4604 // (lldb) step_process_thousands_of_times 4605 // 4606 // In this case the command interpreter will be in the middle of handling 4607 // the command and if the process pushes and pops the IOHandler thousands 4608 // of times, we can end up writing to m_pipe without ever consuming the 4609 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4610 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4611 if (m_is_running) { 4612 char ch = 'q'; // Send 'q' for quit 4613 size_t bytes_written = 0; 4614 m_pipe.Write(&ch, 1, bytes_written); 4615 } 4616 } 4617 4618 bool Interrupt() override { 4619 // Do only things that are safe to do in an interrupt context (like in a 4620 // SIGINT handler), like write 1 byte to a file descriptor. This will 4621 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4622 // that was written to the pipe and then call 4623 // m_process->SendAsyncInterrupt() from a much safer location in code. 4624 if (m_active) { 4625 char ch = 'i'; // Send 'i' for interrupt 4626 size_t bytes_written = 0; 4627 Status result = m_pipe.Write(&ch, 1, bytes_written); 4628 return result.Success(); 4629 } else { 4630 // This IOHandler might be pushed on the stack, but not being run 4631 // currently so do the right thing if we aren't actively watching for 4632 // STDIN by sending the interrupt to the process. Otherwise the write to 4633 // the pipe above would do nothing. This can happen when the command 4634 // interpreter is running and gets a "expression ...". It will be on the 4635 // IOHandler thread and sending the input is complete to the delegate 4636 // which will cause the expression to run, which will push the process IO 4637 // handler, but not run it. 4638 4639 if (StateIsRunningState(m_process->GetState())) { 4640 m_process->SendAsyncInterrupt(); 4641 return true; 4642 } 4643 } 4644 return false; 4645 } 4646 4647 void GotEOF() override {} 4648 4649 protected: 4650 Process *m_process; 4651 File m_read_file; // Read from this file (usually actual STDIN for LLDB 4652 File m_write_file; // Write to this file (usually the master pty for getting 4653 // io to debuggee) 4654 Pipe m_pipe; 4655 std::atomic<bool> m_is_running{false}; 4656 }; 4657 4658 void Process::SetSTDIOFileDescriptor(int fd) { 4659 // First set up the Read Thread for reading/handling process I/O 4660 4661 std::unique_ptr<ConnectionFileDescriptor> conn_ap( 4662 new ConnectionFileDescriptor(fd, true)); 4663 4664 if (conn_ap) { 4665 m_stdio_communication.SetConnection(conn_ap.release()); 4666 if (m_stdio_communication.IsConnected()) { 4667 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4668 STDIOReadThreadBytesReceived, this); 4669 m_stdio_communication.StartReadThread(); 4670 4671 // Now read thread is set up, set up input reader. 4672 4673 if (!m_process_input_reader) 4674 m_process_input_reader.reset(new IOHandlerProcessSTDIO(this, fd)); 4675 } 4676 } 4677 } 4678 4679 bool Process::ProcessIOHandlerIsActive() { 4680 IOHandlerSP io_handler_sp(m_process_input_reader); 4681 if (io_handler_sp) 4682 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4683 return false; 4684 } 4685 bool Process::PushProcessIOHandler() { 4686 IOHandlerSP io_handler_sp(m_process_input_reader); 4687 if (io_handler_sp) { 4688 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4689 if (log) 4690 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 4691 4692 io_handler_sp->SetIsDone(false); 4693 // If we evaluate an utility function, then we don't cancel the current 4694 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4695 // existing IOHandler that potentially provides the user interface (e.g. 4696 // the IOHandler for Editline). 4697 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4698 GetTarget().GetDebugger().PushIOHandler(io_handler_sp, cancel_top_handler); 4699 return true; 4700 } 4701 return false; 4702 } 4703 4704 bool Process::PopProcessIOHandler() { 4705 IOHandlerSP io_handler_sp(m_process_input_reader); 4706 if (io_handler_sp) 4707 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4708 return false; 4709 } 4710 4711 // The process needs to know about installed plug-ins 4712 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4713 4714 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4715 4716 namespace { 4717 // RestorePlanState is used to record the "is private", "is master" and "okay 4718 // to discard" fields of the plan we are running, and reset it on Clean or on 4719 // destruction. It will only reset the state once, so you can call Clean and 4720 // then monkey with the state and it won't get reset on you again. 4721 4722 class RestorePlanState { 4723 public: 4724 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4725 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4726 if (m_thread_plan_sp) { 4727 m_private = m_thread_plan_sp->GetPrivate(); 4728 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4729 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4730 } 4731 } 4732 4733 ~RestorePlanState() { Clean(); } 4734 4735 void Clean() { 4736 if (!m_already_reset && m_thread_plan_sp) { 4737 m_already_reset = true; 4738 m_thread_plan_sp->SetPrivate(m_private); 4739 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4740 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4741 } 4742 } 4743 4744 private: 4745 lldb::ThreadPlanSP m_thread_plan_sp; 4746 bool m_already_reset; 4747 bool m_private; 4748 bool m_is_master; 4749 bool m_okay_to_discard; 4750 }; 4751 } // anonymous namespace 4752 4753 static microseconds 4754 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4755 const milliseconds default_one_thread_timeout(250); 4756 4757 // If the overall wait is forever, then we don't need to worry about it. 4758 if (!options.GetTimeout()) { 4759 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4760 : default_one_thread_timeout; 4761 } 4762 4763 // If the one thread timeout is set, use it. 4764 if (options.GetOneThreadTimeout()) 4765 return *options.GetOneThreadTimeout(); 4766 4767 // Otherwise use half the total timeout, bounded by the 4768 // default_one_thread_timeout. 4769 return std::min<microseconds>(default_one_thread_timeout, 4770 *options.GetTimeout() / 2); 4771 } 4772 4773 static Timeout<std::micro> 4774 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4775 bool before_first_timeout) { 4776 // If we are going to run all threads the whole time, or if we are only going 4777 // to run one thread, we can just return the overall timeout. 4778 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4779 return options.GetTimeout(); 4780 4781 if (before_first_timeout) 4782 return GetOneThreadExpressionTimeout(options); 4783 4784 if (!options.GetTimeout()) 4785 return llvm::None; 4786 else 4787 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4788 } 4789 4790 static llvm::Optional<ExpressionResults> 4791 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4792 RestorePlanState &restorer, const EventSP &event_sp, 4793 EventSP &event_to_broadcast_sp, 4794 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4795 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4796 4797 ThreadPlanSP plan = thread.GetCompletedPlan(); 4798 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4799 LLDB_LOG(log, "execution completed successfully"); 4800 4801 // Restore the plan state so it will get reported as intended when we are 4802 // done. 4803 restorer.Clean(); 4804 return eExpressionCompleted; 4805 } 4806 4807 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4808 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4809 stop_info_sp->ShouldNotify(event_sp.get())) { 4810 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4811 if (!options.DoesIgnoreBreakpoints()) { 4812 // Restore the plan state and then force Private to false. We are going 4813 // to stop because of this plan so we need it to become a public plan or 4814 // it won't report correctly when we continue to its termination later 4815 // on. 4816 restorer.Clean(); 4817 thread_plan_sp->SetPrivate(false); 4818 event_to_broadcast_sp = event_sp; 4819 } 4820 return eExpressionHitBreakpoint; 4821 } 4822 4823 if (!handle_interrupts && 4824 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4825 return llvm::None; 4826 4827 LLDB_LOG(log, "thread plan did not successfully complete"); 4828 if (!options.DoesUnwindOnError()) 4829 event_to_broadcast_sp = event_sp; 4830 return eExpressionInterrupted; 4831 } 4832 4833 ExpressionResults 4834 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4835 lldb::ThreadPlanSP &thread_plan_sp, 4836 const EvaluateExpressionOptions &options, 4837 DiagnosticManager &diagnostic_manager) { 4838 ExpressionResults return_value = eExpressionSetupError; 4839 4840 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4841 4842 if (!thread_plan_sp) { 4843 diagnostic_manager.PutString( 4844 eDiagnosticSeverityError, 4845 "RunThreadPlan called with empty thread plan."); 4846 return eExpressionSetupError; 4847 } 4848 4849 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4850 diagnostic_manager.PutString( 4851 eDiagnosticSeverityError, 4852 "RunThreadPlan called with an invalid thread plan."); 4853 return eExpressionSetupError; 4854 } 4855 4856 if (exe_ctx.GetProcessPtr() != this) { 4857 diagnostic_manager.PutString(eDiagnosticSeverityError, 4858 "RunThreadPlan called on wrong process."); 4859 return eExpressionSetupError; 4860 } 4861 4862 Thread *thread = exe_ctx.GetThreadPtr(); 4863 if (thread == nullptr) { 4864 diagnostic_manager.PutString(eDiagnosticSeverityError, 4865 "RunThreadPlan called with invalid thread."); 4866 return eExpressionSetupError; 4867 } 4868 4869 // We need to change some of the thread plan attributes for the thread plan 4870 // runner. This will restore them when we are done: 4871 4872 RestorePlanState thread_plan_restorer(thread_plan_sp); 4873 4874 // We rely on the thread plan we are running returning "PlanCompleted" if 4875 // when it successfully completes. For that to be true the plan can't be 4876 // private - since private plans suppress themselves in the GetCompletedPlan 4877 // call. 4878 4879 thread_plan_sp->SetPrivate(false); 4880 4881 // The plans run with RunThreadPlan also need to be terminal master plans or 4882 // when they are done we will end up asking the plan above us whether we 4883 // should stop, which may give the wrong answer. 4884 4885 thread_plan_sp->SetIsMasterPlan(true); 4886 thread_plan_sp->SetOkayToDiscard(false); 4887 4888 // If we are running some utility expression for LLDB, we now have to mark 4889 // this in the ProcesModID of this process. This RAII takes care of marking 4890 // and reverting the mark it once we are done running the expression. 4891 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4892 4893 if (m_private_state.GetValue() != eStateStopped) { 4894 diagnostic_manager.PutString( 4895 eDiagnosticSeverityError, 4896 "RunThreadPlan called while the private state was not stopped."); 4897 return eExpressionSetupError; 4898 } 4899 4900 // Save the thread & frame from the exe_ctx for restoration after we run 4901 const uint32_t thread_idx_id = thread->GetIndexID(); 4902 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4903 if (!selected_frame_sp) { 4904 thread->SetSelectedFrame(nullptr); 4905 selected_frame_sp = thread->GetSelectedFrame(); 4906 if (!selected_frame_sp) { 4907 diagnostic_manager.Printf( 4908 eDiagnosticSeverityError, 4909 "RunThreadPlan called without a selected frame on thread %d", 4910 thread_idx_id); 4911 return eExpressionSetupError; 4912 } 4913 } 4914 4915 // Make sure the timeout values make sense. The one thread timeout needs to 4916 // be smaller than the overall timeout. 4917 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4918 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4919 diagnostic_manager.PutString(eDiagnosticSeverityError, 4920 "RunThreadPlan called with one thread " 4921 "timeout greater than total timeout"); 4922 return eExpressionSetupError; 4923 } 4924 4925 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4926 4927 // N.B. Running the target may unset the currently selected thread and frame. 4928 // We don't want to do that either, so we should arrange to reset them as 4929 // well. 4930 4931 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4932 4933 uint32_t selected_tid; 4934 StackID selected_stack_id; 4935 if (selected_thread_sp) { 4936 selected_tid = selected_thread_sp->GetIndexID(); 4937 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4938 } else { 4939 selected_tid = LLDB_INVALID_THREAD_ID; 4940 } 4941 4942 HostThread backup_private_state_thread; 4943 lldb::StateType old_state = eStateInvalid; 4944 lldb::ThreadPlanSP stopper_base_plan_sp; 4945 4946 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4947 LIBLLDB_LOG_PROCESS)); 4948 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4949 // Yikes, we are running on the private state thread! So we can't wait for 4950 // public events on this thread, since we are the thread that is generating 4951 // public events. The simplest thing to do is to spin up a temporary thread 4952 // to handle private state thread events while we are fielding public 4953 // events here. 4954 if (log) 4955 log->Printf("Running thread plan on private state thread, spinning up " 4956 "another state thread to handle the events."); 4957 4958 backup_private_state_thread = m_private_state_thread; 4959 4960 // One other bit of business: we want to run just this thread plan and 4961 // anything it pushes, and then stop, returning control here. But in the 4962 // normal course of things, the plan above us on the stack would be given a 4963 // shot at the stop event before deciding to stop, and we don't want that. 4964 // So we insert a "stopper" base plan on the stack before the plan we want 4965 // to run. Since base plans always stop and return control to the user, 4966 // that will do just what we want. 4967 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4968 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4969 // Have to make sure our public state is stopped, since otherwise the 4970 // reporting logic below doesn't work correctly. 4971 old_state = m_public_state.GetValue(); 4972 m_public_state.SetValueNoLock(eStateStopped); 4973 4974 // Now spin up the private state thread: 4975 StartPrivateStateThread(true); 4976 } 4977 4978 thread->QueueThreadPlan( 4979 thread_plan_sp, false); // This used to pass "true" does that make sense? 4980 4981 if (options.GetDebug()) { 4982 // In this case, we aren't actually going to run, we just want to stop 4983 // right away. Flush this thread so we will refetch the stacks and show the 4984 // correct backtrace. 4985 // FIXME: To make this prettier we should invent some stop reason for this, 4986 // but that 4987 // is only cosmetic, and this functionality is only of use to lldb 4988 // developers who can live with not pretty... 4989 thread->Flush(); 4990 return eExpressionStoppedForDebug; 4991 } 4992 4993 ListenerSP listener_sp( 4994 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4995 4996 lldb::EventSP event_to_broadcast_sp; 4997 4998 { 4999 // This process event hijacker Hijacks the Public events and its destructor 5000 // makes sure that the process events get restored on exit to the function. 5001 // 5002 // If the event needs to propagate beyond the hijacker (e.g., the process 5003 // exits during execution), then the event is put into 5004 // event_to_broadcast_sp for rebroadcasting. 5005 5006 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 5007 5008 if (log) { 5009 StreamString s; 5010 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5011 log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 5012 " to run thread plan \"%s\".", 5013 thread->GetIndexID(), thread->GetID(), s.GetData()); 5014 } 5015 5016 bool got_event; 5017 lldb::EventSP event_sp; 5018 lldb::StateType stop_state = lldb::eStateInvalid; 5019 5020 bool before_first_timeout = true; // This is set to false the first time 5021 // that we have to halt the target. 5022 bool do_resume = true; 5023 bool handle_running_event = true; 5024 5025 // This is just for accounting: 5026 uint32_t num_resumes = 0; 5027 5028 // If we are going to run all threads the whole time, or if we are only 5029 // going to run one thread, then we don't need the first timeout. So we 5030 // pretend we are after the first timeout already. 5031 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5032 before_first_timeout = false; 5033 5034 if (log) 5035 log->Printf("Stop others: %u, try all: %u, before_first: %u.\n", 5036 options.GetStopOthers(), options.GetTryAllThreads(), 5037 before_first_timeout); 5038 5039 // This isn't going to work if there are unfetched events on the queue. Are 5040 // there cases where we might want to run the remaining events here, and 5041 // then try to call the function? That's probably being too tricky for our 5042 // own good. 5043 5044 Event *other_events = listener_sp->PeekAtNextEvent(); 5045 if (other_events != nullptr) { 5046 diagnostic_manager.PutString( 5047 eDiagnosticSeverityError, 5048 "RunThreadPlan called with pending events on the queue."); 5049 return eExpressionSetupError; 5050 } 5051 5052 // We also need to make sure that the next event is delivered. We might be 5053 // calling a function as part of a thread plan, in which case the last 5054 // delivered event could be the running event, and we don't want event 5055 // coalescing to cause us to lose OUR running event... 5056 ForceNextEventDelivery(); 5057 5058 // This while loop must exit out the bottom, there's cleanup that we need to do 5059 // when we are done. So don't call return anywhere within it. 5060 5061 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5062 // It's pretty much impossible to write test cases for things like: One 5063 // thread timeout expires, I go to halt, but the process already stopped on 5064 // the function call stop breakpoint. Turning on this define will make us 5065 // not fetch the first event till after the halt. So if you run a quick 5066 // function, it will have completed, and the completion event will be 5067 // waiting, when you interrupt for halt. The expression evaluation should 5068 // still succeed. 5069 bool miss_first_event = true; 5070 #endif 5071 while (true) { 5072 // We usually want to resume the process if we get to the top of the 5073 // loop. The only exception is if we get two running events with no 5074 // intervening stop, which can happen, we will just wait for then next 5075 // stop event. 5076 if (log) 5077 log->Printf("Top of while loop: do_resume: %i handle_running_event: %i " 5078 "before_first_timeout: %i.", 5079 do_resume, handle_running_event, before_first_timeout); 5080 5081 if (do_resume || handle_running_event) { 5082 // Do the initial resume and wait for the running event before going 5083 // further. 5084 5085 if (do_resume) { 5086 num_resumes++; 5087 Status resume_error = PrivateResume(); 5088 if (!resume_error.Success()) { 5089 diagnostic_manager.Printf( 5090 eDiagnosticSeverityError, 5091 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5092 resume_error.AsCString()); 5093 return_value = eExpressionSetupError; 5094 break; 5095 } 5096 } 5097 5098 got_event = 5099 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5100 if (!got_event) { 5101 if (log) 5102 log->Printf("Process::RunThreadPlan(): didn't get any event after " 5103 "resume %" PRIu32 ", exiting.", 5104 num_resumes); 5105 5106 diagnostic_manager.Printf(eDiagnosticSeverityError, 5107 "didn't get any event after resume %" PRIu32 5108 ", exiting.", 5109 num_resumes); 5110 return_value = eExpressionSetupError; 5111 break; 5112 } 5113 5114 stop_state = 5115 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5116 5117 if (stop_state != eStateRunning) { 5118 bool restarted = false; 5119 5120 if (stop_state == eStateStopped) { 5121 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5122 event_sp.get()); 5123 if (log) 5124 log->Printf( 5125 "Process::RunThreadPlan(): didn't get running event after " 5126 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5127 "handle_running_event: %i).", 5128 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5129 handle_running_event); 5130 } 5131 5132 if (restarted) { 5133 // This is probably an overabundance of caution, I don't think I 5134 // should ever get a stopped & restarted event here. But if I do, 5135 // the best thing is to Halt and then get out of here. 5136 const bool clear_thread_plans = false; 5137 const bool use_run_lock = false; 5138 Halt(clear_thread_plans, use_run_lock); 5139 } 5140 5141 diagnostic_manager.Printf( 5142 eDiagnosticSeverityError, 5143 "didn't get running event after initial resume, got %s instead.", 5144 StateAsCString(stop_state)); 5145 return_value = eExpressionSetupError; 5146 break; 5147 } 5148 5149 if (log) 5150 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5151 // We need to call the function synchronously, so spin waiting for it 5152 // to return. If we get interrupted while executing, we're going to 5153 // lose our context, and won't be able to gather the result at this 5154 // point. We set the timeout AFTER the resume, since the resume takes 5155 // some time and we don't want to charge that to the timeout. 5156 } else { 5157 if (log) 5158 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5159 } 5160 5161 do_resume = true; 5162 handle_running_event = true; 5163 5164 // Now wait for the process to stop again: 5165 event_sp.reset(); 5166 5167 Timeout<std::micro> timeout = 5168 GetExpressionTimeout(options, before_first_timeout); 5169 if (log) { 5170 if (timeout) { 5171 auto now = system_clock::now(); 5172 log->Printf("Process::RunThreadPlan(): about to wait - now is %s - " 5173 "endpoint is %s", 5174 llvm::to_string(now).c_str(), 5175 llvm::to_string(now + *timeout).c_str()); 5176 } else { 5177 log->Printf("Process::RunThreadPlan(): about to wait forever."); 5178 } 5179 } 5180 5181 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5182 // See comment above... 5183 if (miss_first_event) { 5184 usleep(1000); 5185 miss_first_event = false; 5186 got_event = false; 5187 } else 5188 #endif 5189 got_event = listener_sp->GetEvent(event_sp, timeout); 5190 5191 if (got_event) { 5192 if (event_sp) { 5193 bool keep_going = false; 5194 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5195 const bool clear_thread_plans = false; 5196 const bool use_run_lock = false; 5197 Halt(clear_thread_plans, use_run_lock); 5198 return_value = eExpressionInterrupted; 5199 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5200 "execution halted by user interrupt."); 5201 if (log) 5202 log->Printf("Process::RunThreadPlan(): Got interrupted by " 5203 "eBroadcastBitInterrupted, exiting."); 5204 break; 5205 } else { 5206 stop_state = 5207 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5208 if (log) 5209 log->Printf( 5210 "Process::RunThreadPlan(): in while loop, got event: %s.", 5211 StateAsCString(stop_state)); 5212 5213 switch (stop_state) { 5214 case lldb::eStateStopped: { 5215 // We stopped, figure out what we are going to do now. 5216 ThreadSP thread_sp = 5217 GetThreadList().FindThreadByIndexID(thread_idx_id); 5218 if (!thread_sp) { 5219 // Ooh, our thread has vanished. Unlikely that this was 5220 // successful execution... 5221 if (log) 5222 log->Printf("Process::RunThreadPlan(): execution completed " 5223 "but our thread (index-id=%u) has vanished.", 5224 thread_idx_id); 5225 return_value = eExpressionInterrupted; 5226 } else if (Process::ProcessEventData::GetRestartedFromEvent( 5227 event_sp.get())) { 5228 // If we were restarted, we just need to go back up to fetch 5229 // another event. 5230 if (log) { 5231 log->Printf("Process::RunThreadPlan(): Got a stop and " 5232 "restart, so we'll continue waiting."); 5233 } 5234 keep_going = true; 5235 do_resume = false; 5236 handle_running_event = true; 5237 } else { 5238 const bool handle_interrupts = true; 5239 return_value = *HandleStoppedEvent( 5240 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5241 event_to_broadcast_sp, options, handle_interrupts); 5242 } 5243 } break; 5244 5245 case lldb::eStateRunning: 5246 // This shouldn't really happen, but sometimes we do get two 5247 // running events without an intervening stop, and in that case 5248 // we should just go back to waiting for the stop. 5249 do_resume = false; 5250 keep_going = true; 5251 handle_running_event = false; 5252 break; 5253 5254 default: 5255 if (log) 5256 log->Printf("Process::RunThreadPlan(): execution stopped with " 5257 "unexpected state: %s.", 5258 StateAsCString(stop_state)); 5259 5260 if (stop_state == eStateExited) 5261 event_to_broadcast_sp = event_sp; 5262 5263 diagnostic_manager.PutString( 5264 eDiagnosticSeverityError, 5265 "execution stopped with unexpected state."); 5266 return_value = eExpressionInterrupted; 5267 break; 5268 } 5269 } 5270 5271 if (keep_going) 5272 continue; 5273 else 5274 break; 5275 } else { 5276 if (log) 5277 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5278 "the event pointer was null. How odd..."); 5279 return_value = eExpressionInterrupted; 5280 break; 5281 } 5282 } else { 5283 // If we didn't get an event that means we've timed out... We will 5284 // interrupt the process here. Depending on what we were asked to do 5285 // we will either exit, or try with all threads running for the same 5286 // timeout. 5287 5288 if (log) { 5289 if (options.GetTryAllThreads()) { 5290 if (before_first_timeout) { 5291 LLDB_LOG(log, 5292 "Running function with one thread timeout timed out."); 5293 } else 5294 LLDB_LOG(log, "Restarting function with all threads enabled and " 5295 "timeout: {0} timed out, abandoning execution.", 5296 timeout); 5297 } else 5298 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5299 "abandoning execution.", 5300 timeout); 5301 } 5302 5303 // It is possible that between the time we issued the Halt, and we get 5304 // around to calling Halt the target could have stopped. That's fine, 5305 // Halt will figure that out and send the appropriate Stopped event. 5306 // BUT it is also possible that we stopped & restarted (e.g. hit a 5307 // signal with "stop" set to false.) In 5308 // that case, we'll get the stopped & restarted event, and we should go 5309 // back to waiting for the Halt's stopped event. That's what this 5310 // while loop does. 5311 5312 bool back_to_top = true; 5313 uint32_t try_halt_again = 0; 5314 bool do_halt = true; 5315 const uint32_t num_retries = 5; 5316 while (try_halt_again < num_retries) { 5317 Status halt_error; 5318 if (do_halt) { 5319 if (log) 5320 log->Printf("Process::RunThreadPlan(): Running Halt."); 5321 const bool clear_thread_plans = false; 5322 const bool use_run_lock = false; 5323 Halt(clear_thread_plans, use_run_lock); 5324 } 5325 if (halt_error.Success()) { 5326 if (log) 5327 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5328 5329 got_event = 5330 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5331 5332 if (got_event) { 5333 stop_state = 5334 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5335 if (log) { 5336 log->Printf("Process::RunThreadPlan(): Stopped with event: %s", 5337 StateAsCString(stop_state)); 5338 if (stop_state == lldb::eStateStopped && 5339 Process::ProcessEventData::GetInterruptedFromEvent( 5340 event_sp.get())) 5341 log->PutCString(" Event was the Halt interruption event."); 5342 } 5343 5344 if (stop_state == lldb::eStateStopped) { 5345 if (Process::ProcessEventData::GetRestartedFromEvent( 5346 event_sp.get())) { 5347 if (log) 5348 log->PutCString("Process::RunThreadPlan(): Went to halt " 5349 "but got a restarted event, there must be " 5350 "an un-restarted stopped event so try " 5351 "again... " 5352 "Exiting wait loop."); 5353 try_halt_again++; 5354 do_halt = false; 5355 continue; 5356 } 5357 5358 // Between the time we initiated the Halt and the time we 5359 // delivered it, the process could have already finished its 5360 // job. Check that here: 5361 const bool handle_interrupts = false; 5362 if (auto result = HandleStoppedEvent( 5363 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5364 event_to_broadcast_sp, options, handle_interrupts)) { 5365 return_value = *result; 5366 back_to_top = false; 5367 break; 5368 } 5369 5370 if (!options.GetTryAllThreads()) { 5371 if (log) 5372 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5373 "was false, we stopped so now we're " 5374 "quitting."); 5375 return_value = eExpressionInterrupted; 5376 back_to_top = false; 5377 break; 5378 } 5379 5380 if (before_first_timeout) { 5381 // Set all the other threads to run, and return to the top of 5382 // the loop, which will continue; 5383 before_first_timeout = false; 5384 thread_plan_sp->SetStopOthers(false); 5385 if (log) 5386 log->PutCString( 5387 "Process::RunThreadPlan(): about to resume."); 5388 5389 back_to_top = true; 5390 break; 5391 } else { 5392 // Running all threads failed, so return Interrupted. 5393 if (log) 5394 log->PutCString("Process::RunThreadPlan(): running all " 5395 "threads timed out."); 5396 return_value = eExpressionInterrupted; 5397 back_to_top = false; 5398 break; 5399 } 5400 } 5401 } else { 5402 if (log) 5403 log->PutCString("Process::RunThreadPlan(): halt said it " 5404 "succeeded, but I got no event. " 5405 "I'm getting out of here passing Interrupted."); 5406 return_value = eExpressionInterrupted; 5407 back_to_top = false; 5408 break; 5409 } 5410 } else { 5411 try_halt_again++; 5412 continue; 5413 } 5414 } 5415 5416 if (!back_to_top || try_halt_again > num_retries) 5417 break; 5418 else 5419 continue; 5420 } 5421 } // END WAIT LOOP 5422 5423 // If we had to start up a temporary private state thread to run this 5424 // thread plan, shut it down now. 5425 if (backup_private_state_thread.IsJoinable()) { 5426 StopPrivateStateThread(); 5427 Status error; 5428 m_private_state_thread = backup_private_state_thread; 5429 if (stopper_base_plan_sp) { 5430 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5431 } 5432 if (old_state != eStateInvalid) 5433 m_public_state.SetValueNoLock(old_state); 5434 } 5435 5436 if (return_value != eExpressionCompleted && log) { 5437 // Print a backtrace into the log so we can figure out where we are: 5438 StreamString s; 5439 s.PutCString("Thread state after unsuccessful completion: \n"); 5440 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5441 log->PutString(s.GetString()); 5442 } 5443 // Restore the thread state if we are going to discard the plan execution. 5444 // There are three cases where this could happen: 1) The execution 5445 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5446 // was true 3) We got some other error, and discard_on_error was true 5447 bool should_unwind = (return_value == eExpressionInterrupted && 5448 options.DoesUnwindOnError()) || 5449 (return_value == eExpressionHitBreakpoint && 5450 options.DoesIgnoreBreakpoints()); 5451 5452 if (return_value == eExpressionCompleted || should_unwind) { 5453 thread_plan_sp->RestoreThreadState(); 5454 } 5455 5456 // Now do some processing on the results of the run: 5457 if (return_value == eExpressionInterrupted || 5458 return_value == eExpressionHitBreakpoint) { 5459 if (log) { 5460 StreamString s; 5461 if (event_sp) 5462 event_sp->Dump(&s); 5463 else { 5464 log->PutCString("Process::RunThreadPlan(): Stop event that " 5465 "interrupted us is NULL."); 5466 } 5467 5468 StreamString ts; 5469 5470 const char *event_explanation = nullptr; 5471 5472 do { 5473 if (!event_sp) { 5474 event_explanation = "<no event>"; 5475 break; 5476 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5477 event_explanation = "<user interrupt>"; 5478 break; 5479 } else { 5480 const Process::ProcessEventData *event_data = 5481 Process::ProcessEventData::GetEventDataFromEvent( 5482 event_sp.get()); 5483 5484 if (!event_data) { 5485 event_explanation = "<no event data>"; 5486 break; 5487 } 5488 5489 Process *process = event_data->GetProcessSP().get(); 5490 5491 if (!process) { 5492 event_explanation = "<no process>"; 5493 break; 5494 } 5495 5496 ThreadList &thread_list = process->GetThreadList(); 5497 5498 uint32_t num_threads = thread_list.GetSize(); 5499 uint32_t thread_index; 5500 5501 ts.Printf("<%u threads> ", num_threads); 5502 5503 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5504 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5505 5506 if (!thread) { 5507 ts.Printf("<?> "); 5508 continue; 5509 } 5510 5511 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5512 RegisterContext *register_context = 5513 thread->GetRegisterContext().get(); 5514 5515 if (register_context) 5516 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5517 else 5518 ts.Printf("[ip unknown] "); 5519 5520 // Show the private stop info here, the public stop info will be 5521 // from the last natural stop. 5522 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5523 if (stop_info_sp) { 5524 const char *stop_desc = stop_info_sp->GetDescription(); 5525 if (stop_desc) 5526 ts.PutCString(stop_desc); 5527 } 5528 ts.Printf(">"); 5529 } 5530 5531 event_explanation = ts.GetData(); 5532 } 5533 } while (0); 5534 5535 if (event_explanation) 5536 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", 5537 s.GetData(), event_explanation); 5538 else 5539 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", 5540 s.GetData()); 5541 } 5542 5543 if (should_unwind) { 5544 if (log) 5545 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - " 5546 "discarding thread plans up to %p.", 5547 static_cast<void *>(thread_plan_sp.get())); 5548 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5549 } else { 5550 if (log) 5551 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for " 5552 "plan: %p not discarding.", 5553 static_cast<void *>(thread_plan_sp.get())); 5554 } 5555 } else if (return_value == eExpressionSetupError) { 5556 if (log) 5557 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5558 5559 if (options.DoesUnwindOnError()) { 5560 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5561 } 5562 } else { 5563 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5564 if (log) 5565 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5566 return_value = eExpressionCompleted; 5567 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5568 if (log) 5569 log->PutCString( 5570 "Process::RunThreadPlan(): thread plan was discarded"); 5571 return_value = eExpressionDiscarded; 5572 } else { 5573 if (log) 5574 log->PutCString( 5575 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5576 if (options.DoesUnwindOnError() && thread_plan_sp) { 5577 if (log) 5578 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5579 "'cause unwind_on_error is set."); 5580 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5581 } 5582 } 5583 } 5584 5585 // Thread we ran the function in may have gone away because we ran the 5586 // target Check that it's still there, and if it is put it back in the 5587 // context. Also restore the frame in the context if it is still present. 5588 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5589 if (thread) { 5590 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5591 } 5592 5593 // Also restore the current process'es selected frame & thread, since this 5594 // function calling may be done behind the user's back. 5595 5596 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5597 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5598 selected_stack_id.IsValid()) { 5599 // We were able to restore the selected thread, now restore the frame: 5600 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5601 StackFrameSP old_frame_sp = 5602 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5603 selected_stack_id); 5604 if (old_frame_sp) 5605 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5606 old_frame_sp.get()); 5607 } 5608 } 5609 } 5610 5611 // If the process exited during the run of the thread plan, notify everyone. 5612 5613 if (event_to_broadcast_sp) { 5614 if (log) 5615 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5616 BroadcastEvent(event_to_broadcast_sp); 5617 } 5618 5619 return return_value; 5620 } 5621 5622 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5623 const char *result_name; 5624 5625 switch (result) { 5626 case eExpressionCompleted: 5627 result_name = "eExpressionCompleted"; 5628 break; 5629 case eExpressionDiscarded: 5630 result_name = "eExpressionDiscarded"; 5631 break; 5632 case eExpressionInterrupted: 5633 result_name = "eExpressionInterrupted"; 5634 break; 5635 case eExpressionHitBreakpoint: 5636 result_name = "eExpressionHitBreakpoint"; 5637 break; 5638 case eExpressionSetupError: 5639 result_name = "eExpressionSetupError"; 5640 break; 5641 case eExpressionParseError: 5642 result_name = "eExpressionParseError"; 5643 break; 5644 case eExpressionResultUnavailable: 5645 result_name = "eExpressionResultUnavailable"; 5646 break; 5647 case eExpressionTimedOut: 5648 result_name = "eExpressionTimedOut"; 5649 break; 5650 case eExpressionStoppedForDebug: 5651 result_name = "eExpressionStoppedForDebug"; 5652 break; 5653 } 5654 return result_name; 5655 } 5656 5657 void Process::GetStatus(Stream &strm) { 5658 const StateType state = GetState(); 5659 if (StateIsStoppedState(state, false)) { 5660 if (state == eStateExited) { 5661 int exit_status = GetExitStatus(); 5662 const char *exit_description = GetExitDescription(); 5663 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5664 GetID(), exit_status, exit_status, 5665 exit_description ? exit_description : ""); 5666 } else { 5667 if (state == eStateConnected) 5668 strm.Printf("Connected to remote target.\n"); 5669 else 5670 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5671 } 5672 } else { 5673 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5674 } 5675 } 5676 5677 size_t Process::GetThreadStatus(Stream &strm, 5678 bool only_threads_with_stop_reason, 5679 uint32_t start_frame, uint32_t num_frames, 5680 uint32_t num_frames_with_source, 5681 bool stop_format) { 5682 size_t num_thread_infos_dumped = 0; 5683 5684 // You can't hold the thread list lock while calling Thread::GetStatus. That 5685 // very well might run code (e.g. if we need it to get return values or 5686 // arguments.) For that to work the process has to be able to acquire it. 5687 // So instead copy the thread ID's, and look them up one by one: 5688 5689 uint32_t num_threads; 5690 std::vector<lldb::tid_t> thread_id_array; 5691 // Scope for thread list locker; 5692 { 5693 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5694 ThreadList &curr_thread_list = GetThreadList(); 5695 num_threads = curr_thread_list.GetSize(); 5696 uint32_t idx; 5697 thread_id_array.resize(num_threads); 5698 for (idx = 0; idx < num_threads; ++idx) 5699 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5700 } 5701 5702 for (uint32_t i = 0; i < num_threads; i++) { 5703 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5704 if (thread_sp) { 5705 if (only_threads_with_stop_reason) { 5706 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5707 if (!stop_info_sp || !stop_info_sp->IsValid()) 5708 continue; 5709 } 5710 thread_sp->GetStatus(strm, start_frame, num_frames, 5711 num_frames_with_source, 5712 stop_format); 5713 ++num_thread_infos_dumped; 5714 } else { 5715 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5716 if (log) 5717 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 5718 " vanished while running Thread::GetStatus."); 5719 } 5720 } 5721 return num_thread_infos_dumped; 5722 } 5723 5724 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5725 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5726 } 5727 5728 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5729 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5730 region.GetByteSize()); 5731 } 5732 5733 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5734 void *baton) { 5735 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5736 } 5737 5738 bool Process::RunPreResumeActions() { 5739 bool result = true; 5740 while (!m_pre_resume_actions.empty()) { 5741 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5742 m_pre_resume_actions.pop_back(); 5743 bool this_result = action.callback(action.baton); 5744 if (result) 5745 result = this_result; 5746 } 5747 return result; 5748 } 5749 5750 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5751 5752 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5753 { 5754 PreResumeCallbackAndBaton element(callback, baton); 5755 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5756 if (found_iter != m_pre_resume_actions.end()) 5757 { 5758 m_pre_resume_actions.erase(found_iter); 5759 } 5760 } 5761 5762 ProcessRunLock &Process::GetRunLock() { 5763 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5764 return m_private_run_lock; 5765 else 5766 return m_public_run_lock; 5767 } 5768 5769 void Process::Flush() { 5770 m_thread_list.Flush(); 5771 m_extended_thread_list.Flush(); 5772 m_extended_thread_stop_id = 0; 5773 m_queue_list.Clear(); 5774 m_queue_list_stop_id = 0; 5775 } 5776 5777 void Process::DidExec() { 5778 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5779 if (log) 5780 log->Printf("Process::%s()", __FUNCTION__); 5781 5782 Target &target = GetTarget(); 5783 target.CleanupProcess(); 5784 target.ClearModules(false); 5785 m_dynamic_checkers_ap.reset(); 5786 m_abi_sp.reset(); 5787 m_system_runtime_ap.reset(); 5788 m_os_ap.reset(); 5789 m_dyld_ap.reset(); 5790 m_jit_loaders_ap.reset(); 5791 m_image_tokens.clear(); 5792 m_allocated_memory_cache.Clear(); 5793 m_language_runtimes.clear(); 5794 m_instrumentation_runtimes.clear(); 5795 m_thread_list.DiscardThreadPlans(); 5796 m_memory_cache.Clear(true); 5797 DoDidExec(); 5798 CompleteAttach(); 5799 // Flush the process (threads and all stack frames) after running 5800 // CompleteAttach() in case the dynamic loader loaded things in new 5801 // locations. 5802 Flush(); 5803 5804 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5805 // let the target know so it can do any cleanup it needs to. 5806 target.DidExec(); 5807 } 5808 5809 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5810 if (address == nullptr) { 5811 error.SetErrorString("Invalid address argument"); 5812 return LLDB_INVALID_ADDRESS; 5813 } 5814 5815 addr_t function_addr = LLDB_INVALID_ADDRESS; 5816 5817 addr_t addr = address->GetLoadAddress(&GetTarget()); 5818 std::map<addr_t, addr_t>::const_iterator iter = 5819 m_resolved_indirect_addresses.find(addr); 5820 if (iter != m_resolved_indirect_addresses.end()) { 5821 function_addr = (*iter).second; 5822 } else { 5823 if (!InferiorCall(this, address, function_addr)) { 5824 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5825 error.SetErrorStringWithFormat( 5826 "Unable to call resolver for indirect function %s", 5827 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5828 function_addr = LLDB_INVALID_ADDRESS; 5829 } else { 5830 m_resolved_indirect_addresses.insert( 5831 std::pair<addr_t, addr_t>(addr, function_addr)); 5832 } 5833 } 5834 return function_addr; 5835 } 5836 5837 void Process::ModulesDidLoad(ModuleList &module_list) { 5838 SystemRuntime *sys_runtime = GetSystemRuntime(); 5839 if (sys_runtime) { 5840 sys_runtime->ModulesDidLoad(module_list); 5841 } 5842 5843 GetJITLoaders().ModulesDidLoad(module_list); 5844 5845 // Give runtimes a chance to be created. 5846 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5847 m_instrumentation_runtimes); 5848 5849 // Tell runtimes about new modules. 5850 for (auto pos = m_instrumentation_runtimes.begin(); 5851 pos != m_instrumentation_runtimes.end(); ++pos) { 5852 InstrumentationRuntimeSP runtime = pos->second; 5853 runtime->ModulesDidLoad(module_list); 5854 } 5855 5856 // Let any language runtimes we have already created know about the modules 5857 // that loaded. 5858 5859 // Iterate over a copy of this language runtime list in case the language 5860 // runtime ModulesDidLoad somehow causes the language runtime to be 5861 // unloaded. 5862 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5863 for (const auto &pair : language_runtimes) { 5864 // We must check language_runtime_sp to make sure it is not nullptr as we 5865 // might cache the fact that we didn't have a language runtime for a 5866 // language. 5867 LanguageRuntimeSP language_runtime_sp = pair.second; 5868 if (language_runtime_sp) 5869 language_runtime_sp->ModulesDidLoad(module_list); 5870 } 5871 5872 // If we don't have an operating system plug-in, try to load one since 5873 // loading shared libraries might cause a new one to try and load 5874 if (!m_os_ap) 5875 LoadOperatingSystemPlugin(false); 5876 5877 // Give structured-data plugins a chance to see the modified modules. 5878 for (auto pair : m_structured_data_plugin_map) { 5879 if (pair.second) 5880 pair.second->ModulesDidLoad(*this, module_list); 5881 } 5882 } 5883 5884 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5885 const char *fmt, ...) { 5886 bool print_warning = true; 5887 5888 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5889 if (!stream_sp) 5890 return; 5891 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5892 return; 5893 } 5894 5895 if (repeat_key != nullptr) { 5896 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5897 if (it == m_warnings_issued.end()) { 5898 m_warnings_issued[warning_type] = WarningsPointerSet(); 5899 m_warnings_issued[warning_type].insert(repeat_key); 5900 } else { 5901 if (it->second.find(repeat_key) != it->second.end()) { 5902 print_warning = false; 5903 } else { 5904 it->second.insert(repeat_key); 5905 } 5906 } 5907 } 5908 5909 if (print_warning) { 5910 va_list args; 5911 va_start(args, fmt); 5912 stream_sp->PrintfVarArg(fmt, args); 5913 va_end(args); 5914 } 5915 } 5916 5917 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5918 if (GetWarningsOptimization() && sc.module_sp && 5919 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5920 sc.function->GetIsOptimized()) { 5921 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5922 "%s was compiled with optimization - stepping may behave " 5923 "oddly; variables may not be available.\n", 5924 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5925 } 5926 } 5927 5928 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5929 info.Clear(); 5930 5931 PlatformSP platform_sp = GetTarget().GetPlatform(); 5932 if (!platform_sp) 5933 return false; 5934 5935 return platform_sp->GetProcessInfo(GetID(), info); 5936 } 5937 5938 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5939 ThreadCollectionSP threads; 5940 5941 const MemoryHistorySP &memory_history = 5942 MemoryHistory::FindPlugin(shared_from_this()); 5943 5944 if (!memory_history) { 5945 return threads; 5946 } 5947 5948 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 5949 5950 return threads; 5951 } 5952 5953 InstrumentationRuntimeSP 5954 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5955 InstrumentationRuntimeCollection::iterator pos; 5956 pos = m_instrumentation_runtimes.find(type); 5957 if (pos == m_instrumentation_runtimes.end()) { 5958 return InstrumentationRuntimeSP(); 5959 } else 5960 return (*pos).second; 5961 } 5962 5963 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5964 const ArchSpec &arch, ModuleSpec &module_spec) { 5965 module_spec.Clear(); 5966 return false; 5967 } 5968 5969 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5970 m_image_tokens.push_back(image_ptr); 5971 return m_image_tokens.size() - 1; 5972 } 5973 5974 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5975 if (token < m_image_tokens.size()) 5976 return m_image_tokens[token]; 5977 return LLDB_INVALID_IMAGE_TOKEN; 5978 } 5979 5980 void Process::ResetImageToken(size_t token) { 5981 if (token < m_image_tokens.size()) 5982 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5983 } 5984 5985 Address 5986 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5987 AddressRange range_bounds) { 5988 Target &target = GetTarget(); 5989 DisassemblerSP disassembler_sp; 5990 InstructionList *insn_list = nullptr; 5991 5992 Address retval = default_stop_addr; 5993 5994 if (!target.GetUseFastStepping()) 5995 return retval; 5996 if (!default_stop_addr.IsValid()) 5997 return retval; 5998 5999 ExecutionContext exe_ctx(this); 6000 const char *plugin_name = nullptr; 6001 const char *flavor = nullptr; 6002 const bool prefer_file_cache = true; 6003 disassembler_sp = Disassembler::DisassembleRange( 6004 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 6005 prefer_file_cache); 6006 if (disassembler_sp) 6007 insn_list = &disassembler_sp->GetInstructionList(); 6008 6009 if (insn_list == nullptr) { 6010 return retval; 6011 } 6012 6013 size_t insn_offset = 6014 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 6015 if (insn_offset == UINT32_MAX) { 6016 return retval; 6017 } 6018 6019 uint32_t branch_index = 6020 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target); 6021 if (branch_index == UINT32_MAX) { 6022 return retval; 6023 } 6024 6025 if (branch_index > insn_offset) { 6026 Address next_branch_insn_address = 6027 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6028 if (next_branch_insn_address.IsValid() && 6029 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6030 retval = next_branch_insn_address; 6031 } 6032 } 6033 6034 return retval; 6035 } 6036 6037 Status 6038 Process::GetMemoryRegions(std::vector<lldb::MemoryRegionInfoSP> ®ion_list) { 6039 6040 Status error; 6041 6042 lldb::addr_t range_end = 0; 6043 6044 region_list.clear(); 6045 do { 6046 lldb::MemoryRegionInfoSP region_info(new lldb_private::MemoryRegionInfo()); 6047 error = GetMemoryRegionInfo(range_end, *region_info); 6048 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6049 if (error.Fail()) { 6050 region_list.clear(); 6051 break; 6052 } 6053 6054 range_end = region_info->GetRange().GetRangeEnd(); 6055 if (region_info->GetMapped() == MemoryRegionInfo::eYes) { 6056 region_list.push_back(region_info); 6057 } 6058 } while (range_end != LLDB_INVALID_ADDRESS); 6059 6060 return error; 6061 } 6062 6063 Status 6064 Process::ConfigureStructuredData(const ConstString &type_name, 6065 const StructuredData::ObjectSP &config_sp) { 6066 // If you get this, the Process-derived class needs to implement a method to 6067 // enable an already-reported asynchronous structured data feature. See 6068 // ProcessGDBRemote for an example implementation over gdb-remote. 6069 return Status("unimplemented"); 6070 } 6071 6072 void Process::MapSupportedStructuredDataPlugins( 6073 const StructuredData::Array &supported_type_names) { 6074 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6075 6076 // Bail out early if there are no type names to map. 6077 if (supported_type_names.GetSize() == 0) { 6078 if (log) 6079 log->Printf("Process::%s(): no structured data types supported", 6080 __FUNCTION__); 6081 return; 6082 } 6083 6084 // Convert StructuredData type names to ConstString instances. 6085 std::set<ConstString> const_type_names; 6086 6087 if (log) 6088 log->Printf("Process::%s(): the process supports the following async " 6089 "structured data types:", 6090 __FUNCTION__); 6091 6092 supported_type_names.ForEach( 6093 [&const_type_names, &log](StructuredData::Object *object) { 6094 if (!object) { 6095 // Invalid - shouldn't be null objects in the array. 6096 return false; 6097 } 6098 6099 auto type_name = object->GetAsString(); 6100 if (!type_name) { 6101 // Invalid format - all type names should be strings. 6102 return false; 6103 } 6104 6105 const_type_names.insert(ConstString(type_name->GetValue())); 6106 LLDB_LOG(log, "- {0}", type_name->GetValue()); 6107 return true; 6108 }); 6109 6110 // For each StructuredDataPlugin, if the plugin handles any of the types in 6111 // the supported_type_names, map that type name to that plugin. Stop when 6112 // we've consumed all the type names. 6113 // FIXME: should we return an error if there are type names nobody 6114 // supports? 6115 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 6116 auto create_instance = 6117 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6118 plugin_index); 6119 if (!create_instance) 6120 break; 6121 6122 // Create the plugin. 6123 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6124 if (!plugin_sp) { 6125 // This plugin doesn't think it can work with the process. Move on to the 6126 // next. 6127 continue; 6128 } 6129 6130 // For any of the remaining type names, map any that this plugin supports. 6131 std::vector<ConstString> names_to_remove; 6132 for (auto &type_name : const_type_names) { 6133 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6134 m_structured_data_plugin_map.insert( 6135 std::make_pair(type_name, plugin_sp)); 6136 names_to_remove.push_back(type_name); 6137 if (log) 6138 log->Printf("Process::%s(): using plugin %s for type name " 6139 "%s", 6140 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6141 type_name.GetCString()); 6142 } 6143 } 6144 6145 // Remove the type names that were consumed by this plugin. 6146 for (auto &type_name : names_to_remove) 6147 const_type_names.erase(type_name); 6148 } 6149 } 6150 6151 bool Process::RouteAsyncStructuredData( 6152 const StructuredData::ObjectSP object_sp) { 6153 // Nothing to do if there's no data. 6154 if (!object_sp) 6155 return false; 6156 6157 // The contract is this must be a dictionary, so we can look up the routing 6158 // key via the top-level 'type' string value within the dictionary. 6159 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6160 if (!dictionary) 6161 return false; 6162 6163 // Grab the async structured type name (i.e. the feature/plugin name). 6164 ConstString type_name; 6165 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6166 return false; 6167 6168 // Check if there's a plugin registered for this type name. 6169 auto find_it = m_structured_data_plugin_map.find(type_name); 6170 if (find_it == m_structured_data_plugin_map.end()) { 6171 // We don't have a mapping for this structured data type. 6172 return false; 6173 } 6174 6175 // Route the structured data to the plugin. 6176 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6177 return true; 6178 } 6179 6180 Status Process::UpdateAutomaticSignalFiltering() { 6181 // Default implementation does nothign. 6182 // No automatic signal filtering to speak of. 6183 return Status(); 6184 } 6185 6186 UtilityFunction *Process::GetLoadImageUtilityFunction( 6187 Platform *platform, 6188 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6189 if (platform != GetTarget().GetPlatform().get()) 6190 return nullptr; 6191 std::call_once(m_dlopen_utility_func_flag_once, 6192 [&] { m_dlopen_utility_func_up = factory(); }); 6193 return m_dlopen_utility_func_up.get(); 6194 } 6195