1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/ThreadPlanStack.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/Event.h" 66 #include "lldb/Utility/Log.h" 67 #include "lldb/Utility/NameMatches.h" 68 #include "lldb/Utility/ProcessInfo.h" 69 #include "lldb/Utility/SelectHelper.h" 70 #include "lldb/Utility/State.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties : public OptionValueProperties { 87 public: 88 ProcessOptionValueProperties(ConstString name) 89 : OptionValueProperties(name) {} 90 91 // This constructor is used when creating ProcessOptionValueProperties when 92 // it is part of a new lldb_private::Process instance. It will copy all 93 // current global property values as needed 94 ProcessOptionValueProperties(ProcessProperties *global_properties) 95 : OptionValueProperties(*global_properties->GetValueProperties()) {} 96 97 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 98 bool will_modify, 99 uint32_t idx) const override { 100 // When getting the value for a key from the process options, we will 101 // always try and grab the setting from the current process if there is 102 // one. Else we just use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 #define LLDB_PROPERTIES_process 118 #include "TargetProperties.inc" 119 120 enum { 121 #define LLDB_PROPERTIES_process 122 #include "TargetPropertiesEnum.inc" 123 }; 124 125 ProcessProperties::ProcessProperties(lldb_private::Process *process) 126 : Properties(), 127 m_process(process) // Can be nullptr for global ProcessProperties 128 { 129 if (process == nullptr) { 130 // Global process properties, set them up one time 131 m_collection_sp = 132 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 133 m_collection_sp->Initialize(g_process_properties); 134 m_collection_sp->AppendProperty( 135 ConstString("thread"), ConstString("Settings specific to threads."), 136 true, Thread::GetGlobalProperties()->GetValueProperties()); 137 } else { 138 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 139 Process::GetGlobalProperties().get()); 140 m_collection_sp->SetValueChangedCallback( 141 ePropertyPythonOSPluginPath, 142 [this] { m_process->LoadOperatingSystemPlugin(true); }); 143 } 144 } 145 146 ProcessProperties::~ProcessProperties() = default; 147 148 bool ProcessProperties::GetDisableMemoryCache() const { 149 const uint32_t idx = ePropertyDisableMemCache; 150 return m_collection_sp->GetPropertyAtIndexAsBoolean( 151 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 152 } 153 154 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 155 const uint32_t idx = ePropertyMemCacheLineSize; 156 return m_collection_sp->GetPropertyAtIndexAsUInt64( 157 nullptr, idx, g_process_properties[idx].default_uint_value); 158 } 159 160 Args ProcessProperties::GetExtraStartupCommands() const { 161 Args args; 162 const uint32_t idx = ePropertyExtraStartCommand; 163 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 164 return args; 165 } 166 167 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 168 const uint32_t idx = ePropertyExtraStartCommand; 169 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 170 } 171 172 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 173 const uint32_t idx = ePropertyPythonOSPluginPath; 174 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 175 } 176 177 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 178 const uint32_t idx = ePropertyPythonOSPluginPath; 179 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 180 } 181 182 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 183 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 184 return m_collection_sp->GetPropertyAtIndexAsBoolean( 185 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 186 } 187 188 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 189 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 190 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 191 } 192 193 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 194 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 195 return m_collection_sp->GetPropertyAtIndexAsBoolean( 196 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 197 } 198 199 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 200 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 201 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 202 } 203 204 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 205 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 206 return m_collection_sp->GetPropertyAtIndexAsBoolean( 207 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 208 } 209 210 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 211 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 212 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 213 } 214 215 bool ProcessProperties::GetDetachKeepsStopped() const { 216 const uint32_t idx = ePropertyDetachKeepsStopped; 217 return m_collection_sp->GetPropertyAtIndexAsBoolean( 218 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 219 } 220 221 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 222 const uint32_t idx = ePropertyDetachKeepsStopped; 223 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 224 } 225 226 bool ProcessProperties::GetWarningsOptimization() const { 227 const uint32_t idx = ePropertyWarningOptimization; 228 return m_collection_sp->GetPropertyAtIndexAsBoolean( 229 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 230 } 231 232 bool ProcessProperties::GetStopOnExec() const { 233 const uint32_t idx = ePropertyStopOnExec; 234 return m_collection_sp->GetPropertyAtIndexAsBoolean( 235 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 236 } 237 238 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 239 const uint32_t idx = ePropertyUtilityExpressionTimeout; 240 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 241 nullptr, idx, g_process_properties[idx].default_uint_value); 242 return std::chrono::seconds(value); 243 } 244 245 Status ProcessLaunchCommandOptions::SetOptionValue( 246 uint32_t option_idx, llvm::StringRef option_arg, 247 ExecutionContext *execution_context) { 248 Status error; 249 const int short_option = m_getopt_table[option_idx].val; 250 251 switch (short_option) { 252 case 's': // Stop at program entry point 253 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 254 break; 255 256 case 'i': // STDIN for read only 257 { 258 FileAction action; 259 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 260 launch_info.AppendFileAction(action); 261 break; 262 } 263 264 case 'o': // Open STDOUT for write only 265 { 266 FileAction action; 267 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 268 launch_info.AppendFileAction(action); 269 break; 270 } 271 272 case 'e': // STDERR for write only 273 { 274 FileAction action; 275 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 276 launch_info.AppendFileAction(action); 277 break; 278 } 279 280 case 'p': // Process plug-in name 281 launch_info.SetProcessPluginName(option_arg); 282 break; 283 284 case 'n': // Disable STDIO 285 { 286 FileAction action; 287 const FileSpec dev_null(FileSystem::DEV_NULL); 288 if (action.Open(STDIN_FILENO, dev_null, true, false)) 289 launch_info.AppendFileAction(action); 290 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 291 launch_info.AppendFileAction(action); 292 if (action.Open(STDERR_FILENO, dev_null, false, true)) 293 launch_info.AppendFileAction(action); 294 break; 295 } 296 297 case 'w': 298 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 299 break; 300 301 case 't': // Open process in new terminal window 302 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 303 break; 304 305 case 'a': { 306 TargetSP target_sp = 307 execution_context ? execution_context->GetTargetSP() : TargetSP(); 308 PlatformSP platform_sp = 309 target_sp ? target_sp->GetPlatform() : PlatformSP(); 310 launch_info.GetArchitecture() = 311 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 312 } break; 313 314 case 'A': // Disable ASLR. 315 { 316 bool success; 317 const bool disable_aslr_arg = 318 OptionArgParser::ToBoolean(option_arg, true, &success); 319 if (success) 320 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 321 else 322 error.SetErrorStringWithFormat( 323 "Invalid boolean value for disable-aslr option: '%s'", 324 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 325 break; 326 } 327 328 case 'X': // shell expand args. 329 { 330 bool success; 331 const bool expand_args = 332 OptionArgParser::ToBoolean(option_arg, true, &success); 333 if (success) 334 launch_info.SetShellExpandArguments(expand_args); 335 else 336 error.SetErrorStringWithFormat( 337 "Invalid boolean value for shell-expand-args option: '%s'", 338 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 339 break; 340 } 341 342 case 'c': 343 if (!option_arg.empty()) 344 launch_info.SetShell(FileSpec(option_arg)); 345 else 346 launch_info.SetShell(HostInfo::GetDefaultShell()); 347 break; 348 349 case 'v': 350 launch_info.GetEnvironment().insert(option_arg); 351 break; 352 353 default: 354 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 355 short_option); 356 break; 357 } 358 return error; 359 } 360 361 static constexpr OptionDefinition g_process_launch_options[] = { 362 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 363 nullptr, {}, 0, eArgTypeNone, 364 "Stop at the entry point of the program when launching a process."}, 365 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 366 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 367 "Set whether to disable address space layout randomization when launching " 368 "a process."}, 369 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 370 nullptr, {}, 0, eArgTypePlugin, 371 "Name of the process plugin you want to use."}, 372 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 373 OptionParser::eRequiredArgument, nullptr, {}, 0, 374 eArgTypeDirectoryName, 375 "Set the current working directory to <path> when running the inferior."}, 376 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 377 nullptr, {}, 0, eArgTypeArchitecture, 378 "Set the architecture for the process to launch when ambiguous."}, 379 {LLDB_OPT_SET_ALL, false, "environment", 'v', 380 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 381 "Specify an environment variable name/value string (--environment " 382 "NAME=VALUE). Can be specified multiple times for subsequent environment " 383 "entries."}, 384 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 385 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 386 "Run the process in a shell (not supported on all platforms)."}, 387 388 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 389 nullptr, {}, 0, eArgTypeFilename, 390 "Redirect stdin for the process to <filename>."}, 391 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 392 nullptr, {}, 0, eArgTypeFilename, 393 "Redirect stdout for the process to <filename>."}, 394 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 395 nullptr, {}, 0, eArgTypeFilename, 396 "Redirect stderr for the process to <filename>."}, 397 398 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 399 {}, 0, eArgTypeNone, 400 "Start the process in a terminal (not supported on all platforms)."}, 401 402 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 403 {}, 0, eArgTypeNone, 404 "Do not set up for terminal I/O to go to running process."}, 405 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 406 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 407 "Set whether to shell expand arguments to the process when launching."}, 408 }; 409 410 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 411 return llvm::makeArrayRef(g_process_launch_options); 412 } 413 414 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 415 llvm::StringRef plugin_name, 416 ListenerSP listener_sp, 417 const FileSpec *crash_file_path) { 418 static uint32_t g_process_unique_id = 0; 419 420 ProcessSP process_sp; 421 ProcessCreateInstance create_callback = nullptr; 422 if (!plugin_name.empty()) { 423 ConstString const_plugin_name(plugin_name); 424 create_callback = 425 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 426 if (create_callback) { 427 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 428 if (process_sp) { 429 if (process_sp->CanDebug(target_sp, true)) { 430 process_sp->m_process_unique_id = ++g_process_unique_id; 431 } else 432 process_sp.reset(); 433 } 434 } 435 } else { 436 for (uint32_t idx = 0; 437 (create_callback = 438 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 439 ++idx) { 440 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 441 if (process_sp) { 442 if (process_sp->CanDebug(target_sp, false)) { 443 process_sp->m_process_unique_id = ++g_process_unique_id; 444 break; 445 } else 446 process_sp.reset(); 447 } 448 } 449 } 450 return process_sp; 451 } 452 453 ConstString &Process::GetStaticBroadcasterClass() { 454 static ConstString class_name("lldb.process"); 455 return class_name; 456 } 457 458 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 459 : Process(target_sp, listener_sp, 460 UnixSignals::Create(HostInfo::GetArchitecture())) { 461 // This constructor just delegates to the full Process constructor, 462 // defaulting to using the Host's UnixSignals. 463 } 464 465 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 466 const UnixSignalsSP &unix_signals_sp) 467 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 468 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 469 Process::GetStaticBroadcasterClass().AsCString()), 470 m_target_wp(target_sp), m_public_state(eStateUnloaded), 471 m_private_state(eStateUnloaded), 472 m_private_state_broadcaster(nullptr, 473 "lldb.process.internal_state_broadcaster"), 474 m_private_state_control_broadcaster( 475 nullptr, "lldb.process.internal_state_control_broadcaster"), 476 m_private_state_listener_sp( 477 Listener::MakeListener("lldb.process.internal_state_listener")), 478 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 479 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 480 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 481 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 482 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 483 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 484 m_breakpoint_site_list(), m_dynamic_checkers_up(), 485 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 486 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 487 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 488 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 489 m_memory_cache(*this), m_allocated_memory_cache(*this), 490 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 491 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 492 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 493 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 494 m_can_interpret_function_calls(false), m_warnings_issued(), 495 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 496 CheckInWithManager(); 497 498 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 499 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 500 501 if (!m_unix_signals_sp) 502 m_unix_signals_sp = std::make_shared<UnixSignals>(); 503 504 SetEventName(eBroadcastBitStateChanged, "state-changed"); 505 SetEventName(eBroadcastBitInterrupt, "interrupt"); 506 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 507 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 508 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 509 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 510 511 m_private_state_control_broadcaster.SetEventName( 512 eBroadcastInternalStateControlStop, "control-stop"); 513 m_private_state_control_broadcaster.SetEventName( 514 eBroadcastInternalStateControlPause, "control-pause"); 515 m_private_state_control_broadcaster.SetEventName( 516 eBroadcastInternalStateControlResume, "control-resume"); 517 518 m_listener_sp->StartListeningForEvents( 519 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 520 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 521 eBroadcastBitProfileData | eBroadcastBitStructuredData); 522 523 m_private_state_listener_sp->StartListeningForEvents( 524 &m_private_state_broadcaster, 525 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 526 527 m_private_state_listener_sp->StartListeningForEvents( 528 &m_private_state_control_broadcaster, 529 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 530 eBroadcastInternalStateControlResume); 531 // We need something valid here, even if just the default UnixSignalsSP. 532 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 533 534 // Allow the platform to override the default cache line size 535 OptionValueSP value_sp = 536 m_collection_sp 537 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 538 ->GetValue(); 539 uint32_t platform_cache_line_size = 540 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 541 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 542 value_sp->SetUInt64Value(platform_cache_line_size); 543 544 RegisterAssertFrameRecognizer(this); 545 } 546 547 Process::~Process() { 548 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 549 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 550 StopPrivateStateThread(); 551 552 // ThreadList::Clear() will try to acquire this process's mutex, so 553 // explicitly clear the thread list here to ensure that the mutex is not 554 // destroyed before the thread list. 555 m_thread_list.Clear(); 556 } 557 558 const ProcessPropertiesSP &Process::GetGlobalProperties() { 559 // NOTE: intentional leak so we don't crash if global destructor chain gets 560 // called as other threads still use the result of this function 561 static ProcessPropertiesSP *g_settings_sp_ptr = 562 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 563 return *g_settings_sp_ptr; 564 } 565 566 void Process::Finalize() { 567 m_finalizing = true; 568 569 // Destroy this process if needed 570 switch (GetPrivateState()) { 571 case eStateConnected: 572 case eStateAttaching: 573 case eStateLaunching: 574 case eStateStopped: 575 case eStateRunning: 576 case eStateStepping: 577 case eStateCrashed: 578 case eStateSuspended: 579 Destroy(false); 580 break; 581 582 case eStateInvalid: 583 case eStateUnloaded: 584 case eStateDetached: 585 case eStateExited: 586 break; 587 } 588 589 // Clear our broadcaster before we proceed with destroying 590 Broadcaster::Clear(); 591 592 // Do any cleanup needed prior to being destructed... Subclasses that 593 // override this method should call this superclass method as well. 594 595 // We need to destroy the loader before the derived Process class gets 596 // destroyed since it is very likely that undoing the loader will require 597 // access to the real process. 598 m_dynamic_checkers_up.reset(); 599 m_abi_sp.reset(); 600 m_os_up.reset(); 601 m_system_runtime_up.reset(); 602 m_dyld_up.reset(); 603 m_jit_loaders_up.reset(); 604 m_thread_plans.Clear(); 605 m_thread_list_real.Destroy(); 606 m_thread_list.Destroy(); 607 m_extended_thread_list.Destroy(); 608 m_queue_list.Clear(); 609 m_queue_list_stop_id = 0; 610 std::vector<Notifications> empty_notifications; 611 m_notifications.swap(empty_notifications); 612 m_image_tokens.clear(); 613 m_memory_cache.Clear(); 614 m_allocated_memory_cache.Clear(); 615 { 616 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 617 m_language_runtimes.clear(); 618 } 619 m_instrumentation_runtimes.clear(); 620 m_next_event_action_up.reset(); 621 // Clear the last natural stop ID since it has a strong reference to this 622 // process 623 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 624 //#ifdef LLDB_CONFIGURATION_DEBUG 625 // StreamFile s(stdout, false); 626 // EventSP event_sp; 627 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 628 // { 629 // event_sp->Dump (&s); 630 // s.EOL(); 631 // } 632 //#endif 633 // We have to be very careful here as the m_private_state_listener might 634 // contain events that have ProcessSP values in them which can keep this 635 // process around forever. These events need to be cleared out. 636 m_private_state_listener_sp->Clear(); 637 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 638 m_public_run_lock.SetStopped(); 639 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 640 m_private_run_lock.SetStopped(); 641 m_structured_data_plugin_map.clear(); 642 m_finalize_called = true; 643 } 644 645 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 646 m_notifications.push_back(callbacks); 647 if (callbacks.initialize != nullptr) 648 callbacks.initialize(callbacks.baton, this); 649 } 650 651 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 652 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 653 for (pos = m_notifications.begin(); pos != end; ++pos) { 654 if (pos->baton == callbacks.baton && 655 pos->initialize == callbacks.initialize && 656 pos->process_state_changed == callbacks.process_state_changed) { 657 m_notifications.erase(pos); 658 return true; 659 } 660 } 661 return false; 662 } 663 664 void Process::SynchronouslyNotifyStateChanged(StateType state) { 665 std::vector<Notifications>::iterator notification_pos, 666 notification_end = m_notifications.end(); 667 for (notification_pos = m_notifications.begin(); 668 notification_pos != notification_end; ++notification_pos) { 669 if (notification_pos->process_state_changed) 670 notification_pos->process_state_changed(notification_pos->baton, this, 671 state); 672 } 673 } 674 675 // FIXME: We need to do some work on events before the general Listener sees 676 // them. 677 // For instance if we are continuing from a breakpoint, we need to ensure that 678 // we do the little "insert real insn, step & stop" trick. But we can't do 679 // that when the event is delivered by the broadcaster - since that is done on 680 // the thread that is waiting for new events, so if we needed more than one 681 // event for our handling, we would stall. So instead we do it when we fetch 682 // the event off of the queue. 683 // 684 685 StateType Process::GetNextEvent(EventSP &event_sp) { 686 StateType state = eStateInvalid; 687 688 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 689 std::chrono::seconds(0)) && 690 event_sp) 691 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 692 693 return state; 694 } 695 696 void Process::SyncIOHandler(uint32_t iohandler_id, 697 const Timeout<std::micro> &timeout) { 698 // don't sync (potentially context switch) in case where there is no process 699 // IO 700 if (!m_process_input_reader) 701 return; 702 703 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 704 705 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 706 if (Result) { 707 LLDB_LOG( 708 log, 709 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 710 iohandler_id, *Result); 711 } else { 712 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 713 iohandler_id); 714 } 715 } 716 717 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 718 EventSP *event_sp_ptr, bool wait_always, 719 ListenerSP hijack_listener_sp, 720 Stream *stream, bool use_run_lock) { 721 // We can't just wait for a "stopped" event, because the stopped event may 722 // have restarted the target. We have to actually check each event, and in 723 // the case of a stopped event check the restarted flag on the event. 724 if (event_sp_ptr) 725 event_sp_ptr->reset(); 726 StateType state = GetState(); 727 // If we are exited or detached, we won't ever get back to any other valid 728 // state... 729 if (state == eStateDetached || state == eStateExited) 730 return state; 731 732 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 733 LLDB_LOG(log, "timeout = {0}", timeout); 734 735 if (!wait_always && StateIsStoppedState(state, true) && 736 StateIsStoppedState(GetPrivateState(), true)) { 737 LLDB_LOGF(log, 738 "Process::%s returning without waiting for events; process " 739 "private and public states are already 'stopped'.", 740 __FUNCTION__); 741 // We need to toggle the run lock as this won't get done in 742 // SetPublicState() if the process is hijacked. 743 if (hijack_listener_sp && use_run_lock) 744 m_public_run_lock.SetStopped(); 745 return state; 746 } 747 748 while (state != eStateInvalid) { 749 EventSP event_sp; 750 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 751 if (event_sp_ptr && event_sp) 752 *event_sp_ptr = event_sp; 753 754 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 755 Process::HandleProcessStateChangedEvent(event_sp, stream, 756 pop_process_io_handler); 757 758 switch (state) { 759 case eStateCrashed: 760 case eStateDetached: 761 case eStateExited: 762 case eStateUnloaded: 763 // We need to toggle the run lock as this won't get done in 764 // SetPublicState() if the process is hijacked. 765 if (hijack_listener_sp && use_run_lock) 766 m_public_run_lock.SetStopped(); 767 return state; 768 case eStateStopped: 769 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 770 continue; 771 else { 772 // We need to toggle the run lock as this won't get done in 773 // SetPublicState() if the process is hijacked. 774 if (hijack_listener_sp && use_run_lock) 775 m_public_run_lock.SetStopped(); 776 return state; 777 } 778 default: 779 continue; 780 } 781 } 782 return state; 783 } 784 785 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 786 Stream *stream, 787 bool &pop_process_io_handler) { 788 const bool handle_pop = pop_process_io_handler; 789 790 pop_process_io_handler = false; 791 ProcessSP process_sp = 792 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 793 794 if (!process_sp) 795 return false; 796 797 StateType event_state = 798 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 799 if (event_state == eStateInvalid) 800 return false; 801 802 switch (event_state) { 803 case eStateInvalid: 804 case eStateUnloaded: 805 case eStateAttaching: 806 case eStateLaunching: 807 case eStateStepping: 808 case eStateDetached: 809 if (stream) 810 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 811 StateAsCString(event_state)); 812 if (event_state == eStateDetached) 813 pop_process_io_handler = true; 814 break; 815 816 case eStateConnected: 817 case eStateRunning: 818 // Don't be chatty when we run... 819 break; 820 821 case eStateExited: 822 if (stream) 823 process_sp->GetStatus(*stream); 824 pop_process_io_handler = true; 825 break; 826 827 case eStateStopped: 828 case eStateCrashed: 829 case eStateSuspended: 830 // Make sure the program hasn't been auto-restarted: 831 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 832 if (stream) { 833 size_t num_reasons = 834 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 835 if (num_reasons > 0) { 836 // FIXME: Do we want to report this, or would that just be annoyingly 837 // chatty? 838 if (num_reasons == 1) { 839 const char *reason = 840 Process::ProcessEventData::GetRestartedReasonAtIndex( 841 event_sp.get(), 0); 842 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 843 process_sp->GetID(), 844 reason ? reason : "<UNKNOWN REASON>"); 845 } else { 846 stream->Printf("Process %" PRIu64 847 " stopped and restarted, reasons:\n", 848 process_sp->GetID()); 849 850 for (size_t i = 0; i < num_reasons; i++) { 851 const char *reason = 852 Process::ProcessEventData::GetRestartedReasonAtIndex( 853 event_sp.get(), i); 854 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 855 } 856 } 857 } 858 } 859 } else { 860 StopInfoSP curr_thread_stop_info_sp; 861 // Lock the thread list so it doesn't change on us, this is the scope for 862 // the locker: 863 { 864 ThreadList &thread_list = process_sp->GetThreadList(); 865 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 866 867 ThreadSP curr_thread(thread_list.GetSelectedThread()); 868 ThreadSP thread; 869 StopReason curr_thread_stop_reason = eStopReasonInvalid; 870 if (curr_thread) { 871 curr_thread_stop_reason = curr_thread->GetStopReason(); 872 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 873 } 874 if (!curr_thread || !curr_thread->IsValid() || 875 curr_thread_stop_reason == eStopReasonInvalid || 876 curr_thread_stop_reason == eStopReasonNone) { 877 // Prefer a thread that has just completed its plan over another 878 // thread as current thread. 879 ThreadSP plan_thread; 880 ThreadSP other_thread; 881 882 const size_t num_threads = thread_list.GetSize(); 883 size_t i; 884 for (i = 0; i < num_threads; ++i) { 885 thread = thread_list.GetThreadAtIndex(i); 886 StopReason thread_stop_reason = thread->GetStopReason(); 887 switch (thread_stop_reason) { 888 case eStopReasonInvalid: 889 case eStopReasonNone: 890 break; 891 892 case eStopReasonSignal: { 893 // Don't select a signal thread if we weren't going to stop at 894 // that signal. We have to have had another reason for stopping 895 // here, and the user doesn't want to see this thread. 896 uint64_t signo = thread->GetStopInfo()->GetValue(); 897 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 898 if (!other_thread) 899 other_thread = thread; 900 } 901 break; 902 } 903 case eStopReasonTrace: 904 case eStopReasonBreakpoint: 905 case eStopReasonWatchpoint: 906 case eStopReasonException: 907 case eStopReasonExec: 908 case eStopReasonThreadExiting: 909 case eStopReasonInstrumentation: 910 if (!other_thread) 911 other_thread = thread; 912 break; 913 case eStopReasonPlanComplete: 914 if (!plan_thread) 915 plan_thread = thread; 916 break; 917 } 918 } 919 if (plan_thread) 920 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 921 else if (other_thread) 922 thread_list.SetSelectedThreadByID(other_thread->GetID()); 923 else { 924 if (curr_thread && curr_thread->IsValid()) 925 thread = curr_thread; 926 else 927 thread = thread_list.GetThreadAtIndex(0); 928 929 if (thread) 930 thread_list.SetSelectedThreadByID(thread->GetID()); 931 } 932 } 933 } 934 // Drop the ThreadList mutex by here, since GetThreadStatus below might 935 // have to run code, e.g. for Data formatters, and if we hold the 936 // ThreadList mutex, then the process is going to have a hard time 937 // restarting the process. 938 if (stream) { 939 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 940 if (debugger.GetTargetList().GetSelectedTarget().get() == 941 &process_sp->GetTarget()) { 942 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 943 944 if (!thread_sp || !thread_sp->IsValid()) 945 return false; 946 947 const bool only_threads_with_stop_reason = true; 948 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 949 const uint32_t num_frames = 1; 950 const uint32_t num_frames_with_source = 1; 951 const bool stop_format = true; 952 953 process_sp->GetStatus(*stream); 954 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 955 start_frame, num_frames, 956 num_frames_with_source, 957 stop_format); 958 if (curr_thread_stop_info_sp) { 959 lldb::addr_t crashing_address; 960 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 961 curr_thread_stop_info_sp, &crashing_address); 962 if (valobj_sp) { 963 const ValueObject::GetExpressionPathFormat format = 964 ValueObject::GetExpressionPathFormat:: 965 eGetExpressionPathFormatHonorPointers; 966 stream->PutCString("Likely cause: "); 967 valobj_sp->GetExpressionPath(*stream, format); 968 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 969 } 970 } 971 } else { 972 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 973 process_sp->GetTarget().shared_from_this()); 974 if (target_idx != UINT32_MAX) 975 stream->Printf("Target %d: (", target_idx); 976 else 977 stream->Printf("Target <unknown index>: ("); 978 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 979 stream->Printf(") stopped.\n"); 980 } 981 } 982 983 // Pop the process IO handler 984 pop_process_io_handler = true; 985 } 986 break; 987 } 988 989 if (handle_pop && pop_process_io_handler) 990 process_sp->PopProcessIOHandler(); 991 992 return true; 993 } 994 995 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 996 if (listener_sp) { 997 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 998 eBroadcastBitInterrupt); 999 } else 1000 return false; 1001 } 1002 1003 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1004 1005 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1006 const Timeout<std::micro> &timeout, 1007 ListenerSP hijack_listener_sp) { 1008 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1009 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1010 1011 ListenerSP listener_sp = hijack_listener_sp; 1012 if (!listener_sp) 1013 listener_sp = m_listener_sp; 1014 1015 StateType state = eStateInvalid; 1016 if (listener_sp->GetEventForBroadcasterWithType( 1017 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1018 timeout)) { 1019 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1020 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1021 else 1022 LLDB_LOG(log, "got no event or was interrupted."); 1023 } 1024 1025 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1026 return state; 1027 } 1028 1029 Event *Process::PeekAtStateChangedEvents() { 1030 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1031 1032 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1033 1034 Event *event_ptr; 1035 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1036 this, eBroadcastBitStateChanged); 1037 if (log) { 1038 if (event_ptr) { 1039 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1040 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1041 } else { 1042 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1043 } 1044 } 1045 return event_ptr; 1046 } 1047 1048 StateType 1049 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1050 const Timeout<std::micro> &timeout) { 1051 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1052 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1053 1054 StateType state = eStateInvalid; 1055 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1056 &m_private_state_broadcaster, 1057 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1058 timeout)) 1059 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1060 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1061 1062 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1063 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1064 return state; 1065 } 1066 1067 bool Process::GetEventsPrivate(EventSP &event_sp, 1068 const Timeout<std::micro> &timeout, 1069 bool control_only) { 1070 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1071 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1072 1073 if (control_only) 1074 return m_private_state_listener_sp->GetEventForBroadcaster( 1075 &m_private_state_control_broadcaster, event_sp, timeout); 1076 else 1077 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1078 } 1079 1080 bool Process::IsRunning() const { 1081 return StateIsRunningState(m_public_state.GetValue()); 1082 } 1083 1084 int Process::GetExitStatus() { 1085 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1086 1087 if (m_public_state.GetValue() == eStateExited) 1088 return m_exit_status; 1089 return -1; 1090 } 1091 1092 const char *Process::GetExitDescription() { 1093 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1094 1095 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1096 return m_exit_string.c_str(); 1097 return nullptr; 1098 } 1099 1100 bool Process::SetExitStatus(int status, const char *cstr) { 1101 // Use a mutex to protect setting the exit status. 1102 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1103 1104 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1105 LIBLLDB_LOG_PROCESS)); 1106 LLDB_LOGF( 1107 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1108 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1109 1110 // We were already in the exited state 1111 if (m_private_state.GetValue() == eStateExited) { 1112 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1113 "state was already set to eStateExited"); 1114 return false; 1115 } 1116 1117 m_exit_status = status; 1118 if (cstr) 1119 m_exit_string = cstr; 1120 else 1121 m_exit_string.clear(); 1122 1123 // Clear the last natural stop ID since it has a strong reference to this 1124 // process 1125 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1126 1127 SetPrivateState(eStateExited); 1128 1129 // Allow subclasses to do some cleanup 1130 DidExit(); 1131 1132 return true; 1133 } 1134 1135 bool Process::IsAlive() { 1136 switch (m_private_state.GetValue()) { 1137 case eStateConnected: 1138 case eStateAttaching: 1139 case eStateLaunching: 1140 case eStateStopped: 1141 case eStateRunning: 1142 case eStateStepping: 1143 case eStateCrashed: 1144 case eStateSuspended: 1145 return true; 1146 default: 1147 return false; 1148 } 1149 } 1150 1151 // This static callback can be used to watch for local child processes on the 1152 // current host. The child process exits, the process will be found in the 1153 // global target list (we want to be completely sure that the 1154 // lldb_private::Process doesn't go away before we can deliver the signal. 1155 bool Process::SetProcessExitStatus( 1156 lldb::pid_t pid, bool exited, 1157 int signo, // Zero for no signal 1158 int exit_status // Exit value of process if signal is zero 1159 ) { 1160 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1161 LLDB_LOGF(log, 1162 "Process::SetProcessExitStatus (pid=%" PRIu64 1163 ", exited=%i, signal=%i, exit_status=%i)\n", 1164 pid, exited, signo, exit_status); 1165 1166 if (exited) { 1167 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1168 if (target_sp) { 1169 ProcessSP process_sp(target_sp->GetProcessSP()); 1170 if (process_sp) { 1171 const char *signal_cstr = nullptr; 1172 if (signo) 1173 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1174 1175 process_sp->SetExitStatus(exit_status, signal_cstr); 1176 } 1177 } 1178 return true; 1179 } 1180 return false; 1181 } 1182 1183 void Process::UpdateThreadListIfNeeded() { 1184 const uint32_t stop_id = GetStopID(); 1185 if (m_thread_list.GetSize(false) == 0 || 1186 stop_id != m_thread_list.GetStopID()) { 1187 bool clear_unused_threads = true; 1188 const StateType state = GetPrivateState(); 1189 if (StateIsStoppedState(state, true)) { 1190 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1191 m_thread_list.SetStopID(stop_id); 1192 1193 // m_thread_list does have its own mutex, but we need to hold onto the 1194 // mutex between the call to UpdateThreadList(...) and the 1195 // os->UpdateThreadList(...) so it doesn't change on us 1196 ThreadList &old_thread_list = m_thread_list; 1197 ThreadList real_thread_list(this); 1198 ThreadList new_thread_list(this); 1199 // Always update the thread list with the protocol specific thread list, 1200 // but only update if "true" is returned 1201 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1202 // Don't call into the OperatingSystem to update the thread list if we 1203 // are shutting down, since that may call back into the SBAPI's, 1204 // requiring the API lock which is already held by whoever is shutting 1205 // us down, causing a deadlock. 1206 OperatingSystem *os = GetOperatingSystem(); 1207 if (os && !m_destroy_in_process) { 1208 // Clear any old backing threads where memory threads might have been 1209 // backed by actual threads from the lldb_private::Process subclass 1210 size_t num_old_threads = old_thread_list.GetSize(false); 1211 for (size_t i = 0; i < num_old_threads; ++i) 1212 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1213 // See if the OS plugin reports all threads. If it does, then 1214 // it is safe to clear unseen thread's plans here. Otherwise we 1215 // should preserve them in case they show up again: 1216 clear_unused_threads = GetTarget().GetOSPluginReportsAllThreads(); 1217 1218 // Turn off dynamic types to ensure we don't run any expressions. 1219 // Objective-C can run an expression to determine if a SBValue is a 1220 // dynamic type or not and we need to avoid this. OperatingSystem 1221 // plug-ins can't run expressions that require running code... 1222 1223 Target &target = GetTarget(); 1224 const lldb::DynamicValueType saved_prefer_dynamic = 1225 target.GetPreferDynamicValue(); 1226 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1227 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1228 1229 // Now let the OperatingSystem plug-in update the thread list 1230 1231 os->UpdateThreadList( 1232 old_thread_list, // Old list full of threads created by OS plug-in 1233 real_thread_list, // The actual thread list full of threads 1234 // created by each lldb_private::Process 1235 // subclass 1236 new_thread_list); // The new thread list that we will show to the 1237 // user that gets filled in 1238 1239 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1240 target.SetPreferDynamicValue(saved_prefer_dynamic); 1241 } else { 1242 // No OS plug-in, the new thread list is the same as the real thread 1243 // list. 1244 new_thread_list = real_thread_list; 1245 } 1246 1247 m_thread_list_real.Update(real_thread_list); 1248 m_thread_list.Update(new_thread_list); 1249 m_thread_list.SetStopID(stop_id); 1250 1251 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1252 // Clear any extended threads that we may have accumulated previously 1253 m_extended_thread_list.Clear(); 1254 m_extended_thread_stop_id = GetLastNaturalStopID(); 1255 1256 m_queue_list.Clear(); 1257 m_queue_list_stop_id = GetLastNaturalStopID(); 1258 } 1259 } 1260 // Now update the plan stack map. 1261 // If we do have an OS plugin, any absent real threads in the 1262 // m_thread_list have already been removed from the ThreadPlanStackMap. 1263 // So any remaining threads are OS Plugin threads, and those we want to 1264 // preserve in case they show up again. 1265 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1266 } 1267 } 1268 } 1269 1270 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1271 return m_thread_plans.Find(tid); 1272 } 1273 1274 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1275 return m_thread_plans.PrunePlansForTID(tid); 1276 } 1277 1278 void Process::PruneThreadPlans() { 1279 m_thread_plans.Update(GetThreadList(), true, false); 1280 } 1281 1282 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1283 lldb::DescriptionLevel desc_level, 1284 bool internal, bool condense_trivial, 1285 bool skip_unreported_plans) { 1286 return m_thread_plans.DumpPlansForTID( 1287 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1288 } 1289 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1290 bool internal, bool condense_trivial, 1291 bool skip_unreported_plans) { 1292 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1293 skip_unreported_plans); 1294 } 1295 1296 void Process::UpdateQueueListIfNeeded() { 1297 if (m_system_runtime_up) { 1298 if (m_queue_list.GetSize() == 0 || 1299 m_queue_list_stop_id != GetLastNaturalStopID()) { 1300 const StateType state = GetPrivateState(); 1301 if (StateIsStoppedState(state, true)) { 1302 m_system_runtime_up->PopulateQueueList(m_queue_list); 1303 m_queue_list_stop_id = GetLastNaturalStopID(); 1304 } 1305 } 1306 } 1307 } 1308 1309 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1310 OperatingSystem *os = GetOperatingSystem(); 1311 if (os) 1312 return os->CreateThread(tid, context); 1313 return ThreadSP(); 1314 } 1315 1316 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1317 return AssignIndexIDToThread(thread_id); 1318 } 1319 1320 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1321 return (m_thread_id_to_index_id_map.find(thread_id) != 1322 m_thread_id_to_index_id_map.end()); 1323 } 1324 1325 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1326 uint32_t result = 0; 1327 std::map<uint64_t, uint32_t>::iterator iterator = 1328 m_thread_id_to_index_id_map.find(thread_id); 1329 if (iterator == m_thread_id_to_index_id_map.end()) { 1330 result = ++m_thread_index_id; 1331 m_thread_id_to_index_id_map[thread_id] = result; 1332 } else { 1333 result = iterator->second; 1334 } 1335 1336 return result; 1337 } 1338 1339 StateType Process::GetState() { 1340 return m_public_state.GetValue(); 1341 } 1342 1343 void Process::SetPublicState(StateType new_state, bool restarted) { 1344 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1345 LIBLLDB_LOG_PROCESS)); 1346 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1347 StateAsCString(new_state), restarted); 1348 const StateType old_state = m_public_state.GetValue(); 1349 m_public_state.SetValue(new_state); 1350 1351 // On the transition from Run to Stopped, we unlock the writer end of the run 1352 // lock. The lock gets locked in Resume, which is the public API to tell the 1353 // program to run. 1354 if (!StateChangedIsExternallyHijacked()) { 1355 if (new_state == eStateDetached) { 1356 LLDB_LOGF(log, 1357 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1358 StateAsCString(new_state)); 1359 m_public_run_lock.SetStopped(); 1360 } else { 1361 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1362 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1363 if ((old_state_is_stopped != new_state_is_stopped)) { 1364 if (new_state_is_stopped && !restarted) { 1365 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1366 StateAsCString(new_state)); 1367 m_public_run_lock.SetStopped(); 1368 } 1369 } 1370 } 1371 } 1372 } 1373 1374 Status Process::Resume() { 1375 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1376 LIBLLDB_LOG_PROCESS)); 1377 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1378 if (!m_public_run_lock.TrySetRunning()) { 1379 Status error("Resume request failed - process still running."); 1380 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1381 return error; 1382 } 1383 Status error = PrivateResume(); 1384 if (!error.Success()) { 1385 // Undo running state change 1386 m_public_run_lock.SetStopped(); 1387 } 1388 return error; 1389 } 1390 1391 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1392 1393 Status Process::ResumeSynchronous(Stream *stream) { 1394 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1395 LIBLLDB_LOG_PROCESS)); 1396 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1397 if (!m_public_run_lock.TrySetRunning()) { 1398 Status error("Resume request failed - process still running."); 1399 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1400 return error; 1401 } 1402 1403 ListenerSP listener_sp( 1404 Listener::MakeListener(g_resume_sync_name)); 1405 HijackProcessEvents(listener_sp); 1406 1407 Status error = PrivateResume(); 1408 if (error.Success()) { 1409 StateType state = 1410 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1411 const bool must_be_alive = 1412 false; // eStateExited is ok, so this must be false 1413 if (!StateIsStoppedState(state, must_be_alive)) 1414 error.SetErrorStringWithFormat( 1415 "process not in stopped state after synchronous resume: %s", 1416 StateAsCString(state)); 1417 } else { 1418 // Undo running state change 1419 m_public_run_lock.SetStopped(); 1420 } 1421 1422 // Undo the hijacking of process events... 1423 RestoreProcessEvents(); 1424 1425 return error; 1426 } 1427 1428 bool Process::StateChangedIsExternallyHijacked() { 1429 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1430 const char *hijacking_name = GetHijackingListenerName(); 1431 if (hijacking_name && 1432 strcmp(hijacking_name, g_resume_sync_name)) 1433 return true; 1434 } 1435 return false; 1436 } 1437 1438 bool Process::StateChangedIsHijackedForSynchronousResume() { 1439 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1440 const char *hijacking_name = GetHijackingListenerName(); 1441 if (hijacking_name && 1442 strcmp(hijacking_name, g_resume_sync_name) == 0) 1443 return true; 1444 } 1445 return false; 1446 } 1447 1448 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1449 1450 void Process::SetPrivateState(StateType new_state) { 1451 if (m_finalize_called) 1452 return; 1453 1454 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1455 LIBLLDB_LOG_PROCESS)); 1456 bool state_changed = false; 1457 1458 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1459 1460 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1461 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1462 1463 const StateType old_state = m_private_state.GetValueNoLock(); 1464 state_changed = old_state != new_state; 1465 1466 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1467 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1468 if (old_state_is_stopped != new_state_is_stopped) { 1469 if (new_state_is_stopped) 1470 m_private_run_lock.SetStopped(); 1471 else 1472 m_private_run_lock.SetRunning(); 1473 } 1474 1475 if (state_changed) { 1476 m_private_state.SetValueNoLock(new_state); 1477 EventSP event_sp( 1478 new Event(eBroadcastBitStateChanged, 1479 new ProcessEventData(shared_from_this(), new_state))); 1480 if (StateIsStoppedState(new_state, false)) { 1481 // Note, this currently assumes that all threads in the list stop when 1482 // the process stops. In the future we will want to support a debugging 1483 // model where some threads continue to run while others are stopped. 1484 // When that happens we will either need a way for the thread list to 1485 // identify which threads are stopping or create a special thread list 1486 // containing only threads which actually stopped. 1487 // 1488 // The process plugin is responsible for managing the actual behavior of 1489 // the threads and should have stopped any threads that are going to stop 1490 // before we get here. 1491 m_thread_list.DidStop(); 1492 1493 m_mod_id.BumpStopID(); 1494 if (!m_mod_id.IsLastResumeForUserExpression()) 1495 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1496 m_memory_cache.Clear(); 1497 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1498 StateAsCString(new_state), m_mod_id.GetStopID()); 1499 } 1500 1501 // Use our target to get a shared pointer to ourselves... 1502 if (m_finalize_called && !PrivateStateThreadIsValid()) 1503 BroadcastEvent(event_sp); 1504 else 1505 m_private_state_broadcaster.BroadcastEvent(event_sp); 1506 } else { 1507 LLDB_LOGF(log, 1508 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1509 StateAsCString(new_state)); 1510 } 1511 } 1512 1513 void Process::SetRunningUserExpression(bool on) { 1514 m_mod_id.SetRunningUserExpression(on); 1515 } 1516 1517 void Process::SetRunningUtilityFunction(bool on) { 1518 m_mod_id.SetRunningUtilityFunction(on); 1519 } 1520 1521 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1522 1523 const lldb::ABISP &Process::GetABI() { 1524 if (!m_abi_sp) 1525 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1526 return m_abi_sp; 1527 } 1528 1529 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1530 std::vector<LanguageRuntime *> language_runtimes; 1531 1532 if (m_finalizing) 1533 return language_runtimes; 1534 1535 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1536 // Before we pass off a copy of the language runtimes, we must make sure that 1537 // our collection is properly populated. It's possible that some of the 1538 // language runtimes were not loaded yet, either because nobody requested it 1539 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1540 // hadn't been loaded). 1541 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1542 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1543 language_runtimes.emplace_back(runtime); 1544 } 1545 1546 return language_runtimes; 1547 } 1548 1549 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1550 if (m_finalizing) 1551 return nullptr; 1552 1553 LanguageRuntime *runtime = nullptr; 1554 1555 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1556 LanguageRuntimeCollection::iterator pos; 1557 pos = m_language_runtimes.find(language); 1558 if (pos == m_language_runtimes.end() || !pos->second) { 1559 lldb::LanguageRuntimeSP runtime_sp( 1560 LanguageRuntime::FindPlugin(this, language)); 1561 1562 m_language_runtimes[language] = runtime_sp; 1563 runtime = runtime_sp.get(); 1564 } else 1565 runtime = pos->second.get(); 1566 1567 if (runtime) 1568 // It's possible that a language runtime can support multiple LanguageTypes, 1569 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1570 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1571 // primary language type and make sure that our runtime supports it. 1572 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1573 1574 return runtime; 1575 } 1576 1577 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1578 if (m_finalizing) 1579 return false; 1580 1581 if (in_value.IsDynamic()) 1582 return false; 1583 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1584 1585 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1586 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1587 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1588 } 1589 1590 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1591 if (runtime->CouldHaveDynamicValue(in_value)) 1592 return true; 1593 } 1594 1595 return false; 1596 } 1597 1598 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1599 m_dynamic_checkers_up.reset(dynamic_checkers); 1600 } 1601 1602 BreakpointSiteList &Process::GetBreakpointSiteList() { 1603 return m_breakpoint_site_list; 1604 } 1605 1606 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1607 return m_breakpoint_site_list; 1608 } 1609 1610 void Process::DisableAllBreakpointSites() { 1611 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1612 // bp_site->SetEnabled(true); 1613 DisableBreakpointSite(bp_site); 1614 }); 1615 } 1616 1617 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1618 Status error(DisableBreakpointSiteByID(break_id)); 1619 1620 if (error.Success()) 1621 m_breakpoint_site_list.Remove(break_id); 1622 1623 return error; 1624 } 1625 1626 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1627 Status error; 1628 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1629 if (bp_site_sp) { 1630 if (bp_site_sp->IsEnabled()) 1631 error = DisableBreakpointSite(bp_site_sp.get()); 1632 } else { 1633 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1634 break_id); 1635 } 1636 1637 return error; 1638 } 1639 1640 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1641 Status error; 1642 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1643 if (bp_site_sp) { 1644 if (!bp_site_sp->IsEnabled()) 1645 error = EnableBreakpointSite(bp_site_sp.get()); 1646 } else { 1647 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1648 break_id); 1649 } 1650 return error; 1651 } 1652 1653 lldb::break_id_t 1654 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1655 bool use_hardware) { 1656 addr_t load_addr = LLDB_INVALID_ADDRESS; 1657 1658 bool show_error = true; 1659 switch (GetState()) { 1660 case eStateInvalid: 1661 case eStateUnloaded: 1662 case eStateConnected: 1663 case eStateAttaching: 1664 case eStateLaunching: 1665 case eStateDetached: 1666 case eStateExited: 1667 show_error = false; 1668 break; 1669 1670 case eStateStopped: 1671 case eStateRunning: 1672 case eStateStepping: 1673 case eStateCrashed: 1674 case eStateSuspended: 1675 show_error = IsAlive(); 1676 break; 1677 } 1678 1679 // Reset the IsIndirect flag here, in case the location changes from pointing 1680 // to a indirect symbol to a regular symbol. 1681 owner->SetIsIndirect(false); 1682 1683 if (owner->ShouldResolveIndirectFunctions()) { 1684 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1685 if (symbol && symbol->IsIndirect()) { 1686 Status error; 1687 Address symbol_address = symbol->GetAddress(); 1688 load_addr = ResolveIndirectFunction(&symbol_address, error); 1689 if (!error.Success() && show_error) { 1690 GetTarget().GetDebugger().GetErrorStream().Printf( 1691 "warning: failed to resolve indirect function at 0x%" PRIx64 1692 " for breakpoint %i.%i: %s\n", 1693 symbol->GetLoadAddress(&GetTarget()), 1694 owner->GetBreakpoint().GetID(), owner->GetID(), 1695 error.AsCString() ? error.AsCString() : "unknown error"); 1696 return LLDB_INVALID_BREAK_ID; 1697 } 1698 Address resolved_address(load_addr); 1699 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1700 owner->SetIsIndirect(true); 1701 } else 1702 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1703 } else 1704 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1705 1706 if (load_addr != LLDB_INVALID_ADDRESS) { 1707 BreakpointSiteSP bp_site_sp; 1708 1709 // Look up this breakpoint site. If it exists, then add this new owner, 1710 // otherwise create a new breakpoint site and add it. 1711 1712 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1713 1714 if (bp_site_sp) { 1715 bp_site_sp->AddOwner(owner); 1716 owner->SetBreakpointSite(bp_site_sp); 1717 return bp_site_sp->GetID(); 1718 } else { 1719 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1720 load_addr, use_hardware)); 1721 if (bp_site_sp) { 1722 Status error = EnableBreakpointSite(bp_site_sp.get()); 1723 if (error.Success()) { 1724 owner->SetBreakpointSite(bp_site_sp); 1725 return m_breakpoint_site_list.Add(bp_site_sp); 1726 } else { 1727 if (show_error || use_hardware) { 1728 // Report error for setting breakpoint... 1729 GetTarget().GetDebugger().GetErrorStream().Printf( 1730 "warning: failed to set breakpoint site at 0x%" PRIx64 1731 " for breakpoint %i.%i: %s\n", 1732 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1733 error.AsCString() ? error.AsCString() : "unknown error"); 1734 } 1735 } 1736 } 1737 } 1738 } 1739 // We failed to enable the breakpoint 1740 return LLDB_INVALID_BREAK_ID; 1741 } 1742 1743 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1744 lldb::user_id_t owner_loc_id, 1745 BreakpointSiteSP &bp_site_sp) { 1746 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1747 if (num_owners == 0) { 1748 // Don't try to disable the site if we don't have a live process anymore. 1749 if (IsAlive()) 1750 DisableBreakpointSite(bp_site_sp.get()); 1751 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1752 } 1753 } 1754 1755 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1756 uint8_t *buf) const { 1757 size_t bytes_removed = 0; 1758 BreakpointSiteList bp_sites_in_range; 1759 1760 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1761 bp_sites_in_range)) { 1762 bp_sites_in_range.ForEach([bp_addr, size, 1763 buf](BreakpointSite *bp_site) -> void { 1764 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1765 addr_t intersect_addr; 1766 size_t intersect_size; 1767 size_t opcode_offset; 1768 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1769 &intersect_size, &opcode_offset)) { 1770 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1771 assert(bp_addr < intersect_addr + intersect_size && 1772 intersect_addr + intersect_size <= bp_addr + size); 1773 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1774 size_t buf_offset = intersect_addr - bp_addr; 1775 ::memcpy(buf + buf_offset, 1776 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1777 intersect_size); 1778 } 1779 } 1780 }); 1781 } 1782 return bytes_removed; 1783 } 1784 1785 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1786 PlatformSP platform_sp(GetTarget().GetPlatform()); 1787 if (platform_sp) 1788 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1789 return 0; 1790 } 1791 1792 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1793 Status error; 1794 assert(bp_site != nullptr); 1795 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1796 const addr_t bp_addr = bp_site->GetLoadAddress(); 1797 LLDB_LOGF( 1798 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1799 bp_site->GetID(), (uint64_t)bp_addr); 1800 if (bp_site->IsEnabled()) { 1801 LLDB_LOGF( 1802 log, 1803 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1804 " -- already enabled", 1805 bp_site->GetID(), (uint64_t)bp_addr); 1806 return error; 1807 } 1808 1809 if (bp_addr == LLDB_INVALID_ADDRESS) { 1810 error.SetErrorString("BreakpointSite contains an invalid load address."); 1811 return error; 1812 } 1813 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1814 // trap for the breakpoint site 1815 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1816 1817 if (bp_opcode_size == 0) { 1818 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1819 "returned zero, unable to get breakpoint " 1820 "trap for address 0x%" PRIx64, 1821 bp_addr); 1822 } else { 1823 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1824 1825 if (bp_opcode_bytes == nullptr) { 1826 error.SetErrorString( 1827 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1828 return error; 1829 } 1830 1831 // Save the original opcode by reading it 1832 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1833 error) == bp_opcode_size) { 1834 // Write a software breakpoint in place of the original opcode 1835 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1836 bp_opcode_size) { 1837 uint8_t verify_bp_opcode_bytes[64]; 1838 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1839 error) == bp_opcode_size) { 1840 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1841 bp_opcode_size) == 0) { 1842 bp_site->SetEnabled(true); 1843 bp_site->SetType(BreakpointSite::eSoftware); 1844 LLDB_LOGF(log, 1845 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1846 "addr = 0x%" PRIx64 " -- SUCCESS", 1847 bp_site->GetID(), (uint64_t)bp_addr); 1848 } else 1849 error.SetErrorString( 1850 "failed to verify the breakpoint trap in memory."); 1851 } else 1852 error.SetErrorString( 1853 "Unable to read memory to verify breakpoint trap."); 1854 } else 1855 error.SetErrorString("Unable to write breakpoint trap to memory."); 1856 } else 1857 error.SetErrorString("Unable to read memory at breakpoint address."); 1858 } 1859 if (log && error.Fail()) 1860 LLDB_LOGF( 1861 log, 1862 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1863 " -- FAILED: %s", 1864 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1865 return error; 1866 } 1867 1868 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1869 Status error; 1870 assert(bp_site != nullptr); 1871 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1872 addr_t bp_addr = bp_site->GetLoadAddress(); 1873 lldb::user_id_t breakID = bp_site->GetID(); 1874 LLDB_LOGF(log, 1875 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1876 ") addr = 0x%" PRIx64, 1877 breakID, (uint64_t)bp_addr); 1878 1879 if (bp_site->IsHardware()) { 1880 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1881 } else if (bp_site->IsEnabled()) { 1882 const size_t break_op_size = bp_site->GetByteSize(); 1883 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1884 if (break_op_size > 0) { 1885 // Clear a software breakpoint instruction 1886 uint8_t curr_break_op[8]; 1887 assert(break_op_size <= sizeof(curr_break_op)); 1888 bool break_op_found = false; 1889 1890 // Read the breakpoint opcode 1891 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1892 break_op_size) { 1893 bool verify = false; 1894 // Make sure the breakpoint opcode exists at this address 1895 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1896 break_op_found = true; 1897 // We found a valid breakpoint opcode at this address, now restore 1898 // the saved opcode. 1899 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1900 break_op_size, error) == break_op_size) { 1901 verify = true; 1902 } else 1903 error.SetErrorString( 1904 "Memory write failed when restoring original opcode."); 1905 } else { 1906 error.SetErrorString( 1907 "Original breakpoint trap is no longer in memory."); 1908 // Set verify to true and so we can check if the original opcode has 1909 // already been restored 1910 verify = true; 1911 } 1912 1913 if (verify) { 1914 uint8_t verify_opcode[8]; 1915 assert(break_op_size < sizeof(verify_opcode)); 1916 // Verify that our original opcode made it back to the inferior 1917 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1918 break_op_size) { 1919 // compare the memory we just read with the original opcode 1920 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1921 break_op_size) == 0) { 1922 // SUCCESS 1923 bp_site->SetEnabled(false); 1924 LLDB_LOGF(log, 1925 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1926 "addr = 0x%" PRIx64 " -- SUCCESS", 1927 bp_site->GetID(), (uint64_t)bp_addr); 1928 return error; 1929 } else { 1930 if (break_op_found) 1931 error.SetErrorString("Failed to restore original opcode."); 1932 } 1933 } else 1934 error.SetErrorString("Failed to read memory to verify that " 1935 "breakpoint trap was restored."); 1936 } 1937 } else 1938 error.SetErrorString( 1939 "Unable to read memory that should contain the breakpoint trap."); 1940 } 1941 } else { 1942 LLDB_LOGF( 1943 log, 1944 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1945 " -- already disabled", 1946 bp_site->GetID(), (uint64_t)bp_addr); 1947 return error; 1948 } 1949 1950 LLDB_LOGF( 1951 log, 1952 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1953 " -- FAILED: %s", 1954 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1955 return error; 1956 } 1957 1958 // Uncomment to verify memory caching works after making changes to caching 1959 // code 1960 //#define VERIFY_MEMORY_READS 1961 1962 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1963 error.Clear(); 1964 if (!GetDisableMemoryCache()) { 1965 #if defined(VERIFY_MEMORY_READS) 1966 // Memory caching is enabled, with debug verification 1967 1968 if (buf && size) { 1969 // Uncomment the line below to make sure memory caching is working. 1970 // I ran this through the test suite and got no assertions, so I am 1971 // pretty confident this is working well. If any changes are made to 1972 // memory caching, uncomment the line below and test your changes! 1973 1974 // Verify all memory reads by using the cache first, then redundantly 1975 // reading the same memory from the inferior and comparing to make sure 1976 // everything is exactly the same. 1977 std::string verify_buf(size, '\0'); 1978 assert(verify_buf.size() == size); 1979 const size_t cache_bytes_read = 1980 m_memory_cache.Read(this, addr, buf, size, error); 1981 Status verify_error; 1982 const size_t verify_bytes_read = 1983 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1984 verify_buf.size(), verify_error); 1985 assert(cache_bytes_read == verify_bytes_read); 1986 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1987 assert(verify_error.Success() == error.Success()); 1988 return cache_bytes_read; 1989 } 1990 return 0; 1991 #else // !defined(VERIFY_MEMORY_READS) 1992 // Memory caching is enabled, without debug verification 1993 1994 return m_memory_cache.Read(addr, buf, size, error); 1995 #endif // defined (VERIFY_MEMORY_READS) 1996 } else { 1997 // Memory caching is disabled 1998 1999 return ReadMemoryFromInferior(addr, buf, size, error); 2000 } 2001 } 2002 2003 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2004 Status &error) { 2005 char buf[256]; 2006 out_str.clear(); 2007 addr_t curr_addr = addr; 2008 while (true) { 2009 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2010 if (length == 0) 2011 break; 2012 out_str.append(buf, length); 2013 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2014 // to read some more characters 2015 if (length == sizeof(buf) - 1) 2016 curr_addr += length; 2017 else 2018 break; 2019 } 2020 return out_str.size(); 2021 } 2022 2023 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2024 Status &error, size_t type_width) { 2025 size_t total_bytes_read = 0; 2026 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2027 // Ensure a null terminator independent of the number of bytes that is 2028 // read. 2029 memset(dst, 0, max_bytes); 2030 size_t bytes_left = max_bytes - type_width; 2031 2032 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2033 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2034 "string with more than 4 bytes " 2035 "per character!"); 2036 2037 addr_t curr_addr = addr; 2038 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2039 char *curr_dst = dst; 2040 2041 error.Clear(); 2042 while (bytes_left > 0 && error.Success()) { 2043 addr_t cache_line_bytes_left = 2044 cache_line_size - (curr_addr % cache_line_size); 2045 addr_t bytes_to_read = 2046 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2047 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2048 2049 if (bytes_read == 0) 2050 break; 2051 2052 // Search for a null terminator of correct size and alignment in 2053 // bytes_read 2054 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2055 for (size_t i = aligned_start; 2056 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2057 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2058 error.Clear(); 2059 return i; 2060 } 2061 2062 total_bytes_read += bytes_read; 2063 curr_dst += bytes_read; 2064 curr_addr += bytes_read; 2065 bytes_left -= bytes_read; 2066 } 2067 } else { 2068 if (max_bytes) 2069 error.SetErrorString("invalid arguments"); 2070 } 2071 return total_bytes_read; 2072 } 2073 2074 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2075 // correct code to find null terminators. 2076 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2077 size_t dst_max_len, 2078 Status &result_error) { 2079 size_t total_cstr_len = 0; 2080 if (dst && dst_max_len) { 2081 result_error.Clear(); 2082 // NULL out everything just to be safe 2083 memset(dst, 0, dst_max_len); 2084 Status error; 2085 addr_t curr_addr = addr; 2086 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2087 size_t bytes_left = dst_max_len - 1; 2088 char *curr_dst = dst; 2089 2090 while (bytes_left > 0) { 2091 addr_t cache_line_bytes_left = 2092 cache_line_size - (curr_addr % cache_line_size); 2093 addr_t bytes_to_read = 2094 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2095 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2096 2097 if (bytes_read == 0) { 2098 result_error = error; 2099 dst[total_cstr_len] = '\0'; 2100 break; 2101 } 2102 const size_t len = strlen(curr_dst); 2103 2104 total_cstr_len += len; 2105 2106 if (len < bytes_to_read) 2107 break; 2108 2109 curr_dst += bytes_read; 2110 curr_addr += bytes_read; 2111 bytes_left -= bytes_read; 2112 } 2113 } else { 2114 if (dst == nullptr) 2115 result_error.SetErrorString("invalid arguments"); 2116 else 2117 result_error.Clear(); 2118 } 2119 return total_cstr_len; 2120 } 2121 2122 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2123 Status &error) { 2124 if (buf == nullptr || size == 0) 2125 return 0; 2126 2127 size_t bytes_read = 0; 2128 uint8_t *bytes = (uint8_t *)buf; 2129 2130 while (bytes_read < size) { 2131 const size_t curr_size = size - bytes_read; 2132 const size_t curr_bytes_read = 2133 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2134 bytes_read += curr_bytes_read; 2135 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2136 break; 2137 } 2138 2139 // Replace any software breakpoint opcodes that fall into this range back 2140 // into "buf" before we return 2141 if (bytes_read > 0) 2142 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2143 return bytes_read; 2144 } 2145 2146 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2147 size_t integer_byte_size, 2148 uint64_t fail_value, 2149 Status &error) { 2150 Scalar scalar; 2151 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2152 error)) 2153 return scalar.ULongLong(fail_value); 2154 return fail_value; 2155 } 2156 2157 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2158 size_t integer_byte_size, 2159 int64_t fail_value, 2160 Status &error) { 2161 Scalar scalar; 2162 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2163 error)) 2164 return scalar.SLongLong(fail_value); 2165 return fail_value; 2166 } 2167 2168 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2169 Scalar scalar; 2170 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2171 error)) 2172 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2173 return LLDB_INVALID_ADDRESS; 2174 } 2175 2176 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2177 Status &error) { 2178 Scalar scalar; 2179 const uint32_t addr_byte_size = GetAddressByteSize(); 2180 if (addr_byte_size <= 4) 2181 scalar = (uint32_t)ptr_value; 2182 else 2183 scalar = ptr_value; 2184 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2185 addr_byte_size; 2186 } 2187 2188 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2189 Status &error) { 2190 size_t bytes_written = 0; 2191 const uint8_t *bytes = (const uint8_t *)buf; 2192 2193 while (bytes_written < size) { 2194 const size_t curr_size = size - bytes_written; 2195 const size_t curr_bytes_written = DoWriteMemory( 2196 addr + bytes_written, bytes + bytes_written, curr_size, error); 2197 bytes_written += curr_bytes_written; 2198 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2199 break; 2200 } 2201 return bytes_written; 2202 } 2203 2204 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2205 Status &error) { 2206 #if defined(ENABLE_MEMORY_CACHING) 2207 m_memory_cache.Flush(addr, size); 2208 #endif 2209 2210 if (buf == nullptr || size == 0) 2211 return 0; 2212 2213 m_mod_id.BumpMemoryID(); 2214 2215 // We need to write any data that would go where any current software traps 2216 // (enabled software breakpoints) any software traps (breakpoints) that we 2217 // may have placed in our tasks memory. 2218 2219 BreakpointSiteList bp_sites_in_range; 2220 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2221 return WriteMemoryPrivate(addr, buf, size, error); 2222 2223 // No breakpoint sites overlap 2224 if (bp_sites_in_range.IsEmpty()) 2225 return WriteMemoryPrivate(addr, buf, size, error); 2226 2227 const uint8_t *ubuf = (const uint8_t *)buf; 2228 uint64_t bytes_written = 0; 2229 2230 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2231 &error](BreakpointSite *bp) -> void { 2232 if (error.Fail()) 2233 return; 2234 2235 addr_t intersect_addr; 2236 size_t intersect_size; 2237 size_t opcode_offset; 2238 const bool intersects = bp->IntersectsRange( 2239 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2240 UNUSED_IF_ASSERT_DISABLED(intersects); 2241 assert(intersects); 2242 assert(addr <= intersect_addr && intersect_addr < addr + size); 2243 assert(addr < intersect_addr + intersect_size && 2244 intersect_addr + intersect_size <= addr + size); 2245 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2246 2247 // Check for bytes before this breakpoint 2248 const addr_t curr_addr = addr + bytes_written; 2249 if (intersect_addr > curr_addr) { 2250 // There are some bytes before this breakpoint that we need to just 2251 // write to memory 2252 size_t curr_size = intersect_addr - curr_addr; 2253 size_t curr_bytes_written = 2254 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2255 bytes_written += curr_bytes_written; 2256 if (curr_bytes_written != curr_size) { 2257 // We weren't able to write all of the requested bytes, we are 2258 // done looping and will return the number of bytes that we have 2259 // written so far. 2260 if (error.Success()) 2261 error.SetErrorToGenericError(); 2262 } 2263 } 2264 // Now write any bytes that would cover up any software breakpoints 2265 // directly into the breakpoint opcode buffer 2266 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2267 intersect_size); 2268 bytes_written += intersect_size; 2269 }); 2270 2271 // Write any remaining bytes after the last breakpoint if we have any left 2272 if (bytes_written < size) 2273 bytes_written += 2274 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2275 size - bytes_written, error); 2276 2277 return bytes_written; 2278 } 2279 2280 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2281 size_t byte_size, Status &error) { 2282 if (byte_size == UINT32_MAX) 2283 byte_size = scalar.GetByteSize(); 2284 if (byte_size > 0) { 2285 uint8_t buf[32]; 2286 const size_t mem_size = 2287 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2288 if (mem_size > 0) 2289 return WriteMemory(addr, buf, mem_size, error); 2290 else 2291 error.SetErrorString("failed to get scalar as memory data"); 2292 } else { 2293 error.SetErrorString("invalid scalar value"); 2294 } 2295 return 0; 2296 } 2297 2298 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2299 bool is_signed, Scalar &scalar, 2300 Status &error) { 2301 uint64_t uval = 0; 2302 if (byte_size == 0) { 2303 error.SetErrorString("byte size is zero"); 2304 } else if (byte_size & (byte_size - 1)) { 2305 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2306 byte_size); 2307 } else if (byte_size <= sizeof(uval)) { 2308 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2309 if (bytes_read == byte_size) { 2310 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2311 GetAddressByteSize()); 2312 lldb::offset_t offset = 0; 2313 if (byte_size <= 4) 2314 scalar = data.GetMaxU32(&offset, byte_size); 2315 else 2316 scalar = data.GetMaxU64(&offset, byte_size); 2317 if (is_signed) 2318 scalar.SignExtend(byte_size * 8); 2319 return bytes_read; 2320 } 2321 } else { 2322 error.SetErrorStringWithFormat( 2323 "byte size of %u is too large for integer scalar type", byte_size); 2324 } 2325 return 0; 2326 } 2327 2328 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2329 Status error; 2330 for (const auto &Entry : entries) { 2331 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2332 error); 2333 if (!error.Success()) 2334 break; 2335 } 2336 return error; 2337 } 2338 2339 #define USE_ALLOCATE_MEMORY_CACHE 1 2340 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2341 Status &error) { 2342 if (GetPrivateState() != eStateStopped) { 2343 error.SetErrorToGenericError(); 2344 return LLDB_INVALID_ADDRESS; 2345 } 2346 2347 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2348 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2349 #else 2350 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2351 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2352 LLDB_LOGF(log, 2353 "Process::AllocateMemory(size=%" PRIu64 2354 ", permissions=%s) => 0x%16.16" PRIx64 2355 " (m_stop_id = %u m_memory_id = %u)", 2356 (uint64_t)size, GetPermissionsAsCString(permissions), 2357 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2358 m_mod_id.GetMemoryID()); 2359 return allocated_addr; 2360 #endif 2361 } 2362 2363 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2364 Status &error) { 2365 addr_t return_addr = AllocateMemory(size, permissions, error); 2366 if (error.Success()) { 2367 std::string buffer(size, 0); 2368 WriteMemory(return_addr, buffer.c_str(), size, error); 2369 } 2370 return return_addr; 2371 } 2372 2373 bool Process::CanJIT() { 2374 if (m_can_jit == eCanJITDontKnow) { 2375 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2376 Status err; 2377 2378 uint64_t allocated_memory = AllocateMemory( 2379 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2380 err); 2381 2382 if (err.Success()) { 2383 m_can_jit = eCanJITYes; 2384 LLDB_LOGF(log, 2385 "Process::%s pid %" PRIu64 2386 " allocation test passed, CanJIT () is true", 2387 __FUNCTION__, GetID()); 2388 } else { 2389 m_can_jit = eCanJITNo; 2390 LLDB_LOGF(log, 2391 "Process::%s pid %" PRIu64 2392 " allocation test failed, CanJIT () is false: %s", 2393 __FUNCTION__, GetID(), err.AsCString()); 2394 } 2395 2396 DeallocateMemory(allocated_memory); 2397 } 2398 2399 return m_can_jit == eCanJITYes; 2400 } 2401 2402 void Process::SetCanJIT(bool can_jit) { 2403 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2404 } 2405 2406 void Process::SetCanRunCode(bool can_run_code) { 2407 SetCanJIT(can_run_code); 2408 m_can_interpret_function_calls = can_run_code; 2409 } 2410 2411 Status Process::DeallocateMemory(addr_t ptr) { 2412 Status error; 2413 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2414 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2415 error.SetErrorStringWithFormat( 2416 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2417 } 2418 #else 2419 error = DoDeallocateMemory(ptr); 2420 2421 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2422 LLDB_LOGF(log, 2423 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2424 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2425 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2426 m_mod_id.GetMemoryID()); 2427 #endif 2428 return error; 2429 } 2430 2431 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2432 lldb::addr_t header_addr, 2433 size_t size_to_read) { 2434 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2435 if (log) { 2436 LLDB_LOGF(log, 2437 "Process::ReadModuleFromMemory reading %s binary from memory", 2438 file_spec.GetPath().c_str()); 2439 } 2440 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2441 if (module_sp) { 2442 Status error; 2443 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2444 shared_from_this(), header_addr, error, size_to_read); 2445 if (objfile) 2446 return module_sp; 2447 } 2448 return ModuleSP(); 2449 } 2450 2451 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2452 uint32_t &permissions) { 2453 MemoryRegionInfo range_info; 2454 permissions = 0; 2455 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2456 if (!error.Success()) 2457 return false; 2458 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2459 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2460 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2461 return false; 2462 } 2463 2464 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2465 permissions |= lldb::ePermissionsReadable; 2466 2467 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2468 permissions |= lldb::ePermissionsWritable; 2469 2470 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2471 permissions |= lldb::ePermissionsExecutable; 2472 2473 return true; 2474 } 2475 2476 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2477 Status error; 2478 error.SetErrorString("watchpoints are not supported"); 2479 return error; 2480 } 2481 2482 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2483 Status error; 2484 error.SetErrorString("watchpoints are not supported"); 2485 return error; 2486 } 2487 2488 StateType 2489 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2490 const Timeout<std::micro> &timeout) { 2491 StateType state; 2492 2493 while (true) { 2494 event_sp.reset(); 2495 state = GetStateChangedEventsPrivate(event_sp, timeout); 2496 2497 if (StateIsStoppedState(state, false)) 2498 break; 2499 2500 // If state is invalid, then we timed out 2501 if (state == eStateInvalid) 2502 break; 2503 2504 if (event_sp) 2505 HandlePrivateEvent(event_sp); 2506 } 2507 return state; 2508 } 2509 2510 void Process::LoadOperatingSystemPlugin(bool flush) { 2511 if (flush) 2512 m_thread_list.Clear(); 2513 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2514 if (flush) 2515 Flush(); 2516 } 2517 2518 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2519 Status error; 2520 m_abi_sp.reset(); 2521 m_dyld_up.reset(); 2522 m_jit_loaders_up.reset(); 2523 m_system_runtime_up.reset(); 2524 m_os_up.reset(); 2525 m_process_input_reader.reset(); 2526 2527 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2528 if (!exe_module) { 2529 error.SetErrorString("executable module does not exist"); 2530 return error; 2531 } 2532 2533 char local_exec_file_path[PATH_MAX]; 2534 char platform_exec_file_path[PATH_MAX]; 2535 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2536 sizeof(local_exec_file_path)); 2537 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2538 sizeof(platform_exec_file_path)); 2539 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2540 // Install anything that might need to be installed prior to launching. 2541 // For host systems, this will do nothing, but if we are connected to a 2542 // remote platform it will install any needed binaries 2543 error = GetTarget().Install(&launch_info); 2544 if (error.Fail()) 2545 return error; 2546 2547 if (PrivateStateThreadIsValid()) 2548 PausePrivateStateThread(); 2549 2550 error = WillLaunch(exe_module); 2551 if (error.Success()) { 2552 const bool restarted = false; 2553 SetPublicState(eStateLaunching, restarted); 2554 m_should_detach = false; 2555 2556 if (m_public_run_lock.TrySetRunning()) { 2557 // Now launch using these arguments. 2558 error = DoLaunch(exe_module, launch_info); 2559 } else { 2560 // This shouldn't happen 2561 error.SetErrorString("failed to acquire process run lock"); 2562 } 2563 2564 if (error.Fail()) { 2565 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2566 SetID(LLDB_INVALID_PROCESS_ID); 2567 const char *error_string = error.AsCString(); 2568 if (error_string == nullptr) 2569 error_string = "launch failed"; 2570 SetExitStatus(-1, error_string); 2571 } 2572 } else { 2573 EventSP event_sp; 2574 2575 // Now wait for the process to launch and return control to us, and then 2576 // call DidLaunch: 2577 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2578 2579 if (state == eStateInvalid || !event_sp) { 2580 // We were able to launch the process, but we failed to catch the 2581 // initial stop. 2582 error.SetErrorString("failed to catch stop after launch"); 2583 SetExitStatus(0, "failed to catch stop after launch"); 2584 Destroy(false); 2585 } else if (state == eStateStopped || state == eStateCrashed) { 2586 DidLaunch(); 2587 2588 DynamicLoader *dyld = GetDynamicLoader(); 2589 if (dyld) 2590 dyld->DidLaunch(); 2591 2592 GetJITLoaders().DidLaunch(); 2593 2594 SystemRuntime *system_runtime = GetSystemRuntime(); 2595 if (system_runtime) 2596 system_runtime->DidLaunch(); 2597 2598 if (!m_os_up) 2599 LoadOperatingSystemPlugin(false); 2600 2601 // We successfully launched the process and stopped, now it the 2602 // right time to set up signal filters before resuming. 2603 UpdateAutomaticSignalFiltering(); 2604 2605 // Note, the stop event was consumed above, but not handled. This 2606 // was done to give DidLaunch a chance to run. The target is either 2607 // stopped or crashed. Directly set the state. This is done to 2608 // prevent a stop message with a bunch of spurious output on thread 2609 // status, as well as not pop a ProcessIOHandler. 2610 SetPublicState(state, false); 2611 2612 if (PrivateStateThreadIsValid()) 2613 ResumePrivateStateThread(); 2614 else 2615 StartPrivateStateThread(); 2616 2617 // Target was stopped at entry as was intended. Need to notify the 2618 // listeners about it. 2619 if (state == eStateStopped && 2620 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2621 HandlePrivateEvent(event_sp); 2622 } else if (state == eStateExited) { 2623 // We exited while trying to launch somehow. Don't call DidLaunch 2624 // as that's not likely to work, and return an invalid pid. 2625 HandlePrivateEvent(event_sp); 2626 } 2627 } 2628 } 2629 } else { 2630 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2631 local_exec_file_path); 2632 } 2633 2634 return error; 2635 } 2636 2637 Status Process::LoadCore() { 2638 Status error = DoLoadCore(); 2639 if (error.Success()) { 2640 ListenerSP listener_sp( 2641 Listener::MakeListener("lldb.process.load_core_listener")); 2642 HijackProcessEvents(listener_sp); 2643 2644 if (PrivateStateThreadIsValid()) 2645 ResumePrivateStateThread(); 2646 else 2647 StartPrivateStateThread(); 2648 2649 DynamicLoader *dyld = GetDynamicLoader(); 2650 if (dyld) 2651 dyld->DidAttach(); 2652 2653 GetJITLoaders().DidAttach(); 2654 2655 SystemRuntime *system_runtime = GetSystemRuntime(); 2656 if (system_runtime) 2657 system_runtime->DidAttach(); 2658 2659 if (!m_os_up) 2660 LoadOperatingSystemPlugin(false); 2661 2662 // We successfully loaded a core file, now pretend we stopped so we can 2663 // show all of the threads in the core file and explore the crashed state. 2664 SetPrivateState(eStateStopped); 2665 2666 // Wait for a stopped event since we just posted one above... 2667 lldb::EventSP event_sp; 2668 StateType state = 2669 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2670 2671 if (!StateIsStoppedState(state, false)) { 2672 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2673 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2674 StateAsCString(state)); 2675 error.SetErrorString( 2676 "Did not get stopped event after loading the core file."); 2677 } 2678 RestoreProcessEvents(); 2679 } 2680 return error; 2681 } 2682 2683 DynamicLoader *Process::GetDynamicLoader() { 2684 if (!m_dyld_up) 2685 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2686 return m_dyld_up.get(); 2687 } 2688 2689 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2690 2691 JITLoaderList &Process::GetJITLoaders() { 2692 if (!m_jit_loaders_up) { 2693 m_jit_loaders_up.reset(new JITLoaderList()); 2694 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2695 } 2696 return *m_jit_loaders_up; 2697 } 2698 2699 SystemRuntime *Process::GetSystemRuntime() { 2700 if (!m_system_runtime_up) 2701 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2702 return m_system_runtime_up.get(); 2703 } 2704 2705 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2706 uint32_t exec_count) 2707 : NextEventAction(process), m_exec_count(exec_count) { 2708 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2709 LLDB_LOGF( 2710 log, 2711 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2712 __FUNCTION__, static_cast<void *>(process), exec_count); 2713 } 2714 2715 Process::NextEventAction::EventActionResult 2716 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2717 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2718 2719 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2720 LLDB_LOGF(log, 2721 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2722 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2723 2724 switch (state) { 2725 case eStateAttaching: 2726 return eEventActionSuccess; 2727 2728 case eStateRunning: 2729 case eStateConnected: 2730 return eEventActionRetry; 2731 2732 case eStateStopped: 2733 case eStateCrashed: 2734 // During attach, prior to sending the eStateStopped event, 2735 // lldb_private::Process subclasses must set the new process ID. 2736 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2737 // We don't want these events to be reported, so go set the 2738 // ShouldReportStop here: 2739 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2740 2741 if (m_exec_count > 0) { 2742 --m_exec_count; 2743 2744 LLDB_LOGF(log, 2745 "Process::AttachCompletionHandler::%s state %s: reduced " 2746 "remaining exec count to %" PRIu32 ", requesting resume", 2747 __FUNCTION__, StateAsCString(state), m_exec_count); 2748 2749 RequestResume(); 2750 return eEventActionRetry; 2751 } else { 2752 LLDB_LOGF(log, 2753 "Process::AttachCompletionHandler::%s state %s: no more " 2754 "execs expected to start, continuing with attach", 2755 __FUNCTION__, StateAsCString(state)); 2756 2757 m_process->CompleteAttach(); 2758 return eEventActionSuccess; 2759 } 2760 break; 2761 2762 default: 2763 case eStateExited: 2764 case eStateInvalid: 2765 break; 2766 } 2767 2768 m_exit_string.assign("No valid Process"); 2769 return eEventActionExit; 2770 } 2771 2772 Process::NextEventAction::EventActionResult 2773 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2774 return eEventActionSuccess; 2775 } 2776 2777 const char *Process::AttachCompletionHandler::GetExitString() { 2778 return m_exit_string.c_str(); 2779 } 2780 2781 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2782 if (m_listener_sp) 2783 return m_listener_sp; 2784 else 2785 return debugger.GetListener(); 2786 } 2787 2788 Status Process::Attach(ProcessAttachInfo &attach_info) { 2789 m_abi_sp.reset(); 2790 m_process_input_reader.reset(); 2791 m_dyld_up.reset(); 2792 m_jit_loaders_up.reset(); 2793 m_system_runtime_up.reset(); 2794 m_os_up.reset(); 2795 2796 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2797 Status error; 2798 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2799 char process_name[PATH_MAX]; 2800 2801 if (attach_info.GetExecutableFile().GetPath(process_name, 2802 sizeof(process_name))) { 2803 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2804 2805 if (wait_for_launch) { 2806 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2807 if (error.Success()) { 2808 if (m_public_run_lock.TrySetRunning()) { 2809 m_should_detach = true; 2810 const bool restarted = false; 2811 SetPublicState(eStateAttaching, restarted); 2812 // Now attach using these arguments. 2813 error = DoAttachToProcessWithName(process_name, attach_info); 2814 } else { 2815 // This shouldn't happen 2816 error.SetErrorString("failed to acquire process run lock"); 2817 } 2818 2819 if (error.Fail()) { 2820 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2821 SetID(LLDB_INVALID_PROCESS_ID); 2822 if (error.AsCString() == nullptr) 2823 error.SetErrorString("attach failed"); 2824 2825 SetExitStatus(-1, error.AsCString()); 2826 } 2827 } else { 2828 SetNextEventAction(new Process::AttachCompletionHandler( 2829 this, attach_info.GetResumeCount())); 2830 StartPrivateStateThread(); 2831 } 2832 return error; 2833 } 2834 } else { 2835 ProcessInstanceInfoList process_infos; 2836 PlatformSP platform_sp(GetTarget().GetPlatform()); 2837 2838 if (platform_sp) { 2839 ProcessInstanceInfoMatch match_info; 2840 match_info.GetProcessInfo() = attach_info; 2841 match_info.SetNameMatchType(NameMatch::Equals); 2842 platform_sp->FindProcesses(match_info, process_infos); 2843 const uint32_t num_matches = process_infos.size(); 2844 if (num_matches == 1) { 2845 attach_pid = process_infos[0].GetProcessID(); 2846 // Fall through and attach using the above process ID 2847 } else { 2848 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2849 process_name, sizeof(process_name)); 2850 if (num_matches > 1) { 2851 StreamString s; 2852 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2853 for (size_t i = 0; i < num_matches; i++) { 2854 process_infos[i].DumpAsTableRow( 2855 s, platform_sp->GetUserIDResolver(), true, false); 2856 } 2857 error.SetErrorStringWithFormat( 2858 "more than one process named %s:\n%s", process_name, 2859 s.GetData()); 2860 } else 2861 error.SetErrorStringWithFormat( 2862 "could not find a process named %s", process_name); 2863 } 2864 } else { 2865 error.SetErrorString( 2866 "invalid platform, can't find processes by name"); 2867 return error; 2868 } 2869 } 2870 } else { 2871 error.SetErrorString("invalid process name"); 2872 } 2873 } 2874 2875 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2876 error = WillAttachToProcessWithID(attach_pid); 2877 if (error.Success()) { 2878 2879 if (m_public_run_lock.TrySetRunning()) { 2880 // Now attach using these arguments. 2881 m_should_detach = true; 2882 const bool restarted = false; 2883 SetPublicState(eStateAttaching, restarted); 2884 error = DoAttachToProcessWithID(attach_pid, attach_info); 2885 } else { 2886 // This shouldn't happen 2887 error.SetErrorString("failed to acquire process run lock"); 2888 } 2889 2890 if (error.Success()) { 2891 SetNextEventAction(new Process::AttachCompletionHandler( 2892 this, attach_info.GetResumeCount())); 2893 StartPrivateStateThread(); 2894 } else { 2895 if (GetID() != LLDB_INVALID_PROCESS_ID) 2896 SetID(LLDB_INVALID_PROCESS_ID); 2897 2898 const char *error_string = error.AsCString(); 2899 if (error_string == nullptr) 2900 error_string = "attach failed"; 2901 2902 SetExitStatus(-1, error_string); 2903 } 2904 } 2905 } 2906 return error; 2907 } 2908 2909 void Process::CompleteAttach() { 2910 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2911 LIBLLDB_LOG_TARGET)); 2912 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2913 2914 // Let the process subclass figure out at much as it can about the process 2915 // before we go looking for a dynamic loader plug-in. 2916 ArchSpec process_arch; 2917 DidAttach(process_arch); 2918 2919 if (process_arch.IsValid()) { 2920 GetTarget().SetArchitecture(process_arch); 2921 if (log) { 2922 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2923 LLDB_LOGF(log, 2924 "Process::%s replacing process architecture with DidAttach() " 2925 "architecture: %s", 2926 __FUNCTION__, triple_str ? triple_str : "<null>"); 2927 } 2928 } 2929 2930 // We just attached. If we have a platform, ask it for the process 2931 // architecture, and if it isn't the same as the one we've already set, 2932 // switch architectures. 2933 PlatformSP platform_sp(GetTarget().GetPlatform()); 2934 assert(platform_sp); 2935 if (platform_sp) { 2936 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2937 if (target_arch.IsValid() && 2938 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2939 ArchSpec platform_arch; 2940 platform_sp = 2941 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2942 if (platform_sp) { 2943 GetTarget().SetPlatform(platform_sp); 2944 GetTarget().SetArchitecture(platform_arch); 2945 LLDB_LOGF(log, 2946 "Process::%s switching platform to %s and architecture " 2947 "to %s based on info from attach", 2948 __FUNCTION__, platform_sp->GetName().AsCString(""), 2949 platform_arch.GetTriple().getTriple().c_str()); 2950 } 2951 } else if (!process_arch.IsValid()) { 2952 ProcessInstanceInfo process_info; 2953 GetProcessInfo(process_info); 2954 const ArchSpec &process_arch = process_info.GetArchitecture(); 2955 if (process_arch.IsValid() && 2956 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 2957 GetTarget().SetArchitecture(process_arch); 2958 LLDB_LOGF(log, 2959 "Process::%s switching architecture to %s based on info " 2960 "the platform retrieved for pid %" PRIu64, 2961 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2962 GetID()); 2963 } 2964 } 2965 } 2966 2967 // We have completed the attach, now it is time to find the dynamic loader 2968 // plug-in 2969 DynamicLoader *dyld = GetDynamicLoader(); 2970 if (dyld) { 2971 dyld->DidAttach(); 2972 if (log) { 2973 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2974 LLDB_LOGF(log, 2975 "Process::%s after DynamicLoader::DidAttach(), target " 2976 "executable is %s (using %s plugin)", 2977 __FUNCTION__, 2978 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2979 : "<none>", 2980 dyld->GetPluginName().AsCString("<unnamed>")); 2981 } 2982 } 2983 2984 GetJITLoaders().DidAttach(); 2985 2986 SystemRuntime *system_runtime = GetSystemRuntime(); 2987 if (system_runtime) { 2988 system_runtime->DidAttach(); 2989 if (log) { 2990 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2991 LLDB_LOGF(log, 2992 "Process::%s after SystemRuntime::DidAttach(), target " 2993 "executable is %s (using %s plugin)", 2994 __FUNCTION__, 2995 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2996 : "<none>", 2997 system_runtime->GetPluginName().AsCString("<unnamed>")); 2998 } 2999 } 3000 3001 if (!m_os_up) { 3002 LoadOperatingSystemPlugin(false); 3003 if (m_os_up) { 3004 // Somebody might have gotten threads before now, but we need to force the 3005 // update after we've loaded the OperatingSystem plugin or it won't get a 3006 // chance to process the threads. 3007 m_thread_list.Clear(); 3008 UpdateThreadListIfNeeded(); 3009 } 3010 } 3011 // Figure out which one is the executable, and set that in our target: 3012 const ModuleList &target_modules = GetTarget().GetImages(); 3013 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3014 size_t num_modules = target_modules.GetSize(); 3015 ModuleSP new_executable_module_sp; 3016 3017 for (size_t i = 0; i < num_modules; i++) { 3018 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3019 if (module_sp && module_sp->IsExecutable()) { 3020 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3021 new_executable_module_sp = module_sp; 3022 break; 3023 } 3024 } 3025 if (new_executable_module_sp) { 3026 GetTarget().SetExecutableModule(new_executable_module_sp, 3027 eLoadDependentsNo); 3028 if (log) { 3029 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3030 LLDB_LOGF( 3031 log, 3032 "Process::%s after looping through modules, target executable is %s", 3033 __FUNCTION__, 3034 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3035 : "<none>"); 3036 } 3037 } 3038 } 3039 3040 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3041 m_abi_sp.reset(); 3042 m_process_input_reader.reset(); 3043 3044 // Find the process and its architecture. Make sure it matches the 3045 // architecture of the current Target, and if not adjust it. 3046 3047 Status error(DoConnectRemote(strm, remote_url)); 3048 if (error.Success()) { 3049 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3050 EventSP event_sp; 3051 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3052 3053 if (state == eStateStopped || state == eStateCrashed) { 3054 // If we attached and actually have a process on the other end, then 3055 // this ended up being the equivalent of an attach. 3056 CompleteAttach(); 3057 3058 // This delays passing the stopped event to listeners till 3059 // CompleteAttach gets a chance to complete... 3060 HandlePrivateEvent(event_sp); 3061 } 3062 } 3063 3064 if (PrivateStateThreadIsValid()) 3065 ResumePrivateStateThread(); 3066 else 3067 StartPrivateStateThread(); 3068 } 3069 return error; 3070 } 3071 3072 Status Process::PrivateResume() { 3073 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3074 LIBLLDB_LOG_STEP)); 3075 LLDB_LOGF(log, 3076 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3077 "private state: %s", 3078 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3079 StateAsCString(m_private_state.GetValue())); 3080 3081 // If signals handing status changed we might want to update our signal 3082 // filters before resuming. 3083 UpdateAutomaticSignalFiltering(); 3084 3085 Status error(WillResume()); 3086 // Tell the process it is about to resume before the thread list 3087 if (error.Success()) { 3088 // Now let the thread list know we are about to resume so it can let all of 3089 // our threads know that they are about to be resumed. Threads will each be 3090 // called with Thread::WillResume(StateType) where StateType contains the 3091 // state that they are supposed to have when the process is resumed 3092 // (suspended/running/stepping). Threads should also check their resume 3093 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3094 // start back up with a signal. 3095 if (m_thread_list.WillResume()) { 3096 // Last thing, do the PreResumeActions. 3097 if (!RunPreResumeActions()) { 3098 error.SetErrorStringWithFormat( 3099 "Process::PrivateResume PreResumeActions failed, not resuming."); 3100 } else { 3101 m_mod_id.BumpResumeID(); 3102 error = DoResume(); 3103 if (error.Success()) { 3104 DidResume(); 3105 m_thread_list.DidResume(); 3106 LLDB_LOGF(log, "Process thinks the process has resumed."); 3107 } else { 3108 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3109 return error; 3110 } 3111 } 3112 } else { 3113 // Somebody wanted to run without running (e.g. we were faking a step 3114 // from one frame of a set of inlined frames that share the same PC to 3115 // another.) So generate a continue & a stopped event, and let the world 3116 // handle them. 3117 LLDB_LOGF(log, 3118 "Process::PrivateResume() asked to simulate a start & stop."); 3119 3120 SetPrivateState(eStateRunning); 3121 SetPrivateState(eStateStopped); 3122 } 3123 } else 3124 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3125 error.AsCString("<unknown error>")); 3126 return error; 3127 } 3128 3129 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3130 if (!StateIsRunningState(m_public_state.GetValue())) 3131 return Status("Process is not running."); 3132 3133 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3134 // case it was already set and some thread plan logic calls halt on its own. 3135 m_clear_thread_plans_on_stop |= clear_thread_plans; 3136 3137 ListenerSP halt_listener_sp( 3138 Listener::MakeListener("lldb.process.halt_listener")); 3139 HijackProcessEvents(halt_listener_sp); 3140 3141 EventSP event_sp; 3142 3143 SendAsyncInterrupt(); 3144 3145 if (m_public_state.GetValue() == eStateAttaching) { 3146 // Don't hijack and eat the eStateExited as the code that was doing the 3147 // attach will be waiting for this event... 3148 RestoreProcessEvents(); 3149 SetExitStatus(SIGKILL, "Cancelled async attach."); 3150 Destroy(false); 3151 return Status(); 3152 } 3153 3154 // Wait for 10 second for the process to stop. 3155 StateType state = WaitForProcessToStop( 3156 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3157 RestoreProcessEvents(); 3158 3159 if (state == eStateInvalid || !event_sp) { 3160 // We timed out and didn't get a stop event... 3161 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3162 } 3163 3164 BroadcastEvent(event_sp); 3165 3166 return Status(); 3167 } 3168 3169 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3170 Status error; 3171 3172 // Check both the public & private states here. If we're hung evaluating an 3173 // expression, for instance, then the public state will be stopped, but we 3174 // still need to interrupt. 3175 if (m_public_state.GetValue() == eStateRunning || 3176 m_private_state.GetValue() == eStateRunning) { 3177 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3178 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3179 3180 ListenerSP listener_sp( 3181 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3182 HijackProcessEvents(listener_sp); 3183 3184 SendAsyncInterrupt(); 3185 3186 // Consume the interrupt event. 3187 StateType state = 3188 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3189 3190 RestoreProcessEvents(); 3191 3192 // If the process exited while we were waiting for it to stop, put the 3193 // exited event into the shared pointer passed in and return. Our caller 3194 // doesn't need to do anything else, since they don't have a process 3195 // anymore... 3196 3197 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3198 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3199 __FUNCTION__); 3200 return error; 3201 } else 3202 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3203 3204 if (state != eStateStopped) { 3205 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3206 StateAsCString(state)); 3207 // If we really couldn't stop the process then we should just error out 3208 // here, but if the lower levels just bobbled sending the event and we 3209 // really are stopped, then continue on. 3210 StateType private_state = m_private_state.GetValue(); 3211 if (private_state != eStateStopped) { 3212 return Status( 3213 "Attempt to stop the target in order to detach timed out. " 3214 "State = %s", 3215 StateAsCString(GetState())); 3216 } 3217 } 3218 } 3219 return error; 3220 } 3221 3222 Status Process::Detach(bool keep_stopped) { 3223 EventSP exit_event_sp; 3224 Status error; 3225 m_destroy_in_process = true; 3226 3227 error = WillDetach(); 3228 3229 if (error.Success()) { 3230 if (DetachRequiresHalt()) { 3231 error = StopForDestroyOrDetach(exit_event_sp); 3232 if (!error.Success()) { 3233 m_destroy_in_process = false; 3234 return error; 3235 } else if (exit_event_sp) { 3236 // We shouldn't need to do anything else here. There's no process left 3237 // to detach from... 3238 StopPrivateStateThread(); 3239 m_destroy_in_process = false; 3240 return error; 3241 } 3242 } 3243 3244 m_thread_list.DiscardThreadPlans(); 3245 DisableAllBreakpointSites(); 3246 3247 error = DoDetach(keep_stopped); 3248 if (error.Success()) { 3249 DidDetach(); 3250 StopPrivateStateThread(); 3251 } else { 3252 return error; 3253 } 3254 } 3255 m_destroy_in_process = false; 3256 3257 // If we exited when we were waiting for a process to stop, then forward the 3258 // event here so we don't lose the event 3259 if (exit_event_sp) { 3260 // Directly broadcast our exited event because we shut down our private 3261 // state thread above 3262 BroadcastEvent(exit_event_sp); 3263 } 3264 3265 // If we have been interrupted (to kill us) in the middle of running, we may 3266 // not end up propagating the last events through the event system, in which 3267 // case we might strand the write lock. Unlock it here so when we do to tear 3268 // down the process we don't get an error destroying the lock. 3269 3270 m_public_run_lock.SetStopped(); 3271 return error; 3272 } 3273 3274 Status Process::Destroy(bool force_kill) { 3275 // If we've already called Process::Finalize then there's nothing useful to 3276 // be done here. Finalize has actually called Destroy already. 3277 if (m_finalize_called) 3278 return {}; 3279 3280 // Tell ourselves we are in the process of destroying the process, so that we 3281 // don't do any unnecessary work that might hinder the destruction. Remember 3282 // to set this back to false when we are done. That way if the attempt 3283 // failed and the process stays around for some reason it won't be in a 3284 // confused state. 3285 3286 if (force_kill) 3287 m_should_detach = false; 3288 3289 if (GetShouldDetach()) { 3290 // FIXME: This will have to be a process setting: 3291 bool keep_stopped = false; 3292 Detach(keep_stopped); 3293 } 3294 3295 m_destroy_in_process = true; 3296 3297 Status error(WillDestroy()); 3298 if (error.Success()) { 3299 EventSP exit_event_sp; 3300 if (DestroyRequiresHalt()) { 3301 error = StopForDestroyOrDetach(exit_event_sp); 3302 } 3303 3304 if (m_public_state.GetValue() != eStateRunning) { 3305 // Ditch all thread plans, and remove all our breakpoints: in case we 3306 // have to restart the target to kill it, we don't want it hitting a 3307 // breakpoint... Only do this if we've stopped, however, since if we 3308 // didn't manage to halt it above, then we're not going to have much luck 3309 // doing this now. 3310 m_thread_list.DiscardThreadPlans(); 3311 DisableAllBreakpointSites(); 3312 } 3313 3314 error = DoDestroy(); 3315 if (error.Success()) { 3316 DidDestroy(); 3317 StopPrivateStateThread(); 3318 } 3319 m_stdio_communication.StopReadThread(); 3320 m_stdio_communication.Disconnect(); 3321 m_stdin_forward = false; 3322 3323 if (m_process_input_reader) { 3324 m_process_input_reader->SetIsDone(true); 3325 m_process_input_reader->Cancel(); 3326 m_process_input_reader.reset(); 3327 } 3328 3329 // If we exited when we were waiting for a process to stop, then forward 3330 // the event here so we don't lose the event 3331 if (exit_event_sp) { 3332 // Directly broadcast our exited event because we shut down our private 3333 // state thread above 3334 BroadcastEvent(exit_event_sp); 3335 } 3336 3337 // If we have been interrupted (to kill us) in the middle of running, we 3338 // may not end up propagating the last events through the event system, in 3339 // which case we might strand the write lock. Unlock it here so when we do 3340 // to tear down the process we don't get an error destroying the lock. 3341 m_public_run_lock.SetStopped(); 3342 } 3343 3344 m_destroy_in_process = false; 3345 3346 return error; 3347 } 3348 3349 Status Process::Signal(int signal) { 3350 Status error(WillSignal()); 3351 if (error.Success()) { 3352 error = DoSignal(signal); 3353 if (error.Success()) 3354 DidSignal(); 3355 } 3356 return error; 3357 } 3358 3359 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3360 assert(signals_sp && "null signals_sp"); 3361 m_unix_signals_sp = signals_sp; 3362 } 3363 3364 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3365 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3366 return m_unix_signals_sp; 3367 } 3368 3369 lldb::ByteOrder Process::GetByteOrder() const { 3370 return GetTarget().GetArchitecture().GetByteOrder(); 3371 } 3372 3373 uint32_t Process::GetAddressByteSize() const { 3374 return GetTarget().GetArchitecture().GetAddressByteSize(); 3375 } 3376 3377 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3378 const StateType state = 3379 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3380 bool return_value = true; 3381 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3382 LIBLLDB_LOG_PROCESS)); 3383 3384 switch (state) { 3385 case eStateDetached: 3386 case eStateExited: 3387 case eStateUnloaded: 3388 m_stdio_communication.SynchronizeWithReadThread(); 3389 m_stdio_communication.StopReadThread(); 3390 m_stdio_communication.Disconnect(); 3391 m_stdin_forward = false; 3392 3393 LLVM_FALLTHROUGH; 3394 case eStateConnected: 3395 case eStateAttaching: 3396 case eStateLaunching: 3397 // These events indicate changes in the state of the debugging session, 3398 // always report them. 3399 return_value = true; 3400 break; 3401 case eStateInvalid: 3402 // We stopped for no apparent reason, don't report it. 3403 return_value = false; 3404 break; 3405 case eStateRunning: 3406 case eStateStepping: 3407 // If we've started the target running, we handle the cases where we are 3408 // already running and where there is a transition from stopped to running 3409 // differently. running -> running: Automatically suppress extra running 3410 // events stopped -> running: Report except when there is one or more no 3411 // votes 3412 // and no yes votes. 3413 SynchronouslyNotifyStateChanged(state); 3414 if (m_force_next_event_delivery) 3415 return_value = true; 3416 else { 3417 switch (m_last_broadcast_state) { 3418 case eStateRunning: 3419 case eStateStepping: 3420 // We always suppress multiple runnings with no PUBLIC stop in between. 3421 return_value = false; 3422 break; 3423 default: 3424 // TODO: make this work correctly. For now always report 3425 // run if we aren't running so we don't miss any running events. If I 3426 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3427 // and hit the breakpoints on multiple threads, then somehow during the 3428 // stepping over of all breakpoints no run gets reported. 3429 3430 // This is a transition from stop to run. 3431 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3432 case eVoteYes: 3433 case eVoteNoOpinion: 3434 return_value = true; 3435 break; 3436 case eVoteNo: 3437 return_value = false; 3438 break; 3439 } 3440 break; 3441 } 3442 } 3443 break; 3444 case eStateStopped: 3445 case eStateCrashed: 3446 case eStateSuspended: 3447 // We've stopped. First see if we're going to restart the target. If we 3448 // are going to stop, then we always broadcast the event. If we aren't 3449 // going to stop, let the thread plans decide if we're going to report this 3450 // event. If no thread has an opinion, we don't report it. 3451 3452 m_stdio_communication.SynchronizeWithReadThread(); 3453 RefreshStateAfterStop(); 3454 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3455 LLDB_LOGF(log, 3456 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3457 "interrupt, state: %s", 3458 static_cast<void *>(event_ptr), StateAsCString(state)); 3459 // Even though we know we are going to stop, we should let the threads 3460 // have a look at the stop, so they can properly set their state. 3461 m_thread_list.ShouldStop(event_ptr); 3462 return_value = true; 3463 } else { 3464 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3465 bool should_resume = false; 3466 3467 // It makes no sense to ask "ShouldStop" if we've already been 3468 // restarted... Asking the thread list is also not likely to go well, 3469 // since we are running again. So in that case just report the event. 3470 3471 if (!was_restarted) 3472 should_resume = !m_thread_list.ShouldStop(event_ptr); 3473 3474 if (was_restarted || should_resume || m_resume_requested) { 3475 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3476 LLDB_LOGF(log, 3477 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3478 "%s was_restarted: %i stop_vote: %d.", 3479 should_resume, StateAsCString(state), was_restarted, 3480 stop_vote); 3481 3482 switch (stop_vote) { 3483 case eVoteYes: 3484 return_value = true; 3485 break; 3486 case eVoteNoOpinion: 3487 case eVoteNo: 3488 return_value = false; 3489 break; 3490 } 3491 3492 if (!was_restarted) { 3493 LLDB_LOGF(log, 3494 "Process::ShouldBroadcastEvent (%p) Restarting process " 3495 "from state: %s", 3496 static_cast<void *>(event_ptr), StateAsCString(state)); 3497 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3498 PrivateResume(); 3499 } 3500 } else { 3501 return_value = true; 3502 SynchronouslyNotifyStateChanged(state); 3503 } 3504 } 3505 break; 3506 } 3507 3508 // Forcing the next event delivery is a one shot deal. So reset it here. 3509 m_force_next_event_delivery = false; 3510 3511 // We do some coalescing of events (for instance two consecutive running 3512 // events get coalesced.) But we only coalesce against events we actually 3513 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3514 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3515 // done, because the PublicState reflects the last event pulled off the 3516 // queue, and there may be several events stacked up on the queue unserviced. 3517 // So the PublicState may not reflect the last broadcasted event yet. 3518 // m_last_broadcast_state gets updated here. 3519 3520 if (return_value) 3521 m_last_broadcast_state = state; 3522 3523 LLDB_LOGF(log, 3524 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3525 "broadcast state: %s - %s", 3526 static_cast<void *>(event_ptr), StateAsCString(state), 3527 StateAsCString(m_last_broadcast_state), 3528 return_value ? "YES" : "NO"); 3529 return return_value; 3530 } 3531 3532 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3533 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3534 3535 bool already_running = PrivateStateThreadIsValid(); 3536 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3537 already_running ? " already running" 3538 : " starting private state thread"); 3539 3540 if (!is_secondary_thread && already_running) 3541 return true; 3542 3543 // Create a thread that watches our internal state and controls which events 3544 // make it to clients (into the DCProcess event queue). 3545 char thread_name[1024]; 3546 uint32_t max_len = llvm::get_max_thread_name_length(); 3547 if (max_len > 0 && max_len <= 30) { 3548 // On platforms with abbreviated thread name lengths, choose thread names 3549 // that fit within the limit. 3550 if (already_running) 3551 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3552 else 3553 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3554 } else { 3555 if (already_running) 3556 snprintf(thread_name, sizeof(thread_name), 3557 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3558 GetID()); 3559 else 3560 snprintf(thread_name, sizeof(thread_name), 3561 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3562 } 3563 3564 // Create the private state thread, and start it running. 3565 PrivateStateThreadArgs *args_ptr = 3566 new PrivateStateThreadArgs(this, is_secondary_thread); 3567 llvm::Expected<HostThread> private_state_thread = 3568 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3569 (void *)args_ptr, 8 * 1024 * 1024); 3570 if (!private_state_thread) { 3571 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3572 "failed to launch host thread: {}", 3573 llvm::toString(private_state_thread.takeError())); 3574 return false; 3575 } 3576 3577 assert(private_state_thread->IsJoinable()); 3578 m_private_state_thread = *private_state_thread; 3579 ResumePrivateStateThread(); 3580 return true; 3581 } 3582 3583 void Process::PausePrivateStateThread() { 3584 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3585 } 3586 3587 void Process::ResumePrivateStateThread() { 3588 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3589 } 3590 3591 void Process::StopPrivateStateThread() { 3592 if (m_private_state_thread.IsJoinable()) 3593 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3594 else { 3595 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3596 LLDB_LOGF( 3597 log, 3598 "Went to stop the private state thread, but it was already invalid."); 3599 } 3600 } 3601 3602 void Process::ControlPrivateStateThread(uint32_t signal) { 3603 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3604 3605 assert(signal == eBroadcastInternalStateControlStop || 3606 signal == eBroadcastInternalStateControlPause || 3607 signal == eBroadcastInternalStateControlResume); 3608 3609 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3610 3611 // Signal the private state thread 3612 if (m_private_state_thread.IsJoinable()) { 3613 // Broadcast the event. 3614 // It is important to do this outside of the if below, because it's 3615 // possible that the thread state is invalid but that the thread is waiting 3616 // on a control event instead of simply being on its way out (this should 3617 // not happen, but it apparently can). 3618 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3619 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3620 m_private_state_control_broadcaster.BroadcastEvent(signal, 3621 event_receipt_sp); 3622 3623 // Wait for the event receipt or for the private state thread to exit 3624 bool receipt_received = false; 3625 if (PrivateStateThreadIsValid()) { 3626 while (!receipt_received) { 3627 // Check for a receipt for n seconds and then check if the private 3628 // state thread is still around. 3629 receipt_received = 3630 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3631 if (!receipt_received) { 3632 // Check if the private state thread is still around. If it isn't 3633 // then we are done waiting 3634 if (!PrivateStateThreadIsValid()) 3635 break; // Private state thread exited or is exiting, we are done 3636 } 3637 } 3638 } 3639 3640 if (signal == eBroadcastInternalStateControlStop) { 3641 thread_result_t result = {}; 3642 m_private_state_thread.Join(&result); 3643 m_private_state_thread.Reset(); 3644 } 3645 } else { 3646 LLDB_LOGF( 3647 log, 3648 "Private state thread already dead, no need to signal it to stop."); 3649 } 3650 } 3651 3652 void Process::SendAsyncInterrupt() { 3653 if (PrivateStateThreadIsValid()) 3654 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3655 nullptr); 3656 else 3657 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3658 } 3659 3660 void Process::HandlePrivateEvent(EventSP &event_sp) { 3661 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3662 m_resume_requested = false; 3663 3664 const StateType new_state = 3665 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3666 3667 // First check to see if anybody wants a shot at this event: 3668 if (m_next_event_action_up) { 3669 NextEventAction::EventActionResult action_result = 3670 m_next_event_action_up->PerformAction(event_sp); 3671 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3672 3673 switch (action_result) { 3674 case NextEventAction::eEventActionSuccess: 3675 SetNextEventAction(nullptr); 3676 break; 3677 3678 case NextEventAction::eEventActionRetry: 3679 break; 3680 3681 case NextEventAction::eEventActionExit: 3682 // Handle Exiting Here. If we already got an exited event, we should 3683 // just propagate it. Otherwise, swallow this event, and set our state 3684 // to exit so the next event will kill us. 3685 if (new_state != eStateExited) { 3686 // FIXME: should cons up an exited event, and discard this one. 3687 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3688 SetNextEventAction(nullptr); 3689 return; 3690 } 3691 SetNextEventAction(nullptr); 3692 break; 3693 } 3694 } 3695 3696 // See if we should broadcast this state to external clients? 3697 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3698 3699 if (should_broadcast) { 3700 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3701 if (log) { 3702 LLDB_LOGF(log, 3703 "Process::%s (pid = %" PRIu64 3704 ") broadcasting new state %s (old state %s) to %s", 3705 __FUNCTION__, GetID(), StateAsCString(new_state), 3706 StateAsCString(GetState()), 3707 is_hijacked ? "hijacked" : "public"); 3708 } 3709 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3710 if (StateIsRunningState(new_state)) { 3711 // Only push the input handler if we aren't fowarding events, as this 3712 // means the curses GUI is in use... Or don't push it if we are launching 3713 // since it will come up stopped. 3714 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3715 new_state != eStateLaunching && new_state != eStateAttaching) { 3716 PushProcessIOHandler(); 3717 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3718 eBroadcastAlways); 3719 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3720 __FUNCTION__, m_iohandler_sync.GetValue()); 3721 } 3722 } else if (StateIsStoppedState(new_state, false)) { 3723 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3724 // If the lldb_private::Debugger is handling the events, we don't want 3725 // to pop the process IOHandler here, we want to do it when we receive 3726 // the stopped event so we can carefully control when the process 3727 // IOHandler is popped because when we stop we want to display some 3728 // text stating how and why we stopped, then maybe some 3729 // process/thread/frame info, and then we want the "(lldb) " prompt to 3730 // show up. If we pop the process IOHandler here, then we will cause 3731 // the command interpreter to become the top IOHandler after the 3732 // process pops off and it will update its prompt right away... See the 3733 // Debugger.cpp file where it calls the function as 3734 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3735 // Otherwise we end up getting overlapping "(lldb) " prompts and 3736 // garbled output. 3737 // 3738 // If we aren't handling the events in the debugger (which is indicated 3739 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3740 // we are hijacked, then we always pop the process IO handler manually. 3741 // Hijacking happens when the internal process state thread is running 3742 // thread plans, or when commands want to run in synchronous mode and 3743 // they call "process->WaitForProcessToStop()". An example of something 3744 // that will hijack the events is a simple expression: 3745 // 3746 // (lldb) expr (int)puts("hello") 3747 // 3748 // This will cause the internal process state thread to resume and halt 3749 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3750 // events) and we do need the IO handler to be pushed and popped 3751 // correctly. 3752 3753 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3754 PopProcessIOHandler(); 3755 } 3756 } 3757 3758 BroadcastEvent(event_sp); 3759 } else { 3760 if (log) { 3761 LLDB_LOGF( 3762 log, 3763 "Process::%s (pid = %" PRIu64 3764 ") suppressing state %s (old state %s): should_broadcast == false", 3765 __FUNCTION__, GetID(), StateAsCString(new_state), 3766 StateAsCString(GetState())); 3767 } 3768 } 3769 } 3770 3771 Status Process::HaltPrivate() { 3772 EventSP event_sp; 3773 Status error(WillHalt()); 3774 if (error.Fail()) 3775 return error; 3776 3777 // Ask the process subclass to actually halt our process 3778 bool caused_stop; 3779 error = DoHalt(caused_stop); 3780 3781 DidHalt(); 3782 return error; 3783 } 3784 3785 thread_result_t Process::PrivateStateThread(void *arg) { 3786 std::unique_ptr<PrivateStateThreadArgs> args_up( 3787 static_cast<PrivateStateThreadArgs *>(arg)); 3788 thread_result_t result = 3789 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3790 return result; 3791 } 3792 3793 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3794 bool control_only = true; 3795 3796 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3797 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3798 __FUNCTION__, static_cast<void *>(this), GetID()); 3799 3800 bool exit_now = false; 3801 bool interrupt_requested = false; 3802 while (!exit_now) { 3803 EventSP event_sp; 3804 GetEventsPrivate(event_sp, llvm::None, control_only); 3805 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3806 LLDB_LOGF(log, 3807 "Process::%s (arg = %p, pid = %" PRIu64 3808 ") got a control event: %d", 3809 __FUNCTION__, static_cast<void *>(this), GetID(), 3810 event_sp->GetType()); 3811 3812 switch (event_sp->GetType()) { 3813 case eBroadcastInternalStateControlStop: 3814 exit_now = true; 3815 break; // doing any internal state management below 3816 3817 case eBroadcastInternalStateControlPause: 3818 control_only = true; 3819 break; 3820 3821 case eBroadcastInternalStateControlResume: 3822 control_only = false; 3823 break; 3824 } 3825 3826 continue; 3827 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3828 if (m_public_state.GetValue() == eStateAttaching) { 3829 LLDB_LOGF(log, 3830 "Process::%s (arg = %p, pid = %" PRIu64 3831 ") woke up with an interrupt while attaching - " 3832 "forwarding interrupt.", 3833 __FUNCTION__, static_cast<void *>(this), GetID()); 3834 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3835 } else if (StateIsRunningState(m_last_broadcast_state)) { 3836 LLDB_LOGF(log, 3837 "Process::%s (arg = %p, pid = %" PRIu64 3838 ") woke up with an interrupt - Halting.", 3839 __FUNCTION__, static_cast<void *>(this), GetID()); 3840 Status error = HaltPrivate(); 3841 if (error.Fail() && log) 3842 LLDB_LOGF(log, 3843 "Process::%s (arg = %p, pid = %" PRIu64 3844 ") failed to halt the process: %s", 3845 __FUNCTION__, static_cast<void *>(this), GetID(), 3846 error.AsCString()); 3847 // Halt should generate a stopped event. Make a note of the fact that 3848 // we were doing the interrupt, so we can set the interrupted flag 3849 // after we receive the event. We deliberately set this to true even if 3850 // HaltPrivate failed, so that we can interrupt on the next natural 3851 // stop. 3852 interrupt_requested = true; 3853 } else { 3854 // This can happen when someone (e.g. Process::Halt) sees that we are 3855 // running and sends an interrupt request, but the process actually 3856 // stops before we receive it. In that case, we can just ignore the 3857 // request. We use m_last_broadcast_state, because the Stopped event 3858 // may not have been popped of the event queue yet, which is when the 3859 // public state gets updated. 3860 LLDB_LOGF(log, 3861 "Process::%s ignoring interrupt as we have already stopped.", 3862 __FUNCTION__); 3863 } 3864 continue; 3865 } 3866 3867 const StateType internal_state = 3868 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3869 3870 if (internal_state != eStateInvalid) { 3871 if (m_clear_thread_plans_on_stop && 3872 StateIsStoppedState(internal_state, true)) { 3873 m_clear_thread_plans_on_stop = false; 3874 m_thread_list.DiscardThreadPlans(); 3875 } 3876 3877 if (interrupt_requested) { 3878 if (StateIsStoppedState(internal_state, true)) { 3879 // We requested the interrupt, so mark this as such in the stop event 3880 // so clients can tell an interrupted process from a natural stop 3881 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3882 interrupt_requested = false; 3883 } else if (log) { 3884 LLDB_LOGF(log, 3885 "Process::%s interrupt_requested, but a non-stopped " 3886 "state '%s' received.", 3887 __FUNCTION__, StateAsCString(internal_state)); 3888 } 3889 } 3890 3891 HandlePrivateEvent(event_sp); 3892 } 3893 3894 if (internal_state == eStateInvalid || internal_state == eStateExited || 3895 internal_state == eStateDetached) { 3896 LLDB_LOGF(log, 3897 "Process::%s (arg = %p, pid = %" PRIu64 3898 ") about to exit with internal state %s...", 3899 __FUNCTION__, static_cast<void *>(this), GetID(), 3900 StateAsCString(internal_state)); 3901 3902 break; 3903 } 3904 } 3905 3906 // Verify log is still enabled before attempting to write to it... 3907 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3908 __FUNCTION__, static_cast<void *>(this), GetID()); 3909 3910 // If we are a secondary thread, then the primary thread we are working for 3911 // will have already acquired the public_run_lock, and isn't done with what 3912 // it was doing yet, so don't try to change it on the way out. 3913 if (!is_secondary_thread) 3914 m_public_run_lock.SetStopped(); 3915 return {}; 3916 } 3917 3918 // Process Event Data 3919 3920 Process::ProcessEventData::ProcessEventData() 3921 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3922 m_update_state(0), m_interrupted(false) {} 3923 3924 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3925 StateType state) 3926 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3927 m_update_state(0), m_interrupted(false) { 3928 if (process_sp) 3929 m_process_wp = process_sp; 3930 } 3931 3932 Process::ProcessEventData::~ProcessEventData() = default; 3933 3934 ConstString Process::ProcessEventData::GetFlavorString() { 3935 static ConstString g_flavor("Process::ProcessEventData"); 3936 return g_flavor; 3937 } 3938 3939 ConstString Process::ProcessEventData::GetFlavor() const { 3940 return ProcessEventData::GetFlavorString(); 3941 } 3942 3943 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3944 ProcessSP process_sp(m_process_wp.lock()); 3945 3946 if (!process_sp) 3947 return; 3948 3949 // This function gets called twice for each event, once when the event gets 3950 // pulled off of the private process event queue, and then any number of 3951 // times, first when it gets pulled off of the public event queue, then other 3952 // times when we're pretending that this is where we stopped at the end of 3953 // expression evaluation. m_update_state is used to distinguish these three 3954 // cases; it is 0 when we're just pulling it off for private handling, and > 3955 // 1 for expression evaluation, and we don't want to do the breakpoint 3956 // command handling then. 3957 if (m_update_state != 1) 3958 return; 3959 3960 process_sp->SetPublicState( 3961 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 3962 3963 if (m_state == eStateStopped && !m_restarted) { 3964 // Let process subclasses know we are about to do a public stop and do 3965 // anything they might need to in order to speed up register and memory 3966 // accesses. 3967 process_sp->WillPublicStop(); 3968 } 3969 3970 // If this is a halt event, even if the halt stopped with some reason other 3971 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 3972 // the halt request came through) don't do the StopInfo actions, as they may 3973 // end up restarting the process. 3974 if (m_interrupted) 3975 return; 3976 3977 // If we're stopped and haven't restarted, then do the StopInfo actions here: 3978 if (m_state == eStateStopped && !m_restarted) { 3979 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3980 uint32_t num_threads = curr_thread_list.GetSize(); 3981 uint32_t idx; 3982 3983 // The actions might change one of the thread's stop_info's opinions about 3984 // whether we should stop the process, so we need to query that as we go. 3985 3986 // One other complication here, is that we try to catch any case where the 3987 // target has run (except for expressions) and immediately exit, but if we 3988 // get that wrong (which is possible) then the thread list might have 3989 // changed, and that would cause our iteration here to crash. We could 3990 // make a copy of the thread list, but we'd really like to also know if it 3991 // has changed at all, so we make up a vector of the thread ID's and check 3992 // what we get back against this list & bag out if anything differs. 3993 std::vector<uint32_t> thread_index_array(num_threads); 3994 for (idx = 0; idx < num_threads; ++idx) 3995 thread_index_array[idx] = 3996 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 3997 3998 // Use this to track whether we should continue from here. We will only 3999 // continue the target running if no thread says we should stop. Of course 4000 // if some thread's PerformAction actually sets the target running, then it 4001 // doesn't matter what the other threads say... 4002 4003 bool still_should_stop = false; 4004 4005 // Sometimes - for instance if we have a bug in the stub we are talking to, 4006 // we stop but no thread has a valid stop reason. In that case we should 4007 // just stop, because we have no way of telling what the right thing to do 4008 // is, and it's better to let the user decide than continue behind their 4009 // backs. 4010 4011 bool does_anybody_have_an_opinion = false; 4012 4013 for (idx = 0; idx < num_threads; ++idx) { 4014 curr_thread_list = process_sp->GetThreadList(); 4015 if (curr_thread_list.GetSize() != num_threads) { 4016 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4017 LIBLLDB_LOG_PROCESS)); 4018 LLDB_LOGF( 4019 log, 4020 "Number of threads changed from %u to %u while processing event.", 4021 num_threads, curr_thread_list.GetSize()); 4022 break; 4023 } 4024 4025 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4026 4027 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4028 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4029 LIBLLDB_LOG_PROCESS)); 4030 LLDB_LOGF(log, 4031 "The thread at position %u changed from %u to %u while " 4032 "processing event.", 4033 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4034 break; 4035 } 4036 4037 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4038 if (stop_info_sp && stop_info_sp->IsValid()) { 4039 does_anybody_have_an_opinion = true; 4040 bool this_thread_wants_to_stop; 4041 if (stop_info_sp->GetOverrideShouldStop()) { 4042 this_thread_wants_to_stop = 4043 stop_info_sp->GetOverriddenShouldStopValue(); 4044 } else { 4045 stop_info_sp->PerformAction(event_ptr); 4046 // The stop action might restart the target. If it does, then we 4047 // want to mark that in the event so that whoever is receiving it 4048 // will know to wait for the running event and reflect that state 4049 // appropriately. We also need to stop processing actions, since they 4050 // aren't expecting the target to be running. 4051 4052 // FIXME: we might have run. 4053 if (stop_info_sp->HasTargetRunSinceMe()) { 4054 SetRestarted(true); 4055 break; 4056 } 4057 4058 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4059 } 4060 4061 if (!still_should_stop) 4062 still_should_stop = this_thread_wants_to_stop; 4063 } 4064 } 4065 4066 if (!GetRestarted()) { 4067 if (!still_should_stop && does_anybody_have_an_opinion) { 4068 // We've been asked to continue, so do that here. 4069 SetRestarted(true); 4070 // Use the public resume method here, since this is just extending a 4071 // public resume. 4072 process_sp->PrivateResume(); 4073 } else { 4074 bool hijacked = 4075 process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4076 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4077 4078 if (!hijacked) { 4079 // If we didn't restart, run the Stop Hooks here. 4080 // Don't do that if state changed events aren't hooked up to the 4081 // public (or SyncResume) broadcasters. StopHooks are just for 4082 // real public stops. They might also restart the target, 4083 // so watch for that. 4084 process_sp->GetTarget().RunStopHooks(); 4085 if (process_sp->GetPrivateState() == eStateRunning) 4086 SetRestarted(true); 4087 } 4088 } 4089 } 4090 } 4091 } 4092 4093 void Process::ProcessEventData::Dump(Stream *s) const { 4094 ProcessSP process_sp(m_process_wp.lock()); 4095 4096 if (process_sp) 4097 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4098 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4099 else 4100 s->PutCString(" process = NULL, "); 4101 4102 s->Printf("state = %s", StateAsCString(GetState())); 4103 } 4104 4105 const Process::ProcessEventData * 4106 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4107 if (event_ptr) { 4108 const EventData *event_data = event_ptr->GetData(); 4109 if (event_data && 4110 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4111 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4112 } 4113 return nullptr; 4114 } 4115 4116 ProcessSP 4117 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4118 ProcessSP process_sp; 4119 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4120 if (data) 4121 process_sp = data->GetProcessSP(); 4122 return process_sp; 4123 } 4124 4125 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4126 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4127 if (data == nullptr) 4128 return eStateInvalid; 4129 else 4130 return data->GetState(); 4131 } 4132 4133 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4134 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4135 if (data == nullptr) 4136 return false; 4137 else 4138 return data->GetRestarted(); 4139 } 4140 4141 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4142 bool new_value) { 4143 ProcessEventData *data = 4144 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4145 if (data != nullptr) 4146 data->SetRestarted(new_value); 4147 } 4148 4149 size_t 4150 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4151 ProcessEventData *data = 4152 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4153 if (data != nullptr) 4154 return data->GetNumRestartedReasons(); 4155 else 4156 return 0; 4157 } 4158 4159 const char * 4160 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4161 size_t idx) { 4162 ProcessEventData *data = 4163 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4164 if (data != nullptr) 4165 return data->GetRestartedReasonAtIndex(idx); 4166 else 4167 return nullptr; 4168 } 4169 4170 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4171 const char *reason) { 4172 ProcessEventData *data = 4173 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4174 if (data != nullptr) 4175 data->AddRestartedReason(reason); 4176 } 4177 4178 bool Process::ProcessEventData::GetInterruptedFromEvent( 4179 const Event *event_ptr) { 4180 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4181 if (data == nullptr) 4182 return false; 4183 else 4184 return data->GetInterrupted(); 4185 } 4186 4187 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4188 bool new_value) { 4189 ProcessEventData *data = 4190 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4191 if (data != nullptr) 4192 data->SetInterrupted(new_value); 4193 } 4194 4195 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4196 ProcessEventData *data = 4197 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4198 if (data) { 4199 data->SetUpdateStateOnRemoval(); 4200 return true; 4201 } 4202 return false; 4203 } 4204 4205 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4206 4207 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4208 exe_ctx.SetTargetPtr(&GetTarget()); 4209 exe_ctx.SetProcessPtr(this); 4210 exe_ctx.SetThreadPtr(nullptr); 4211 exe_ctx.SetFramePtr(nullptr); 4212 } 4213 4214 // uint32_t 4215 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4216 // std::vector<lldb::pid_t> &pids) 4217 //{ 4218 // return 0; 4219 //} 4220 // 4221 // ArchSpec 4222 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4223 //{ 4224 // return Host::GetArchSpecForExistingProcess (pid); 4225 //} 4226 // 4227 // ArchSpec 4228 // Process::GetArchSpecForExistingProcess (const char *process_name) 4229 //{ 4230 // return Host::GetArchSpecForExistingProcess (process_name); 4231 //} 4232 4233 void Process::AppendSTDOUT(const char *s, size_t len) { 4234 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4235 m_stdout_data.append(s, len); 4236 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4237 new ProcessEventData(shared_from_this(), GetState())); 4238 } 4239 4240 void Process::AppendSTDERR(const char *s, size_t len) { 4241 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4242 m_stderr_data.append(s, len); 4243 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4244 new ProcessEventData(shared_from_this(), GetState())); 4245 } 4246 4247 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4248 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4249 m_profile_data.push_back(one_profile_data); 4250 BroadcastEventIfUnique(eBroadcastBitProfileData, 4251 new ProcessEventData(shared_from_this(), GetState())); 4252 } 4253 4254 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4255 const StructuredDataPluginSP &plugin_sp) { 4256 BroadcastEvent( 4257 eBroadcastBitStructuredData, 4258 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4259 } 4260 4261 StructuredDataPluginSP 4262 Process::GetStructuredDataPlugin(ConstString type_name) const { 4263 auto find_it = m_structured_data_plugin_map.find(type_name); 4264 if (find_it != m_structured_data_plugin_map.end()) 4265 return find_it->second; 4266 else 4267 return StructuredDataPluginSP(); 4268 } 4269 4270 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4271 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4272 if (m_profile_data.empty()) 4273 return 0; 4274 4275 std::string &one_profile_data = m_profile_data.front(); 4276 size_t bytes_available = one_profile_data.size(); 4277 if (bytes_available > 0) { 4278 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4279 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4280 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4281 if (bytes_available > buf_size) { 4282 memcpy(buf, one_profile_data.c_str(), buf_size); 4283 one_profile_data.erase(0, buf_size); 4284 bytes_available = buf_size; 4285 } else { 4286 memcpy(buf, one_profile_data.c_str(), bytes_available); 4287 m_profile_data.erase(m_profile_data.begin()); 4288 } 4289 } 4290 return bytes_available; 4291 } 4292 4293 // Process STDIO 4294 4295 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4296 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4297 size_t bytes_available = m_stdout_data.size(); 4298 if (bytes_available > 0) { 4299 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4300 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4301 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4302 if (bytes_available > buf_size) { 4303 memcpy(buf, m_stdout_data.c_str(), buf_size); 4304 m_stdout_data.erase(0, buf_size); 4305 bytes_available = buf_size; 4306 } else { 4307 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4308 m_stdout_data.clear(); 4309 } 4310 } 4311 return bytes_available; 4312 } 4313 4314 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4315 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4316 size_t bytes_available = m_stderr_data.size(); 4317 if (bytes_available > 0) { 4318 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4319 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4320 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4321 if (bytes_available > buf_size) { 4322 memcpy(buf, m_stderr_data.c_str(), buf_size); 4323 m_stderr_data.erase(0, buf_size); 4324 bytes_available = buf_size; 4325 } else { 4326 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4327 m_stderr_data.clear(); 4328 } 4329 } 4330 return bytes_available; 4331 } 4332 4333 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4334 size_t src_len) { 4335 Process *process = (Process *)baton; 4336 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4337 } 4338 4339 class IOHandlerProcessSTDIO : public IOHandler { 4340 public: 4341 IOHandlerProcessSTDIO(Process *process, int write_fd) 4342 : IOHandler(process->GetTarget().GetDebugger(), 4343 IOHandler::Type::ProcessIO), 4344 m_process(process), 4345 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4346 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4347 m_pipe.CreateNew(false); 4348 } 4349 4350 ~IOHandlerProcessSTDIO() override = default; 4351 4352 // Each IOHandler gets to run until it is done. It should read data from the 4353 // "in" and place output into "out" and "err and return when done. 4354 void Run() override { 4355 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4356 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4357 SetIsDone(true); 4358 return; 4359 } 4360 4361 SetIsDone(false); 4362 const int read_fd = m_read_file.GetDescriptor(); 4363 TerminalState terminal_state; 4364 terminal_state.Save(read_fd, false); 4365 Terminal terminal(read_fd); 4366 terminal.SetCanonical(false); 4367 terminal.SetEcho(false); 4368 // FD_ZERO, FD_SET are not supported on windows 4369 #ifndef _WIN32 4370 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4371 m_is_running = true; 4372 while (!GetIsDone()) { 4373 SelectHelper select_helper; 4374 select_helper.FDSetRead(read_fd); 4375 select_helper.FDSetRead(pipe_read_fd); 4376 Status error = select_helper.Select(); 4377 4378 if (error.Fail()) { 4379 SetIsDone(true); 4380 } else { 4381 char ch = 0; 4382 size_t n; 4383 if (select_helper.FDIsSetRead(read_fd)) { 4384 n = 1; 4385 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4386 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4387 SetIsDone(true); 4388 } else 4389 SetIsDone(true); 4390 } 4391 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4392 size_t bytes_read; 4393 // Consume the interrupt byte 4394 Status error = m_pipe.Read(&ch, 1, bytes_read); 4395 if (error.Success()) { 4396 switch (ch) { 4397 case 'q': 4398 SetIsDone(true); 4399 break; 4400 case 'i': 4401 if (StateIsRunningState(m_process->GetState())) 4402 m_process->SendAsyncInterrupt(); 4403 break; 4404 } 4405 } 4406 } 4407 } 4408 } 4409 m_is_running = false; 4410 #endif 4411 terminal_state.Restore(); 4412 } 4413 4414 void Cancel() override { 4415 SetIsDone(true); 4416 // Only write to our pipe to cancel if we are in 4417 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4418 // is being run from the command interpreter: 4419 // 4420 // (lldb) step_process_thousands_of_times 4421 // 4422 // In this case the command interpreter will be in the middle of handling 4423 // the command and if the process pushes and pops the IOHandler thousands 4424 // of times, we can end up writing to m_pipe without ever consuming the 4425 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4426 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4427 if (m_is_running) { 4428 char ch = 'q'; // Send 'q' for quit 4429 size_t bytes_written = 0; 4430 m_pipe.Write(&ch, 1, bytes_written); 4431 } 4432 } 4433 4434 bool Interrupt() override { 4435 // Do only things that are safe to do in an interrupt context (like in a 4436 // SIGINT handler), like write 1 byte to a file descriptor. This will 4437 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4438 // that was written to the pipe and then call 4439 // m_process->SendAsyncInterrupt() from a much safer location in code. 4440 if (m_active) { 4441 char ch = 'i'; // Send 'i' for interrupt 4442 size_t bytes_written = 0; 4443 Status result = m_pipe.Write(&ch, 1, bytes_written); 4444 return result.Success(); 4445 } else { 4446 // This IOHandler might be pushed on the stack, but not being run 4447 // currently so do the right thing if we aren't actively watching for 4448 // STDIN by sending the interrupt to the process. Otherwise the write to 4449 // the pipe above would do nothing. This can happen when the command 4450 // interpreter is running and gets a "expression ...". It will be on the 4451 // IOHandler thread and sending the input is complete to the delegate 4452 // which will cause the expression to run, which will push the process IO 4453 // handler, but not run it. 4454 4455 if (StateIsRunningState(m_process->GetState())) { 4456 m_process->SendAsyncInterrupt(); 4457 return true; 4458 } 4459 } 4460 return false; 4461 } 4462 4463 void GotEOF() override {} 4464 4465 protected: 4466 Process *m_process; 4467 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4468 NativeFile m_write_file; // Write to this file (usually the master pty for 4469 // getting io to debuggee) 4470 Pipe m_pipe; 4471 std::atomic<bool> m_is_running{false}; 4472 }; 4473 4474 void Process::SetSTDIOFileDescriptor(int fd) { 4475 // First set up the Read Thread for reading/handling process I/O 4476 m_stdio_communication.SetConnection( 4477 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4478 if (m_stdio_communication.IsConnected()) { 4479 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4480 STDIOReadThreadBytesReceived, this); 4481 m_stdio_communication.StartReadThread(); 4482 4483 // Now read thread is set up, set up input reader. 4484 4485 if (!m_process_input_reader) 4486 m_process_input_reader = 4487 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4488 } 4489 } 4490 4491 bool Process::ProcessIOHandlerIsActive() { 4492 IOHandlerSP io_handler_sp(m_process_input_reader); 4493 if (io_handler_sp) 4494 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4495 return false; 4496 } 4497 bool Process::PushProcessIOHandler() { 4498 IOHandlerSP io_handler_sp(m_process_input_reader); 4499 if (io_handler_sp) { 4500 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4501 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4502 4503 io_handler_sp->SetIsDone(false); 4504 // If we evaluate an utility function, then we don't cancel the current 4505 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4506 // existing IOHandler that potentially provides the user interface (e.g. 4507 // the IOHandler for Editline). 4508 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4509 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4510 cancel_top_handler); 4511 return true; 4512 } 4513 return false; 4514 } 4515 4516 bool Process::PopProcessIOHandler() { 4517 IOHandlerSP io_handler_sp(m_process_input_reader); 4518 if (io_handler_sp) 4519 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4520 return false; 4521 } 4522 4523 // The process needs to know about installed plug-ins 4524 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4525 4526 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4527 4528 namespace { 4529 // RestorePlanState is used to record the "is private", "is master" and "okay 4530 // to discard" fields of the plan we are running, and reset it on Clean or on 4531 // destruction. It will only reset the state once, so you can call Clean and 4532 // then monkey with the state and it won't get reset on you again. 4533 4534 class RestorePlanState { 4535 public: 4536 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4537 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4538 if (m_thread_plan_sp) { 4539 m_private = m_thread_plan_sp->GetPrivate(); 4540 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4541 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4542 } 4543 } 4544 4545 ~RestorePlanState() { Clean(); } 4546 4547 void Clean() { 4548 if (!m_already_reset && m_thread_plan_sp) { 4549 m_already_reset = true; 4550 m_thread_plan_sp->SetPrivate(m_private); 4551 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4552 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4553 } 4554 } 4555 4556 private: 4557 lldb::ThreadPlanSP m_thread_plan_sp; 4558 bool m_already_reset; 4559 bool m_private; 4560 bool m_is_master; 4561 bool m_okay_to_discard; 4562 }; 4563 } // anonymous namespace 4564 4565 static microseconds 4566 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4567 const milliseconds default_one_thread_timeout(250); 4568 4569 // If the overall wait is forever, then we don't need to worry about it. 4570 if (!options.GetTimeout()) { 4571 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4572 : default_one_thread_timeout; 4573 } 4574 4575 // If the one thread timeout is set, use it. 4576 if (options.GetOneThreadTimeout()) 4577 return *options.GetOneThreadTimeout(); 4578 4579 // Otherwise use half the total timeout, bounded by the 4580 // default_one_thread_timeout. 4581 return std::min<microseconds>(default_one_thread_timeout, 4582 *options.GetTimeout() / 2); 4583 } 4584 4585 static Timeout<std::micro> 4586 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4587 bool before_first_timeout) { 4588 // If we are going to run all threads the whole time, or if we are only going 4589 // to run one thread, we can just return the overall timeout. 4590 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4591 return options.GetTimeout(); 4592 4593 if (before_first_timeout) 4594 return GetOneThreadExpressionTimeout(options); 4595 4596 if (!options.GetTimeout()) 4597 return llvm::None; 4598 else 4599 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4600 } 4601 4602 static llvm::Optional<ExpressionResults> 4603 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4604 RestorePlanState &restorer, const EventSP &event_sp, 4605 EventSP &event_to_broadcast_sp, 4606 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4607 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4608 4609 ThreadPlanSP plan = thread.GetCompletedPlan(); 4610 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4611 LLDB_LOG(log, "execution completed successfully"); 4612 4613 // Restore the plan state so it will get reported as intended when we are 4614 // done. 4615 restorer.Clean(); 4616 return eExpressionCompleted; 4617 } 4618 4619 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4620 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4621 stop_info_sp->ShouldNotify(event_sp.get())) { 4622 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4623 if (!options.DoesIgnoreBreakpoints()) { 4624 // Restore the plan state and then force Private to false. We are going 4625 // to stop because of this plan so we need it to become a public plan or 4626 // it won't report correctly when we continue to its termination later 4627 // on. 4628 restorer.Clean(); 4629 thread_plan_sp->SetPrivate(false); 4630 event_to_broadcast_sp = event_sp; 4631 } 4632 return eExpressionHitBreakpoint; 4633 } 4634 4635 if (!handle_interrupts && 4636 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4637 return llvm::None; 4638 4639 LLDB_LOG(log, "thread plan did not successfully complete"); 4640 if (!options.DoesUnwindOnError()) 4641 event_to_broadcast_sp = event_sp; 4642 return eExpressionInterrupted; 4643 } 4644 4645 ExpressionResults 4646 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4647 lldb::ThreadPlanSP &thread_plan_sp, 4648 const EvaluateExpressionOptions &options, 4649 DiagnosticManager &diagnostic_manager) { 4650 ExpressionResults return_value = eExpressionSetupError; 4651 4652 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4653 4654 if (!thread_plan_sp) { 4655 diagnostic_manager.PutString( 4656 eDiagnosticSeverityError, 4657 "RunThreadPlan called with empty thread plan."); 4658 return eExpressionSetupError; 4659 } 4660 4661 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4662 diagnostic_manager.PutString( 4663 eDiagnosticSeverityError, 4664 "RunThreadPlan called with an invalid thread plan."); 4665 return eExpressionSetupError; 4666 } 4667 4668 if (exe_ctx.GetProcessPtr() != this) { 4669 diagnostic_manager.PutString(eDiagnosticSeverityError, 4670 "RunThreadPlan called on wrong process."); 4671 return eExpressionSetupError; 4672 } 4673 4674 Thread *thread = exe_ctx.GetThreadPtr(); 4675 if (thread == nullptr) { 4676 diagnostic_manager.PutString(eDiagnosticSeverityError, 4677 "RunThreadPlan called with invalid thread."); 4678 return eExpressionSetupError; 4679 } 4680 4681 // We need to change some of the thread plan attributes for the thread plan 4682 // runner. This will restore them when we are done: 4683 4684 RestorePlanState thread_plan_restorer(thread_plan_sp); 4685 4686 // We rely on the thread plan we are running returning "PlanCompleted" if 4687 // when it successfully completes. For that to be true the plan can't be 4688 // private - since private plans suppress themselves in the GetCompletedPlan 4689 // call. 4690 4691 thread_plan_sp->SetPrivate(false); 4692 4693 // The plans run with RunThreadPlan also need to be terminal master plans or 4694 // when they are done we will end up asking the plan above us whether we 4695 // should stop, which may give the wrong answer. 4696 4697 thread_plan_sp->SetIsMasterPlan(true); 4698 thread_plan_sp->SetOkayToDiscard(false); 4699 4700 // If we are running some utility expression for LLDB, we now have to mark 4701 // this in the ProcesModID of this process. This RAII takes care of marking 4702 // and reverting the mark it once we are done running the expression. 4703 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4704 4705 if (m_private_state.GetValue() != eStateStopped) { 4706 diagnostic_manager.PutString( 4707 eDiagnosticSeverityError, 4708 "RunThreadPlan called while the private state was not stopped."); 4709 return eExpressionSetupError; 4710 } 4711 4712 // Save the thread & frame from the exe_ctx for restoration after we run 4713 const uint32_t thread_idx_id = thread->GetIndexID(); 4714 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4715 if (!selected_frame_sp) { 4716 thread->SetSelectedFrame(nullptr); 4717 selected_frame_sp = thread->GetSelectedFrame(); 4718 if (!selected_frame_sp) { 4719 diagnostic_manager.Printf( 4720 eDiagnosticSeverityError, 4721 "RunThreadPlan called without a selected frame on thread %d", 4722 thread_idx_id); 4723 return eExpressionSetupError; 4724 } 4725 } 4726 4727 // Make sure the timeout values make sense. The one thread timeout needs to 4728 // be smaller than the overall timeout. 4729 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4730 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4731 diagnostic_manager.PutString(eDiagnosticSeverityError, 4732 "RunThreadPlan called with one thread " 4733 "timeout greater than total timeout"); 4734 return eExpressionSetupError; 4735 } 4736 4737 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4738 4739 // N.B. Running the target may unset the currently selected thread and frame. 4740 // We don't want to do that either, so we should arrange to reset them as 4741 // well. 4742 4743 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4744 4745 uint32_t selected_tid; 4746 StackID selected_stack_id; 4747 if (selected_thread_sp) { 4748 selected_tid = selected_thread_sp->GetIndexID(); 4749 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4750 } else { 4751 selected_tid = LLDB_INVALID_THREAD_ID; 4752 } 4753 4754 HostThread backup_private_state_thread; 4755 lldb::StateType old_state = eStateInvalid; 4756 lldb::ThreadPlanSP stopper_base_plan_sp; 4757 4758 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4759 LIBLLDB_LOG_PROCESS)); 4760 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4761 // Yikes, we are running on the private state thread! So we can't wait for 4762 // public events on this thread, since we are the thread that is generating 4763 // public events. The simplest thing to do is to spin up a temporary thread 4764 // to handle private state thread events while we are fielding public 4765 // events here. 4766 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4767 "another state thread to handle the events."); 4768 4769 backup_private_state_thread = m_private_state_thread; 4770 4771 // One other bit of business: we want to run just this thread plan and 4772 // anything it pushes, and then stop, returning control here. But in the 4773 // normal course of things, the plan above us on the stack would be given a 4774 // shot at the stop event before deciding to stop, and we don't want that. 4775 // So we insert a "stopper" base plan on the stack before the plan we want 4776 // to run. Since base plans always stop and return control to the user, 4777 // that will do just what we want. 4778 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4779 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4780 // Have to make sure our public state is stopped, since otherwise the 4781 // reporting logic below doesn't work correctly. 4782 old_state = m_public_state.GetValue(); 4783 m_public_state.SetValueNoLock(eStateStopped); 4784 4785 // Now spin up the private state thread: 4786 StartPrivateStateThread(true); 4787 } 4788 4789 thread->QueueThreadPlan( 4790 thread_plan_sp, false); // This used to pass "true" does that make sense? 4791 4792 if (options.GetDebug()) { 4793 // In this case, we aren't actually going to run, we just want to stop 4794 // right away. Flush this thread so we will refetch the stacks and show the 4795 // correct backtrace. 4796 // FIXME: To make this prettier we should invent some stop reason for this, 4797 // but that 4798 // is only cosmetic, and this functionality is only of use to lldb 4799 // developers who can live with not pretty... 4800 thread->Flush(); 4801 return eExpressionStoppedForDebug; 4802 } 4803 4804 ListenerSP listener_sp( 4805 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4806 4807 lldb::EventSP event_to_broadcast_sp; 4808 4809 { 4810 // This process event hijacker Hijacks the Public events and its destructor 4811 // makes sure that the process events get restored on exit to the function. 4812 // 4813 // If the event needs to propagate beyond the hijacker (e.g., the process 4814 // exits during execution), then the event is put into 4815 // event_to_broadcast_sp for rebroadcasting. 4816 4817 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4818 4819 if (log) { 4820 StreamString s; 4821 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4822 LLDB_LOGF(log, 4823 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4824 " to run thread plan \"%s\".", 4825 thread->GetIndexID(), thread->GetID(), s.GetData()); 4826 } 4827 4828 bool got_event; 4829 lldb::EventSP event_sp; 4830 lldb::StateType stop_state = lldb::eStateInvalid; 4831 4832 bool before_first_timeout = true; // This is set to false the first time 4833 // that we have to halt the target. 4834 bool do_resume = true; 4835 bool handle_running_event = true; 4836 4837 // This is just for accounting: 4838 uint32_t num_resumes = 0; 4839 4840 // If we are going to run all threads the whole time, or if we are only 4841 // going to run one thread, then we don't need the first timeout. So we 4842 // pretend we are after the first timeout already. 4843 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4844 before_first_timeout = false; 4845 4846 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4847 options.GetStopOthers(), options.GetTryAllThreads(), 4848 before_first_timeout); 4849 4850 // This isn't going to work if there are unfetched events on the queue. Are 4851 // there cases where we might want to run the remaining events here, and 4852 // then try to call the function? That's probably being too tricky for our 4853 // own good. 4854 4855 Event *other_events = listener_sp->PeekAtNextEvent(); 4856 if (other_events != nullptr) { 4857 diagnostic_manager.PutString( 4858 eDiagnosticSeverityError, 4859 "RunThreadPlan called with pending events on the queue."); 4860 return eExpressionSetupError; 4861 } 4862 4863 // We also need to make sure that the next event is delivered. We might be 4864 // calling a function as part of a thread plan, in which case the last 4865 // delivered event could be the running event, and we don't want event 4866 // coalescing to cause us to lose OUR running event... 4867 ForceNextEventDelivery(); 4868 4869 // This while loop must exit out the bottom, there's cleanup that we need to do 4870 // when we are done. So don't call return anywhere within it. 4871 4872 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4873 // It's pretty much impossible to write test cases for things like: One 4874 // thread timeout expires, I go to halt, but the process already stopped on 4875 // the function call stop breakpoint. Turning on this define will make us 4876 // not fetch the first event till after the halt. So if you run a quick 4877 // function, it will have completed, and the completion event will be 4878 // waiting, when you interrupt for halt. The expression evaluation should 4879 // still succeed. 4880 bool miss_first_event = true; 4881 #endif 4882 while (true) { 4883 // We usually want to resume the process if we get to the top of the 4884 // loop. The only exception is if we get two running events with no 4885 // intervening stop, which can happen, we will just wait for then next 4886 // stop event. 4887 LLDB_LOGF(log, 4888 "Top of while loop: do_resume: %i handle_running_event: %i " 4889 "before_first_timeout: %i.", 4890 do_resume, handle_running_event, before_first_timeout); 4891 4892 if (do_resume || handle_running_event) { 4893 // Do the initial resume and wait for the running event before going 4894 // further. 4895 4896 if (do_resume) { 4897 num_resumes++; 4898 Status resume_error = PrivateResume(); 4899 if (!resume_error.Success()) { 4900 diagnostic_manager.Printf( 4901 eDiagnosticSeverityError, 4902 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4903 resume_error.AsCString()); 4904 return_value = eExpressionSetupError; 4905 break; 4906 } 4907 } 4908 4909 got_event = 4910 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4911 if (!got_event) { 4912 LLDB_LOGF(log, 4913 "Process::RunThreadPlan(): didn't get any event after " 4914 "resume %" PRIu32 ", exiting.", 4915 num_resumes); 4916 4917 diagnostic_manager.Printf(eDiagnosticSeverityError, 4918 "didn't get any event after resume %" PRIu32 4919 ", exiting.", 4920 num_resumes); 4921 return_value = eExpressionSetupError; 4922 break; 4923 } 4924 4925 stop_state = 4926 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4927 4928 if (stop_state != eStateRunning) { 4929 bool restarted = false; 4930 4931 if (stop_state == eStateStopped) { 4932 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4933 event_sp.get()); 4934 LLDB_LOGF( 4935 log, 4936 "Process::RunThreadPlan(): didn't get running event after " 4937 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4938 "handle_running_event: %i).", 4939 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4940 handle_running_event); 4941 } 4942 4943 if (restarted) { 4944 // This is probably an overabundance of caution, I don't think I 4945 // should ever get a stopped & restarted event here. But if I do, 4946 // the best thing is to Halt and then get out of here. 4947 const bool clear_thread_plans = false; 4948 const bool use_run_lock = false; 4949 Halt(clear_thread_plans, use_run_lock); 4950 } 4951 4952 diagnostic_manager.Printf( 4953 eDiagnosticSeverityError, 4954 "didn't get running event after initial resume, got %s instead.", 4955 StateAsCString(stop_state)); 4956 return_value = eExpressionSetupError; 4957 break; 4958 } 4959 4960 if (log) 4961 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4962 // We need to call the function synchronously, so spin waiting for it 4963 // to return. If we get interrupted while executing, we're going to 4964 // lose our context, and won't be able to gather the result at this 4965 // point. We set the timeout AFTER the resume, since the resume takes 4966 // some time and we don't want to charge that to the timeout. 4967 } else { 4968 if (log) 4969 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4970 } 4971 4972 do_resume = true; 4973 handle_running_event = true; 4974 4975 // Now wait for the process to stop again: 4976 event_sp.reset(); 4977 4978 Timeout<std::micro> timeout = 4979 GetExpressionTimeout(options, before_first_timeout); 4980 if (log) { 4981 if (timeout) { 4982 auto now = system_clock::now(); 4983 LLDB_LOGF(log, 4984 "Process::RunThreadPlan(): about to wait - now is %s - " 4985 "endpoint is %s", 4986 llvm::to_string(now).c_str(), 4987 llvm::to_string(now + *timeout).c_str()); 4988 } else { 4989 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4990 } 4991 } 4992 4993 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4994 // See comment above... 4995 if (miss_first_event) { 4996 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4997 miss_first_event = false; 4998 got_event = false; 4999 } else 5000 #endif 5001 got_event = listener_sp->GetEvent(event_sp, timeout); 5002 5003 if (got_event) { 5004 if (event_sp) { 5005 bool keep_going = false; 5006 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5007 const bool clear_thread_plans = false; 5008 const bool use_run_lock = false; 5009 Halt(clear_thread_plans, use_run_lock); 5010 return_value = eExpressionInterrupted; 5011 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5012 "execution halted by user interrupt."); 5013 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5014 "eBroadcastBitInterrupted, exiting."); 5015 break; 5016 } else { 5017 stop_state = 5018 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5019 LLDB_LOGF(log, 5020 "Process::RunThreadPlan(): in while loop, got event: %s.", 5021 StateAsCString(stop_state)); 5022 5023 switch (stop_state) { 5024 case lldb::eStateStopped: { 5025 // We stopped, figure out what we are going to do now. 5026 ThreadSP thread_sp = 5027 GetThreadList().FindThreadByIndexID(thread_idx_id); 5028 if (!thread_sp) { 5029 // Ooh, our thread has vanished. Unlikely that this was 5030 // successful execution... 5031 LLDB_LOGF(log, 5032 "Process::RunThreadPlan(): execution completed " 5033 "but our thread (index-id=%u) has vanished.", 5034 thread_idx_id); 5035 return_value = eExpressionInterrupted; 5036 } else if (Process::ProcessEventData::GetRestartedFromEvent( 5037 event_sp.get())) { 5038 // If we were restarted, we just need to go back up to fetch 5039 // another event. 5040 if (log) { 5041 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5042 "restart, so we'll continue waiting."); 5043 } 5044 keep_going = true; 5045 do_resume = false; 5046 handle_running_event = true; 5047 } else { 5048 const bool handle_interrupts = true; 5049 return_value = *HandleStoppedEvent( 5050 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5051 event_to_broadcast_sp, options, handle_interrupts); 5052 } 5053 } break; 5054 5055 case lldb::eStateRunning: 5056 // This shouldn't really happen, but sometimes we do get two 5057 // running events without an intervening stop, and in that case 5058 // we should just go back to waiting for the stop. 5059 do_resume = false; 5060 keep_going = true; 5061 handle_running_event = false; 5062 break; 5063 5064 default: 5065 LLDB_LOGF(log, 5066 "Process::RunThreadPlan(): execution stopped with " 5067 "unexpected state: %s.", 5068 StateAsCString(stop_state)); 5069 5070 if (stop_state == eStateExited) 5071 event_to_broadcast_sp = event_sp; 5072 5073 diagnostic_manager.PutString( 5074 eDiagnosticSeverityError, 5075 "execution stopped with unexpected state."); 5076 return_value = eExpressionInterrupted; 5077 break; 5078 } 5079 } 5080 5081 if (keep_going) 5082 continue; 5083 else 5084 break; 5085 } else { 5086 if (log) 5087 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5088 "the event pointer was null. How odd..."); 5089 return_value = eExpressionInterrupted; 5090 break; 5091 } 5092 } else { 5093 // If we didn't get an event that means we've timed out... We will 5094 // interrupt the process here. Depending on what we were asked to do 5095 // we will either exit, or try with all threads running for the same 5096 // timeout. 5097 5098 if (log) { 5099 if (options.GetTryAllThreads()) { 5100 if (before_first_timeout) { 5101 LLDB_LOG(log, 5102 "Running function with one thread timeout timed out."); 5103 } else 5104 LLDB_LOG(log, "Restarting function with all threads enabled and " 5105 "timeout: {0} timed out, abandoning execution.", 5106 timeout); 5107 } else 5108 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5109 "abandoning execution.", 5110 timeout); 5111 } 5112 5113 // It is possible that between the time we issued the Halt, and we get 5114 // around to calling Halt the target could have stopped. That's fine, 5115 // Halt will figure that out and send the appropriate Stopped event. 5116 // BUT it is also possible that we stopped & restarted (e.g. hit a 5117 // signal with "stop" set to false.) In 5118 // that case, we'll get the stopped & restarted event, and we should go 5119 // back to waiting for the Halt's stopped event. That's what this 5120 // while loop does. 5121 5122 bool back_to_top = true; 5123 uint32_t try_halt_again = 0; 5124 bool do_halt = true; 5125 const uint32_t num_retries = 5; 5126 while (try_halt_again < num_retries) { 5127 Status halt_error; 5128 if (do_halt) { 5129 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5130 const bool clear_thread_plans = false; 5131 const bool use_run_lock = false; 5132 Halt(clear_thread_plans, use_run_lock); 5133 } 5134 if (halt_error.Success()) { 5135 if (log) 5136 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5137 5138 got_event = 5139 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5140 5141 if (got_event) { 5142 stop_state = 5143 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5144 if (log) { 5145 LLDB_LOGF(log, 5146 "Process::RunThreadPlan(): Stopped with event: %s", 5147 StateAsCString(stop_state)); 5148 if (stop_state == lldb::eStateStopped && 5149 Process::ProcessEventData::GetInterruptedFromEvent( 5150 event_sp.get())) 5151 log->PutCString(" Event was the Halt interruption event."); 5152 } 5153 5154 if (stop_state == lldb::eStateStopped) { 5155 if (Process::ProcessEventData::GetRestartedFromEvent( 5156 event_sp.get())) { 5157 if (log) 5158 log->PutCString("Process::RunThreadPlan(): Went to halt " 5159 "but got a restarted event, there must be " 5160 "an un-restarted stopped event so try " 5161 "again... " 5162 "Exiting wait loop."); 5163 try_halt_again++; 5164 do_halt = false; 5165 continue; 5166 } 5167 5168 // Between the time we initiated the Halt and the time we 5169 // delivered it, the process could have already finished its 5170 // job. Check that here: 5171 const bool handle_interrupts = false; 5172 if (auto result = HandleStoppedEvent( 5173 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5174 event_to_broadcast_sp, options, handle_interrupts)) { 5175 return_value = *result; 5176 back_to_top = false; 5177 break; 5178 } 5179 5180 if (!options.GetTryAllThreads()) { 5181 if (log) 5182 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5183 "was false, we stopped so now we're " 5184 "quitting."); 5185 return_value = eExpressionInterrupted; 5186 back_to_top = false; 5187 break; 5188 } 5189 5190 if (before_first_timeout) { 5191 // Set all the other threads to run, and return to the top of 5192 // the loop, which will continue; 5193 before_first_timeout = false; 5194 thread_plan_sp->SetStopOthers(false); 5195 if (log) 5196 log->PutCString( 5197 "Process::RunThreadPlan(): about to resume."); 5198 5199 back_to_top = true; 5200 break; 5201 } else { 5202 // Running all threads failed, so return Interrupted. 5203 if (log) 5204 log->PutCString("Process::RunThreadPlan(): running all " 5205 "threads timed out."); 5206 return_value = eExpressionInterrupted; 5207 back_to_top = false; 5208 break; 5209 } 5210 } 5211 } else { 5212 if (log) 5213 log->PutCString("Process::RunThreadPlan(): halt said it " 5214 "succeeded, but I got no event. " 5215 "I'm getting out of here passing Interrupted."); 5216 return_value = eExpressionInterrupted; 5217 back_to_top = false; 5218 break; 5219 } 5220 } else { 5221 try_halt_again++; 5222 continue; 5223 } 5224 } 5225 5226 if (!back_to_top || try_halt_again > num_retries) 5227 break; 5228 else 5229 continue; 5230 } 5231 } // END WAIT LOOP 5232 5233 // If we had to start up a temporary private state thread to run this 5234 // thread plan, shut it down now. 5235 if (backup_private_state_thread.IsJoinable()) { 5236 StopPrivateStateThread(); 5237 Status error; 5238 m_private_state_thread = backup_private_state_thread; 5239 if (stopper_base_plan_sp) { 5240 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5241 } 5242 if (old_state != eStateInvalid) 5243 m_public_state.SetValueNoLock(old_state); 5244 } 5245 5246 if (return_value != eExpressionCompleted && log) { 5247 // Print a backtrace into the log so we can figure out where we are: 5248 StreamString s; 5249 s.PutCString("Thread state after unsuccessful completion: \n"); 5250 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5251 log->PutString(s.GetString()); 5252 } 5253 // Restore the thread state if we are going to discard the plan execution. 5254 // There are three cases where this could happen: 1) The execution 5255 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5256 // was true 3) We got some other error, and discard_on_error was true 5257 bool should_unwind = (return_value == eExpressionInterrupted && 5258 options.DoesUnwindOnError()) || 5259 (return_value == eExpressionHitBreakpoint && 5260 options.DoesIgnoreBreakpoints()); 5261 5262 if (return_value == eExpressionCompleted || should_unwind) { 5263 thread_plan_sp->RestoreThreadState(); 5264 } 5265 5266 // Now do some processing on the results of the run: 5267 if (return_value == eExpressionInterrupted || 5268 return_value == eExpressionHitBreakpoint) { 5269 if (log) { 5270 StreamString s; 5271 if (event_sp) 5272 event_sp->Dump(&s); 5273 else { 5274 log->PutCString("Process::RunThreadPlan(): Stop event that " 5275 "interrupted us is NULL."); 5276 } 5277 5278 StreamString ts; 5279 5280 const char *event_explanation = nullptr; 5281 5282 do { 5283 if (!event_sp) { 5284 event_explanation = "<no event>"; 5285 break; 5286 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5287 event_explanation = "<user interrupt>"; 5288 break; 5289 } else { 5290 const Process::ProcessEventData *event_data = 5291 Process::ProcessEventData::GetEventDataFromEvent( 5292 event_sp.get()); 5293 5294 if (!event_data) { 5295 event_explanation = "<no event data>"; 5296 break; 5297 } 5298 5299 Process *process = event_data->GetProcessSP().get(); 5300 5301 if (!process) { 5302 event_explanation = "<no process>"; 5303 break; 5304 } 5305 5306 ThreadList &thread_list = process->GetThreadList(); 5307 5308 uint32_t num_threads = thread_list.GetSize(); 5309 uint32_t thread_index; 5310 5311 ts.Printf("<%u threads> ", num_threads); 5312 5313 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5314 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5315 5316 if (!thread) { 5317 ts.Printf("<?> "); 5318 continue; 5319 } 5320 5321 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5322 RegisterContext *register_context = 5323 thread->GetRegisterContext().get(); 5324 5325 if (register_context) 5326 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5327 else 5328 ts.Printf("[ip unknown] "); 5329 5330 // Show the private stop info here, the public stop info will be 5331 // from the last natural stop. 5332 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5333 if (stop_info_sp) { 5334 const char *stop_desc = stop_info_sp->GetDescription(); 5335 if (stop_desc) 5336 ts.PutCString(stop_desc); 5337 } 5338 ts.Printf(">"); 5339 } 5340 5341 event_explanation = ts.GetData(); 5342 } 5343 } while (false); 5344 5345 if (event_explanation) 5346 LLDB_LOGF(log, 5347 "Process::RunThreadPlan(): execution interrupted: %s %s", 5348 s.GetData(), event_explanation); 5349 else 5350 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5351 s.GetData()); 5352 } 5353 5354 if (should_unwind) { 5355 LLDB_LOGF(log, 5356 "Process::RunThreadPlan: ExecutionInterrupted - " 5357 "discarding thread plans up to %p.", 5358 static_cast<void *>(thread_plan_sp.get())); 5359 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5360 } else { 5361 LLDB_LOGF(log, 5362 "Process::RunThreadPlan: ExecutionInterrupted - for " 5363 "plan: %p not discarding.", 5364 static_cast<void *>(thread_plan_sp.get())); 5365 } 5366 } else if (return_value == eExpressionSetupError) { 5367 if (log) 5368 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5369 5370 if (options.DoesUnwindOnError()) { 5371 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5372 } 5373 } else { 5374 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5375 if (log) 5376 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5377 return_value = eExpressionCompleted; 5378 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5379 if (log) 5380 log->PutCString( 5381 "Process::RunThreadPlan(): thread plan was discarded"); 5382 return_value = eExpressionDiscarded; 5383 } else { 5384 if (log) 5385 log->PutCString( 5386 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5387 if (options.DoesUnwindOnError() && thread_plan_sp) { 5388 if (log) 5389 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5390 "'cause unwind_on_error is set."); 5391 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5392 } 5393 } 5394 } 5395 5396 // Thread we ran the function in may have gone away because we ran the 5397 // target Check that it's still there, and if it is put it back in the 5398 // context. Also restore the frame in the context if it is still present. 5399 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5400 if (thread) { 5401 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5402 } 5403 5404 // Also restore the current process'es selected frame & thread, since this 5405 // function calling may be done behind the user's back. 5406 5407 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5408 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5409 selected_stack_id.IsValid()) { 5410 // We were able to restore the selected thread, now restore the frame: 5411 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5412 StackFrameSP old_frame_sp = 5413 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5414 selected_stack_id); 5415 if (old_frame_sp) 5416 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5417 old_frame_sp.get()); 5418 } 5419 } 5420 } 5421 5422 // If the process exited during the run of the thread plan, notify everyone. 5423 5424 if (event_to_broadcast_sp) { 5425 if (log) 5426 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5427 BroadcastEvent(event_to_broadcast_sp); 5428 } 5429 5430 return return_value; 5431 } 5432 5433 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5434 const char *result_name; 5435 5436 switch (result) { 5437 case eExpressionCompleted: 5438 result_name = "eExpressionCompleted"; 5439 break; 5440 case eExpressionDiscarded: 5441 result_name = "eExpressionDiscarded"; 5442 break; 5443 case eExpressionInterrupted: 5444 result_name = "eExpressionInterrupted"; 5445 break; 5446 case eExpressionHitBreakpoint: 5447 result_name = "eExpressionHitBreakpoint"; 5448 break; 5449 case eExpressionSetupError: 5450 result_name = "eExpressionSetupError"; 5451 break; 5452 case eExpressionParseError: 5453 result_name = "eExpressionParseError"; 5454 break; 5455 case eExpressionResultUnavailable: 5456 result_name = "eExpressionResultUnavailable"; 5457 break; 5458 case eExpressionTimedOut: 5459 result_name = "eExpressionTimedOut"; 5460 break; 5461 case eExpressionStoppedForDebug: 5462 result_name = "eExpressionStoppedForDebug"; 5463 break; 5464 } 5465 return result_name; 5466 } 5467 5468 void Process::GetStatus(Stream &strm) { 5469 const StateType state = GetState(); 5470 if (StateIsStoppedState(state, false)) { 5471 if (state == eStateExited) { 5472 int exit_status = GetExitStatus(); 5473 const char *exit_description = GetExitDescription(); 5474 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5475 GetID(), exit_status, exit_status, 5476 exit_description ? exit_description : ""); 5477 } else { 5478 if (state == eStateConnected) 5479 strm.Printf("Connected to remote target.\n"); 5480 else 5481 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5482 } 5483 } else { 5484 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5485 } 5486 } 5487 5488 size_t Process::GetThreadStatus(Stream &strm, 5489 bool only_threads_with_stop_reason, 5490 uint32_t start_frame, uint32_t num_frames, 5491 uint32_t num_frames_with_source, 5492 bool stop_format) { 5493 size_t num_thread_infos_dumped = 0; 5494 5495 // You can't hold the thread list lock while calling Thread::GetStatus. That 5496 // very well might run code (e.g. if we need it to get return values or 5497 // arguments.) For that to work the process has to be able to acquire it. 5498 // So instead copy the thread ID's, and look them up one by one: 5499 5500 uint32_t num_threads; 5501 std::vector<lldb::tid_t> thread_id_array; 5502 // Scope for thread list locker; 5503 { 5504 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5505 ThreadList &curr_thread_list = GetThreadList(); 5506 num_threads = curr_thread_list.GetSize(); 5507 uint32_t idx; 5508 thread_id_array.resize(num_threads); 5509 for (idx = 0; idx < num_threads; ++idx) 5510 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5511 } 5512 5513 for (uint32_t i = 0; i < num_threads; i++) { 5514 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5515 if (thread_sp) { 5516 if (only_threads_with_stop_reason) { 5517 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5518 if (!stop_info_sp || !stop_info_sp->IsValid()) 5519 continue; 5520 } 5521 thread_sp->GetStatus(strm, start_frame, num_frames, 5522 num_frames_with_source, 5523 stop_format); 5524 ++num_thread_infos_dumped; 5525 } else { 5526 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5527 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5528 " vanished while running Thread::GetStatus."); 5529 } 5530 } 5531 return num_thread_infos_dumped; 5532 } 5533 5534 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5535 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5536 } 5537 5538 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5539 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5540 region.GetByteSize()); 5541 } 5542 5543 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5544 void *baton) { 5545 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5546 } 5547 5548 bool Process::RunPreResumeActions() { 5549 bool result = true; 5550 while (!m_pre_resume_actions.empty()) { 5551 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5552 m_pre_resume_actions.pop_back(); 5553 bool this_result = action.callback(action.baton); 5554 if (result) 5555 result = this_result; 5556 } 5557 return result; 5558 } 5559 5560 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5561 5562 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5563 { 5564 PreResumeCallbackAndBaton element(callback, baton); 5565 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5566 if (found_iter != m_pre_resume_actions.end()) 5567 { 5568 m_pre_resume_actions.erase(found_iter); 5569 } 5570 } 5571 5572 ProcessRunLock &Process::GetRunLock() { 5573 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5574 return m_private_run_lock; 5575 else 5576 return m_public_run_lock; 5577 } 5578 5579 bool Process::CurrentThreadIsPrivateStateThread() 5580 { 5581 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5582 } 5583 5584 5585 void Process::Flush() { 5586 m_thread_list.Flush(); 5587 m_extended_thread_list.Flush(); 5588 m_extended_thread_stop_id = 0; 5589 m_queue_list.Clear(); 5590 m_queue_list_stop_id = 0; 5591 } 5592 5593 void Process::DidExec() { 5594 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5595 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5596 5597 Target &target = GetTarget(); 5598 target.CleanupProcess(); 5599 target.ClearModules(false); 5600 m_dynamic_checkers_up.reset(); 5601 m_abi_sp.reset(); 5602 m_system_runtime_up.reset(); 5603 m_os_up.reset(); 5604 m_dyld_up.reset(); 5605 m_jit_loaders_up.reset(); 5606 m_image_tokens.clear(); 5607 m_allocated_memory_cache.Clear(); 5608 { 5609 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5610 m_language_runtimes.clear(); 5611 } 5612 m_instrumentation_runtimes.clear(); 5613 m_thread_list.DiscardThreadPlans(); 5614 m_memory_cache.Clear(true); 5615 DoDidExec(); 5616 CompleteAttach(); 5617 // Flush the process (threads and all stack frames) after running 5618 // CompleteAttach() in case the dynamic loader loaded things in new 5619 // locations. 5620 Flush(); 5621 5622 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5623 // let the target know so it can do any cleanup it needs to. 5624 target.DidExec(); 5625 } 5626 5627 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5628 if (address == nullptr) { 5629 error.SetErrorString("Invalid address argument"); 5630 return LLDB_INVALID_ADDRESS; 5631 } 5632 5633 addr_t function_addr = LLDB_INVALID_ADDRESS; 5634 5635 addr_t addr = address->GetLoadAddress(&GetTarget()); 5636 std::map<addr_t, addr_t>::const_iterator iter = 5637 m_resolved_indirect_addresses.find(addr); 5638 if (iter != m_resolved_indirect_addresses.end()) { 5639 function_addr = (*iter).second; 5640 } else { 5641 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5642 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5643 error.SetErrorStringWithFormat( 5644 "Unable to call resolver for indirect function %s", 5645 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5646 function_addr = LLDB_INVALID_ADDRESS; 5647 } else { 5648 m_resolved_indirect_addresses.insert( 5649 std::pair<addr_t, addr_t>(addr, function_addr)); 5650 } 5651 } 5652 return function_addr; 5653 } 5654 5655 void Process::ModulesDidLoad(ModuleList &module_list) { 5656 SystemRuntime *sys_runtime = GetSystemRuntime(); 5657 if (sys_runtime) { 5658 sys_runtime->ModulesDidLoad(module_list); 5659 } 5660 5661 GetJITLoaders().ModulesDidLoad(module_list); 5662 5663 // Give runtimes a chance to be created. 5664 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5665 m_instrumentation_runtimes); 5666 5667 // Tell runtimes about new modules. 5668 for (auto pos = m_instrumentation_runtimes.begin(); 5669 pos != m_instrumentation_runtimes.end(); ++pos) { 5670 InstrumentationRuntimeSP runtime = pos->second; 5671 runtime->ModulesDidLoad(module_list); 5672 } 5673 5674 // Let any language runtimes we have already created know about the modules 5675 // that loaded. 5676 5677 // Iterate over a copy of this language runtime list in case the language 5678 // runtime ModulesDidLoad somehow causes the language runtime to be 5679 // unloaded. 5680 { 5681 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5682 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5683 for (const auto &pair : language_runtimes) { 5684 // We must check language_runtime_sp to make sure it is not nullptr as we 5685 // might cache the fact that we didn't have a language runtime for a 5686 // language. 5687 LanguageRuntimeSP language_runtime_sp = pair.second; 5688 if (language_runtime_sp) 5689 language_runtime_sp->ModulesDidLoad(module_list); 5690 } 5691 } 5692 5693 // If we don't have an operating system plug-in, try to load one since 5694 // loading shared libraries might cause a new one to try and load 5695 if (!m_os_up) 5696 LoadOperatingSystemPlugin(false); 5697 5698 // Give structured-data plugins a chance to see the modified modules. 5699 for (auto pair : m_structured_data_plugin_map) { 5700 if (pair.second) 5701 pair.second->ModulesDidLoad(*this, module_list); 5702 } 5703 } 5704 5705 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5706 const char *fmt, ...) { 5707 bool print_warning = true; 5708 5709 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5710 if (!stream_sp) 5711 return; 5712 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5713 return; 5714 } 5715 5716 if (repeat_key != nullptr) { 5717 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5718 if (it == m_warnings_issued.end()) { 5719 m_warnings_issued[warning_type] = WarningsPointerSet(); 5720 m_warnings_issued[warning_type].insert(repeat_key); 5721 } else { 5722 if (it->second.find(repeat_key) != it->second.end()) { 5723 print_warning = false; 5724 } else { 5725 it->second.insert(repeat_key); 5726 } 5727 } 5728 } 5729 5730 if (print_warning) { 5731 va_list args; 5732 va_start(args, fmt); 5733 stream_sp->PrintfVarArg(fmt, args); 5734 va_end(args); 5735 } 5736 } 5737 5738 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5739 if (GetWarningsOptimization() && sc.module_sp && 5740 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5741 sc.function->GetIsOptimized()) { 5742 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5743 "%s was compiled with optimization - stepping may behave " 5744 "oddly; variables may not be available.\n", 5745 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5746 } 5747 } 5748 5749 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5750 info.Clear(); 5751 5752 PlatformSP platform_sp = GetTarget().GetPlatform(); 5753 if (!platform_sp) 5754 return false; 5755 5756 return platform_sp->GetProcessInfo(GetID(), info); 5757 } 5758 5759 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5760 ThreadCollectionSP threads; 5761 5762 const MemoryHistorySP &memory_history = 5763 MemoryHistory::FindPlugin(shared_from_this()); 5764 5765 if (!memory_history) { 5766 return threads; 5767 } 5768 5769 threads = std::make_shared<ThreadCollection>( 5770 memory_history->GetHistoryThreads(addr)); 5771 5772 return threads; 5773 } 5774 5775 InstrumentationRuntimeSP 5776 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5777 InstrumentationRuntimeCollection::iterator pos; 5778 pos = m_instrumentation_runtimes.find(type); 5779 if (pos == m_instrumentation_runtimes.end()) { 5780 return InstrumentationRuntimeSP(); 5781 } else 5782 return (*pos).second; 5783 } 5784 5785 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5786 const ArchSpec &arch, ModuleSpec &module_spec) { 5787 module_spec.Clear(); 5788 return false; 5789 } 5790 5791 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5792 m_image_tokens.push_back(image_ptr); 5793 return m_image_tokens.size() - 1; 5794 } 5795 5796 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5797 if (token < m_image_tokens.size()) 5798 return m_image_tokens[token]; 5799 return LLDB_INVALID_ADDRESS; 5800 } 5801 5802 void Process::ResetImageToken(size_t token) { 5803 if (token < m_image_tokens.size()) 5804 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5805 } 5806 5807 Address 5808 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5809 AddressRange range_bounds) { 5810 Target &target = GetTarget(); 5811 DisassemblerSP disassembler_sp; 5812 InstructionList *insn_list = nullptr; 5813 5814 Address retval = default_stop_addr; 5815 5816 if (!target.GetUseFastStepping()) 5817 return retval; 5818 if (!default_stop_addr.IsValid()) 5819 return retval; 5820 5821 const char *plugin_name = nullptr; 5822 const char *flavor = nullptr; 5823 const bool prefer_file_cache = true; 5824 disassembler_sp = Disassembler::DisassembleRange( 5825 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds, 5826 prefer_file_cache); 5827 if (disassembler_sp) 5828 insn_list = &disassembler_sp->GetInstructionList(); 5829 5830 if (insn_list == nullptr) { 5831 return retval; 5832 } 5833 5834 size_t insn_offset = 5835 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5836 if (insn_offset == UINT32_MAX) { 5837 return retval; 5838 } 5839 5840 uint32_t branch_index = 5841 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target, 5842 false /* ignore_calls*/, 5843 nullptr); 5844 if (branch_index == UINT32_MAX) { 5845 return retval; 5846 } 5847 5848 if (branch_index > insn_offset) { 5849 Address next_branch_insn_address = 5850 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5851 if (next_branch_insn_address.IsValid() && 5852 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5853 retval = next_branch_insn_address; 5854 } 5855 } 5856 5857 return retval; 5858 } 5859 5860 Status 5861 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5862 5863 Status error; 5864 5865 lldb::addr_t range_end = 0; 5866 5867 region_list.clear(); 5868 do { 5869 lldb_private::MemoryRegionInfo region_info; 5870 error = GetMemoryRegionInfo(range_end, region_info); 5871 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5872 if (error.Fail()) { 5873 region_list.clear(); 5874 break; 5875 } 5876 5877 range_end = region_info.GetRange().GetRangeEnd(); 5878 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5879 region_list.push_back(std::move(region_info)); 5880 } 5881 } while (range_end != LLDB_INVALID_ADDRESS); 5882 5883 return error; 5884 } 5885 5886 Status 5887 Process::ConfigureStructuredData(ConstString type_name, 5888 const StructuredData::ObjectSP &config_sp) { 5889 // If you get this, the Process-derived class needs to implement a method to 5890 // enable an already-reported asynchronous structured data feature. See 5891 // ProcessGDBRemote for an example implementation over gdb-remote. 5892 return Status("unimplemented"); 5893 } 5894 5895 void Process::MapSupportedStructuredDataPlugins( 5896 const StructuredData::Array &supported_type_names) { 5897 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5898 5899 // Bail out early if there are no type names to map. 5900 if (supported_type_names.GetSize() == 0) { 5901 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5902 __FUNCTION__); 5903 return; 5904 } 5905 5906 // Convert StructuredData type names to ConstString instances. 5907 std::set<ConstString> const_type_names; 5908 5909 LLDB_LOGF(log, 5910 "Process::%s(): the process supports the following async " 5911 "structured data types:", 5912 __FUNCTION__); 5913 5914 supported_type_names.ForEach( 5915 [&const_type_names, &log](StructuredData::Object *object) { 5916 if (!object) { 5917 // Invalid - shouldn't be null objects in the array. 5918 return false; 5919 } 5920 5921 auto type_name = object->GetAsString(); 5922 if (!type_name) { 5923 // Invalid format - all type names should be strings. 5924 return false; 5925 } 5926 5927 const_type_names.insert(ConstString(type_name->GetValue())); 5928 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5929 return true; 5930 }); 5931 5932 // For each StructuredDataPlugin, if the plugin handles any of the types in 5933 // the supported_type_names, map that type name to that plugin. Stop when 5934 // we've consumed all the type names. 5935 // FIXME: should we return an error if there are type names nobody 5936 // supports? 5937 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5938 auto create_instance = 5939 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5940 plugin_index); 5941 if (!create_instance) 5942 break; 5943 5944 // Create the plugin. 5945 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5946 if (!plugin_sp) { 5947 // This plugin doesn't think it can work with the process. Move on to the 5948 // next. 5949 continue; 5950 } 5951 5952 // For any of the remaining type names, map any that this plugin supports. 5953 std::vector<ConstString> names_to_remove; 5954 for (auto &type_name : const_type_names) { 5955 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5956 m_structured_data_plugin_map.insert( 5957 std::make_pair(type_name, plugin_sp)); 5958 names_to_remove.push_back(type_name); 5959 LLDB_LOGF(log, 5960 "Process::%s(): using plugin %s for type name " 5961 "%s", 5962 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5963 type_name.GetCString()); 5964 } 5965 } 5966 5967 // Remove the type names that were consumed by this plugin. 5968 for (auto &type_name : names_to_remove) 5969 const_type_names.erase(type_name); 5970 } 5971 } 5972 5973 bool Process::RouteAsyncStructuredData( 5974 const StructuredData::ObjectSP object_sp) { 5975 // Nothing to do if there's no data. 5976 if (!object_sp) 5977 return false; 5978 5979 // The contract is this must be a dictionary, so we can look up the routing 5980 // key via the top-level 'type' string value within the dictionary. 5981 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5982 if (!dictionary) 5983 return false; 5984 5985 // Grab the async structured type name (i.e. the feature/plugin name). 5986 ConstString type_name; 5987 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5988 return false; 5989 5990 // Check if there's a plugin registered for this type name. 5991 auto find_it = m_structured_data_plugin_map.find(type_name); 5992 if (find_it == m_structured_data_plugin_map.end()) { 5993 // We don't have a mapping for this structured data type. 5994 return false; 5995 } 5996 5997 // Route the structured data to the plugin. 5998 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5999 return true; 6000 } 6001 6002 Status Process::UpdateAutomaticSignalFiltering() { 6003 // Default implementation does nothign. 6004 // No automatic signal filtering to speak of. 6005 return Status(); 6006 } 6007 6008 UtilityFunction *Process::GetLoadImageUtilityFunction( 6009 Platform *platform, 6010 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6011 if (platform != GetTarget().GetPlatform().get()) 6012 return nullptr; 6013 llvm::call_once(m_dlopen_utility_func_flag_once, 6014 [&] { m_dlopen_utility_func_up = factory(); }); 6015 return m_dlopen_utility_func_up.get(); 6016 } 6017 6018 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6019 addr_t &returned_func, 6020 bool trap_exceptions) { 6021 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6022 if (thread == nullptr || address == nullptr) 6023 return false; 6024 6025 EvaluateExpressionOptions options; 6026 options.SetStopOthers(true); 6027 options.SetUnwindOnError(true); 6028 options.SetIgnoreBreakpoints(true); 6029 options.SetTryAllThreads(true); 6030 options.SetDebug(false); 6031 options.SetTimeout(GetUtilityExpressionTimeout()); 6032 options.SetTrapExceptions(trap_exceptions); 6033 6034 auto type_system_or_err = 6035 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6036 if (!type_system_or_err) { 6037 llvm::consumeError(type_system_or_err.takeError()); 6038 return false; 6039 } 6040 CompilerType void_ptr_type = 6041 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6042 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6043 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6044 if (call_plan_sp) { 6045 DiagnosticManager diagnostics; 6046 6047 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6048 if (frame) { 6049 ExecutionContext exe_ctx; 6050 frame->CalculateExecutionContext(exe_ctx); 6051 ExpressionResults result = 6052 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6053 if (result == eExpressionCompleted) { 6054 returned_func = 6055 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6056 LLDB_INVALID_ADDRESS); 6057 6058 if (GetAddressByteSize() == 4) { 6059 if (returned_func == UINT32_MAX) 6060 return false; 6061 } else if (GetAddressByteSize() == 8) { 6062 if (returned_func == UINT64_MAX) 6063 return false; 6064 } 6065 return true; 6066 } 6067 } 6068 } 6069 6070 return false; 6071 } 6072