1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
17 #include "lldb/Breakpoint/BreakpointLocation.h"
18 #include "lldb/Breakpoint/StoppointCallbackContext.h"
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Expression/DiagnosticManager.h"
25 #include "lldb/Expression/DynamicCheckerFunctions.h"
26 #include "lldb/Expression/UserExpression.h"
27 #include "lldb/Expression/UtilityFunction.h"
28 #include "lldb/Host/ConnectionFileDescriptor.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Interpreter/CommandInterpreter.h"
37 #include "lldb/Interpreter/OptionArgParser.h"
38 #include "lldb/Interpreter/OptionValueProperties.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
42 #include "lldb/Target/AssertFrameRecognizer.h"
43 #include "lldb/Target/DynamicLoader.h"
44 #include "lldb/Target/InstrumentationRuntime.h"
45 #include "lldb/Target/JITLoader.h"
46 #include "lldb/Target/JITLoaderList.h"
47 #include "lldb/Target/Language.h"
48 #include "lldb/Target/LanguageRuntime.h"
49 #include "lldb/Target/MemoryHistory.h"
50 #include "lldb/Target/MemoryRegionInfo.h"
51 #include "lldb/Target/OperatingSystem.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
54 #include "lldb/Target/RegisterContext.h"
55 #include "lldb/Target/StopInfo.h"
56 #include "lldb/Target/StructuredDataPlugin.h"
57 #include "lldb/Target/SystemRuntime.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
62 #include "lldb/Target/ThreadPlanBase.h"
63 #include "lldb/Target/ThreadPlanCallFunction.h"
64 #include "lldb/Target/ThreadPlanStack.h"
65 #include "lldb/Target/UnixSignals.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/Log.h"
68 #include "lldb/Utility/NameMatches.h"
69 #include "lldb/Utility/ProcessInfo.h"
70 #include "lldb/Utility/SelectHelper.h"
71 #include "lldb/Utility/State.h"
72 #include "lldb/Utility/Timer.h"
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace std::chrono;
77 
78 // Comment out line below to disable memory caching, overriding the process
79 // setting target.process.disable-memory-cache
80 #define ENABLE_MEMORY_CACHING
81 
82 #ifdef ENABLE_MEMORY_CACHING
83 #define DISABLE_MEM_CACHE_DEFAULT false
84 #else
85 #define DISABLE_MEM_CACHE_DEFAULT true
86 #endif
87 
88 class ProcessOptionValueProperties
89     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
90 public:
91   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
92 
93   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
94                                      bool will_modify,
95                                      uint32_t idx) const override {
96     // When getting the value for a key from the process options, we will
97     // always try and grab the setting from the current process if there is
98     // one. Else we just use the one from this instance.
99     if (exe_ctx) {
100       Process *process = exe_ctx->GetProcessPtr();
101       if (process) {
102         ProcessOptionValueProperties *instance_properties =
103             static_cast<ProcessOptionValueProperties *>(
104                 process->GetValueProperties().get());
105         if (this != instance_properties)
106           return instance_properties->ProtectedGetPropertyAtIndex(idx);
107       }
108     }
109     return ProtectedGetPropertyAtIndex(idx);
110   }
111 };
112 
113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
114     {
115         eFollowParent,
116         "parent",
117         "Continue tracing the parent process and detach the child.",
118     },
119     {
120         eFollowChild,
121         "child",
122         "Trace the child process and detach the parent.",
123     },
124 };
125 
126 #define LLDB_PROPERTIES_process
127 #include "TargetProperties.inc"
128 
129 enum {
130 #define LLDB_PROPERTIES_process
131 #include "TargetPropertiesEnum.inc"
132   ePropertyExperimental,
133 };
134 
135 #define LLDB_PROPERTIES_process_experimental
136 #include "TargetProperties.inc"
137 
138 enum {
139 #define LLDB_PROPERTIES_process_experimental
140 #include "TargetPropertiesEnum.inc"
141 };
142 
143 class ProcessExperimentalOptionValueProperties
144     : public Cloneable<ProcessExperimentalOptionValueProperties,
145                        OptionValueProperties> {
146 public:
147   ProcessExperimentalOptionValueProperties()
148       : Cloneable(
149             ConstString(Properties::GetExperimentalSettingsName())) {}
150 };
151 
152 ProcessExperimentalProperties::ProcessExperimentalProperties()
153     : Properties(OptionValuePropertiesSP(
154           new ProcessExperimentalOptionValueProperties())) {
155   m_collection_sp->Initialize(g_process_experimental_properties);
156 }
157 
158 ProcessProperties::ProcessProperties(lldb_private::Process *process)
159     : Properties(),
160       m_process(process) // Can be nullptr for global ProcessProperties
161 {
162   if (process == nullptr) {
163     // Global process properties, set them up one time
164     m_collection_sp =
165         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
166     m_collection_sp->Initialize(g_process_properties);
167     m_collection_sp->AppendProperty(
168         ConstString("thread"), ConstString("Settings specific to threads."),
169         true, Thread::GetGlobalProperties().GetValueProperties());
170   } else {
171     m_collection_sp =
172         OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
173     m_collection_sp->SetValueChangedCallback(
174         ePropertyPythonOSPluginPath,
175         [this] { m_process->LoadOperatingSystemPlugin(true); });
176   }
177 
178   m_experimental_properties_up =
179       std::make_unique<ProcessExperimentalProperties>();
180   m_collection_sp->AppendProperty(
181       ConstString(Properties::GetExperimentalSettingsName()),
182       ConstString("Experimental settings - setting these won't produce "
183                   "errors if the setting is not present."),
184       true, m_experimental_properties_up->GetValueProperties());
185 }
186 
187 ProcessProperties::~ProcessProperties() = default;
188 
189 bool ProcessProperties::GetDisableMemoryCache() const {
190   const uint32_t idx = ePropertyDisableMemCache;
191   return m_collection_sp->GetPropertyAtIndexAsBoolean(
192       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
193 }
194 
195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
196   const uint32_t idx = ePropertyMemCacheLineSize;
197   return m_collection_sp->GetPropertyAtIndexAsUInt64(
198       nullptr, idx, g_process_properties[idx].default_uint_value);
199 }
200 
201 Args ProcessProperties::GetExtraStartupCommands() const {
202   Args args;
203   const uint32_t idx = ePropertyExtraStartCommand;
204   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
205   return args;
206 }
207 
208 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
209   const uint32_t idx = ePropertyExtraStartCommand;
210   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
211 }
212 
213 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
214   const uint32_t idx = ePropertyPythonOSPluginPath;
215   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
216 }
217 
218 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
219   const uint32_t idx = ePropertyVirtualAddressableBits;
220   return m_collection_sp->GetPropertyAtIndexAsUInt64(
221       nullptr, idx, g_process_properties[idx].default_uint_value);
222 }
223 
224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
225   const uint32_t idx = ePropertyVirtualAddressableBits;
226   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
227 }
228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
229   const uint32_t idx = ePropertyPythonOSPluginPath;
230   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
231 }
232 
233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
234   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
235   return m_collection_sp->GetPropertyAtIndexAsBoolean(
236       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
237 }
238 
239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
240   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
241   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
242 }
243 
244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
245   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
246   return m_collection_sp->GetPropertyAtIndexAsBoolean(
247       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
248 }
249 
250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
251   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
252   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
253 }
254 
255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
256   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
257   return m_collection_sp->GetPropertyAtIndexAsBoolean(
258       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
259 }
260 
261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
262   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
263   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
264 }
265 
266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
267   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
268   return m_collection_sp->GetPropertyAtIndexAsBoolean(
269       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
270 }
271 
272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
273   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
274   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
275   m_process->Flush();
276 }
277 
278 bool ProcessProperties::GetDetachKeepsStopped() const {
279   const uint32_t idx = ePropertyDetachKeepsStopped;
280   return m_collection_sp->GetPropertyAtIndexAsBoolean(
281       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
282 }
283 
284 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
285   const uint32_t idx = ePropertyDetachKeepsStopped;
286   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
287 }
288 
289 bool ProcessProperties::GetWarningsOptimization() const {
290   const uint32_t idx = ePropertyWarningOptimization;
291   return m_collection_sp->GetPropertyAtIndexAsBoolean(
292       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
293 }
294 
295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
296   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
297   return m_collection_sp->GetPropertyAtIndexAsBoolean(
298       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
299 }
300 
301 bool ProcessProperties::GetStopOnExec() const {
302   const uint32_t idx = ePropertyStopOnExec;
303   return m_collection_sp->GetPropertyAtIndexAsBoolean(
304       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
305 }
306 
307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
308   const uint32_t idx = ePropertyUtilityExpressionTimeout;
309   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
310       nullptr, idx, g_process_properties[idx].default_uint_value);
311   return std::chrono::seconds(value);
312 }
313 
314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
315   const uint32_t idx = ePropertyInterruptTimeout;
316   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
317       nullptr, idx, g_process_properties[idx].default_uint_value);
318   return std::chrono::seconds(value);
319 }
320 
321 bool ProcessProperties::GetSteppingRunsAllThreads() const {
322   const uint32_t idx = ePropertySteppingRunsAllThreads;
323   return m_collection_sp->GetPropertyAtIndexAsBoolean(
324       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
325 }
326 
327 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
328   const bool fail_value = true;
329   const Property *exp_property =
330       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
331   OptionValueProperties *exp_values =
332       exp_property->GetValue()->GetAsProperties();
333   if (!exp_values)
334     return fail_value;
335 
336   return exp_values->GetPropertyAtIndexAsBoolean(
337       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
338 }
339 
340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
341   const Property *exp_property =
342       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
343   OptionValueProperties *exp_values =
344       exp_property->GetValue()->GetAsProperties();
345   if (exp_values)
346     exp_values->SetPropertyAtIndexAsBoolean(
347         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
348 }
349 
350 FollowForkMode ProcessProperties::GetFollowForkMode() const {
351   const uint32_t idx = ePropertyFollowForkMode;
352   return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration(
353       nullptr, idx, g_process_properties[idx].default_uint_value);
354 }
355 
356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
357                               llvm::StringRef plugin_name,
358                               ListenerSP listener_sp,
359                               const FileSpec *crash_file_path,
360                               bool can_connect) {
361   static uint32_t g_process_unique_id = 0;
362 
363   ProcessSP process_sp;
364   ProcessCreateInstance create_callback = nullptr;
365   if (!plugin_name.empty()) {
366     create_callback =
367         PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
368     if (create_callback) {
369       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
370                                    can_connect);
371       if (process_sp) {
372         if (process_sp->CanDebug(target_sp, true)) {
373           process_sp->m_process_unique_id = ++g_process_unique_id;
374         } else
375           process_sp.reset();
376       }
377     }
378   } else {
379     for (uint32_t idx = 0;
380          (create_callback =
381               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
382          ++idx) {
383       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
384                                    can_connect);
385       if (process_sp) {
386         if (process_sp->CanDebug(target_sp, false)) {
387           process_sp->m_process_unique_id = ++g_process_unique_id;
388           break;
389         } else
390           process_sp.reset();
391       }
392     }
393   }
394   return process_sp;
395 }
396 
397 ConstString &Process::GetStaticBroadcasterClass() {
398   static ConstString class_name("lldb.process");
399   return class_name;
400 }
401 
402 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
403     : Process(target_sp, listener_sp,
404               UnixSignals::Create(HostInfo::GetArchitecture())) {
405   // This constructor just delegates to the full Process constructor,
406   // defaulting to using the Host's UnixSignals.
407 }
408 
409 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
410                  const UnixSignalsSP &unix_signals_sp)
411     : ProcessProperties(this),
412       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
413                   Process::GetStaticBroadcasterClass().AsCString()),
414       m_target_wp(target_sp), m_public_state(eStateUnloaded),
415       m_private_state(eStateUnloaded),
416       m_private_state_broadcaster(nullptr,
417                                   "lldb.process.internal_state_broadcaster"),
418       m_private_state_control_broadcaster(
419           nullptr, "lldb.process.internal_state_control_broadcaster"),
420       m_private_state_listener_sp(
421           Listener::MakeListener("lldb.process.internal_state_listener")),
422       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
423       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
424       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
425       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
426       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
427       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
428       m_breakpoint_site_list(), m_dynamic_checkers_up(),
429       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
430       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
431       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
432       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
433       m_memory_cache(*this), m_allocated_memory_cache(*this),
434       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
435       m_private_run_lock(), m_finalizing(false),
436       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
437       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
438       m_can_interpret_function_calls(false), m_warnings_issued(),
439       m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
440   CheckInWithManager();
441 
442   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
443   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
444 
445   if (!m_unix_signals_sp)
446     m_unix_signals_sp = std::make_shared<UnixSignals>();
447 
448   SetEventName(eBroadcastBitStateChanged, "state-changed");
449   SetEventName(eBroadcastBitInterrupt, "interrupt");
450   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
451   SetEventName(eBroadcastBitSTDERR, "stderr-available");
452   SetEventName(eBroadcastBitProfileData, "profile-data-available");
453   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
454 
455   m_private_state_control_broadcaster.SetEventName(
456       eBroadcastInternalStateControlStop, "control-stop");
457   m_private_state_control_broadcaster.SetEventName(
458       eBroadcastInternalStateControlPause, "control-pause");
459   m_private_state_control_broadcaster.SetEventName(
460       eBroadcastInternalStateControlResume, "control-resume");
461 
462   m_listener_sp->StartListeningForEvents(
463       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
464                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
465                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
466 
467   m_private_state_listener_sp->StartListeningForEvents(
468       &m_private_state_broadcaster,
469       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
470 
471   m_private_state_listener_sp->StartListeningForEvents(
472       &m_private_state_control_broadcaster,
473       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
474           eBroadcastInternalStateControlResume);
475   // We need something valid here, even if just the default UnixSignalsSP.
476   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
477 
478   // Allow the platform to override the default cache line size
479   OptionValueSP value_sp =
480       m_collection_sp
481           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
482           ->GetValue();
483   uint32_t platform_cache_line_size =
484       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
485   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
486     value_sp->SetUInt64Value(platform_cache_line_size);
487 
488   RegisterAssertFrameRecognizer(this);
489 }
490 
491 Process::~Process() {
492   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
493   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
494   StopPrivateStateThread();
495 
496   // ThreadList::Clear() will try to acquire this process's mutex, so
497   // explicitly clear the thread list here to ensure that the mutex is not
498   // destroyed before the thread list.
499   m_thread_list.Clear();
500 }
501 
502 ProcessProperties &Process::GetGlobalProperties() {
503   // NOTE: intentional leak so we don't crash if global destructor chain gets
504   // called as other threads still use the result of this function
505   static ProcessProperties *g_settings_ptr =
506       new ProcessProperties(nullptr);
507   return *g_settings_ptr;
508 }
509 
510 void Process::Finalize() {
511   if (m_finalizing.exchange(true))
512     return;
513 
514   // Destroy the process. This will call the virtual function DoDestroy under
515   // the hood, giving our derived class a chance to do the ncessary tear down.
516   DestroyImpl(false);
517 
518   // Clear our broadcaster before we proceed with destroying
519   Broadcaster::Clear();
520 
521   // Do any cleanup needed prior to being destructed... Subclasses that
522   // override this method should call this superclass method as well.
523 
524   // We need to destroy the loader before the derived Process class gets
525   // destroyed since it is very likely that undoing the loader will require
526   // access to the real process.
527   m_dynamic_checkers_up.reset();
528   m_abi_sp.reset();
529   m_os_up.reset();
530   m_system_runtime_up.reset();
531   m_dyld_up.reset();
532   m_jit_loaders_up.reset();
533   m_thread_plans.Clear();
534   m_thread_list_real.Destroy();
535   m_thread_list.Destroy();
536   m_extended_thread_list.Destroy();
537   m_queue_list.Clear();
538   m_queue_list_stop_id = 0;
539   std::vector<Notifications> empty_notifications;
540   m_notifications.swap(empty_notifications);
541   m_image_tokens.clear();
542   m_memory_cache.Clear();
543   m_allocated_memory_cache.Clear();
544   {
545     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
546     m_language_runtimes.clear();
547   }
548   m_instrumentation_runtimes.clear();
549   m_next_event_action_up.reset();
550   // Clear the last natural stop ID since it has a strong reference to this
551   // process
552   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
553   //#ifdef LLDB_CONFIGURATION_DEBUG
554   //    StreamFile s(stdout, false);
555   //    EventSP event_sp;
556   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
557   //    {
558   //        event_sp->Dump (&s);
559   //        s.EOL();
560   //    }
561   //#endif
562   // We have to be very careful here as the m_private_state_listener might
563   // contain events that have ProcessSP values in them which can keep this
564   // process around forever. These events need to be cleared out.
565   m_private_state_listener_sp->Clear();
566   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
567   m_public_run_lock.SetStopped();
568   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
569   m_private_run_lock.SetStopped();
570   m_structured_data_plugin_map.clear();
571 }
572 
573 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
574   m_notifications.push_back(callbacks);
575   if (callbacks.initialize != nullptr)
576     callbacks.initialize(callbacks.baton, this);
577 }
578 
579 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
580   std::vector<Notifications>::iterator pos, end = m_notifications.end();
581   for (pos = m_notifications.begin(); pos != end; ++pos) {
582     if (pos->baton == callbacks.baton &&
583         pos->initialize == callbacks.initialize &&
584         pos->process_state_changed == callbacks.process_state_changed) {
585       m_notifications.erase(pos);
586       return true;
587     }
588   }
589   return false;
590 }
591 
592 void Process::SynchronouslyNotifyStateChanged(StateType state) {
593   std::vector<Notifications>::iterator notification_pos,
594       notification_end = m_notifications.end();
595   for (notification_pos = m_notifications.begin();
596        notification_pos != notification_end; ++notification_pos) {
597     if (notification_pos->process_state_changed)
598       notification_pos->process_state_changed(notification_pos->baton, this,
599                                               state);
600   }
601 }
602 
603 // FIXME: We need to do some work on events before the general Listener sees
604 // them.
605 // For instance if we are continuing from a breakpoint, we need to ensure that
606 // we do the little "insert real insn, step & stop" trick.  But we can't do
607 // that when the event is delivered by the broadcaster - since that is done on
608 // the thread that is waiting for new events, so if we needed more than one
609 // event for our handling, we would stall.  So instead we do it when we fetch
610 // the event off of the queue.
611 //
612 
613 StateType Process::GetNextEvent(EventSP &event_sp) {
614   StateType state = eStateInvalid;
615 
616   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
617                                             std::chrono::seconds(0)) &&
618       event_sp)
619     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
620 
621   return state;
622 }
623 
624 void Process::SyncIOHandler(uint32_t iohandler_id,
625                             const Timeout<std::micro> &timeout) {
626   // don't sync (potentially context switch) in case where there is no process
627   // IO
628   if (!m_process_input_reader)
629     return;
630 
631   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
632 
633   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
634   if (Result) {
635     LLDB_LOG(
636         log,
637         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
638         iohandler_id, *Result);
639   } else {
640     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
641              iohandler_id);
642   }
643 }
644 
645 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
646                                         EventSP *event_sp_ptr, bool wait_always,
647                                         ListenerSP hijack_listener_sp,
648                                         Stream *stream, bool use_run_lock) {
649   // We can't just wait for a "stopped" event, because the stopped event may
650   // have restarted the target. We have to actually check each event, and in
651   // the case of a stopped event check the restarted flag on the event.
652   if (event_sp_ptr)
653     event_sp_ptr->reset();
654   StateType state = GetState();
655   // If we are exited or detached, we won't ever get back to any other valid
656   // state...
657   if (state == eStateDetached || state == eStateExited)
658     return state;
659 
660   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
661   LLDB_LOG(log, "timeout = {0}", timeout);
662 
663   if (!wait_always && StateIsStoppedState(state, true) &&
664       StateIsStoppedState(GetPrivateState(), true)) {
665     LLDB_LOGF(log,
666               "Process::%s returning without waiting for events; process "
667               "private and public states are already 'stopped'.",
668               __FUNCTION__);
669     // We need to toggle the run lock as this won't get done in
670     // SetPublicState() if the process is hijacked.
671     if (hijack_listener_sp && use_run_lock)
672       m_public_run_lock.SetStopped();
673     return state;
674   }
675 
676   while (state != eStateInvalid) {
677     EventSP event_sp;
678     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
679     if (event_sp_ptr && event_sp)
680       *event_sp_ptr = event_sp;
681 
682     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
683     Process::HandleProcessStateChangedEvent(event_sp, stream,
684                                             pop_process_io_handler);
685 
686     switch (state) {
687     case eStateCrashed:
688     case eStateDetached:
689     case eStateExited:
690     case eStateUnloaded:
691       // We need to toggle the run lock as this won't get done in
692       // SetPublicState() if the process is hijacked.
693       if (hijack_listener_sp && use_run_lock)
694         m_public_run_lock.SetStopped();
695       return state;
696     case eStateStopped:
697       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
698         continue;
699       else {
700         // We need to toggle the run lock as this won't get done in
701         // SetPublicState() if the process is hijacked.
702         if (hijack_listener_sp && use_run_lock)
703           m_public_run_lock.SetStopped();
704         return state;
705       }
706     default:
707       continue;
708     }
709   }
710   return state;
711 }
712 
713 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
714                                              Stream *stream,
715                                              bool &pop_process_io_handler) {
716   const bool handle_pop = pop_process_io_handler;
717 
718   pop_process_io_handler = false;
719   ProcessSP process_sp =
720       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
721 
722   if (!process_sp)
723     return false;
724 
725   StateType event_state =
726       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
727   if (event_state == eStateInvalid)
728     return false;
729 
730   switch (event_state) {
731   case eStateInvalid:
732   case eStateUnloaded:
733   case eStateAttaching:
734   case eStateLaunching:
735   case eStateStepping:
736   case eStateDetached:
737     if (stream)
738       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
739                      StateAsCString(event_state));
740     if (event_state == eStateDetached)
741       pop_process_io_handler = true;
742     break;
743 
744   case eStateConnected:
745   case eStateRunning:
746     // Don't be chatty when we run...
747     break;
748 
749   case eStateExited:
750     if (stream)
751       process_sp->GetStatus(*stream);
752     pop_process_io_handler = true;
753     break;
754 
755   case eStateStopped:
756   case eStateCrashed:
757   case eStateSuspended:
758     // Make sure the program hasn't been auto-restarted:
759     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
760       if (stream) {
761         size_t num_reasons =
762             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
763         if (num_reasons > 0) {
764           // FIXME: Do we want to report this, or would that just be annoyingly
765           // chatty?
766           if (num_reasons == 1) {
767             const char *reason =
768                 Process::ProcessEventData::GetRestartedReasonAtIndex(
769                     event_sp.get(), 0);
770             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
771                            process_sp->GetID(),
772                            reason ? reason : "<UNKNOWN REASON>");
773           } else {
774             stream->Printf("Process %" PRIu64
775                            " stopped and restarted, reasons:\n",
776                            process_sp->GetID());
777 
778             for (size_t i = 0; i < num_reasons; i++) {
779               const char *reason =
780                   Process::ProcessEventData::GetRestartedReasonAtIndex(
781                       event_sp.get(), i);
782               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
783             }
784           }
785         }
786       }
787     } else {
788       StopInfoSP curr_thread_stop_info_sp;
789       // Lock the thread list so it doesn't change on us, this is the scope for
790       // the locker:
791       {
792         ThreadList &thread_list = process_sp->GetThreadList();
793         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
794 
795         ThreadSP curr_thread(thread_list.GetSelectedThread());
796         ThreadSP thread;
797         StopReason curr_thread_stop_reason = eStopReasonInvalid;
798         bool prefer_curr_thread = false;
799         if (curr_thread && curr_thread->IsValid()) {
800           curr_thread_stop_reason = curr_thread->GetStopReason();
801           switch (curr_thread_stop_reason) {
802           case eStopReasonNone:
803           case eStopReasonInvalid:
804             // Don't prefer the current thread if it didn't stop for a reason.
805             break;
806           case eStopReasonSignal: {
807             // We need to do the same computation we do for other threads
808             // below in case the current thread happens to be the one that
809             // stopped for the no-stop signal.
810             uint64_t signo = curr_thread->GetStopInfo()->GetValue();
811             if (process_sp->GetUnixSignals()->GetShouldStop(signo))
812               prefer_curr_thread = true;
813           } break;
814           default:
815             prefer_curr_thread = true;
816             break;
817           }
818           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
819         }
820 
821         if (!prefer_curr_thread) {
822           // Prefer a thread that has just completed its plan over another
823           // thread as current thread.
824           ThreadSP plan_thread;
825           ThreadSP other_thread;
826 
827           const size_t num_threads = thread_list.GetSize();
828           size_t i;
829           for (i = 0; i < num_threads; ++i) {
830             thread = thread_list.GetThreadAtIndex(i);
831             StopReason thread_stop_reason = thread->GetStopReason();
832             switch (thread_stop_reason) {
833             case eStopReasonInvalid:
834             case eStopReasonNone:
835               break;
836 
837             case eStopReasonSignal: {
838               // Don't select a signal thread if we weren't going to stop at
839               // that signal.  We have to have had another reason for stopping
840               // here, and the user doesn't want to see this thread.
841               uint64_t signo = thread->GetStopInfo()->GetValue();
842               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
843                 if (!other_thread)
844                   other_thread = thread;
845               }
846               break;
847             }
848             case eStopReasonTrace:
849             case eStopReasonBreakpoint:
850             case eStopReasonWatchpoint:
851             case eStopReasonException:
852             case eStopReasonExec:
853             case eStopReasonFork:
854             case eStopReasonVFork:
855             case eStopReasonVForkDone:
856             case eStopReasonThreadExiting:
857             case eStopReasonInstrumentation:
858             case eStopReasonProcessorTrace:
859               if (!other_thread)
860                 other_thread = thread;
861               break;
862             case eStopReasonPlanComplete:
863               if (!plan_thread)
864                 plan_thread = thread;
865               break;
866             }
867           }
868           if (plan_thread)
869             thread_list.SetSelectedThreadByID(plan_thread->GetID());
870           else if (other_thread)
871             thread_list.SetSelectedThreadByID(other_thread->GetID());
872           else {
873             if (curr_thread && curr_thread->IsValid())
874               thread = curr_thread;
875             else
876               thread = thread_list.GetThreadAtIndex(0);
877 
878             if (thread)
879               thread_list.SetSelectedThreadByID(thread->GetID());
880           }
881         }
882       }
883       // Drop the ThreadList mutex by here, since GetThreadStatus below might
884       // have to run code, e.g. for Data formatters, and if we hold the
885       // ThreadList mutex, then the process is going to have a hard time
886       // restarting the process.
887       if (stream) {
888         Debugger &debugger = process_sp->GetTarget().GetDebugger();
889         if (debugger.GetTargetList().GetSelectedTarget().get() ==
890             &process_sp->GetTarget()) {
891           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
892 
893           if (!thread_sp || !thread_sp->IsValid())
894             return false;
895 
896           const bool only_threads_with_stop_reason = true;
897           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
898           const uint32_t num_frames = 1;
899           const uint32_t num_frames_with_source = 1;
900           const bool stop_format = true;
901 
902           process_sp->GetStatus(*stream);
903           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
904                                       start_frame, num_frames,
905                                       num_frames_with_source,
906                                       stop_format);
907           if (curr_thread_stop_info_sp) {
908             lldb::addr_t crashing_address;
909             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
910                 curr_thread_stop_info_sp, &crashing_address);
911             if (valobj_sp) {
912               const ValueObject::GetExpressionPathFormat format =
913                   ValueObject::GetExpressionPathFormat::
914                       eGetExpressionPathFormatHonorPointers;
915               stream->PutCString("Likely cause: ");
916               valobj_sp->GetExpressionPath(*stream, format);
917               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
918             }
919           }
920         } else {
921           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
922               process_sp->GetTarget().shared_from_this());
923           if (target_idx != UINT32_MAX)
924             stream->Printf("Target %d: (", target_idx);
925           else
926             stream->Printf("Target <unknown index>: (");
927           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
928           stream->Printf(") stopped.\n");
929         }
930       }
931 
932       // Pop the process IO handler
933       pop_process_io_handler = true;
934     }
935     break;
936   }
937 
938   if (handle_pop && pop_process_io_handler)
939     process_sp->PopProcessIOHandler();
940 
941   return true;
942 }
943 
944 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
945   if (listener_sp) {
946     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
947                                               eBroadcastBitInterrupt);
948   } else
949     return false;
950 }
951 
952 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
953 
954 StateType Process::GetStateChangedEvents(EventSP &event_sp,
955                                          const Timeout<std::micro> &timeout,
956                                          ListenerSP hijack_listener_sp) {
957   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
958   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
959 
960   ListenerSP listener_sp = hijack_listener_sp;
961   if (!listener_sp)
962     listener_sp = m_listener_sp;
963 
964   StateType state = eStateInvalid;
965   if (listener_sp->GetEventForBroadcasterWithType(
966           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
967           timeout)) {
968     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
969       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
970     else
971       LLDB_LOG(log, "got no event or was interrupted.");
972   }
973 
974   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
975   return state;
976 }
977 
978 Event *Process::PeekAtStateChangedEvents() {
979   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
980 
981   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
982 
983   Event *event_ptr;
984   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
985       this, eBroadcastBitStateChanged);
986   if (log) {
987     if (event_ptr) {
988       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
989                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
990     } else {
991       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
992     }
993   }
994   return event_ptr;
995 }
996 
997 StateType
998 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
999                                       const Timeout<std::micro> &timeout) {
1000   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1001   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1002 
1003   StateType state = eStateInvalid;
1004   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1005           &m_private_state_broadcaster,
1006           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1007           timeout))
1008     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1009       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1010 
1011   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1012            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1013   return state;
1014 }
1015 
1016 bool Process::GetEventsPrivate(EventSP &event_sp,
1017                                const Timeout<std::micro> &timeout,
1018                                bool control_only) {
1019   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1020   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1021 
1022   if (control_only)
1023     return m_private_state_listener_sp->GetEventForBroadcaster(
1024         &m_private_state_control_broadcaster, event_sp, timeout);
1025   else
1026     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1027 }
1028 
1029 bool Process::IsRunning() const {
1030   return StateIsRunningState(m_public_state.GetValue());
1031 }
1032 
1033 int Process::GetExitStatus() {
1034   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1035 
1036   if (m_public_state.GetValue() == eStateExited)
1037     return m_exit_status;
1038   return -1;
1039 }
1040 
1041 const char *Process::GetExitDescription() {
1042   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1043 
1044   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1045     return m_exit_string.c_str();
1046   return nullptr;
1047 }
1048 
1049 bool Process::SetExitStatus(int status, const char *cstr) {
1050   // Use a mutex to protect setting the exit status.
1051   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1052 
1053   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1054                                                   LIBLLDB_LOG_PROCESS));
1055   LLDB_LOGF(
1056       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1057       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1058 
1059   // We were already in the exited state
1060   if (m_private_state.GetValue() == eStateExited) {
1061     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1062                    "state was already set to eStateExited");
1063     return false;
1064   }
1065 
1066   m_exit_status = status;
1067   if (cstr)
1068     m_exit_string = cstr;
1069   else
1070     m_exit_string.clear();
1071 
1072   // Clear the last natural stop ID since it has a strong reference to this
1073   // process
1074   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1075 
1076   SetPrivateState(eStateExited);
1077 
1078   // Allow subclasses to do some cleanup
1079   DidExit();
1080 
1081   return true;
1082 }
1083 
1084 bool Process::IsAlive() {
1085   switch (m_private_state.GetValue()) {
1086   case eStateConnected:
1087   case eStateAttaching:
1088   case eStateLaunching:
1089   case eStateStopped:
1090   case eStateRunning:
1091   case eStateStepping:
1092   case eStateCrashed:
1093   case eStateSuspended:
1094     return true;
1095   default:
1096     return false;
1097   }
1098 }
1099 
1100 // This static callback can be used to watch for local child processes on the
1101 // current host. The child process exits, the process will be found in the
1102 // global target list (we want to be completely sure that the
1103 // lldb_private::Process doesn't go away before we can deliver the signal.
1104 bool Process::SetProcessExitStatus(
1105     lldb::pid_t pid, bool exited,
1106     int signo,      // Zero for no signal
1107     int exit_status // Exit value of process if signal is zero
1108     ) {
1109   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
1110   LLDB_LOGF(log,
1111             "Process::SetProcessExitStatus (pid=%" PRIu64
1112             ", exited=%i, signal=%i, exit_status=%i)\n",
1113             pid, exited, signo, exit_status);
1114 
1115   if (exited) {
1116     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1117     if (target_sp) {
1118       ProcessSP process_sp(target_sp->GetProcessSP());
1119       if (process_sp) {
1120         const char *signal_cstr = nullptr;
1121         if (signo)
1122           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1123 
1124         process_sp->SetExitStatus(exit_status, signal_cstr);
1125       }
1126     }
1127     return true;
1128   }
1129   return false;
1130 }
1131 
1132 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1133                                ThreadList &new_thread_list) {
1134   m_thread_plans.ClearThreadCache();
1135   return DoUpdateThreadList(old_thread_list, new_thread_list);
1136 }
1137 
1138 void Process::UpdateThreadListIfNeeded() {
1139   const uint32_t stop_id = GetStopID();
1140   if (m_thread_list.GetSize(false) == 0 ||
1141       stop_id != m_thread_list.GetStopID()) {
1142     bool clear_unused_threads = true;
1143     const StateType state = GetPrivateState();
1144     if (StateIsStoppedState(state, true)) {
1145       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1146       m_thread_list.SetStopID(stop_id);
1147 
1148       // m_thread_list does have its own mutex, but we need to hold onto the
1149       // mutex between the call to UpdateThreadList(...) and the
1150       // os->UpdateThreadList(...) so it doesn't change on us
1151       ThreadList &old_thread_list = m_thread_list;
1152       ThreadList real_thread_list(this);
1153       ThreadList new_thread_list(this);
1154       // Always update the thread list with the protocol specific thread list,
1155       // but only update if "true" is returned
1156       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1157         // Don't call into the OperatingSystem to update the thread list if we
1158         // are shutting down, since that may call back into the SBAPI's,
1159         // requiring the API lock which is already held by whoever is shutting
1160         // us down, causing a deadlock.
1161         OperatingSystem *os = GetOperatingSystem();
1162         if (os && !m_destroy_in_process) {
1163           // Clear any old backing threads where memory threads might have been
1164           // backed by actual threads from the lldb_private::Process subclass
1165           size_t num_old_threads = old_thread_list.GetSize(false);
1166           for (size_t i = 0; i < num_old_threads; ++i)
1167             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1168           // See if the OS plugin reports all threads.  If it does, then
1169           // it is safe to clear unseen thread's plans here.  Otherwise we
1170           // should preserve them in case they show up again:
1171           clear_unused_threads = GetOSPluginReportsAllThreads();
1172 
1173           // Turn off dynamic types to ensure we don't run any expressions.
1174           // Objective-C can run an expression to determine if a SBValue is a
1175           // dynamic type or not and we need to avoid this. OperatingSystem
1176           // plug-ins can't run expressions that require running code...
1177 
1178           Target &target = GetTarget();
1179           const lldb::DynamicValueType saved_prefer_dynamic =
1180               target.GetPreferDynamicValue();
1181           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1182             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1183 
1184           // Now let the OperatingSystem plug-in update the thread list
1185 
1186           os->UpdateThreadList(
1187               old_thread_list, // Old list full of threads created by OS plug-in
1188               real_thread_list, // The actual thread list full of threads
1189                                 // created by each lldb_private::Process
1190                                 // subclass
1191               new_thread_list); // The new thread list that we will show to the
1192                                 // user that gets filled in
1193 
1194           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1195             target.SetPreferDynamicValue(saved_prefer_dynamic);
1196         } else {
1197           // No OS plug-in, the new thread list is the same as the real thread
1198           // list.
1199           new_thread_list = real_thread_list;
1200         }
1201 
1202         m_thread_list_real.Update(real_thread_list);
1203         m_thread_list.Update(new_thread_list);
1204         m_thread_list.SetStopID(stop_id);
1205 
1206         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1207           // Clear any extended threads that we may have accumulated previously
1208           m_extended_thread_list.Clear();
1209           m_extended_thread_stop_id = GetLastNaturalStopID();
1210 
1211           m_queue_list.Clear();
1212           m_queue_list_stop_id = GetLastNaturalStopID();
1213         }
1214       }
1215       // Now update the plan stack map.
1216       // If we do have an OS plugin, any absent real threads in the
1217       // m_thread_list have already been removed from the ThreadPlanStackMap.
1218       // So any remaining threads are OS Plugin threads, and those we want to
1219       // preserve in case they show up again.
1220       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1221     }
1222   }
1223 }
1224 
1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1226   return m_thread_plans.Find(tid);
1227 }
1228 
1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1230   return m_thread_plans.PrunePlansForTID(tid);
1231 }
1232 
1233 void Process::PruneThreadPlans() {
1234   m_thread_plans.Update(GetThreadList(), true, false);
1235 }
1236 
1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1238                                     lldb::DescriptionLevel desc_level,
1239                                     bool internal, bool condense_trivial,
1240                                     bool skip_unreported_plans) {
1241   return m_thread_plans.DumpPlansForTID(
1242       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1243 }
1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1245                               bool internal, bool condense_trivial,
1246                               bool skip_unreported_plans) {
1247   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1248                            skip_unreported_plans);
1249 }
1250 
1251 void Process::UpdateQueueListIfNeeded() {
1252   if (m_system_runtime_up) {
1253     if (m_queue_list.GetSize() == 0 ||
1254         m_queue_list_stop_id != GetLastNaturalStopID()) {
1255       const StateType state = GetPrivateState();
1256       if (StateIsStoppedState(state, true)) {
1257         m_system_runtime_up->PopulateQueueList(m_queue_list);
1258         m_queue_list_stop_id = GetLastNaturalStopID();
1259       }
1260     }
1261   }
1262 }
1263 
1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1265   OperatingSystem *os = GetOperatingSystem();
1266   if (os)
1267     return os->CreateThread(tid, context);
1268   return ThreadSP();
1269 }
1270 
1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1272   return AssignIndexIDToThread(thread_id);
1273 }
1274 
1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1276   return (m_thread_id_to_index_id_map.find(thread_id) !=
1277           m_thread_id_to_index_id_map.end());
1278 }
1279 
1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1281   uint32_t result = 0;
1282   std::map<uint64_t, uint32_t>::iterator iterator =
1283       m_thread_id_to_index_id_map.find(thread_id);
1284   if (iterator == m_thread_id_to_index_id_map.end()) {
1285     result = ++m_thread_index_id;
1286     m_thread_id_to_index_id_map[thread_id] = result;
1287   } else {
1288     result = iterator->second;
1289   }
1290 
1291   return result;
1292 }
1293 
1294 StateType Process::GetState() {
1295   return m_public_state.GetValue();
1296 }
1297 
1298 void Process::SetPublicState(StateType new_state, bool restarted) {
1299   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1300   if (new_state_is_stopped) {
1301     // This will only set the time if the public stop time has no value, so
1302     // it is ok to call this multiple times. With a public stop we can't look
1303     // at the stop ID because many private stops might have happened, so we
1304     // can't check for a stop ID of zero. This allows the "statistics" command
1305     // to dump the time it takes to reach somewhere in your code, like a
1306     // breakpoint you set.
1307     GetTarget().GetStatistics().SetFirstPublicStopTime();
1308   }
1309 
1310   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1311                                                   LIBLLDB_LOG_PROCESS));
1312   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1313             StateAsCString(new_state), restarted);
1314   const StateType old_state = m_public_state.GetValue();
1315   m_public_state.SetValue(new_state);
1316 
1317   // On the transition from Run to Stopped, we unlock the writer end of the run
1318   // lock.  The lock gets locked in Resume, which is the public API to tell the
1319   // program to run.
1320   if (!StateChangedIsExternallyHijacked()) {
1321     if (new_state == eStateDetached) {
1322       LLDB_LOGF(log,
1323                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1324                 StateAsCString(new_state));
1325       m_public_run_lock.SetStopped();
1326     } else {
1327       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1328       if ((old_state_is_stopped != new_state_is_stopped)) {
1329         if (new_state_is_stopped && !restarted) {
1330           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1331                     StateAsCString(new_state));
1332           m_public_run_lock.SetStopped();
1333         }
1334       }
1335     }
1336   }
1337 }
1338 
1339 Status Process::Resume() {
1340   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1341                                                   LIBLLDB_LOG_PROCESS));
1342   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1343   if (!m_public_run_lock.TrySetRunning()) {
1344     Status error("Resume request failed - process still running.");
1345     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1346     return error;
1347   }
1348   Status error = PrivateResume();
1349   if (!error.Success()) {
1350     // Undo running state change
1351     m_public_run_lock.SetStopped();
1352   }
1353   return error;
1354 }
1355 
1356 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1357 
1358 Status Process::ResumeSynchronous(Stream *stream) {
1359   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1360                                                   LIBLLDB_LOG_PROCESS));
1361   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1362   if (!m_public_run_lock.TrySetRunning()) {
1363     Status error("Resume request failed - process still running.");
1364     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1365     return error;
1366   }
1367 
1368   ListenerSP listener_sp(
1369       Listener::MakeListener(g_resume_sync_name));
1370   HijackProcessEvents(listener_sp);
1371 
1372   Status error = PrivateResume();
1373   if (error.Success()) {
1374     StateType state = WaitForProcessToStop(llvm::None, nullptr, true,
1375                                            listener_sp, stream);
1376     const bool must_be_alive =
1377         false; // eStateExited is ok, so this must be false
1378     if (!StateIsStoppedState(state, must_be_alive))
1379       error.SetErrorStringWithFormat(
1380           "process not in stopped state after synchronous resume: %s",
1381           StateAsCString(state));
1382   } else {
1383     // Undo running state change
1384     m_public_run_lock.SetStopped();
1385   }
1386 
1387   // Undo the hijacking of process events...
1388   RestoreProcessEvents();
1389 
1390   return error;
1391 }
1392 
1393 bool Process::StateChangedIsExternallyHijacked() {
1394   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1395     const char *hijacking_name = GetHijackingListenerName();
1396     if (hijacking_name &&
1397         strcmp(hijacking_name, g_resume_sync_name))
1398       return true;
1399   }
1400   return false;
1401 }
1402 
1403 bool Process::StateChangedIsHijackedForSynchronousResume() {
1404   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1405     const char *hijacking_name = GetHijackingListenerName();
1406     if (hijacking_name &&
1407         strcmp(hijacking_name, g_resume_sync_name) == 0)
1408       return true;
1409   }
1410   return false;
1411 }
1412 
1413 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1414 
1415 void Process::SetPrivateState(StateType new_state) {
1416   if (m_finalizing)
1417     return;
1418 
1419   Log *log(lldb_private::GetLogIfAnyCategoriesSet(
1420       LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND));
1421   bool state_changed = false;
1422 
1423   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1424 
1425   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1426   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1427 
1428   const StateType old_state = m_private_state.GetValueNoLock();
1429   state_changed = old_state != new_state;
1430 
1431   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1432   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1433   if (old_state_is_stopped != new_state_is_stopped) {
1434     if (new_state_is_stopped)
1435       m_private_run_lock.SetStopped();
1436     else
1437       m_private_run_lock.SetRunning();
1438   }
1439 
1440   if (state_changed) {
1441     m_private_state.SetValueNoLock(new_state);
1442     EventSP event_sp(
1443         new Event(eBroadcastBitStateChanged,
1444                   new ProcessEventData(shared_from_this(), new_state)));
1445     if (StateIsStoppedState(new_state, false)) {
1446       // Note, this currently assumes that all threads in the list stop when
1447       // the process stops.  In the future we will want to support a debugging
1448       // model where some threads continue to run while others are stopped.
1449       // When that happens we will either need a way for the thread list to
1450       // identify which threads are stopping or create a special thread list
1451       // containing only threads which actually stopped.
1452       //
1453       // The process plugin is responsible for managing the actual behavior of
1454       // the threads and should have stopped any threads that are going to stop
1455       // before we get here.
1456       m_thread_list.DidStop();
1457 
1458       if (m_mod_id.BumpStopID() == 0)
1459         GetTarget().GetStatistics().SetFirstPrivateStopTime();
1460 
1461       if (!m_mod_id.IsLastResumeForUserExpression())
1462         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1463       m_memory_cache.Clear();
1464       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1465                 StateAsCString(new_state), m_mod_id.GetStopID());
1466     }
1467 
1468     m_private_state_broadcaster.BroadcastEvent(event_sp);
1469   } else {
1470     LLDB_LOGF(log,
1471               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1472               StateAsCString(new_state));
1473   }
1474 }
1475 
1476 void Process::SetRunningUserExpression(bool on) {
1477   m_mod_id.SetRunningUserExpression(on);
1478 }
1479 
1480 void Process::SetRunningUtilityFunction(bool on) {
1481   m_mod_id.SetRunningUtilityFunction(on);
1482 }
1483 
1484 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1485 
1486 const lldb::ABISP &Process::GetABI() {
1487   if (!m_abi_sp)
1488     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1489   return m_abi_sp;
1490 }
1491 
1492 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1493   std::vector<LanguageRuntime *> language_runtimes;
1494 
1495   if (m_finalizing)
1496     return language_runtimes;
1497 
1498   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1499   // Before we pass off a copy of the language runtimes, we must make sure that
1500   // our collection is properly populated. It's possible that some of the
1501   // language runtimes were not loaded yet, either because nobody requested it
1502   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1503   // hadn't been loaded).
1504   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1505     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1506       language_runtimes.emplace_back(runtime);
1507   }
1508 
1509   return language_runtimes;
1510 }
1511 
1512 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1513   if (m_finalizing)
1514     return nullptr;
1515 
1516   LanguageRuntime *runtime = nullptr;
1517 
1518   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1519   LanguageRuntimeCollection::iterator pos;
1520   pos = m_language_runtimes.find(language);
1521   if (pos == m_language_runtimes.end() || !pos->second) {
1522     lldb::LanguageRuntimeSP runtime_sp(
1523         LanguageRuntime::FindPlugin(this, language));
1524 
1525     m_language_runtimes[language] = runtime_sp;
1526     runtime = runtime_sp.get();
1527   } else
1528     runtime = pos->second.get();
1529 
1530   if (runtime)
1531     // It's possible that a language runtime can support multiple LanguageTypes,
1532     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1533     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1534     // primary language type and make sure that our runtime supports it.
1535     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1536 
1537   return runtime;
1538 }
1539 
1540 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1541   if (m_finalizing)
1542     return false;
1543 
1544   if (in_value.IsDynamic())
1545     return false;
1546   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1547 
1548   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1549     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1550     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1551   }
1552 
1553   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1554     if (runtime->CouldHaveDynamicValue(in_value))
1555       return true;
1556   }
1557 
1558   return false;
1559 }
1560 
1561 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1562   m_dynamic_checkers_up.reset(dynamic_checkers);
1563 }
1564 
1565 BreakpointSiteList &Process::GetBreakpointSiteList() {
1566   return m_breakpoint_site_list;
1567 }
1568 
1569 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1570   return m_breakpoint_site_list;
1571 }
1572 
1573 void Process::DisableAllBreakpointSites() {
1574   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1575     //        bp_site->SetEnabled(true);
1576     DisableBreakpointSite(bp_site);
1577   });
1578 }
1579 
1580 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1581   Status error(DisableBreakpointSiteByID(break_id));
1582 
1583   if (error.Success())
1584     m_breakpoint_site_list.Remove(break_id);
1585 
1586   return error;
1587 }
1588 
1589 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1590   Status error;
1591   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1592   if (bp_site_sp) {
1593     if (bp_site_sp->IsEnabled())
1594       error = DisableBreakpointSite(bp_site_sp.get());
1595   } else {
1596     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1597                                    break_id);
1598   }
1599 
1600   return error;
1601 }
1602 
1603 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1604   Status error;
1605   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1606   if (bp_site_sp) {
1607     if (!bp_site_sp->IsEnabled())
1608       error = EnableBreakpointSite(bp_site_sp.get());
1609   } else {
1610     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1611                                    break_id);
1612   }
1613   return error;
1614 }
1615 
1616 lldb::break_id_t
1617 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1618                               bool use_hardware) {
1619   addr_t load_addr = LLDB_INVALID_ADDRESS;
1620 
1621   bool show_error = true;
1622   switch (GetState()) {
1623   case eStateInvalid:
1624   case eStateUnloaded:
1625   case eStateConnected:
1626   case eStateAttaching:
1627   case eStateLaunching:
1628   case eStateDetached:
1629   case eStateExited:
1630     show_error = false;
1631     break;
1632 
1633   case eStateStopped:
1634   case eStateRunning:
1635   case eStateStepping:
1636   case eStateCrashed:
1637   case eStateSuspended:
1638     show_error = IsAlive();
1639     break;
1640   }
1641 
1642   // Reset the IsIndirect flag here, in case the location changes from pointing
1643   // to a indirect symbol to a regular symbol.
1644   owner->SetIsIndirect(false);
1645 
1646   if (owner->ShouldResolveIndirectFunctions()) {
1647     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1648     if (symbol && symbol->IsIndirect()) {
1649       Status error;
1650       Address symbol_address = symbol->GetAddress();
1651       load_addr = ResolveIndirectFunction(&symbol_address, error);
1652       if (!error.Success() && show_error) {
1653         GetTarget().GetDebugger().GetErrorStream().Printf(
1654             "warning: failed to resolve indirect function at 0x%" PRIx64
1655             " for breakpoint %i.%i: %s\n",
1656             symbol->GetLoadAddress(&GetTarget()),
1657             owner->GetBreakpoint().GetID(), owner->GetID(),
1658             error.AsCString() ? error.AsCString() : "unknown error");
1659         return LLDB_INVALID_BREAK_ID;
1660       }
1661       Address resolved_address(load_addr);
1662       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1663       owner->SetIsIndirect(true);
1664     } else
1665       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1666   } else
1667     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1668 
1669   if (load_addr != LLDB_INVALID_ADDRESS) {
1670     BreakpointSiteSP bp_site_sp;
1671 
1672     // Look up this breakpoint site.  If it exists, then add this new owner,
1673     // otherwise create a new breakpoint site and add it.
1674 
1675     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1676 
1677     if (bp_site_sp) {
1678       bp_site_sp->AddOwner(owner);
1679       owner->SetBreakpointSite(bp_site_sp);
1680       return bp_site_sp->GetID();
1681     } else {
1682       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1683                                           load_addr, use_hardware));
1684       if (bp_site_sp) {
1685         Status error = EnableBreakpointSite(bp_site_sp.get());
1686         if (error.Success()) {
1687           owner->SetBreakpointSite(bp_site_sp);
1688           return m_breakpoint_site_list.Add(bp_site_sp);
1689         } else {
1690           if (show_error || use_hardware) {
1691             // Report error for setting breakpoint...
1692             GetTarget().GetDebugger().GetErrorStream().Printf(
1693                 "warning: failed to set breakpoint site at 0x%" PRIx64
1694                 " for breakpoint %i.%i: %s\n",
1695                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1696                 error.AsCString() ? error.AsCString() : "unknown error");
1697           }
1698         }
1699       }
1700     }
1701   }
1702   // We failed to enable the breakpoint
1703   return LLDB_INVALID_BREAK_ID;
1704 }
1705 
1706 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1707                                             lldb::user_id_t owner_loc_id,
1708                                             BreakpointSiteSP &bp_site_sp) {
1709   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1710   if (num_owners == 0) {
1711     // Don't try to disable the site if we don't have a live process anymore.
1712     if (IsAlive())
1713       DisableBreakpointSite(bp_site_sp.get());
1714     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1715   }
1716 }
1717 
1718 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1719                                                   uint8_t *buf) const {
1720   size_t bytes_removed = 0;
1721   BreakpointSiteList bp_sites_in_range;
1722 
1723   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1724                                          bp_sites_in_range)) {
1725     bp_sites_in_range.ForEach([bp_addr, size,
1726                                buf](BreakpointSite *bp_site) -> void {
1727       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1728         addr_t intersect_addr;
1729         size_t intersect_size;
1730         size_t opcode_offset;
1731         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1732                                      &intersect_size, &opcode_offset)) {
1733           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1734           assert(bp_addr < intersect_addr + intersect_size &&
1735                  intersect_addr + intersect_size <= bp_addr + size);
1736           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1737           size_t buf_offset = intersect_addr - bp_addr;
1738           ::memcpy(buf + buf_offset,
1739                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1740                    intersect_size);
1741         }
1742       }
1743     });
1744   }
1745   return bytes_removed;
1746 }
1747 
1748 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1749   PlatformSP platform_sp(GetTarget().GetPlatform());
1750   if (platform_sp)
1751     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1752   return 0;
1753 }
1754 
1755 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1756   Status error;
1757   assert(bp_site != nullptr);
1758   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1759   const addr_t bp_addr = bp_site->GetLoadAddress();
1760   LLDB_LOGF(
1761       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1762       bp_site->GetID(), (uint64_t)bp_addr);
1763   if (bp_site->IsEnabled()) {
1764     LLDB_LOGF(
1765         log,
1766         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1767         " -- already enabled",
1768         bp_site->GetID(), (uint64_t)bp_addr);
1769     return error;
1770   }
1771 
1772   if (bp_addr == LLDB_INVALID_ADDRESS) {
1773     error.SetErrorString("BreakpointSite contains an invalid load address.");
1774     return error;
1775   }
1776   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1777   // trap for the breakpoint site
1778   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1779 
1780   if (bp_opcode_size == 0) {
1781     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1782                                    "returned zero, unable to get breakpoint "
1783                                    "trap for address 0x%" PRIx64,
1784                                    bp_addr);
1785   } else {
1786     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1787 
1788     if (bp_opcode_bytes == nullptr) {
1789       error.SetErrorString(
1790           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1791       return error;
1792     }
1793 
1794     // Save the original opcode by reading it
1795     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1796                      error) == bp_opcode_size) {
1797       // Write a software breakpoint in place of the original opcode
1798       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1799           bp_opcode_size) {
1800         uint8_t verify_bp_opcode_bytes[64];
1801         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1802                          error) == bp_opcode_size) {
1803           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1804                        bp_opcode_size) == 0) {
1805             bp_site->SetEnabled(true);
1806             bp_site->SetType(BreakpointSite::eSoftware);
1807             LLDB_LOGF(log,
1808                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1809                       "addr = 0x%" PRIx64 " -- SUCCESS",
1810                       bp_site->GetID(), (uint64_t)bp_addr);
1811           } else
1812             error.SetErrorString(
1813                 "failed to verify the breakpoint trap in memory.");
1814         } else
1815           error.SetErrorString(
1816               "Unable to read memory to verify breakpoint trap.");
1817       } else
1818         error.SetErrorString("Unable to write breakpoint trap to memory.");
1819     } else
1820       error.SetErrorString("Unable to read memory at breakpoint address.");
1821   }
1822   if (log && error.Fail())
1823     LLDB_LOGF(
1824         log,
1825         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1826         " -- FAILED: %s",
1827         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1828   return error;
1829 }
1830 
1831 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1832   Status error;
1833   assert(bp_site != nullptr);
1834   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1835   addr_t bp_addr = bp_site->GetLoadAddress();
1836   lldb::user_id_t breakID = bp_site->GetID();
1837   LLDB_LOGF(log,
1838             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1839             ") addr = 0x%" PRIx64,
1840             breakID, (uint64_t)bp_addr);
1841 
1842   if (bp_site->IsHardware()) {
1843     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1844   } else if (bp_site->IsEnabled()) {
1845     const size_t break_op_size = bp_site->GetByteSize();
1846     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1847     if (break_op_size > 0) {
1848       // Clear a software breakpoint instruction
1849       uint8_t curr_break_op[8];
1850       assert(break_op_size <= sizeof(curr_break_op));
1851       bool break_op_found = false;
1852 
1853       // Read the breakpoint opcode
1854       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1855           break_op_size) {
1856         bool verify = false;
1857         // Make sure the breakpoint opcode exists at this address
1858         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1859           break_op_found = true;
1860           // We found a valid breakpoint opcode at this address, now restore
1861           // the saved opcode.
1862           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1863                             break_op_size, error) == break_op_size) {
1864             verify = true;
1865           } else
1866             error.SetErrorString(
1867                 "Memory write failed when restoring original opcode.");
1868         } else {
1869           error.SetErrorString(
1870               "Original breakpoint trap is no longer in memory.");
1871           // Set verify to true and so we can check if the original opcode has
1872           // already been restored
1873           verify = true;
1874         }
1875 
1876         if (verify) {
1877           uint8_t verify_opcode[8];
1878           assert(break_op_size < sizeof(verify_opcode));
1879           // Verify that our original opcode made it back to the inferior
1880           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1881               break_op_size) {
1882             // compare the memory we just read with the original opcode
1883             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1884                          break_op_size) == 0) {
1885               // SUCCESS
1886               bp_site->SetEnabled(false);
1887               LLDB_LOGF(log,
1888                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1889                         "addr = 0x%" PRIx64 " -- SUCCESS",
1890                         bp_site->GetID(), (uint64_t)bp_addr);
1891               return error;
1892             } else {
1893               if (break_op_found)
1894                 error.SetErrorString("Failed to restore original opcode.");
1895             }
1896           } else
1897             error.SetErrorString("Failed to read memory to verify that "
1898                                  "breakpoint trap was restored.");
1899         }
1900       } else
1901         error.SetErrorString(
1902             "Unable to read memory that should contain the breakpoint trap.");
1903     }
1904   } else {
1905     LLDB_LOGF(
1906         log,
1907         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1908         " -- already disabled",
1909         bp_site->GetID(), (uint64_t)bp_addr);
1910     return error;
1911   }
1912 
1913   LLDB_LOGF(
1914       log,
1915       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1916       " -- FAILED: %s",
1917       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1918   return error;
1919 }
1920 
1921 // Uncomment to verify memory caching works after making changes to caching
1922 // code
1923 //#define VERIFY_MEMORY_READS
1924 
1925 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1926   error.Clear();
1927   if (!GetDisableMemoryCache()) {
1928 #if defined(VERIFY_MEMORY_READS)
1929     // Memory caching is enabled, with debug verification
1930 
1931     if (buf && size) {
1932       // Uncomment the line below to make sure memory caching is working.
1933       // I ran this through the test suite and got no assertions, so I am
1934       // pretty confident this is working well. If any changes are made to
1935       // memory caching, uncomment the line below and test your changes!
1936 
1937       // Verify all memory reads by using the cache first, then redundantly
1938       // reading the same memory from the inferior and comparing to make sure
1939       // everything is exactly the same.
1940       std::string verify_buf(size, '\0');
1941       assert(verify_buf.size() == size);
1942       const size_t cache_bytes_read =
1943           m_memory_cache.Read(this, addr, buf, size, error);
1944       Status verify_error;
1945       const size_t verify_bytes_read =
1946           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1947                                  verify_buf.size(), verify_error);
1948       assert(cache_bytes_read == verify_bytes_read);
1949       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1950       assert(verify_error.Success() == error.Success());
1951       return cache_bytes_read;
1952     }
1953     return 0;
1954 #else  // !defined(VERIFY_MEMORY_READS)
1955     // Memory caching is enabled, without debug verification
1956 
1957     return m_memory_cache.Read(addr, buf, size, error);
1958 #endif // defined (VERIFY_MEMORY_READS)
1959   } else {
1960     // Memory caching is disabled
1961 
1962     return ReadMemoryFromInferior(addr, buf, size, error);
1963   }
1964 }
1965 
1966 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1967                                       Status &error) {
1968   char buf[256];
1969   out_str.clear();
1970   addr_t curr_addr = addr;
1971   while (true) {
1972     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1973     if (length == 0)
1974       break;
1975     out_str.append(buf, length);
1976     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1977     // to read some more characters
1978     if (length == sizeof(buf) - 1)
1979       curr_addr += length;
1980     else
1981       break;
1982   }
1983   return out_str.size();
1984 }
1985 
1986 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes,
1987                                      Status &error, size_t type_width) {
1988   size_t total_bytes_read = 0;
1989   if (dst && max_bytes && type_width && max_bytes >= type_width) {
1990     // Ensure a null terminator independent of the number of bytes that is
1991     // read.
1992     memset(dst, 0, max_bytes);
1993     size_t bytes_left = max_bytes - type_width;
1994 
1995     const char terminator[4] = {'\0', '\0', '\0', '\0'};
1996     assert(sizeof(terminator) >= type_width && "Attempting to validate a "
1997                                                "string with more than 4 bytes "
1998                                                "per character!");
1999 
2000     addr_t curr_addr = addr;
2001     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2002     char *curr_dst = dst;
2003 
2004     error.Clear();
2005     while (bytes_left > 0 && error.Success()) {
2006       addr_t cache_line_bytes_left =
2007           cache_line_size - (curr_addr % cache_line_size);
2008       addr_t bytes_to_read =
2009           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2010       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2011 
2012       if (bytes_read == 0)
2013         break;
2014 
2015       // Search for a null terminator of correct size and alignment in
2016       // bytes_read
2017       size_t aligned_start = total_bytes_read - total_bytes_read % type_width;
2018       for (size_t i = aligned_start;
2019            i + type_width <= total_bytes_read + bytes_read; i += type_width)
2020         if (::memcmp(&dst[i], terminator, type_width) == 0) {
2021           error.Clear();
2022           return i;
2023         }
2024 
2025       total_bytes_read += bytes_read;
2026       curr_dst += bytes_read;
2027       curr_addr += bytes_read;
2028       bytes_left -= bytes_read;
2029     }
2030   } else {
2031     if (max_bytes)
2032       error.SetErrorString("invalid arguments");
2033   }
2034   return total_bytes_read;
2035 }
2036 
2037 // Deprecated in favor of ReadStringFromMemory which has wchar support and
2038 // correct code to find null terminators.
2039 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2040                                       size_t dst_max_len,
2041                                       Status &result_error) {
2042   size_t total_cstr_len = 0;
2043   if (dst && dst_max_len) {
2044     result_error.Clear();
2045     // NULL out everything just to be safe
2046     memset(dst, 0, dst_max_len);
2047     Status error;
2048     addr_t curr_addr = addr;
2049     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2050     size_t bytes_left = dst_max_len - 1;
2051     char *curr_dst = dst;
2052 
2053     while (bytes_left > 0) {
2054       addr_t cache_line_bytes_left =
2055           cache_line_size - (curr_addr % cache_line_size);
2056       addr_t bytes_to_read =
2057           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2058       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2059 
2060       if (bytes_read == 0) {
2061         result_error = error;
2062         dst[total_cstr_len] = '\0';
2063         break;
2064       }
2065       const size_t len = strlen(curr_dst);
2066 
2067       total_cstr_len += len;
2068 
2069       if (len < bytes_to_read)
2070         break;
2071 
2072       curr_dst += bytes_read;
2073       curr_addr += bytes_read;
2074       bytes_left -= bytes_read;
2075     }
2076   } else {
2077     if (dst == nullptr)
2078       result_error.SetErrorString("invalid arguments");
2079     else
2080       result_error.Clear();
2081   }
2082   return total_cstr_len;
2083 }
2084 
2085 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2086                                        Status &error) {
2087   LLDB_SCOPED_TIMER();
2088 
2089   if (buf == nullptr || size == 0)
2090     return 0;
2091 
2092   size_t bytes_read = 0;
2093   uint8_t *bytes = (uint8_t *)buf;
2094 
2095   while (bytes_read < size) {
2096     const size_t curr_size = size - bytes_read;
2097     const size_t curr_bytes_read =
2098         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2099     bytes_read += curr_bytes_read;
2100     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2101       break;
2102   }
2103 
2104   // Replace any software breakpoint opcodes that fall into this range back
2105   // into "buf" before we return
2106   if (bytes_read > 0)
2107     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2108   return bytes_read;
2109 }
2110 
2111 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2112                                                 size_t integer_byte_size,
2113                                                 uint64_t fail_value,
2114                                                 Status &error) {
2115   Scalar scalar;
2116   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2117                                   error))
2118     return scalar.ULongLong(fail_value);
2119   return fail_value;
2120 }
2121 
2122 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2123                                              size_t integer_byte_size,
2124                                              int64_t fail_value,
2125                                              Status &error) {
2126   Scalar scalar;
2127   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2128                                   error))
2129     return scalar.SLongLong(fail_value);
2130   return fail_value;
2131 }
2132 
2133 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2134   Scalar scalar;
2135   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2136                                   error))
2137     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2138   return LLDB_INVALID_ADDRESS;
2139 }
2140 
2141 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2142                                    Status &error) {
2143   Scalar scalar;
2144   const uint32_t addr_byte_size = GetAddressByteSize();
2145   if (addr_byte_size <= 4)
2146     scalar = (uint32_t)ptr_value;
2147   else
2148     scalar = ptr_value;
2149   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2150          addr_byte_size;
2151 }
2152 
2153 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2154                                    Status &error) {
2155   size_t bytes_written = 0;
2156   const uint8_t *bytes = (const uint8_t *)buf;
2157 
2158   while (bytes_written < size) {
2159     const size_t curr_size = size - bytes_written;
2160     const size_t curr_bytes_written = DoWriteMemory(
2161         addr + bytes_written, bytes + bytes_written, curr_size, error);
2162     bytes_written += curr_bytes_written;
2163     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2164       break;
2165   }
2166   return bytes_written;
2167 }
2168 
2169 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2170                             Status &error) {
2171 #if defined(ENABLE_MEMORY_CACHING)
2172   m_memory_cache.Flush(addr, size);
2173 #endif
2174 
2175   if (buf == nullptr || size == 0)
2176     return 0;
2177 
2178   m_mod_id.BumpMemoryID();
2179 
2180   // We need to write any data that would go where any current software traps
2181   // (enabled software breakpoints) any software traps (breakpoints) that we
2182   // may have placed in our tasks memory.
2183 
2184   BreakpointSiteList bp_sites_in_range;
2185   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2186     return WriteMemoryPrivate(addr, buf, size, error);
2187 
2188   // No breakpoint sites overlap
2189   if (bp_sites_in_range.IsEmpty())
2190     return WriteMemoryPrivate(addr, buf, size, error);
2191 
2192   const uint8_t *ubuf = (const uint8_t *)buf;
2193   uint64_t bytes_written = 0;
2194 
2195   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2196                              &error](BreakpointSite *bp) -> void {
2197     if (error.Fail())
2198       return;
2199 
2200     if (bp->GetType() != BreakpointSite::eSoftware)
2201       return;
2202 
2203     addr_t intersect_addr;
2204     size_t intersect_size;
2205     size_t opcode_offset;
2206     const bool intersects = bp->IntersectsRange(
2207         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2208     UNUSED_IF_ASSERT_DISABLED(intersects);
2209     assert(intersects);
2210     assert(addr <= intersect_addr && intersect_addr < addr + size);
2211     assert(addr < intersect_addr + intersect_size &&
2212            intersect_addr + intersect_size <= addr + size);
2213     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2214 
2215     // Check for bytes before this breakpoint
2216     const addr_t curr_addr = addr + bytes_written;
2217     if (intersect_addr > curr_addr) {
2218       // There are some bytes before this breakpoint that we need to just
2219       // write to memory
2220       size_t curr_size = intersect_addr - curr_addr;
2221       size_t curr_bytes_written =
2222           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2223       bytes_written += curr_bytes_written;
2224       if (curr_bytes_written != curr_size) {
2225         // We weren't able to write all of the requested bytes, we are
2226         // done looping and will return the number of bytes that we have
2227         // written so far.
2228         if (error.Success())
2229           error.SetErrorToGenericError();
2230       }
2231     }
2232     // Now write any bytes that would cover up any software breakpoints
2233     // directly into the breakpoint opcode buffer
2234     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2235              intersect_size);
2236     bytes_written += intersect_size;
2237   });
2238 
2239   // Write any remaining bytes after the last breakpoint if we have any left
2240   if (bytes_written < size)
2241     bytes_written +=
2242         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2243                            size - bytes_written, error);
2244 
2245   return bytes_written;
2246 }
2247 
2248 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2249                                     size_t byte_size, Status &error) {
2250   if (byte_size == UINT32_MAX)
2251     byte_size = scalar.GetByteSize();
2252   if (byte_size > 0) {
2253     uint8_t buf[32];
2254     const size_t mem_size =
2255         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2256     if (mem_size > 0)
2257       return WriteMemory(addr, buf, mem_size, error);
2258     else
2259       error.SetErrorString("failed to get scalar as memory data");
2260   } else {
2261     error.SetErrorString("invalid scalar value");
2262   }
2263   return 0;
2264 }
2265 
2266 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2267                                             bool is_signed, Scalar &scalar,
2268                                             Status &error) {
2269   uint64_t uval = 0;
2270   if (byte_size == 0) {
2271     error.SetErrorString("byte size is zero");
2272   } else if (byte_size & (byte_size - 1)) {
2273     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2274                                    byte_size);
2275   } else if (byte_size <= sizeof(uval)) {
2276     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2277     if (bytes_read == byte_size) {
2278       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2279                          GetAddressByteSize());
2280       lldb::offset_t offset = 0;
2281       if (byte_size <= 4)
2282         scalar = data.GetMaxU32(&offset, byte_size);
2283       else
2284         scalar = data.GetMaxU64(&offset, byte_size);
2285       if (is_signed)
2286         scalar.SignExtend(byte_size * 8);
2287       return bytes_read;
2288     }
2289   } else {
2290     error.SetErrorStringWithFormat(
2291         "byte size of %u is too large for integer scalar type", byte_size);
2292   }
2293   return 0;
2294 }
2295 
2296 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2297   Status error;
2298   for (const auto &Entry : entries) {
2299     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2300                 error);
2301     if (!error.Success())
2302       break;
2303   }
2304   return error;
2305 }
2306 
2307 #define USE_ALLOCATE_MEMORY_CACHE 1
2308 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2309                                Status &error) {
2310   if (GetPrivateState() != eStateStopped) {
2311     error.SetErrorToGenericError();
2312     return LLDB_INVALID_ADDRESS;
2313   }
2314 
2315 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2316   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2317 #else
2318   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2319   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2320   LLDB_LOGF(log,
2321             "Process::AllocateMemory(size=%" PRIu64
2322             ", permissions=%s) => 0x%16.16" PRIx64
2323             " (m_stop_id = %u m_memory_id = %u)",
2324             (uint64_t)size, GetPermissionsAsCString(permissions),
2325             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2326             m_mod_id.GetMemoryID());
2327   return allocated_addr;
2328 #endif
2329 }
2330 
2331 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2332                                 Status &error) {
2333   addr_t return_addr = AllocateMemory(size, permissions, error);
2334   if (error.Success()) {
2335     std::string buffer(size, 0);
2336     WriteMemory(return_addr, buffer.c_str(), size, error);
2337   }
2338   return return_addr;
2339 }
2340 
2341 bool Process::CanJIT() {
2342   if (m_can_jit == eCanJITDontKnow) {
2343     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2344     Status err;
2345 
2346     uint64_t allocated_memory = AllocateMemory(
2347         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2348         err);
2349 
2350     if (err.Success()) {
2351       m_can_jit = eCanJITYes;
2352       LLDB_LOGF(log,
2353                 "Process::%s pid %" PRIu64
2354                 " allocation test passed, CanJIT () is true",
2355                 __FUNCTION__, GetID());
2356     } else {
2357       m_can_jit = eCanJITNo;
2358       LLDB_LOGF(log,
2359                 "Process::%s pid %" PRIu64
2360                 " allocation test failed, CanJIT () is false: %s",
2361                 __FUNCTION__, GetID(), err.AsCString());
2362     }
2363 
2364     DeallocateMemory(allocated_memory);
2365   }
2366 
2367   return m_can_jit == eCanJITYes;
2368 }
2369 
2370 void Process::SetCanJIT(bool can_jit) {
2371   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2372 }
2373 
2374 void Process::SetCanRunCode(bool can_run_code) {
2375   SetCanJIT(can_run_code);
2376   m_can_interpret_function_calls = can_run_code;
2377 }
2378 
2379 Status Process::DeallocateMemory(addr_t ptr) {
2380   Status error;
2381 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2382   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2383     error.SetErrorStringWithFormat(
2384         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2385   }
2386 #else
2387   error = DoDeallocateMemory(ptr);
2388 
2389   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2390   LLDB_LOGF(log,
2391             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2392             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2393             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2394             m_mod_id.GetMemoryID());
2395 #endif
2396   return error;
2397 }
2398 
2399 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2400                                        lldb::addr_t header_addr,
2401                                        size_t size_to_read) {
2402   Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
2403   if (log) {
2404     LLDB_LOGF(log,
2405               "Process::ReadModuleFromMemory reading %s binary from memory",
2406               file_spec.GetPath().c_str());
2407   }
2408   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2409   if (module_sp) {
2410     Status error;
2411     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2412         shared_from_this(), header_addr, error, size_to_read);
2413     if (objfile)
2414       return module_sp;
2415   }
2416   return ModuleSP();
2417 }
2418 
2419 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2420                                         uint32_t &permissions) {
2421   MemoryRegionInfo range_info;
2422   permissions = 0;
2423   Status error(GetMemoryRegionInfo(load_addr, range_info));
2424   if (!error.Success())
2425     return false;
2426   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2427       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2428       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2429     return false;
2430   }
2431 
2432   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2433     permissions |= lldb::ePermissionsReadable;
2434 
2435   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2436     permissions |= lldb::ePermissionsWritable;
2437 
2438   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2439     permissions |= lldb::ePermissionsExecutable;
2440 
2441   return true;
2442 }
2443 
2444 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2445   Status error;
2446   error.SetErrorString("watchpoints are not supported");
2447   return error;
2448 }
2449 
2450 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2451   Status error;
2452   error.SetErrorString("watchpoints are not supported");
2453   return error;
2454 }
2455 
2456 StateType
2457 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2458                                    const Timeout<std::micro> &timeout) {
2459   StateType state;
2460 
2461   while (true) {
2462     event_sp.reset();
2463     state = GetStateChangedEventsPrivate(event_sp, timeout);
2464 
2465     if (StateIsStoppedState(state, false))
2466       break;
2467 
2468     // If state is invalid, then we timed out
2469     if (state == eStateInvalid)
2470       break;
2471 
2472     if (event_sp)
2473       HandlePrivateEvent(event_sp);
2474   }
2475   return state;
2476 }
2477 
2478 void Process::LoadOperatingSystemPlugin(bool flush) {
2479   if (flush)
2480     m_thread_list.Clear();
2481   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2482   if (flush)
2483     Flush();
2484 }
2485 
2486 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2487   Status error;
2488   m_abi_sp.reset();
2489   m_dyld_up.reset();
2490   m_jit_loaders_up.reset();
2491   m_system_runtime_up.reset();
2492   m_os_up.reset();
2493   m_process_input_reader.reset();
2494 
2495   Module *exe_module = GetTarget().GetExecutableModulePointer();
2496   if (!exe_module) {
2497     error.SetErrorString("executable module does not exist");
2498     return error;
2499   }
2500 
2501   char local_exec_file_path[PATH_MAX];
2502   char platform_exec_file_path[PATH_MAX];
2503   exe_module->GetFileSpec().GetPath(local_exec_file_path,
2504                                     sizeof(local_exec_file_path));
2505   exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path,
2506                                             sizeof(platform_exec_file_path));
2507   if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2508     // Install anything that might need to be installed prior to launching.
2509     // For host systems, this will do nothing, but if we are connected to a
2510     // remote platform it will install any needed binaries
2511     error = GetTarget().Install(&launch_info);
2512     if (error.Fail())
2513       return error;
2514 
2515     // Listen and queue events that are broadcasted during the process launch.
2516     ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2517     HijackProcessEvents(listener_sp);
2518     auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2519 
2520     if (PrivateStateThreadIsValid())
2521       PausePrivateStateThread();
2522 
2523     error = WillLaunch(exe_module);
2524     if (error.Success()) {
2525       const bool restarted = false;
2526       SetPublicState(eStateLaunching, restarted);
2527       m_should_detach = false;
2528 
2529       if (m_public_run_lock.TrySetRunning()) {
2530         // Now launch using these arguments.
2531         error = DoLaunch(exe_module, launch_info);
2532       } else {
2533         // This shouldn't happen
2534         error.SetErrorString("failed to acquire process run lock");
2535       }
2536 
2537       if (error.Fail()) {
2538         if (GetID() != LLDB_INVALID_PROCESS_ID) {
2539           SetID(LLDB_INVALID_PROCESS_ID);
2540           const char *error_string = error.AsCString();
2541           if (error_string == nullptr)
2542             error_string = "launch failed";
2543           SetExitStatus(-1, error_string);
2544         }
2545       } else {
2546         EventSP event_sp;
2547 
2548         // Now wait for the process to launch and return control to us, and then
2549         // call DidLaunch:
2550         StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
2551 
2552         if (state == eStateInvalid || !event_sp) {
2553           // We were able to launch the process, but we failed to catch the
2554           // initial stop.
2555           error.SetErrorString("failed to catch stop after launch");
2556           SetExitStatus(0, "failed to catch stop after launch");
2557           Destroy(false);
2558         } else if (state == eStateStopped || state == eStateCrashed) {
2559           DidLaunch();
2560 
2561           DynamicLoader *dyld = GetDynamicLoader();
2562           if (dyld)
2563             dyld->DidLaunch();
2564 
2565           GetJITLoaders().DidLaunch();
2566 
2567           SystemRuntime *system_runtime = GetSystemRuntime();
2568           if (system_runtime)
2569             system_runtime->DidLaunch();
2570 
2571           if (!m_os_up)
2572             LoadOperatingSystemPlugin(false);
2573 
2574           // We successfully launched the process and stopped, now it the
2575           // right time to set up signal filters before resuming.
2576           UpdateAutomaticSignalFiltering();
2577 
2578           // Note, the stop event was consumed above, but not handled. This
2579           // was done to give DidLaunch a chance to run. The target is either
2580           // stopped or crashed. Directly set the state.  This is done to
2581           // prevent a stop message with a bunch of spurious output on thread
2582           // status, as well as not pop a ProcessIOHandler.
2583           // We are done with the launch hijack listener, and this stop should
2584           // go to the public state listener:
2585           RestoreProcessEvents();
2586           SetPublicState(state, false);
2587 
2588           if (PrivateStateThreadIsValid())
2589             ResumePrivateStateThread();
2590           else
2591             StartPrivateStateThread();
2592 
2593           // Target was stopped at entry as was intended. Need to notify the
2594           // listeners about it.
2595           if (state == eStateStopped &&
2596               launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2597             HandlePrivateEvent(event_sp);
2598         } else if (state == eStateExited) {
2599           // We exited while trying to launch somehow.  Don't call DidLaunch
2600           // as that's not likely to work, and return an invalid pid.
2601           HandlePrivateEvent(event_sp);
2602         }
2603       }
2604     }
2605   } else {
2606     error.SetErrorStringWithFormat("file doesn't exist: '%s'",
2607                                    local_exec_file_path);
2608   }
2609 
2610   return error;
2611 }
2612 
2613 Status Process::LoadCore() {
2614   Status error = DoLoadCore();
2615   if (error.Success()) {
2616     ListenerSP listener_sp(
2617         Listener::MakeListener("lldb.process.load_core_listener"));
2618     HijackProcessEvents(listener_sp);
2619 
2620     if (PrivateStateThreadIsValid())
2621       ResumePrivateStateThread();
2622     else
2623       StartPrivateStateThread();
2624 
2625     DynamicLoader *dyld = GetDynamicLoader();
2626     if (dyld)
2627       dyld->DidAttach();
2628 
2629     GetJITLoaders().DidAttach();
2630 
2631     SystemRuntime *system_runtime = GetSystemRuntime();
2632     if (system_runtime)
2633       system_runtime->DidAttach();
2634 
2635     if (!m_os_up)
2636       LoadOperatingSystemPlugin(false);
2637 
2638     // We successfully loaded a core file, now pretend we stopped so we can
2639     // show all of the threads in the core file and explore the crashed state.
2640     SetPrivateState(eStateStopped);
2641 
2642     // Wait for a stopped event since we just posted one above...
2643     lldb::EventSP event_sp;
2644     StateType state =
2645         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2646 
2647     if (!StateIsStoppedState(state, false)) {
2648       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2649       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2650                 StateAsCString(state));
2651       error.SetErrorString(
2652           "Did not get stopped event after loading the core file.");
2653     }
2654     RestoreProcessEvents();
2655   }
2656   return error;
2657 }
2658 
2659 DynamicLoader *Process::GetDynamicLoader() {
2660   if (!m_dyld_up)
2661     m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2662   return m_dyld_up.get();
2663 }
2664 
2665 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2666 
2667 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2668   return false;
2669 }
2670 
2671 JITLoaderList &Process::GetJITLoaders() {
2672   if (!m_jit_loaders_up) {
2673     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2674     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2675   }
2676   return *m_jit_loaders_up;
2677 }
2678 
2679 SystemRuntime *Process::GetSystemRuntime() {
2680   if (!m_system_runtime_up)
2681     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2682   return m_system_runtime_up.get();
2683 }
2684 
2685 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2686                                                           uint32_t exec_count)
2687     : NextEventAction(process), m_exec_count(exec_count) {
2688   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2689   LLDB_LOGF(
2690       log,
2691       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2692       __FUNCTION__, static_cast<void *>(process), exec_count);
2693 }
2694 
2695 Process::NextEventAction::EventActionResult
2696 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2697   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2698 
2699   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2700   LLDB_LOGF(log,
2701             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2702             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2703 
2704   switch (state) {
2705   case eStateAttaching:
2706     return eEventActionSuccess;
2707 
2708   case eStateRunning:
2709   case eStateConnected:
2710     return eEventActionRetry;
2711 
2712   case eStateStopped:
2713   case eStateCrashed:
2714     // During attach, prior to sending the eStateStopped event,
2715     // lldb_private::Process subclasses must set the new process ID.
2716     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2717     // We don't want these events to be reported, so go set the
2718     // ShouldReportStop here:
2719     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2720 
2721     if (m_exec_count > 0) {
2722       --m_exec_count;
2723 
2724       LLDB_LOGF(log,
2725                 "Process::AttachCompletionHandler::%s state %s: reduced "
2726                 "remaining exec count to %" PRIu32 ", requesting resume",
2727                 __FUNCTION__, StateAsCString(state), m_exec_count);
2728 
2729       RequestResume();
2730       return eEventActionRetry;
2731     } else {
2732       LLDB_LOGF(log,
2733                 "Process::AttachCompletionHandler::%s state %s: no more "
2734                 "execs expected to start, continuing with attach",
2735                 __FUNCTION__, StateAsCString(state));
2736 
2737       m_process->CompleteAttach();
2738       return eEventActionSuccess;
2739     }
2740     break;
2741 
2742   default:
2743   case eStateExited:
2744   case eStateInvalid:
2745     break;
2746   }
2747 
2748   m_exit_string.assign("No valid Process");
2749   return eEventActionExit;
2750 }
2751 
2752 Process::NextEventAction::EventActionResult
2753 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2754   return eEventActionSuccess;
2755 }
2756 
2757 const char *Process::AttachCompletionHandler::GetExitString() {
2758   return m_exit_string.c_str();
2759 }
2760 
2761 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2762   if (m_listener_sp)
2763     return m_listener_sp;
2764   else
2765     return debugger.GetListener();
2766 }
2767 
2768 Status Process::Attach(ProcessAttachInfo &attach_info) {
2769   m_abi_sp.reset();
2770   m_process_input_reader.reset();
2771   m_dyld_up.reset();
2772   m_jit_loaders_up.reset();
2773   m_system_runtime_up.reset();
2774   m_os_up.reset();
2775 
2776   lldb::pid_t attach_pid = attach_info.GetProcessID();
2777   Status error;
2778   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2779     char process_name[PATH_MAX];
2780 
2781     if (attach_info.GetExecutableFile().GetPath(process_name,
2782                                                 sizeof(process_name))) {
2783       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2784 
2785       if (wait_for_launch) {
2786         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2787         if (error.Success()) {
2788           if (m_public_run_lock.TrySetRunning()) {
2789             m_should_detach = true;
2790             const bool restarted = false;
2791             SetPublicState(eStateAttaching, restarted);
2792             // Now attach using these arguments.
2793             error = DoAttachToProcessWithName(process_name, attach_info);
2794           } else {
2795             // This shouldn't happen
2796             error.SetErrorString("failed to acquire process run lock");
2797           }
2798 
2799           if (error.Fail()) {
2800             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2801               SetID(LLDB_INVALID_PROCESS_ID);
2802               if (error.AsCString() == nullptr)
2803                 error.SetErrorString("attach failed");
2804 
2805               SetExitStatus(-1, error.AsCString());
2806             }
2807           } else {
2808             SetNextEventAction(new Process::AttachCompletionHandler(
2809                 this, attach_info.GetResumeCount()));
2810             StartPrivateStateThread();
2811           }
2812           return error;
2813         }
2814       } else {
2815         ProcessInstanceInfoList process_infos;
2816         PlatformSP platform_sp(GetTarget().GetPlatform());
2817 
2818         if (platform_sp) {
2819           ProcessInstanceInfoMatch match_info;
2820           match_info.GetProcessInfo() = attach_info;
2821           match_info.SetNameMatchType(NameMatch::Equals);
2822           platform_sp->FindProcesses(match_info, process_infos);
2823           const uint32_t num_matches = process_infos.size();
2824           if (num_matches == 1) {
2825             attach_pid = process_infos[0].GetProcessID();
2826             // Fall through and attach using the above process ID
2827           } else {
2828             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2829                 process_name, sizeof(process_name));
2830             if (num_matches > 1) {
2831               StreamString s;
2832               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2833               for (size_t i = 0; i < num_matches; i++) {
2834                 process_infos[i].DumpAsTableRow(
2835                     s, platform_sp->GetUserIDResolver(), true, false);
2836               }
2837               error.SetErrorStringWithFormat(
2838                   "more than one process named %s:\n%s", process_name,
2839                   s.GetData());
2840             } else
2841               error.SetErrorStringWithFormat(
2842                   "could not find a process named %s", process_name);
2843           }
2844         } else {
2845           error.SetErrorString(
2846               "invalid platform, can't find processes by name");
2847           return error;
2848         }
2849       }
2850     } else {
2851       error.SetErrorString("invalid process name");
2852     }
2853   }
2854 
2855   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2856     error = WillAttachToProcessWithID(attach_pid);
2857     if (error.Success()) {
2858 
2859       if (m_public_run_lock.TrySetRunning()) {
2860         // Now attach using these arguments.
2861         m_should_detach = true;
2862         const bool restarted = false;
2863         SetPublicState(eStateAttaching, restarted);
2864         error = DoAttachToProcessWithID(attach_pid, attach_info);
2865       } else {
2866         // This shouldn't happen
2867         error.SetErrorString("failed to acquire process run lock");
2868       }
2869 
2870       if (error.Success()) {
2871         SetNextEventAction(new Process::AttachCompletionHandler(
2872             this, attach_info.GetResumeCount()));
2873         StartPrivateStateThread();
2874       } else {
2875         if (GetID() != LLDB_INVALID_PROCESS_ID)
2876           SetID(LLDB_INVALID_PROCESS_ID);
2877 
2878         const char *error_string = error.AsCString();
2879         if (error_string == nullptr)
2880           error_string = "attach failed";
2881 
2882         SetExitStatus(-1, error_string);
2883       }
2884     }
2885   }
2886   return error;
2887 }
2888 
2889 void Process::CompleteAttach() {
2890   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
2891                                                   LIBLLDB_LOG_TARGET));
2892   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2893 
2894   // Let the process subclass figure out at much as it can about the process
2895   // before we go looking for a dynamic loader plug-in.
2896   ArchSpec process_arch;
2897   DidAttach(process_arch);
2898 
2899   if (process_arch.IsValid()) {
2900     GetTarget().SetArchitecture(process_arch);
2901     if (log) {
2902       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2903       LLDB_LOGF(log,
2904                 "Process::%s replacing process architecture with DidAttach() "
2905                 "architecture: %s",
2906                 __FUNCTION__, triple_str ? triple_str : "<null>");
2907     }
2908   }
2909 
2910   // We just attached.  If we have a platform, ask it for the process
2911   // architecture, and if it isn't the same as the one we've already set,
2912   // switch architectures.
2913   PlatformSP platform_sp(GetTarget().GetPlatform());
2914   assert(platform_sp);
2915   if (platform_sp) {
2916     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2917     if (target_arch.IsValid() &&
2918         !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) {
2919       ArchSpec platform_arch;
2920       platform_sp =
2921           platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch);
2922       if (platform_sp) {
2923         GetTarget().SetPlatform(platform_sp);
2924         GetTarget().SetArchitecture(platform_arch);
2925         LLDB_LOGF(log,
2926                   "Process::%s switching platform to %s and architecture "
2927                   "to %s based on info from attach",
2928                   __FUNCTION__, platform_sp->GetName().AsCString(""),
2929                   platform_arch.GetTriple().getTriple().c_str());
2930       }
2931     } else if (!process_arch.IsValid()) {
2932       ProcessInstanceInfo process_info;
2933       GetProcessInfo(process_info);
2934       const ArchSpec &process_arch = process_info.GetArchitecture();
2935       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2936       if (process_arch.IsValid() &&
2937           target_arch.IsCompatibleMatch(process_arch) &&
2938           !target_arch.IsExactMatch(process_arch)) {
2939         GetTarget().SetArchitecture(process_arch);
2940         LLDB_LOGF(log,
2941                   "Process::%s switching architecture to %s based on info "
2942                   "the platform retrieved for pid %" PRIu64,
2943                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2944                   GetID());
2945       }
2946     }
2947   }
2948 
2949   // We have completed the attach, now it is time to find the dynamic loader
2950   // plug-in
2951   DynamicLoader *dyld = GetDynamicLoader();
2952   if (dyld) {
2953     dyld->DidAttach();
2954     if (log) {
2955       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2956       LLDB_LOG(log,
2957                "after DynamicLoader::DidAttach(), target "
2958                "executable is {0} (using {1} plugin)",
2959                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2960                dyld->GetPluginName());
2961     }
2962   }
2963 
2964   GetJITLoaders().DidAttach();
2965 
2966   SystemRuntime *system_runtime = GetSystemRuntime();
2967   if (system_runtime) {
2968     system_runtime->DidAttach();
2969     if (log) {
2970       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2971       LLDB_LOG(log,
2972                "after SystemRuntime::DidAttach(), target "
2973                "executable is {0} (using {1} plugin)",
2974                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2975                system_runtime->GetPluginName());
2976     }
2977   }
2978 
2979   if (!m_os_up) {
2980     LoadOperatingSystemPlugin(false);
2981     if (m_os_up) {
2982       // Somebody might have gotten threads before now, but we need to force the
2983       // update after we've loaded the OperatingSystem plugin or it won't get a
2984       // chance to process the threads.
2985       m_thread_list.Clear();
2986       UpdateThreadListIfNeeded();
2987     }
2988   }
2989   // Figure out which one is the executable, and set that in our target:
2990   ModuleSP new_executable_module_sp;
2991   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2992     if (module_sp && module_sp->IsExecutable()) {
2993       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2994         new_executable_module_sp = module_sp;
2995       break;
2996     }
2997   }
2998   if (new_executable_module_sp) {
2999     GetTarget().SetExecutableModule(new_executable_module_sp,
3000                                     eLoadDependentsNo);
3001     if (log) {
3002       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3003       LLDB_LOGF(
3004           log,
3005           "Process::%s after looping through modules, target executable is %s",
3006           __FUNCTION__,
3007           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3008                         : "<none>");
3009     }
3010   }
3011 }
3012 
3013 Status Process::ConnectRemote(llvm::StringRef remote_url) {
3014   m_abi_sp.reset();
3015   m_process_input_reader.reset();
3016 
3017   // Find the process and its architecture.  Make sure it matches the
3018   // architecture of the current Target, and if not adjust it.
3019 
3020   Status error(DoConnectRemote(remote_url));
3021   if (error.Success()) {
3022     if (GetID() != LLDB_INVALID_PROCESS_ID) {
3023       EventSP event_sp;
3024       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
3025 
3026       if (state == eStateStopped || state == eStateCrashed) {
3027         // If we attached and actually have a process on the other end, then
3028         // this ended up being the equivalent of an attach.
3029         CompleteAttach();
3030 
3031         // This delays passing the stopped event to listeners till
3032         // CompleteAttach gets a chance to complete...
3033         HandlePrivateEvent(event_sp);
3034       }
3035     }
3036 
3037     if (PrivateStateThreadIsValid())
3038       ResumePrivateStateThread();
3039     else
3040       StartPrivateStateThread();
3041   }
3042   return error;
3043 }
3044 
3045 Status Process::PrivateResume() {
3046   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
3047                                                   LIBLLDB_LOG_STEP));
3048   LLDB_LOGF(log,
3049             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3050             "private state: %s",
3051             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3052             StateAsCString(m_private_state.GetValue()));
3053 
3054   // If signals handing status changed we might want to update our signal
3055   // filters before resuming.
3056   UpdateAutomaticSignalFiltering();
3057 
3058   Status error(WillResume());
3059   // Tell the process it is about to resume before the thread list
3060   if (error.Success()) {
3061     // Now let the thread list know we are about to resume so it can let all of
3062     // our threads know that they are about to be resumed. Threads will each be
3063     // called with Thread::WillResume(StateType) where StateType contains the
3064     // state that they are supposed to have when the process is resumed
3065     // (suspended/running/stepping). Threads should also check their resume
3066     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3067     // start back up with a signal.
3068     if (m_thread_list.WillResume()) {
3069       // Last thing, do the PreResumeActions.
3070       if (!RunPreResumeActions()) {
3071         error.SetErrorString(
3072             "Process::PrivateResume PreResumeActions failed, not resuming.");
3073       } else {
3074         m_mod_id.BumpResumeID();
3075         error = DoResume();
3076         if (error.Success()) {
3077           DidResume();
3078           m_thread_list.DidResume();
3079           LLDB_LOGF(log, "Process thinks the process has resumed.");
3080         } else {
3081           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3082           return error;
3083         }
3084       }
3085     } else {
3086       // Somebody wanted to run without running (e.g. we were faking a step
3087       // from one frame of a set of inlined frames that share the same PC to
3088       // another.)  So generate a continue & a stopped event, and let the world
3089       // handle them.
3090       LLDB_LOGF(log,
3091                 "Process::PrivateResume() asked to simulate a start & stop.");
3092 
3093       SetPrivateState(eStateRunning);
3094       SetPrivateState(eStateStopped);
3095     }
3096   } else
3097     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3098               error.AsCString("<unknown error>"));
3099   return error;
3100 }
3101 
3102 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3103   if (!StateIsRunningState(m_public_state.GetValue()))
3104     return Status("Process is not running.");
3105 
3106   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3107   // case it was already set and some thread plan logic calls halt on its own.
3108   m_clear_thread_plans_on_stop |= clear_thread_plans;
3109 
3110   ListenerSP halt_listener_sp(
3111       Listener::MakeListener("lldb.process.halt_listener"));
3112   HijackProcessEvents(halt_listener_sp);
3113 
3114   EventSP event_sp;
3115 
3116   SendAsyncInterrupt();
3117 
3118   if (m_public_state.GetValue() == eStateAttaching) {
3119     // Don't hijack and eat the eStateExited as the code that was doing the
3120     // attach will be waiting for this event...
3121     RestoreProcessEvents();
3122     SetExitStatus(SIGKILL, "Cancelled async attach.");
3123     Destroy(false);
3124     return Status();
3125   }
3126 
3127   // Wait for the process halt timeout seconds for the process to stop.
3128   StateType state =
3129       WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3130                            halt_listener_sp, nullptr, use_run_lock);
3131   RestoreProcessEvents();
3132 
3133   if (state == eStateInvalid || !event_sp) {
3134     // We timed out and didn't get a stop event...
3135     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3136   }
3137 
3138   BroadcastEvent(event_sp);
3139 
3140   return Status();
3141 }
3142 
3143 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3144   Status error;
3145 
3146   // Check both the public & private states here.  If we're hung evaluating an
3147   // expression, for instance, then the public state will be stopped, but we
3148   // still need to interrupt.
3149   if (m_public_state.GetValue() == eStateRunning ||
3150       m_private_state.GetValue() == eStateRunning) {
3151     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3152     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3153 
3154     ListenerSP listener_sp(
3155         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3156     HijackProcessEvents(listener_sp);
3157 
3158     SendAsyncInterrupt();
3159 
3160     // Consume the interrupt event.
3161     StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3162                                            &exit_event_sp, true, listener_sp);
3163 
3164     RestoreProcessEvents();
3165 
3166     // If the process exited while we were waiting for it to stop, put the
3167     // exited event into the shared pointer passed in and return.  Our caller
3168     // doesn't need to do anything else, since they don't have a process
3169     // anymore...
3170 
3171     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3172       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3173                 __FUNCTION__);
3174       return error;
3175     } else
3176       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3177 
3178     if (state != eStateStopped) {
3179       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3180                 StateAsCString(state));
3181       // If we really couldn't stop the process then we should just error out
3182       // here, but if the lower levels just bobbled sending the event and we
3183       // really are stopped, then continue on.
3184       StateType private_state = m_private_state.GetValue();
3185       if (private_state != eStateStopped) {
3186         return Status(
3187             "Attempt to stop the target in order to detach timed out. "
3188             "State = %s",
3189             StateAsCString(GetState()));
3190       }
3191     }
3192   }
3193   return error;
3194 }
3195 
3196 Status Process::Detach(bool keep_stopped) {
3197   EventSP exit_event_sp;
3198   Status error;
3199   m_destroy_in_process = true;
3200 
3201   error = WillDetach();
3202 
3203   if (error.Success()) {
3204     if (DetachRequiresHalt()) {
3205       error = StopForDestroyOrDetach(exit_event_sp);
3206       if (!error.Success()) {
3207         m_destroy_in_process = false;
3208         return error;
3209       } else if (exit_event_sp) {
3210         // We shouldn't need to do anything else here.  There's no process left
3211         // to detach from...
3212         StopPrivateStateThread();
3213         m_destroy_in_process = false;
3214         return error;
3215       }
3216     }
3217 
3218     m_thread_list.DiscardThreadPlans();
3219     DisableAllBreakpointSites();
3220 
3221     error = DoDetach(keep_stopped);
3222     if (error.Success()) {
3223       DidDetach();
3224       StopPrivateStateThread();
3225     } else {
3226       return error;
3227     }
3228   }
3229   m_destroy_in_process = false;
3230 
3231   // If we exited when we were waiting for a process to stop, then forward the
3232   // event here so we don't lose the event
3233   if (exit_event_sp) {
3234     // Directly broadcast our exited event because we shut down our private
3235     // state thread above
3236     BroadcastEvent(exit_event_sp);
3237   }
3238 
3239   // If we have been interrupted (to kill us) in the middle of running, we may
3240   // not end up propagating the last events through the event system, in which
3241   // case we might strand the write lock.  Unlock it here so when we do to tear
3242   // down the process we don't get an error destroying the lock.
3243 
3244   m_public_run_lock.SetStopped();
3245   return error;
3246 }
3247 
3248 Status Process::Destroy(bool force_kill) {
3249   // If we've already called Process::Finalize then there's nothing useful to
3250   // be done here.  Finalize has actually called Destroy already.
3251   if (m_finalizing)
3252     return {};
3253   return DestroyImpl(force_kill);
3254 }
3255 
3256 Status Process::DestroyImpl(bool force_kill) {
3257   // Tell ourselves we are in the process of destroying the process, so that we
3258   // don't do any unnecessary work that might hinder the destruction.  Remember
3259   // to set this back to false when we are done.  That way if the attempt
3260   // failed and the process stays around for some reason it won't be in a
3261   // confused state.
3262 
3263   if (force_kill)
3264     m_should_detach = false;
3265 
3266   if (GetShouldDetach()) {
3267     // FIXME: This will have to be a process setting:
3268     bool keep_stopped = false;
3269     Detach(keep_stopped);
3270   }
3271 
3272   m_destroy_in_process = true;
3273 
3274   Status error(WillDestroy());
3275   if (error.Success()) {
3276     EventSP exit_event_sp;
3277     if (DestroyRequiresHalt()) {
3278       error = StopForDestroyOrDetach(exit_event_sp);
3279     }
3280 
3281     if (m_public_state.GetValue() == eStateStopped) {
3282       // Ditch all thread plans, and remove all our breakpoints: in case we
3283       // have to restart the target to kill it, we don't want it hitting a
3284       // breakpoint... Only do this if we've stopped, however, since if we
3285       // didn't manage to halt it above, then we're not going to have much luck
3286       // doing this now.
3287       m_thread_list.DiscardThreadPlans();
3288       DisableAllBreakpointSites();
3289     }
3290 
3291     error = DoDestroy();
3292     if (error.Success()) {
3293       DidDestroy();
3294       StopPrivateStateThread();
3295     }
3296     m_stdio_communication.StopReadThread();
3297     m_stdio_communication.Disconnect();
3298     m_stdin_forward = false;
3299 
3300     if (m_process_input_reader) {
3301       m_process_input_reader->SetIsDone(true);
3302       m_process_input_reader->Cancel();
3303       m_process_input_reader.reset();
3304     }
3305 
3306     // If we exited when we were waiting for a process to stop, then forward
3307     // the event here so we don't lose the event
3308     if (exit_event_sp) {
3309       // Directly broadcast our exited event because we shut down our private
3310       // state thread above
3311       BroadcastEvent(exit_event_sp);
3312     }
3313 
3314     // If we have been interrupted (to kill us) in the middle of running, we
3315     // may not end up propagating the last events through the event system, in
3316     // which case we might strand the write lock.  Unlock it here so when we do
3317     // to tear down the process we don't get an error destroying the lock.
3318     m_public_run_lock.SetStopped();
3319   }
3320 
3321   m_destroy_in_process = false;
3322 
3323   return error;
3324 }
3325 
3326 Status Process::Signal(int signal) {
3327   Status error(WillSignal());
3328   if (error.Success()) {
3329     error = DoSignal(signal);
3330     if (error.Success())
3331       DidSignal();
3332   }
3333   return error;
3334 }
3335 
3336 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3337   assert(signals_sp && "null signals_sp");
3338   m_unix_signals_sp = signals_sp;
3339 }
3340 
3341 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3342   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3343   return m_unix_signals_sp;
3344 }
3345 
3346 lldb::ByteOrder Process::GetByteOrder() const {
3347   return GetTarget().GetArchitecture().GetByteOrder();
3348 }
3349 
3350 uint32_t Process::GetAddressByteSize() const {
3351   return GetTarget().GetArchitecture().GetAddressByteSize();
3352 }
3353 
3354 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3355   const StateType state =
3356       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3357   bool return_value = true;
3358   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS |
3359                                                   LIBLLDB_LOG_PROCESS));
3360 
3361   switch (state) {
3362   case eStateDetached:
3363   case eStateExited:
3364   case eStateUnloaded:
3365     m_stdio_communication.SynchronizeWithReadThread();
3366     m_stdio_communication.StopReadThread();
3367     m_stdio_communication.Disconnect();
3368     m_stdin_forward = false;
3369 
3370     LLVM_FALLTHROUGH;
3371   case eStateConnected:
3372   case eStateAttaching:
3373   case eStateLaunching:
3374     // These events indicate changes in the state of the debugging session,
3375     // always report them.
3376     return_value = true;
3377     break;
3378   case eStateInvalid:
3379     // We stopped for no apparent reason, don't report it.
3380     return_value = false;
3381     break;
3382   case eStateRunning:
3383   case eStateStepping:
3384     // If we've started the target running, we handle the cases where we are
3385     // already running and where there is a transition from stopped to running
3386     // differently. running -> running: Automatically suppress extra running
3387     // events stopped -> running: Report except when there is one or more no
3388     // votes
3389     //     and no yes votes.
3390     SynchronouslyNotifyStateChanged(state);
3391     if (m_force_next_event_delivery)
3392       return_value = true;
3393     else {
3394       switch (m_last_broadcast_state) {
3395       case eStateRunning:
3396       case eStateStepping:
3397         // We always suppress multiple runnings with no PUBLIC stop in between.
3398         return_value = false;
3399         break;
3400       default:
3401         // TODO: make this work correctly. For now always report
3402         // run if we aren't running so we don't miss any running events. If I
3403         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3404         // and hit the breakpoints on multiple threads, then somehow during the
3405         // stepping over of all breakpoints no run gets reported.
3406 
3407         // This is a transition from stop to run.
3408         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3409         case eVoteYes:
3410         case eVoteNoOpinion:
3411           return_value = true;
3412           break;
3413         case eVoteNo:
3414           return_value = false;
3415           break;
3416         }
3417         break;
3418       }
3419     }
3420     break;
3421   case eStateStopped:
3422   case eStateCrashed:
3423   case eStateSuspended:
3424     // We've stopped.  First see if we're going to restart the target. If we
3425     // are going to stop, then we always broadcast the event. If we aren't
3426     // going to stop, let the thread plans decide if we're going to report this
3427     // event. If no thread has an opinion, we don't report it.
3428 
3429     m_stdio_communication.SynchronizeWithReadThread();
3430     RefreshStateAfterStop();
3431     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3432       LLDB_LOGF(log,
3433                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3434                 "interrupt, state: %s",
3435                 static_cast<void *>(event_ptr), StateAsCString(state));
3436       // Even though we know we are going to stop, we should let the threads
3437       // have a look at the stop, so they can properly set their state.
3438       m_thread_list.ShouldStop(event_ptr);
3439       return_value = true;
3440     } else {
3441       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3442       bool should_resume = false;
3443 
3444       // It makes no sense to ask "ShouldStop" if we've already been
3445       // restarted... Asking the thread list is also not likely to go well,
3446       // since we are running again. So in that case just report the event.
3447 
3448       if (!was_restarted)
3449         should_resume = !m_thread_list.ShouldStop(event_ptr);
3450 
3451       if (was_restarted || should_resume || m_resume_requested) {
3452         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3453         LLDB_LOGF(log,
3454                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3455                   "%s was_restarted: %i report_stop_vote: %d.",
3456                   should_resume, StateAsCString(state), was_restarted,
3457                   report_stop_vote);
3458 
3459         switch (report_stop_vote) {
3460         case eVoteYes:
3461           return_value = true;
3462           break;
3463         case eVoteNoOpinion:
3464         case eVoteNo:
3465           return_value = false;
3466           break;
3467         }
3468 
3469         if (!was_restarted) {
3470           LLDB_LOGF(log,
3471                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3472                     "from state: %s",
3473                     static_cast<void *>(event_ptr), StateAsCString(state));
3474           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3475           PrivateResume();
3476         }
3477       } else {
3478         return_value = true;
3479         SynchronouslyNotifyStateChanged(state);
3480       }
3481     }
3482     break;
3483   }
3484 
3485   // Forcing the next event delivery is a one shot deal.  So reset it here.
3486   m_force_next_event_delivery = false;
3487 
3488   // We do some coalescing of events (for instance two consecutive running
3489   // events get coalesced.) But we only coalesce against events we actually
3490   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3491   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3492   // done, because the PublicState reflects the last event pulled off the
3493   // queue, and there may be several events stacked up on the queue unserviced.
3494   // So the PublicState may not reflect the last broadcasted event yet.
3495   // m_last_broadcast_state gets updated here.
3496 
3497   if (return_value)
3498     m_last_broadcast_state = state;
3499 
3500   LLDB_LOGF(log,
3501             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3502             "broadcast state: %s - %s",
3503             static_cast<void *>(event_ptr), StateAsCString(state),
3504             StateAsCString(m_last_broadcast_state),
3505             return_value ? "YES" : "NO");
3506   return return_value;
3507 }
3508 
3509 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3510   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
3511 
3512   bool already_running = PrivateStateThreadIsValid();
3513   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3514             already_running ? " already running"
3515                             : " starting private state thread");
3516 
3517   if (!is_secondary_thread && already_running)
3518     return true;
3519 
3520   // Create a thread that watches our internal state and controls which events
3521   // make it to clients (into the DCProcess event queue).
3522   char thread_name[1024];
3523   uint32_t max_len = llvm::get_max_thread_name_length();
3524   if (max_len > 0 && max_len <= 30) {
3525     // On platforms with abbreviated thread name lengths, choose thread names
3526     // that fit within the limit.
3527     if (already_running)
3528       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3529     else
3530       snprintf(thread_name, sizeof(thread_name), "intern-state");
3531   } else {
3532     if (already_running)
3533       snprintf(thread_name, sizeof(thread_name),
3534                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3535                GetID());
3536     else
3537       snprintf(thread_name, sizeof(thread_name),
3538                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3539   }
3540 
3541   // Create the private state thread, and start it running.
3542   PrivateStateThreadArgs *args_ptr =
3543       new PrivateStateThreadArgs(this, is_secondary_thread);
3544   llvm::Expected<HostThread> private_state_thread =
3545       ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread,
3546                                    (void *)args_ptr, 8 * 1024 * 1024);
3547   if (!private_state_thread) {
3548     LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST),
3549              "failed to launch host thread: {}",
3550              llvm::toString(private_state_thread.takeError()));
3551     return false;
3552   }
3553 
3554   assert(private_state_thread->IsJoinable());
3555   m_private_state_thread = *private_state_thread;
3556   ResumePrivateStateThread();
3557   return true;
3558 }
3559 
3560 void Process::PausePrivateStateThread() {
3561   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3562 }
3563 
3564 void Process::ResumePrivateStateThread() {
3565   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3566 }
3567 
3568 void Process::StopPrivateStateThread() {
3569   if (m_private_state_thread.IsJoinable())
3570     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3571   else {
3572     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3573     LLDB_LOGF(
3574         log,
3575         "Went to stop the private state thread, but it was already invalid.");
3576   }
3577 }
3578 
3579 void Process::ControlPrivateStateThread(uint32_t signal) {
3580   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3581 
3582   assert(signal == eBroadcastInternalStateControlStop ||
3583          signal == eBroadcastInternalStateControlPause ||
3584          signal == eBroadcastInternalStateControlResume);
3585 
3586   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3587 
3588   // Signal the private state thread
3589   if (m_private_state_thread.IsJoinable()) {
3590     // Broadcast the event.
3591     // It is important to do this outside of the if below, because it's
3592     // possible that the thread state is invalid but that the thread is waiting
3593     // on a control event instead of simply being on its way out (this should
3594     // not happen, but it apparently can).
3595     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3596     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3597     m_private_state_control_broadcaster.BroadcastEvent(signal,
3598                                                        event_receipt_sp);
3599 
3600     // Wait for the event receipt or for the private state thread to exit
3601     bool receipt_received = false;
3602     if (PrivateStateThreadIsValid()) {
3603       while (!receipt_received) {
3604         // Check for a receipt for n seconds and then check if the private
3605         // state thread is still around.
3606         receipt_received =
3607           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3608         if (!receipt_received) {
3609           // Check if the private state thread is still around. If it isn't
3610           // then we are done waiting
3611           if (!PrivateStateThreadIsValid())
3612             break; // Private state thread exited or is exiting, we are done
3613         }
3614       }
3615     }
3616 
3617     if (signal == eBroadcastInternalStateControlStop) {
3618       thread_result_t result = {};
3619       m_private_state_thread.Join(&result);
3620       m_private_state_thread.Reset();
3621     }
3622   } else {
3623     LLDB_LOGF(
3624         log,
3625         "Private state thread already dead, no need to signal it to stop.");
3626   }
3627 }
3628 
3629 void Process::SendAsyncInterrupt() {
3630   if (PrivateStateThreadIsValid())
3631     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3632                                                nullptr);
3633   else
3634     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3635 }
3636 
3637 void Process::HandlePrivateEvent(EventSP &event_sp) {
3638   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3639   m_resume_requested = false;
3640 
3641   const StateType new_state =
3642       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3643 
3644   // First check to see if anybody wants a shot at this event:
3645   if (m_next_event_action_up) {
3646     NextEventAction::EventActionResult action_result =
3647         m_next_event_action_up->PerformAction(event_sp);
3648     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3649 
3650     switch (action_result) {
3651     case NextEventAction::eEventActionSuccess:
3652       SetNextEventAction(nullptr);
3653       break;
3654 
3655     case NextEventAction::eEventActionRetry:
3656       break;
3657 
3658     case NextEventAction::eEventActionExit:
3659       // Handle Exiting Here.  If we already got an exited event, we should
3660       // just propagate it.  Otherwise, swallow this event, and set our state
3661       // to exit so the next event will kill us.
3662       if (new_state != eStateExited) {
3663         // FIXME: should cons up an exited event, and discard this one.
3664         SetExitStatus(0, m_next_event_action_up->GetExitString());
3665         SetNextEventAction(nullptr);
3666         return;
3667       }
3668       SetNextEventAction(nullptr);
3669       break;
3670     }
3671   }
3672 
3673   // See if we should broadcast this state to external clients?
3674   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3675 
3676   if (should_broadcast) {
3677     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3678     if (log) {
3679       LLDB_LOGF(log,
3680                 "Process::%s (pid = %" PRIu64
3681                 ") broadcasting new state %s (old state %s) to %s",
3682                 __FUNCTION__, GetID(), StateAsCString(new_state),
3683                 StateAsCString(GetState()),
3684                 is_hijacked ? "hijacked" : "public");
3685     }
3686     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3687     if (StateIsRunningState(new_state)) {
3688       // Only push the input handler if we aren't fowarding events, as this
3689       // means the curses GUI is in use... Or don't push it if we are launching
3690       // since it will come up stopped.
3691       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3692           new_state != eStateLaunching && new_state != eStateAttaching) {
3693         PushProcessIOHandler();
3694         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3695                                   eBroadcastAlways);
3696         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3697                   __FUNCTION__, m_iohandler_sync.GetValue());
3698       }
3699     } else if (StateIsStoppedState(new_state, false)) {
3700       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3701         // If the lldb_private::Debugger is handling the events, we don't want
3702         // to pop the process IOHandler here, we want to do it when we receive
3703         // the stopped event so we can carefully control when the process
3704         // IOHandler is popped because when we stop we want to display some
3705         // text stating how and why we stopped, then maybe some
3706         // process/thread/frame info, and then we want the "(lldb) " prompt to
3707         // show up. If we pop the process IOHandler here, then we will cause
3708         // the command interpreter to become the top IOHandler after the
3709         // process pops off and it will update its prompt right away... See the
3710         // Debugger.cpp file where it calls the function as
3711         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3712         // Otherwise we end up getting overlapping "(lldb) " prompts and
3713         // garbled output.
3714         //
3715         // If we aren't handling the events in the debugger (which is indicated
3716         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3717         // we are hijacked, then we always pop the process IO handler manually.
3718         // Hijacking happens when the internal process state thread is running
3719         // thread plans, or when commands want to run in synchronous mode and
3720         // they call "process->WaitForProcessToStop()". An example of something
3721         // that will hijack the events is a simple expression:
3722         //
3723         //  (lldb) expr (int)puts("hello")
3724         //
3725         // This will cause the internal process state thread to resume and halt
3726         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3727         // events) and we do need the IO handler to be pushed and popped
3728         // correctly.
3729 
3730         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3731           PopProcessIOHandler();
3732       }
3733     }
3734 
3735     BroadcastEvent(event_sp);
3736   } else {
3737     if (log) {
3738       LLDB_LOGF(
3739           log,
3740           "Process::%s (pid = %" PRIu64
3741           ") suppressing state %s (old state %s): should_broadcast == false",
3742           __FUNCTION__, GetID(), StateAsCString(new_state),
3743           StateAsCString(GetState()));
3744     }
3745   }
3746 }
3747 
3748 Status Process::HaltPrivate() {
3749   EventSP event_sp;
3750   Status error(WillHalt());
3751   if (error.Fail())
3752     return error;
3753 
3754   // Ask the process subclass to actually halt our process
3755   bool caused_stop;
3756   error = DoHalt(caused_stop);
3757 
3758   DidHalt();
3759   return error;
3760 }
3761 
3762 thread_result_t Process::PrivateStateThread(void *arg) {
3763   std::unique_ptr<PrivateStateThreadArgs> args_up(
3764       static_cast<PrivateStateThreadArgs *>(arg));
3765   thread_result_t result =
3766       args_up->process->RunPrivateStateThread(args_up->is_secondary_thread);
3767   return result;
3768 }
3769 
3770 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3771   bool control_only = true;
3772 
3773   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3774   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3775             __FUNCTION__, static_cast<void *>(this), GetID());
3776 
3777   bool exit_now = false;
3778   bool interrupt_requested = false;
3779   while (!exit_now) {
3780     EventSP event_sp;
3781     GetEventsPrivate(event_sp, llvm::None, control_only);
3782     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3783       LLDB_LOGF(log,
3784                 "Process::%s (arg = %p, pid = %" PRIu64
3785                 ") got a control event: %d",
3786                 __FUNCTION__, static_cast<void *>(this), GetID(),
3787                 event_sp->GetType());
3788 
3789       switch (event_sp->GetType()) {
3790       case eBroadcastInternalStateControlStop:
3791         exit_now = true;
3792         break; // doing any internal state management below
3793 
3794       case eBroadcastInternalStateControlPause:
3795         control_only = true;
3796         break;
3797 
3798       case eBroadcastInternalStateControlResume:
3799         control_only = false;
3800         break;
3801       }
3802 
3803       continue;
3804     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3805       if (m_public_state.GetValue() == eStateAttaching) {
3806         LLDB_LOGF(log,
3807                   "Process::%s (arg = %p, pid = %" PRIu64
3808                   ") woke up with an interrupt while attaching - "
3809                   "forwarding interrupt.",
3810                   __FUNCTION__, static_cast<void *>(this), GetID());
3811         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3812       } else if (StateIsRunningState(m_last_broadcast_state)) {
3813         LLDB_LOGF(log,
3814                   "Process::%s (arg = %p, pid = %" PRIu64
3815                   ") woke up with an interrupt - Halting.",
3816                   __FUNCTION__, static_cast<void *>(this), GetID());
3817         Status error = HaltPrivate();
3818         if (error.Fail() && log)
3819           LLDB_LOGF(log,
3820                     "Process::%s (arg = %p, pid = %" PRIu64
3821                     ") failed to halt the process: %s",
3822                     __FUNCTION__, static_cast<void *>(this), GetID(),
3823                     error.AsCString());
3824         // Halt should generate a stopped event. Make a note of the fact that
3825         // we were doing the interrupt, so we can set the interrupted flag
3826         // after we receive the event. We deliberately set this to true even if
3827         // HaltPrivate failed, so that we can interrupt on the next natural
3828         // stop.
3829         interrupt_requested = true;
3830       } else {
3831         // This can happen when someone (e.g. Process::Halt) sees that we are
3832         // running and sends an interrupt request, but the process actually
3833         // stops before we receive it. In that case, we can just ignore the
3834         // request. We use m_last_broadcast_state, because the Stopped event
3835         // may not have been popped of the event queue yet, which is when the
3836         // public state gets updated.
3837         LLDB_LOGF(log,
3838                   "Process::%s ignoring interrupt as we have already stopped.",
3839                   __FUNCTION__);
3840       }
3841       continue;
3842     }
3843 
3844     const StateType internal_state =
3845         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3846 
3847     if (internal_state != eStateInvalid) {
3848       if (m_clear_thread_plans_on_stop &&
3849           StateIsStoppedState(internal_state, true)) {
3850         m_clear_thread_plans_on_stop = false;
3851         m_thread_list.DiscardThreadPlans();
3852       }
3853 
3854       if (interrupt_requested) {
3855         if (StateIsStoppedState(internal_state, true)) {
3856           // We requested the interrupt, so mark this as such in the stop event
3857           // so clients can tell an interrupted process from a natural stop
3858           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3859           interrupt_requested = false;
3860         } else if (log) {
3861           LLDB_LOGF(log,
3862                     "Process::%s interrupt_requested, but a non-stopped "
3863                     "state '%s' received.",
3864                     __FUNCTION__, StateAsCString(internal_state));
3865         }
3866       }
3867 
3868       HandlePrivateEvent(event_sp);
3869     }
3870 
3871     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3872         internal_state == eStateDetached) {
3873       LLDB_LOGF(log,
3874                 "Process::%s (arg = %p, pid = %" PRIu64
3875                 ") about to exit with internal state %s...",
3876                 __FUNCTION__, static_cast<void *>(this), GetID(),
3877                 StateAsCString(internal_state));
3878 
3879       break;
3880     }
3881   }
3882 
3883   // Verify log is still enabled before attempting to write to it...
3884   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3885             __FUNCTION__, static_cast<void *>(this), GetID());
3886 
3887   // If we are a secondary thread, then the primary thread we are working for
3888   // will have already acquired the public_run_lock, and isn't done with what
3889   // it was doing yet, so don't try to change it on the way out.
3890   if (!is_secondary_thread)
3891     m_public_run_lock.SetStopped();
3892   return {};
3893 }
3894 
3895 // Process Event Data
3896 
3897 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3898 
3899 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3900                                             StateType state)
3901     : EventData(), m_process_wp(), m_state(state), m_restarted(false),
3902       m_update_state(0), m_interrupted(false) {
3903   if (process_sp)
3904     m_process_wp = process_sp;
3905 }
3906 
3907 Process::ProcessEventData::~ProcessEventData() = default;
3908 
3909 ConstString Process::ProcessEventData::GetFlavorString() {
3910   static ConstString g_flavor("Process::ProcessEventData");
3911   return g_flavor;
3912 }
3913 
3914 ConstString Process::ProcessEventData::GetFlavor() const {
3915   return ProcessEventData::GetFlavorString();
3916 }
3917 
3918 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3919                                            bool &found_valid_stopinfo) {
3920   found_valid_stopinfo = false;
3921 
3922   ProcessSP process_sp(m_process_wp.lock());
3923   if (!process_sp)
3924     return false;
3925 
3926   ThreadList &curr_thread_list = process_sp->GetThreadList();
3927   uint32_t num_threads = curr_thread_list.GetSize();
3928   uint32_t idx;
3929 
3930   // The actions might change one of the thread's stop_info's opinions about
3931   // whether we should stop the process, so we need to query that as we go.
3932 
3933   // One other complication here, is that we try to catch any case where the
3934   // target has run (except for expressions) and immediately exit, but if we
3935   // get that wrong (which is possible) then the thread list might have
3936   // changed, and that would cause our iteration here to crash.  We could
3937   // make a copy of the thread list, but we'd really like to also know if it
3938   // has changed at all, so we make up a vector of the thread ID's and check
3939   // what we get back against this list & bag out if anything differs.
3940   ThreadList not_suspended_thread_list(process_sp.get());
3941   std::vector<uint32_t> thread_index_array(num_threads);
3942   uint32_t not_suspended_idx = 0;
3943   for (idx = 0; idx < num_threads; ++idx) {
3944     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3945 
3946     /*
3947      Filter out all suspended threads, they could not be the reason
3948      of stop and no need to perform any actions on them.
3949      */
3950     if (thread_sp->GetResumeState() != eStateSuspended) {
3951       not_suspended_thread_list.AddThread(thread_sp);
3952       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3953       not_suspended_idx++;
3954     }
3955   }
3956 
3957   // Use this to track whether we should continue from here.  We will only
3958   // continue the target running if no thread says we should stop.  Of course
3959   // if some thread's PerformAction actually sets the target running, then it
3960   // doesn't matter what the other threads say...
3961 
3962   bool still_should_stop = false;
3963 
3964   // Sometimes - for instance if we have a bug in the stub we are talking to,
3965   // we stop but no thread has a valid stop reason.  In that case we should
3966   // just stop, because we have no way of telling what the right thing to do
3967   // is, and it's better to let the user decide than continue behind their
3968   // backs.
3969 
3970   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3971     curr_thread_list = process_sp->GetThreadList();
3972     if (curr_thread_list.GetSize() != num_threads) {
3973       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3974                                                       LIBLLDB_LOG_PROCESS));
3975       LLDB_LOGF(
3976           log,
3977           "Number of threads changed from %u to %u while processing event.",
3978           num_threads, curr_thread_list.GetSize());
3979       break;
3980     }
3981 
3982     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3983 
3984     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3985       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3986                                                       LIBLLDB_LOG_PROCESS));
3987       LLDB_LOGF(log,
3988                 "The thread at position %u changed from %u to %u while "
3989                 "processing event.",
3990                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3991       break;
3992     }
3993 
3994     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3995     if (stop_info_sp && stop_info_sp->IsValid()) {
3996       found_valid_stopinfo = true;
3997       bool this_thread_wants_to_stop;
3998       if (stop_info_sp->GetOverrideShouldStop()) {
3999         this_thread_wants_to_stop =
4000             stop_info_sp->GetOverriddenShouldStopValue();
4001       } else {
4002         stop_info_sp->PerformAction(event_ptr);
4003         // The stop action might restart the target.  If it does, then we
4004         // want to mark that in the event so that whoever is receiving it
4005         // will know to wait for the running event and reflect that state
4006         // appropriately. We also need to stop processing actions, since they
4007         // aren't expecting the target to be running.
4008 
4009         // FIXME: we might have run.
4010         if (stop_info_sp->HasTargetRunSinceMe()) {
4011           SetRestarted(true);
4012           break;
4013         }
4014 
4015         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4016       }
4017 
4018       if (!still_should_stop)
4019         still_should_stop = this_thread_wants_to_stop;
4020     }
4021   }
4022 
4023   return still_should_stop;
4024 }
4025 
4026 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4027   ProcessSP process_sp(m_process_wp.lock());
4028 
4029   if (!process_sp)
4030     return;
4031 
4032   // This function gets called twice for each event, once when the event gets
4033   // pulled off of the private process event queue, and then any number of
4034   // times, first when it gets pulled off of the public event queue, then other
4035   // times when we're pretending that this is where we stopped at the end of
4036   // expression evaluation.  m_update_state is used to distinguish these three
4037   // cases; it is 0 when we're just pulling it off for private handling, and >
4038   // 1 for expression evaluation, and we don't want to do the breakpoint
4039   // command handling then.
4040   if (m_update_state != 1)
4041     return;
4042 
4043   process_sp->SetPublicState(
4044       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4045 
4046   if (m_state == eStateStopped && !m_restarted) {
4047     // Let process subclasses know we are about to do a public stop and do
4048     // anything they might need to in order to speed up register and memory
4049     // accesses.
4050     process_sp->WillPublicStop();
4051   }
4052 
4053   // If this is a halt event, even if the halt stopped with some reason other
4054   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4055   // the halt request came through) don't do the StopInfo actions, as they may
4056   // end up restarting the process.
4057   if (m_interrupted)
4058     return;
4059 
4060   // If we're not stopped or have restarted, then skip the StopInfo actions:
4061   if (m_state != eStateStopped || m_restarted) {
4062     return;
4063   }
4064 
4065   bool does_anybody_have_an_opinion = false;
4066   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4067 
4068   if (GetRestarted()) {
4069     return;
4070   }
4071 
4072   if (!still_should_stop && does_anybody_have_an_opinion) {
4073     // We've been asked to continue, so do that here.
4074     SetRestarted(true);
4075     // Use the public resume method here, since this is just extending a
4076     // public resume.
4077     process_sp->PrivateResume();
4078   } else {
4079     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4080                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4081 
4082     if (!hijacked) {
4083       // If we didn't restart, run the Stop Hooks here.
4084       // Don't do that if state changed events aren't hooked up to the
4085       // public (or SyncResume) broadcasters.  StopHooks are just for
4086       // real public stops.  They might also restart the target,
4087       // so watch for that.
4088       if (process_sp->GetTarget().RunStopHooks())
4089         SetRestarted(true);
4090     }
4091   }
4092 }
4093 
4094 void Process::ProcessEventData::Dump(Stream *s) const {
4095   ProcessSP process_sp(m_process_wp.lock());
4096 
4097   if (process_sp)
4098     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4099               static_cast<void *>(process_sp.get()), process_sp->GetID());
4100   else
4101     s->PutCString(" process = NULL, ");
4102 
4103   s->Printf("state = %s", StateAsCString(GetState()));
4104 }
4105 
4106 const Process::ProcessEventData *
4107 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4108   if (event_ptr) {
4109     const EventData *event_data = event_ptr->GetData();
4110     if (event_data &&
4111         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4112       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4113   }
4114   return nullptr;
4115 }
4116 
4117 ProcessSP
4118 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4119   ProcessSP process_sp;
4120   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4121   if (data)
4122     process_sp = data->GetProcessSP();
4123   return process_sp;
4124 }
4125 
4126 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4127   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4128   if (data == nullptr)
4129     return eStateInvalid;
4130   else
4131     return data->GetState();
4132 }
4133 
4134 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4135   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4136   if (data == nullptr)
4137     return false;
4138   else
4139     return data->GetRestarted();
4140 }
4141 
4142 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4143                                                     bool new_value) {
4144   ProcessEventData *data =
4145       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4146   if (data != nullptr)
4147     data->SetRestarted(new_value);
4148 }
4149 
4150 size_t
4151 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4152   ProcessEventData *data =
4153       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4154   if (data != nullptr)
4155     return data->GetNumRestartedReasons();
4156   else
4157     return 0;
4158 }
4159 
4160 const char *
4161 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4162                                                      size_t idx) {
4163   ProcessEventData *data =
4164       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4165   if (data != nullptr)
4166     return data->GetRestartedReasonAtIndex(idx);
4167   else
4168     return nullptr;
4169 }
4170 
4171 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4172                                                    const char *reason) {
4173   ProcessEventData *data =
4174       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4175   if (data != nullptr)
4176     data->AddRestartedReason(reason);
4177 }
4178 
4179 bool Process::ProcessEventData::GetInterruptedFromEvent(
4180     const Event *event_ptr) {
4181   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4182   if (data == nullptr)
4183     return false;
4184   else
4185     return data->GetInterrupted();
4186 }
4187 
4188 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4189                                                       bool new_value) {
4190   ProcessEventData *data =
4191       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4192   if (data != nullptr)
4193     data->SetInterrupted(new_value);
4194 }
4195 
4196 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4197   ProcessEventData *data =
4198       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4199   if (data) {
4200     data->SetUpdateStateOnRemoval();
4201     return true;
4202   }
4203   return false;
4204 }
4205 
4206 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4207 
4208 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4209   exe_ctx.SetTargetPtr(&GetTarget());
4210   exe_ctx.SetProcessPtr(this);
4211   exe_ctx.SetThreadPtr(nullptr);
4212   exe_ctx.SetFramePtr(nullptr);
4213 }
4214 
4215 // uint32_t
4216 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4217 // std::vector<lldb::pid_t> &pids)
4218 //{
4219 //    return 0;
4220 //}
4221 //
4222 // ArchSpec
4223 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4224 //{
4225 //    return Host::GetArchSpecForExistingProcess (pid);
4226 //}
4227 //
4228 // ArchSpec
4229 // Process::GetArchSpecForExistingProcess (const char *process_name)
4230 //{
4231 //    return Host::GetArchSpecForExistingProcess (process_name);
4232 //}
4233 
4234 void Process::AppendSTDOUT(const char *s, size_t len) {
4235   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4236   m_stdout_data.append(s, len);
4237   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4238                          new ProcessEventData(shared_from_this(), GetState()));
4239 }
4240 
4241 void Process::AppendSTDERR(const char *s, size_t len) {
4242   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4243   m_stderr_data.append(s, len);
4244   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4245                          new ProcessEventData(shared_from_this(), GetState()));
4246 }
4247 
4248 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4249   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4250   m_profile_data.push_back(one_profile_data);
4251   BroadcastEventIfUnique(eBroadcastBitProfileData,
4252                          new ProcessEventData(shared_from_this(), GetState()));
4253 }
4254 
4255 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4256                                       const StructuredDataPluginSP &plugin_sp) {
4257   BroadcastEvent(
4258       eBroadcastBitStructuredData,
4259       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4260 }
4261 
4262 StructuredDataPluginSP
4263 Process::GetStructuredDataPlugin(ConstString type_name) const {
4264   auto find_it = m_structured_data_plugin_map.find(type_name);
4265   if (find_it != m_structured_data_plugin_map.end())
4266     return find_it->second;
4267   else
4268     return StructuredDataPluginSP();
4269 }
4270 
4271 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4272   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4273   if (m_profile_data.empty())
4274     return 0;
4275 
4276   std::string &one_profile_data = m_profile_data.front();
4277   size_t bytes_available = one_profile_data.size();
4278   if (bytes_available > 0) {
4279     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4280     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4281               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4282     if (bytes_available > buf_size) {
4283       memcpy(buf, one_profile_data.c_str(), buf_size);
4284       one_profile_data.erase(0, buf_size);
4285       bytes_available = buf_size;
4286     } else {
4287       memcpy(buf, one_profile_data.c_str(), bytes_available);
4288       m_profile_data.erase(m_profile_data.begin());
4289     }
4290   }
4291   return bytes_available;
4292 }
4293 
4294 // Process STDIO
4295 
4296 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4297   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4298   size_t bytes_available = m_stdout_data.size();
4299   if (bytes_available > 0) {
4300     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4301     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4302               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4303     if (bytes_available > buf_size) {
4304       memcpy(buf, m_stdout_data.c_str(), buf_size);
4305       m_stdout_data.erase(0, buf_size);
4306       bytes_available = buf_size;
4307     } else {
4308       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4309       m_stdout_data.clear();
4310     }
4311   }
4312   return bytes_available;
4313 }
4314 
4315 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4316   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4317   size_t bytes_available = m_stderr_data.size();
4318   if (bytes_available > 0) {
4319     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4320     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4321               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4322     if (bytes_available > buf_size) {
4323       memcpy(buf, m_stderr_data.c_str(), buf_size);
4324       m_stderr_data.erase(0, buf_size);
4325       bytes_available = buf_size;
4326     } else {
4327       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4328       m_stderr_data.clear();
4329     }
4330   }
4331   return bytes_available;
4332 }
4333 
4334 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4335                                            size_t src_len) {
4336   Process *process = (Process *)baton;
4337   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4338 }
4339 
4340 class IOHandlerProcessSTDIO : public IOHandler {
4341 public:
4342   IOHandlerProcessSTDIO(Process *process, int write_fd)
4343       : IOHandler(process->GetTarget().GetDebugger(),
4344                   IOHandler::Type::ProcessIO),
4345         m_process(process),
4346         m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4347         m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4348     m_pipe.CreateNew(false);
4349   }
4350 
4351   ~IOHandlerProcessSTDIO() override = default;
4352 
4353   // Each IOHandler gets to run until it is done. It should read data from the
4354   // "in" and place output into "out" and "err and return when done.
4355   void Run() override {
4356     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4357         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4358       SetIsDone(true);
4359       return;
4360     }
4361 
4362     SetIsDone(false);
4363     const int read_fd = m_read_file.GetDescriptor();
4364     Terminal terminal(read_fd);
4365     TerminalState terminal_state(terminal, false);
4366     // FIXME: error handling?
4367     llvm::consumeError(terminal.SetCanonical(false));
4368     llvm::consumeError(terminal.SetEcho(false));
4369 // FD_ZERO, FD_SET are not supported on windows
4370 #ifndef _WIN32
4371     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4372     m_is_running = true;
4373     while (!GetIsDone()) {
4374       SelectHelper select_helper;
4375       select_helper.FDSetRead(read_fd);
4376       select_helper.FDSetRead(pipe_read_fd);
4377       Status error = select_helper.Select();
4378 
4379       if (error.Fail()) {
4380         SetIsDone(true);
4381       } else {
4382         char ch = 0;
4383         size_t n;
4384         if (select_helper.FDIsSetRead(read_fd)) {
4385           n = 1;
4386           if (m_read_file.Read(&ch, n).Success() && n == 1) {
4387             if (m_write_file.Write(&ch, n).Fail() || n != 1)
4388               SetIsDone(true);
4389           } else
4390             SetIsDone(true);
4391         }
4392         if (select_helper.FDIsSetRead(pipe_read_fd)) {
4393           size_t bytes_read;
4394           // Consume the interrupt byte
4395           Status error = m_pipe.Read(&ch, 1, bytes_read);
4396           if (error.Success()) {
4397             switch (ch) {
4398             case 'q':
4399               SetIsDone(true);
4400               break;
4401             case 'i':
4402               if (StateIsRunningState(m_process->GetState()))
4403                 m_process->SendAsyncInterrupt();
4404               break;
4405             }
4406           }
4407         }
4408       }
4409     }
4410     m_is_running = false;
4411 #endif
4412   }
4413 
4414   void Cancel() override {
4415     SetIsDone(true);
4416     // Only write to our pipe to cancel if we are in
4417     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4418     // is being run from the command interpreter:
4419     //
4420     // (lldb) step_process_thousands_of_times
4421     //
4422     // In this case the command interpreter will be in the middle of handling
4423     // the command and if the process pushes and pops the IOHandler thousands
4424     // of times, we can end up writing to m_pipe without ever consuming the
4425     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4426     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4427     if (m_is_running) {
4428       char ch = 'q'; // Send 'q' for quit
4429       size_t bytes_written = 0;
4430       m_pipe.Write(&ch, 1, bytes_written);
4431     }
4432   }
4433 
4434   bool Interrupt() override {
4435     // Do only things that are safe to do in an interrupt context (like in a
4436     // SIGINT handler), like write 1 byte to a file descriptor. This will
4437     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4438     // that was written to the pipe and then call
4439     // m_process->SendAsyncInterrupt() from a much safer location in code.
4440     if (m_active) {
4441       char ch = 'i'; // Send 'i' for interrupt
4442       size_t bytes_written = 0;
4443       Status result = m_pipe.Write(&ch, 1, bytes_written);
4444       return result.Success();
4445     } else {
4446       // This IOHandler might be pushed on the stack, but not being run
4447       // currently so do the right thing if we aren't actively watching for
4448       // STDIN by sending the interrupt to the process. Otherwise the write to
4449       // the pipe above would do nothing. This can happen when the command
4450       // interpreter is running and gets a "expression ...". It will be on the
4451       // IOHandler thread and sending the input is complete to the delegate
4452       // which will cause the expression to run, which will push the process IO
4453       // handler, but not run it.
4454 
4455       if (StateIsRunningState(m_process->GetState())) {
4456         m_process->SendAsyncInterrupt();
4457         return true;
4458       }
4459     }
4460     return false;
4461   }
4462 
4463   void GotEOF() override {}
4464 
4465 protected:
4466   Process *m_process;
4467   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4468   NativeFile m_write_file; // Write to this file (usually the primary pty for
4469                            // getting io to debuggee)
4470   Pipe m_pipe;
4471   std::atomic<bool> m_is_running{false};
4472 };
4473 
4474 void Process::SetSTDIOFileDescriptor(int fd) {
4475   // First set up the Read Thread for reading/handling process I/O
4476   m_stdio_communication.SetConnection(
4477       std::make_unique<ConnectionFileDescriptor>(fd, true));
4478   if (m_stdio_communication.IsConnected()) {
4479     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4480         STDIOReadThreadBytesReceived, this);
4481     m_stdio_communication.StartReadThread();
4482 
4483     // Now read thread is set up, set up input reader.
4484 
4485     if (!m_process_input_reader)
4486       m_process_input_reader =
4487           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4488   }
4489 }
4490 
4491 bool Process::ProcessIOHandlerIsActive() {
4492   IOHandlerSP io_handler_sp(m_process_input_reader);
4493   if (io_handler_sp)
4494     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4495   return false;
4496 }
4497 bool Process::PushProcessIOHandler() {
4498   IOHandlerSP io_handler_sp(m_process_input_reader);
4499   if (io_handler_sp) {
4500     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4501     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4502 
4503     io_handler_sp->SetIsDone(false);
4504     // If we evaluate an utility function, then we don't cancel the current
4505     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4506     // existing IOHandler that potentially provides the user interface (e.g.
4507     // the IOHandler for Editline).
4508     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4509     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4510                                                 cancel_top_handler);
4511     return true;
4512   }
4513   return false;
4514 }
4515 
4516 bool Process::PopProcessIOHandler() {
4517   IOHandlerSP io_handler_sp(m_process_input_reader);
4518   if (io_handler_sp)
4519     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4520   return false;
4521 }
4522 
4523 // The process needs to know about installed plug-ins
4524 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4525 
4526 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4527 
4528 namespace {
4529 // RestorePlanState is used to record the "is private", "is controlling" and
4530 // "okay
4531 // to discard" fields of the plan we are running, and reset it on Clean or on
4532 // destruction. It will only reset the state once, so you can call Clean and
4533 // then monkey with the state and it won't get reset on you again.
4534 
4535 class RestorePlanState {
4536 public:
4537   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4538       : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) {
4539     if (m_thread_plan_sp) {
4540       m_private = m_thread_plan_sp->GetPrivate();
4541       m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4542       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4543     }
4544   }
4545 
4546   ~RestorePlanState() { Clean(); }
4547 
4548   void Clean() {
4549     if (!m_already_reset && m_thread_plan_sp) {
4550       m_already_reset = true;
4551       m_thread_plan_sp->SetPrivate(m_private);
4552       m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4553       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4554     }
4555   }
4556 
4557 private:
4558   lldb::ThreadPlanSP m_thread_plan_sp;
4559   bool m_already_reset;
4560   bool m_private;
4561   bool m_is_controlling;
4562   bool m_okay_to_discard;
4563 };
4564 } // anonymous namespace
4565 
4566 static microseconds
4567 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4568   const milliseconds default_one_thread_timeout(250);
4569 
4570   // If the overall wait is forever, then we don't need to worry about it.
4571   if (!options.GetTimeout()) {
4572     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4573                                          : default_one_thread_timeout;
4574   }
4575 
4576   // If the one thread timeout is set, use it.
4577   if (options.GetOneThreadTimeout())
4578     return *options.GetOneThreadTimeout();
4579 
4580   // Otherwise use half the total timeout, bounded by the
4581   // default_one_thread_timeout.
4582   return std::min<microseconds>(default_one_thread_timeout,
4583                                 *options.GetTimeout() / 2);
4584 }
4585 
4586 static Timeout<std::micro>
4587 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4588                      bool before_first_timeout) {
4589   // If we are going to run all threads the whole time, or if we are only going
4590   // to run one thread, we can just return the overall timeout.
4591   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4592     return options.GetTimeout();
4593 
4594   if (before_first_timeout)
4595     return GetOneThreadExpressionTimeout(options);
4596 
4597   if (!options.GetTimeout())
4598     return llvm::None;
4599   else
4600     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4601 }
4602 
4603 static llvm::Optional<ExpressionResults>
4604 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4605                    RestorePlanState &restorer, const EventSP &event_sp,
4606                    EventSP &event_to_broadcast_sp,
4607                    const EvaluateExpressionOptions &options,
4608                    bool handle_interrupts) {
4609   Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS);
4610 
4611   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4612                            .GetProcessSP()
4613                            ->GetThreadList()
4614                            .FindThreadByID(thread_id);
4615   if (!thread_sp) {
4616     LLDB_LOG(log,
4617              "The thread on which we were running the "
4618              "expression: tid = {0}, exited while "
4619              "the expression was running.",
4620              thread_id);
4621     return eExpressionThreadVanished;
4622   }
4623 
4624   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4625   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4626     LLDB_LOG(log, "execution completed successfully");
4627 
4628     // Restore the plan state so it will get reported as intended when we are
4629     // done.
4630     restorer.Clean();
4631     return eExpressionCompleted;
4632   }
4633 
4634   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4635   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4636       stop_info_sp->ShouldNotify(event_sp.get())) {
4637     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4638     if (!options.DoesIgnoreBreakpoints()) {
4639       // Restore the plan state and then force Private to false.  We are going
4640       // to stop because of this plan so we need it to become a public plan or
4641       // it won't report correctly when we continue to its termination later
4642       // on.
4643       restorer.Clean();
4644       thread_plan_sp->SetPrivate(false);
4645       event_to_broadcast_sp = event_sp;
4646     }
4647     return eExpressionHitBreakpoint;
4648   }
4649 
4650   if (!handle_interrupts &&
4651       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4652     return llvm::None;
4653 
4654   LLDB_LOG(log, "thread plan did not successfully complete");
4655   if (!options.DoesUnwindOnError())
4656     event_to_broadcast_sp = event_sp;
4657   return eExpressionInterrupted;
4658 }
4659 
4660 ExpressionResults
4661 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4662                        lldb::ThreadPlanSP &thread_plan_sp,
4663                        const EvaluateExpressionOptions &options,
4664                        DiagnosticManager &diagnostic_manager) {
4665   ExpressionResults return_value = eExpressionSetupError;
4666 
4667   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4668 
4669   if (!thread_plan_sp) {
4670     diagnostic_manager.PutString(
4671         eDiagnosticSeverityError,
4672         "RunThreadPlan called with empty thread plan.");
4673     return eExpressionSetupError;
4674   }
4675 
4676   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4677     diagnostic_manager.PutString(
4678         eDiagnosticSeverityError,
4679         "RunThreadPlan called with an invalid thread plan.");
4680     return eExpressionSetupError;
4681   }
4682 
4683   if (exe_ctx.GetProcessPtr() != this) {
4684     diagnostic_manager.PutString(eDiagnosticSeverityError,
4685                                  "RunThreadPlan called on wrong process.");
4686     return eExpressionSetupError;
4687   }
4688 
4689   Thread *thread = exe_ctx.GetThreadPtr();
4690   if (thread == nullptr) {
4691     diagnostic_manager.PutString(eDiagnosticSeverityError,
4692                                  "RunThreadPlan called with invalid thread.");
4693     return eExpressionSetupError;
4694   }
4695 
4696   // Record the thread's id so we can tell when a thread we were using
4697   // to run the expression exits during the expression evaluation.
4698   lldb::tid_t expr_thread_id = thread->GetID();
4699 
4700   // We need to change some of the thread plan attributes for the thread plan
4701   // runner.  This will restore them when we are done:
4702 
4703   RestorePlanState thread_plan_restorer(thread_plan_sp);
4704 
4705   // We rely on the thread plan we are running returning "PlanCompleted" if
4706   // when it successfully completes. For that to be true the plan can't be
4707   // private - since private plans suppress themselves in the GetCompletedPlan
4708   // call.
4709 
4710   thread_plan_sp->SetPrivate(false);
4711 
4712   // The plans run with RunThreadPlan also need to be terminal controlling plans
4713   // or when they are done we will end up asking the plan above us whether we
4714   // should stop, which may give the wrong answer.
4715 
4716   thread_plan_sp->SetIsControllingPlan(true);
4717   thread_plan_sp->SetOkayToDiscard(false);
4718 
4719   // If we are running some utility expression for LLDB, we now have to mark
4720   // this in the ProcesModID of this process. This RAII takes care of marking
4721   // and reverting the mark it once we are done running the expression.
4722   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4723 
4724   if (m_private_state.GetValue() != eStateStopped) {
4725     diagnostic_manager.PutString(
4726         eDiagnosticSeverityError,
4727         "RunThreadPlan called while the private state was not stopped.");
4728     return eExpressionSetupError;
4729   }
4730 
4731   // Save the thread & frame from the exe_ctx for restoration after we run
4732   const uint32_t thread_idx_id = thread->GetIndexID();
4733   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4734   if (!selected_frame_sp) {
4735     thread->SetSelectedFrame(nullptr);
4736     selected_frame_sp = thread->GetSelectedFrame();
4737     if (!selected_frame_sp) {
4738       diagnostic_manager.Printf(
4739           eDiagnosticSeverityError,
4740           "RunThreadPlan called without a selected frame on thread %d",
4741           thread_idx_id);
4742       return eExpressionSetupError;
4743     }
4744   }
4745 
4746   // Make sure the timeout values make sense. The one thread timeout needs to
4747   // be smaller than the overall timeout.
4748   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4749       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4750     diagnostic_manager.PutString(eDiagnosticSeverityError,
4751                                  "RunThreadPlan called with one thread "
4752                                  "timeout greater than total timeout");
4753     return eExpressionSetupError;
4754   }
4755 
4756   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4757 
4758   // N.B. Running the target may unset the currently selected thread and frame.
4759   // We don't want to do that either, so we should arrange to reset them as
4760   // well.
4761 
4762   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4763 
4764   uint32_t selected_tid;
4765   StackID selected_stack_id;
4766   if (selected_thread_sp) {
4767     selected_tid = selected_thread_sp->GetIndexID();
4768     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4769   } else {
4770     selected_tid = LLDB_INVALID_THREAD_ID;
4771   }
4772 
4773   HostThread backup_private_state_thread;
4774   lldb::StateType old_state = eStateInvalid;
4775   lldb::ThreadPlanSP stopper_base_plan_sp;
4776 
4777   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
4778                                                   LIBLLDB_LOG_PROCESS));
4779   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4780     // Yikes, we are running on the private state thread!  So we can't wait for
4781     // public events on this thread, since we are the thread that is generating
4782     // public events. The simplest thing to do is to spin up a temporary thread
4783     // to handle private state thread events while we are fielding public
4784     // events here.
4785     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4786                    "another state thread to handle the events.");
4787 
4788     backup_private_state_thread = m_private_state_thread;
4789 
4790     // One other bit of business: we want to run just this thread plan and
4791     // anything it pushes, and then stop, returning control here. But in the
4792     // normal course of things, the plan above us on the stack would be given a
4793     // shot at the stop event before deciding to stop, and we don't want that.
4794     // So we insert a "stopper" base plan on the stack before the plan we want
4795     // to run.  Since base plans always stop and return control to the user,
4796     // that will do just what we want.
4797     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4798     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4799     // Have to make sure our public state is stopped, since otherwise the
4800     // reporting logic below doesn't work correctly.
4801     old_state = m_public_state.GetValue();
4802     m_public_state.SetValueNoLock(eStateStopped);
4803 
4804     // Now spin up the private state thread:
4805     StartPrivateStateThread(true);
4806   }
4807 
4808   thread->QueueThreadPlan(
4809       thread_plan_sp, false); // This used to pass "true" does that make sense?
4810 
4811   if (options.GetDebug()) {
4812     // In this case, we aren't actually going to run, we just want to stop
4813     // right away. Flush this thread so we will refetch the stacks and show the
4814     // correct backtrace.
4815     // FIXME: To make this prettier we should invent some stop reason for this,
4816     // but that
4817     // is only cosmetic, and this functionality is only of use to lldb
4818     // developers who can live with not pretty...
4819     thread->Flush();
4820     return eExpressionStoppedForDebug;
4821   }
4822 
4823   ListenerSP listener_sp(
4824       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4825 
4826   lldb::EventSP event_to_broadcast_sp;
4827 
4828   {
4829     // This process event hijacker Hijacks the Public events and its destructor
4830     // makes sure that the process events get restored on exit to the function.
4831     //
4832     // If the event needs to propagate beyond the hijacker (e.g., the process
4833     // exits during execution), then the event is put into
4834     // event_to_broadcast_sp for rebroadcasting.
4835 
4836     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4837 
4838     if (log) {
4839       StreamString s;
4840       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4841       LLDB_LOGF(log,
4842                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4843                 " to run thread plan \"%s\".",
4844                 thread_idx_id, expr_thread_id, s.GetData());
4845     }
4846 
4847     bool got_event;
4848     lldb::EventSP event_sp;
4849     lldb::StateType stop_state = lldb::eStateInvalid;
4850 
4851     bool before_first_timeout = true; // This is set to false the first time
4852                                       // that we have to halt the target.
4853     bool do_resume = true;
4854     bool handle_running_event = true;
4855 
4856     // This is just for accounting:
4857     uint32_t num_resumes = 0;
4858 
4859     // If we are going to run all threads the whole time, or if we are only
4860     // going to run one thread, then we don't need the first timeout.  So we
4861     // pretend we are after the first timeout already.
4862     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4863       before_first_timeout = false;
4864 
4865     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4866               options.GetStopOthers(), options.GetTryAllThreads(),
4867               before_first_timeout);
4868 
4869     // This isn't going to work if there are unfetched events on the queue. Are
4870     // there cases where we might want to run the remaining events here, and
4871     // then try to call the function?  That's probably being too tricky for our
4872     // own good.
4873 
4874     Event *other_events = listener_sp->PeekAtNextEvent();
4875     if (other_events != nullptr) {
4876       diagnostic_manager.PutString(
4877           eDiagnosticSeverityError,
4878           "RunThreadPlan called with pending events on the queue.");
4879       return eExpressionSetupError;
4880     }
4881 
4882     // We also need to make sure that the next event is delivered.  We might be
4883     // calling a function as part of a thread plan, in which case the last
4884     // delivered event could be the running event, and we don't want event
4885     // coalescing to cause us to lose OUR running event...
4886     ForceNextEventDelivery();
4887 
4888 // This while loop must exit out the bottom, there's cleanup that we need to do
4889 // when we are done. So don't call return anywhere within it.
4890 
4891 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4892     // It's pretty much impossible to write test cases for things like: One
4893     // thread timeout expires, I go to halt, but the process already stopped on
4894     // the function call stop breakpoint.  Turning on this define will make us
4895     // not fetch the first event till after the halt.  So if you run a quick
4896     // function, it will have completed, and the completion event will be
4897     // waiting, when you interrupt for halt. The expression evaluation should
4898     // still succeed.
4899     bool miss_first_event = true;
4900 #endif
4901     while (true) {
4902       // We usually want to resume the process if we get to the top of the
4903       // loop. The only exception is if we get two running events with no
4904       // intervening stop, which can happen, we will just wait for then next
4905       // stop event.
4906       LLDB_LOGF(log,
4907                 "Top of while loop: do_resume: %i handle_running_event: %i "
4908                 "before_first_timeout: %i.",
4909                 do_resume, handle_running_event, before_first_timeout);
4910 
4911       if (do_resume || handle_running_event) {
4912         // Do the initial resume and wait for the running event before going
4913         // further.
4914 
4915         if (do_resume) {
4916           num_resumes++;
4917           Status resume_error = PrivateResume();
4918           if (!resume_error.Success()) {
4919             diagnostic_manager.Printf(
4920                 eDiagnosticSeverityError,
4921                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4922                 resume_error.AsCString());
4923             return_value = eExpressionSetupError;
4924             break;
4925           }
4926         }
4927 
4928         got_event =
4929             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4930         if (!got_event) {
4931           LLDB_LOGF(log,
4932                     "Process::RunThreadPlan(): didn't get any event after "
4933                     "resume %" PRIu32 ", exiting.",
4934                     num_resumes);
4935 
4936           diagnostic_manager.Printf(eDiagnosticSeverityError,
4937                                     "didn't get any event after resume %" PRIu32
4938                                     ", exiting.",
4939                                     num_resumes);
4940           return_value = eExpressionSetupError;
4941           break;
4942         }
4943 
4944         stop_state =
4945             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4946 
4947         if (stop_state != eStateRunning) {
4948           bool restarted = false;
4949 
4950           if (stop_state == eStateStopped) {
4951             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4952                 event_sp.get());
4953             LLDB_LOGF(
4954                 log,
4955                 "Process::RunThreadPlan(): didn't get running event after "
4956                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4957                 "handle_running_event: %i).",
4958                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4959                 handle_running_event);
4960           }
4961 
4962           if (restarted) {
4963             // This is probably an overabundance of caution, I don't think I
4964             // should ever get a stopped & restarted event here.  But if I do,
4965             // the best thing is to Halt and then get out of here.
4966             const bool clear_thread_plans = false;
4967             const bool use_run_lock = false;
4968             Halt(clear_thread_plans, use_run_lock);
4969           }
4970 
4971           diagnostic_manager.Printf(
4972               eDiagnosticSeverityError,
4973               "didn't get running event after initial resume, got %s instead.",
4974               StateAsCString(stop_state));
4975           return_value = eExpressionSetupError;
4976           break;
4977         }
4978 
4979         if (log)
4980           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4981         // We need to call the function synchronously, so spin waiting for it
4982         // to return. If we get interrupted while executing, we're going to
4983         // lose our context, and won't be able to gather the result at this
4984         // point. We set the timeout AFTER the resume, since the resume takes
4985         // some time and we don't want to charge that to the timeout.
4986       } else {
4987         if (log)
4988           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4989       }
4990 
4991       do_resume = true;
4992       handle_running_event = true;
4993 
4994       // Now wait for the process to stop again:
4995       event_sp.reset();
4996 
4997       Timeout<std::micro> timeout =
4998           GetExpressionTimeout(options, before_first_timeout);
4999       if (log) {
5000         if (timeout) {
5001           auto now = system_clock::now();
5002           LLDB_LOGF(log,
5003                     "Process::RunThreadPlan(): about to wait - now is %s - "
5004                     "endpoint is %s",
5005                     llvm::to_string(now).c_str(),
5006                     llvm::to_string(now + *timeout).c_str());
5007         } else {
5008           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
5009         }
5010       }
5011 
5012 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5013       // See comment above...
5014       if (miss_first_event) {
5015         std::this_thread::sleep_for(std::chrono::milliseconds(1));
5016         miss_first_event = false;
5017         got_event = false;
5018       } else
5019 #endif
5020         got_event = listener_sp->GetEvent(event_sp, timeout);
5021 
5022       if (got_event) {
5023         if (event_sp) {
5024           bool keep_going = false;
5025           if (event_sp->GetType() == eBroadcastBitInterrupt) {
5026             const bool clear_thread_plans = false;
5027             const bool use_run_lock = false;
5028             Halt(clear_thread_plans, use_run_lock);
5029             return_value = eExpressionInterrupted;
5030             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
5031                                          "execution halted by user interrupt.");
5032             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
5033                            "eBroadcastBitInterrupted, exiting.");
5034             break;
5035           } else {
5036             stop_state =
5037                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5038             LLDB_LOGF(log,
5039                       "Process::RunThreadPlan(): in while loop, got event: %s.",
5040                       StateAsCString(stop_state));
5041 
5042             switch (stop_state) {
5043             case lldb::eStateStopped: {
5044               if (Process::ProcessEventData::GetRestartedFromEvent(
5045                       event_sp.get())) {
5046                 // If we were restarted, we just need to go back up to fetch
5047                 // another event.
5048                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5049                                "restart, so we'll continue waiting.");
5050                 keep_going = true;
5051                 do_resume = false;
5052                 handle_running_event = true;
5053               } else {
5054                 const bool handle_interrupts = true;
5055                 return_value = *HandleStoppedEvent(
5056                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5057                     event_sp, event_to_broadcast_sp, options,
5058                     handle_interrupts);
5059                 if (return_value == eExpressionThreadVanished)
5060                   keep_going = false;
5061               }
5062             } break;
5063 
5064             case lldb::eStateRunning:
5065               // This shouldn't really happen, but sometimes we do get two
5066               // running events without an intervening stop, and in that case
5067               // we should just go back to waiting for the stop.
5068               do_resume = false;
5069               keep_going = true;
5070               handle_running_event = false;
5071               break;
5072 
5073             default:
5074               LLDB_LOGF(log,
5075                         "Process::RunThreadPlan(): execution stopped with "
5076                         "unexpected state: %s.",
5077                         StateAsCString(stop_state));
5078 
5079               if (stop_state == eStateExited)
5080                 event_to_broadcast_sp = event_sp;
5081 
5082               diagnostic_manager.PutString(
5083                   eDiagnosticSeverityError,
5084                   "execution stopped with unexpected state.");
5085               return_value = eExpressionInterrupted;
5086               break;
5087             }
5088           }
5089 
5090           if (keep_going)
5091             continue;
5092           else
5093             break;
5094         } else {
5095           if (log)
5096             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5097                             "the event pointer was null.  How odd...");
5098           return_value = eExpressionInterrupted;
5099           break;
5100         }
5101       } else {
5102         // If we didn't get an event that means we've timed out... We will
5103         // interrupt the process here.  Depending on what we were asked to do
5104         // we will either exit, or try with all threads running for the same
5105         // timeout.
5106 
5107         if (log) {
5108           if (options.GetTryAllThreads()) {
5109             if (before_first_timeout) {
5110               LLDB_LOG(log,
5111                        "Running function with one thread timeout timed out.");
5112             } else
5113               LLDB_LOG(log, "Restarting function with all threads enabled and "
5114                             "timeout: {0} timed out, abandoning execution.",
5115                        timeout);
5116           } else
5117             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5118                           "abandoning execution.",
5119                      timeout);
5120         }
5121 
5122         // It is possible that between the time we issued the Halt, and we get
5123         // around to calling Halt the target could have stopped.  That's fine,
5124         // Halt will figure that out and send the appropriate Stopped event.
5125         // BUT it is also possible that we stopped & restarted (e.g. hit a
5126         // signal with "stop" set to false.)  In
5127         // that case, we'll get the stopped & restarted event, and we should go
5128         // back to waiting for the Halt's stopped event.  That's what this
5129         // while loop does.
5130 
5131         bool back_to_top = true;
5132         uint32_t try_halt_again = 0;
5133         bool do_halt = true;
5134         const uint32_t num_retries = 5;
5135         while (try_halt_again < num_retries) {
5136           Status halt_error;
5137           if (do_halt) {
5138             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5139             const bool clear_thread_plans = false;
5140             const bool use_run_lock = false;
5141             Halt(clear_thread_plans, use_run_lock);
5142           }
5143           if (halt_error.Success()) {
5144             if (log)
5145               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5146 
5147             got_event =
5148                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5149 
5150             if (got_event) {
5151               stop_state =
5152                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5153               if (log) {
5154                 LLDB_LOGF(log,
5155                           "Process::RunThreadPlan(): Stopped with event: %s",
5156                           StateAsCString(stop_state));
5157                 if (stop_state == lldb::eStateStopped &&
5158                     Process::ProcessEventData::GetInterruptedFromEvent(
5159                         event_sp.get()))
5160                   log->PutCString("    Event was the Halt interruption event.");
5161               }
5162 
5163               if (stop_state == lldb::eStateStopped) {
5164                 if (Process::ProcessEventData::GetRestartedFromEvent(
5165                         event_sp.get())) {
5166                   if (log)
5167                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5168                                     "but got a restarted event, there must be "
5169                                     "an un-restarted stopped event so try "
5170                                     "again...  "
5171                                     "Exiting wait loop.");
5172                   try_halt_again++;
5173                   do_halt = false;
5174                   continue;
5175                 }
5176 
5177                 // Between the time we initiated the Halt and the time we
5178                 // delivered it, the process could have already finished its
5179                 // job.  Check that here:
5180                 const bool handle_interrupts = false;
5181                 if (auto result = HandleStoppedEvent(
5182                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5183                         event_sp, event_to_broadcast_sp, options,
5184                         handle_interrupts)) {
5185                   return_value = *result;
5186                   back_to_top = false;
5187                   break;
5188                 }
5189 
5190                 if (!options.GetTryAllThreads()) {
5191                   if (log)
5192                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5193                                     "was false, we stopped so now we're "
5194                                     "quitting.");
5195                   return_value = eExpressionInterrupted;
5196                   back_to_top = false;
5197                   break;
5198                 }
5199 
5200                 if (before_first_timeout) {
5201                   // Set all the other threads to run, and return to the top of
5202                   // the loop, which will continue;
5203                   before_first_timeout = false;
5204                   thread_plan_sp->SetStopOthers(false);
5205                   if (log)
5206                     log->PutCString(
5207                         "Process::RunThreadPlan(): about to resume.");
5208 
5209                   back_to_top = true;
5210                   break;
5211                 } else {
5212                   // Running all threads failed, so return Interrupted.
5213                   if (log)
5214                     log->PutCString("Process::RunThreadPlan(): running all "
5215                                     "threads timed out.");
5216                   return_value = eExpressionInterrupted;
5217                   back_to_top = false;
5218                   break;
5219                 }
5220               }
5221             } else {
5222               if (log)
5223                 log->PutCString("Process::RunThreadPlan(): halt said it "
5224                                 "succeeded, but I got no event.  "
5225                                 "I'm getting out of here passing Interrupted.");
5226               return_value = eExpressionInterrupted;
5227               back_to_top = false;
5228               break;
5229             }
5230           } else {
5231             try_halt_again++;
5232             continue;
5233           }
5234         }
5235 
5236         if (!back_to_top || try_halt_again > num_retries)
5237           break;
5238         else
5239           continue;
5240       }
5241     } // END WAIT LOOP
5242 
5243     // If we had to start up a temporary private state thread to run this
5244     // thread plan, shut it down now.
5245     if (backup_private_state_thread.IsJoinable()) {
5246       StopPrivateStateThread();
5247       Status error;
5248       m_private_state_thread = backup_private_state_thread;
5249       if (stopper_base_plan_sp) {
5250         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5251       }
5252       if (old_state != eStateInvalid)
5253         m_public_state.SetValueNoLock(old_state);
5254     }
5255 
5256     // If our thread went away on us, we need to get out of here without
5257     // doing any more work.  We don't have to clean up the thread plan, that
5258     // will have happened when the Thread was destroyed.
5259     if (return_value == eExpressionThreadVanished) {
5260       return return_value;
5261     }
5262 
5263     if (return_value != eExpressionCompleted && log) {
5264       // Print a backtrace into the log so we can figure out where we are:
5265       StreamString s;
5266       s.PutCString("Thread state after unsuccessful completion: \n");
5267       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5268       log->PutString(s.GetString());
5269     }
5270     // Restore the thread state if we are going to discard the plan execution.
5271     // There are three cases where this could happen: 1) The execution
5272     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5273     // was true 3) We got some other error, and discard_on_error was true
5274     bool should_unwind = (return_value == eExpressionInterrupted &&
5275                           options.DoesUnwindOnError()) ||
5276                          (return_value == eExpressionHitBreakpoint &&
5277                           options.DoesIgnoreBreakpoints());
5278 
5279     if (return_value == eExpressionCompleted || should_unwind) {
5280       thread_plan_sp->RestoreThreadState();
5281     }
5282 
5283     // Now do some processing on the results of the run:
5284     if (return_value == eExpressionInterrupted ||
5285         return_value == eExpressionHitBreakpoint) {
5286       if (log) {
5287         StreamString s;
5288         if (event_sp)
5289           event_sp->Dump(&s);
5290         else {
5291           log->PutCString("Process::RunThreadPlan(): Stop event that "
5292                           "interrupted us is NULL.");
5293         }
5294 
5295         StreamString ts;
5296 
5297         const char *event_explanation = nullptr;
5298 
5299         do {
5300           if (!event_sp) {
5301             event_explanation = "<no event>";
5302             break;
5303           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5304             event_explanation = "<user interrupt>";
5305             break;
5306           } else {
5307             const Process::ProcessEventData *event_data =
5308                 Process::ProcessEventData::GetEventDataFromEvent(
5309                     event_sp.get());
5310 
5311             if (!event_data) {
5312               event_explanation = "<no event data>";
5313               break;
5314             }
5315 
5316             Process *process = event_data->GetProcessSP().get();
5317 
5318             if (!process) {
5319               event_explanation = "<no process>";
5320               break;
5321             }
5322 
5323             ThreadList &thread_list = process->GetThreadList();
5324 
5325             uint32_t num_threads = thread_list.GetSize();
5326             uint32_t thread_index;
5327 
5328             ts.Printf("<%u threads> ", num_threads);
5329 
5330             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5331               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5332 
5333               if (!thread) {
5334                 ts.Printf("<?> ");
5335                 continue;
5336               }
5337 
5338               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5339               RegisterContext *register_context =
5340                   thread->GetRegisterContext().get();
5341 
5342               if (register_context)
5343                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5344               else
5345                 ts.Printf("[ip unknown] ");
5346 
5347               // Show the private stop info here, the public stop info will be
5348               // from the last natural stop.
5349               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5350               if (stop_info_sp) {
5351                 const char *stop_desc = stop_info_sp->GetDescription();
5352                 if (stop_desc)
5353                   ts.PutCString(stop_desc);
5354               }
5355               ts.Printf(">");
5356             }
5357 
5358             event_explanation = ts.GetData();
5359           }
5360         } while (false);
5361 
5362         if (event_explanation)
5363           LLDB_LOGF(log,
5364                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5365                     s.GetData(), event_explanation);
5366         else
5367           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5368                     s.GetData());
5369       }
5370 
5371       if (should_unwind) {
5372         LLDB_LOGF(log,
5373                   "Process::RunThreadPlan: ExecutionInterrupted - "
5374                   "discarding thread plans up to %p.",
5375                   static_cast<void *>(thread_plan_sp.get()));
5376         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5377       } else {
5378         LLDB_LOGF(log,
5379                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5380                   "plan: %p not discarding.",
5381                   static_cast<void *>(thread_plan_sp.get()));
5382       }
5383     } else if (return_value == eExpressionSetupError) {
5384       if (log)
5385         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5386 
5387       if (options.DoesUnwindOnError()) {
5388         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5389       }
5390     } else {
5391       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5392         if (log)
5393           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5394         return_value = eExpressionCompleted;
5395       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5396         if (log)
5397           log->PutCString(
5398               "Process::RunThreadPlan(): thread plan was discarded");
5399         return_value = eExpressionDiscarded;
5400       } else {
5401         if (log)
5402           log->PutCString(
5403               "Process::RunThreadPlan(): thread plan stopped in mid course");
5404         if (options.DoesUnwindOnError() && thread_plan_sp) {
5405           if (log)
5406             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5407                             "'cause unwind_on_error is set.");
5408           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5409         }
5410       }
5411     }
5412 
5413     // Thread we ran the function in may have gone away because we ran the
5414     // target Check that it's still there, and if it is put it back in the
5415     // context. Also restore the frame in the context if it is still present.
5416     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5417     if (thread) {
5418       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5419     }
5420 
5421     // Also restore the current process'es selected frame & thread, since this
5422     // function calling may be done behind the user's back.
5423 
5424     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5425       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5426           selected_stack_id.IsValid()) {
5427         // We were able to restore the selected thread, now restore the frame:
5428         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5429         StackFrameSP old_frame_sp =
5430             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5431                 selected_stack_id);
5432         if (old_frame_sp)
5433           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5434               old_frame_sp.get());
5435       }
5436     }
5437   }
5438 
5439   // If the process exited during the run of the thread plan, notify everyone.
5440 
5441   if (event_to_broadcast_sp) {
5442     if (log)
5443       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5444     BroadcastEvent(event_to_broadcast_sp);
5445   }
5446 
5447   return return_value;
5448 }
5449 
5450 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5451   const char *result_name = "<unknown>";
5452 
5453   switch (result) {
5454   case eExpressionCompleted:
5455     result_name = "eExpressionCompleted";
5456     break;
5457   case eExpressionDiscarded:
5458     result_name = "eExpressionDiscarded";
5459     break;
5460   case eExpressionInterrupted:
5461     result_name = "eExpressionInterrupted";
5462     break;
5463   case eExpressionHitBreakpoint:
5464     result_name = "eExpressionHitBreakpoint";
5465     break;
5466   case eExpressionSetupError:
5467     result_name = "eExpressionSetupError";
5468     break;
5469   case eExpressionParseError:
5470     result_name = "eExpressionParseError";
5471     break;
5472   case eExpressionResultUnavailable:
5473     result_name = "eExpressionResultUnavailable";
5474     break;
5475   case eExpressionTimedOut:
5476     result_name = "eExpressionTimedOut";
5477     break;
5478   case eExpressionStoppedForDebug:
5479     result_name = "eExpressionStoppedForDebug";
5480     break;
5481   case eExpressionThreadVanished:
5482     result_name = "eExpressionThreadVanished";
5483   }
5484   return result_name;
5485 }
5486 
5487 void Process::GetStatus(Stream &strm) {
5488   const StateType state = GetState();
5489   if (StateIsStoppedState(state, false)) {
5490     if (state == eStateExited) {
5491       int exit_status = GetExitStatus();
5492       const char *exit_description = GetExitDescription();
5493       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5494                   GetID(), exit_status, exit_status,
5495                   exit_description ? exit_description : "");
5496     } else {
5497       if (state == eStateConnected)
5498         strm.Printf("Connected to remote target.\n");
5499       else
5500         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5501     }
5502   } else {
5503     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5504   }
5505 }
5506 
5507 size_t Process::GetThreadStatus(Stream &strm,
5508                                 bool only_threads_with_stop_reason,
5509                                 uint32_t start_frame, uint32_t num_frames,
5510                                 uint32_t num_frames_with_source,
5511                                 bool stop_format) {
5512   size_t num_thread_infos_dumped = 0;
5513 
5514   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5515   // very well might run code (e.g. if we need it to get return values or
5516   // arguments.)  For that to work the process has to be able to acquire it.
5517   // So instead copy the thread ID's, and look them up one by one:
5518 
5519   uint32_t num_threads;
5520   std::vector<lldb::tid_t> thread_id_array;
5521   // Scope for thread list locker;
5522   {
5523     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5524     ThreadList &curr_thread_list = GetThreadList();
5525     num_threads = curr_thread_list.GetSize();
5526     uint32_t idx;
5527     thread_id_array.resize(num_threads);
5528     for (idx = 0; idx < num_threads; ++idx)
5529       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5530   }
5531 
5532   for (uint32_t i = 0; i < num_threads; i++) {
5533     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5534     if (thread_sp) {
5535       if (only_threads_with_stop_reason) {
5536         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5537         if (!stop_info_sp || !stop_info_sp->IsValid())
5538           continue;
5539       }
5540       thread_sp->GetStatus(strm, start_frame, num_frames,
5541                            num_frames_with_source,
5542                            stop_format);
5543       ++num_thread_infos_dumped;
5544     } else {
5545       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5546       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5547                      " vanished while running Thread::GetStatus.");
5548     }
5549   }
5550   return num_thread_infos_dumped;
5551 }
5552 
5553 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5554   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5555 }
5556 
5557 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5558   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5559                                            region.GetByteSize());
5560 }
5561 
5562 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5563                                  void *baton) {
5564   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5565 }
5566 
5567 bool Process::RunPreResumeActions() {
5568   bool result = true;
5569   while (!m_pre_resume_actions.empty()) {
5570     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5571     m_pre_resume_actions.pop_back();
5572     bool this_result = action.callback(action.baton);
5573     if (result)
5574       result = this_result;
5575   }
5576   return result;
5577 }
5578 
5579 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5580 
5581 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5582 {
5583     PreResumeCallbackAndBaton element(callback, baton);
5584     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5585     if (found_iter != m_pre_resume_actions.end())
5586     {
5587         m_pre_resume_actions.erase(found_iter);
5588     }
5589 }
5590 
5591 ProcessRunLock &Process::GetRunLock() {
5592   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5593     return m_private_run_lock;
5594   else
5595     return m_public_run_lock;
5596 }
5597 
5598 bool Process::CurrentThreadIsPrivateStateThread()
5599 {
5600   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5601 }
5602 
5603 
5604 void Process::Flush() {
5605   m_thread_list.Flush();
5606   m_extended_thread_list.Flush();
5607   m_extended_thread_stop_id = 0;
5608   m_queue_list.Clear();
5609   m_queue_list_stop_id = 0;
5610 }
5611 
5612 lldb::addr_t Process::GetCodeAddressMask() {
5613   if (m_code_address_mask == 0) {
5614     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5615       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5616       SetCodeAddressMask(address_mask);
5617     }
5618   }
5619   return m_code_address_mask;
5620 }
5621 
5622 lldb::addr_t Process::GetDataAddressMask() {
5623   if (m_data_address_mask == 0) {
5624     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5625       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5626       SetDataAddressMask(address_mask);
5627     }
5628   }
5629   return m_data_address_mask;
5630 }
5631 
5632 void Process::DidExec() {
5633   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
5634   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5635 
5636   Target &target = GetTarget();
5637   target.CleanupProcess();
5638   target.ClearModules(false);
5639   m_dynamic_checkers_up.reset();
5640   m_abi_sp.reset();
5641   m_system_runtime_up.reset();
5642   m_os_up.reset();
5643   m_dyld_up.reset();
5644   m_jit_loaders_up.reset();
5645   m_image_tokens.clear();
5646   m_allocated_memory_cache.Clear();
5647   {
5648     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5649     m_language_runtimes.clear();
5650   }
5651   m_instrumentation_runtimes.clear();
5652   m_thread_list.DiscardThreadPlans();
5653   m_memory_cache.Clear(true);
5654   DoDidExec();
5655   CompleteAttach();
5656   // Flush the process (threads and all stack frames) after running
5657   // CompleteAttach() in case the dynamic loader loaded things in new
5658   // locations.
5659   Flush();
5660 
5661   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5662   // let the target know so it can do any cleanup it needs to.
5663   target.DidExec();
5664 }
5665 
5666 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5667   if (address == nullptr) {
5668     error.SetErrorString("Invalid address argument");
5669     return LLDB_INVALID_ADDRESS;
5670   }
5671 
5672   addr_t function_addr = LLDB_INVALID_ADDRESS;
5673 
5674   addr_t addr = address->GetLoadAddress(&GetTarget());
5675   std::map<addr_t, addr_t>::const_iterator iter =
5676       m_resolved_indirect_addresses.find(addr);
5677   if (iter != m_resolved_indirect_addresses.end()) {
5678     function_addr = (*iter).second;
5679   } else {
5680     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5681       Symbol *symbol = address->CalculateSymbolContextSymbol();
5682       error.SetErrorStringWithFormat(
5683           "Unable to call resolver for indirect function %s",
5684           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5685       function_addr = LLDB_INVALID_ADDRESS;
5686     } else {
5687       if (ABISP abi_sp = GetABI())
5688         function_addr = abi_sp->FixCodeAddress(function_addr);
5689       m_resolved_indirect_addresses.insert(
5690           std::pair<addr_t, addr_t>(addr, function_addr));
5691     }
5692   }
5693   return function_addr;
5694 }
5695 
5696 void Process::ModulesDidLoad(ModuleList &module_list) {
5697   // Inform the system runtime of the modified modules.
5698   SystemRuntime *sys_runtime = GetSystemRuntime();
5699   if (sys_runtime)
5700     sys_runtime->ModulesDidLoad(module_list);
5701 
5702   GetJITLoaders().ModulesDidLoad(module_list);
5703 
5704   // Give the instrumentation runtimes a chance to be created before informing
5705   // them of the modified modules.
5706   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5707                                          m_instrumentation_runtimes);
5708   for (auto &runtime : m_instrumentation_runtimes)
5709     runtime.second->ModulesDidLoad(module_list);
5710 
5711   // Give the language runtimes a chance to be created before informing them of
5712   // the modified modules.
5713   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5714     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5715       runtime->ModulesDidLoad(module_list);
5716   }
5717 
5718   // If we don't have an operating system plug-in, try to load one since
5719   // loading shared libraries might cause a new one to try and load
5720   if (!m_os_up)
5721     LoadOperatingSystemPlugin(false);
5722 
5723   // Inform the structured-data plugins of the modified modules.
5724   for (auto pair : m_structured_data_plugin_map) {
5725     if (pair.second)
5726       pair.second->ModulesDidLoad(*this, module_list);
5727   }
5728 }
5729 
5730 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key,
5731                            const char *fmt, ...) {
5732   bool print_warning = true;
5733 
5734   StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream();
5735   if (!stream_sp)
5736     return;
5737 
5738   if (repeat_key != nullptr) {
5739     WarningsCollection::iterator it = m_warnings_issued.find(warning_type);
5740     if (it == m_warnings_issued.end()) {
5741       m_warnings_issued[warning_type] = WarningsPointerSet();
5742       m_warnings_issued[warning_type].insert(repeat_key);
5743     } else {
5744       if (it->second.find(repeat_key) != it->second.end()) {
5745         print_warning = false;
5746       } else {
5747         it->second.insert(repeat_key);
5748       }
5749     }
5750   }
5751 
5752   if (print_warning) {
5753     va_list args;
5754     va_start(args, fmt);
5755     stream_sp->PrintfVarArg(fmt, args);
5756     va_end(args);
5757   }
5758 }
5759 
5760 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5761   if (!GetWarningsOptimization())
5762     return;
5763   if (!sc.module_sp)
5764     return;
5765   if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function &&
5766       sc.function->GetIsOptimized()) {
5767     PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(),
5768                  "%s was compiled with optimization - stepping may behave "
5769                  "oddly; variables may not be available.\n",
5770                  sc.module_sp->GetFileSpec().GetFilename().GetCString());
5771   }
5772 }
5773 
5774 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5775   if (!GetWarningsUnsupportedLanguage())
5776     return;
5777   if (!sc.module_sp)
5778     return;
5779   LanguageType language = sc.GetLanguage();
5780   if (language == eLanguageTypeUnknown)
5781     return;
5782   LanguageSet plugins =
5783       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5784   if (!plugins[language]) {
5785     PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage,
5786                  sc.module_sp.get(),
5787                  "This version of LLDB has no plugin for the language \"%s\". "
5788                  "Inspection of frame variables will be limited.\n",
5789                  Language::GetNameForLanguageType(language));
5790   }
5791 }
5792 
5793 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5794   info.Clear();
5795 
5796   PlatformSP platform_sp = GetTarget().GetPlatform();
5797   if (!platform_sp)
5798     return false;
5799 
5800   return platform_sp->GetProcessInfo(GetID(), info);
5801 }
5802 
5803 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5804   ThreadCollectionSP threads;
5805 
5806   const MemoryHistorySP &memory_history =
5807       MemoryHistory::FindPlugin(shared_from_this());
5808 
5809   if (!memory_history) {
5810     return threads;
5811   }
5812 
5813   threads = std::make_shared<ThreadCollection>(
5814       memory_history->GetHistoryThreads(addr));
5815 
5816   return threads;
5817 }
5818 
5819 InstrumentationRuntimeSP
5820 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5821   InstrumentationRuntimeCollection::iterator pos;
5822   pos = m_instrumentation_runtimes.find(type);
5823   if (pos == m_instrumentation_runtimes.end()) {
5824     return InstrumentationRuntimeSP();
5825   } else
5826     return (*pos).second;
5827 }
5828 
5829 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5830                             const ArchSpec &arch, ModuleSpec &module_spec) {
5831   module_spec.Clear();
5832   return false;
5833 }
5834 
5835 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5836   m_image_tokens.push_back(image_ptr);
5837   return m_image_tokens.size() - 1;
5838 }
5839 
5840 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5841   if (token < m_image_tokens.size())
5842     return m_image_tokens[token];
5843   return LLDB_INVALID_ADDRESS;
5844 }
5845 
5846 void Process::ResetImageToken(size_t token) {
5847   if (token < m_image_tokens.size())
5848     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5849 }
5850 
5851 Address
5852 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5853                                                AddressRange range_bounds) {
5854   Target &target = GetTarget();
5855   DisassemblerSP disassembler_sp;
5856   InstructionList *insn_list = nullptr;
5857 
5858   Address retval = default_stop_addr;
5859 
5860   if (!target.GetUseFastStepping())
5861     return retval;
5862   if (!default_stop_addr.IsValid())
5863     return retval;
5864 
5865   const char *plugin_name = nullptr;
5866   const char *flavor = nullptr;
5867   disassembler_sp = Disassembler::DisassembleRange(
5868       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5869   if (disassembler_sp)
5870     insn_list = &disassembler_sp->GetInstructionList();
5871 
5872   if (insn_list == nullptr) {
5873     return retval;
5874   }
5875 
5876   size_t insn_offset =
5877       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5878   if (insn_offset == UINT32_MAX) {
5879     return retval;
5880   }
5881 
5882   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5883       insn_offset, false /* ignore_calls*/, nullptr);
5884   if (branch_index == UINT32_MAX) {
5885     return retval;
5886   }
5887 
5888   if (branch_index > insn_offset) {
5889     Address next_branch_insn_address =
5890         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5891     if (next_branch_insn_address.IsValid() &&
5892         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5893       retval = next_branch_insn_address;
5894     }
5895   }
5896 
5897   return retval;
5898 }
5899 
5900 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
5901                                     MemoryRegionInfo &range_info) {
5902   if (auto abi = GetABI())
5903     load_addr = abi->FixDataAddress(load_addr);
5904   return DoGetMemoryRegionInfo(load_addr, range_info);
5905 }
5906 
5907 Status
5908 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5909 
5910   Status error;
5911 
5912   lldb::addr_t range_end = 0;
5913 
5914   region_list.clear();
5915   do {
5916     lldb_private::MemoryRegionInfo region_info;
5917     error = GetMemoryRegionInfo(range_end, region_info);
5918     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5919     if (error.Fail()) {
5920       region_list.clear();
5921       break;
5922     }
5923 
5924     range_end = region_info.GetRange().GetRangeEnd();
5925     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5926       region_list.push_back(std::move(region_info));
5927     }
5928   } while (range_end != LLDB_INVALID_ADDRESS);
5929 
5930   return error;
5931 }
5932 
5933 Status
5934 Process::ConfigureStructuredData(ConstString type_name,
5935                                  const StructuredData::ObjectSP &config_sp) {
5936   // If you get this, the Process-derived class needs to implement a method to
5937   // enable an already-reported asynchronous structured data feature. See
5938   // ProcessGDBRemote for an example implementation over gdb-remote.
5939   return Status("unimplemented");
5940 }
5941 
5942 void Process::MapSupportedStructuredDataPlugins(
5943     const StructuredData::Array &supported_type_names) {
5944   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5945 
5946   // Bail out early if there are no type names to map.
5947   if (supported_type_names.GetSize() == 0) {
5948     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5949               __FUNCTION__);
5950     return;
5951   }
5952 
5953   // Convert StructuredData type names to ConstString instances.
5954   std::set<ConstString> const_type_names;
5955 
5956   LLDB_LOGF(log,
5957             "Process::%s(): the process supports the following async "
5958             "structured data types:",
5959             __FUNCTION__);
5960 
5961   supported_type_names.ForEach(
5962       [&const_type_names, &log](StructuredData::Object *object) {
5963         if (!object) {
5964           // Invalid - shouldn't be null objects in the array.
5965           return false;
5966         }
5967 
5968         auto type_name = object->GetAsString();
5969         if (!type_name) {
5970           // Invalid format - all type names should be strings.
5971           return false;
5972         }
5973 
5974         const_type_names.insert(ConstString(type_name->GetValue()));
5975         LLDB_LOG(log, "- {0}", type_name->GetValue());
5976         return true;
5977       });
5978 
5979   // For each StructuredDataPlugin, if the plugin handles any of the types in
5980   // the supported_type_names, map that type name to that plugin. Stop when
5981   // we've consumed all the type names.
5982   // FIXME: should we return an error if there are type names nobody
5983   // supports?
5984   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5985     auto create_instance =
5986            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5987                plugin_index);
5988     if (!create_instance)
5989       break;
5990 
5991     // Create the plugin.
5992     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5993     if (!plugin_sp) {
5994       // This plugin doesn't think it can work with the process. Move on to the
5995       // next.
5996       continue;
5997     }
5998 
5999     // For any of the remaining type names, map any that this plugin supports.
6000     std::vector<ConstString> names_to_remove;
6001     for (auto &type_name : const_type_names) {
6002       if (plugin_sp->SupportsStructuredDataType(type_name)) {
6003         m_structured_data_plugin_map.insert(
6004             std::make_pair(type_name, plugin_sp));
6005         names_to_remove.push_back(type_name);
6006         LLDB_LOG(log, "using plugin {0} for type name {1}",
6007                  plugin_sp->GetPluginName(), type_name);
6008       }
6009     }
6010 
6011     // Remove the type names that were consumed by this plugin.
6012     for (auto &type_name : names_to_remove)
6013       const_type_names.erase(type_name);
6014   }
6015 }
6016 
6017 bool Process::RouteAsyncStructuredData(
6018     const StructuredData::ObjectSP object_sp) {
6019   // Nothing to do if there's no data.
6020   if (!object_sp)
6021     return false;
6022 
6023   // The contract is this must be a dictionary, so we can look up the routing
6024   // key via the top-level 'type' string value within the dictionary.
6025   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
6026   if (!dictionary)
6027     return false;
6028 
6029   // Grab the async structured type name (i.e. the feature/plugin name).
6030   ConstString type_name;
6031   if (!dictionary->GetValueForKeyAsString("type", type_name))
6032     return false;
6033 
6034   // Check if there's a plugin registered for this type name.
6035   auto find_it = m_structured_data_plugin_map.find(type_name);
6036   if (find_it == m_structured_data_plugin_map.end()) {
6037     // We don't have a mapping for this structured data type.
6038     return false;
6039   }
6040 
6041   // Route the structured data to the plugin.
6042   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6043   return true;
6044 }
6045 
6046 Status Process::UpdateAutomaticSignalFiltering() {
6047   // Default implementation does nothign.
6048   // No automatic signal filtering to speak of.
6049   return Status();
6050 }
6051 
6052 UtilityFunction *Process::GetLoadImageUtilityFunction(
6053     Platform *platform,
6054     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6055   if (platform != GetTarget().GetPlatform().get())
6056     return nullptr;
6057   llvm::call_once(m_dlopen_utility_func_flag_once,
6058                   [&] { m_dlopen_utility_func_up = factory(); });
6059   return m_dlopen_utility_func_up.get();
6060 }
6061 
6062 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6063   if (!IsLiveDebugSession())
6064     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6065                                    "Can't trace a non-live process.");
6066   return llvm::make_error<UnimplementedError>();
6067 }
6068 
6069 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6070                                        addr_t &returned_func,
6071                                        bool trap_exceptions) {
6072   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6073   if (thread == nullptr || address == nullptr)
6074     return false;
6075 
6076   EvaluateExpressionOptions options;
6077   options.SetStopOthers(true);
6078   options.SetUnwindOnError(true);
6079   options.SetIgnoreBreakpoints(true);
6080   options.SetTryAllThreads(true);
6081   options.SetDebug(false);
6082   options.SetTimeout(GetUtilityExpressionTimeout());
6083   options.SetTrapExceptions(trap_exceptions);
6084 
6085   auto type_system_or_err =
6086       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6087   if (!type_system_or_err) {
6088     llvm::consumeError(type_system_or_err.takeError());
6089     return false;
6090   }
6091   CompilerType void_ptr_type =
6092       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6093   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6094       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6095   if (call_plan_sp) {
6096     DiagnosticManager diagnostics;
6097 
6098     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6099     if (frame) {
6100       ExecutionContext exe_ctx;
6101       frame->CalculateExecutionContext(exe_ctx);
6102       ExpressionResults result =
6103           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6104       if (result == eExpressionCompleted) {
6105         returned_func =
6106             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6107                 LLDB_INVALID_ADDRESS);
6108 
6109         if (GetAddressByteSize() == 4) {
6110           if (returned_func == UINT32_MAX)
6111             return false;
6112         } else if (GetAddressByteSize() == 8) {
6113           if (returned_func == UINT64_MAX)
6114             return false;
6115         }
6116         return true;
6117       }
6118     }
6119   }
6120 
6121   return false;
6122 }
6123 
6124 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6125   Architecture *arch = GetTarget().GetArchitecturePlugin();
6126   const MemoryTagManager *tag_manager =
6127       arch ? arch->GetMemoryTagManager() : nullptr;
6128   if (!arch || !tag_manager) {
6129     return llvm::createStringError(
6130         llvm::inconvertibleErrorCode(),
6131         "This architecture does not support memory tagging");
6132   }
6133 
6134   if (!SupportsMemoryTagging()) {
6135     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6136                                    "Process does not support memory tagging");
6137   }
6138 
6139   return tag_manager;
6140 }
6141 
6142 llvm::Expected<std::vector<lldb::addr_t>>
6143 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6144   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6145       GetMemoryTagManager();
6146   if (!tag_manager_or_err)
6147     return tag_manager_or_err.takeError();
6148 
6149   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6150   llvm::Expected<std::vector<uint8_t>> tag_data =
6151       DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6152   if (!tag_data)
6153     return tag_data.takeError();
6154 
6155   return tag_manager->UnpackTagsData(*tag_data,
6156                                      len / tag_manager->GetGranuleSize());
6157 }
6158 
6159 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6160                                 const std::vector<lldb::addr_t> &tags) {
6161   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6162       GetMemoryTagManager();
6163   if (!tag_manager_or_err)
6164     return Status(tag_manager_or_err.takeError());
6165 
6166   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6167   llvm::Expected<std::vector<uint8_t>> packed_tags =
6168       tag_manager->PackTags(tags);
6169   if (!packed_tags) {
6170     return Status(packed_tags.takeError());
6171   }
6172 
6173   return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6174                            *packed_tags);
6175 }
6176