1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 // Project includes 17 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 18 #include "lldb/Breakpoint/BreakpointLocation.h" 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/Event.h" 22 #include "lldb/Core/Log.h" 23 #include "lldb/Core/Module.h" 24 #include "lldb/Core/ModuleSpec.h" 25 #include "lldb/Core/PluginManager.h" 26 #include "lldb/Core/State.h" 27 #include "lldb/Core/StreamFile.h" 28 #include "lldb/Expression/DiagnosticManager.h" 29 #include "lldb/Expression/IRDynamicChecks.h" 30 #include "lldb/Expression/UserExpression.h" 31 #include "lldb/Host/ConnectionFileDescriptor.h" 32 #include "lldb/Host/FileSystem.h" 33 #include "lldb/Host/Host.h" 34 #include "lldb/Host/HostInfo.h" 35 #include "lldb/Host/Pipe.h" 36 #include "lldb/Host/Terminal.h" 37 #include "lldb/Host/ThreadLauncher.h" 38 #include "lldb/Interpreter/CommandInterpreter.h" 39 #include "lldb/Interpreter/OptionValueProperties.h" 40 #include "lldb/Symbol/Function.h" 41 #include "lldb/Symbol/Symbol.h" 42 #include "lldb/Target/ABI.h" 43 #include "lldb/Target/CPPLanguageRuntime.h" 44 #include "lldb/Target/DynamicLoader.h" 45 #include "lldb/Target/InstrumentationRuntime.h" 46 #include "lldb/Target/JITLoader.h" 47 #include "lldb/Target/JITLoaderList.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/ObjCLanguageRuntime.h" 52 #include "lldb/Target/OperatingSystem.h" 53 #include "lldb/Target/Platform.h" 54 #include "lldb/Target/Process.h" 55 #include "lldb/Target/RegisterContext.h" 56 #include "lldb/Target/StopInfo.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/UnixSignals.h" 64 #include "lldb/Utility/NameMatches.h" 65 66 using namespace lldb; 67 using namespace lldb_private; 68 69 // Comment out line below to disable memory caching, overriding the process setting 70 // target.process.disable-memory-cache 71 #define ENABLE_MEMORY_CACHING 72 73 #ifdef ENABLE_MEMORY_CACHING 74 #define DISABLE_MEM_CACHE_DEFAULT false 75 #else 76 #define DISABLE_MEM_CACHE_DEFAULT true 77 #endif 78 79 class ProcessOptionValueProperties : public OptionValueProperties 80 { 81 public: 82 ProcessOptionValueProperties (const ConstString &name) : 83 OptionValueProperties (name) 84 { 85 } 86 87 // This constructor is used when creating ProcessOptionValueProperties when it 88 // is part of a new lldb_private::Process instance. It will copy all current 89 // global property values as needed 90 ProcessOptionValueProperties (ProcessProperties *global_properties) : 91 OptionValueProperties(*global_properties->GetValueProperties()) 92 { 93 } 94 95 const Property * 96 GetPropertyAtIndex(const ExecutionContext *exe_ctx, bool will_modify, uint32_t idx) const override 97 { 98 // When getting the value for a key from the process options, we will always 99 // try and grab the setting from the current process if there is one. Else we just 100 // use the one from this instance. 101 if (exe_ctx) 102 { 103 Process *process = exe_ctx->GetProcessPtr(); 104 if (process) 105 { 106 ProcessOptionValueProperties *instance_properties = static_cast<ProcessOptionValueProperties *>(process->GetValueProperties().get()); 107 if (this != instance_properties) 108 return instance_properties->ProtectedGetPropertyAtIndex (idx); 109 } 110 } 111 return ProtectedGetPropertyAtIndex (idx); 112 } 113 }; 114 115 static PropertyDefinition 116 g_properties[] = 117 { 118 { "disable-memory-cache" , OptionValue::eTypeBoolean, false, DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, "Disable reading and caching of memory in fixed-size units." }, 119 { "extra-startup-command", OptionValue::eTypeArray , false, OptionValue::eTypeString, nullptr, nullptr, "A list containing extra commands understood by the particular process plugin used. " 120 "For instance, to turn on debugserver logging set this to \"QSetLogging:bitmask=LOG_DEFAULT;\"" }, 121 { "ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, nullptr, nullptr, "If true, breakpoints will be ignored during expression evaluation." }, 122 { "unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, nullptr, nullptr, "If true, errors in expression evaluation will unwind the stack back to the state before the call." }, 123 { "python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, nullptr, "A path to a python OS plug-in module file that contains a OperatingSystemPlugIn class." }, 124 { "stop-on-sharedlibrary-events" , OptionValue::eTypeBoolean, true, false, nullptr, nullptr, "If true, stop when a shared library is loaded or unloaded." }, 125 { "detach-keeps-stopped" , OptionValue::eTypeBoolean, true, false, nullptr, nullptr, "If true, detach will attempt to keep the process stopped." }, 126 { "memory-cache-line-size" , OptionValue::eTypeUInt64, false, 512, nullptr, nullptr, "The memory cache line size" }, 127 { "optimization-warnings" , OptionValue::eTypeBoolean, false, true, nullptr, nullptr, "If true, warn when stopped in code that is optimized where stepping and variable availability may not behave as expected." }, 128 { nullptr , OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr } 129 }; 130 131 enum { 132 ePropertyDisableMemCache, 133 ePropertyExtraStartCommand, 134 ePropertyIgnoreBreakpointsInExpressions, 135 ePropertyUnwindOnErrorInExpressions, 136 ePropertyPythonOSPluginPath, 137 ePropertyStopOnSharedLibraryEvents, 138 ePropertyDetachKeepsStopped, 139 ePropertyMemCacheLineSize, 140 ePropertyWarningOptimization 141 }; 142 143 ProcessProperties::ProcessProperties (lldb_private::Process *process) : 144 Properties(), 145 m_process(process) // Can be nullptr for global ProcessProperties 146 { 147 if (process == nullptr) 148 { 149 // Global process properties, set them up one time 150 m_collection_sp.reset (new ProcessOptionValueProperties(ConstString("process"))); 151 m_collection_sp->Initialize(g_properties); 152 m_collection_sp->AppendProperty(ConstString("thread"), 153 ConstString("Settings specific to threads."), 154 true, 155 Thread::GetGlobalProperties()->GetValueProperties()); 156 } 157 else 158 { 159 m_collection_sp.reset (new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 160 m_collection_sp->SetValueChangedCallback(ePropertyPythonOSPluginPath, ProcessProperties::OptionValueChangedCallback, this); 161 } 162 } 163 164 ProcessProperties::~ProcessProperties() = default; 165 166 void 167 ProcessProperties::OptionValueChangedCallback (void *baton, OptionValue *option_value) 168 { 169 ProcessProperties *properties = (ProcessProperties *)baton; 170 if (properties->m_process) 171 properties->m_process->LoadOperatingSystemPlugin(true); 172 } 173 174 bool 175 ProcessProperties::GetDisableMemoryCache() const 176 { 177 const uint32_t idx = ePropertyDisableMemCache; 178 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 179 } 180 181 uint64_t 182 ProcessProperties::GetMemoryCacheLineSize() const 183 { 184 const uint32_t idx = ePropertyMemCacheLineSize; 185 return m_collection_sp->GetPropertyAtIndexAsUInt64(nullptr, idx, g_properties[idx].default_uint_value); 186 } 187 188 Args 189 ProcessProperties::GetExtraStartupCommands () const 190 { 191 Args args; 192 const uint32_t idx = ePropertyExtraStartCommand; 193 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 194 return args; 195 } 196 197 void 198 ProcessProperties::SetExtraStartupCommands (const Args &args) 199 { 200 const uint32_t idx = ePropertyExtraStartCommand; 201 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 202 } 203 204 FileSpec 205 ProcessProperties::GetPythonOSPluginPath () const 206 { 207 const uint32_t idx = ePropertyPythonOSPluginPath; 208 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 209 } 210 211 void 212 ProcessProperties::SetPythonOSPluginPath (const FileSpec &file) 213 { 214 const uint32_t idx = ePropertyPythonOSPluginPath; 215 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 216 } 217 218 bool 219 ProcessProperties::GetIgnoreBreakpointsInExpressions () const 220 { 221 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 222 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 223 } 224 225 void 226 ProcessProperties::SetIgnoreBreakpointsInExpressions (bool ignore) 227 { 228 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 229 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 230 } 231 232 bool 233 ProcessProperties::GetUnwindOnErrorInExpressions () const 234 { 235 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 236 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 237 } 238 239 void 240 ProcessProperties::SetUnwindOnErrorInExpressions (bool ignore) 241 { 242 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 243 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 244 } 245 246 bool 247 ProcessProperties::GetStopOnSharedLibraryEvents () const 248 { 249 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 250 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 251 } 252 253 void 254 ProcessProperties::SetStopOnSharedLibraryEvents (bool stop) 255 { 256 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 257 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 258 } 259 260 bool 261 ProcessProperties::GetDetachKeepsStopped () const 262 { 263 const uint32_t idx = ePropertyDetachKeepsStopped; 264 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 265 } 266 267 void 268 ProcessProperties::SetDetachKeepsStopped (bool stop) 269 { 270 const uint32_t idx = ePropertyDetachKeepsStopped; 271 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 272 } 273 274 bool 275 ProcessProperties::GetWarningsOptimization () const 276 { 277 const uint32_t idx = ePropertyWarningOptimization; 278 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 279 } 280 281 void 282 ProcessInstanceInfo::Dump (Stream &s, Platform *platform) const 283 { 284 const char *cstr; 285 if (m_pid != LLDB_INVALID_PROCESS_ID) 286 s.Printf (" pid = %" PRIu64 "\n", m_pid); 287 288 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 289 s.Printf (" parent = %" PRIu64 "\n", m_parent_pid); 290 291 if (m_executable) 292 { 293 s.Printf (" name = %s\n", m_executable.GetFilename().GetCString()); 294 s.PutCString (" file = "); 295 m_executable.Dump(&s); 296 s.EOL(); 297 } 298 const uint32_t argc = m_arguments.GetArgumentCount(); 299 if (argc > 0) 300 { 301 for (uint32_t i = 0; i < argc; i++) 302 { 303 const char *arg = m_arguments.GetArgumentAtIndex(i); 304 if (i < 10) 305 s.Printf (" arg[%u] = %s\n", i, arg); 306 else 307 s.Printf ("arg[%u] = %s\n", i, arg); 308 } 309 } 310 311 const uint32_t envc = m_environment.GetArgumentCount(); 312 if (envc > 0) 313 { 314 for (uint32_t i = 0; i < envc; i++) 315 { 316 const char *env = m_environment.GetArgumentAtIndex(i); 317 if (i < 10) 318 s.Printf (" env[%u] = %s\n", i, env); 319 else 320 s.Printf ("env[%u] = %s\n", i, env); 321 } 322 } 323 324 if (m_arch.IsValid()) 325 { 326 s.Printf (" arch = "); 327 m_arch.DumpTriple(s); 328 s.EOL(); 329 } 330 331 if (m_uid != UINT32_MAX) 332 { 333 cstr = platform->GetUserName (m_uid); 334 s.Printf (" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 335 } 336 if (m_gid != UINT32_MAX) 337 { 338 cstr = platform->GetGroupName (m_gid); 339 s.Printf (" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 340 } 341 if (m_euid != UINT32_MAX) 342 { 343 cstr = platform->GetUserName (m_euid); 344 s.Printf (" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 345 } 346 if (m_egid != UINT32_MAX) 347 { 348 cstr = platform->GetGroupName (m_egid); 349 s.Printf (" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 350 } 351 } 352 353 void 354 ProcessInstanceInfo::DumpTableHeader (Stream &s, Platform *platform, bool show_args, bool verbose) 355 { 356 const char *label; 357 if (show_args || verbose) 358 label = "ARGUMENTS"; 359 else 360 label = "NAME"; 361 362 if (verbose) 363 { 364 s.Printf ("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE %s\n", label); 365 s.PutCString ("====== ====== ========== ========== ========== ========== ======================== ============================\n"); 366 } 367 else 368 { 369 s.Printf ("PID PARENT USER TRIPLE %s\n", label); 370 s.PutCString ("====== ====== ========== ======================== ============================\n"); 371 } 372 } 373 374 void 375 ProcessInstanceInfo::DumpAsTableRow (Stream &s, Platform *platform, bool show_args, bool verbose) const 376 { 377 if (m_pid != LLDB_INVALID_PROCESS_ID) 378 { 379 const char *cstr; 380 s.Printf ("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 381 382 StreamString arch_strm; 383 if (m_arch.IsValid()) 384 m_arch.DumpTriple(arch_strm); 385 386 if (verbose) 387 { 388 cstr = platform->GetUserName (m_uid); 389 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 390 s.Printf ("%-10s ", cstr); 391 else 392 s.Printf ("%-10u ", m_uid); 393 394 cstr = platform->GetGroupName (m_gid); 395 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 396 s.Printf ("%-10s ", cstr); 397 else 398 s.Printf ("%-10u ", m_gid); 399 400 cstr = platform->GetUserName (m_euid); 401 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 402 s.Printf ("%-10s ", cstr); 403 else 404 s.Printf ("%-10u ", m_euid); 405 406 cstr = platform->GetGroupName (m_egid); 407 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 408 s.Printf ("%-10s ", cstr); 409 else 410 s.Printf ("%-10u ", m_egid); 411 412 s.Printf ("%-24s ", arch_strm.GetString().c_str()); 413 } 414 else 415 { 416 s.Printf ("%-10s %-24s ", 417 platform->GetUserName (m_euid), 418 arch_strm.GetString().c_str()); 419 } 420 421 if (verbose || show_args) 422 { 423 const uint32_t argc = m_arguments.GetArgumentCount(); 424 if (argc > 0) 425 { 426 for (uint32_t i = 0; i < argc; i++) 427 { 428 if (i > 0) 429 s.PutChar (' '); 430 s.PutCString (m_arguments.GetArgumentAtIndex(i)); 431 } 432 } 433 } 434 else 435 { 436 s.PutCString (GetName()); 437 } 438 439 s.EOL(); 440 } 441 } 442 443 Error 444 ProcessLaunchCommandOptions::SetOptionValue (uint32_t option_idx, const char *option_arg) 445 { 446 Error error; 447 const int short_option = m_getopt_table[option_idx].val; 448 449 switch (short_option) 450 { 451 case 's': // Stop at program entry point 452 launch_info.GetFlags().Set (eLaunchFlagStopAtEntry); 453 break; 454 455 case 'i': // STDIN for read only 456 { 457 FileAction action; 458 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 459 launch_info.AppendFileAction (action); 460 break; 461 } 462 463 case 'o': // Open STDOUT for write only 464 { 465 FileAction action; 466 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 467 launch_info.AppendFileAction (action); 468 break; 469 } 470 471 case 'e': // STDERR for write only 472 { 473 FileAction action; 474 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 475 launch_info.AppendFileAction (action); 476 break; 477 } 478 479 case 'p': // Process plug-in name 480 launch_info.SetProcessPluginName (option_arg); 481 break; 482 483 case 'n': // Disable STDIO 484 { 485 FileAction action; 486 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 487 if (action.Open(STDIN_FILENO, dev_null, true, false)) 488 launch_info.AppendFileAction (action); 489 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 490 launch_info.AppendFileAction (action); 491 if (action.Open(STDERR_FILENO, dev_null, false, true)) 492 launch_info.AppendFileAction (action); 493 break; 494 } 495 496 case 'w': 497 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 498 break; 499 500 case 't': // Open process in new terminal window 501 launch_info.GetFlags().Set (eLaunchFlagLaunchInTTY); 502 break; 503 504 case 'a': 505 if (!launch_info.GetArchitecture().SetTriple (option_arg, m_interpreter.GetPlatform(true).get())) 506 launch_info.GetArchitecture().SetTriple (option_arg); 507 break; 508 509 case 'A': // Disable ASLR. 510 { 511 bool success; 512 const bool disable_aslr_arg = Args::StringToBoolean (option_arg, true, &success); 513 if (success) 514 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 515 else 516 error.SetErrorStringWithFormat ("Invalid boolean value for disable-aslr option: '%s'", option_arg ? option_arg : "<null>"); 517 break; 518 } 519 520 case 'X': // shell expand args. 521 { 522 bool success; 523 const bool expand_args = Args::StringToBoolean (option_arg, true, &success); 524 if (success) 525 launch_info.SetShellExpandArguments(expand_args); 526 else 527 error.SetErrorStringWithFormat ("Invalid boolean value for shell-expand-args option: '%s'", option_arg ? option_arg : "<null>"); 528 break; 529 } 530 531 case 'c': 532 if (option_arg && option_arg[0]) 533 launch_info.SetShell (FileSpec(option_arg, false)); 534 else 535 launch_info.SetShell (HostInfo::GetDefaultShell()); 536 break; 537 538 case 'v': 539 launch_info.GetEnvironmentEntries().AppendArgument(option_arg); 540 break; 541 542 default: 543 error.SetErrorStringWithFormat("unrecognized short option character '%c'", short_option); 544 break; 545 } 546 return error; 547 } 548 549 OptionDefinition 550 ProcessLaunchCommandOptions::g_option_table[] = 551 { 552 { LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Stop at the entry point of the program when launching a process." }, 553 { LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, "Set whether to disable address space layout randomization when launching a process." }, 554 { LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypePlugin, "Name of the process plugin you want to use." }, 555 { LLDB_OPT_SET_ALL, false, "working-dir", 'w', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeDirectoryName, "Set the current working directory to <path> when running the inferior." }, 556 { LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeArchitecture, "Set the architecture for the process to launch when ambiguous." }, 557 { LLDB_OPT_SET_ALL, false, "environment", 'v', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, "Specify an environment variable name/value string (--environment NAME=VALUE). Can be specified multiple times for subsequent environment entries." }, 558 { LLDB_OPT_SET_1|LLDB_OPT_SET_2|LLDB_OPT_SET_3, false, "shell", 'c', OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, "Run the process in a shell (not supported on all platforms)." }, 559 560 { LLDB_OPT_SET_1 , false, "stdin", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stdin for the process to <filename>." }, 561 { LLDB_OPT_SET_1 , false, "stdout", 'o', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stdout for the process to <filename>." }, 562 { LLDB_OPT_SET_1 , false, "stderr", 'e', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stderr for the process to <filename>." }, 563 564 { LLDB_OPT_SET_2 , false, "tty", 't', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Start the process in a terminal (not supported on all platforms)." }, 565 566 { LLDB_OPT_SET_3 , false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Do not set up for terminal I/O to go to running process." }, 567 { LLDB_OPT_SET_4, false, "shell-expand-args", 'X', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, "Set whether to shell expand arguments to the process when launching." }, 568 { 0 , false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr } 569 }; 570 571 bool 572 ProcessInstanceInfoMatch::NameMatches (const char *process_name) const 573 { 574 if (m_name_match_type == eNameMatchIgnore || process_name == nullptr) 575 return true; 576 const char *match_name = m_match_info.GetName(); 577 if (!match_name) 578 return true; 579 580 return lldb_private::NameMatches (process_name, m_name_match_type, match_name); 581 } 582 583 bool 584 ProcessInstanceInfoMatch::Matches (const ProcessInstanceInfo &proc_info) const 585 { 586 if (!NameMatches (proc_info.GetName())) 587 return false; 588 589 if (m_match_info.ProcessIDIsValid() && 590 m_match_info.GetProcessID() != proc_info.GetProcessID()) 591 return false; 592 593 if (m_match_info.ParentProcessIDIsValid() && 594 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 595 return false; 596 597 if (m_match_info.UserIDIsValid () && 598 m_match_info.GetUserID() != proc_info.GetUserID()) 599 return false; 600 601 if (m_match_info.GroupIDIsValid () && 602 m_match_info.GetGroupID() != proc_info.GetGroupID()) 603 return false; 604 605 if (m_match_info.EffectiveUserIDIsValid () && 606 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 607 return false; 608 609 if (m_match_info.EffectiveGroupIDIsValid () && 610 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 611 return false; 612 613 if (m_match_info.GetArchitecture().IsValid() && 614 !m_match_info.GetArchitecture().IsCompatibleMatch(proc_info.GetArchitecture())) 615 return false; 616 return true; 617 } 618 619 bool 620 ProcessInstanceInfoMatch::MatchAllProcesses () const 621 { 622 if (m_name_match_type != eNameMatchIgnore) 623 return false; 624 625 if (m_match_info.ProcessIDIsValid()) 626 return false; 627 628 if (m_match_info.ParentProcessIDIsValid()) 629 return false; 630 631 if (m_match_info.UserIDIsValid ()) 632 return false; 633 634 if (m_match_info.GroupIDIsValid ()) 635 return false; 636 637 if (m_match_info.EffectiveUserIDIsValid ()) 638 return false; 639 640 if (m_match_info.EffectiveGroupIDIsValid ()) 641 return false; 642 643 if (m_match_info.GetArchitecture().IsValid()) 644 return false; 645 646 if (m_match_all_users) 647 return false; 648 649 return true; 650 } 651 652 void 653 ProcessInstanceInfoMatch::Clear() 654 { 655 m_match_info.Clear(); 656 m_name_match_type = eNameMatchIgnore; 657 m_match_all_users = false; 658 } 659 660 ProcessSP 661 Process::FindPlugin (lldb::TargetSP target_sp, const char *plugin_name, ListenerSP listener_sp, const FileSpec *crash_file_path) 662 { 663 static uint32_t g_process_unique_id = 0; 664 665 ProcessSP process_sp; 666 ProcessCreateInstance create_callback = nullptr; 667 if (plugin_name) 668 { 669 ConstString const_plugin_name(plugin_name); 670 create_callback = PluginManager::GetProcessCreateCallbackForPluginName (const_plugin_name); 671 if (create_callback) 672 { 673 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 674 if (process_sp) 675 { 676 if (process_sp->CanDebug(target_sp, true)) 677 { 678 process_sp->m_process_unique_id = ++g_process_unique_id; 679 } 680 else 681 process_sp.reset(); 682 } 683 } 684 } 685 else 686 { 687 for (uint32_t idx = 0; (create_callback = PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; ++idx) 688 { 689 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 690 if (process_sp) 691 { 692 if (process_sp->CanDebug(target_sp, false)) 693 { 694 process_sp->m_process_unique_id = ++g_process_unique_id; 695 break; 696 } 697 else 698 process_sp.reset(); 699 } 700 } 701 } 702 return process_sp; 703 } 704 705 ConstString & 706 Process::GetStaticBroadcasterClass () 707 { 708 static ConstString class_name ("lldb.process"); 709 return class_name; 710 } 711 712 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) : 713 Process(target_sp, listener_sp, UnixSignals::Create(HostInfo::GetArchitecture())) 714 { 715 // This constructor just delegates to the full Process constructor, 716 // defaulting to using the Host's UnixSignals. 717 } 718 719 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, const UnixSignalsSP &unix_signals_sp) 720 : ProcessProperties(this), 721 UserID(LLDB_INVALID_PROCESS_ID), 722 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), Process::GetStaticBroadcasterClass().AsCString()), 723 m_target_sp(target_sp), 724 m_public_state(eStateUnloaded), 725 m_private_state(eStateUnloaded), 726 m_private_state_broadcaster(nullptr, "lldb.process.internal_state_broadcaster"), 727 m_private_state_control_broadcaster(nullptr, "lldb.process.internal_state_control_broadcaster"), 728 m_private_state_listener_sp(Listener::MakeListener("lldb.process.internal_state_listener")), 729 m_mod_id(), 730 m_process_unique_id(0), 731 m_thread_index_id(0), 732 m_thread_id_to_index_id_map(), 733 m_exit_status(-1), 734 m_exit_string(), 735 m_exit_status_mutex(), 736 m_thread_mutex(), 737 m_thread_list_real(this), 738 m_thread_list(this), 739 m_extended_thread_list(this), 740 m_extended_thread_stop_id(0), 741 m_queue_list(this), 742 m_queue_list_stop_id(0), 743 m_notifications(), 744 m_image_tokens(), 745 m_listener_sp(listener_sp), 746 m_breakpoint_site_list(), 747 m_dynamic_checkers_ap(), 748 m_unix_signals_sp(unix_signals_sp), 749 m_abi_sp(), 750 m_process_input_reader(), 751 m_stdio_communication("process.stdio"), 752 m_stdio_communication_mutex(), 753 m_stdin_forward(false), 754 m_stdout_data(), 755 m_stderr_data(), 756 m_profile_data_comm_mutex(), 757 m_profile_data(), 758 m_iohandler_sync(0), 759 m_memory_cache(*this), 760 m_allocated_memory_cache(*this), 761 m_should_detach(false), 762 m_next_event_action_ap(), 763 m_public_run_lock(), 764 m_private_run_lock(), 765 m_stop_info_override_callback(nullptr), 766 m_finalizing(false), 767 m_finalize_called(false), 768 m_clear_thread_plans_on_stop(false), 769 m_force_next_event_delivery(false), 770 m_last_broadcast_state(eStateInvalid), 771 m_destroy_in_process(false), 772 m_can_interpret_function_calls(false), 773 m_warnings_issued(), 774 m_run_thread_plan_lock(), 775 m_can_jit(eCanJITDontKnow) 776 { 777 CheckInWithManager(); 778 779 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 780 if (log) 781 log->Printf("%p Process::Process()", static_cast<void *>(this)); 782 783 if (!m_unix_signals_sp) 784 m_unix_signals_sp = std::make_shared<UnixSignals>(); 785 786 SetEventName(eBroadcastBitStateChanged, "state-changed"); 787 SetEventName(eBroadcastBitInterrupt, "interrupt"); 788 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 789 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 790 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 791 792 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlStop, "control-stop"); 793 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlPause, "control-pause"); 794 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlResume, "control-resume"); 795 796 m_listener_sp->StartListeningForEvents(this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 797 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 798 eBroadcastBitProfileData); 799 800 m_private_state_listener_sp->StartListeningForEvents(&m_private_state_broadcaster, 801 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 802 803 m_private_state_listener_sp->StartListeningForEvents( 804 &m_private_state_control_broadcaster, eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 805 eBroadcastInternalStateControlResume); 806 // We need something valid here, even if just the default UnixSignalsSP. 807 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 808 809 // Allow the platform to override the default cache line size 810 OptionValueSP value_sp = m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)->GetValue(); 811 uint32_t platform_cache_line_size = target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 812 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 813 value_sp->SetUInt64Value(platform_cache_line_size); 814 } 815 816 Process::~Process() 817 { 818 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT)); 819 if (log) 820 log->Printf ("%p Process::~Process()", static_cast<void*>(this)); 821 StopPrivateStateThread(); 822 823 // ThreadList::Clear() will try to acquire this process's mutex, so 824 // explicitly clear the thread list here to ensure that the mutex 825 // is not destroyed before the thread list. 826 m_thread_list.Clear(); 827 } 828 829 const ProcessPropertiesSP & 830 Process::GetGlobalProperties() 831 { 832 // NOTE: intentional leak so we don't crash if global destructor chain gets 833 // called as other threads still use the result of this function 834 static ProcessPropertiesSP *g_settings_sp_ptr = nullptr; 835 static std::once_flag g_once_flag; 836 std::call_once(g_once_flag, []() { 837 g_settings_sp_ptr = new ProcessPropertiesSP(new ProcessProperties(nullptr)); 838 }); 839 return *g_settings_sp_ptr; 840 } 841 842 void 843 Process::Finalize() 844 { 845 m_finalizing = true; 846 847 // Destroy this process if needed 848 switch (GetPrivateState()) 849 { 850 case eStateConnected: 851 case eStateAttaching: 852 case eStateLaunching: 853 case eStateStopped: 854 case eStateRunning: 855 case eStateStepping: 856 case eStateCrashed: 857 case eStateSuspended: 858 Destroy(false); 859 break; 860 861 case eStateInvalid: 862 case eStateUnloaded: 863 case eStateDetached: 864 case eStateExited: 865 break; 866 } 867 868 // Clear our broadcaster before we proceed with destroying 869 Broadcaster::Clear(); 870 871 // Do any cleanup needed prior to being destructed... Subclasses 872 // that override this method should call this superclass method as well. 873 874 // We need to destroy the loader before the derived Process class gets destroyed 875 // since it is very likely that undoing the loader will require access to the real process. 876 m_dynamic_checkers_ap.reset(); 877 m_abi_sp.reset(); 878 m_os_ap.reset(); 879 m_system_runtime_ap.reset(); 880 m_dyld_ap.reset(); 881 m_jit_loaders_ap.reset(); 882 m_thread_list_real.Destroy(); 883 m_thread_list.Destroy(); 884 m_extended_thread_list.Destroy(); 885 m_queue_list.Clear(); 886 m_queue_list_stop_id = 0; 887 std::vector<Notifications> empty_notifications; 888 m_notifications.swap(empty_notifications); 889 m_image_tokens.clear(); 890 m_memory_cache.Clear(); 891 m_allocated_memory_cache.Clear(); 892 m_language_runtimes.clear(); 893 m_instrumentation_runtimes.clear(); 894 m_next_event_action_ap.reset(); 895 m_stop_info_override_callback = nullptr; 896 // Clear the last natural stop ID since it has a strong 897 // reference to this process 898 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 899 //#ifdef LLDB_CONFIGURATION_DEBUG 900 // StreamFile s(stdout, false); 901 // EventSP event_sp; 902 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 903 // { 904 // event_sp->Dump (&s); 905 // s.EOL(); 906 // } 907 //#endif 908 // We have to be very careful here as the m_private_state_listener might 909 // contain events that have ProcessSP values in them which can keep this 910 // process around forever. These events need to be cleared out. 911 m_private_state_listener_sp->Clear(); 912 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 913 m_public_run_lock.SetStopped(); 914 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 915 m_private_run_lock.SetStopped(); 916 m_finalize_called = true; 917 } 918 919 void 920 Process::RegisterNotificationCallbacks (const Notifications& callbacks) 921 { 922 m_notifications.push_back(callbacks); 923 if (callbacks.initialize != nullptr) 924 callbacks.initialize (callbacks.baton, this); 925 } 926 927 bool 928 Process::UnregisterNotificationCallbacks(const Notifications& callbacks) 929 { 930 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 931 for (pos = m_notifications.begin(); pos != end; ++pos) 932 { 933 if (pos->baton == callbacks.baton && 934 pos->initialize == callbacks.initialize && 935 pos->process_state_changed == callbacks.process_state_changed) 936 { 937 m_notifications.erase(pos); 938 return true; 939 } 940 } 941 return false; 942 } 943 944 void 945 Process::SynchronouslyNotifyStateChanged (StateType state) 946 { 947 std::vector<Notifications>::iterator notification_pos, notification_end = m_notifications.end(); 948 for (notification_pos = m_notifications.begin(); notification_pos != notification_end; ++notification_pos) 949 { 950 if (notification_pos->process_state_changed) 951 notification_pos->process_state_changed (notification_pos->baton, this, state); 952 } 953 } 954 955 // FIXME: We need to do some work on events before the general Listener sees them. 956 // For instance if we are continuing from a breakpoint, we need to ensure that we do 957 // the little "insert real insn, step & stop" trick. But we can't do that when the 958 // event is delivered by the broadcaster - since that is done on the thread that is 959 // waiting for new events, so if we needed more than one event for our handling, we would 960 // stall. So instead we do it when we fetch the event off of the queue. 961 // 962 963 StateType 964 Process::GetNextEvent (EventSP &event_sp) 965 { 966 StateType state = eStateInvalid; 967 968 if (m_listener_sp->GetNextEventForBroadcaster (this, event_sp) && event_sp) 969 state = Process::ProcessEventData::GetStateFromEvent (event_sp.get()); 970 971 return state; 972 } 973 974 void 975 Process::SyncIOHandler (uint32_t iohandler_id, uint64_t timeout_msec) 976 { 977 // don't sync (potentially context switch) in case where there is no process IO 978 if (!m_process_input_reader) 979 return; 980 981 TimeValue timeout = TimeValue::Now(); 982 timeout.OffsetWithMicroSeconds(timeout_msec*1000); 983 uint32_t new_iohandler_id = 0; 984 m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, new_iohandler_id, &timeout); 985 986 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 987 if (log) 988 log->Printf("Process::%s waited for m_iohandler_sync to change from %u, new value is %u", __FUNCTION__, iohandler_id, new_iohandler_id); 989 } 990 991 StateType 992 Process::WaitForProcessToStop (const TimeValue *timeout, 993 EventSP *event_sp_ptr, 994 bool wait_always, 995 ListenerSP hijack_listener_sp, 996 Stream *stream, 997 bool use_run_lock) 998 { 999 // We can't just wait for a "stopped" event, because the stopped event may have restarted the target. 1000 // We have to actually check each event, and in the case of a stopped event check the restarted flag 1001 // on the event. 1002 if (event_sp_ptr) 1003 event_sp_ptr->reset(); 1004 StateType state = GetState(); 1005 // If we are exited or detached, we won't ever get back to any 1006 // other valid state... 1007 if (state == eStateDetached || state == eStateExited) 1008 return state; 1009 1010 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1011 if (log) 1012 log->Printf ("Process::%s (timeout = %p)", __FUNCTION__, 1013 static_cast<const void*>(timeout)); 1014 1015 if (!wait_always && 1016 StateIsStoppedState(state, true) && 1017 StateIsStoppedState(GetPrivateState(), true)) 1018 { 1019 if (log) 1020 log->Printf("Process::%s returning without waiting for events; process private and public states are already 'stopped'.", 1021 __FUNCTION__); 1022 // We need to toggle the run lock as this won't get done in 1023 // SetPublicState() if the process is hijacked. 1024 if (hijack_listener_sp && use_run_lock) 1025 m_public_run_lock.SetStopped(); 1026 return state; 1027 } 1028 1029 while (state != eStateInvalid) 1030 { 1031 EventSP event_sp; 1032 state = WaitForStateChangedEvents (timeout, event_sp, hijack_listener_sp); 1033 if (event_sp_ptr && event_sp) 1034 *event_sp_ptr = event_sp; 1035 1036 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1037 Process::HandleProcessStateChangedEvent (event_sp, stream, pop_process_io_handler); 1038 1039 switch (state) 1040 { 1041 case eStateCrashed: 1042 case eStateDetached: 1043 case eStateExited: 1044 case eStateUnloaded: 1045 // We need to toggle the run lock as this won't get done in 1046 // SetPublicState() if the process is hijacked. 1047 if (hijack_listener_sp && use_run_lock) 1048 m_public_run_lock.SetStopped(); 1049 return state; 1050 case eStateStopped: 1051 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1052 continue; 1053 else 1054 { 1055 // We need to toggle the run lock as this won't get done in 1056 // SetPublicState() if the process is hijacked. 1057 if (hijack_listener_sp && use_run_lock) 1058 m_public_run_lock.SetStopped(); 1059 return state; 1060 } 1061 default: 1062 continue; 1063 } 1064 } 1065 return state; 1066 } 1067 1068 bool 1069 Process::HandleProcessStateChangedEvent (const EventSP &event_sp, 1070 Stream *stream, 1071 bool &pop_process_io_handler) 1072 { 1073 const bool handle_pop = pop_process_io_handler; 1074 1075 pop_process_io_handler = false; 1076 ProcessSP process_sp = Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1077 1078 if (!process_sp) 1079 return false; 1080 1081 StateType event_state = Process::ProcessEventData::GetStateFromEvent (event_sp.get()); 1082 if (event_state == eStateInvalid) 1083 return false; 1084 1085 switch (event_state) 1086 { 1087 case eStateInvalid: 1088 case eStateUnloaded: 1089 case eStateAttaching: 1090 case eStateLaunching: 1091 case eStateStepping: 1092 case eStateDetached: 1093 if (stream) 1094 stream->Printf("Process %" PRIu64 " %s\n", 1095 process_sp->GetID(), 1096 StateAsCString (event_state)); 1097 if (event_state == eStateDetached) 1098 pop_process_io_handler = true; 1099 break; 1100 1101 case eStateConnected: 1102 case eStateRunning: 1103 // Don't be chatty when we run... 1104 break; 1105 1106 case eStateExited: 1107 if (stream) 1108 process_sp->GetStatus(*stream); 1109 pop_process_io_handler = true; 1110 break; 1111 1112 case eStateStopped: 1113 case eStateCrashed: 1114 case eStateSuspended: 1115 // Make sure the program hasn't been auto-restarted: 1116 if (Process::ProcessEventData::GetRestartedFromEvent (event_sp.get())) 1117 { 1118 if (stream) 1119 { 1120 size_t num_reasons = Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1121 if (num_reasons > 0) 1122 { 1123 // FIXME: Do we want to report this, or would that just be annoyingly chatty? 1124 if (num_reasons == 1) 1125 { 1126 const char *reason = Process::ProcessEventData::GetRestartedReasonAtIndex (event_sp.get(), 0); 1127 stream->Printf ("Process %" PRIu64 " stopped and restarted: %s\n", 1128 process_sp->GetID(), 1129 reason ? reason : "<UNKNOWN REASON>"); 1130 } 1131 else 1132 { 1133 stream->Printf ("Process %" PRIu64 " stopped and restarted, reasons:\n", 1134 process_sp->GetID()); 1135 1136 1137 for (size_t i = 0; i < num_reasons; i++) 1138 { 1139 const char *reason = Process::ProcessEventData::GetRestartedReasonAtIndex (event_sp.get(), i); 1140 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1141 } 1142 } 1143 } 1144 } 1145 } 1146 else 1147 { 1148 // Lock the thread list so it doesn't change on us, this is the scope for the locker: 1149 { 1150 ThreadList &thread_list = process_sp->GetThreadList(); 1151 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1152 1153 ThreadSP curr_thread (thread_list.GetSelectedThread()); 1154 ThreadSP thread; 1155 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1156 if (curr_thread) 1157 curr_thread_stop_reason = curr_thread->GetStopReason(); 1158 if (!curr_thread || 1159 !curr_thread->IsValid() || 1160 curr_thread_stop_reason == eStopReasonInvalid || 1161 curr_thread_stop_reason == eStopReasonNone) 1162 { 1163 // Prefer a thread that has just completed its plan over another thread as current thread. 1164 ThreadSP plan_thread; 1165 ThreadSP other_thread; 1166 1167 const size_t num_threads = thread_list.GetSize(); 1168 size_t i; 1169 for (i = 0; i < num_threads; ++i) 1170 { 1171 thread = thread_list.GetThreadAtIndex(i); 1172 StopReason thread_stop_reason = thread->GetStopReason(); 1173 switch (thread_stop_reason) 1174 { 1175 case eStopReasonInvalid: 1176 case eStopReasonNone: 1177 break; 1178 1179 case eStopReasonSignal: 1180 { 1181 // Don't select a signal thread if we weren't going to stop at that 1182 // signal. We have to have had another reason for stopping here, and 1183 // the user doesn't want to see this thread. 1184 uint64_t signo = thread->GetStopInfo()->GetValue(); 1185 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 1186 { 1187 if (!other_thread) 1188 other_thread = thread; 1189 } 1190 break; 1191 } 1192 case eStopReasonTrace: 1193 case eStopReasonBreakpoint: 1194 case eStopReasonWatchpoint: 1195 case eStopReasonException: 1196 case eStopReasonExec: 1197 case eStopReasonThreadExiting: 1198 case eStopReasonInstrumentation: 1199 if (!other_thread) 1200 other_thread = thread; 1201 break; 1202 case eStopReasonPlanComplete: 1203 if (!plan_thread) 1204 plan_thread = thread; 1205 break; 1206 } 1207 } 1208 if (plan_thread) 1209 thread_list.SetSelectedThreadByID (plan_thread->GetID()); 1210 else if (other_thread) 1211 thread_list.SetSelectedThreadByID (other_thread->GetID()); 1212 else 1213 { 1214 if (curr_thread && curr_thread->IsValid()) 1215 thread = curr_thread; 1216 else 1217 thread = thread_list.GetThreadAtIndex(0); 1218 1219 if (thread) 1220 thread_list.SetSelectedThreadByID (thread->GetID()); 1221 } 1222 } 1223 } 1224 // Drop the ThreadList mutex by here, since GetThreadStatus below might have to run code, 1225 // e.g. for Data formatters, and if we hold the ThreadList mutex, then the process is going to 1226 // have a hard time restarting the process. 1227 if (stream) 1228 { 1229 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1230 if (debugger.GetTargetList().GetSelectedTarget().get() == &process_sp->GetTarget()) 1231 { 1232 const bool only_threads_with_stop_reason = true; 1233 const uint32_t start_frame = 0; 1234 const uint32_t num_frames = 1; 1235 const uint32_t num_frames_with_source = 1; 1236 process_sp->GetStatus(*stream); 1237 process_sp->GetThreadStatus (*stream, 1238 only_threads_with_stop_reason, 1239 start_frame, 1240 num_frames, 1241 num_frames_with_source); 1242 } 1243 else 1244 { 1245 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(process_sp->GetTarget().shared_from_this()); 1246 if (target_idx != UINT32_MAX) 1247 stream->Printf ("Target %d: (", target_idx); 1248 else 1249 stream->Printf ("Target <unknown index>: ("); 1250 process_sp->GetTarget().Dump (stream, eDescriptionLevelBrief); 1251 stream->Printf (") stopped.\n"); 1252 } 1253 } 1254 1255 // Pop the process IO handler 1256 pop_process_io_handler = true; 1257 } 1258 break; 1259 } 1260 1261 if (handle_pop && pop_process_io_handler) 1262 process_sp->PopProcessIOHandler(); 1263 1264 return true; 1265 } 1266 1267 StateType 1268 Process::WaitForState(const TimeValue *timeout, 1269 const StateType *match_states, 1270 const uint32_t num_match_states) 1271 { 1272 EventSP event_sp; 1273 StateType state = GetState(); 1274 while (state != eStateInvalid) 1275 { 1276 // If we are exited or detached, we won't ever get back to any 1277 // other valid state... 1278 if (state == eStateDetached || state == eStateExited) 1279 return state; 1280 1281 state = WaitForStateChangedEvents(timeout, event_sp, nullptr); 1282 1283 for (uint32_t i = 0; i < num_match_states; ++i) 1284 { 1285 if (match_states[i] == state) 1286 return state; 1287 } 1288 } 1289 return state; 1290 } 1291 1292 bool 1293 Process::HijackProcessEvents (ListenerSP listener_sp) 1294 { 1295 if (listener_sp) 1296 { 1297 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | eBroadcastBitInterrupt); 1298 } 1299 else 1300 return false; 1301 } 1302 1303 void 1304 Process::RestoreProcessEvents () 1305 { 1306 RestoreBroadcaster(); 1307 } 1308 1309 StateType 1310 Process::WaitForStateChangedEvents (const TimeValue *timeout, EventSP &event_sp, ListenerSP hijack_listener_sp) 1311 { 1312 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1313 1314 if (log) 1315 log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, 1316 static_cast<const void*>(timeout)); 1317 1318 ListenerSP listener_sp = hijack_listener_sp; 1319 if (!listener_sp) 1320 listener_sp = m_listener_sp; 1321 1322 StateType state = eStateInvalid; 1323 if (listener_sp->WaitForEventForBroadcasterWithType (timeout, 1324 this, 1325 eBroadcastBitStateChanged | eBroadcastBitInterrupt, 1326 event_sp)) 1327 { 1328 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1329 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1330 else if (log) 1331 log->Printf ("Process::%s got no event or was interrupted.", __FUNCTION__); 1332 } 1333 1334 if (log) 1335 log->Printf ("Process::%s (timeout = %p, event_sp) => %s", 1336 __FUNCTION__, static_cast<const void*>(timeout), 1337 StateAsCString(state)); 1338 return state; 1339 } 1340 1341 Event * 1342 Process::PeekAtStateChangedEvents () 1343 { 1344 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1345 1346 if (log) 1347 log->Printf ("Process::%s...", __FUNCTION__); 1348 1349 Event *event_ptr; 1350 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType (this, 1351 eBroadcastBitStateChanged); 1352 if (log) 1353 { 1354 if (event_ptr) 1355 { 1356 log->Printf ("Process::%s (event_ptr) => %s", 1357 __FUNCTION__, 1358 StateAsCString(ProcessEventData::GetStateFromEvent (event_ptr))); 1359 } 1360 else 1361 { 1362 log->Printf ("Process::%s no events found", 1363 __FUNCTION__); 1364 } 1365 } 1366 return event_ptr; 1367 } 1368 1369 StateType 1370 Process::WaitForStateChangedEventsPrivate (const TimeValue *timeout, EventSP &event_sp) 1371 { 1372 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1373 1374 if (log) 1375 log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, 1376 static_cast<const void*>(timeout)); 1377 1378 StateType state = eStateInvalid; 1379 if (m_private_state_listener_sp->WaitForEventForBroadcasterWithType (timeout, 1380 &m_private_state_broadcaster, 1381 eBroadcastBitStateChanged | eBroadcastBitInterrupt, 1382 event_sp)) 1383 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1384 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1385 1386 // This is a bit of a hack, but when we wait here we could very well return 1387 // to the command-line, and that could disable the log, which would render the 1388 // log we got above invalid. 1389 if (log) 1390 log->Printf ("Process::%s (timeout = %p, event_sp) => %s", 1391 __FUNCTION__, static_cast<const void *>(timeout), 1392 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1393 return state; 1394 } 1395 1396 bool 1397 Process::WaitForEventsPrivate (const TimeValue *timeout, EventSP &event_sp, bool control_only) 1398 { 1399 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1400 1401 if (log) 1402 log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, 1403 static_cast<const void*>(timeout)); 1404 1405 if (control_only) 1406 return m_private_state_listener_sp->WaitForEventForBroadcaster(timeout, &m_private_state_control_broadcaster, event_sp); 1407 else 1408 return m_private_state_listener_sp->WaitForEvent(timeout, event_sp); 1409 } 1410 1411 bool 1412 Process::IsRunning () const 1413 { 1414 return StateIsRunningState (m_public_state.GetValue()); 1415 } 1416 1417 int 1418 Process::GetExitStatus () 1419 { 1420 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1421 1422 if (m_public_state.GetValue() == eStateExited) 1423 return m_exit_status; 1424 return -1; 1425 } 1426 1427 const char * 1428 Process::GetExitDescription () 1429 { 1430 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1431 1432 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1433 return m_exit_string.c_str(); 1434 return nullptr; 1435 } 1436 1437 bool 1438 Process::SetExitStatus (int status, const char *cstr) 1439 { 1440 // Use a mutex to protect setting the exit status. 1441 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1442 1443 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1444 if (log) 1445 log->Printf("Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1446 status, status, 1447 cstr ? "\"" : "", 1448 cstr ? cstr : "NULL", 1449 cstr ? "\"" : ""); 1450 1451 // We were already in the exited state 1452 if (m_private_state.GetValue() == eStateExited) 1453 { 1454 if (log) 1455 log->Printf("Process::SetExitStatus () ignoring exit status because state was already set to eStateExited"); 1456 return false; 1457 } 1458 1459 m_exit_status = status; 1460 if (cstr) 1461 m_exit_string = cstr; 1462 else 1463 m_exit_string.clear(); 1464 1465 // When we exit, we don't need the input reader anymore 1466 if (m_process_input_reader) 1467 { 1468 m_process_input_reader->SetIsDone(true); 1469 m_process_input_reader->Cancel(); 1470 m_process_input_reader.reset(); 1471 } 1472 1473 // Clear the last natural stop ID since it has a strong 1474 // reference to this process 1475 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1476 1477 SetPrivateState (eStateExited); 1478 1479 // Allow subclasses to do some cleanup 1480 DidExit (); 1481 1482 return true; 1483 } 1484 1485 bool 1486 Process::IsAlive () 1487 { 1488 switch (m_private_state.GetValue()) 1489 { 1490 case eStateConnected: 1491 case eStateAttaching: 1492 case eStateLaunching: 1493 case eStateStopped: 1494 case eStateRunning: 1495 case eStateStepping: 1496 case eStateCrashed: 1497 case eStateSuspended: 1498 return true; 1499 default: 1500 return false; 1501 } 1502 } 1503 1504 // This static callback can be used to watch for local child processes on 1505 // the current host. The child process exits, the process will be 1506 // found in the global target list (we want to be completely sure that the 1507 // lldb_private::Process doesn't go away before we can deliver the signal. 1508 bool 1509 Process::SetProcessExitStatus(lldb::pid_t pid, bool exited, 1510 int signo, // Zero for no signal 1511 int exit_status // Exit value of process if signal is zero 1512 ) 1513 { 1514 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1515 if (log) 1516 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 ", exited=%i, signal=%i, exit_status=%i)\n", pid, 1517 exited, signo, exit_status); 1518 1519 if (exited) 1520 { 1521 TargetSP target_sp(Debugger::FindTargetWithProcessID (pid)); 1522 if (target_sp) 1523 { 1524 ProcessSP process_sp (target_sp->GetProcessSP()); 1525 if (process_sp) 1526 { 1527 const char *signal_cstr = nullptr; 1528 if (signo) 1529 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1530 1531 process_sp->SetExitStatus (exit_status, signal_cstr); 1532 } 1533 } 1534 return true; 1535 } 1536 return false; 1537 } 1538 1539 void 1540 Process::UpdateThreadListIfNeeded () 1541 { 1542 const uint32_t stop_id = GetStopID(); 1543 if (m_thread_list.GetSize(false) == 0 || stop_id != m_thread_list.GetStopID()) 1544 { 1545 const StateType state = GetPrivateState(); 1546 if (StateIsStoppedState (state, true)) 1547 { 1548 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1549 // m_thread_list does have its own mutex, but we need to 1550 // hold onto the mutex between the call to UpdateThreadList(...) 1551 // and the os->UpdateThreadList(...) so it doesn't change on us 1552 ThreadList &old_thread_list = m_thread_list; 1553 ThreadList real_thread_list(this); 1554 ThreadList new_thread_list(this); 1555 // Always update the thread list with the protocol specific 1556 // thread list, but only update if "true" is returned 1557 if (UpdateThreadList (m_thread_list_real, real_thread_list)) 1558 { 1559 // Don't call into the OperatingSystem to update the thread list if we are shutting down, since 1560 // that may call back into the SBAPI's, requiring the API lock which is already held by whoever is 1561 // shutting us down, causing a deadlock. 1562 OperatingSystem *os = GetOperatingSystem (); 1563 if (os && !m_destroy_in_process) 1564 { 1565 // Clear any old backing threads where memory threads might have been 1566 // backed by actual threads from the lldb_private::Process subclass 1567 size_t num_old_threads = old_thread_list.GetSize(false); 1568 for (size_t i = 0; i < num_old_threads; ++i) 1569 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1570 1571 // Turn off dynamic types to ensure we don't run any expressions. Objective C 1572 // can run an expression to determine if a SBValue is a dynamic type or not 1573 // and we need to avoid this. OperatingSystem plug-ins can't run expressions 1574 // that require running code... 1575 1576 Target &target = GetTarget(); 1577 const lldb::DynamicValueType saved_prefer_dynamic = target.GetPreferDynamicValue (); 1578 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1579 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1580 1581 // Now let the OperatingSystem plug-in update the thread list 1582 1583 os->UpdateThreadList (old_thread_list, // Old list full of threads created by OS plug-in 1584 real_thread_list, // The actual thread list full of threads created by each lldb_private::Process subclass 1585 new_thread_list); // The new thread list that we will show to the user that gets filled in 1586 1587 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1588 target.SetPreferDynamicValue(saved_prefer_dynamic); 1589 } 1590 else 1591 { 1592 // No OS plug-in, the new thread list is the same as the real thread list 1593 new_thread_list = real_thread_list; 1594 } 1595 1596 m_thread_list_real.Update(real_thread_list); 1597 m_thread_list.Update (new_thread_list); 1598 m_thread_list.SetStopID (stop_id); 1599 1600 if (GetLastNaturalStopID () != m_extended_thread_stop_id) 1601 { 1602 // Clear any extended threads that we may have accumulated previously 1603 m_extended_thread_list.Clear(); 1604 m_extended_thread_stop_id = GetLastNaturalStopID (); 1605 1606 m_queue_list.Clear(); 1607 m_queue_list_stop_id = GetLastNaturalStopID (); 1608 } 1609 } 1610 } 1611 } 1612 } 1613 1614 void 1615 Process::UpdateQueueListIfNeeded () 1616 { 1617 if (m_system_runtime_ap) 1618 { 1619 if (m_queue_list.GetSize() == 0 || m_queue_list_stop_id != GetLastNaturalStopID()) 1620 { 1621 const StateType state = GetPrivateState(); 1622 if (StateIsStoppedState (state, true)) 1623 { 1624 m_system_runtime_ap->PopulateQueueList (m_queue_list); 1625 m_queue_list_stop_id = GetLastNaturalStopID(); 1626 } 1627 } 1628 } 1629 } 1630 1631 ThreadSP 1632 Process::CreateOSPluginThread (lldb::tid_t tid, lldb::addr_t context) 1633 { 1634 OperatingSystem *os = GetOperatingSystem (); 1635 if (os) 1636 return os->CreateThread(tid, context); 1637 return ThreadSP(); 1638 } 1639 1640 uint32_t 1641 Process::GetNextThreadIndexID (uint64_t thread_id) 1642 { 1643 return AssignIndexIDToThread(thread_id); 1644 } 1645 1646 bool 1647 Process::HasAssignedIndexIDToThread(uint64_t thread_id) 1648 { 1649 return (m_thread_id_to_index_id_map.find(thread_id) != m_thread_id_to_index_id_map.end()); 1650 } 1651 1652 uint32_t 1653 Process::AssignIndexIDToThread(uint64_t thread_id) 1654 { 1655 uint32_t result = 0; 1656 std::map<uint64_t, uint32_t>::iterator iterator = m_thread_id_to_index_id_map.find(thread_id); 1657 if (iterator == m_thread_id_to_index_id_map.end()) 1658 { 1659 result = ++m_thread_index_id; 1660 m_thread_id_to_index_id_map[thread_id] = result; 1661 } 1662 else 1663 { 1664 result = iterator->second; 1665 } 1666 1667 return result; 1668 } 1669 1670 StateType 1671 Process::GetState() 1672 { 1673 // If any other threads access this we will need a mutex for it 1674 return m_public_state.GetValue (); 1675 } 1676 1677 bool 1678 Process::StateChangedIsExternallyHijacked() 1679 { 1680 if (IsHijackedForEvent(eBroadcastBitStateChanged)) 1681 { 1682 const char *hijacking_name = GetHijackingListenerName(); 1683 if (hijacking_name && strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1684 return true; 1685 } 1686 return false; 1687 } 1688 1689 void 1690 Process::SetPublicState (StateType new_state, bool restarted) 1691 { 1692 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1693 if (log) 1694 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", StateAsCString(new_state), restarted); 1695 const StateType old_state = m_public_state.GetValue(); 1696 m_public_state.SetValue (new_state); 1697 1698 // On the transition from Run to Stopped, we unlock the writer end of the 1699 // run lock. The lock gets locked in Resume, which is the public API 1700 // to tell the program to run. 1701 if (!StateChangedIsExternallyHijacked()) 1702 { 1703 if (new_state == eStateDetached) 1704 { 1705 if (log) 1706 log->Printf("Process::SetPublicState (%s) -- unlocking run lock for detach", StateAsCString(new_state)); 1707 m_public_run_lock.SetStopped(); 1708 } 1709 else 1710 { 1711 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1712 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1713 if ((old_state_is_stopped != new_state_is_stopped)) 1714 { 1715 if (new_state_is_stopped && !restarted) 1716 { 1717 if (log) 1718 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", StateAsCString(new_state)); 1719 m_public_run_lock.SetStopped(); 1720 } 1721 } 1722 } 1723 } 1724 } 1725 1726 Error 1727 Process::Resume () 1728 { 1729 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1730 if (log) 1731 log->Printf("Process::Resume -- locking run lock"); 1732 if (!m_public_run_lock.TrySetRunning()) 1733 { 1734 Error error("Resume request failed - process still running."); 1735 if (log) 1736 log->Printf ("Process::Resume: -- TrySetRunning failed, not resuming."); 1737 return error; 1738 } 1739 return PrivateResume(); 1740 } 1741 1742 Error 1743 Process::ResumeSynchronous (Stream *stream) 1744 { 1745 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1746 if (log) 1747 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1748 if (!m_public_run_lock.TrySetRunning()) 1749 { 1750 Error error("Resume request failed - process still running."); 1751 if (log) 1752 log->Printf ("Process::Resume: -- TrySetRunning failed, not resuming."); 1753 return error; 1754 } 1755 1756 ListenerSP listener_sp (Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1757 HijackProcessEvents(listener_sp); 1758 1759 Error error = PrivateResume(); 1760 if (error.Success()) 1761 { 1762 StateType state = WaitForProcessToStop (NULL, NULL, true, listener_sp, stream); 1763 const bool must_be_alive = false; // eStateExited is ok, so this must be false 1764 if (!StateIsStoppedState(state, must_be_alive)) 1765 error.SetErrorStringWithFormat("process not in stopped state after synchronous resume: %s", StateAsCString(state)); 1766 } 1767 1768 // Undo the hijacking of process events... 1769 RestoreProcessEvents(); 1770 1771 return error; 1772 } 1773 1774 StateType 1775 Process::GetPrivateState () 1776 { 1777 return m_private_state.GetValue(); 1778 } 1779 1780 void 1781 Process::SetPrivateState (StateType new_state) 1782 { 1783 if (m_finalize_called) 1784 return; 1785 1786 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1787 bool state_changed = false; 1788 1789 if (log) 1790 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1791 1792 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1793 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1794 1795 const StateType old_state = m_private_state.GetValueNoLock (); 1796 state_changed = old_state != new_state; 1797 1798 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1799 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1800 if (old_state_is_stopped != new_state_is_stopped) 1801 { 1802 if (new_state_is_stopped) 1803 m_private_run_lock.SetStopped(); 1804 else 1805 m_private_run_lock.SetRunning(); 1806 } 1807 1808 if (state_changed) 1809 { 1810 m_private_state.SetValueNoLock (new_state); 1811 EventSP event_sp (new Event (eBroadcastBitStateChanged, new ProcessEventData (shared_from_this(), new_state))); 1812 if (StateIsStoppedState(new_state, false)) 1813 { 1814 // Note, this currently assumes that all threads in the list 1815 // stop when the process stops. In the future we will want to 1816 // support a debugging model where some threads continue to run 1817 // while others are stopped. When that happens we will either need 1818 // a way for the thread list to identify which threads are stopping 1819 // or create a special thread list containing only threads which 1820 // actually stopped. 1821 // 1822 // The process plugin is responsible for managing the actual 1823 // behavior of the threads and should have stopped any threads 1824 // that are going to stop before we get here. 1825 m_thread_list.DidStop(); 1826 1827 m_mod_id.BumpStopID(); 1828 if (!m_mod_id.IsLastResumeForUserExpression()) 1829 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1830 m_memory_cache.Clear(); 1831 if (log) 1832 log->Printf("Process::SetPrivateState (%s) stop_id = %u", StateAsCString(new_state), m_mod_id.GetStopID()); 1833 } 1834 1835 // Use our target to get a shared pointer to ourselves... 1836 if (m_finalize_called && !PrivateStateThreadIsValid()) 1837 BroadcastEvent (event_sp); 1838 else 1839 m_private_state_broadcaster.BroadcastEvent (event_sp); 1840 } 1841 else 1842 { 1843 if (log) 1844 log->Printf("Process::SetPrivateState (%s) state didn't change. Ignoring...", StateAsCString(new_state)); 1845 } 1846 } 1847 1848 void 1849 Process::SetRunningUserExpression (bool on) 1850 { 1851 m_mod_id.SetRunningUserExpression (on); 1852 } 1853 1854 addr_t 1855 Process::GetImageInfoAddress() 1856 { 1857 return LLDB_INVALID_ADDRESS; 1858 } 1859 1860 const lldb::ABISP & 1861 Process::GetABI() 1862 { 1863 if (!m_abi_sp) 1864 m_abi_sp = ABI::FindPlugin(GetTarget().GetArchitecture()); 1865 return m_abi_sp; 1866 } 1867 1868 LanguageRuntime * 1869 Process::GetLanguageRuntime(lldb::LanguageType language, bool retry_if_null) 1870 { 1871 if (m_finalizing) 1872 return nullptr; 1873 1874 LanguageRuntimeCollection::iterator pos; 1875 pos = m_language_runtimes.find (language); 1876 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) 1877 { 1878 lldb::LanguageRuntimeSP runtime_sp(LanguageRuntime::FindPlugin(this, language)); 1879 1880 m_language_runtimes[language] = runtime_sp; 1881 return runtime_sp.get(); 1882 } 1883 else 1884 return (*pos).second.get(); 1885 } 1886 1887 CPPLanguageRuntime * 1888 Process::GetCPPLanguageRuntime (bool retry_if_null) 1889 { 1890 LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1891 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1892 return static_cast<CPPLanguageRuntime *> (runtime); 1893 return nullptr; 1894 } 1895 1896 ObjCLanguageRuntime * 1897 Process::GetObjCLanguageRuntime (bool retry_if_null) 1898 { 1899 LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1900 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1901 return static_cast<ObjCLanguageRuntime *> (runtime); 1902 return nullptr; 1903 } 1904 1905 bool 1906 Process::IsPossibleDynamicValue (ValueObject& in_value) 1907 { 1908 if (m_finalizing) 1909 return false; 1910 1911 if (in_value.IsDynamic()) 1912 return false; 1913 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1914 1915 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) 1916 { 1917 LanguageRuntime *runtime = GetLanguageRuntime (known_type); 1918 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1919 } 1920 1921 LanguageRuntime *cpp_runtime = GetLanguageRuntime (eLanguageTypeC_plus_plus); 1922 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1923 return true; 1924 1925 LanguageRuntime *objc_runtime = GetLanguageRuntime (eLanguageTypeObjC); 1926 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1927 } 1928 1929 void 1930 Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) 1931 { 1932 m_dynamic_checkers_ap.reset(dynamic_checkers); 1933 } 1934 1935 BreakpointSiteList & 1936 Process::GetBreakpointSiteList() 1937 { 1938 return m_breakpoint_site_list; 1939 } 1940 1941 const BreakpointSiteList & 1942 Process::GetBreakpointSiteList() const 1943 { 1944 return m_breakpoint_site_list; 1945 } 1946 1947 void 1948 Process::DisableAllBreakpointSites () 1949 { 1950 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1951 // bp_site->SetEnabled(true); 1952 DisableBreakpointSite(bp_site); 1953 }); 1954 } 1955 1956 Error 1957 Process::ClearBreakpointSiteByID (lldb::user_id_t break_id) 1958 { 1959 Error error (DisableBreakpointSiteByID (break_id)); 1960 1961 if (error.Success()) 1962 m_breakpoint_site_list.Remove(break_id); 1963 1964 return error; 1965 } 1966 1967 Error 1968 Process::DisableBreakpointSiteByID (lldb::user_id_t break_id) 1969 { 1970 Error error; 1971 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id); 1972 if (bp_site_sp) 1973 { 1974 if (bp_site_sp->IsEnabled()) 1975 error = DisableBreakpointSite (bp_site_sp.get()); 1976 } 1977 else 1978 { 1979 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); 1980 } 1981 1982 return error; 1983 } 1984 1985 Error 1986 Process::EnableBreakpointSiteByID (lldb::user_id_t break_id) 1987 { 1988 Error error; 1989 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id); 1990 if (bp_site_sp) 1991 { 1992 if (!bp_site_sp->IsEnabled()) 1993 error = EnableBreakpointSite (bp_site_sp.get()); 1994 } 1995 else 1996 { 1997 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); 1998 } 1999 return error; 2000 } 2001 2002 lldb::break_id_t 2003 Process::CreateBreakpointSite (const BreakpointLocationSP &owner, bool use_hardware) 2004 { 2005 addr_t load_addr = LLDB_INVALID_ADDRESS; 2006 2007 bool show_error = true; 2008 switch (GetState()) 2009 { 2010 case eStateInvalid: 2011 case eStateUnloaded: 2012 case eStateConnected: 2013 case eStateAttaching: 2014 case eStateLaunching: 2015 case eStateDetached: 2016 case eStateExited: 2017 show_error = false; 2018 break; 2019 2020 case eStateStopped: 2021 case eStateRunning: 2022 case eStateStepping: 2023 case eStateCrashed: 2024 case eStateSuspended: 2025 show_error = IsAlive(); 2026 break; 2027 } 2028 2029 // Reset the IsIndirect flag here, in case the location changes from 2030 // pointing to a indirect symbol to a regular symbol. 2031 owner->SetIsIndirect (false); 2032 2033 if (owner->ShouldResolveIndirectFunctions()) 2034 { 2035 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 2036 if (symbol && symbol->IsIndirect()) 2037 { 2038 Error error; 2039 Address symbol_address = symbol->GetAddress(); 2040 load_addr = ResolveIndirectFunction (&symbol_address, error); 2041 if (!error.Success() && show_error) 2042 { 2043 GetTarget().GetDebugger().GetErrorFile()->Printf ("warning: failed to resolve indirect function at 0x%" PRIx64 " for breakpoint %i.%i: %s\n", 2044 symbol->GetLoadAddress(&GetTarget()), 2045 owner->GetBreakpoint().GetID(), 2046 owner->GetID(), 2047 error.AsCString() ? error.AsCString() : "unknown error"); 2048 return LLDB_INVALID_BREAK_ID; 2049 } 2050 Address resolved_address(load_addr); 2051 load_addr = resolved_address.GetOpcodeLoadAddress (&GetTarget()); 2052 owner->SetIsIndirect(true); 2053 } 2054 else 2055 load_addr = owner->GetAddress().GetOpcodeLoadAddress (&GetTarget()); 2056 } 2057 else 2058 load_addr = owner->GetAddress().GetOpcodeLoadAddress (&GetTarget()); 2059 2060 if (load_addr != LLDB_INVALID_ADDRESS) 2061 { 2062 BreakpointSiteSP bp_site_sp; 2063 2064 // Look up this breakpoint site. If it exists, then add this new owner, otherwise 2065 // create a new breakpoint site and add it. 2066 2067 bp_site_sp = m_breakpoint_site_list.FindByAddress (load_addr); 2068 2069 if (bp_site_sp) 2070 { 2071 bp_site_sp->AddOwner (owner); 2072 owner->SetBreakpointSite (bp_site_sp); 2073 return bp_site_sp->GetID(); 2074 } 2075 else 2076 { 2077 bp_site_sp.reset (new BreakpointSite (&m_breakpoint_site_list, owner, load_addr, use_hardware)); 2078 if (bp_site_sp) 2079 { 2080 Error error = EnableBreakpointSite (bp_site_sp.get()); 2081 if (error.Success()) 2082 { 2083 owner->SetBreakpointSite (bp_site_sp); 2084 return m_breakpoint_site_list.Add (bp_site_sp); 2085 } 2086 else 2087 { 2088 if (show_error) 2089 { 2090 // Report error for setting breakpoint... 2091 GetTarget().GetDebugger().GetErrorFile()->Printf ("warning: failed to set breakpoint site at 0x%" PRIx64 " for breakpoint %i.%i: %s\n", 2092 load_addr, 2093 owner->GetBreakpoint().GetID(), 2094 owner->GetID(), 2095 error.AsCString() ? error.AsCString() : "unknown error"); 2096 } 2097 } 2098 } 2099 } 2100 } 2101 // We failed to enable the breakpoint 2102 return LLDB_INVALID_BREAK_ID; 2103 } 2104 2105 void 2106 Process::RemoveOwnerFromBreakpointSite (lldb::user_id_t owner_id, lldb::user_id_t owner_loc_id, BreakpointSiteSP &bp_site_sp) 2107 { 2108 uint32_t num_owners = bp_site_sp->RemoveOwner (owner_id, owner_loc_id); 2109 if (num_owners == 0) 2110 { 2111 // Don't try to disable the site if we don't have a live process anymore. 2112 if (IsAlive()) 2113 DisableBreakpointSite (bp_site_sp.get()); 2114 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 2115 } 2116 } 2117 2118 size_t 2119 Process::RemoveBreakpointOpcodesFromBuffer (addr_t bp_addr, size_t size, uint8_t *buf) const 2120 { 2121 size_t bytes_removed = 0; 2122 BreakpointSiteList bp_sites_in_range; 2123 2124 if (m_breakpoint_site_list.FindInRange (bp_addr, bp_addr + size, bp_sites_in_range)) 2125 { 2126 bp_sites_in_range.ForEach([bp_addr, size, buf, &bytes_removed](BreakpointSite *bp_site) -> void { 2127 if (bp_site->GetType() == BreakpointSite::eSoftware) 2128 { 2129 addr_t intersect_addr; 2130 size_t intersect_size; 2131 size_t opcode_offset; 2132 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, &intersect_size, &opcode_offset)) 2133 { 2134 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 2135 assert(bp_addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= bp_addr + size); 2136 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 2137 size_t buf_offset = intersect_addr - bp_addr; 2138 ::memcpy(buf + buf_offset, bp_site->GetSavedOpcodeBytes() + opcode_offset, intersect_size); 2139 } 2140 } 2141 }); 2142 } 2143 return bytes_removed; 2144 } 2145 2146 size_t 2147 Process::GetSoftwareBreakpointTrapOpcode (BreakpointSite* bp_site) 2148 { 2149 PlatformSP platform_sp (GetTarget().GetPlatform()); 2150 if (platform_sp) 2151 return platform_sp->GetSoftwareBreakpointTrapOpcode (GetTarget(), bp_site); 2152 return 0; 2153 } 2154 2155 Error 2156 Process::EnableSoftwareBreakpoint (BreakpointSite *bp_site) 2157 { 2158 Error error; 2159 assert(bp_site != nullptr); 2160 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2161 const addr_t bp_addr = bp_site->GetLoadAddress(); 2162 if (log) 2163 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, bp_site->GetID(), (uint64_t)bp_addr); 2164 if (bp_site->IsEnabled()) 2165 { 2166 if (log) 2167 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already enabled", bp_site->GetID(), (uint64_t)bp_addr); 2168 return error; 2169 } 2170 2171 if (bp_addr == LLDB_INVALID_ADDRESS) 2172 { 2173 error.SetErrorString("BreakpointSite contains an invalid load address."); 2174 return error; 2175 } 2176 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2177 // trap for the breakpoint site 2178 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2179 2180 if (bp_opcode_size == 0) 2181 { 2182 error.SetErrorStringWithFormat ("Process::GetSoftwareBreakpointTrapOpcode() returned zero, unable to get breakpoint trap for address 0x%" PRIx64, bp_addr); 2183 } 2184 else 2185 { 2186 const uint8_t * const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2187 2188 if (bp_opcode_bytes == nullptr) 2189 { 2190 error.SetErrorString ("BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2191 return error; 2192 } 2193 2194 // Save the original opcode by reading it 2195 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, error) == bp_opcode_size) 2196 { 2197 // Write a software breakpoint in place of the original opcode 2198 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) 2199 { 2200 uint8_t verify_bp_opcode_bytes[64]; 2201 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) 2202 { 2203 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, bp_opcode_size) == 0) 2204 { 2205 bp_site->SetEnabled(true); 2206 bp_site->SetType (BreakpointSite::eSoftware); 2207 if (log) 2208 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", 2209 bp_site->GetID(), 2210 (uint64_t)bp_addr); 2211 } 2212 else 2213 error.SetErrorString("failed to verify the breakpoint trap in memory."); 2214 } 2215 else 2216 error.SetErrorString("Unable to read memory to verify breakpoint trap."); 2217 } 2218 else 2219 error.SetErrorString("Unable to write breakpoint trap to memory."); 2220 } 2221 else 2222 error.SetErrorString("Unable to read memory at breakpoint address."); 2223 } 2224 if (log && error.Fail()) 2225 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", 2226 bp_site->GetID(), 2227 (uint64_t)bp_addr, 2228 error.AsCString()); 2229 return error; 2230 } 2231 2232 Error 2233 Process::DisableSoftwareBreakpoint (BreakpointSite *bp_site) 2234 { 2235 Error error; 2236 assert(bp_site != nullptr); 2237 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2238 addr_t bp_addr = bp_site->GetLoadAddress(); 2239 lldb::user_id_t breakID = bp_site->GetID(); 2240 if (log) 2241 log->Printf ("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 ") addr = 0x%" PRIx64, breakID, (uint64_t)bp_addr); 2242 2243 if (bp_site->IsHardware()) 2244 { 2245 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2246 } 2247 else if (bp_site->IsEnabled()) 2248 { 2249 const size_t break_op_size = bp_site->GetByteSize(); 2250 const uint8_t * const break_op = bp_site->GetTrapOpcodeBytes(); 2251 if (break_op_size > 0) 2252 { 2253 // Clear a software breakpoint instruction 2254 uint8_t curr_break_op[8]; 2255 assert (break_op_size <= sizeof(curr_break_op)); 2256 bool break_op_found = false; 2257 2258 // Read the breakpoint opcode 2259 if (DoReadMemory (bp_addr, curr_break_op, break_op_size, error) == break_op_size) 2260 { 2261 bool verify = false; 2262 // Make sure the breakpoint opcode exists at this address 2263 if (::memcmp (curr_break_op, break_op, break_op_size) == 0) 2264 { 2265 break_op_found = true; 2266 // We found a valid breakpoint opcode at this address, now restore 2267 // the saved opcode. 2268 if (DoWriteMemory (bp_addr, bp_site->GetSavedOpcodeBytes(), break_op_size, error) == break_op_size) 2269 { 2270 verify = true; 2271 } 2272 else 2273 error.SetErrorString("Memory write failed when restoring original opcode."); 2274 } 2275 else 2276 { 2277 error.SetErrorString("Original breakpoint trap is no longer in memory."); 2278 // Set verify to true and so we can check if the original opcode has already been restored 2279 verify = true; 2280 } 2281 2282 if (verify) 2283 { 2284 uint8_t verify_opcode[8]; 2285 assert (break_op_size < sizeof(verify_opcode)); 2286 // Verify that our original opcode made it back to the inferior 2287 if (DoReadMemory (bp_addr, verify_opcode, break_op_size, error) == break_op_size) 2288 { 2289 // compare the memory we just read with the original opcode 2290 if (::memcmp (bp_site->GetSavedOpcodeBytes(), verify_opcode, break_op_size) == 0) 2291 { 2292 // SUCCESS 2293 bp_site->SetEnabled(false); 2294 if (log) 2295 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", bp_site->GetID(), (uint64_t)bp_addr); 2296 return error; 2297 } 2298 else 2299 { 2300 if (break_op_found) 2301 error.SetErrorString("Failed to restore original opcode."); 2302 } 2303 } 2304 else 2305 error.SetErrorString("Failed to read memory to verify that breakpoint trap was restored."); 2306 } 2307 } 2308 else 2309 error.SetErrorString("Unable to read memory that should contain the breakpoint trap."); 2310 } 2311 } 2312 else 2313 { 2314 if (log) 2315 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already disabled", bp_site->GetID(), (uint64_t)bp_addr); 2316 return error; 2317 } 2318 2319 if (log) 2320 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", 2321 bp_site->GetID(), 2322 (uint64_t)bp_addr, 2323 error.AsCString()); 2324 return error; 2325 } 2326 2327 // Uncomment to verify memory caching works after making changes to caching code 2328 //#define VERIFY_MEMORY_READS 2329 2330 size_t 2331 Process::ReadMemory (addr_t addr, void *buf, size_t size, Error &error) 2332 { 2333 error.Clear(); 2334 if (!GetDisableMemoryCache()) 2335 { 2336 #if defined (VERIFY_MEMORY_READS) 2337 // Memory caching is enabled, with debug verification 2338 2339 if (buf && size) 2340 { 2341 // Uncomment the line below to make sure memory caching is working. 2342 // I ran this through the test suite and got no assertions, so I am 2343 // pretty confident this is working well. If any changes are made to 2344 // memory caching, uncomment the line below and test your changes! 2345 2346 // Verify all memory reads by using the cache first, then redundantly 2347 // reading the same memory from the inferior and comparing to make sure 2348 // everything is exactly the same. 2349 std::string verify_buf (size, '\0'); 2350 assert (verify_buf.size() == size); 2351 const size_t cache_bytes_read = m_memory_cache.Read (this, addr, buf, size, error); 2352 Error verify_error; 2353 const size_t verify_bytes_read = ReadMemoryFromInferior (addr, const_cast<char *>(verify_buf.data()), verify_buf.size(), verify_error); 2354 assert (cache_bytes_read == verify_bytes_read); 2355 assert (memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2356 assert (verify_error.Success() == error.Success()); 2357 return cache_bytes_read; 2358 } 2359 return 0; 2360 #else // !defined(VERIFY_MEMORY_READS) 2361 // Memory caching is enabled, without debug verification 2362 2363 return m_memory_cache.Read (addr, buf, size, error); 2364 #endif // defined (VERIFY_MEMORY_READS) 2365 } 2366 else 2367 { 2368 // Memory caching is disabled 2369 2370 return ReadMemoryFromInferior (addr, buf, size, error); 2371 } 2372 } 2373 2374 size_t 2375 Process::ReadCStringFromMemory (addr_t addr, std::string &out_str, Error &error) 2376 { 2377 char buf[256]; 2378 out_str.clear(); 2379 addr_t curr_addr = addr; 2380 while (true) 2381 { 2382 size_t length = ReadCStringFromMemory (curr_addr, buf, sizeof(buf), error); 2383 if (length == 0) 2384 break; 2385 out_str.append(buf, length); 2386 // If we got "length - 1" bytes, we didn't get the whole C string, we 2387 // need to read some more characters 2388 if (length == sizeof(buf) - 1) 2389 curr_addr += length; 2390 else 2391 break; 2392 } 2393 return out_str.size(); 2394 } 2395 2396 size_t 2397 Process::ReadStringFromMemory (addr_t addr, char *dst, size_t max_bytes, Error &error, 2398 size_t type_width) 2399 { 2400 size_t total_bytes_read = 0; 2401 if (dst && max_bytes && type_width && max_bytes >= type_width) 2402 { 2403 // Ensure a null terminator independent of the number of bytes that is read. 2404 memset (dst, 0, max_bytes); 2405 size_t bytes_left = max_bytes - type_width; 2406 2407 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2408 assert(sizeof(terminator) >= type_width && 2409 "Attempting to validate a string with more than 4 bytes per character!"); 2410 2411 addr_t curr_addr = addr; 2412 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2413 char *curr_dst = dst; 2414 2415 error.Clear(); 2416 while (bytes_left > 0 && error.Success()) 2417 { 2418 addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); 2419 addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left); 2420 size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error); 2421 2422 if (bytes_read == 0) 2423 break; 2424 2425 // Search for a null terminator of correct size and alignment in bytes_read 2426 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2427 for (size_t i = aligned_start; i + type_width <= total_bytes_read + bytes_read; i += type_width) 2428 if (::memcmp(&dst[i], terminator, type_width) == 0) 2429 { 2430 error.Clear(); 2431 return i; 2432 } 2433 2434 total_bytes_read += bytes_read; 2435 curr_dst += bytes_read; 2436 curr_addr += bytes_read; 2437 bytes_left -= bytes_read; 2438 } 2439 } 2440 else 2441 { 2442 if (max_bytes) 2443 error.SetErrorString("invalid arguments"); 2444 } 2445 return total_bytes_read; 2446 } 2447 2448 // Deprecated in favor of ReadStringFromMemory which has wchar support and correct code to find 2449 // null terminators. 2450 size_t 2451 Process::ReadCStringFromMemory (addr_t addr, char *dst, size_t dst_max_len, Error &result_error) 2452 { 2453 size_t total_cstr_len = 0; 2454 if (dst && dst_max_len) 2455 { 2456 result_error.Clear(); 2457 // NULL out everything just to be safe 2458 memset (dst, 0, dst_max_len); 2459 Error error; 2460 addr_t curr_addr = addr; 2461 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2462 size_t bytes_left = dst_max_len - 1; 2463 char *curr_dst = dst; 2464 2465 while (bytes_left > 0) 2466 { 2467 addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); 2468 addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left); 2469 size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error); 2470 2471 if (bytes_read == 0) 2472 { 2473 result_error = error; 2474 dst[total_cstr_len] = '\0'; 2475 break; 2476 } 2477 const size_t len = strlen(curr_dst); 2478 2479 total_cstr_len += len; 2480 2481 if (len < bytes_to_read) 2482 break; 2483 2484 curr_dst += bytes_read; 2485 curr_addr += bytes_read; 2486 bytes_left -= bytes_read; 2487 } 2488 } 2489 else 2490 { 2491 if (dst == nullptr) 2492 result_error.SetErrorString("invalid arguments"); 2493 else 2494 result_error.Clear(); 2495 } 2496 return total_cstr_len; 2497 } 2498 2499 size_t 2500 Process::ReadMemoryFromInferior (addr_t addr, void *buf, size_t size, Error &error) 2501 { 2502 if (buf == nullptr || size == 0) 2503 return 0; 2504 2505 size_t bytes_read = 0; 2506 uint8_t *bytes = (uint8_t *)buf; 2507 2508 while (bytes_read < size) 2509 { 2510 const size_t curr_size = size - bytes_read; 2511 const size_t curr_bytes_read = DoReadMemory (addr + bytes_read, 2512 bytes + bytes_read, 2513 curr_size, 2514 error); 2515 bytes_read += curr_bytes_read; 2516 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2517 break; 2518 } 2519 2520 // Replace any software breakpoint opcodes that fall into this range back 2521 // into "buf" before we return 2522 if (bytes_read > 0) 2523 RemoveBreakpointOpcodesFromBuffer (addr, bytes_read, (uint8_t *)buf); 2524 return bytes_read; 2525 } 2526 2527 uint64_t 2528 Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, size_t integer_byte_size, uint64_t fail_value, 2529 Error &error) 2530 { 2531 Scalar scalar; 2532 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, error)) 2533 return scalar.ULongLong(fail_value); 2534 return fail_value; 2535 } 2536 2537 int64_t 2538 Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, size_t integer_byte_size, int64_t fail_value, Error &error) 2539 { 2540 Scalar scalar; 2541 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, error)) 2542 return scalar.SLongLong(fail_value); 2543 return fail_value; 2544 } 2545 2546 addr_t 2547 Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error) 2548 { 2549 Scalar scalar; 2550 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, error)) 2551 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2552 return LLDB_INVALID_ADDRESS; 2553 } 2554 2555 bool 2556 Process::WritePointerToMemory (lldb::addr_t vm_addr, 2557 lldb::addr_t ptr_value, 2558 Error &error) 2559 { 2560 Scalar scalar; 2561 const uint32_t addr_byte_size = GetAddressByteSize(); 2562 if (addr_byte_size <= 4) 2563 scalar = (uint32_t)ptr_value; 2564 else 2565 scalar = ptr_value; 2566 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == addr_byte_size; 2567 } 2568 2569 size_t 2570 Process::WriteMemoryPrivate (addr_t addr, const void *buf, size_t size, Error &error) 2571 { 2572 size_t bytes_written = 0; 2573 const uint8_t *bytes = (const uint8_t *)buf; 2574 2575 while (bytes_written < size) 2576 { 2577 const size_t curr_size = size - bytes_written; 2578 const size_t curr_bytes_written = DoWriteMemory (addr + bytes_written, 2579 bytes + bytes_written, 2580 curr_size, 2581 error); 2582 bytes_written += curr_bytes_written; 2583 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2584 break; 2585 } 2586 return bytes_written; 2587 } 2588 2589 size_t 2590 Process::WriteMemory (addr_t addr, const void *buf, size_t size, Error &error) 2591 { 2592 #if defined (ENABLE_MEMORY_CACHING) 2593 m_memory_cache.Flush (addr, size); 2594 #endif 2595 2596 if (buf == nullptr || size == 0) 2597 return 0; 2598 2599 m_mod_id.BumpMemoryID(); 2600 2601 // We need to write any data that would go where any current software traps 2602 // (enabled software breakpoints) any software traps (breakpoints) that we 2603 // may have placed in our tasks memory. 2604 2605 BreakpointSiteList bp_sites_in_range; 2606 2607 if (m_breakpoint_site_list.FindInRange (addr, addr + size, bp_sites_in_range)) 2608 { 2609 // No breakpoint sites overlap 2610 if (bp_sites_in_range.IsEmpty()) 2611 return WriteMemoryPrivate (addr, buf, size, error); 2612 else 2613 { 2614 const uint8_t *ubuf = (const uint8_t *)buf; 2615 uint64_t bytes_written = 0; 2616 2617 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, &error](BreakpointSite *bp) -> void { 2618 2619 if (error.Success()) 2620 { 2621 addr_t intersect_addr; 2622 size_t intersect_size; 2623 size_t opcode_offset; 2624 const bool intersects = bp->IntersectsRange(addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2625 UNUSED_IF_ASSERT_DISABLED(intersects); 2626 assert(intersects); 2627 assert(addr <= intersect_addr && intersect_addr < addr + size); 2628 assert(addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= addr + size); 2629 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2630 2631 // Check for bytes before this breakpoint 2632 const addr_t curr_addr = addr + bytes_written; 2633 if (intersect_addr > curr_addr) 2634 { 2635 // There are some bytes before this breakpoint that we need to 2636 // just write to memory 2637 size_t curr_size = intersect_addr - curr_addr; 2638 size_t curr_bytes_written = WriteMemoryPrivate (curr_addr, 2639 ubuf + bytes_written, 2640 curr_size, 2641 error); 2642 bytes_written += curr_bytes_written; 2643 if (curr_bytes_written != curr_size) 2644 { 2645 // We weren't able to write all of the requested bytes, we 2646 // are done looping and will return the number of bytes that 2647 // we have written so far. 2648 if (error.Success()) 2649 error.SetErrorToGenericError(); 2650 } 2651 } 2652 // Now write any bytes that would cover up any software breakpoints 2653 // directly into the breakpoint opcode buffer 2654 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, intersect_size); 2655 bytes_written += intersect_size; 2656 } 2657 }); 2658 2659 if (bytes_written < size) 2660 WriteMemoryPrivate (addr + bytes_written, 2661 ubuf + bytes_written, 2662 size - bytes_written, 2663 error); 2664 } 2665 } 2666 else 2667 { 2668 return WriteMemoryPrivate (addr, buf, size, error); 2669 } 2670 2671 // Write any remaining bytes after the last breakpoint if we have any left 2672 return 0; //bytes_written; 2673 } 2674 2675 size_t 2676 Process::WriteScalarToMemory (addr_t addr, const Scalar &scalar, size_t byte_size, Error &error) 2677 { 2678 if (byte_size == UINT32_MAX) 2679 byte_size = scalar.GetByteSize(); 2680 if (byte_size > 0) 2681 { 2682 uint8_t buf[32]; 2683 const size_t mem_size = scalar.GetAsMemoryData (buf, byte_size, GetByteOrder(), error); 2684 if (mem_size > 0) 2685 return WriteMemory(addr, buf, mem_size, error); 2686 else 2687 error.SetErrorString ("failed to get scalar as memory data"); 2688 } 2689 else 2690 { 2691 error.SetErrorString ("invalid scalar value"); 2692 } 2693 return 0; 2694 } 2695 2696 size_t 2697 Process::ReadScalarIntegerFromMemory (addr_t addr, 2698 uint32_t byte_size, 2699 bool is_signed, 2700 Scalar &scalar, 2701 Error &error) 2702 { 2703 uint64_t uval = 0; 2704 if (byte_size == 0) 2705 { 2706 error.SetErrorString ("byte size is zero"); 2707 } 2708 else if (byte_size & (byte_size - 1)) 2709 { 2710 error.SetErrorStringWithFormat ("byte size %u is not a power of 2", byte_size); 2711 } 2712 else if (byte_size <= sizeof(uval)) 2713 { 2714 const size_t bytes_read = ReadMemory (addr, &uval, byte_size, error); 2715 if (bytes_read == byte_size) 2716 { 2717 DataExtractor data (&uval, sizeof(uval), GetByteOrder(), GetAddressByteSize()); 2718 lldb::offset_t offset = 0; 2719 if (byte_size <= 4) 2720 scalar = data.GetMaxU32 (&offset, byte_size); 2721 else 2722 scalar = data.GetMaxU64 (&offset, byte_size); 2723 if (is_signed) 2724 scalar.SignExtend(byte_size * 8); 2725 return bytes_read; 2726 } 2727 } 2728 else 2729 { 2730 error.SetErrorStringWithFormat ("byte size of %u is too large for integer scalar type", byte_size); 2731 } 2732 return 0; 2733 } 2734 2735 #define USE_ALLOCATE_MEMORY_CACHE 1 2736 addr_t 2737 Process::AllocateMemory(size_t size, uint32_t permissions, Error &error) 2738 { 2739 if (GetPrivateState() != eStateStopped) 2740 return LLDB_INVALID_ADDRESS; 2741 2742 #if defined (USE_ALLOCATE_MEMORY_CACHE) 2743 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2744 #else 2745 addr_t allocated_addr = DoAllocateMemory (size, permissions, error); 2746 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2747 if (log) 2748 log->Printf("Process::AllocateMemory(size=%" PRIu64 ", permissions=%s) => 0x%16.16" PRIx64 " (m_stop_id = %u m_memory_id = %u)", 2749 (uint64_t)size, 2750 GetPermissionsAsCString (permissions), 2751 (uint64_t)allocated_addr, 2752 m_mod_id.GetStopID(), 2753 m_mod_id.GetMemoryID()); 2754 return allocated_addr; 2755 #endif 2756 } 2757 2758 addr_t 2759 Process::CallocateMemory(size_t size, uint32_t permissions, Error &error) 2760 { 2761 addr_t return_addr = AllocateMemory(size, permissions, error); 2762 if (error.Success()) 2763 { 2764 std::string buffer(size, 0); 2765 WriteMemory(return_addr, buffer.c_str(), size, error); 2766 } 2767 return return_addr; 2768 } 2769 2770 bool 2771 Process::CanJIT () 2772 { 2773 if (m_can_jit == eCanJITDontKnow) 2774 { 2775 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2776 Error err; 2777 2778 uint64_t allocated_memory = AllocateMemory(8, 2779 ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2780 err); 2781 2782 if (err.Success()) 2783 { 2784 m_can_jit = eCanJITYes; 2785 if (log) 2786 log->Printf ("Process::%s pid %" PRIu64 " allocation test passed, CanJIT () is true", __FUNCTION__, GetID ()); 2787 } 2788 else 2789 { 2790 m_can_jit = eCanJITNo; 2791 if (log) 2792 log->Printf ("Process::%s pid %" PRIu64 " allocation test failed, CanJIT () is false: %s", __FUNCTION__, GetID (), err.AsCString ()); 2793 } 2794 2795 DeallocateMemory (allocated_memory); 2796 } 2797 2798 return m_can_jit == eCanJITYes; 2799 } 2800 2801 void 2802 Process::SetCanJIT (bool can_jit) 2803 { 2804 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2805 } 2806 2807 void 2808 Process::SetCanRunCode (bool can_run_code) 2809 { 2810 SetCanJIT(can_run_code); 2811 m_can_interpret_function_calls = can_run_code; 2812 } 2813 2814 Error 2815 Process::DeallocateMemory (addr_t ptr) 2816 { 2817 Error error; 2818 #if defined (USE_ALLOCATE_MEMORY_CACHE) 2819 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) 2820 { 2821 error.SetErrorStringWithFormat ("deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2822 } 2823 #else 2824 error = DoDeallocateMemory (ptr); 2825 2826 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2827 if (log) 2828 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2829 ptr, 2830 error.AsCString("SUCCESS"), 2831 m_mod_id.GetStopID(), 2832 m_mod_id.GetMemoryID()); 2833 #endif 2834 return error; 2835 } 2836 2837 ModuleSP 2838 Process::ReadModuleFromMemory (const FileSpec& file_spec, 2839 lldb::addr_t header_addr, 2840 size_t size_to_read) 2841 { 2842 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2843 if (log) 2844 { 2845 log->Printf ("Process::ReadModuleFromMemory reading %s binary from memory", file_spec.GetPath().c_str()); 2846 } 2847 ModuleSP module_sp (new Module (file_spec, ArchSpec())); 2848 if (module_sp) 2849 { 2850 Error error; 2851 ObjectFile *objfile = module_sp->GetMemoryObjectFile (shared_from_this(), header_addr, error, size_to_read); 2852 if (objfile) 2853 return module_sp; 2854 } 2855 return ModuleSP(); 2856 } 2857 2858 bool 2859 Process::GetLoadAddressPermissions (lldb::addr_t load_addr, uint32_t &permissions) 2860 { 2861 MemoryRegionInfo range_info; 2862 permissions = 0; 2863 Error error (GetMemoryRegionInfo (load_addr, range_info)); 2864 if (!error.Success()) 2865 return false; 2866 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow 2867 || range_info.GetWritable() == MemoryRegionInfo::eDontKnow 2868 || range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) 2869 { 2870 return false; 2871 } 2872 2873 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2874 permissions |= lldb::ePermissionsReadable; 2875 2876 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2877 permissions |= lldb::ePermissionsWritable; 2878 2879 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2880 permissions |= lldb::ePermissionsExecutable; 2881 2882 return true; 2883 } 2884 2885 Error 2886 Process::EnableWatchpoint (Watchpoint *watchpoint, bool notify) 2887 { 2888 Error error; 2889 error.SetErrorString("watchpoints are not supported"); 2890 return error; 2891 } 2892 2893 Error 2894 Process::DisableWatchpoint (Watchpoint *watchpoint, bool notify) 2895 { 2896 Error error; 2897 error.SetErrorString("watchpoints are not supported"); 2898 return error; 2899 } 2900 2901 StateType 2902 Process::WaitForProcessStopPrivate (const TimeValue *timeout, EventSP &event_sp) 2903 { 2904 StateType state; 2905 // Now wait for the process to launch and return control to us, and then 2906 // call DidLaunch: 2907 while (true) 2908 { 2909 event_sp.reset(); 2910 state = WaitForStateChangedEventsPrivate (timeout, event_sp); 2911 2912 if (StateIsStoppedState(state, false)) 2913 break; 2914 2915 // If state is invalid, then we timed out 2916 if (state == eStateInvalid) 2917 break; 2918 2919 if (event_sp) 2920 HandlePrivateEvent (event_sp); 2921 } 2922 return state; 2923 } 2924 2925 void 2926 Process::LoadOperatingSystemPlugin(bool flush) 2927 { 2928 if (flush) 2929 m_thread_list.Clear(); 2930 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2931 if (flush) 2932 Flush(); 2933 } 2934 2935 Error 2936 Process::Launch (ProcessLaunchInfo &launch_info) 2937 { 2938 Error error; 2939 m_abi_sp.reset(); 2940 m_dyld_ap.reset(); 2941 m_jit_loaders_ap.reset(); 2942 m_system_runtime_ap.reset(); 2943 m_os_ap.reset(); 2944 m_process_input_reader.reset(); 2945 m_stop_info_override_callback = nullptr; 2946 2947 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2948 if (exe_module) 2949 { 2950 char local_exec_file_path[PATH_MAX]; 2951 char platform_exec_file_path[PATH_MAX]; 2952 exe_module->GetFileSpec().GetPath(local_exec_file_path, sizeof(local_exec_file_path)); 2953 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, sizeof(platform_exec_file_path)); 2954 if (exe_module->GetFileSpec().Exists()) 2955 { 2956 // Install anything that might need to be installed prior to launching. 2957 // For host systems, this will do nothing, but if we are connected to a 2958 // remote platform it will install any needed binaries 2959 error = GetTarget().Install(&launch_info); 2960 if (error.Fail()) 2961 return error; 2962 2963 if (PrivateStateThreadIsValid ()) 2964 PausePrivateStateThread (); 2965 2966 error = WillLaunch (exe_module); 2967 if (error.Success()) 2968 { 2969 const bool restarted = false; 2970 SetPublicState (eStateLaunching, restarted); 2971 m_should_detach = false; 2972 2973 if (m_public_run_lock.TrySetRunning()) 2974 { 2975 // Now launch using these arguments. 2976 error = DoLaunch (exe_module, launch_info); 2977 } 2978 else 2979 { 2980 // This shouldn't happen 2981 error.SetErrorString("failed to acquire process run lock"); 2982 } 2983 2984 if (error.Fail()) 2985 { 2986 if (GetID() != LLDB_INVALID_PROCESS_ID) 2987 { 2988 SetID (LLDB_INVALID_PROCESS_ID); 2989 const char *error_string = error.AsCString(); 2990 if (error_string == nullptr) 2991 error_string = "launch failed"; 2992 SetExitStatus (-1, error_string); 2993 } 2994 } 2995 else 2996 { 2997 EventSP event_sp; 2998 TimeValue timeout_time; 2999 timeout_time = TimeValue::Now(); 3000 timeout_time.OffsetWithSeconds(10); 3001 StateType state = WaitForProcessStopPrivate(&timeout_time, event_sp); 3002 3003 if (state == eStateInvalid || !event_sp) 3004 { 3005 // We were able to launch the process, but we failed to 3006 // catch the initial stop. 3007 error.SetErrorString ("failed to catch stop after launch"); 3008 SetExitStatus (0, "failed to catch stop after launch"); 3009 Destroy(false); 3010 } 3011 else if (state == eStateStopped || state == eStateCrashed) 3012 { 3013 DidLaunch (); 3014 3015 DynamicLoader *dyld = GetDynamicLoader (); 3016 if (dyld) 3017 dyld->DidLaunch(); 3018 3019 GetJITLoaders().DidLaunch(); 3020 3021 SystemRuntime *system_runtime = GetSystemRuntime (); 3022 if (system_runtime) 3023 system_runtime->DidLaunch(); 3024 3025 LoadOperatingSystemPlugin(false); 3026 3027 // Note, the stop event was consumed above, but not handled. This was done 3028 // to give DidLaunch a chance to run. The target is either stopped or crashed. 3029 // Directly set the state. This is done to prevent a stop message with a bunch 3030 // of spurious output on thread status, as well as not pop a ProcessIOHandler. 3031 SetPublicState(state, false); 3032 3033 if (PrivateStateThreadIsValid ()) 3034 ResumePrivateStateThread (); 3035 else 3036 StartPrivateStateThread (); 3037 3038 m_stop_info_override_callback = GetTarget().GetArchitecture().GetStopInfoOverrideCallback(); 3039 3040 // Target was stopped at entry as was intended. Need to notify the listeners 3041 // about it. 3042 if (state == eStateStopped && launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 3043 HandlePrivateEvent(event_sp); 3044 } 3045 else if (state == eStateExited) 3046 { 3047 // We exited while trying to launch somehow. Don't call DidLaunch as that's 3048 // not likely to work, and return an invalid pid. 3049 HandlePrivateEvent (event_sp); 3050 } 3051 } 3052 } 3053 } 3054 else 3055 { 3056 error.SetErrorStringWithFormat("file doesn't exist: '%s'", local_exec_file_path); 3057 } 3058 } 3059 return error; 3060 } 3061 3062 Error 3063 Process::LoadCore () 3064 { 3065 Error error = DoLoadCore(); 3066 if (error.Success()) 3067 { 3068 ListenerSP listener_sp (Listener::MakeListener("lldb.process.load_core_listener")); 3069 HijackProcessEvents(listener_sp); 3070 3071 if (PrivateStateThreadIsValid ()) 3072 ResumePrivateStateThread (); 3073 else 3074 StartPrivateStateThread (); 3075 3076 DynamicLoader *dyld = GetDynamicLoader (); 3077 if (dyld) 3078 dyld->DidAttach(); 3079 3080 GetJITLoaders().DidAttach(); 3081 3082 SystemRuntime *system_runtime = GetSystemRuntime (); 3083 if (system_runtime) 3084 system_runtime->DidAttach(); 3085 3086 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 3087 // We successfully loaded a core file, now pretend we stopped so we can 3088 // show all of the threads in the core file and explore the crashed 3089 // state. 3090 SetPrivateState (eStateStopped); 3091 3092 // Wait indefinitely for a stopped event since we just posted one above... 3093 lldb::EventSP event_sp; 3094 listener_sp->WaitForEvent (nullptr, event_sp); 3095 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 3096 3097 if (!StateIsStoppedState (state, false)) 3098 { 3099 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3100 if (log) 3101 log->Printf("Process::Halt() failed to stop, state is: %s", StateAsCString(state)); 3102 error.SetErrorString ("Did not get stopped event after loading the core file."); 3103 } 3104 RestoreProcessEvents (); 3105 } 3106 return error; 3107 } 3108 3109 DynamicLoader * 3110 Process::GetDynamicLoader () 3111 { 3112 if (!m_dyld_ap) 3113 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 3114 return m_dyld_ap.get(); 3115 } 3116 3117 const lldb::DataBufferSP 3118 Process::GetAuxvData() 3119 { 3120 return DataBufferSP (); 3121 } 3122 3123 JITLoaderList & 3124 Process::GetJITLoaders () 3125 { 3126 if (!m_jit_loaders_ap) 3127 { 3128 m_jit_loaders_ap.reset(new JITLoaderList()); 3129 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 3130 } 3131 return *m_jit_loaders_ap; 3132 } 3133 3134 SystemRuntime * 3135 Process::GetSystemRuntime () 3136 { 3137 if (!m_system_runtime_ap) 3138 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 3139 return m_system_runtime_ap.get(); 3140 } 3141 3142 Process::AttachCompletionHandler::AttachCompletionHandler (Process *process, uint32_t exec_count) : 3143 NextEventAction (process), 3144 m_exec_count (exec_count) 3145 { 3146 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3147 if (log) 3148 log->Printf ("Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, __FUNCTION__, static_cast<void*>(process), exec_count); 3149 } 3150 3151 Process::NextEventAction::EventActionResult 3152 Process::AttachCompletionHandler::PerformAction (lldb::EventSP &event_sp) 3153 { 3154 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3155 3156 StateType state = ProcessEventData::GetStateFromEvent (event_sp.get()); 3157 if (log) 3158 log->Printf ("Process::AttachCompletionHandler::%s called with state %s (%d)", __FUNCTION__, StateAsCString(state), static_cast<int> (state)); 3159 3160 switch (state) 3161 { 3162 case eStateAttaching: 3163 return eEventActionSuccess; 3164 3165 case eStateRunning: 3166 case eStateConnected: 3167 return eEventActionRetry; 3168 3169 case eStateStopped: 3170 case eStateCrashed: 3171 // During attach, prior to sending the eStateStopped event, 3172 // lldb_private::Process subclasses must set the new process ID. 3173 assert (m_process->GetID() != LLDB_INVALID_PROCESS_ID); 3174 // We don't want these events to be reported, so go set the ShouldReportStop here: 3175 m_process->GetThreadList().SetShouldReportStop (eVoteNo); 3176 3177 if (m_exec_count > 0) 3178 { 3179 --m_exec_count; 3180 3181 if (log) 3182 log->Printf ("Process::AttachCompletionHandler::%s state %s: reduced remaining exec count to %" PRIu32 ", requesting resume", __FUNCTION__, StateAsCString(state), m_exec_count); 3183 3184 RequestResume(); 3185 return eEventActionRetry; 3186 } 3187 else 3188 { 3189 if (log) 3190 log->Printf ("Process::AttachCompletionHandler::%s state %s: no more execs expected to start, continuing with attach", __FUNCTION__, StateAsCString(state)); 3191 3192 m_process->CompleteAttach (); 3193 return eEventActionSuccess; 3194 } 3195 break; 3196 3197 default: 3198 case eStateExited: 3199 case eStateInvalid: 3200 break; 3201 } 3202 3203 m_exit_string.assign ("No valid Process"); 3204 return eEventActionExit; 3205 } 3206 3207 Process::NextEventAction::EventActionResult 3208 Process::AttachCompletionHandler::HandleBeingInterrupted() 3209 { 3210 return eEventActionSuccess; 3211 } 3212 3213 const char * 3214 Process::AttachCompletionHandler::GetExitString () 3215 { 3216 return m_exit_string.c_str(); 3217 } 3218 3219 ListenerSP 3220 ProcessAttachInfo::GetListenerForProcess (Debugger &debugger) 3221 { 3222 if (m_listener_sp) 3223 return m_listener_sp; 3224 else 3225 return debugger.GetListener(); 3226 } 3227 3228 Error 3229 Process::Attach (ProcessAttachInfo &attach_info) 3230 { 3231 m_abi_sp.reset(); 3232 m_process_input_reader.reset(); 3233 m_dyld_ap.reset(); 3234 m_jit_loaders_ap.reset(); 3235 m_system_runtime_ap.reset(); 3236 m_os_ap.reset(); 3237 m_stop_info_override_callback = nullptr; 3238 3239 lldb::pid_t attach_pid = attach_info.GetProcessID(); 3240 Error error; 3241 if (attach_pid == LLDB_INVALID_PROCESS_ID) 3242 { 3243 char process_name[PATH_MAX]; 3244 3245 if (attach_info.GetExecutableFile().GetPath (process_name, sizeof(process_name))) 3246 { 3247 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 3248 3249 if (wait_for_launch) 3250 { 3251 error = WillAttachToProcessWithName(process_name, wait_for_launch); 3252 if (error.Success()) 3253 { 3254 if (m_public_run_lock.TrySetRunning()) 3255 { 3256 m_should_detach = true; 3257 const bool restarted = false; 3258 SetPublicState (eStateAttaching, restarted); 3259 // Now attach using these arguments. 3260 error = DoAttachToProcessWithName (process_name, attach_info); 3261 } 3262 else 3263 { 3264 // This shouldn't happen 3265 error.SetErrorString("failed to acquire process run lock"); 3266 } 3267 3268 if (error.Fail()) 3269 { 3270 if (GetID() != LLDB_INVALID_PROCESS_ID) 3271 { 3272 SetID (LLDB_INVALID_PROCESS_ID); 3273 if (error.AsCString() == nullptr) 3274 error.SetErrorString("attach failed"); 3275 3276 SetExitStatus(-1, error.AsCString()); 3277 } 3278 } 3279 else 3280 { 3281 SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount())); 3282 StartPrivateStateThread(); 3283 } 3284 return error; 3285 } 3286 } 3287 else 3288 { 3289 ProcessInstanceInfoList process_infos; 3290 PlatformSP platform_sp (GetTarget().GetPlatform ()); 3291 3292 if (platform_sp) 3293 { 3294 ProcessInstanceInfoMatch match_info; 3295 match_info.GetProcessInfo() = attach_info; 3296 match_info.SetNameMatchType (eNameMatchEquals); 3297 platform_sp->FindProcesses (match_info, process_infos); 3298 const uint32_t num_matches = process_infos.GetSize(); 3299 if (num_matches == 1) 3300 { 3301 attach_pid = process_infos.GetProcessIDAtIndex(0); 3302 // Fall through and attach using the above process ID 3303 } 3304 else 3305 { 3306 match_info.GetProcessInfo().GetExecutableFile().GetPath (process_name, sizeof(process_name)); 3307 if (num_matches > 1) 3308 { 3309 StreamString s; 3310 ProcessInstanceInfo::DumpTableHeader (s, platform_sp.get(), true, false); 3311 for (size_t i = 0; i < num_matches; i++) 3312 { 3313 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow(s, platform_sp.get(), true, false); 3314 } 3315 error.SetErrorStringWithFormat ("more than one process named %s:\n%s", 3316 process_name, 3317 s.GetData()); 3318 } 3319 else 3320 error.SetErrorStringWithFormat ("could not find a process named %s", process_name); 3321 } 3322 } 3323 else 3324 { 3325 error.SetErrorString ("invalid platform, can't find processes by name"); 3326 return error; 3327 } 3328 } 3329 } 3330 else 3331 { 3332 error.SetErrorString ("invalid process name"); 3333 } 3334 } 3335 3336 if (attach_pid != LLDB_INVALID_PROCESS_ID) 3337 { 3338 error = WillAttachToProcessWithID(attach_pid); 3339 if (error.Success()) 3340 { 3341 3342 if (m_public_run_lock.TrySetRunning()) 3343 { 3344 // Now attach using these arguments. 3345 m_should_detach = true; 3346 const bool restarted = false; 3347 SetPublicState (eStateAttaching, restarted); 3348 error = DoAttachToProcessWithID (attach_pid, attach_info); 3349 } 3350 else 3351 { 3352 // This shouldn't happen 3353 error.SetErrorString("failed to acquire process run lock"); 3354 } 3355 3356 if (error.Success()) 3357 { 3358 SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount())); 3359 StartPrivateStateThread(); 3360 } 3361 else 3362 { 3363 if (GetID() != LLDB_INVALID_PROCESS_ID) 3364 SetID (LLDB_INVALID_PROCESS_ID); 3365 3366 const char *error_string = error.AsCString(); 3367 if (error_string == nullptr) 3368 error_string = "attach failed"; 3369 3370 SetExitStatus(-1, error_string); 3371 } 3372 } 3373 } 3374 return error; 3375 } 3376 3377 void 3378 Process::CompleteAttach () 3379 { 3380 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_TARGET)); 3381 if (log) 3382 log->Printf ("Process::%s()", __FUNCTION__); 3383 3384 // Let the process subclass figure out at much as it can about the process 3385 // before we go looking for a dynamic loader plug-in. 3386 ArchSpec process_arch; 3387 DidAttach(process_arch); 3388 3389 if (process_arch.IsValid()) 3390 { 3391 GetTarget().SetArchitecture(process_arch); 3392 if (log) 3393 { 3394 const char *triple_str = process_arch.GetTriple().getTriple().c_str (); 3395 log->Printf ("Process::%s replacing process architecture with DidAttach() architecture: %s", 3396 __FUNCTION__, 3397 triple_str ? triple_str : "<null>"); 3398 } 3399 } 3400 3401 // We just attached. If we have a platform, ask it for the process architecture, and if it isn't 3402 // the same as the one we've already set, switch architectures. 3403 PlatformSP platform_sp (GetTarget().GetPlatform ()); 3404 assert(platform_sp); 3405 if (platform_sp) 3406 { 3407 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3408 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) 3409 { 3410 ArchSpec platform_arch; 3411 platform_sp = platform_sp->GetPlatformForArchitecture (target_arch, &platform_arch); 3412 if (platform_sp) 3413 { 3414 GetTarget().SetPlatform (platform_sp); 3415 GetTarget().SetArchitecture(platform_arch); 3416 if (log) 3417 log->Printf ("Process::%s switching platform to %s and architecture to %s based on info from attach", __FUNCTION__, platform_sp->GetName().AsCString (""), platform_arch.GetTriple().getTriple().c_str ()); 3418 } 3419 } 3420 else if (!process_arch.IsValid()) 3421 { 3422 ProcessInstanceInfo process_info; 3423 GetProcessInfo(process_info); 3424 const ArchSpec &process_arch = process_info.GetArchitecture(); 3425 if (process_arch.IsValid() && !GetTarget().GetArchitecture().IsExactMatch(process_arch)) 3426 { 3427 GetTarget().SetArchitecture (process_arch); 3428 if (log) 3429 log->Printf ("Process::%s switching architecture to %s based on info the platform retrieved for pid %" PRIu64, __FUNCTION__, process_arch.GetTriple().getTriple().c_str (), GetID ()); 3430 } 3431 } 3432 } 3433 3434 // We have completed the attach, now it is time to find the dynamic loader 3435 // plug-in 3436 DynamicLoader *dyld = GetDynamicLoader (); 3437 if (dyld) 3438 { 3439 dyld->DidAttach(); 3440 if (log) 3441 { 3442 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3443 log->Printf ("Process::%s after DynamicLoader::DidAttach(), target executable is %s (using %s plugin)", 3444 __FUNCTION__, 3445 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>", 3446 dyld->GetPluginName().AsCString ("<unnamed>")); 3447 } 3448 } 3449 3450 GetJITLoaders().DidAttach(); 3451 3452 SystemRuntime *system_runtime = GetSystemRuntime (); 3453 if (system_runtime) 3454 { 3455 system_runtime->DidAttach(); 3456 if (log) 3457 { 3458 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3459 log->Printf ("Process::%s after SystemRuntime::DidAttach(), target executable is %s (using %s plugin)", 3460 __FUNCTION__, 3461 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>", 3462 system_runtime->GetPluginName().AsCString("<unnamed>")); 3463 } 3464 } 3465 3466 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 3467 // Figure out which one is the executable, and set that in our target: 3468 const ModuleList &target_modules = GetTarget().GetImages(); 3469 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3470 size_t num_modules = target_modules.GetSize(); 3471 ModuleSP new_executable_module_sp; 3472 3473 for (size_t i = 0; i < num_modules; i++) 3474 { 3475 ModuleSP module_sp (target_modules.GetModuleAtIndexUnlocked (i)); 3476 if (module_sp && module_sp->IsExecutable()) 3477 { 3478 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3479 new_executable_module_sp = module_sp; 3480 break; 3481 } 3482 } 3483 if (new_executable_module_sp) 3484 { 3485 GetTarget().SetExecutableModule (new_executable_module_sp, false); 3486 if (log) 3487 { 3488 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3489 log->Printf ("Process::%s after looping through modules, target executable is %s", 3490 __FUNCTION__, 3491 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>"); 3492 } 3493 } 3494 3495 m_stop_info_override_callback = process_arch.GetStopInfoOverrideCallback(); 3496 } 3497 3498 Error 3499 Process::ConnectRemote (Stream *strm, const char *remote_url) 3500 { 3501 m_abi_sp.reset(); 3502 m_process_input_reader.reset(); 3503 3504 // Find the process and its architecture. Make sure it matches the architecture 3505 // of the current Target, and if not adjust it. 3506 3507 Error error (DoConnectRemote (strm, remote_url)); 3508 if (error.Success()) 3509 { 3510 if (GetID() != LLDB_INVALID_PROCESS_ID) 3511 { 3512 EventSP event_sp; 3513 StateType state = WaitForProcessStopPrivate(nullptr, event_sp); 3514 3515 if (state == eStateStopped || state == eStateCrashed) 3516 { 3517 // If we attached and actually have a process on the other end, then 3518 // this ended up being the equivalent of an attach. 3519 CompleteAttach (); 3520 3521 // This delays passing the stopped event to listeners till 3522 // CompleteAttach gets a chance to complete... 3523 HandlePrivateEvent (event_sp); 3524 } 3525 } 3526 3527 if (PrivateStateThreadIsValid ()) 3528 ResumePrivateStateThread (); 3529 else 3530 StartPrivateStateThread (); 3531 } 3532 return error; 3533 } 3534 3535 Error 3536 Process::PrivateResume () 3537 { 3538 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS|LIBLLDB_LOG_STEP)); 3539 if (log) 3540 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s private state: %s", 3541 m_mod_id.GetStopID(), 3542 StateAsCString(m_public_state.GetValue()), 3543 StateAsCString(m_private_state.GetValue())); 3544 3545 Error error (WillResume()); 3546 // Tell the process it is about to resume before the thread list 3547 if (error.Success()) 3548 { 3549 // Now let the thread list know we are about to resume so it 3550 // can let all of our threads know that they are about to be 3551 // resumed. Threads will each be called with 3552 // Thread::WillResume(StateType) where StateType contains the state 3553 // that they are supposed to have when the process is resumed 3554 // (suspended/running/stepping). Threads should also check 3555 // their resume signal in lldb::Thread::GetResumeSignal() 3556 // to see if they are supposed to start back up with a signal. 3557 if (m_thread_list.WillResume()) 3558 { 3559 // Last thing, do the PreResumeActions. 3560 if (!RunPreResumeActions()) 3561 { 3562 error.SetErrorStringWithFormat ("Process::PrivateResume PreResumeActions failed, not resuming."); 3563 } 3564 else 3565 { 3566 m_mod_id.BumpResumeID(); 3567 error = DoResume(); 3568 if (error.Success()) 3569 { 3570 DidResume(); 3571 m_thread_list.DidResume(); 3572 if (log) 3573 log->Printf ("Process thinks the process has resumed."); 3574 } 3575 } 3576 } 3577 else 3578 { 3579 // Somebody wanted to run without running (e.g. we were faking a step from one frame of a set of inlined 3580 // frames that share the same PC to another.) So generate a continue & a stopped event, 3581 // and let the world handle them. 3582 if (log) 3583 log->Printf ("Process::PrivateResume() asked to simulate a start & stop."); 3584 3585 SetPrivateState(eStateRunning); 3586 SetPrivateState(eStateStopped); 3587 } 3588 } 3589 else if (log) 3590 log->Printf ("Process::PrivateResume() got an error \"%s\".", error.AsCString("<unknown error>")); 3591 return error; 3592 } 3593 3594 Error 3595 Process::Halt (bool clear_thread_plans, bool use_run_lock) 3596 { 3597 if (! StateIsRunningState(m_public_state.GetValue())) 3598 return Error("Process is not running."); 3599 3600 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if 3601 // in case it was already set and some thread plan logic calls halt on its 3602 // own. 3603 m_clear_thread_plans_on_stop |= clear_thread_plans; 3604 3605 ListenerSP halt_listener_sp (Listener::MakeListener("lldb.process.halt_listener")); 3606 HijackProcessEvents(halt_listener_sp); 3607 3608 EventSP event_sp; 3609 3610 SendAsyncInterrupt(); 3611 3612 if (m_public_state.GetValue() == eStateAttaching) 3613 { 3614 // Don't hijack and eat the eStateExited as the code that was doing 3615 // the attach will be waiting for this event... 3616 RestoreProcessEvents(); 3617 SetExitStatus(SIGKILL, "Cancelled async attach."); 3618 Destroy (false); 3619 return Error(); 3620 } 3621 3622 // Wait for 10 second for the process to stop. 3623 TimeValue timeout_time; 3624 timeout_time = TimeValue::Now(); 3625 timeout_time.OffsetWithSeconds(10); 3626 StateType state = WaitForProcessToStop(&timeout_time, &event_sp, true, halt_listener_sp, 3627 nullptr, use_run_lock); 3628 RestoreProcessEvents(); 3629 3630 if (state == eStateInvalid || ! event_sp) 3631 { 3632 // We timed out and didn't get a stop event... 3633 return Error("Halt timed out. State = %s", StateAsCString(GetState())); 3634 } 3635 3636 BroadcastEvent(event_sp); 3637 3638 return Error(); 3639 } 3640 3641 Error 3642 Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) 3643 { 3644 Error error; 3645 if (m_public_state.GetValue() == eStateRunning) 3646 { 3647 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3648 if (log) 3649 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3650 3651 ListenerSP listener_sp (Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3652 HijackProcessEvents(listener_sp); 3653 3654 SendAsyncInterrupt(); 3655 3656 // Consume the interrupt event. 3657 TimeValue timeout (TimeValue::Now()); 3658 timeout.OffsetWithSeconds(10); 3659 3660 StateType state = WaitForProcessToStop (&timeout, &exit_event_sp, true, listener_sp); 3661 3662 RestoreProcessEvents(); 3663 3664 // If the process exited while we were waiting for it to stop, put the exited event into 3665 // the shared pointer passed in and return. Our caller doesn't need to do anything else, since 3666 // they don't have a process anymore... 3667 3668 if (state == eStateExited || m_private_state.GetValue() == eStateExited) 3669 { 3670 if (log) 3671 log->Printf("Process::%s() Process exited while waiting to stop.", __FUNCTION__); 3672 return error; 3673 } 3674 else 3675 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3676 3677 if (state != eStateStopped) 3678 { 3679 if (log) 3680 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, StateAsCString(state)); 3681 // If we really couldn't stop the process then we should just error out here, but if the 3682 // lower levels just bobbled sending the event and we really are stopped, then continue on. 3683 StateType private_state = m_private_state.GetValue(); 3684 if (private_state != eStateStopped) 3685 { 3686 return error; 3687 } 3688 } 3689 } 3690 return error; 3691 } 3692 3693 Error 3694 Process::Detach (bool keep_stopped) 3695 { 3696 EventSP exit_event_sp; 3697 Error error; 3698 m_destroy_in_process = true; 3699 3700 error = WillDetach(); 3701 3702 if (error.Success()) 3703 { 3704 if (DetachRequiresHalt()) 3705 { 3706 error = StopForDestroyOrDetach (exit_event_sp); 3707 if (!error.Success()) 3708 { 3709 m_destroy_in_process = false; 3710 return error; 3711 } 3712 else if (exit_event_sp) 3713 { 3714 // We shouldn't need to do anything else here. There's no process left to detach from... 3715 StopPrivateStateThread(); 3716 m_destroy_in_process = false; 3717 return error; 3718 } 3719 } 3720 3721 m_thread_list.DiscardThreadPlans(); 3722 DisableAllBreakpointSites(); 3723 3724 error = DoDetach(keep_stopped); 3725 if (error.Success()) 3726 { 3727 DidDetach(); 3728 StopPrivateStateThread(); 3729 } 3730 else 3731 { 3732 return error; 3733 } 3734 } 3735 m_destroy_in_process = false; 3736 3737 // If we exited when we were waiting for a process to stop, then 3738 // forward the event here so we don't lose the event 3739 if (exit_event_sp) 3740 { 3741 // Directly broadcast our exited event because we shut down our 3742 // private state thread above 3743 BroadcastEvent(exit_event_sp); 3744 } 3745 3746 // If we have been interrupted (to kill us) in the middle of running, we may not end up propagating 3747 // the last events through the event system, in which case we might strand the write lock. Unlock 3748 // it here so when we do to tear down the process we don't get an error destroying the lock. 3749 3750 m_public_run_lock.SetStopped(); 3751 return error; 3752 } 3753 3754 Error 3755 Process::Destroy (bool force_kill) 3756 { 3757 3758 // Tell ourselves we are in the process of destroying the process, so that we don't do any unnecessary work 3759 // that might hinder the destruction. Remember to set this back to false when we are done. That way if the attempt 3760 // failed and the process stays around for some reason it won't be in a confused state. 3761 3762 if (force_kill) 3763 m_should_detach = false; 3764 3765 if (GetShouldDetach()) 3766 { 3767 // FIXME: This will have to be a process setting: 3768 bool keep_stopped = false; 3769 Detach(keep_stopped); 3770 } 3771 3772 m_destroy_in_process = true; 3773 3774 Error error (WillDestroy()); 3775 if (error.Success()) 3776 { 3777 EventSP exit_event_sp; 3778 if (DestroyRequiresHalt()) 3779 { 3780 error = StopForDestroyOrDetach(exit_event_sp); 3781 } 3782 3783 if (m_public_state.GetValue() != eStateRunning) 3784 { 3785 // Ditch all thread plans, and remove all our breakpoints: in case we have to restart the target to 3786 // kill it, we don't want it hitting a breakpoint... 3787 // Only do this if we've stopped, however, since if we didn't manage to halt it above, then 3788 // we're not going to have much luck doing this now. 3789 m_thread_list.DiscardThreadPlans(); 3790 DisableAllBreakpointSites(); 3791 } 3792 3793 error = DoDestroy(); 3794 if (error.Success()) 3795 { 3796 DidDestroy(); 3797 StopPrivateStateThread(); 3798 } 3799 m_stdio_communication.Disconnect(); 3800 m_stdio_communication.StopReadThread(); 3801 m_stdin_forward = false; 3802 3803 if (m_process_input_reader) 3804 { 3805 m_process_input_reader->SetIsDone(true); 3806 m_process_input_reader->Cancel(); 3807 m_process_input_reader.reset(); 3808 } 3809 3810 // If we exited when we were waiting for a process to stop, then 3811 // forward the event here so we don't lose the event 3812 if (exit_event_sp) 3813 { 3814 // Directly broadcast our exited event because we shut down our 3815 // private state thread above 3816 BroadcastEvent(exit_event_sp); 3817 } 3818 3819 // If we have been interrupted (to kill us) in the middle of running, we may not end up propagating 3820 // the last events through the event system, in which case we might strand the write lock. Unlock 3821 // it here so when we do to tear down the process we don't get an error destroying the lock. 3822 m_public_run_lock.SetStopped(); 3823 } 3824 3825 m_destroy_in_process = false; 3826 3827 return error; 3828 } 3829 3830 Error 3831 Process::Signal (int signal) 3832 { 3833 Error error (WillSignal()); 3834 if (error.Success()) 3835 { 3836 error = DoSignal(signal); 3837 if (error.Success()) 3838 DidSignal(); 3839 } 3840 return error; 3841 } 3842 3843 void 3844 Process::SetUnixSignals(UnixSignalsSP &&signals_sp) 3845 { 3846 assert (signals_sp && "null signals_sp"); 3847 m_unix_signals_sp = signals_sp; 3848 } 3849 3850 const lldb::UnixSignalsSP & 3851 Process::GetUnixSignals () 3852 { 3853 assert (m_unix_signals_sp && "null m_unix_signals_sp"); 3854 return m_unix_signals_sp; 3855 } 3856 3857 lldb::ByteOrder 3858 Process::GetByteOrder () const 3859 { 3860 return GetTarget().GetArchitecture().GetByteOrder(); 3861 } 3862 3863 uint32_t 3864 Process::GetAddressByteSize () const 3865 { 3866 return GetTarget().GetArchitecture().GetAddressByteSize(); 3867 } 3868 3869 bool 3870 Process::ShouldBroadcastEvent (Event *event_ptr) 3871 { 3872 const StateType state = Process::ProcessEventData::GetStateFromEvent (event_ptr); 3873 bool return_value = true; 3874 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | LIBLLDB_LOG_PROCESS)); 3875 3876 switch (state) 3877 { 3878 case eStateDetached: 3879 case eStateExited: 3880 case eStateUnloaded: 3881 m_stdio_communication.SynchronizeWithReadThread(); 3882 m_stdio_communication.Disconnect(); 3883 m_stdio_communication.StopReadThread(); 3884 m_stdin_forward = false; 3885 3886 LLVM_FALLTHROUGH; 3887 case eStateConnected: 3888 case eStateAttaching: 3889 case eStateLaunching: 3890 // These events indicate changes in the state of the debugging session, always report them. 3891 return_value = true; 3892 break; 3893 case eStateInvalid: 3894 // We stopped for no apparent reason, don't report it. 3895 return_value = false; 3896 break; 3897 case eStateRunning: 3898 case eStateStepping: 3899 // If we've started the target running, we handle the cases where we 3900 // are already running and where there is a transition from stopped to 3901 // running differently. 3902 // running -> running: Automatically suppress extra running events 3903 // stopped -> running: Report except when there is one or more no votes 3904 // and no yes votes. 3905 SynchronouslyNotifyStateChanged (state); 3906 if (m_force_next_event_delivery) 3907 return_value = true; 3908 else 3909 { 3910 switch (m_last_broadcast_state) 3911 { 3912 case eStateRunning: 3913 case eStateStepping: 3914 // We always suppress multiple runnings with no PUBLIC stop in between. 3915 return_value = false; 3916 break; 3917 default: 3918 // TODO: make this work correctly. For now always report 3919 // run if we aren't running so we don't miss any running 3920 // events. If I run the lldb/test/thread/a.out file and 3921 // break at main.cpp:58, run and hit the breakpoints on 3922 // multiple threads, then somehow during the stepping over 3923 // of all breakpoints no run gets reported. 3924 3925 // This is a transition from stop to run. 3926 switch (m_thread_list.ShouldReportRun (event_ptr)) 3927 { 3928 case eVoteYes: 3929 case eVoteNoOpinion: 3930 return_value = true; 3931 break; 3932 case eVoteNo: 3933 return_value = false; 3934 break; 3935 } 3936 break; 3937 } 3938 } 3939 break; 3940 case eStateStopped: 3941 case eStateCrashed: 3942 case eStateSuspended: 3943 // We've stopped. First see if we're going to restart the target. 3944 // If we are going to stop, then we always broadcast the event. 3945 // If we aren't going to stop, let the thread plans decide if we're going to report this event. 3946 // If no thread has an opinion, we don't report it. 3947 3948 m_stdio_communication.SynchronizeWithReadThread(); 3949 RefreshStateAfterStop (); 3950 if (ProcessEventData::GetInterruptedFromEvent (event_ptr)) 3951 { 3952 if (log) 3953 log->Printf ("Process::ShouldBroadcastEvent (%p) stopped due to an interrupt, state: %s", 3954 static_cast<void*>(event_ptr), 3955 StateAsCString(state)); 3956 // Even though we know we are going to stop, we should let the threads have a look at the stop, 3957 // so they can properly set their state. 3958 m_thread_list.ShouldStop (event_ptr); 3959 return_value = true; 3960 } 3961 else 3962 { 3963 bool was_restarted = ProcessEventData::GetRestartedFromEvent (event_ptr); 3964 bool should_resume = false; 3965 3966 // It makes no sense to ask "ShouldStop" if we've already been restarted... 3967 // Asking the thread list is also not likely to go well, since we are running again. 3968 // So in that case just report the event. 3969 3970 if (!was_restarted) 3971 should_resume = !m_thread_list.ShouldStop(event_ptr); 3972 3973 if (was_restarted || should_resume || m_resume_requested) 3974 { 3975 Vote stop_vote = m_thread_list.ShouldReportStop (event_ptr); 3976 if (log) 3977 log->Printf ("Process::ShouldBroadcastEvent: should_resume: %i state: %s was_restarted: %i stop_vote: %d.", 3978 should_resume, StateAsCString(state), 3979 was_restarted, stop_vote); 3980 3981 switch (stop_vote) 3982 { 3983 case eVoteYes: 3984 return_value = true; 3985 break; 3986 case eVoteNoOpinion: 3987 case eVoteNo: 3988 return_value = false; 3989 break; 3990 } 3991 3992 if (!was_restarted) 3993 { 3994 if (log) 3995 log->Printf ("Process::ShouldBroadcastEvent (%p) Restarting process from state: %s", 3996 static_cast<void*>(event_ptr), 3997 StateAsCString(state)); 3998 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3999 PrivateResume (); 4000 } 4001 } 4002 else 4003 { 4004 return_value = true; 4005 SynchronouslyNotifyStateChanged (state); 4006 } 4007 } 4008 break; 4009 } 4010 4011 // Forcing the next event delivery is a one shot deal. So reset it here. 4012 m_force_next_event_delivery = false; 4013 4014 // We do some coalescing of events (for instance two consecutive running events get coalesced.) 4015 // But we only coalesce against events we actually broadcast. So we use m_last_broadcast_state 4016 // to track that. NB - you can't use "m_public_state.GetValue()" for that purpose, as was originally done, 4017 // because the PublicState reflects the last event pulled off the queue, and there may be several 4018 // events stacked up on the queue unserviced. So the PublicState may not reflect the last broadcasted event 4019 // yet. m_last_broadcast_state gets updated here. 4020 4021 if (return_value) 4022 m_last_broadcast_state = state; 4023 4024 if (log) 4025 log->Printf ("Process::ShouldBroadcastEvent (%p) => new state: %s, last broadcast state: %s - %s", 4026 static_cast<void*>(event_ptr), StateAsCString(state), 4027 StateAsCString(m_last_broadcast_state), 4028 return_value ? "YES" : "NO"); 4029 return return_value; 4030 } 4031 4032 bool 4033 Process::StartPrivateStateThread (bool is_secondary_thread) 4034 { 4035 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 4036 4037 bool already_running = PrivateStateThreadIsValid (); 4038 if (log) 4039 log->Printf ("Process::%s()%s ", __FUNCTION__, already_running ? " already running" : " starting private state thread"); 4040 4041 if (!is_secondary_thread && already_running) 4042 return true; 4043 4044 // Create a thread that watches our internal state and controls which 4045 // events make it to clients (into the DCProcess event queue). 4046 char thread_name[1024]; 4047 4048 if (HostInfo::GetMaxThreadNameLength() <= 30) 4049 { 4050 // On platforms with abbreviated thread name lengths, choose thread names that fit within the limit. 4051 if (already_running) 4052 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 4053 else 4054 snprintf(thread_name, sizeof(thread_name), "intern-state"); 4055 } 4056 else 4057 { 4058 if (already_running) 4059 snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", GetID()); 4060 else 4061 snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 4062 } 4063 4064 // Create the private state thread, and start it running. 4065 PrivateStateThreadArgs *args_ptr = new PrivateStateThreadArgs(this, is_secondary_thread); 4066 m_private_state_thread = ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, (void *) args_ptr, nullptr, 8 * 1024 * 1024); 4067 if (m_private_state_thread.IsJoinable()) 4068 { 4069 ResumePrivateStateThread(); 4070 return true; 4071 } 4072 else 4073 return false; 4074 } 4075 4076 void 4077 Process::PausePrivateStateThread () 4078 { 4079 ControlPrivateStateThread (eBroadcastInternalStateControlPause); 4080 } 4081 4082 void 4083 Process::ResumePrivateStateThread () 4084 { 4085 ControlPrivateStateThread (eBroadcastInternalStateControlResume); 4086 } 4087 4088 void 4089 Process::StopPrivateStateThread () 4090 { 4091 if (m_private_state_thread.IsJoinable ()) 4092 ControlPrivateStateThread (eBroadcastInternalStateControlStop); 4093 else 4094 { 4095 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4096 if (log) 4097 log->Printf ("Went to stop the private state thread, but it was already invalid."); 4098 } 4099 } 4100 4101 void 4102 Process::ControlPrivateStateThread (uint32_t signal) 4103 { 4104 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4105 4106 assert (signal == eBroadcastInternalStateControlStop || 4107 signal == eBroadcastInternalStateControlPause || 4108 signal == eBroadcastInternalStateControlResume); 4109 4110 if (log) 4111 log->Printf ("Process::%s (signal = %d)", __FUNCTION__, signal); 4112 4113 // Signal the private state thread 4114 if (m_private_state_thread.IsJoinable()) 4115 { 4116 // Broadcast the event. 4117 // It is important to do this outside of the if below, because 4118 // it's possible that the thread state is invalid but that the 4119 // thread is waiting on a control event instead of simply being 4120 // on its way out (this should not happen, but it apparently can). 4121 if (log) 4122 log->Printf ("Sending control event of type: %d.", signal); 4123 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 4124 m_private_state_control_broadcaster.BroadcastEvent(signal, event_receipt_sp); 4125 4126 // Wait for the event receipt or for the private state thread to exit 4127 bool receipt_received = false; 4128 if (PrivateStateThreadIsValid()) 4129 { 4130 while (!receipt_received) 4131 { 4132 bool timed_out = false; 4133 TimeValue timeout_time; 4134 timeout_time = TimeValue::Now(); 4135 timeout_time.OffsetWithSeconds(2); 4136 // Check for a receipt for 2 seconds and then check if the private state 4137 // thread is still around. 4138 receipt_received = event_receipt_sp->WaitForEventReceived (&timeout_time, &timed_out); 4139 if (!receipt_received) 4140 { 4141 // Check if the private state thread is still around. If it isn't then we are done waiting 4142 if (!PrivateStateThreadIsValid()) 4143 break; // Private state thread exited or is exiting, we are done 4144 } 4145 } 4146 } 4147 4148 if (signal == eBroadcastInternalStateControlStop) 4149 { 4150 thread_result_t result = NULL; 4151 m_private_state_thread.Join(&result); 4152 m_private_state_thread.Reset(); 4153 } 4154 } 4155 else 4156 { 4157 if (log) 4158 log->Printf("Private state thread already dead, no need to signal it to stop."); 4159 } 4160 } 4161 4162 void 4163 Process::SendAsyncInterrupt () 4164 { 4165 if (PrivateStateThreadIsValid()) 4166 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 4167 else 4168 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 4169 } 4170 4171 void 4172 Process::HandlePrivateEvent (EventSP &event_sp) 4173 { 4174 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4175 m_resume_requested = false; 4176 4177 const StateType new_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4178 4179 // First check to see if anybody wants a shot at this event: 4180 if (m_next_event_action_ap) 4181 { 4182 NextEventAction::EventActionResult action_result = m_next_event_action_ap->PerformAction(event_sp); 4183 if (log) 4184 log->Printf ("Ran next event action, result was %d.", action_result); 4185 4186 switch (action_result) 4187 { 4188 case NextEventAction::eEventActionSuccess: 4189 SetNextEventAction(nullptr); 4190 break; 4191 4192 case NextEventAction::eEventActionRetry: 4193 break; 4194 4195 case NextEventAction::eEventActionExit: 4196 // Handle Exiting Here. If we already got an exited event, 4197 // we should just propagate it. Otherwise, swallow this event, 4198 // and set our state to exit so the next event will kill us. 4199 if (new_state != eStateExited) 4200 { 4201 // FIXME: should cons up an exited event, and discard this one. 4202 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 4203 SetNextEventAction(nullptr); 4204 return; 4205 } 4206 SetNextEventAction(nullptr); 4207 break; 4208 } 4209 } 4210 4211 // See if we should broadcast this state to external clients? 4212 const bool should_broadcast = ShouldBroadcastEvent (event_sp.get()); 4213 4214 if (should_broadcast) 4215 { 4216 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 4217 if (log) 4218 { 4219 log->Printf ("Process::%s (pid = %" PRIu64 ") broadcasting new state %s (old state %s) to %s", 4220 __FUNCTION__, 4221 GetID(), 4222 StateAsCString(new_state), 4223 StateAsCString (GetState ()), 4224 is_hijacked ? "hijacked" : "public"); 4225 } 4226 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 4227 if (StateIsRunningState (new_state)) 4228 { 4229 // Only push the input handler if we aren't fowarding events, 4230 // as this means the curses GUI is in use... 4231 // Or don't push it if we are launching since it will come up stopped. 4232 if (!GetTarget().GetDebugger().IsForwardingEvents() && new_state != eStateLaunching && 4233 new_state != eStateAttaching) 4234 { 4235 PushProcessIOHandler (); 4236 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue()+1, eBroadcastAlways); 4237 if (log) 4238 log->Printf("Process::%s updated m_iohandler_sync to %d", __FUNCTION__, m_iohandler_sync.GetValue()); 4239 } 4240 } 4241 else if (StateIsStoppedState(new_state, false)) 4242 { 4243 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 4244 { 4245 // If the lldb_private::Debugger is handling the events, we don't 4246 // want to pop the process IOHandler here, we want to do it when 4247 // we receive the stopped event so we can carefully control when 4248 // the process IOHandler is popped because when we stop we want to 4249 // display some text stating how and why we stopped, then maybe some 4250 // process/thread/frame info, and then we want the "(lldb) " prompt 4251 // to show up. If we pop the process IOHandler here, then we will 4252 // cause the command interpreter to become the top IOHandler after 4253 // the process pops off and it will update its prompt right away... 4254 // See the Debugger.cpp file where it calls the function as 4255 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 4256 // Otherwise we end up getting overlapping "(lldb) " prompts and 4257 // garbled output. 4258 // 4259 // If we aren't handling the events in the debugger (which is indicated 4260 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or we 4261 // are hijacked, then we always pop the process IO handler manually. 4262 // Hijacking happens when the internal process state thread is running 4263 // thread plans, or when commands want to run in synchronous mode 4264 // and they call "process->WaitForProcessToStop()". An example of something 4265 // that will hijack the events is a simple expression: 4266 // 4267 // (lldb) expr (int)puts("hello") 4268 // 4269 // This will cause the internal process state thread to resume and halt 4270 // the process (and _it_ will hijack the eBroadcastBitStateChanged 4271 // events) and we do need the IO handler to be pushed and popped 4272 // correctly. 4273 4274 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 4275 PopProcessIOHandler (); 4276 } 4277 } 4278 4279 BroadcastEvent (event_sp); 4280 } 4281 else 4282 { 4283 if (log) 4284 { 4285 log->Printf ("Process::%s (pid = %" PRIu64 ") suppressing state %s (old state %s): should_broadcast == false", 4286 __FUNCTION__, 4287 GetID(), 4288 StateAsCString(new_state), 4289 StateAsCString (GetState ())); 4290 } 4291 } 4292 } 4293 4294 Error 4295 Process::HaltPrivate() 4296 { 4297 EventSP event_sp; 4298 Error error (WillHalt()); 4299 if (error.Fail()) 4300 return error; 4301 4302 // Ask the process subclass to actually halt our process 4303 bool caused_stop; 4304 error = DoHalt(caused_stop); 4305 4306 DidHalt(); 4307 return error; 4308 } 4309 4310 thread_result_t 4311 Process::PrivateStateThread (void *arg) 4312 { 4313 PrivateStateThreadArgs real_args = *static_cast<PrivateStateThreadArgs *> (arg); 4314 free (arg); 4315 thread_result_t result = real_args.process->RunPrivateStateThread(real_args.is_secondary_thread); 4316 return result; 4317 } 4318 4319 thread_result_t 4320 Process::RunPrivateStateThread (bool is_secondary_thread) 4321 { 4322 bool control_only = true; 4323 4324 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4325 if (log) 4326 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 4327 __FUNCTION__, static_cast<void*>(this), GetID()); 4328 4329 bool exit_now = false; 4330 bool interrupt_requested = false; 4331 while (!exit_now) 4332 { 4333 EventSP event_sp; 4334 WaitForEventsPrivate(nullptr, event_sp, control_only); 4335 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) 4336 { 4337 if (log) 4338 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") got a control event: %d", 4339 __FUNCTION__, static_cast<void*>(this), GetID(), 4340 event_sp->GetType()); 4341 4342 switch (event_sp->GetType()) 4343 { 4344 case eBroadcastInternalStateControlStop: 4345 exit_now = true; 4346 break; // doing any internal state management below 4347 4348 case eBroadcastInternalStateControlPause: 4349 control_only = true; 4350 break; 4351 4352 case eBroadcastInternalStateControlResume: 4353 control_only = false; 4354 break; 4355 } 4356 4357 continue; 4358 } 4359 else if (event_sp->GetType() == eBroadcastBitInterrupt) 4360 { 4361 if (m_public_state.GetValue() == eStateAttaching) 4362 { 4363 if (log) 4364 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt while attaching - forwarding interrupt.", 4365 __FUNCTION__, static_cast<void*>(this), 4366 GetID()); 4367 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4368 } 4369 else if(StateIsRunningState(m_last_broadcast_state)) 4370 { 4371 if (log) 4372 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt - Halting.", 4373 __FUNCTION__, static_cast<void*>(this), 4374 GetID()); 4375 Error error = HaltPrivate(); 4376 if (error.Fail() && log) 4377 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") failed to halt the process: %s", 4378 __FUNCTION__, static_cast<void*>(this), 4379 GetID(), error.AsCString()); 4380 // Halt should generate a stopped event. Make a note of the fact that we were 4381 // doing the interrupt, so we can set the interrupted flag after we receive the 4382 // event. We deliberately set this to true even if HaltPrivate failed, so that we 4383 // can interrupt on the next natural stop. 4384 interrupt_requested = true; 4385 } 4386 else 4387 { 4388 // This can happen when someone (e.g. Process::Halt) sees that we are running and 4389 // sends an interrupt request, but the process actually stops before we receive 4390 // it. In that case, we can just ignore the request. We use 4391 // m_last_broadcast_state, because the Stopped event may not have been popped of 4392 // the event queue yet, which is when the public state gets updated. 4393 if (log) 4394 log->Printf("Process::%s ignoring interrupt as we have already stopped.", __FUNCTION__); 4395 } 4396 continue; 4397 } 4398 4399 const StateType internal_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4400 4401 if (internal_state != eStateInvalid) 4402 { 4403 if (m_clear_thread_plans_on_stop && 4404 StateIsStoppedState(internal_state, true)) 4405 { 4406 m_clear_thread_plans_on_stop = false; 4407 m_thread_list.DiscardThreadPlans(); 4408 } 4409 4410 if (interrupt_requested) 4411 { 4412 if (StateIsStoppedState (internal_state, true)) 4413 { 4414 // We requested the interrupt, so mark this as such in the stop event so 4415 // clients can tell an interrupted process from a natural stop 4416 ProcessEventData::SetInterruptedInEvent (event_sp.get(), true); 4417 interrupt_requested = false; 4418 } 4419 else if (log) 4420 { 4421 log->Printf("Process::%s interrupt_requested, but a non-stopped state '%s' received.", 4422 __FUNCTION__, StateAsCString(internal_state)); 4423 } 4424 } 4425 4426 HandlePrivateEvent (event_sp); 4427 } 4428 4429 if (internal_state == eStateInvalid || 4430 internal_state == eStateExited || 4431 internal_state == eStateDetached ) 4432 { 4433 if (log) 4434 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") about to exit with internal state %s...", 4435 __FUNCTION__, static_cast<void*>(this), GetID(), 4436 StateAsCString(internal_state)); 4437 4438 break; 4439 } 4440 } 4441 4442 // Verify log is still enabled before attempting to write to it... 4443 if (log) 4444 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4445 __FUNCTION__, static_cast<void*>(this), GetID()); 4446 4447 // If we are a secondary thread, then the primary thread we are working for will have already 4448 // acquired the public_run_lock, and isn't done with what it was doing yet, so don't 4449 // try to change it on the way out. 4450 if (!is_secondary_thread) 4451 m_public_run_lock.SetStopped(); 4452 return NULL; 4453 } 4454 4455 //------------------------------------------------------------------ 4456 // Process Event Data 4457 //------------------------------------------------------------------ 4458 4459 Process::ProcessEventData::ProcessEventData () : 4460 EventData (), 4461 m_process_wp (), 4462 m_state (eStateInvalid), 4463 m_restarted (false), 4464 m_update_state (0), 4465 m_interrupted (false) 4466 { 4467 } 4468 4469 Process::ProcessEventData::ProcessEventData (const ProcessSP &process_sp, StateType state) : 4470 EventData (), 4471 m_process_wp (), 4472 m_state (state), 4473 m_restarted (false), 4474 m_update_state (0), 4475 m_interrupted (false) 4476 { 4477 if (process_sp) 4478 m_process_wp = process_sp; 4479 } 4480 4481 Process::ProcessEventData::~ProcessEventData() = default; 4482 4483 const ConstString & 4484 Process::ProcessEventData::GetFlavorString () 4485 { 4486 static ConstString g_flavor ("Process::ProcessEventData"); 4487 return g_flavor; 4488 } 4489 4490 const ConstString & 4491 Process::ProcessEventData::GetFlavor () const 4492 { 4493 return ProcessEventData::GetFlavorString (); 4494 } 4495 4496 void 4497 Process::ProcessEventData::DoOnRemoval (Event *event_ptr) 4498 { 4499 ProcessSP process_sp(m_process_wp.lock()); 4500 4501 if (!process_sp) 4502 return; 4503 4504 // This function gets called twice for each event, once when the event gets pulled 4505 // off of the private process event queue, and then any number of times, first when it gets pulled off of 4506 // the public event queue, then other times when we're pretending that this is where we stopped at the 4507 // end of expression evaluation. m_update_state is used to distinguish these 4508 // three cases; it is 0 when we're just pulling it off for private handling, 4509 // and > 1 for expression evaluation, and we don't want to do the breakpoint command handling then. 4510 if (m_update_state != 1) 4511 return; 4512 4513 process_sp->SetPublicState (m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4514 4515 // If this is a halt event, even if the halt stopped with some reason other than a plain interrupt (e.g. we had 4516 // already stopped for a breakpoint when the halt request came through) don't do the StopInfo actions, as they may 4517 // end up restarting the process. 4518 if (m_interrupted) 4519 return; 4520 4521 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4522 if (m_state == eStateStopped && ! m_restarted) 4523 { 4524 // Let process subclasses know we are about to do a public stop and 4525 // do anything they might need to in order to speed up register and 4526 // memory accesses. 4527 process_sp->WillPublicStop(); 4528 4529 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4530 uint32_t num_threads = curr_thread_list.GetSize(); 4531 uint32_t idx; 4532 4533 // The actions might change one of the thread's stop_info's opinions about whether we should 4534 // stop the process, so we need to query that as we go. 4535 4536 // One other complication here, is that we try to catch any case where the target has run (except for expressions) 4537 // and immediately exit, but if we get that wrong (which is possible) then the thread list might have changed, and 4538 // that would cause our iteration here to crash. We could make a copy of the thread list, but we'd really like 4539 // to also know if it has changed at all, so we make up a vector of the thread ID's and check what we get back 4540 // against this list & bag out if anything differs. 4541 std::vector<uint32_t> thread_index_array(num_threads); 4542 for (idx = 0; idx < num_threads; ++idx) 4543 thread_index_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4544 4545 // Use this to track whether we should continue from here. We will only continue the target running if 4546 // no thread says we should stop. Of course if some thread's PerformAction actually sets the target running, 4547 // then it doesn't matter what the other threads say... 4548 4549 bool still_should_stop = false; 4550 4551 // Sometimes - for instance if we have a bug in the stub we are talking to, we stop but no thread has a 4552 // valid stop reason. In that case we should just stop, because we have no way of telling what the right 4553 // thing to do is, and it's better to let the user decide than continue behind their backs. 4554 4555 bool does_anybody_have_an_opinion = false; 4556 4557 for (idx = 0; idx < num_threads; ++idx) 4558 { 4559 curr_thread_list = process_sp->GetThreadList(); 4560 if (curr_thread_list.GetSize() != num_threads) 4561 { 4562 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 4563 if (log) 4564 log->Printf("Number of threads changed from %u to %u while processing event.", num_threads, curr_thread_list.GetSize()); 4565 break; 4566 } 4567 4568 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4569 4570 if (thread_sp->GetIndexID() != thread_index_array[idx]) 4571 { 4572 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 4573 if (log) 4574 log->Printf("The thread at position %u changed from %u to %u while processing event.", 4575 idx, 4576 thread_index_array[idx], 4577 thread_sp->GetIndexID()); 4578 break; 4579 } 4580 4581 StopInfoSP stop_info_sp = thread_sp->GetStopInfo (); 4582 if (stop_info_sp && stop_info_sp->IsValid()) 4583 { 4584 does_anybody_have_an_opinion = true; 4585 bool this_thread_wants_to_stop; 4586 if (stop_info_sp->GetOverrideShouldStop()) 4587 { 4588 this_thread_wants_to_stop = stop_info_sp->GetOverriddenShouldStopValue(); 4589 } 4590 else 4591 { 4592 stop_info_sp->PerformAction(event_ptr); 4593 // The stop action might restart the target. If it does, then we want to mark that in the 4594 // event so that whoever is receiving it will know to wait for the running event and reflect 4595 // that state appropriately. 4596 // We also need to stop processing actions, since they aren't expecting the target to be running. 4597 4598 // FIXME: we might have run. 4599 if (stop_info_sp->HasTargetRunSinceMe()) 4600 { 4601 SetRestarted (true); 4602 break; 4603 } 4604 4605 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4606 } 4607 4608 if (!still_should_stop) 4609 still_should_stop = this_thread_wants_to_stop; 4610 } 4611 } 4612 4613 if (!GetRestarted()) 4614 { 4615 if (!still_should_stop && does_anybody_have_an_opinion) 4616 { 4617 // We've been asked to continue, so do that here. 4618 SetRestarted(true); 4619 // Use the public resume method here, since this is just 4620 // extending a public resume. 4621 process_sp->PrivateResume(); 4622 } 4623 else 4624 { 4625 // If we didn't restart, run the Stop Hooks here: 4626 // They might also restart the target, so watch for that. 4627 process_sp->GetTarget().RunStopHooks(); 4628 if (process_sp->GetPrivateState() == eStateRunning) 4629 SetRestarted(true); 4630 } 4631 } 4632 } 4633 } 4634 4635 void 4636 Process::ProcessEventData::Dump (Stream *s) const 4637 { 4638 ProcessSP process_sp(m_process_wp.lock()); 4639 4640 if (process_sp) 4641 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4642 static_cast<void*>(process_sp.get()), process_sp->GetID()); 4643 else 4644 s->PutCString(" process = NULL, "); 4645 4646 s->Printf("state = %s", StateAsCString(GetState())); 4647 } 4648 4649 const Process::ProcessEventData * 4650 Process::ProcessEventData::GetEventDataFromEvent (const Event *event_ptr) 4651 { 4652 if (event_ptr) 4653 { 4654 const EventData *event_data = event_ptr->GetData(); 4655 if (event_data && event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4656 return static_cast <const ProcessEventData *> (event_ptr->GetData()); 4657 } 4658 return nullptr; 4659 } 4660 4661 ProcessSP 4662 Process::ProcessEventData::GetProcessFromEvent (const Event *event_ptr) 4663 { 4664 ProcessSP process_sp; 4665 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4666 if (data) 4667 process_sp = data->GetProcessSP(); 4668 return process_sp; 4669 } 4670 4671 StateType 4672 Process::ProcessEventData::GetStateFromEvent (const Event *event_ptr) 4673 { 4674 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4675 if (data == nullptr) 4676 return eStateInvalid; 4677 else 4678 return data->GetState(); 4679 } 4680 4681 bool 4682 Process::ProcessEventData::GetRestartedFromEvent (const Event *event_ptr) 4683 { 4684 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4685 if (data == nullptr) 4686 return false; 4687 else 4688 return data->GetRestarted(); 4689 } 4690 4691 void 4692 Process::ProcessEventData::SetRestartedInEvent (Event *event_ptr, bool new_value) 4693 { 4694 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4695 if (data != nullptr) 4696 data->SetRestarted(new_value); 4697 } 4698 4699 size_t 4700 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) 4701 { 4702 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4703 if (data != nullptr) 4704 return data->GetNumRestartedReasons(); 4705 else 4706 return 0; 4707 } 4708 4709 const char * 4710 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, size_t idx) 4711 { 4712 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4713 if (data != nullptr) 4714 return data->GetRestartedReasonAtIndex(idx); 4715 else 4716 return nullptr; 4717 } 4718 4719 void 4720 Process::ProcessEventData::AddRestartedReason (Event *event_ptr, const char *reason) 4721 { 4722 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4723 if (data != nullptr) 4724 data->AddRestartedReason(reason); 4725 } 4726 4727 bool 4728 Process::ProcessEventData::GetInterruptedFromEvent (const Event *event_ptr) 4729 { 4730 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4731 if (data == nullptr) 4732 return false; 4733 else 4734 return data->GetInterrupted (); 4735 } 4736 4737 void 4738 Process::ProcessEventData::SetInterruptedInEvent (Event *event_ptr, bool new_value) 4739 { 4740 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4741 if (data != nullptr) 4742 data->SetInterrupted(new_value); 4743 } 4744 4745 bool 4746 Process::ProcessEventData::SetUpdateStateOnRemoval (Event *event_ptr) 4747 { 4748 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4749 if (data) 4750 { 4751 data->SetUpdateStateOnRemoval(); 4752 return true; 4753 } 4754 return false; 4755 } 4756 4757 lldb::TargetSP 4758 Process::CalculateTarget () 4759 { 4760 return m_target_sp.lock(); 4761 } 4762 4763 void 4764 Process::CalculateExecutionContext (ExecutionContext &exe_ctx) 4765 { 4766 exe_ctx.SetTargetPtr (&GetTarget()); 4767 exe_ctx.SetProcessPtr (this); 4768 exe_ctx.SetThreadPtr(nullptr); 4769 exe_ctx.SetFramePtr(nullptr); 4770 } 4771 4772 //uint32_t 4773 //Process::ListProcessesMatchingName (const char *name, StringList &matches, std::vector<lldb::pid_t> &pids) 4774 //{ 4775 // return 0; 4776 //} 4777 // 4778 //ArchSpec 4779 //Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4780 //{ 4781 // return Host::GetArchSpecForExistingProcess (pid); 4782 //} 4783 // 4784 //ArchSpec 4785 //Process::GetArchSpecForExistingProcess (const char *process_name) 4786 //{ 4787 // return Host::GetArchSpecForExistingProcess (process_name); 4788 //} 4789 4790 void 4791 Process::AppendSTDOUT (const char * s, size_t len) 4792 { 4793 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4794 m_stdout_data.append (s, len); 4795 BroadcastEventIfUnique (eBroadcastBitSTDOUT, new ProcessEventData (shared_from_this(), GetState())); 4796 } 4797 4798 void 4799 Process::AppendSTDERR (const char * s, size_t len) 4800 { 4801 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4802 m_stderr_data.append (s, len); 4803 BroadcastEventIfUnique (eBroadcastBitSTDERR, new ProcessEventData (shared_from_this(), GetState())); 4804 } 4805 4806 void 4807 Process::BroadcastAsyncProfileData(const std::string &one_profile_data) 4808 { 4809 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4810 m_profile_data.push_back(one_profile_data); 4811 BroadcastEventIfUnique (eBroadcastBitProfileData, new ProcessEventData (shared_from_this(), GetState())); 4812 } 4813 4814 size_t 4815 Process::GetAsyncProfileData (char *buf, size_t buf_size, Error &error) 4816 { 4817 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4818 if (m_profile_data.empty()) 4819 return 0; 4820 4821 std::string &one_profile_data = m_profile_data.front(); 4822 size_t bytes_available = one_profile_data.size(); 4823 if (bytes_available > 0) 4824 { 4825 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4826 if (log) 4827 log->Printf ("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4828 static_cast<void*>(buf), 4829 static_cast<uint64_t>(buf_size)); 4830 if (bytes_available > buf_size) 4831 { 4832 memcpy(buf, one_profile_data.c_str(), buf_size); 4833 one_profile_data.erase(0, buf_size); 4834 bytes_available = buf_size; 4835 } 4836 else 4837 { 4838 memcpy(buf, one_profile_data.c_str(), bytes_available); 4839 m_profile_data.erase(m_profile_data.begin()); 4840 } 4841 } 4842 return bytes_available; 4843 } 4844 4845 //------------------------------------------------------------------ 4846 // Process STDIO 4847 //------------------------------------------------------------------ 4848 4849 size_t 4850 Process::GetSTDOUT (char *buf, size_t buf_size, Error &error) 4851 { 4852 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4853 size_t bytes_available = m_stdout_data.size(); 4854 if (bytes_available > 0) 4855 { 4856 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4857 if (log) 4858 log->Printf ("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4859 static_cast<void*>(buf), 4860 static_cast<uint64_t>(buf_size)); 4861 if (bytes_available > buf_size) 4862 { 4863 memcpy(buf, m_stdout_data.c_str(), buf_size); 4864 m_stdout_data.erase(0, buf_size); 4865 bytes_available = buf_size; 4866 } 4867 else 4868 { 4869 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4870 m_stdout_data.clear(); 4871 } 4872 } 4873 return bytes_available; 4874 } 4875 4876 size_t 4877 Process::GetSTDERR (char *buf, size_t buf_size, Error &error) 4878 { 4879 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4880 size_t bytes_available = m_stderr_data.size(); 4881 if (bytes_available > 0) 4882 { 4883 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4884 if (log) 4885 log->Printf ("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4886 static_cast<void*>(buf), 4887 static_cast<uint64_t>(buf_size)); 4888 if (bytes_available > buf_size) 4889 { 4890 memcpy(buf, m_stderr_data.c_str(), buf_size); 4891 m_stderr_data.erase(0, buf_size); 4892 bytes_available = buf_size; 4893 } 4894 else 4895 { 4896 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4897 m_stderr_data.clear(); 4898 } 4899 } 4900 return bytes_available; 4901 } 4902 4903 void 4904 Process::STDIOReadThreadBytesReceived (void *baton, const void *src, size_t src_len) 4905 { 4906 Process *process = (Process *) baton; 4907 process->AppendSTDOUT (static_cast<const char *>(src), src_len); 4908 } 4909 4910 class IOHandlerProcessSTDIO : 4911 public IOHandler 4912 { 4913 public: 4914 IOHandlerProcessSTDIO (Process *process, 4915 int write_fd) : 4916 IOHandler(process->GetTarget().GetDebugger(), IOHandler::Type::ProcessIO), 4917 m_process (process), 4918 m_read_file (), 4919 m_write_file (write_fd, false), 4920 m_pipe () 4921 { 4922 m_pipe.CreateNew(false); 4923 m_read_file.SetDescriptor(GetInputFD(), false); 4924 } 4925 4926 ~IOHandlerProcessSTDIO() override = default; 4927 4928 // Each IOHandler gets to run until it is done. It should read data 4929 // from the "in" and place output into "out" and "err and return 4930 // when done. 4931 void 4932 Run () override 4933 { 4934 if (!m_read_file.IsValid() || !m_write_file.IsValid() || !m_pipe.CanRead() || !m_pipe.CanWrite()) 4935 { 4936 SetIsDone(true); 4937 return; 4938 } 4939 4940 SetIsDone(false); 4941 const int read_fd = m_read_file.GetDescriptor(); 4942 TerminalState terminal_state; 4943 terminal_state.Save (read_fd, false); 4944 Terminal terminal(read_fd); 4945 terminal.SetCanonical(false); 4946 terminal.SetEcho(false); 4947 // FD_ZERO, FD_SET are not supported on windows 4948 #ifndef _WIN32 4949 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4950 m_is_running = true; 4951 while (!GetIsDone()) 4952 { 4953 fd_set read_fdset; 4954 FD_ZERO (&read_fdset); 4955 FD_SET (read_fd, &read_fdset); 4956 FD_SET (pipe_read_fd, &read_fdset); 4957 const int nfds = std::max<int>(read_fd, pipe_read_fd) + 1; 4958 int num_set_fds = select(nfds, &read_fdset, nullptr, nullptr, nullptr); 4959 4960 if (num_set_fds < 0) 4961 { 4962 const int select_errno = errno; 4963 4964 if (select_errno != EINTR) 4965 SetIsDone(true); 4966 } 4967 else if (num_set_fds > 0) 4968 { 4969 char ch = 0; 4970 size_t n; 4971 if (FD_ISSET (read_fd, &read_fdset)) 4972 { 4973 n = 1; 4974 if (m_read_file.Read(&ch, n).Success() && n == 1) 4975 { 4976 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4977 SetIsDone(true); 4978 } 4979 else 4980 SetIsDone(true); 4981 } 4982 if (FD_ISSET (pipe_read_fd, &read_fdset)) 4983 { 4984 size_t bytes_read; 4985 // Consume the interrupt byte 4986 Error error = m_pipe.Read(&ch, 1, bytes_read); 4987 if (error.Success()) 4988 { 4989 switch (ch) 4990 { 4991 case 'q': 4992 SetIsDone(true); 4993 break; 4994 case 'i': 4995 if (StateIsRunningState(m_process->GetState())) 4996 m_process->SendAsyncInterrupt(); 4997 break; 4998 } 4999 } 5000 } 5001 } 5002 } 5003 m_is_running = false; 5004 #endif 5005 terminal_state.Restore(); 5006 } 5007 5008 void 5009 Cancel () override 5010 { 5011 SetIsDone(true); 5012 // Only write to our pipe to cancel if we are in IOHandlerProcessSTDIO::Run(). 5013 // We can end up with a python command that is being run from the command 5014 // interpreter: 5015 // 5016 // (lldb) step_process_thousands_of_times 5017 // 5018 // In this case the command interpreter will be in the middle of handling 5019 // the command and if the process pushes and pops the IOHandler thousands 5020 // of times, we can end up writing to m_pipe without ever consuming the 5021 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 5022 // deadlocking when the pipe gets fed up and blocks until data is consumed. 5023 if (m_is_running) 5024 { 5025 char ch = 'q'; // Send 'q' for quit 5026 size_t bytes_written = 0; 5027 m_pipe.Write(&ch, 1, bytes_written); 5028 } 5029 } 5030 5031 bool 5032 Interrupt () override 5033 { 5034 // Do only things that are safe to do in an interrupt context (like in 5035 // a SIGINT handler), like write 1 byte to a file descriptor. This will 5036 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 5037 // that was written to the pipe and then call m_process->SendAsyncInterrupt() 5038 // from a much safer location in code. 5039 if (m_active) 5040 { 5041 char ch = 'i'; // Send 'i' for interrupt 5042 size_t bytes_written = 0; 5043 Error result = m_pipe.Write(&ch, 1, bytes_written); 5044 return result.Success(); 5045 } 5046 else 5047 { 5048 // This IOHandler might be pushed on the stack, but not being run currently 5049 // so do the right thing if we aren't actively watching for STDIN by sending 5050 // the interrupt to the process. Otherwise the write to the pipe above would 5051 // do nothing. This can happen when the command interpreter is running and 5052 // gets a "expression ...". It will be on the IOHandler thread and sending 5053 // the input is complete to the delegate which will cause the expression to 5054 // run, which will push the process IO handler, but not run it. 5055 5056 if (StateIsRunningState(m_process->GetState())) 5057 { 5058 m_process->SendAsyncInterrupt(); 5059 return true; 5060 } 5061 } 5062 return false; 5063 } 5064 5065 void 5066 GotEOF() override 5067 { 5068 } 5069 5070 protected: 5071 Process *m_process; 5072 File m_read_file; // Read from this file (usually actual STDIN for LLDB 5073 File m_write_file; // Write to this file (usually the master pty for getting io to debuggee) 5074 Pipe m_pipe; 5075 std::atomic<bool> m_is_running; 5076 }; 5077 5078 void 5079 Process::SetSTDIOFileDescriptor (int fd) 5080 { 5081 // First set up the Read Thread for reading/handling process I/O 5082 5083 std::unique_ptr<ConnectionFileDescriptor> conn_ap (new ConnectionFileDescriptor (fd, true)); 5084 5085 if (conn_ap) 5086 { 5087 m_stdio_communication.SetConnection (conn_ap.release()); 5088 if (m_stdio_communication.IsConnected()) 5089 { 5090 m_stdio_communication.SetReadThreadBytesReceivedCallback (STDIOReadThreadBytesReceived, this); 5091 m_stdio_communication.StartReadThread(); 5092 5093 // Now read thread is set up, set up input reader. 5094 5095 if (!m_process_input_reader) 5096 m_process_input_reader.reset (new IOHandlerProcessSTDIO (this, fd)); 5097 } 5098 } 5099 } 5100 5101 bool 5102 Process::ProcessIOHandlerIsActive () 5103 { 5104 IOHandlerSP io_handler_sp (m_process_input_reader); 5105 if (io_handler_sp) 5106 return GetTarget().GetDebugger().IsTopIOHandler (io_handler_sp); 5107 return false; 5108 } 5109 bool 5110 Process::PushProcessIOHandler () 5111 { 5112 IOHandlerSP io_handler_sp (m_process_input_reader); 5113 if (io_handler_sp) 5114 { 5115 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 5116 if (log) 5117 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 5118 5119 io_handler_sp->SetIsDone(false); 5120 GetTarget().GetDebugger().PushIOHandler (io_handler_sp); 5121 return true; 5122 } 5123 return false; 5124 } 5125 5126 bool 5127 Process::PopProcessIOHandler () 5128 { 5129 IOHandlerSP io_handler_sp (m_process_input_reader); 5130 if (io_handler_sp) 5131 return GetTarget().GetDebugger().PopIOHandler (io_handler_sp); 5132 return false; 5133 } 5134 5135 // The process needs to know about installed plug-ins 5136 void 5137 Process::SettingsInitialize () 5138 { 5139 Thread::SettingsInitialize (); 5140 } 5141 5142 void 5143 Process::SettingsTerminate () 5144 { 5145 Thread::SettingsTerminate (); 5146 } 5147 5148 namespace 5149 { 5150 // RestorePlanState is used to record the "is private", "is master" and "okay to discard" fields of 5151 // the plan we are running, and reset it on Clean or on destruction. 5152 // It will only reset the state once, so you can call Clean and then monkey with the state and it 5153 // won't get reset on you again. 5154 5155 class RestorePlanState 5156 { 5157 public: 5158 RestorePlanState (lldb::ThreadPlanSP thread_plan_sp) : 5159 m_thread_plan_sp(thread_plan_sp), 5160 m_already_reset(false) 5161 { 5162 if (m_thread_plan_sp) 5163 { 5164 m_private = m_thread_plan_sp->GetPrivate(); 5165 m_is_master = m_thread_plan_sp->IsMasterPlan(); 5166 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 5167 } 5168 } 5169 5170 ~RestorePlanState() 5171 { 5172 Clean(); 5173 } 5174 5175 void 5176 Clean () 5177 { 5178 if (!m_already_reset && m_thread_plan_sp) 5179 { 5180 m_already_reset = true; 5181 m_thread_plan_sp->SetPrivate(m_private); 5182 m_thread_plan_sp->SetIsMasterPlan (m_is_master); 5183 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 5184 } 5185 } 5186 5187 private: 5188 lldb::ThreadPlanSP m_thread_plan_sp; 5189 bool m_already_reset; 5190 bool m_private; 5191 bool m_is_master; 5192 bool m_okay_to_discard; 5193 }; 5194 } // anonymous namespace 5195 5196 ExpressionResults 5197 Process::RunThreadPlan(ExecutionContext &exe_ctx, lldb::ThreadPlanSP &thread_plan_sp, 5198 const EvaluateExpressionOptions &options, DiagnosticManager &diagnostic_manager) 5199 { 5200 ExpressionResults return_value = eExpressionSetupError; 5201 5202 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 5203 5204 if (!thread_plan_sp) 5205 { 5206 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with empty thread plan."); 5207 return eExpressionSetupError; 5208 } 5209 5210 if (!thread_plan_sp->ValidatePlan(nullptr)) 5211 { 5212 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with an invalid thread plan."); 5213 return eExpressionSetupError; 5214 } 5215 5216 if (exe_ctx.GetProcessPtr() != this) 5217 { 5218 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called on wrong process."); 5219 return eExpressionSetupError; 5220 } 5221 5222 Thread *thread = exe_ctx.GetThreadPtr(); 5223 if (thread == nullptr) 5224 { 5225 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with invalid thread."); 5226 return eExpressionSetupError; 5227 } 5228 5229 // We need to change some of the thread plan attributes for the thread plan runner. This will restore them 5230 // when we are done: 5231 5232 RestorePlanState thread_plan_restorer(thread_plan_sp); 5233 5234 // We rely on the thread plan we are running returning "PlanCompleted" if when it successfully completes. 5235 // For that to be true the plan can't be private - since private plans suppress themselves in the 5236 // GetCompletedPlan call. 5237 5238 thread_plan_sp->SetPrivate(false); 5239 5240 // The plans run with RunThreadPlan also need to be terminal master plans or when they are done we will end 5241 // up asking the plan above us whether we should stop, which may give the wrong answer. 5242 5243 thread_plan_sp->SetIsMasterPlan (true); 5244 thread_plan_sp->SetOkayToDiscard(false); 5245 5246 if (m_private_state.GetValue() != eStateStopped) 5247 { 5248 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5249 "RunThreadPlan called while the private state was not stopped."); 5250 return eExpressionSetupError; 5251 } 5252 5253 // Save the thread & frame from the exe_ctx for restoration after we run 5254 const uint32_t thread_idx_id = thread->GetIndexID(); 5255 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 5256 if (!selected_frame_sp) 5257 { 5258 thread->SetSelectedFrame(nullptr); 5259 selected_frame_sp = thread->GetSelectedFrame(); 5260 if (!selected_frame_sp) 5261 { 5262 diagnostic_manager.Printf(eDiagnosticSeverityError, 5263 "RunThreadPlan called without a selected frame on thread %d", thread_idx_id); 5264 return eExpressionSetupError; 5265 } 5266 } 5267 5268 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 5269 5270 // N.B. Running the target may unset the currently selected thread and frame. We don't want to do that either, 5271 // so we should arrange to reset them as well. 5272 5273 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 5274 5275 uint32_t selected_tid; 5276 StackID selected_stack_id; 5277 if (selected_thread_sp) 5278 { 5279 selected_tid = selected_thread_sp->GetIndexID(); 5280 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 5281 } 5282 else 5283 { 5284 selected_tid = LLDB_INVALID_THREAD_ID; 5285 } 5286 5287 HostThread backup_private_state_thread; 5288 lldb::StateType old_state = eStateInvalid; 5289 lldb::ThreadPlanSP stopper_base_plan_sp; 5290 5291 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 5292 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5293 { 5294 // Yikes, we are running on the private state thread! So we can't wait for public events on this thread, since 5295 // we are the thread that is generating public events. 5296 // The simplest thing to do is to spin up a temporary thread to handle private state thread events while 5297 // we are fielding public events here. 5298 if (log) 5299 log->Printf ("Running thread plan on private state thread, spinning up another state thread to handle the events."); 5300 5301 backup_private_state_thread = m_private_state_thread; 5302 5303 // One other bit of business: we want to run just this thread plan and anything it pushes, and then stop, 5304 // returning control here. 5305 // But in the normal course of things, the plan above us on the stack would be given a shot at the stop 5306 // event before deciding to stop, and we don't want that. So we insert a "stopper" base plan on the stack 5307 // before the plan we want to run. Since base plans always stop and return control to the user, that will 5308 // do just what we want. 5309 stopper_base_plan_sp.reset(new ThreadPlanBase (*thread)); 5310 thread->QueueThreadPlan (stopper_base_plan_sp, false); 5311 // Have to make sure our public state is stopped, since otherwise the reporting logic below doesn't work correctly. 5312 old_state = m_public_state.GetValue(); 5313 m_public_state.SetValueNoLock(eStateStopped); 5314 5315 // Now spin up the private state thread: 5316 StartPrivateStateThread(true); 5317 } 5318 5319 thread->QueueThreadPlan(thread_plan_sp, false); // This used to pass "true" does that make sense? 5320 5321 if (options.GetDebug()) 5322 { 5323 // In this case, we aren't actually going to run, we just want to stop right away. 5324 // Flush this thread so we will refetch the stacks and show the correct backtrace. 5325 // FIXME: To make this prettier we should invent some stop reason for this, but that 5326 // is only cosmetic, and this functionality is only of use to lldb developers who can 5327 // live with not pretty... 5328 thread->Flush(); 5329 return eExpressionStoppedForDebug; 5330 } 5331 5332 ListenerSP listener_sp(Listener::MakeListener("lldb.process.listener.run-thread-plan")); 5333 5334 lldb::EventSP event_to_broadcast_sp; 5335 5336 { 5337 // This process event hijacker Hijacks the Public events and its destructor makes sure that the process events get 5338 // restored on exit to the function. 5339 // 5340 // If the event needs to propagate beyond the hijacker (e.g., the process exits during execution), then the event 5341 // is put into event_to_broadcast_sp for rebroadcasting. 5342 5343 ProcessEventHijacker run_thread_plan_hijacker (*this, listener_sp); 5344 5345 if (log) 5346 { 5347 StreamString s; 5348 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5349 log->Printf ("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 " to run thread plan \"%s\".", 5350 thread->GetIndexID(), 5351 thread->GetID(), 5352 s.GetData()); 5353 } 5354 5355 bool got_event; 5356 lldb::EventSP event_sp; 5357 lldb::StateType stop_state = lldb::eStateInvalid; 5358 5359 TimeValue* timeout_ptr = nullptr; 5360 TimeValue real_timeout; 5361 5362 bool before_first_timeout = true; // This is set to false the first time that we have to halt the target. 5363 bool do_resume = true; 5364 bool handle_running_event = true; 5365 const uint64_t default_one_thread_timeout_usec = 250000; 5366 5367 // This is just for accounting: 5368 uint32_t num_resumes = 0; 5369 5370 uint32_t timeout_usec = options.GetTimeoutUsec(); 5371 uint32_t one_thread_timeout_usec; 5372 uint32_t all_threads_timeout_usec = 0; 5373 5374 // If we are going to run all threads the whole time, or if we are only going to run one thread, 5375 // then we don't need the first timeout. So we set the final timeout, and pretend we are after the 5376 // first timeout already. 5377 5378 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5379 { 5380 before_first_timeout = false; 5381 one_thread_timeout_usec = 0; 5382 all_threads_timeout_usec = timeout_usec; 5383 } 5384 else 5385 { 5386 uint32_t option_one_thread_timeout = options.GetOneThreadTimeoutUsec(); 5387 5388 // If the overall wait is forever, then we only need to set the one thread timeout: 5389 if (timeout_usec == 0) 5390 { 5391 if (option_one_thread_timeout != 0) 5392 one_thread_timeout_usec = option_one_thread_timeout; 5393 else 5394 one_thread_timeout_usec = default_one_thread_timeout_usec; 5395 } 5396 else 5397 { 5398 // Otherwise, if the one thread timeout is set, make sure it isn't longer than the overall timeout, 5399 // and use it, otherwise use half the total timeout, bounded by the default_one_thread_timeout_usec. 5400 uint64_t computed_one_thread_timeout; 5401 if (option_one_thread_timeout != 0) 5402 { 5403 if (timeout_usec < option_one_thread_timeout) 5404 { 5405 diagnostic_manager.PutCString( 5406 eDiagnosticSeverityError, 5407 "RunThreadPlan called without one thread timeout greater than total timeout"); 5408 return eExpressionSetupError; 5409 } 5410 computed_one_thread_timeout = option_one_thread_timeout; 5411 } 5412 else 5413 { 5414 computed_one_thread_timeout = timeout_usec / 2; 5415 if (computed_one_thread_timeout > default_one_thread_timeout_usec) 5416 computed_one_thread_timeout = default_one_thread_timeout_usec; 5417 } 5418 one_thread_timeout_usec = computed_one_thread_timeout; 5419 all_threads_timeout_usec = timeout_usec - one_thread_timeout_usec; 5420 } 5421 } 5422 5423 if (log) 5424 log->Printf ("Stop others: %u, try all: %u, before_first: %u, one thread: %" PRIu32 " - all threads: %" PRIu32 ".\n", 5425 options.GetStopOthers(), 5426 options.GetTryAllThreads(), 5427 before_first_timeout, 5428 one_thread_timeout_usec, 5429 all_threads_timeout_usec); 5430 5431 // This isn't going to work if there are unfetched events on the queue. 5432 // Are there cases where we might want to run the remaining events here, and then try to 5433 // call the function? That's probably being too tricky for our own good. 5434 5435 Event *other_events = listener_sp->PeekAtNextEvent(); 5436 if (other_events != nullptr) 5437 { 5438 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5439 "RunThreadPlan called with pending events on the queue."); 5440 return eExpressionSetupError; 5441 } 5442 5443 // We also need to make sure that the next event is delivered. We might be calling a function as part of 5444 // a thread plan, in which case the last delivered event could be the running event, and we don't want 5445 // event coalescing to cause us to lose OUR running event... 5446 ForceNextEventDelivery(); 5447 5448 // This while loop must exit out the bottom, there's cleanup that we need to do when we are done. 5449 // So don't call return anywhere within it. 5450 5451 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5452 // It's pretty much impossible to write test cases for things like: 5453 // One thread timeout expires, I go to halt, but the process already stopped 5454 // on the function call stop breakpoint. Turning on this define will make us not 5455 // fetch the first event till after the halt. So if you run a quick function, it will have 5456 // completed, and the completion event will be waiting, when you interrupt for halt. 5457 // The expression evaluation should still succeed. 5458 bool miss_first_event = true; 5459 #endif 5460 TimeValue one_thread_timeout; 5461 TimeValue final_timeout; 5462 5463 while (true) 5464 { 5465 // We usually want to resume the process if we get to the top of the loop. 5466 // The only exception is if we get two running events with no intervening 5467 // stop, which can happen, we will just wait for then next stop event. 5468 if (log) 5469 log->Printf ("Top of while loop: do_resume: %i handle_running_event: %i before_first_timeout: %i.", 5470 do_resume, 5471 handle_running_event, 5472 before_first_timeout); 5473 5474 if (do_resume || handle_running_event) 5475 { 5476 // Do the initial resume and wait for the running event before going further. 5477 5478 if (do_resume) 5479 { 5480 num_resumes++; 5481 Error resume_error = PrivateResume(); 5482 if (!resume_error.Success()) 5483 { 5484 diagnostic_manager.Printf(eDiagnosticSeverityError, 5485 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5486 resume_error.AsCString()); 5487 return_value = eExpressionSetupError; 5488 break; 5489 } 5490 } 5491 5492 TimeValue resume_timeout = TimeValue::Now(); 5493 resume_timeout.OffsetWithMicroSeconds(500000); 5494 5495 got_event = listener_sp->WaitForEvent(&resume_timeout, event_sp); 5496 if (!got_event) 5497 { 5498 if (log) 5499 log->Printf("Process::RunThreadPlan(): didn't get any event after resume %" PRIu32 ", exiting.", 5500 num_resumes); 5501 5502 diagnostic_manager.Printf(eDiagnosticSeverityError, 5503 "didn't get any event after resume %" PRIu32 ", exiting.", num_resumes); 5504 return_value = eExpressionSetupError; 5505 break; 5506 } 5507 5508 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5509 5510 if (stop_state != eStateRunning) 5511 { 5512 bool restarted = false; 5513 5514 if (stop_state == eStateStopped) 5515 { 5516 restarted = Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()); 5517 if (log) 5518 log->Printf("Process::RunThreadPlan(): didn't get running event after " 5519 "resume %d, got %s instead (restarted: %i, do_resume: %i, handle_running_event: %i).", 5520 num_resumes, 5521 StateAsCString(stop_state), 5522 restarted, 5523 do_resume, 5524 handle_running_event); 5525 } 5526 5527 if (restarted) 5528 { 5529 // This is probably an overabundance of caution, I don't think I should ever get a stopped & restarted 5530 // event here. But if I do, the best thing is to Halt and then get out of here. 5531 const bool clear_thread_plans = false; 5532 const bool use_run_lock = false; 5533 Halt(clear_thread_plans, use_run_lock); 5534 } 5535 5536 diagnostic_manager.Printf(eDiagnosticSeverityError, 5537 "didn't get running event after initial resume, got %s instead.", 5538 StateAsCString(stop_state)); 5539 return_value = eExpressionSetupError; 5540 break; 5541 } 5542 5543 if (log) 5544 log->PutCString ("Process::RunThreadPlan(): resuming succeeded."); 5545 // We need to call the function synchronously, so spin waiting for it to return. 5546 // If we get interrupted while executing, we're going to lose our context, and 5547 // won't be able to gather the result at this point. 5548 // We set the timeout AFTER the resume, since the resume takes some time and we 5549 // don't want to charge that to the timeout. 5550 } 5551 else 5552 { 5553 if (log) 5554 log->PutCString ("Process::RunThreadPlan(): waiting for next event."); 5555 } 5556 5557 if (before_first_timeout) 5558 { 5559 if (options.GetTryAllThreads()) 5560 { 5561 one_thread_timeout = TimeValue::Now(); 5562 one_thread_timeout.OffsetWithMicroSeconds(one_thread_timeout_usec); 5563 timeout_ptr = &one_thread_timeout; 5564 } 5565 else 5566 { 5567 if (timeout_usec == 0) 5568 timeout_ptr = nullptr; 5569 else 5570 { 5571 final_timeout = TimeValue::Now(); 5572 final_timeout.OffsetWithMicroSeconds (timeout_usec); 5573 timeout_ptr = &final_timeout; 5574 } 5575 } 5576 } 5577 else 5578 { 5579 if (timeout_usec == 0) 5580 timeout_ptr = nullptr; 5581 else 5582 { 5583 final_timeout = TimeValue::Now(); 5584 final_timeout.OffsetWithMicroSeconds (all_threads_timeout_usec); 5585 timeout_ptr = &final_timeout; 5586 } 5587 } 5588 5589 do_resume = true; 5590 handle_running_event = true; 5591 5592 // Now wait for the process to stop again: 5593 event_sp.reset(); 5594 5595 if (log) 5596 { 5597 if (timeout_ptr) 5598 { 5599 log->Printf ("Process::RunThreadPlan(): about to wait - now is %" PRIu64 " - endpoint is %" PRIu64, 5600 TimeValue::Now().GetAsMicroSecondsSinceJan1_1970(), 5601 timeout_ptr->GetAsMicroSecondsSinceJan1_1970()); 5602 } 5603 else 5604 { 5605 log->Printf ("Process::RunThreadPlan(): about to wait forever."); 5606 } 5607 } 5608 5609 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5610 // See comment above... 5611 if (miss_first_event) 5612 { 5613 usleep(1000); 5614 miss_first_event = false; 5615 got_event = false; 5616 } 5617 else 5618 #endif 5619 got_event = listener_sp->WaitForEvent (timeout_ptr, event_sp); 5620 5621 if (got_event) 5622 { 5623 if (event_sp) 5624 { 5625 bool keep_going = false; 5626 if (event_sp->GetType() == eBroadcastBitInterrupt) 5627 { 5628 const bool clear_thread_plans = false; 5629 const bool use_run_lock = false; 5630 Halt(clear_thread_plans, use_run_lock); 5631 return_value = eExpressionInterrupted; 5632 diagnostic_manager.PutCString(eDiagnosticSeverityRemark, "execution halted by user interrupt."); 5633 if (log) 5634 log->Printf( 5635 "Process::RunThreadPlan(): Got interrupted by eBroadcastBitInterrupted, exiting."); 5636 break; 5637 } 5638 else 5639 { 5640 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5641 if (log) 5642 log->Printf("Process::RunThreadPlan(): in while loop, got event: %s.", StateAsCString(stop_state)); 5643 5644 switch (stop_state) 5645 { 5646 case lldb::eStateStopped: 5647 { 5648 // We stopped, figure out what we are going to do now. 5649 ThreadSP thread_sp = GetThreadList().FindThreadByIndexID (thread_idx_id); 5650 if (!thread_sp) 5651 { 5652 // Ooh, our thread has vanished. Unlikely that this was successful execution... 5653 if (log) 5654 log->Printf ("Process::RunThreadPlan(): execution completed but our thread (index-id=%u) has vanished.", thread_idx_id); 5655 return_value = eExpressionInterrupted; 5656 } 5657 else 5658 { 5659 // If we were restarted, we just need to go back up to fetch another event. 5660 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 5661 { 5662 if (log) 5663 { 5664 log->Printf ("Process::RunThreadPlan(): Got a stop and restart, so we'll continue waiting."); 5665 } 5666 keep_going = true; 5667 do_resume = false; 5668 handle_running_event = true; 5669 } 5670 else 5671 { 5672 StopInfoSP stop_info_sp (thread_sp->GetStopInfo ()); 5673 StopReason stop_reason = eStopReasonInvalid; 5674 if (stop_info_sp) 5675 stop_reason = stop_info_sp->GetStopReason(); 5676 5677 // FIXME: We only check if the stop reason is plan complete, should we make sure that 5678 // it is OUR plan that is complete? 5679 if (stop_reason == eStopReasonPlanComplete) 5680 { 5681 if (log) 5682 log->PutCString ("Process::RunThreadPlan(): execution completed successfully."); 5683 5684 // Restore the plan state so it will get reported as intended when we are done. 5685 thread_plan_restorer.Clean(); 5686 5687 return_value = eExpressionCompleted; 5688 } 5689 else 5690 { 5691 // Something restarted the target, so just wait for it to stop for real. 5692 if (stop_reason == eStopReasonBreakpoint) 5693 { 5694 if (log) 5695 log->Printf ("Process::RunThreadPlan() stopped for breakpoint: %s.", stop_info_sp->GetDescription()); 5696 return_value = eExpressionHitBreakpoint; 5697 if (!options.DoesIgnoreBreakpoints()) 5698 { 5699 // Restore the plan state and then force Private to false. We are 5700 // going to stop because of this plan so we need it to become a public 5701 // plan or it won't report correctly when we continue to its termination 5702 // later on. 5703 thread_plan_restorer.Clean(); 5704 if (thread_plan_sp) 5705 thread_plan_sp->SetPrivate(false); 5706 event_to_broadcast_sp = event_sp; 5707 } 5708 } 5709 else 5710 { 5711 if (log) 5712 log->PutCString ("Process::RunThreadPlan(): thread plan didn't successfully complete."); 5713 if (!options.DoesUnwindOnError()) 5714 event_to_broadcast_sp = event_sp; 5715 return_value = eExpressionInterrupted; 5716 } 5717 } 5718 } 5719 } 5720 } 5721 break; 5722 5723 case lldb::eStateRunning: 5724 // This shouldn't really happen, but sometimes we do get two running events without an 5725 // intervening stop, and in that case we should just go back to waiting for the stop. 5726 do_resume = false; 5727 keep_going = true; 5728 handle_running_event = false; 5729 break; 5730 5731 default: 5732 if (log) 5733 log->Printf("Process::RunThreadPlan(): execution stopped with unexpected state: %s.", StateAsCString(stop_state)); 5734 5735 if (stop_state == eStateExited) 5736 event_to_broadcast_sp = event_sp; 5737 5738 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5739 "execution stopped with unexpected state."); 5740 return_value = eExpressionInterrupted; 5741 break; 5742 } 5743 } 5744 5745 if (keep_going) 5746 continue; 5747 else 5748 break; 5749 } 5750 else 5751 { 5752 if (log) 5753 log->PutCString ("Process::RunThreadPlan(): got_event was true, but the event pointer was null. How odd..."); 5754 return_value = eExpressionInterrupted; 5755 break; 5756 } 5757 } 5758 else 5759 { 5760 // If we didn't get an event that means we've timed out... 5761 // We will interrupt the process here. Depending on what we were asked to do we will 5762 // either exit, or try with all threads running for the same timeout. 5763 5764 if (log) { 5765 if (options.GetTryAllThreads()) 5766 { 5767 if (before_first_timeout) 5768 { 5769 if (timeout_usec != 0) 5770 { 5771 log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, " 5772 "running for %" PRIu32 " usec with all threads enabled.", 5773 all_threads_timeout_usec); 5774 } 5775 else 5776 { 5777 log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, " 5778 "running forever with all threads enabled."); 5779 } 5780 } 5781 else 5782 log->Printf ("Process::RunThreadPlan(): Restarting function with all threads enabled " 5783 "and timeout: %u timed out, abandoning execution.", 5784 timeout_usec); 5785 } 5786 else 5787 log->Printf ("Process::RunThreadPlan(): Running function with timeout: %u timed out, " 5788 "abandoning execution.", 5789 timeout_usec); 5790 } 5791 5792 // It is possible that between the time we issued the Halt, and we get around to calling Halt the target 5793 // could have stopped. That's fine, Halt will figure that out and send the appropriate Stopped event. 5794 // BUT it is also possible that we stopped & restarted (e.g. hit a signal with "stop" set to false.) In 5795 // that case, we'll get the stopped & restarted event, and we should go back to waiting for the Halt's 5796 // stopped event. That's what this while loop does. 5797 5798 bool back_to_top = true; 5799 uint32_t try_halt_again = 0; 5800 bool do_halt = true; 5801 const uint32_t num_retries = 5; 5802 while (try_halt_again < num_retries) 5803 { 5804 Error halt_error; 5805 if (do_halt) 5806 { 5807 if (log) 5808 log->Printf ("Process::RunThreadPlan(): Running Halt."); 5809 const bool clear_thread_plans = false; 5810 const bool use_run_lock = false; 5811 Halt(clear_thread_plans, use_run_lock); 5812 } 5813 if (halt_error.Success()) 5814 { 5815 if (log) 5816 log->PutCString ("Process::RunThreadPlan(): Halt succeeded."); 5817 5818 real_timeout = TimeValue::Now(); 5819 real_timeout.OffsetWithMicroSeconds(500000); 5820 5821 got_event = listener_sp->WaitForEvent(&real_timeout, event_sp); 5822 5823 if (got_event) 5824 { 5825 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5826 if (log) 5827 { 5828 log->Printf ("Process::RunThreadPlan(): Stopped with event: %s", StateAsCString(stop_state)); 5829 if (stop_state == lldb::eStateStopped 5830 && Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 5831 log->PutCString (" Event was the Halt interruption event."); 5832 } 5833 5834 if (stop_state == lldb::eStateStopped) 5835 { 5836 // Between the time we initiated the Halt and the time we delivered it, the process could have 5837 // already finished its job. Check that here: 5838 5839 if (thread->IsThreadPlanDone (thread_plan_sp.get())) 5840 { 5841 if (log) 5842 log->PutCString ("Process::RunThreadPlan(): Even though we timed out, the call plan was done. " 5843 "Exiting wait loop."); 5844 return_value = eExpressionCompleted; 5845 back_to_top = false; 5846 break; 5847 } 5848 5849 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 5850 { 5851 if (log) 5852 log->PutCString ("Process::RunThreadPlan(): Went to halt but got a restarted event, there must be an un-restarted stopped event so try again... " 5853 "Exiting wait loop."); 5854 try_halt_again++; 5855 do_halt = false; 5856 continue; 5857 } 5858 5859 if (!options.GetTryAllThreads()) 5860 { 5861 if (log) 5862 log->PutCString ("Process::RunThreadPlan(): try_all_threads was false, we stopped so now we're quitting."); 5863 return_value = eExpressionInterrupted; 5864 back_to_top = false; 5865 break; 5866 } 5867 5868 if (before_first_timeout) 5869 { 5870 // Set all the other threads to run, and return to the top of the loop, which will continue; 5871 before_first_timeout = false; 5872 thread_plan_sp->SetStopOthers (false); 5873 if (log) 5874 log->PutCString ("Process::RunThreadPlan(): about to resume."); 5875 5876 back_to_top = true; 5877 break; 5878 } 5879 else 5880 { 5881 // Running all threads failed, so return Interrupted. 5882 if (log) 5883 log->PutCString("Process::RunThreadPlan(): running all threads timed out."); 5884 return_value = eExpressionInterrupted; 5885 back_to_top = false; 5886 break; 5887 } 5888 } 5889 } 5890 else 5891 { if (log) 5892 log->PutCString("Process::RunThreadPlan(): halt said it succeeded, but I got no event. " 5893 "I'm getting out of here passing Interrupted."); 5894 return_value = eExpressionInterrupted; 5895 back_to_top = false; 5896 break; 5897 } 5898 } 5899 else 5900 { 5901 try_halt_again++; 5902 continue; 5903 } 5904 } 5905 5906 if (!back_to_top || try_halt_again > num_retries) 5907 break; 5908 else 5909 continue; 5910 } 5911 } // END WAIT LOOP 5912 5913 // If we had to start up a temporary private state thread to run this thread plan, shut it down now. 5914 if (backup_private_state_thread.IsJoinable()) 5915 { 5916 StopPrivateStateThread(); 5917 Error error; 5918 m_private_state_thread = backup_private_state_thread; 5919 if (stopper_base_plan_sp) 5920 { 5921 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5922 } 5923 if (old_state != eStateInvalid) 5924 m_public_state.SetValueNoLock(old_state); 5925 } 5926 5927 if (return_value != eExpressionCompleted && log) 5928 { 5929 // Print a backtrace into the log so we can figure out where we are: 5930 StreamString s; 5931 s.PutCString("Thread state after unsuccessful completion: \n"); 5932 thread->GetStackFrameStatus (s, 5933 0, 5934 UINT32_MAX, 5935 true, 5936 UINT32_MAX); 5937 log->PutCString(s.GetData()); 5938 5939 } 5940 // Restore the thread state if we are going to discard the plan execution. There are three cases where this 5941 // could happen: 5942 // 1) The execution successfully completed 5943 // 2) We hit a breakpoint, and ignore_breakpoints was true 5944 // 3) We got some other error, and discard_on_error was true 5945 bool should_unwind = (return_value == eExpressionInterrupted && options.DoesUnwindOnError()) 5946 || (return_value == eExpressionHitBreakpoint && options.DoesIgnoreBreakpoints()); 5947 5948 if (return_value == eExpressionCompleted 5949 || should_unwind) 5950 { 5951 thread_plan_sp->RestoreThreadState(); 5952 } 5953 5954 // Now do some processing on the results of the run: 5955 if (return_value == eExpressionInterrupted || return_value == eExpressionHitBreakpoint) 5956 { 5957 if (log) 5958 { 5959 StreamString s; 5960 if (event_sp) 5961 event_sp->Dump (&s); 5962 else 5963 { 5964 log->PutCString ("Process::RunThreadPlan(): Stop event that interrupted us is NULL."); 5965 } 5966 5967 StreamString ts; 5968 5969 const char *event_explanation = nullptr; 5970 5971 do 5972 { 5973 if (!event_sp) 5974 { 5975 event_explanation = "<no event>"; 5976 break; 5977 } 5978 else if (event_sp->GetType() == eBroadcastBitInterrupt) 5979 { 5980 event_explanation = "<user interrupt>"; 5981 break; 5982 } 5983 else 5984 { 5985 const Process::ProcessEventData *event_data = Process::ProcessEventData::GetEventDataFromEvent (event_sp.get()); 5986 5987 if (!event_data) 5988 { 5989 event_explanation = "<no event data>"; 5990 break; 5991 } 5992 5993 Process *process = event_data->GetProcessSP().get(); 5994 5995 if (!process) 5996 { 5997 event_explanation = "<no process>"; 5998 break; 5999 } 6000 6001 ThreadList &thread_list = process->GetThreadList(); 6002 6003 uint32_t num_threads = thread_list.GetSize(); 6004 uint32_t thread_index; 6005 6006 ts.Printf("<%u threads> ", num_threads); 6007 6008 for (thread_index = 0; 6009 thread_index < num_threads; 6010 ++thread_index) 6011 { 6012 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 6013 6014 if (!thread) 6015 { 6016 ts.Printf("<?> "); 6017 continue; 6018 } 6019 6020 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 6021 RegisterContext *register_context = thread->GetRegisterContext().get(); 6022 6023 if (register_context) 6024 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 6025 else 6026 ts.Printf("[ip unknown] "); 6027 6028 // Show the private stop info here, the public stop info will be from the last natural stop. 6029 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 6030 if (stop_info_sp) 6031 { 6032 const char *stop_desc = stop_info_sp->GetDescription(); 6033 if (stop_desc) 6034 ts.PutCString (stop_desc); 6035 } 6036 ts.Printf(">"); 6037 } 6038 6039 event_explanation = ts.GetData(); 6040 } 6041 } while (0); 6042 6043 if (event_explanation) 6044 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", s.GetData(), event_explanation); 6045 else 6046 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", s.GetData()); 6047 } 6048 6049 if (should_unwind) 6050 { 6051 if (log) 6052 log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - discarding thread plans up to %p.", 6053 static_cast<void*>(thread_plan_sp.get())); 6054 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6055 } 6056 else 6057 { 6058 if (log) 6059 log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - for plan: %p not discarding.", 6060 static_cast<void*>(thread_plan_sp.get())); 6061 } 6062 } 6063 else if (return_value == eExpressionSetupError) 6064 { 6065 if (log) 6066 log->PutCString("Process::RunThreadPlan(): execution set up error."); 6067 6068 if (options.DoesUnwindOnError()) 6069 { 6070 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6071 } 6072 } 6073 else 6074 { 6075 if (thread->IsThreadPlanDone (thread_plan_sp.get())) 6076 { 6077 if (log) 6078 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 6079 return_value = eExpressionCompleted; 6080 } 6081 else if (thread->WasThreadPlanDiscarded (thread_plan_sp.get())) 6082 { 6083 if (log) 6084 log->PutCString("Process::RunThreadPlan(): thread plan was discarded"); 6085 return_value = eExpressionDiscarded; 6086 } 6087 else 6088 { 6089 if (log) 6090 log->PutCString("Process::RunThreadPlan(): thread plan stopped in mid course"); 6091 if (options.DoesUnwindOnError() && thread_plan_sp) 6092 { 6093 if (log) 6094 log->PutCString("Process::RunThreadPlan(): discarding thread plan 'cause unwind_on_error is set."); 6095 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6096 } 6097 } 6098 } 6099 6100 // Thread we ran the function in may have gone away because we ran the target 6101 // Check that it's still there, and if it is put it back in the context. Also restore the 6102 // frame in the context if it is still present. 6103 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 6104 if (thread) 6105 { 6106 exe_ctx.SetFrameSP (thread->GetFrameWithStackID (ctx_frame_id)); 6107 } 6108 6109 // Also restore the current process'es selected frame & thread, since this function calling may 6110 // be done behind the user's back. 6111 6112 if (selected_tid != LLDB_INVALID_THREAD_ID) 6113 { 6114 if (GetThreadList().SetSelectedThreadByIndexID (selected_tid) && selected_stack_id.IsValid()) 6115 { 6116 // We were able to restore the selected thread, now restore the frame: 6117 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 6118 StackFrameSP old_frame_sp = GetThreadList().GetSelectedThread()->GetFrameWithStackID(selected_stack_id); 6119 if (old_frame_sp) 6120 GetThreadList().GetSelectedThread()->SetSelectedFrame(old_frame_sp.get()); 6121 } 6122 } 6123 } 6124 6125 // If the process exited during the run of the thread plan, notify everyone. 6126 6127 if (event_to_broadcast_sp) 6128 { 6129 if (log) 6130 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 6131 BroadcastEvent(event_to_broadcast_sp); 6132 } 6133 6134 return return_value; 6135 } 6136 6137 const char * 6138 Process::ExecutionResultAsCString (ExpressionResults result) 6139 { 6140 const char *result_name; 6141 6142 switch (result) 6143 { 6144 case eExpressionCompleted: 6145 result_name = "eExpressionCompleted"; 6146 break; 6147 case eExpressionDiscarded: 6148 result_name = "eExpressionDiscarded"; 6149 break; 6150 case eExpressionInterrupted: 6151 result_name = "eExpressionInterrupted"; 6152 break; 6153 case eExpressionHitBreakpoint: 6154 result_name = "eExpressionHitBreakpoint"; 6155 break; 6156 case eExpressionSetupError: 6157 result_name = "eExpressionSetupError"; 6158 break; 6159 case eExpressionParseError: 6160 result_name = "eExpressionParseError"; 6161 break; 6162 case eExpressionResultUnavailable: 6163 result_name = "eExpressionResultUnavailable"; 6164 break; 6165 case eExpressionTimedOut: 6166 result_name = "eExpressionTimedOut"; 6167 break; 6168 case eExpressionStoppedForDebug: 6169 result_name = "eExpressionStoppedForDebug"; 6170 break; 6171 } 6172 return result_name; 6173 } 6174 6175 void 6176 Process::GetStatus (Stream &strm) 6177 { 6178 const StateType state = GetState(); 6179 if (StateIsStoppedState(state, false)) 6180 { 6181 if (state == eStateExited) 6182 { 6183 int exit_status = GetExitStatus(); 6184 const char *exit_description = GetExitDescription(); 6185 strm.Printf ("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 6186 GetID(), 6187 exit_status, 6188 exit_status, 6189 exit_description ? exit_description : ""); 6190 } 6191 else 6192 { 6193 if (state == eStateConnected) 6194 strm.Printf ("Connected to remote target.\n"); 6195 else 6196 strm.Printf ("Process %" PRIu64 " %s\n", GetID(), StateAsCString (state)); 6197 } 6198 } 6199 else 6200 { 6201 strm.Printf ("Process %" PRIu64 " is running.\n", GetID()); 6202 } 6203 } 6204 6205 size_t 6206 Process::GetThreadStatus (Stream &strm, 6207 bool only_threads_with_stop_reason, 6208 uint32_t start_frame, 6209 uint32_t num_frames, 6210 uint32_t num_frames_with_source) 6211 { 6212 size_t num_thread_infos_dumped = 0; 6213 6214 // You can't hold the thread list lock while calling Thread::GetStatus. That very well might run code (e.g. if we need it 6215 // to get return values or arguments.) For that to work the process has to be able to acquire it. So instead copy the thread 6216 // ID's, and look them up one by one: 6217 6218 uint32_t num_threads; 6219 std::vector<lldb::tid_t> thread_id_array; 6220 //Scope for thread list locker; 6221 { 6222 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 6223 ThreadList &curr_thread_list = GetThreadList(); 6224 num_threads = curr_thread_list.GetSize(); 6225 uint32_t idx; 6226 thread_id_array.resize(num_threads); 6227 for (idx = 0; idx < num_threads; ++idx) 6228 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 6229 } 6230 6231 for (uint32_t i = 0; i < num_threads; i++) 6232 { 6233 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 6234 if (thread_sp) 6235 { 6236 if (only_threads_with_stop_reason) 6237 { 6238 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 6239 if (!stop_info_sp || !stop_info_sp->IsValid()) 6240 continue; 6241 } 6242 thread_sp->GetStatus (strm, 6243 start_frame, 6244 num_frames, 6245 num_frames_with_source); 6246 ++num_thread_infos_dumped; 6247 } 6248 else 6249 { 6250 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 6251 if (log) 6252 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 " vanished while running Thread::GetStatus."); 6253 } 6254 } 6255 return num_thread_infos_dumped; 6256 } 6257 6258 void 6259 Process::AddInvalidMemoryRegion (const LoadRange ®ion) 6260 { 6261 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 6262 } 6263 6264 bool 6265 Process::RemoveInvalidMemoryRange (const LoadRange ®ion) 6266 { 6267 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), region.GetByteSize()); 6268 } 6269 6270 void 6271 Process::AddPreResumeAction (PreResumeActionCallback callback, void *baton) 6272 { 6273 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton (callback, baton)); 6274 } 6275 6276 bool 6277 Process::RunPreResumeActions () 6278 { 6279 bool result = true; 6280 while (!m_pre_resume_actions.empty()) 6281 { 6282 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 6283 m_pre_resume_actions.pop_back(); 6284 bool this_result = action.callback (action.baton); 6285 if (result) 6286 result = this_result; 6287 } 6288 return result; 6289 } 6290 6291 void 6292 Process::ClearPreResumeActions () 6293 { 6294 m_pre_resume_actions.clear(); 6295 } 6296 6297 ProcessRunLock & 6298 Process::GetRunLock() 6299 { 6300 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 6301 return m_private_run_lock; 6302 else 6303 return m_public_run_lock; 6304 } 6305 6306 void 6307 Process::Flush () 6308 { 6309 m_thread_list.Flush(); 6310 m_extended_thread_list.Flush(); 6311 m_extended_thread_stop_id = 0; 6312 m_queue_list.Clear(); 6313 m_queue_list_stop_id = 0; 6314 } 6315 6316 void 6317 Process::DidExec () 6318 { 6319 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 6320 if (log) 6321 log->Printf ("Process::%s()", __FUNCTION__); 6322 6323 Target &target = GetTarget(); 6324 target.CleanupProcess (); 6325 target.ClearModules(false); 6326 m_dynamic_checkers_ap.reset(); 6327 m_abi_sp.reset(); 6328 m_system_runtime_ap.reset(); 6329 m_os_ap.reset(); 6330 m_dyld_ap.reset(); 6331 m_jit_loaders_ap.reset(); 6332 m_image_tokens.clear(); 6333 m_allocated_memory_cache.Clear(); 6334 m_language_runtimes.clear(); 6335 m_instrumentation_runtimes.clear(); 6336 m_thread_list.DiscardThreadPlans(); 6337 m_memory_cache.Clear(true); 6338 m_stop_info_override_callback = nullptr; 6339 DoDidExec(); 6340 CompleteAttach (); 6341 // Flush the process (threads and all stack frames) after running CompleteAttach() 6342 // in case the dynamic loader loaded things in new locations. 6343 Flush(); 6344 6345 // After we figure out what was loaded/unloaded in CompleteAttach, 6346 // we need to let the target know so it can do any cleanup it needs to. 6347 target.DidExec(); 6348 } 6349 6350 addr_t 6351 Process::ResolveIndirectFunction(const Address *address, Error &error) 6352 { 6353 if (address == nullptr) 6354 { 6355 error.SetErrorString("Invalid address argument"); 6356 return LLDB_INVALID_ADDRESS; 6357 } 6358 6359 addr_t function_addr = LLDB_INVALID_ADDRESS; 6360 6361 addr_t addr = address->GetLoadAddress(&GetTarget()); 6362 std::map<addr_t,addr_t>::const_iterator iter = m_resolved_indirect_addresses.find(addr); 6363 if (iter != m_resolved_indirect_addresses.end()) 6364 { 6365 function_addr = (*iter).second; 6366 } 6367 else 6368 { 6369 if (!InferiorCall(this, address, function_addr)) 6370 { 6371 Symbol *symbol = address->CalculateSymbolContextSymbol(); 6372 error.SetErrorStringWithFormat ("Unable to call resolver for indirect function %s", 6373 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 6374 function_addr = LLDB_INVALID_ADDRESS; 6375 } 6376 else 6377 { 6378 m_resolved_indirect_addresses.insert(std::pair<addr_t, addr_t>(addr, function_addr)); 6379 } 6380 } 6381 return function_addr; 6382 } 6383 6384 void 6385 Process::ModulesDidLoad (ModuleList &module_list) 6386 { 6387 SystemRuntime *sys_runtime = GetSystemRuntime(); 6388 if (sys_runtime) 6389 { 6390 sys_runtime->ModulesDidLoad (module_list); 6391 } 6392 6393 GetJITLoaders().ModulesDidLoad (module_list); 6394 6395 // Give runtimes a chance to be created. 6396 InstrumentationRuntime::ModulesDidLoad(module_list, this, m_instrumentation_runtimes); 6397 6398 // Tell runtimes about new modules. 6399 for (auto pos = m_instrumentation_runtimes.begin(); pos != m_instrumentation_runtimes.end(); ++pos) 6400 { 6401 InstrumentationRuntimeSP runtime = pos->second; 6402 runtime->ModulesDidLoad(module_list); 6403 } 6404 6405 // Let any language runtimes we have already created know 6406 // about the modules that loaded. 6407 6408 // Iterate over a copy of this language runtime list in case 6409 // the language runtime ModulesDidLoad somehow causes the language 6410 // riuntime to be unloaded. 6411 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 6412 for (const auto &pair: language_runtimes) 6413 { 6414 // We must check language_runtime_sp to make sure it is not 6415 // nullptr as we might cache the fact that we didn't have a 6416 // language runtime for a language. 6417 LanguageRuntimeSP language_runtime_sp = pair.second; 6418 if (language_runtime_sp) 6419 language_runtime_sp->ModulesDidLoad(module_list); 6420 } 6421 6422 // If we don't have an operating system plug-in, try to load one since 6423 // loading shared libraries might cause a new one to try and load 6424 if (!m_os_ap) 6425 LoadOperatingSystemPlugin(false); 6426 } 6427 6428 void 6429 Process::PrintWarning (uint64_t warning_type, const void *repeat_key, const char *fmt, ...) 6430 { 6431 bool print_warning = true; 6432 6433 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 6434 if (!stream_sp) 6435 return; 6436 if (warning_type == eWarningsOptimization 6437 && !GetWarningsOptimization()) 6438 { 6439 return; 6440 } 6441 6442 if (repeat_key != nullptr) 6443 { 6444 WarningsCollection::iterator it = m_warnings_issued.find (warning_type); 6445 if (it == m_warnings_issued.end()) 6446 { 6447 m_warnings_issued[warning_type] = WarningsPointerSet(); 6448 m_warnings_issued[warning_type].insert (repeat_key); 6449 } 6450 else 6451 { 6452 if (it->second.find (repeat_key) != it->second.end()) 6453 { 6454 print_warning = false; 6455 } 6456 else 6457 { 6458 it->second.insert (repeat_key); 6459 } 6460 } 6461 } 6462 6463 if (print_warning) 6464 { 6465 va_list args; 6466 va_start (args, fmt); 6467 stream_sp->PrintfVarArg (fmt, args); 6468 va_end (args); 6469 } 6470 } 6471 6472 void 6473 Process::PrintWarningOptimization (const SymbolContext &sc) 6474 { 6475 if (GetWarningsOptimization() 6476 && sc.module_sp 6477 && !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() 6478 && sc.function 6479 && sc.function->GetIsOptimized()) 6480 { 6481 PrintWarning (Process::Warnings::eWarningsOptimization, sc.module_sp.get(), "%s was compiled with optimization - stepping may behave oddly; variables may not be available.\n", sc.module_sp->GetFileSpec().GetFilename().GetCString()); 6482 } 6483 } 6484 6485 bool 6486 Process::GetProcessInfo(ProcessInstanceInfo &info) 6487 { 6488 info.Clear(); 6489 6490 PlatformSP platform_sp = GetTarget().GetPlatform(); 6491 if (! platform_sp) 6492 return false; 6493 6494 return platform_sp->GetProcessInfo(GetID(), info); 6495 } 6496 6497 ThreadCollectionSP 6498 Process::GetHistoryThreads(lldb::addr_t addr) 6499 { 6500 ThreadCollectionSP threads; 6501 6502 const MemoryHistorySP &memory_history = MemoryHistory::FindPlugin(shared_from_this()); 6503 6504 if (!memory_history) { 6505 return threads; 6506 } 6507 6508 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 6509 6510 return threads; 6511 } 6512 6513 InstrumentationRuntimeSP 6514 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) 6515 { 6516 InstrumentationRuntimeCollection::iterator pos; 6517 pos = m_instrumentation_runtimes.find (type); 6518 if (pos == m_instrumentation_runtimes.end()) 6519 { 6520 return InstrumentationRuntimeSP(); 6521 } 6522 else 6523 return (*pos).second; 6524 } 6525 6526 bool 6527 Process::GetModuleSpec(const FileSpec& module_file_spec, 6528 const ArchSpec& arch, 6529 ModuleSpec& module_spec) 6530 { 6531 module_spec.Clear(); 6532 return false; 6533 } 6534 6535 size_t 6536 Process::AddImageToken(lldb::addr_t image_ptr) 6537 { 6538 m_image_tokens.push_back(image_ptr); 6539 return m_image_tokens.size() - 1; 6540 } 6541 6542 lldb::addr_t 6543 Process::GetImagePtrFromToken(size_t token) const 6544 { 6545 if (token < m_image_tokens.size()) 6546 return m_image_tokens[token]; 6547 return LLDB_INVALID_IMAGE_TOKEN; 6548 } 6549 6550 void 6551 Process::ResetImageToken(size_t token) 6552 { 6553 if (token < m_image_tokens.size()) 6554 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 6555 } 6556 6557 Address 6558 Process::AdvanceAddressToNextBranchInstruction (Address default_stop_addr, AddressRange range_bounds) 6559 { 6560 Target &target = GetTarget(); 6561 DisassemblerSP disassembler_sp; 6562 InstructionList *insn_list = nullptr; 6563 6564 Address retval = default_stop_addr; 6565 6566 if (!target.GetUseFastStepping()) 6567 return retval; 6568 if (!default_stop_addr.IsValid()) 6569 return retval; 6570 6571 ExecutionContext exe_ctx (this); 6572 const char *plugin_name = nullptr; 6573 const char *flavor = nullptr; 6574 const bool prefer_file_cache = true; 6575 disassembler_sp = Disassembler::DisassembleRange(target.GetArchitecture(), 6576 plugin_name, 6577 flavor, 6578 exe_ctx, 6579 range_bounds, 6580 prefer_file_cache); 6581 if (disassembler_sp) 6582 insn_list = &disassembler_sp->GetInstructionList(); 6583 6584 if (insn_list == nullptr) 6585 { 6586 return retval; 6587 } 6588 6589 size_t insn_offset = insn_list->GetIndexOfInstructionAtAddress (default_stop_addr); 6590 if (insn_offset == UINT32_MAX) 6591 { 6592 return retval; 6593 } 6594 6595 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction (insn_offset, target); 6596 if (branch_index == UINT32_MAX) 6597 { 6598 return retval; 6599 } 6600 6601 if (branch_index > insn_offset) 6602 { 6603 Address next_branch_insn_address = insn_list->GetInstructionAtIndex (branch_index)->GetAddress(); 6604 if (next_branch_insn_address.IsValid() && range_bounds.ContainsFileAddress (next_branch_insn_address)) 6605 { 6606 retval = next_branch_insn_address; 6607 } 6608 } 6609 6610 return retval; 6611 } 6612