1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/IRDynamicChecks.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/CPPLanguageRuntime.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/ObjCLanguageRuntime.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/UnixSignals.h" 64 #include "lldb/Utility/Event.h" 65 #include "lldb/Utility/Log.h" 66 #include "lldb/Utility/NameMatches.h" 67 #include "lldb/Utility/ProcessInfo.h" 68 #include "lldb/Utility/SelectHelper.h" 69 #include "lldb/Utility/State.h" 70 71 using namespace lldb; 72 using namespace lldb_private; 73 using namespace std::chrono; 74 75 // Comment out line below to disable memory caching, overriding the process 76 // setting target.process.disable-memory-cache 77 #define ENABLE_MEMORY_CACHING 78 79 #ifdef ENABLE_MEMORY_CACHING 80 #define DISABLE_MEM_CACHE_DEFAULT false 81 #else 82 #define DISABLE_MEM_CACHE_DEFAULT true 83 #endif 84 85 class ProcessOptionValueProperties : public OptionValueProperties { 86 public: 87 ProcessOptionValueProperties(ConstString name) 88 : OptionValueProperties(name) {} 89 90 // This constructor is used when creating ProcessOptionValueProperties when 91 // it is part of a new lldb_private::Process instance. It will copy all 92 // current global property values as needed 93 ProcessOptionValueProperties(ProcessProperties *global_properties) 94 : OptionValueProperties(*global_properties->GetValueProperties()) {} 95 96 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 97 bool will_modify, 98 uint32_t idx) const override { 99 // When getting the value for a key from the process options, we will 100 // always try and grab the setting from the current process if there is 101 // one. Else we just use the one from this instance. 102 if (exe_ctx) { 103 Process *process = exe_ctx->GetProcessPtr(); 104 if (process) { 105 ProcessOptionValueProperties *instance_properties = 106 static_cast<ProcessOptionValueProperties *>( 107 process->GetValueProperties().get()); 108 if (this != instance_properties) 109 return instance_properties->ProtectedGetPropertyAtIndex(idx); 110 } 111 } 112 return ProtectedGetPropertyAtIndex(idx); 113 } 114 }; 115 116 static constexpr PropertyDefinition g_properties[] = { 117 {"disable-memory-cache", OptionValue::eTypeBoolean, false, 118 DISABLE_MEM_CACHE_DEFAULT, nullptr, {}, 119 "Disable reading and caching of memory in fixed-size units."}, 120 {"extra-startup-command", OptionValue::eTypeArray, false, 121 OptionValue::eTypeString, nullptr, {}, 122 "A list containing extra commands understood by the particular process " 123 "plugin used. " 124 "For instance, to turn on debugserver logging set this to " 125 "\"QSetLogging:bitmask=LOG_DEFAULT;\""}, 126 {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, 127 nullptr, {}, 128 "If true, breakpoints will be ignored during expression evaluation."}, 129 {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, 130 nullptr, {}, "If true, errors in expression evaluation will unwind " 131 "the stack back to the state before the call."}, 132 {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, 133 {}, "A path to a python OS plug-in module file that contains a " 134 "OperatingSystemPlugIn class."}, 135 {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false, 136 nullptr, {}, 137 "If true, stop when a shared library is loaded or unloaded."}, 138 {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr, 139 {}, "If true, detach will attempt to keep the process stopped."}, 140 {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr, 141 {}, "The memory cache line size"}, 142 {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr, 143 {}, "If true, warn when stopped in code that is optimized where " 144 "stepping and variable availability may not behave as expected."}, 145 {"stop-on-exec", OptionValue::eTypeBoolean, true, true, 146 nullptr, {}, 147 "If true, stop when a shared library is loaded or unloaded."}}; 148 149 enum { 150 ePropertyDisableMemCache, 151 ePropertyExtraStartCommand, 152 ePropertyIgnoreBreakpointsInExpressions, 153 ePropertyUnwindOnErrorInExpressions, 154 ePropertyPythonOSPluginPath, 155 ePropertyStopOnSharedLibraryEvents, 156 ePropertyDetachKeepsStopped, 157 ePropertyMemCacheLineSize, 158 ePropertyWarningOptimization, 159 ePropertyStopOnExec 160 }; 161 162 ProcessProperties::ProcessProperties(lldb_private::Process *process) 163 : Properties(), 164 m_process(process) // Can be nullptr for global ProcessProperties 165 { 166 if (process == nullptr) { 167 // Global process properties, set them up one time 168 m_collection_sp = 169 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 170 m_collection_sp->Initialize(g_properties); 171 m_collection_sp->AppendProperty( 172 ConstString("thread"), ConstString("Settings specific to threads."), 173 true, Thread::GetGlobalProperties()->GetValueProperties()); 174 } else { 175 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 176 Process::GetGlobalProperties().get()); 177 m_collection_sp->SetValueChangedCallback( 178 ePropertyPythonOSPluginPath, 179 ProcessProperties::OptionValueChangedCallback, this); 180 } 181 } 182 183 ProcessProperties::~ProcessProperties() = default; 184 185 void ProcessProperties::OptionValueChangedCallback(void *baton, 186 OptionValue *option_value) { 187 ProcessProperties *properties = (ProcessProperties *)baton; 188 if (properties->m_process) 189 properties->m_process->LoadOperatingSystemPlugin(true); 190 } 191 192 bool ProcessProperties::GetDisableMemoryCache() const { 193 const uint32_t idx = ePropertyDisableMemCache; 194 return m_collection_sp->GetPropertyAtIndexAsBoolean( 195 nullptr, idx, g_properties[idx].default_uint_value != 0); 196 } 197 198 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 199 const uint32_t idx = ePropertyMemCacheLineSize; 200 return m_collection_sp->GetPropertyAtIndexAsUInt64( 201 nullptr, idx, g_properties[idx].default_uint_value); 202 } 203 204 Args ProcessProperties::GetExtraStartupCommands() const { 205 Args args; 206 const uint32_t idx = ePropertyExtraStartCommand; 207 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 208 return args; 209 } 210 211 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 212 const uint32_t idx = ePropertyExtraStartCommand; 213 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 214 } 215 216 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 217 const uint32_t idx = ePropertyPythonOSPluginPath; 218 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 219 } 220 221 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 222 const uint32_t idx = ePropertyPythonOSPluginPath; 223 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 224 } 225 226 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 227 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 228 return m_collection_sp->GetPropertyAtIndexAsBoolean( 229 nullptr, idx, g_properties[idx].default_uint_value != 0); 230 } 231 232 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 233 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 234 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 235 } 236 237 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 238 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 239 return m_collection_sp->GetPropertyAtIndexAsBoolean( 240 nullptr, idx, g_properties[idx].default_uint_value != 0); 241 } 242 243 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 244 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 245 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 246 } 247 248 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 249 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 250 return m_collection_sp->GetPropertyAtIndexAsBoolean( 251 nullptr, idx, g_properties[idx].default_uint_value != 0); 252 } 253 254 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 255 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 256 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 257 } 258 259 bool ProcessProperties::GetDetachKeepsStopped() const { 260 const uint32_t idx = ePropertyDetachKeepsStopped; 261 return m_collection_sp->GetPropertyAtIndexAsBoolean( 262 nullptr, idx, g_properties[idx].default_uint_value != 0); 263 } 264 265 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 266 const uint32_t idx = ePropertyDetachKeepsStopped; 267 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 268 } 269 270 bool ProcessProperties::GetWarningsOptimization() const { 271 const uint32_t idx = ePropertyWarningOptimization; 272 return m_collection_sp->GetPropertyAtIndexAsBoolean( 273 nullptr, idx, g_properties[idx].default_uint_value != 0); 274 } 275 276 bool ProcessProperties::GetStopOnExec() const { 277 const uint32_t idx = ePropertyStopOnExec; 278 return m_collection_sp->GetPropertyAtIndexAsBoolean( 279 nullptr, idx, g_properties[idx].default_uint_value != 0); 280 } 281 282 Status ProcessLaunchCommandOptions::SetOptionValue( 283 uint32_t option_idx, llvm::StringRef option_arg, 284 ExecutionContext *execution_context) { 285 Status error; 286 const int short_option = m_getopt_table[option_idx].val; 287 288 switch (short_option) { 289 case 's': // Stop at program entry point 290 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 291 break; 292 293 case 'i': // STDIN for read only 294 { 295 FileAction action; 296 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 297 launch_info.AppendFileAction(action); 298 break; 299 } 300 301 case 'o': // Open STDOUT for write only 302 { 303 FileAction action; 304 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 305 launch_info.AppendFileAction(action); 306 break; 307 } 308 309 case 'e': // STDERR for write only 310 { 311 FileAction action; 312 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 313 launch_info.AppendFileAction(action); 314 break; 315 } 316 317 case 'p': // Process plug-in name 318 launch_info.SetProcessPluginName(option_arg); 319 break; 320 321 case 'n': // Disable STDIO 322 { 323 FileAction action; 324 const FileSpec dev_null(FileSystem::DEV_NULL); 325 if (action.Open(STDIN_FILENO, dev_null, true, false)) 326 launch_info.AppendFileAction(action); 327 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 328 launch_info.AppendFileAction(action); 329 if (action.Open(STDERR_FILENO, dev_null, false, true)) 330 launch_info.AppendFileAction(action); 331 break; 332 } 333 334 case 'w': 335 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 336 break; 337 338 case 't': // Open process in new terminal window 339 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 340 break; 341 342 case 'a': { 343 TargetSP target_sp = 344 execution_context ? execution_context->GetTargetSP() : TargetSP(); 345 PlatformSP platform_sp = 346 target_sp ? target_sp->GetPlatform() : PlatformSP(); 347 launch_info.GetArchitecture() = 348 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 349 } break; 350 351 case 'A': // Disable ASLR. 352 { 353 bool success; 354 const bool disable_aslr_arg = 355 OptionArgParser::ToBoolean(option_arg, true, &success); 356 if (success) 357 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 358 else 359 error.SetErrorStringWithFormat( 360 "Invalid boolean value for disable-aslr option: '%s'", 361 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 362 break; 363 } 364 365 case 'X': // shell expand args. 366 { 367 bool success; 368 const bool expand_args = 369 OptionArgParser::ToBoolean(option_arg, true, &success); 370 if (success) 371 launch_info.SetShellExpandArguments(expand_args); 372 else 373 error.SetErrorStringWithFormat( 374 "Invalid boolean value for shell-expand-args option: '%s'", 375 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 376 break; 377 } 378 379 case 'c': 380 if (!option_arg.empty()) 381 launch_info.SetShell(FileSpec(option_arg)); 382 else 383 launch_info.SetShell(HostInfo::GetDefaultShell()); 384 break; 385 386 case 'v': 387 launch_info.GetEnvironment().insert(option_arg); 388 break; 389 390 default: 391 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 392 short_option); 393 break; 394 } 395 return error; 396 } 397 398 static constexpr OptionDefinition g_process_launch_options[] = { 399 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 400 nullptr, {}, 0, eArgTypeNone, 401 "Stop at the entry point of the program when launching a process."}, 402 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 403 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 404 "Set whether to disable address space layout randomization when launching " 405 "a process."}, 406 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 407 nullptr, {}, 0, eArgTypePlugin, 408 "Name of the process plugin you want to use."}, 409 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 410 OptionParser::eRequiredArgument, nullptr, {}, 0, 411 eArgTypeDirectoryName, 412 "Set the current working directory to <path> when running the inferior."}, 413 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 414 nullptr, {}, 0, eArgTypeArchitecture, 415 "Set the architecture for the process to launch when ambiguous."}, 416 {LLDB_OPT_SET_ALL, false, "environment", 'v', 417 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 418 "Specify an environment variable name/value string (--environment " 419 "NAME=VALUE). Can be specified multiple times for subsequent environment " 420 "entries."}, 421 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 422 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 423 "Run the process in a shell (not supported on all platforms)."}, 424 425 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 426 nullptr, {}, 0, eArgTypeFilename, 427 "Redirect stdin for the process to <filename>."}, 428 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 429 nullptr, {}, 0, eArgTypeFilename, 430 "Redirect stdout for the process to <filename>."}, 431 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 432 nullptr, {}, 0, eArgTypeFilename, 433 "Redirect stderr for the process to <filename>."}, 434 435 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 436 {}, 0, eArgTypeNone, 437 "Start the process in a terminal (not supported on all platforms)."}, 438 439 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 440 {}, 0, eArgTypeNone, 441 "Do not set up for terminal I/O to go to running process."}, 442 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 443 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 444 "Set whether to shell expand arguments to the process when launching."}, 445 }; 446 447 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 448 return llvm::makeArrayRef(g_process_launch_options); 449 } 450 451 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 452 llvm::StringRef plugin_name, 453 ListenerSP listener_sp, 454 const FileSpec *crash_file_path) { 455 static uint32_t g_process_unique_id = 0; 456 457 ProcessSP process_sp; 458 ProcessCreateInstance create_callback = nullptr; 459 if (!plugin_name.empty()) { 460 ConstString const_plugin_name(plugin_name); 461 create_callback = 462 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 463 if (create_callback) { 464 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 465 if (process_sp) { 466 if (process_sp->CanDebug(target_sp, true)) { 467 process_sp->m_process_unique_id = ++g_process_unique_id; 468 } else 469 process_sp.reset(); 470 } 471 } 472 } else { 473 for (uint32_t idx = 0; 474 (create_callback = 475 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 476 ++idx) { 477 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 478 if (process_sp) { 479 if (process_sp->CanDebug(target_sp, false)) { 480 process_sp->m_process_unique_id = ++g_process_unique_id; 481 break; 482 } else 483 process_sp.reset(); 484 } 485 } 486 } 487 return process_sp; 488 } 489 490 ConstString &Process::GetStaticBroadcasterClass() { 491 static ConstString class_name("lldb.process"); 492 return class_name; 493 } 494 495 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 496 : Process(target_sp, listener_sp, 497 UnixSignals::Create(HostInfo::GetArchitecture())) { 498 // This constructor just delegates to the full Process constructor, 499 // defaulting to using the Host's UnixSignals. 500 } 501 502 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 503 const UnixSignalsSP &unix_signals_sp) 504 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 505 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 506 Process::GetStaticBroadcasterClass().AsCString()), 507 m_target_wp(target_sp), m_public_state(eStateUnloaded), 508 m_private_state(eStateUnloaded), 509 m_private_state_broadcaster(nullptr, 510 "lldb.process.internal_state_broadcaster"), 511 m_private_state_control_broadcaster( 512 nullptr, "lldb.process.internal_state_control_broadcaster"), 513 m_private_state_listener_sp( 514 Listener::MakeListener("lldb.process.internal_state_listener")), 515 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 516 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 517 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 518 m_thread_list(this), m_extended_thread_list(this), 519 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 520 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 521 m_breakpoint_site_list(), m_dynamic_checkers_up(), 522 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 523 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 524 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 525 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 526 m_memory_cache(*this), m_allocated_memory_cache(*this), 527 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 528 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 529 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 530 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 531 m_can_interpret_function_calls(false), m_warnings_issued(), 532 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 533 CheckInWithManager(); 534 535 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 536 if (log) 537 log->Printf("%p Process::Process()", static_cast<void *>(this)); 538 539 if (!m_unix_signals_sp) 540 m_unix_signals_sp = std::make_shared<UnixSignals>(); 541 542 SetEventName(eBroadcastBitStateChanged, "state-changed"); 543 SetEventName(eBroadcastBitInterrupt, "interrupt"); 544 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 545 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 546 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 547 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 548 549 m_private_state_control_broadcaster.SetEventName( 550 eBroadcastInternalStateControlStop, "control-stop"); 551 m_private_state_control_broadcaster.SetEventName( 552 eBroadcastInternalStateControlPause, "control-pause"); 553 m_private_state_control_broadcaster.SetEventName( 554 eBroadcastInternalStateControlResume, "control-resume"); 555 556 m_listener_sp->StartListeningForEvents( 557 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 558 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 559 eBroadcastBitProfileData | eBroadcastBitStructuredData); 560 561 m_private_state_listener_sp->StartListeningForEvents( 562 &m_private_state_broadcaster, 563 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 564 565 m_private_state_listener_sp->StartListeningForEvents( 566 &m_private_state_control_broadcaster, 567 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 568 eBroadcastInternalStateControlResume); 569 // We need something valid here, even if just the default UnixSignalsSP. 570 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 571 572 // Allow the platform to override the default cache line size 573 OptionValueSP value_sp = 574 m_collection_sp 575 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 576 ->GetValue(); 577 uint32_t platform_cache_line_size = 578 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 579 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 580 value_sp->SetUInt64Value(platform_cache_line_size); 581 } 582 583 Process::~Process() { 584 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 585 if (log) 586 log->Printf("%p Process::~Process()", static_cast<void *>(this)); 587 StopPrivateStateThread(); 588 589 // ThreadList::Clear() will try to acquire this process's mutex, so 590 // explicitly clear the thread list here to ensure that the mutex is not 591 // destroyed before the thread list. 592 m_thread_list.Clear(); 593 } 594 595 const ProcessPropertiesSP &Process::GetGlobalProperties() { 596 // NOTE: intentional leak so we don't crash if global destructor chain gets 597 // called as other threads still use the result of this function 598 static ProcessPropertiesSP *g_settings_sp_ptr = 599 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 600 return *g_settings_sp_ptr; 601 } 602 603 void Process::Finalize() { 604 m_finalizing = true; 605 606 // Destroy this process if needed 607 switch (GetPrivateState()) { 608 case eStateConnected: 609 case eStateAttaching: 610 case eStateLaunching: 611 case eStateStopped: 612 case eStateRunning: 613 case eStateStepping: 614 case eStateCrashed: 615 case eStateSuspended: 616 Destroy(false); 617 break; 618 619 case eStateInvalid: 620 case eStateUnloaded: 621 case eStateDetached: 622 case eStateExited: 623 break; 624 } 625 626 // Clear our broadcaster before we proceed with destroying 627 Broadcaster::Clear(); 628 629 // Do any cleanup needed prior to being destructed... Subclasses that 630 // override this method should call this superclass method as well. 631 632 // We need to destroy the loader before the derived Process class gets 633 // destroyed since it is very likely that undoing the loader will require 634 // access to the real process. 635 m_dynamic_checkers_up.reset(); 636 m_abi_sp.reset(); 637 m_os_up.reset(); 638 m_system_runtime_up.reset(); 639 m_dyld_up.reset(); 640 m_jit_loaders_up.reset(); 641 m_thread_list_real.Destroy(); 642 m_thread_list.Destroy(); 643 m_extended_thread_list.Destroy(); 644 m_queue_list.Clear(); 645 m_queue_list_stop_id = 0; 646 std::vector<Notifications> empty_notifications; 647 m_notifications.swap(empty_notifications); 648 m_image_tokens.clear(); 649 m_memory_cache.Clear(); 650 m_allocated_memory_cache.Clear(); 651 m_language_runtimes.clear(); 652 m_instrumentation_runtimes.clear(); 653 m_next_event_action_up.reset(); 654 // Clear the last natural stop ID since it has a strong reference to this 655 // process 656 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 657 //#ifdef LLDB_CONFIGURATION_DEBUG 658 // StreamFile s(stdout, false); 659 // EventSP event_sp; 660 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 661 // { 662 // event_sp->Dump (&s); 663 // s.EOL(); 664 // } 665 //#endif 666 // We have to be very careful here as the m_private_state_listener might 667 // contain events that have ProcessSP values in them which can keep this 668 // process around forever. These events need to be cleared out. 669 m_private_state_listener_sp->Clear(); 670 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 671 m_public_run_lock.SetStopped(); 672 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 673 m_private_run_lock.SetStopped(); 674 m_structured_data_plugin_map.clear(); 675 m_finalize_called = true; 676 } 677 678 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 679 m_notifications.push_back(callbacks); 680 if (callbacks.initialize != nullptr) 681 callbacks.initialize(callbacks.baton, this); 682 } 683 684 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 685 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 686 for (pos = m_notifications.begin(); pos != end; ++pos) { 687 if (pos->baton == callbacks.baton && 688 pos->initialize == callbacks.initialize && 689 pos->process_state_changed == callbacks.process_state_changed) { 690 m_notifications.erase(pos); 691 return true; 692 } 693 } 694 return false; 695 } 696 697 void Process::SynchronouslyNotifyStateChanged(StateType state) { 698 std::vector<Notifications>::iterator notification_pos, 699 notification_end = m_notifications.end(); 700 for (notification_pos = m_notifications.begin(); 701 notification_pos != notification_end; ++notification_pos) { 702 if (notification_pos->process_state_changed) 703 notification_pos->process_state_changed(notification_pos->baton, this, 704 state); 705 } 706 } 707 708 // FIXME: We need to do some work on events before the general Listener sees 709 // them. 710 // For instance if we are continuing from a breakpoint, we need to ensure that 711 // we do the little "insert real insn, step & stop" trick. But we can't do 712 // that when the event is delivered by the broadcaster - since that is done on 713 // the thread that is waiting for new events, so if we needed more than one 714 // event for our handling, we would stall. So instead we do it when we fetch 715 // the event off of the queue. 716 // 717 718 StateType Process::GetNextEvent(EventSP &event_sp) { 719 StateType state = eStateInvalid; 720 721 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 722 std::chrono::seconds(0)) && 723 event_sp) 724 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 725 726 return state; 727 } 728 729 void Process::SyncIOHandler(uint32_t iohandler_id, 730 const Timeout<std::micro> &timeout) { 731 // don't sync (potentially context switch) in case where there is no process 732 // IO 733 if (!m_process_input_reader) 734 return; 735 736 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 737 738 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 739 if (Result) { 740 LLDB_LOG( 741 log, 742 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 743 iohandler_id, *Result); 744 } else { 745 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 746 iohandler_id); 747 } 748 } 749 750 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 751 EventSP *event_sp_ptr, bool wait_always, 752 ListenerSP hijack_listener_sp, 753 Stream *stream, bool use_run_lock) { 754 // We can't just wait for a "stopped" event, because the stopped event may 755 // have restarted the target. We have to actually check each event, and in 756 // the case of a stopped event check the restarted flag on the event. 757 if (event_sp_ptr) 758 event_sp_ptr->reset(); 759 StateType state = GetState(); 760 // If we are exited or detached, we won't ever get back to any other valid 761 // state... 762 if (state == eStateDetached || state == eStateExited) 763 return state; 764 765 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 766 LLDB_LOG(log, "timeout = {0}", timeout); 767 768 if (!wait_always && StateIsStoppedState(state, true) && 769 StateIsStoppedState(GetPrivateState(), true)) { 770 if (log) 771 log->Printf("Process::%s returning without waiting for events; process " 772 "private and public states are already 'stopped'.", 773 __FUNCTION__); 774 // We need to toggle the run lock as this won't get done in 775 // SetPublicState() if the process is hijacked. 776 if (hijack_listener_sp && use_run_lock) 777 m_public_run_lock.SetStopped(); 778 return state; 779 } 780 781 while (state != eStateInvalid) { 782 EventSP event_sp; 783 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 784 if (event_sp_ptr && event_sp) 785 *event_sp_ptr = event_sp; 786 787 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 788 Process::HandleProcessStateChangedEvent(event_sp, stream, 789 pop_process_io_handler); 790 791 switch (state) { 792 case eStateCrashed: 793 case eStateDetached: 794 case eStateExited: 795 case eStateUnloaded: 796 // We need to toggle the run lock as this won't get done in 797 // SetPublicState() if the process is hijacked. 798 if (hijack_listener_sp && use_run_lock) 799 m_public_run_lock.SetStopped(); 800 return state; 801 case eStateStopped: 802 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 803 continue; 804 else { 805 // We need to toggle the run lock as this won't get done in 806 // SetPublicState() if the process is hijacked. 807 if (hijack_listener_sp && use_run_lock) 808 m_public_run_lock.SetStopped(); 809 return state; 810 } 811 default: 812 continue; 813 } 814 } 815 return state; 816 } 817 818 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 819 Stream *stream, 820 bool &pop_process_io_handler) { 821 const bool handle_pop = pop_process_io_handler; 822 823 pop_process_io_handler = false; 824 ProcessSP process_sp = 825 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 826 827 if (!process_sp) 828 return false; 829 830 StateType event_state = 831 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 832 if (event_state == eStateInvalid) 833 return false; 834 835 switch (event_state) { 836 case eStateInvalid: 837 case eStateUnloaded: 838 case eStateAttaching: 839 case eStateLaunching: 840 case eStateStepping: 841 case eStateDetached: 842 if (stream) 843 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 844 StateAsCString(event_state)); 845 if (event_state == eStateDetached) 846 pop_process_io_handler = true; 847 break; 848 849 case eStateConnected: 850 case eStateRunning: 851 // Don't be chatty when we run... 852 break; 853 854 case eStateExited: 855 if (stream) 856 process_sp->GetStatus(*stream); 857 pop_process_io_handler = true; 858 break; 859 860 case eStateStopped: 861 case eStateCrashed: 862 case eStateSuspended: 863 // Make sure the program hasn't been auto-restarted: 864 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 865 if (stream) { 866 size_t num_reasons = 867 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 868 if (num_reasons > 0) { 869 // FIXME: Do we want to report this, or would that just be annoyingly 870 // chatty? 871 if (num_reasons == 1) { 872 const char *reason = 873 Process::ProcessEventData::GetRestartedReasonAtIndex( 874 event_sp.get(), 0); 875 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 876 process_sp->GetID(), 877 reason ? reason : "<UNKNOWN REASON>"); 878 } else { 879 stream->Printf("Process %" PRIu64 880 " stopped and restarted, reasons:\n", 881 process_sp->GetID()); 882 883 for (size_t i = 0; i < num_reasons; i++) { 884 const char *reason = 885 Process::ProcessEventData::GetRestartedReasonAtIndex( 886 event_sp.get(), i); 887 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 888 } 889 } 890 } 891 } 892 } else { 893 StopInfoSP curr_thread_stop_info_sp; 894 // Lock the thread list so it doesn't change on us, this is the scope for 895 // the locker: 896 { 897 ThreadList &thread_list = process_sp->GetThreadList(); 898 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 899 900 ThreadSP curr_thread(thread_list.GetSelectedThread()); 901 ThreadSP thread; 902 StopReason curr_thread_stop_reason = eStopReasonInvalid; 903 if (curr_thread) { 904 curr_thread_stop_reason = curr_thread->GetStopReason(); 905 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 906 } 907 if (!curr_thread || !curr_thread->IsValid() || 908 curr_thread_stop_reason == eStopReasonInvalid || 909 curr_thread_stop_reason == eStopReasonNone) { 910 // Prefer a thread that has just completed its plan over another 911 // thread as current thread. 912 ThreadSP plan_thread; 913 ThreadSP other_thread; 914 915 const size_t num_threads = thread_list.GetSize(); 916 size_t i; 917 for (i = 0; i < num_threads; ++i) { 918 thread = thread_list.GetThreadAtIndex(i); 919 StopReason thread_stop_reason = thread->GetStopReason(); 920 switch (thread_stop_reason) { 921 case eStopReasonInvalid: 922 case eStopReasonNone: 923 break; 924 925 case eStopReasonSignal: { 926 // Don't select a signal thread if we weren't going to stop at 927 // that signal. We have to have had another reason for stopping 928 // here, and the user doesn't want to see this thread. 929 uint64_t signo = thread->GetStopInfo()->GetValue(); 930 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 931 if (!other_thread) 932 other_thread = thread; 933 } 934 break; 935 } 936 case eStopReasonTrace: 937 case eStopReasonBreakpoint: 938 case eStopReasonWatchpoint: 939 case eStopReasonException: 940 case eStopReasonExec: 941 case eStopReasonThreadExiting: 942 case eStopReasonInstrumentation: 943 if (!other_thread) 944 other_thread = thread; 945 break; 946 case eStopReasonPlanComplete: 947 if (!plan_thread) 948 plan_thread = thread; 949 break; 950 } 951 } 952 if (plan_thread) 953 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 954 else if (other_thread) 955 thread_list.SetSelectedThreadByID(other_thread->GetID()); 956 else { 957 if (curr_thread && curr_thread->IsValid()) 958 thread = curr_thread; 959 else 960 thread = thread_list.GetThreadAtIndex(0); 961 962 if (thread) 963 thread_list.SetSelectedThreadByID(thread->GetID()); 964 } 965 } 966 } 967 // Drop the ThreadList mutex by here, since GetThreadStatus below might 968 // have to run code, e.g. for Data formatters, and if we hold the 969 // ThreadList mutex, then the process is going to have a hard time 970 // restarting the process. 971 if (stream) { 972 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 973 if (debugger.GetTargetList().GetSelectedTarget().get() == 974 &process_sp->GetTarget()) { 975 const bool only_threads_with_stop_reason = true; 976 const uint32_t start_frame = 0; 977 const uint32_t num_frames = 1; 978 const uint32_t num_frames_with_source = 1; 979 const bool stop_format = true; 980 process_sp->GetStatus(*stream); 981 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 982 start_frame, num_frames, 983 num_frames_with_source, 984 stop_format); 985 if (curr_thread_stop_info_sp) { 986 lldb::addr_t crashing_address; 987 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 988 curr_thread_stop_info_sp, &crashing_address); 989 if (valobj_sp) { 990 const bool qualify_cxx_base_classes = false; 991 992 const ValueObject::GetExpressionPathFormat format = 993 ValueObject::GetExpressionPathFormat:: 994 eGetExpressionPathFormatHonorPointers; 995 stream->PutCString("Likely cause: "); 996 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 997 format); 998 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 999 } 1000 } 1001 } else { 1002 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1003 process_sp->GetTarget().shared_from_this()); 1004 if (target_idx != UINT32_MAX) 1005 stream->Printf("Target %d: (", target_idx); 1006 else 1007 stream->Printf("Target <unknown index>: ("); 1008 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1009 stream->Printf(") stopped.\n"); 1010 } 1011 } 1012 1013 // Pop the process IO handler 1014 pop_process_io_handler = true; 1015 } 1016 break; 1017 } 1018 1019 if (handle_pop && pop_process_io_handler) 1020 process_sp->PopProcessIOHandler(); 1021 1022 return true; 1023 } 1024 1025 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1026 if (listener_sp) { 1027 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1028 eBroadcastBitInterrupt); 1029 } else 1030 return false; 1031 } 1032 1033 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1034 1035 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1036 const Timeout<std::micro> &timeout, 1037 ListenerSP hijack_listener_sp) { 1038 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1039 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1040 1041 ListenerSP listener_sp = hijack_listener_sp; 1042 if (!listener_sp) 1043 listener_sp = m_listener_sp; 1044 1045 StateType state = eStateInvalid; 1046 if (listener_sp->GetEventForBroadcasterWithType( 1047 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1048 timeout)) { 1049 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1050 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1051 else 1052 LLDB_LOG(log, "got no event or was interrupted."); 1053 } 1054 1055 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1056 return state; 1057 } 1058 1059 Event *Process::PeekAtStateChangedEvents() { 1060 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1061 1062 if (log) 1063 log->Printf("Process::%s...", __FUNCTION__); 1064 1065 Event *event_ptr; 1066 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1067 this, eBroadcastBitStateChanged); 1068 if (log) { 1069 if (event_ptr) { 1070 log->Printf( 1071 "Process::%s (event_ptr) => %s", __FUNCTION__, 1072 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1073 } else { 1074 log->Printf("Process::%s no events found", __FUNCTION__); 1075 } 1076 } 1077 return event_ptr; 1078 } 1079 1080 StateType 1081 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1082 const Timeout<std::micro> &timeout) { 1083 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1084 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1085 1086 StateType state = eStateInvalid; 1087 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1088 &m_private_state_broadcaster, 1089 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1090 timeout)) 1091 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1092 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1093 1094 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1095 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1096 return state; 1097 } 1098 1099 bool Process::GetEventsPrivate(EventSP &event_sp, 1100 const Timeout<std::micro> &timeout, 1101 bool control_only) { 1102 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1103 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1104 1105 if (control_only) 1106 return m_private_state_listener_sp->GetEventForBroadcaster( 1107 &m_private_state_control_broadcaster, event_sp, timeout); 1108 else 1109 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1110 } 1111 1112 bool Process::IsRunning() const { 1113 return StateIsRunningState(m_public_state.GetValue()); 1114 } 1115 1116 int Process::GetExitStatus() { 1117 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1118 1119 if (m_public_state.GetValue() == eStateExited) 1120 return m_exit_status; 1121 return -1; 1122 } 1123 1124 const char *Process::GetExitDescription() { 1125 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1126 1127 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1128 return m_exit_string.c_str(); 1129 return nullptr; 1130 } 1131 1132 bool Process::SetExitStatus(int status, const char *cstr) { 1133 // Use a mutex to protect setting the exit status. 1134 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1135 1136 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1137 LIBLLDB_LOG_PROCESS)); 1138 if (log) 1139 log->Printf( 1140 "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1141 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", 1142 cstr ? "\"" : ""); 1143 1144 // We were already in the exited state 1145 if (m_private_state.GetValue() == eStateExited) { 1146 if (log) 1147 log->Printf("Process::SetExitStatus () ignoring exit status because " 1148 "state was already set to eStateExited"); 1149 return false; 1150 } 1151 1152 m_exit_status = status; 1153 if (cstr) 1154 m_exit_string = cstr; 1155 else 1156 m_exit_string.clear(); 1157 1158 // Clear the last natural stop ID since it has a strong reference to this 1159 // process 1160 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1161 1162 SetPrivateState(eStateExited); 1163 1164 // Allow subclasses to do some cleanup 1165 DidExit(); 1166 1167 return true; 1168 } 1169 1170 bool Process::IsAlive() { 1171 switch (m_private_state.GetValue()) { 1172 case eStateConnected: 1173 case eStateAttaching: 1174 case eStateLaunching: 1175 case eStateStopped: 1176 case eStateRunning: 1177 case eStateStepping: 1178 case eStateCrashed: 1179 case eStateSuspended: 1180 return true; 1181 default: 1182 return false; 1183 } 1184 } 1185 1186 // This static callback can be used to watch for local child processes on the 1187 // current host. The child process exits, the process will be found in the 1188 // global target list (we want to be completely sure that the 1189 // lldb_private::Process doesn't go away before we can deliver the signal. 1190 bool Process::SetProcessExitStatus( 1191 lldb::pid_t pid, bool exited, 1192 int signo, // Zero for no signal 1193 int exit_status // Exit value of process if signal is zero 1194 ) { 1195 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1196 if (log) 1197 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 1198 ", exited=%i, signal=%i, exit_status=%i)\n", 1199 pid, exited, signo, exit_status); 1200 1201 if (exited) { 1202 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1203 if (target_sp) { 1204 ProcessSP process_sp(target_sp->GetProcessSP()); 1205 if (process_sp) { 1206 const char *signal_cstr = nullptr; 1207 if (signo) 1208 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1209 1210 process_sp->SetExitStatus(exit_status, signal_cstr); 1211 } 1212 } 1213 return true; 1214 } 1215 return false; 1216 } 1217 1218 void Process::UpdateThreadListIfNeeded() { 1219 const uint32_t stop_id = GetStopID(); 1220 if (m_thread_list.GetSize(false) == 0 || 1221 stop_id != m_thread_list.GetStopID()) { 1222 const StateType state = GetPrivateState(); 1223 if (StateIsStoppedState(state, true)) { 1224 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1225 // m_thread_list does have its own mutex, but we need to hold onto the 1226 // mutex between the call to UpdateThreadList(...) and the 1227 // os->UpdateThreadList(...) so it doesn't change on us 1228 ThreadList &old_thread_list = m_thread_list; 1229 ThreadList real_thread_list(this); 1230 ThreadList new_thread_list(this); 1231 // Always update the thread list with the protocol specific thread list, 1232 // but only update if "true" is returned 1233 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1234 // Don't call into the OperatingSystem to update the thread list if we 1235 // are shutting down, since that may call back into the SBAPI's, 1236 // requiring the API lock which is already held by whoever is shutting 1237 // us down, causing a deadlock. 1238 OperatingSystem *os = GetOperatingSystem(); 1239 if (os && !m_destroy_in_process) { 1240 // Clear any old backing threads where memory threads might have been 1241 // backed by actual threads from the lldb_private::Process subclass 1242 size_t num_old_threads = old_thread_list.GetSize(false); 1243 for (size_t i = 0; i < num_old_threads; ++i) 1244 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1245 1246 // Turn off dynamic types to ensure we don't run any expressions. 1247 // Objective-C can run an expression to determine if a SBValue is a 1248 // dynamic type or not and we need to avoid this. OperatingSystem 1249 // plug-ins can't run expressions that require running code... 1250 1251 Target &target = GetTarget(); 1252 const lldb::DynamicValueType saved_prefer_dynamic = 1253 target.GetPreferDynamicValue(); 1254 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1255 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1256 1257 // Now let the OperatingSystem plug-in update the thread list 1258 1259 os->UpdateThreadList( 1260 old_thread_list, // Old list full of threads created by OS plug-in 1261 real_thread_list, // The actual thread list full of threads 1262 // created by each lldb_private::Process 1263 // subclass 1264 new_thread_list); // The new thread list that we will show to the 1265 // user that gets filled in 1266 1267 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1268 target.SetPreferDynamicValue(saved_prefer_dynamic); 1269 } else { 1270 // No OS plug-in, the new thread list is the same as the real thread 1271 // list 1272 new_thread_list = real_thread_list; 1273 } 1274 1275 m_thread_list_real.Update(real_thread_list); 1276 m_thread_list.Update(new_thread_list); 1277 m_thread_list.SetStopID(stop_id); 1278 1279 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1280 // Clear any extended threads that we may have accumulated previously 1281 m_extended_thread_list.Clear(); 1282 m_extended_thread_stop_id = GetLastNaturalStopID(); 1283 1284 m_queue_list.Clear(); 1285 m_queue_list_stop_id = GetLastNaturalStopID(); 1286 } 1287 } 1288 } 1289 } 1290 } 1291 1292 void Process::UpdateQueueListIfNeeded() { 1293 if (m_system_runtime_up) { 1294 if (m_queue_list.GetSize() == 0 || 1295 m_queue_list_stop_id != GetLastNaturalStopID()) { 1296 const StateType state = GetPrivateState(); 1297 if (StateIsStoppedState(state, true)) { 1298 m_system_runtime_up->PopulateQueueList(m_queue_list); 1299 m_queue_list_stop_id = GetLastNaturalStopID(); 1300 } 1301 } 1302 } 1303 } 1304 1305 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1306 OperatingSystem *os = GetOperatingSystem(); 1307 if (os) 1308 return os->CreateThread(tid, context); 1309 return ThreadSP(); 1310 } 1311 1312 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1313 return AssignIndexIDToThread(thread_id); 1314 } 1315 1316 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1317 return (m_thread_id_to_index_id_map.find(thread_id) != 1318 m_thread_id_to_index_id_map.end()); 1319 } 1320 1321 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1322 uint32_t result = 0; 1323 std::map<uint64_t, uint32_t>::iterator iterator = 1324 m_thread_id_to_index_id_map.find(thread_id); 1325 if (iterator == m_thread_id_to_index_id_map.end()) { 1326 result = ++m_thread_index_id; 1327 m_thread_id_to_index_id_map[thread_id] = result; 1328 } else { 1329 result = iterator->second; 1330 } 1331 1332 return result; 1333 } 1334 1335 StateType Process::GetState() { 1336 return m_public_state.GetValue(); 1337 } 1338 1339 void Process::SetPublicState(StateType new_state, bool restarted) { 1340 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1341 LIBLLDB_LOG_PROCESS)); 1342 if (log) 1343 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", 1344 StateAsCString(new_state), restarted); 1345 const StateType old_state = m_public_state.GetValue(); 1346 m_public_state.SetValue(new_state); 1347 1348 // On the transition from Run to Stopped, we unlock the writer end of the run 1349 // lock. The lock gets locked in Resume, which is the public API to tell the 1350 // program to run. 1351 if (!StateChangedIsExternallyHijacked()) { 1352 if (new_state == eStateDetached) { 1353 if (log) 1354 log->Printf( 1355 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1356 StateAsCString(new_state)); 1357 m_public_run_lock.SetStopped(); 1358 } else { 1359 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1360 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1361 if ((old_state_is_stopped != new_state_is_stopped)) { 1362 if (new_state_is_stopped && !restarted) { 1363 if (log) 1364 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", 1365 StateAsCString(new_state)); 1366 m_public_run_lock.SetStopped(); 1367 } 1368 } 1369 } 1370 } 1371 } 1372 1373 Status Process::Resume() { 1374 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1375 LIBLLDB_LOG_PROCESS)); 1376 if (log) 1377 log->Printf("Process::Resume -- locking run lock"); 1378 if (!m_public_run_lock.TrySetRunning()) { 1379 Status error("Resume request failed - process still running."); 1380 if (log) 1381 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1382 return error; 1383 } 1384 Status error = PrivateResume(); 1385 if (!error.Success()) { 1386 // Undo running state change 1387 m_public_run_lock.SetStopped(); 1388 } 1389 return error; 1390 } 1391 1392 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1393 1394 Status Process::ResumeSynchronous(Stream *stream) { 1395 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1396 LIBLLDB_LOG_PROCESS)); 1397 if (log) 1398 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1399 if (!m_public_run_lock.TrySetRunning()) { 1400 Status error("Resume request failed - process still running."); 1401 if (log) 1402 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1403 return error; 1404 } 1405 1406 ListenerSP listener_sp( 1407 Listener::MakeListener(g_resume_sync_name)); 1408 HijackProcessEvents(listener_sp); 1409 1410 Status error = PrivateResume(); 1411 if (error.Success()) { 1412 StateType state = 1413 WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream); 1414 const bool must_be_alive = 1415 false; // eStateExited is ok, so this must be false 1416 if (!StateIsStoppedState(state, must_be_alive)) 1417 error.SetErrorStringWithFormat( 1418 "process not in stopped state after synchronous resume: %s", 1419 StateAsCString(state)); 1420 } else { 1421 // Undo running state change 1422 m_public_run_lock.SetStopped(); 1423 } 1424 1425 // Undo the hijacking of process events... 1426 RestoreProcessEvents(); 1427 1428 return error; 1429 } 1430 1431 bool Process::StateChangedIsExternallyHijacked() { 1432 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1433 const char *hijacking_name = GetHijackingListenerName(); 1434 if (hijacking_name && 1435 strcmp(hijacking_name, g_resume_sync_name)) 1436 return true; 1437 } 1438 return false; 1439 } 1440 1441 bool Process::StateChangedIsHijackedForSynchronousResume() { 1442 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1443 const char *hijacking_name = GetHijackingListenerName(); 1444 if (hijacking_name && 1445 strcmp(hijacking_name, g_resume_sync_name) == 0) 1446 return true; 1447 } 1448 return false; 1449 } 1450 1451 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1452 1453 void Process::SetPrivateState(StateType new_state) { 1454 if (m_finalize_called) 1455 return; 1456 1457 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1458 LIBLLDB_LOG_PROCESS)); 1459 bool state_changed = false; 1460 1461 if (log) 1462 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1463 1464 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1465 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1466 1467 const StateType old_state = m_private_state.GetValueNoLock(); 1468 state_changed = old_state != new_state; 1469 1470 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1471 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1472 if (old_state_is_stopped != new_state_is_stopped) { 1473 if (new_state_is_stopped) 1474 m_private_run_lock.SetStopped(); 1475 else 1476 m_private_run_lock.SetRunning(); 1477 } 1478 1479 if (state_changed) { 1480 m_private_state.SetValueNoLock(new_state); 1481 EventSP event_sp( 1482 new Event(eBroadcastBitStateChanged, 1483 new ProcessEventData(shared_from_this(), new_state))); 1484 if (StateIsStoppedState(new_state, false)) { 1485 // Note, this currently assumes that all threads in the list stop when 1486 // the process stops. In the future we will want to support a debugging 1487 // model where some threads continue to run while others are stopped. 1488 // When that happens we will either need a way for the thread list to 1489 // identify which threads are stopping or create a special thread list 1490 // containing only threads which actually stopped. 1491 // 1492 // The process plugin is responsible for managing the actual behavior of 1493 // the threads and should have stopped any threads that are going to stop 1494 // before we get here. 1495 m_thread_list.DidStop(); 1496 1497 m_mod_id.BumpStopID(); 1498 if (!m_mod_id.IsLastResumeForUserExpression()) 1499 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1500 m_memory_cache.Clear(); 1501 if (log) 1502 log->Printf("Process::SetPrivateState (%s) stop_id = %u", 1503 StateAsCString(new_state), m_mod_id.GetStopID()); 1504 } 1505 1506 // Use our target to get a shared pointer to ourselves... 1507 if (m_finalize_called && !PrivateStateThreadIsValid()) 1508 BroadcastEvent(event_sp); 1509 else 1510 m_private_state_broadcaster.BroadcastEvent(event_sp); 1511 } else { 1512 if (log) 1513 log->Printf( 1514 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1515 StateAsCString(new_state)); 1516 } 1517 } 1518 1519 void Process::SetRunningUserExpression(bool on) { 1520 m_mod_id.SetRunningUserExpression(on); 1521 } 1522 1523 void Process::SetRunningUtilityFunction(bool on) { 1524 m_mod_id.SetRunningUtilityFunction(on); 1525 } 1526 1527 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1528 1529 const lldb::ABISP &Process::GetABI() { 1530 if (!m_abi_sp) 1531 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1532 return m_abi_sp; 1533 } 1534 1535 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language, 1536 bool retry_if_null) { 1537 if (m_finalizing) 1538 return nullptr; 1539 1540 LanguageRuntimeCollection::iterator pos; 1541 pos = m_language_runtimes.find(language); 1542 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { 1543 lldb::LanguageRuntimeSP runtime_sp( 1544 LanguageRuntime::FindPlugin(this, language)); 1545 1546 m_language_runtimes[language] = runtime_sp; 1547 return runtime_sp.get(); 1548 } else 1549 return (*pos).second.get(); 1550 } 1551 1552 CPPLanguageRuntime *Process::GetCPPLanguageRuntime(bool retry_if_null) { 1553 LanguageRuntime *runtime = 1554 GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1555 if (runtime != nullptr && 1556 runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1557 return static_cast<CPPLanguageRuntime *>(runtime); 1558 return nullptr; 1559 } 1560 1561 ObjCLanguageRuntime *Process::GetObjCLanguageRuntime(bool retry_if_null) { 1562 LanguageRuntime *runtime = 1563 GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1564 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1565 return static_cast<ObjCLanguageRuntime *>(runtime); 1566 return nullptr; 1567 } 1568 1569 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1570 if (m_finalizing) 1571 return false; 1572 1573 if (in_value.IsDynamic()) 1574 return false; 1575 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1576 1577 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1578 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1579 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1580 } 1581 1582 LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus); 1583 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1584 return true; 1585 1586 LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC); 1587 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1588 } 1589 1590 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1591 m_dynamic_checkers_up.reset(dynamic_checkers); 1592 } 1593 1594 BreakpointSiteList &Process::GetBreakpointSiteList() { 1595 return m_breakpoint_site_list; 1596 } 1597 1598 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1599 return m_breakpoint_site_list; 1600 } 1601 1602 void Process::DisableAllBreakpointSites() { 1603 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1604 // bp_site->SetEnabled(true); 1605 DisableBreakpointSite(bp_site); 1606 }); 1607 } 1608 1609 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1610 Status error(DisableBreakpointSiteByID(break_id)); 1611 1612 if (error.Success()) 1613 m_breakpoint_site_list.Remove(break_id); 1614 1615 return error; 1616 } 1617 1618 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1619 Status error; 1620 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1621 if (bp_site_sp) { 1622 if (bp_site_sp->IsEnabled()) 1623 error = DisableBreakpointSite(bp_site_sp.get()); 1624 } else { 1625 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1626 break_id); 1627 } 1628 1629 return error; 1630 } 1631 1632 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1633 Status error; 1634 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1635 if (bp_site_sp) { 1636 if (!bp_site_sp->IsEnabled()) 1637 error = EnableBreakpointSite(bp_site_sp.get()); 1638 } else { 1639 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1640 break_id); 1641 } 1642 return error; 1643 } 1644 1645 lldb::break_id_t 1646 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1647 bool use_hardware) { 1648 addr_t load_addr = LLDB_INVALID_ADDRESS; 1649 1650 bool show_error = true; 1651 switch (GetState()) { 1652 case eStateInvalid: 1653 case eStateUnloaded: 1654 case eStateConnected: 1655 case eStateAttaching: 1656 case eStateLaunching: 1657 case eStateDetached: 1658 case eStateExited: 1659 show_error = false; 1660 break; 1661 1662 case eStateStopped: 1663 case eStateRunning: 1664 case eStateStepping: 1665 case eStateCrashed: 1666 case eStateSuspended: 1667 show_error = IsAlive(); 1668 break; 1669 } 1670 1671 // Reset the IsIndirect flag here, in case the location changes from pointing 1672 // to a indirect symbol to a regular symbol. 1673 owner->SetIsIndirect(false); 1674 1675 if (owner->ShouldResolveIndirectFunctions()) { 1676 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1677 if (symbol && symbol->IsIndirect()) { 1678 Status error; 1679 Address symbol_address = symbol->GetAddress(); 1680 load_addr = ResolveIndirectFunction(&symbol_address, error); 1681 if (!error.Success() && show_error) { 1682 GetTarget().GetDebugger().GetErrorFile()->Printf( 1683 "warning: failed to resolve indirect function at 0x%" PRIx64 1684 " for breakpoint %i.%i: %s\n", 1685 symbol->GetLoadAddress(&GetTarget()), 1686 owner->GetBreakpoint().GetID(), owner->GetID(), 1687 error.AsCString() ? error.AsCString() : "unknown error"); 1688 return LLDB_INVALID_BREAK_ID; 1689 } 1690 Address resolved_address(load_addr); 1691 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1692 owner->SetIsIndirect(true); 1693 } else 1694 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1695 } else 1696 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1697 1698 if (load_addr != LLDB_INVALID_ADDRESS) { 1699 BreakpointSiteSP bp_site_sp; 1700 1701 // Look up this breakpoint site. If it exists, then add this new owner, 1702 // otherwise create a new breakpoint site and add it. 1703 1704 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1705 1706 if (bp_site_sp) { 1707 bp_site_sp->AddOwner(owner); 1708 owner->SetBreakpointSite(bp_site_sp); 1709 return bp_site_sp->GetID(); 1710 } else { 1711 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1712 load_addr, use_hardware)); 1713 if (bp_site_sp) { 1714 Status error = EnableBreakpointSite(bp_site_sp.get()); 1715 if (error.Success()) { 1716 owner->SetBreakpointSite(bp_site_sp); 1717 return m_breakpoint_site_list.Add(bp_site_sp); 1718 } else { 1719 if (show_error || use_hardware) { 1720 // Report error for setting breakpoint... 1721 GetTarget().GetDebugger().GetErrorFile()->Printf( 1722 "warning: failed to set breakpoint site at 0x%" PRIx64 1723 " for breakpoint %i.%i: %s\n", 1724 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1725 error.AsCString() ? error.AsCString() : "unknown error"); 1726 } 1727 } 1728 } 1729 } 1730 } 1731 // We failed to enable the breakpoint 1732 return LLDB_INVALID_BREAK_ID; 1733 } 1734 1735 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1736 lldb::user_id_t owner_loc_id, 1737 BreakpointSiteSP &bp_site_sp) { 1738 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1739 if (num_owners == 0) { 1740 // Don't try to disable the site if we don't have a live process anymore. 1741 if (IsAlive()) 1742 DisableBreakpointSite(bp_site_sp.get()); 1743 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1744 } 1745 } 1746 1747 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1748 uint8_t *buf) const { 1749 size_t bytes_removed = 0; 1750 BreakpointSiteList bp_sites_in_range; 1751 1752 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1753 bp_sites_in_range)) { 1754 bp_sites_in_range.ForEach([bp_addr, size, 1755 buf](BreakpointSite *bp_site) -> void { 1756 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1757 addr_t intersect_addr; 1758 size_t intersect_size; 1759 size_t opcode_offset; 1760 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1761 &intersect_size, &opcode_offset)) { 1762 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1763 assert(bp_addr < intersect_addr + intersect_size && 1764 intersect_addr + intersect_size <= bp_addr + size); 1765 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1766 size_t buf_offset = intersect_addr - bp_addr; 1767 ::memcpy(buf + buf_offset, 1768 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1769 intersect_size); 1770 } 1771 } 1772 }); 1773 } 1774 return bytes_removed; 1775 } 1776 1777 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1778 PlatformSP platform_sp(GetTarget().GetPlatform()); 1779 if (platform_sp) 1780 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1781 return 0; 1782 } 1783 1784 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1785 Status error; 1786 assert(bp_site != nullptr); 1787 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1788 const addr_t bp_addr = bp_site->GetLoadAddress(); 1789 if (log) 1790 log->Printf( 1791 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1792 bp_site->GetID(), (uint64_t)bp_addr); 1793 if (bp_site->IsEnabled()) { 1794 if (log) 1795 log->Printf( 1796 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1797 " -- already enabled", 1798 bp_site->GetID(), (uint64_t)bp_addr); 1799 return error; 1800 } 1801 1802 if (bp_addr == LLDB_INVALID_ADDRESS) { 1803 error.SetErrorString("BreakpointSite contains an invalid load address."); 1804 return error; 1805 } 1806 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1807 // trap for the breakpoint site 1808 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1809 1810 if (bp_opcode_size == 0) { 1811 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1812 "returned zero, unable to get breakpoint " 1813 "trap for address 0x%" PRIx64, 1814 bp_addr); 1815 } else { 1816 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1817 1818 if (bp_opcode_bytes == nullptr) { 1819 error.SetErrorString( 1820 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1821 return error; 1822 } 1823 1824 // Save the original opcode by reading it 1825 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1826 error) == bp_opcode_size) { 1827 // Write a software breakpoint in place of the original opcode 1828 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1829 bp_opcode_size) { 1830 uint8_t verify_bp_opcode_bytes[64]; 1831 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1832 error) == bp_opcode_size) { 1833 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1834 bp_opcode_size) == 0) { 1835 bp_site->SetEnabled(true); 1836 bp_site->SetType(BreakpointSite::eSoftware); 1837 if (log) 1838 log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) " 1839 "addr = 0x%" PRIx64 " -- SUCCESS", 1840 bp_site->GetID(), (uint64_t)bp_addr); 1841 } else 1842 error.SetErrorString( 1843 "failed to verify the breakpoint trap in memory."); 1844 } else 1845 error.SetErrorString( 1846 "Unable to read memory to verify breakpoint trap."); 1847 } else 1848 error.SetErrorString("Unable to write breakpoint trap to memory."); 1849 } else 1850 error.SetErrorString("Unable to read memory at breakpoint address."); 1851 } 1852 if (log && error.Fail()) 1853 log->Printf( 1854 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1855 " -- FAILED: %s", 1856 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1857 return error; 1858 } 1859 1860 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1861 Status error; 1862 assert(bp_site != nullptr); 1863 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1864 addr_t bp_addr = bp_site->GetLoadAddress(); 1865 lldb::user_id_t breakID = bp_site->GetID(); 1866 if (log) 1867 log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1868 ") addr = 0x%" PRIx64, 1869 breakID, (uint64_t)bp_addr); 1870 1871 if (bp_site->IsHardware()) { 1872 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1873 } else if (bp_site->IsEnabled()) { 1874 const size_t break_op_size = bp_site->GetByteSize(); 1875 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1876 if (break_op_size > 0) { 1877 // Clear a software breakpoint instruction 1878 uint8_t curr_break_op[8]; 1879 assert(break_op_size <= sizeof(curr_break_op)); 1880 bool break_op_found = false; 1881 1882 // Read the breakpoint opcode 1883 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1884 break_op_size) { 1885 bool verify = false; 1886 // Make sure the breakpoint opcode exists at this address 1887 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1888 break_op_found = true; 1889 // We found a valid breakpoint opcode at this address, now restore 1890 // the saved opcode. 1891 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1892 break_op_size, error) == break_op_size) { 1893 verify = true; 1894 } else 1895 error.SetErrorString( 1896 "Memory write failed when restoring original opcode."); 1897 } else { 1898 error.SetErrorString( 1899 "Original breakpoint trap is no longer in memory."); 1900 // Set verify to true and so we can check if the original opcode has 1901 // already been restored 1902 verify = true; 1903 } 1904 1905 if (verify) { 1906 uint8_t verify_opcode[8]; 1907 assert(break_op_size < sizeof(verify_opcode)); 1908 // Verify that our original opcode made it back to the inferior 1909 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1910 break_op_size) { 1911 // compare the memory we just read with the original opcode 1912 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1913 break_op_size) == 0) { 1914 // SUCCESS 1915 bp_site->SetEnabled(false); 1916 if (log) 1917 log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) " 1918 "addr = 0x%" PRIx64 " -- SUCCESS", 1919 bp_site->GetID(), (uint64_t)bp_addr); 1920 return error; 1921 } else { 1922 if (break_op_found) 1923 error.SetErrorString("Failed to restore original opcode."); 1924 } 1925 } else 1926 error.SetErrorString("Failed to read memory to verify that " 1927 "breakpoint trap was restored."); 1928 } 1929 } else 1930 error.SetErrorString( 1931 "Unable to read memory that should contain the breakpoint trap."); 1932 } 1933 } else { 1934 if (log) 1935 log->Printf( 1936 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1937 " -- already disabled", 1938 bp_site->GetID(), (uint64_t)bp_addr); 1939 return error; 1940 } 1941 1942 if (log) 1943 log->Printf( 1944 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1945 " -- FAILED: %s", 1946 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1947 return error; 1948 } 1949 1950 // Uncomment to verify memory caching works after making changes to caching 1951 // code 1952 //#define VERIFY_MEMORY_READS 1953 1954 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1955 error.Clear(); 1956 if (!GetDisableMemoryCache()) { 1957 #if defined(VERIFY_MEMORY_READS) 1958 // Memory caching is enabled, with debug verification 1959 1960 if (buf && size) { 1961 // Uncomment the line below to make sure memory caching is working. 1962 // I ran this through the test suite and got no assertions, so I am 1963 // pretty confident this is working well. If any changes are made to 1964 // memory caching, uncomment the line below and test your changes! 1965 1966 // Verify all memory reads by using the cache first, then redundantly 1967 // reading the same memory from the inferior and comparing to make sure 1968 // everything is exactly the same. 1969 std::string verify_buf(size, '\0'); 1970 assert(verify_buf.size() == size); 1971 const size_t cache_bytes_read = 1972 m_memory_cache.Read(this, addr, buf, size, error); 1973 Status verify_error; 1974 const size_t verify_bytes_read = 1975 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1976 verify_buf.size(), verify_error); 1977 assert(cache_bytes_read == verify_bytes_read); 1978 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1979 assert(verify_error.Success() == error.Success()); 1980 return cache_bytes_read; 1981 } 1982 return 0; 1983 #else // !defined(VERIFY_MEMORY_READS) 1984 // Memory caching is enabled, without debug verification 1985 1986 return m_memory_cache.Read(addr, buf, size, error); 1987 #endif // defined (VERIFY_MEMORY_READS) 1988 } else { 1989 // Memory caching is disabled 1990 1991 return ReadMemoryFromInferior(addr, buf, size, error); 1992 } 1993 } 1994 1995 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1996 Status &error) { 1997 char buf[256]; 1998 out_str.clear(); 1999 addr_t curr_addr = addr; 2000 while (true) { 2001 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2002 if (length == 0) 2003 break; 2004 out_str.append(buf, length); 2005 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2006 // to read some more characters 2007 if (length == sizeof(buf) - 1) 2008 curr_addr += length; 2009 else 2010 break; 2011 } 2012 return out_str.size(); 2013 } 2014 2015 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2016 Status &error, size_t type_width) { 2017 size_t total_bytes_read = 0; 2018 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2019 // Ensure a null terminator independent of the number of bytes that is 2020 // read. 2021 memset(dst, 0, max_bytes); 2022 size_t bytes_left = max_bytes - type_width; 2023 2024 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2025 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2026 "string with more than 4 bytes " 2027 "per character!"); 2028 2029 addr_t curr_addr = addr; 2030 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2031 char *curr_dst = dst; 2032 2033 error.Clear(); 2034 while (bytes_left > 0 && error.Success()) { 2035 addr_t cache_line_bytes_left = 2036 cache_line_size - (curr_addr % cache_line_size); 2037 addr_t bytes_to_read = 2038 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2039 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2040 2041 if (bytes_read == 0) 2042 break; 2043 2044 // Search for a null terminator of correct size and alignment in 2045 // bytes_read 2046 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2047 for (size_t i = aligned_start; 2048 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2049 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2050 error.Clear(); 2051 return i; 2052 } 2053 2054 total_bytes_read += bytes_read; 2055 curr_dst += bytes_read; 2056 curr_addr += bytes_read; 2057 bytes_left -= bytes_read; 2058 } 2059 } else { 2060 if (max_bytes) 2061 error.SetErrorString("invalid arguments"); 2062 } 2063 return total_bytes_read; 2064 } 2065 2066 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2067 // correct code to find null terminators. 2068 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2069 size_t dst_max_len, 2070 Status &result_error) { 2071 size_t total_cstr_len = 0; 2072 if (dst && dst_max_len) { 2073 result_error.Clear(); 2074 // NULL out everything just to be safe 2075 memset(dst, 0, dst_max_len); 2076 Status error; 2077 addr_t curr_addr = addr; 2078 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2079 size_t bytes_left = dst_max_len - 1; 2080 char *curr_dst = dst; 2081 2082 while (bytes_left > 0) { 2083 addr_t cache_line_bytes_left = 2084 cache_line_size - (curr_addr % cache_line_size); 2085 addr_t bytes_to_read = 2086 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2087 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2088 2089 if (bytes_read == 0) { 2090 result_error = error; 2091 dst[total_cstr_len] = '\0'; 2092 break; 2093 } 2094 const size_t len = strlen(curr_dst); 2095 2096 total_cstr_len += len; 2097 2098 if (len < bytes_to_read) 2099 break; 2100 2101 curr_dst += bytes_read; 2102 curr_addr += bytes_read; 2103 bytes_left -= bytes_read; 2104 } 2105 } else { 2106 if (dst == nullptr) 2107 result_error.SetErrorString("invalid arguments"); 2108 else 2109 result_error.Clear(); 2110 } 2111 return total_cstr_len; 2112 } 2113 2114 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2115 Status &error) { 2116 if (buf == nullptr || size == 0) 2117 return 0; 2118 2119 size_t bytes_read = 0; 2120 uint8_t *bytes = (uint8_t *)buf; 2121 2122 while (bytes_read < size) { 2123 const size_t curr_size = size - bytes_read; 2124 const size_t curr_bytes_read = 2125 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2126 bytes_read += curr_bytes_read; 2127 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2128 break; 2129 } 2130 2131 // Replace any software breakpoint opcodes that fall into this range back 2132 // into "buf" before we return 2133 if (bytes_read > 0) 2134 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2135 return bytes_read; 2136 } 2137 2138 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2139 size_t integer_byte_size, 2140 uint64_t fail_value, 2141 Status &error) { 2142 Scalar scalar; 2143 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2144 error)) 2145 return scalar.ULongLong(fail_value); 2146 return fail_value; 2147 } 2148 2149 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2150 size_t integer_byte_size, 2151 int64_t fail_value, 2152 Status &error) { 2153 Scalar scalar; 2154 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2155 error)) 2156 return scalar.SLongLong(fail_value); 2157 return fail_value; 2158 } 2159 2160 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2161 Scalar scalar; 2162 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2163 error)) 2164 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2165 return LLDB_INVALID_ADDRESS; 2166 } 2167 2168 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2169 Status &error) { 2170 Scalar scalar; 2171 const uint32_t addr_byte_size = GetAddressByteSize(); 2172 if (addr_byte_size <= 4) 2173 scalar = (uint32_t)ptr_value; 2174 else 2175 scalar = ptr_value; 2176 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2177 addr_byte_size; 2178 } 2179 2180 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2181 Status &error) { 2182 size_t bytes_written = 0; 2183 const uint8_t *bytes = (const uint8_t *)buf; 2184 2185 while (bytes_written < size) { 2186 const size_t curr_size = size - bytes_written; 2187 const size_t curr_bytes_written = DoWriteMemory( 2188 addr + bytes_written, bytes + bytes_written, curr_size, error); 2189 bytes_written += curr_bytes_written; 2190 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2191 break; 2192 } 2193 return bytes_written; 2194 } 2195 2196 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2197 Status &error) { 2198 #if defined(ENABLE_MEMORY_CACHING) 2199 m_memory_cache.Flush(addr, size); 2200 #endif 2201 2202 if (buf == nullptr || size == 0) 2203 return 0; 2204 2205 m_mod_id.BumpMemoryID(); 2206 2207 // We need to write any data that would go where any current software traps 2208 // (enabled software breakpoints) any software traps (breakpoints) that we 2209 // may have placed in our tasks memory. 2210 2211 BreakpointSiteList bp_sites_in_range; 2212 2213 if (m_breakpoint_site_list.FindInRange(addr, addr + size, 2214 bp_sites_in_range)) { 2215 // No breakpoint sites overlap 2216 if (bp_sites_in_range.IsEmpty()) 2217 return WriteMemoryPrivate(addr, buf, size, error); 2218 else { 2219 const uint8_t *ubuf = (const uint8_t *)buf; 2220 uint64_t bytes_written = 0; 2221 2222 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2223 &error](BreakpointSite *bp) -> void { 2224 2225 if (error.Success()) { 2226 addr_t intersect_addr; 2227 size_t intersect_size; 2228 size_t opcode_offset; 2229 const bool intersects = bp->IntersectsRange( 2230 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2231 UNUSED_IF_ASSERT_DISABLED(intersects); 2232 assert(intersects); 2233 assert(addr <= intersect_addr && intersect_addr < addr + size); 2234 assert(addr < intersect_addr + intersect_size && 2235 intersect_addr + intersect_size <= addr + size); 2236 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2237 2238 // Check for bytes before this breakpoint 2239 const addr_t curr_addr = addr + bytes_written; 2240 if (intersect_addr > curr_addr) { 2241 // There are some bytes before this breakpoint that we need to just 2242 // write to memory 2243 size_t curr_size = intersect_addr - curr_addr; 2244 size_t curr_bytes_written = WriteMemoryPrivate( 2245 curr_addr, ubuf + bytes_written, curr_size, error); 2246 bytes_written += curr_bytes_written; 2247 if (curr_bytes_written != curr_size) { 2248 // We weren't able to write all of the requested bytes, we are 2249 // done looping and will return the number of bytes that we have 2250 // written so far. 2251 if (error.Success()) 2252 error.SetErrorToGenericError(); 2253 } 2254 } 2255 // Now write any bytes that would cover up any software breakpoints 2256 // directly into the breakpoint opcode buffer 2257 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, 2258 ubuf + bytes_written, intersect_size); 2259 bytes_written += intersect_size; 2260 } 2261 }); 2262 2263 if (bytes_written < size) 2264 return bytes_written + WriteMemoryPrivate(addr + bytes_written, 2265 ubuf + bytes_written, 2266 size - bytes_written, error); 2267 } 2268 } else { 2269 return WriteMemoryPrivate(addr, buf, size, error); 2270 } 2271 2272 // Write any remaining bytes after the last breakpoint if we have any left 2273 return 0; // bytes_written; 2274 } 2275 2276 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2277 size_t byte_size, Status &error) { 2278 if (byte_size == UINT32_MAX) 2279 byte_size = scalar.GetByteSize(); 2280 if (byte_size > 0) { 2281 uint8_t buf[32]; 2282 const size_t mem_size = 2283 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2284 if (mem_size > 0) 2285 return WriteMemory(addr, buf, mem_size, error); 2286 else 2287 error.SetErrorString("failed to get scalar as memory data"); 2288 } else { 2289 error.SetErrorString("invalid scalar value"); 2290 } 2291 return 0; 2292 } 2293 2294 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2295 bool is_signed, Scalar &scalar, 2296 Status &error) { 2297 uint64_t uval = 0; 2298 if (byte_size == 0) { 2299 error.SetErrorString("byte size is zero"); 2300 } else if (byte_size & (byte_size - 1)) { 2301 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2302 byte_size); 2303 } else if (byte_size <= sizeof(uval)) { 2304 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2305 if (bytes_read == byte_size) { 2306 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2307 GetAddressByteSize()); 2308 lldb::offset_t offset = 0; 2309 if (byte_size <= 4) 2310 scalar = data.GetMaxU32(&offset, byte_size); 2311 else 2312 scalar = data.GetMaxU64(&offset, byte_size); 2313 if (is_signed) 2314 scalar.SignExtend(byte_size * 8); 2315 return bytes_read; 2316 } 2317 } else { 2318 error.SetErrorStringWithFormat( 2319 "byte size of %u is too large for integer scalar type", byte_size); 2320 } 2321 return 0; 2322 } 2323 2324 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2325 Status error; 2326 for (const auto &Entry : entries) { 2327 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2328 error); 2329 if (!error.Success()) 2330 break; 2331 } 2332 return error; 2333 } 2334 2335 #define USE_ALLOCATE_MEMORY_CACHE 1 2336 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2337 Status &error) { 2338 if (GetPrivateState() != eStateStopped) { 2339 error.SetErrorToGenericError(); 2340 return LLDB_INVALID_ADDRESS; 2341 } 2342 2343 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2344 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2345 #else 2346 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2347 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2348 if (log) 2349 log->Printf("Process::AllocateMemory(size=%" PRIu64 2350 ", permissions=%s) => 0x%16.16" PRIx64 2351 " (m_stop_id = %u m_memory_id = %u)", 2352 (uint64_t)size, GetPermissionsAsCString(permissions), 2353 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2354 m_mod_id.GetMemoryID()); 2355 return allocated_addr; 2356 #endif 2357 } 2358 2359 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2360 Status &error) { 2361 addr_t return_addr = AllocateMemory(size, permissions, error); 2362 if (error.Success()) { 2363 std::string buffer(size, 0); 2364 WriteMemory(return_addr, buffer.c_str(), size, error); 2365 } 2366 return return_addr; 2367 } 2368 2369 bool Process::CanJIT() { 2370 if (m_can_jit == eCanJITDontKnow) { 2371 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2372 Status err; 2373 2374 uint64_t allocated_memory = AllocateMemory( 2375 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2376 err); 2377 2378 if (err.Success()) { 2379 m_can_jit = eCanJITYes; 2380 if (log) 2381 log->Printf("Process::%s pid %" PRIu64 2382 " allocation test passed, CanJIT () is true", 2383 __FUNCTION__, GetID()); 2384 } else { 2385 m_can_jit = eCanJITNo; 2386 if (log) 2387 log->Printf("Process::%s pid %" PRIu64 2388 " allocation test failed, CanJIT () is false: %s", 2389 __FUNCTION__, GetID(), err.AsCString()); 2390 } 2391 2392 DeallocateMemory(allocated_memory); 2393 } 2394 2395 return m_can_jit == eCanJITYes; 2396 } 2397 2398 void Process::SetCanJIT(bool can_jit) { 2399 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2400 } 2401 2402 void Process::SetCanRunCode(bool can_run_code) { 2403 SetCanJIT(can_run_code); 2404 m_can_interpret_function_calls = can_run_code; 2405 } 2406 2407 Status Process::DeallocateMemory(addr_t ptr) { 2408 Status error; 2409 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2410 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2411 error.SetErrorStringWithFormat( 2412 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2413 } 2414 #else 2415 error = DoDeallocateMemory(ptr); 2416 2417 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2418 if (log) 2419 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 2420 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2421 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2422 m_mod_id.GetMemoryID()); 2423 #endif 2424 return error; 2425 } 2426 2427 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2428 lldb::addr_t header_addr, 2429 size_t size_to_read) { 2430 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2431 if (log) { 2432 log->Printf("Process::ReadModuleFromMemory reading %s binary from memory", 2433 file_spec.GetPath().c_str()); 2434 } 2435 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2436 if (module_sp) { 2437 Status error; 2438 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2439 shared_from_this(), header_addr, error, size_to_read); 2440 if (objfile) 2441 return module_sp; 2442 } 2443 return ModuleSP(); 2444 } 2445 2446 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2447 uint32_t &permissions) { 2448 MemoryRegionInfo range_info; 2449 permissions = 0; 2450 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2451 if (!error.Success()) 2452 return false; 2453 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2454 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2455 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2456 return false; 2457 } 2458 2459 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2460 permissions |= lldb::ePermissionsReadable; 2461 2462 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2463 permissions |= lldb::ePermissionsWritable; 2464 2465 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2466 permissions |= lldb::ePermissionsExecutable; 2467 2468 return true; 2469 } 2470 2471 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2472 Status error; 2473 error.SetErrorString("watchpoints are not supported"); 2474 return error; 2475 } 2476 2477 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2478 Status error; 2479 error.SetErrorString("watchpoints are not supported"); 2480 return error; 2481 } 2482 2483 StateType 2484 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2485 const Timeout<std::micro> &timeout) { 2486 StateType state; 2487 2488 while (true) { 2489 event_sp.reset(); 2490 state = GetStateChangedEventsPrivate(event_sp, timeout); 2491 2492 if (StateIsStoppedState(state, false)) 2493 break; 2494 2495 // If state is invalid, then we timed out 2496 if (state == eStateInvalid) 2497 break; 2498 2499 if (event_sp) 2500 HandlePrivateEvent(event_sp); 2501 } 2502 return state; 2503 } 2504 2505 void Process::LoadOperatingSystemPlugin(bool flush) { 2506 if (flush) 2507 m_thread_list.Clear(); 2508 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2509 if (flush) 2510 Flush(); 2511 } 2512 2513 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2514 Status error; 2515 m_abi_sp.reset(); 2516 m_dyld_up.reset(); 2517 m_jit_loaders_up.reset(); 2518 m_system_runtime_up.reset(); 2519 m_os_up.reset(); 2520 m_process_input_reader.reset(); 2521 2522 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2523 if (!exe_module) { 2524 error.SetErrorString("executable module does not exist"); 2525 return error; 2526 } 2527 2528 char local_exec_file_path[PATH_MAX]; 2529 char platform_exec_file_path[PATH_MAX]; 2530 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2531 sizeof(local_exec_file_path)); 2532 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2533 sizeof(platform_exec_file_path)); 2534 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2535 // Install anything that might need to be installed prior to launching. 2536 // For host systems, this will do nothing, but if we are connected to a 2537 // remote platform it will install any needed binaries 2538 error = GetTarget().Install(&launch_info); 2539 if (error.Fail()) 2540 return error; 2541 2542 if (PrivateStateThreadIsValid()) 2543 PausePrivateStateThread(); 2544 2545 error = WillLaunch(exe_module); 2546 if (error.Success()) { 2547 const bool restarted = false; 2548 SetPublicState(eStateLaunching, restarted); 2549 m_should_detach = false; 2550 2551 if (m_public_run_lock.TrySetRunning()) { 2552 // Now launch using these arguments. 2553 error = DoLaunch(exe_module, launch_info); 2554 } else { 2555 // This shouldn't happen 2556 error.SetErrorString("failed to acquire process run lock"); 2557 } 2558 2559 if (error.Fail()) { 2560 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2561 SetID(LLDB_INVALID_PROCESS_ID); 2562 const char *error_string = error.AsCString(); 2563 if (error_string == nullptr) 2564 error_string = "launch failed"; 2565 SetExitStatus(-1, error_string); 2566 } 2567 } else { 2568 EventSP event_sp; 2569 2570 // Now wait for the process to launch and return control to us, and then 2571 // call DidLaunch: 2572 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2573 2574 if (state == eStateInvalid || !event_sp) { 2575 // We were able to launch the process, but we failed to catch the 2576 // initial stop. 2577 error.SetErrorString("failed to catch stop after launch"); 2578 SetExitStatus(0, "failed to catch stop after launch"); 2579 Destroy(false); 2580 } else if (state == eStateStopped || state == eStateCrashed) { 2581 DidLaunch(); 2582 2583 DynamicLoader *dyld = GetDynamicLoader(); 2584 if (dyld) 2585 dyld->DidLaunch(); 2586 2587 GetJITLoaders().DidLaunch(); 2588 2589 SystemRuntime *system_runtime = GetSystemRuntime(); 2590 if (system_runtime) 2591 system_runtime->DidLaunch(); 2592 2593 if (!m_os_up) 2594 LoadOperatingSystemPlugin(false); 2595 2596 // We successfully launched the process and stopped, now it the 2597 // right time to set up signal filters before resuming. 2598 UpdateAutomaticSignalFiltering(); 2599 2600 // Note, the stop event was consumed above, but not handled. This 2601 // was done to give DidLaunch a chance to run. The target is either 2602 // stopped or crashed. Directly set the state. This is done to 2603 // prevent a stop message with a bunch of spurious output on thread 2604 // status, as well as not pop a ProcessIOHandler. 2605 SetPublicState(state, false); 2606 2607 if (PrivateStateThreadIsValid()) 2608 ResumePrivateStateThread(); 2609 else 2610 StartPrivateStateThread(); 2611 2612 // Target was stopped at entry as was intended. Need to notify the 2613 // listeners about it. 2614 if (state == eStateStopped && 2615 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2616 HandlePrivateEvent(event_sp); 2617 } else if (state == eStateExited) { 2618 // We exited while trying to launch somehow. Don't call DidLaunch 2619 // as that's not likely to work, and return an invalid pid. 2620 HandlePrivateEvent(event_sp); 2621 } 2622 } 2623 } 2624 } else { 2625 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2626 local_exec_file_path); 2627 } 2628 2629 return error; 2630 } 2631 2632 Status Process::LoadCore() { 2633 Status error = DoLoadCore(); 2634 if (error.Success()) { 2635 ListenerSP listener_sp( 2636 Listener::MakeListener("lldb.process.load_core_listener")); 2637 HijackProcessEvents(listener_sp); 2638 2639 if (PrivateStateThreadIsValid()) 2640 ResumePrivateStateThread(); 2641 else 2642 StartPrivateStateThread(); 2643 2644 DynamicLoader *dyld = GetDynamicLoader(); 2645 if (dyld) 2646 dyld->DidAttach(); 2647 2648 GetJITLoaders().DidAttach(); 2649 2650 SystemRuntime *system_runtime = GetSystemRuntime(); 2651 if (system_runtime) 2652 system_runtime->DidAttach(); 2653 2654 if (!m_os_up) 2655 LoadOperatingSystemPlugin(false); 2656 2657 // We successfully loaded a core file, now pretend we stopped so we can 2658 // show all of the threads in the core file and explore the crashed state. 2659 SetPrivateState(eStateStopped); 2660 2661 // Wait for a stopped event since we just posted one above... 2662 lldb::EventSP event_sp; 2663 StateType state = 2664 WaitForProcessToStop(seconds(10), &event_sp, true, listener_sp); 2665 2666 if (!StateIsStoppedState(state, false)) { 2667 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2668 if (log) 2669 log->Printf("Process::Halt() failed to stop, state is: %s", 2670 StateAsCString(state)); 2671 error.SetErrorString( 2672 "Did not get stopped event after loading the core file."); 2673 } 2674 RestoreProcessEvents(); 2675 } 2676 return error; 2677 } 2678 2679 DynamicLoader *Process::GetDynamicLoader() { 2680 if (!m_dyld_up) 2681 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2682 return m_dyld_up.get(); 2683 } 2684 2685 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); } 2686 2687 JITLoaderList &Process::GetJITLoaders() { 2688 if (!m_jit_loaders_up) { 2689 m_jit_loaders_up.reset(new JITLoaderList()); 2690 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2691 } 2692 return *m_jit_loaders_up; 2693 } 2694 2695 SystemRuntime *Process::GetSystemRuntime() { 2696 if (!m_system_runtime_up) 2697 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2698 return m_system_runtime_up.get(); 2699 } 2700 2701 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2702 uint32_t exec_count) 2703 : NextEventAction(process), m_exec_count(exec_count) { 2704 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2705 if (log) 2706 log->Printf( 2707 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2708 __FUNCTION__, static_cast<void *>(process), exec_count); 2709 } 2710 2711 Process::NextEventAction::EventActionResult 2712 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2713 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2714 2715 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2716 if (log) 2717 log->Printf( 2718 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2719 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2720 2721 switch (state) { 2722 case eStateAttaching: 2723 return eEventActionSuccess; 2724 2725 case eStateRunning: 2726 case eStateConnected: 2727 return eEventActionRetry; 2728 2729 case eStateStopped: 2730 case eStateCrashed: 2731 // During attach, prior to sending the eStateStopped event, 2732 // lldb_private::Process subclasses must set the new process ID. 2733 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2734 // We don't want these events to be reported, so go set the 2735 // ShouldReportStop here: 2736 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2737 2738 if (m_exec_count > 0) { 2739 --m_exec_count; 2740 2741 if (log) 2742 log->Printf("Process::AttachCompletionHandler::%s state %s: reduced " 2743 "remaining exec count to %" PRIu32 ", requesting resume", 2744 __FUNCTION__, StateAsCString(state), m_exec_count); 2745 2746 RequestResume(); 2747 return eEventActionRetry; 2748 } else { 2749 if (log) 2750 log->Printf("Process::AttachCompletionHandler::%s state %s: no more " 2751 "execs expected to start, continuing with attach", 2752 __FUNCTION__, StateAsCString(state)); 2753 2754 m_process->CompleteAttach(); 2755 return eEventActionSuccess; 2756 } 2757 break; 2758 2759 default: 2760 case eStateExited: 2761 case eStateInvalid: 2762 break; 2763 } 2764 2765 m_exit_string.assign("No valid Process"); 2766 return eEventActionExit; 2767 } 2768 2769 Process::NextEventAction::EventActionResult 2770 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2771 return eEventActionSuccess; 2772 } 2773 2774 const char *Process::AttachCompletionHandler::GetExitString() { 2775 return m_exit_string.c_str(); 2776 } 2777 2778 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2779 if (m_listener_sp) 2780 return m_listener_sp; 2781 else 2782 return debugger.GetListener(); 2783 } 2784 2785 Status Process::Attach(ProcessAttachInfo &attach_info) { 2786 m_abi_sp.reset(); 2787 m_process_input_reader.reset(); 2788 m_dyld_up.reset(); 2789 m_jit_loaders_up.reset(); 2790 m_system_runtime_up.reset(); 2791 m_os_up.reset(); 2792 2793 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2794 Status error; 2795 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2796 char process_name[PATH_MAX]; 2797 2798 if (attach_info.GetExecutableFile().GetPath(process_name, 2799 sizeof(process_name))) { 2800 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2801 2802 if (wait_for_launch) { 2803 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2804 if (error.Success()) { 2805 if (m_public_run_lock.TrySetRunning()) { 2806 m_should_detach = true; 2807 const bool restarted = false; 2808 SetPublicState(eStateAttaching, restarted); 2809 // Now attach using these arguments. 2810 error = DoAttachToProcessWithName(process_name, attach_info); 2811 } else { 2812 // This shouldn't happen 2813 error.SetErrorString("failed to acquire process run lock"); 2814 } 2815 2816 if (error.Fail()) { 2817 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2818 SetID(LLDB_INVALID_PROCESS_ID); 2819 if (error.AsCString() == nullptr) 2820 error.SetErrorString("attach failed"); 2821 2822 SetExitStatus(-1, error.AsCString()); 2823 } 2824 } else { 2825 SetNextEventAction(new Process::AttachCompletionHandler( 2826 this, attach_info.GetResumeCount())); 2827 StartPrivateStateThread(); 2828 } 2829 return error; 2830 } 2831 } else { 2832 ProcessInstanceInfoList process_infos; 2833 PlatformSP platform_sp(GetTarget().GetPlatform()); 2834 2835 if (platform_sp) { 2836 ProcessInstanceInfoMatch match_info; 2837 match_info.GetProcessInfo() = attach_info; 2838 match_info.SetNameMatchType(NameMatch::Equals); 2839 platform_sp->FindProcesses(match_info, process_infos); 2840 const uint32_t num_matches = process_infos.GetSize(); 2841 if (num_matches == 1) { 2842 attach_pid = process_infos.GetProcessIDAtIndex(0); 2843 // Fall through and attach using the above process ID 2844 } else { 2845 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2846 process_name, sizeof(process_name)); 2847 if (num_matches > 1) { 2848 StreamString s; 2849 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2850 for (size_t i = 0; i < num_matches; i++) { 2851 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 2852 s, platform_sp->GetUserIDResolver(), true, false); 2853 } 2854 error.SetErrorStringWithFormat( 2855 "more than one process named %s:\n%s", process_name, 2856 s.GetData()); 2857 } else 2858 error.SetErrorStringWithFormat( 2859 "could not find a process named %s", process_name); 2860 } 2861 } else { 2862 error.SetErrorString( 2863 "invalid platform, can't find processes by name"); 2864 return error; 2865 } 2866 } 2867 } else { 2868 error.SetErrorString("invalid process name"); 2869 } 2870 } 2871 2872 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2873 error = WillAttachToProcessWithID(attach_pid); 2874 if (error.Success()) { 2875 2876 if (m_public_run_lock.TrySetRunning()) { 2877 // Now attach using these arguments. 2878 m_should_detach = true; 2879 const bool restarted = false; 2880 SetPublicState(eStateAttaching, restarted); 2881 error = DoAttachToProcessWithID(attach_pid, attach_info); 2882 } else { 2883 // This shouldn't happen 2884 error.SetErrorString("failed to acquire process run lock"); 2885 } 2886 2887 if (error.Success()) { 2888 SetNextEventAction(new Process::AttachCompletionHandler( 2889 this, attach_info.GetResumeCount())); 2890 StartPrivateStateThread(); 2891 } else { 2892 if (GetID() != LLDB_INVALID_PROCESS_ID) 2893 SetID(LLDB_INVALID_PROCESS_ID); 2894 2895 const char *error_string = error.AsCString(); 2896 if (error_string == nullptr) 2897 error_string = "attach failed"; 2898 2899 SetExitStatus(-1, error_string); 2900 } 2901 } 2902 } 2903 return error; 2904 } 2905 2906 void Process::CompleteAttach() { 2907 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2908 LIBLLDB_LOG_TARGET)); 2909 if (log) 2910 log->Printf("Process::%s()", __FUNCTION__); 2911 2912 // Let the process subclass figure out at much as it can about the process 2913 // before we go looking for a dynamic loader plug-in. 2914 ArchSpec process_arch; 2915 DidAttach(process_arch); 2916 2917 if (process_arch.IsValid()) { 2918 GetTarget().SetArchitecture(process_arch); 2919 if (log) { 2920 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2921 log->Printf("Process::%s replacing process architecture with DidAttach() " 2922 "architecture: %s", 2923 __FUNCTION__, triple_str ? triple_str : "<null>"); 2924 } 2925 } 2926 2927 // We just attached. If we have a platform, ask it for the process 2928 // architecture, and if it isn't the same as the one we've already set, 2929 // switch architectures. 2930 PlatformSP platform_sp(GetTarget().GetPlatform()); 2931 assert(platform_sp); 2932 if (platform_sp) { 2933 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2934 if (target_arch.IsValid() && 2935 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2936 ArchSpec platform_arch; 2937 platform_sp = 2938 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2939 if (platform_sp) { 2940 GetTarget().SetPlatform(platform_sp); 2941 GetTarget().SetArchitecture(platform_arch); 2942 if (log) 2943 log->Printf("Process::%s switching platform to %s and architecture " 2944 "to %s based on info from attach", 2945 __FUNCTION__, platform_sp->GetName().AsCString(""), 2946 platform_arch.GetTriple().getTriple().c_str()); 2947 } 2948 } else if (!process_arch.IsValid()) { 2949 ProcessInstanceInfo process_info; 2950 GetProcessInfo(process_info); 2951 const ArchSpec &process_arch = process_info.GetArchitecture(); 2952 if (process_arch.IsValid() && 2953 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 2954 GetTarget().SetArchitecture(process_arch); 2955 if (log) 2956 log->Printf("Process::%s switching architecture to %s based on info " 2957 "the platform retrieved for pid %" PRIu64, 2958 __FUNCTION__, 2959 process_arch.GetTriple().getTriple().c_str(), GetID()); 2960 } 2961 } 2962 } 2963 2964 // We have completed the attach, now it is time to find the dynamic loader 2965 // plug-in 2966 DynamicLoader *dyld = GetDynamicLoader(); 2967 if (dyld) { 2968 dyld->DidAttach(); 2969 if (log) { 2970 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2971 log->Printf("Process::%s after DynamicLoader::DidAttach(), target " 2972 "executable is %s (using %s plugin)", 2973 __FUNCTION__, 2974 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2975 : "<none>", 2976 dyld->GetPluginName().AsCString("<unnamed>")); 2977 } 2978 } 2979 2980 GetJITLoaders().DidAttach(); 2981 2982 SystemRuntime *system_runtime = GetSystemRuntime(); 2983 if (system_runtime) { 2984 system_runtime->DidAttach(); 2985 if (log) { 2986 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2987 log->Printf("Process::%s after SystemRuntime::DidAttach(), target " 2988 "executable is %s (using %s plugin)", 2989 __FUNCTION__, 2990 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2991 : "<none>", 2992 system_runtime->GetPluginName().AsCString("<unnamed>")); 2993 } 2994 } 2995 2996 if (!m_os_up) 2997 LoadOperatingSystemPlugin(false); 2998 // Figure out which one is the executable, and set that in our target: 2999 const ModuleList &target_modules = GetTarget().GetImages(); 3000 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3001 size_t num_modules = target_modules.GetSize(); 3002 ModuleSP new_executable_module_sp; 3003 3004 for (size_t i = 0; i < num_modules; i++) { 3005 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3006 if (module_sp && module_sp->IsExecutable()) { 3007 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3008 new_executable_module_sp = module_sp; 3009 break; 3010 } 3011 } 3012 if (new_executable_module_sp) { 3013 GetTarget().SetExecutableModule(new_executable_module_sp, 3014 eLoadDependentsNo); 3015 if (log) { 3016 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3017 log->Printf( 3018 "Process::%s after looping through modules, target executable is %s", 3019 __FUNCTION__, 3020 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3021 : "<none>"); 3022 } 3023 } 3024 } 3025 3026 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3027 m_abi_sp.reset(); 3028 m_process_input_reader.reset(); 3029 3030 // Find the process and its architecture. Make sure it matches the 3031 // architecture of the current Target, and if not adjust it. 3032 3033 Status error(DoConnectRemote(strm, remote_url)); 3034 if (error.Success()) { 3035 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3036 EventSP event_sp; 3037 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3038 3039 if (state == eStateStopped || state == eStateCrashed) { 3040 // If we attached and actually have a process on the other end, then 3041 // this ended up being the equivalent of an attach. 3042 CompleteAttach(); 3043 3044 // This delays passing the stopped event to listeners till 3045 // CompleteAttach gets a chance to complete... 3046 HandlePrivateEvent(event_sp); 3047 } 3048 } 3049 3050 if (PrivateStateThreadIsValid()) 3051 ResumePrivateStateThread(); 3052 else 3053 StartPrivateStateThread(); 3054 } 3055 return error; 3056 } 3057 3058 Status Process::PrivateResume() { 3059 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3060 LIBLLDB_LOG_STEP)); 3061 if (log) 3062 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s " 3063 "private state: %s", 3064 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3065 StateAsCString(m_private_state.GetValue())); 3066 3067 // If signals handing status changed we might want to update our signal 3068 // filters before resuming. 3069 UpdateAutomaticSignalFiltering(); 3070 3071 Status error(WillResume()); 3072 // Tell the process it is about to resume before the thread list 3073 if (error.Success()) { 3074 // Now let the thread list know we are about to resume so it can let all of 3075 // our threads know that they are about to be resumed. Threads will each be 3076 // called with Thread::WillResume(StateType) where StateType contains the 3077 // state that they are supposed to have when the process is resumed 3078 // (suspended/running/stepping). Threads should also check their resume 3079 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3080 // start back up with a signal. 3081 if (m_thread_list.WillResume()) { 3082 // Last thing, do the PreResumeActions. 3083 if (!RunPreResumeActions()) { 3084 error.SetErrorStringWithFormat( 3085 "Process::PrivateResume PreResumeActions failed, not resuming."); 3086 } else { 3087 m_mod_id.BumpResumeID(); 3088 error = DoResume(); 3089 if (error.Success()) { 3090 DidResume(); 3091 m_thread_list.DidResume(); 3092 if (log) 3093 log->Printf("Process thinks the process has resumed."); 3094 } else { 3095 if (log) 3096 log->Printf( 3097 "Process::PrivateResume() DoResume failed."); 3098 return error; 3099 } 3100 } 3101 } else { 3102 // Somebody wanted to run without running (e.g. we were faking a step 3103 // from one frame of a set of inlined frames that share the same PC to 3104 // another.) So generate a continue & a stopped event, and let the world 3105 // handle them. 3106 if (log) 3107 log->Printf( 3108 "Process::PrivateResume() asked to simulate a start & stop."); 3109 3110 SetPrivateState(eStateRunning); 3111 SetPrivateState(eStateStopped); 3112 } 3113 } else if (log) 3114 log->Printf("Process::PrivateResume() got an error \"%s\".", 3115 error.AsCString("<unknown error>")); 3116 return error; 3117 } 3118 3119 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3120 if (!StateIsRunningState(m_public_state.GetValue())) 3121 return Status("Process is not running."); 3122 3123 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3124 // case it was already set and some thread plan logic calls halt on its own. 3125 m_clear_thread_plans_on_stop |= clear_thread_plans; 3126 3127 ListenerSP halt_listener_sp( 3128 Listener::MakeListener("lldb.process.halt_listener")); 3129 HijackProcessEvents(halt_listener_sp); 3130 3131 EventSP event_sp; 3132 3133 SendAsyncInterrupt(); 3134 3135 if (m_public_state.GetValue() == eStateAttaching) { 3136 // Don't hijack and eat the eStateExited as the code that was doing the 3137 // attach will be waiting for this event... 3138 RestoreProcessEvents(); 3139 SetExitStatus(SIGKILL, "Cancelled async attach."); 3140 Destroy(false); 3141 return Status(); 3142 } 3143 3144 // Wait for 10 second for the process to stop. 3145 StateType state = WaitForProcessToStop( 3146 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3147 RestoreProcessEvents(); 3148 3149 if (state == eStateInvalid || !event_sp) { 3150 // We timed out and didn't get a stop event... 3151 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3152 } 3153 3154 BroadcastEvent(event_sp); 3155 3156 return Status(); 3157 } 3158 3159 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3160 Status error; 3161 3162 // Check both the public & private states here. If we're hung evaluating an 3163 // expression, for instance, then the public state will be stopped, but we 3164 // still need to interrupt. 3165 if (m_public_state.GetValue() == eStateRunning || 3166 m_private_state.GetValue() == eStateRunning) { 3167 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3168 if (log) 3169 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3170 3171 ListenerSP listener_sp( 3172 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3173 HijackProcessEvents(listener_sp); 3174 3175 SendAsyncInterrupt(); 3176 3177 // Consume the interrupt event. 3178 StateType state = 3179 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3180 3181 RestoreProcessEvents(); 3182 3183 // If the process exited while we were waiting for it to stop, put the 3184 // exited event into the shared pointer passed in and return. Our caller 3185 // doesn't need to do anything else, since they don't have a process 3186 // anymore... 3187 3188 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3189 if (log) 3190 log->Printf("Process::%s() Process exited while waiting to stop.", 3191 __FUNCTION__); 3192 return error; 3193 } else 3194 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3195 3196 if (state != eStateStopped) { 3197 if (log) 3198 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, 3199 StateAsCString(state)); 3200 // If we really couldn't stop the process then we should just error out 3201 // here, but if the lower levels just bobbled sending the event and we 3202 // really are stopped, then continue on. 3203 StateType private_state = m_private_state.GetValue(); 3204 if (private_state != eStateStopped) { 3205 return Status( 3206 "Attempt to stop the target in order to detach timed out. " 3207 "State = %s", 3208 StateAsCString(GetState())); 3209 } 3210 } 3211 } 3212 return error; 3213 } 3214 3215 Status Process::Detach(bool keep_stopped) { 3216 EventSP exit_event_sp; 3217 Status error; 3218 m_destroy_in_process = true; 3219 3220 error = WillDetach(); 3221 3222 if (error.Success()) { 3223 if (DetachRequiresHalt()) { 3224 error = StopForDestroyOrDetach(exit_event_sp); 3225 if (!error.Success()) { 3226 m_destroy_in_process = false; 3227 return error; 3228 } else if (exit_event_sp) { 3229 // We shouldn't need to do anything else here. There's no process left 3230 // to detach from... 3231 StopPrivateStateThread(); 3232 m_destroy_in_process = false; 3233 return error; 3234 } 3235 } 3236 3237 m_thread_list.DiscardThreadPlans(); 3238 DisableAllBreakpointSites(); 3239 3240 error = DoDetach(keep_stopped); 3241 if (error.Success()) { 3242 DidDetach(); 3243 StopPrivateStateThread(); 3244 } else { 3245 return error; 3246 } 3247 } 3248 m_destroy_in_process = false; 3249 3250 // If we exited when we were waiting for a process to stop, then forward the 3251 // event here so we don't lose the event 3252 if (exit_event_sp) { 3253 // Directly broadcast our exited event because we shut down our private 3254 // state thread above 3255 BroadcastEvent(exit_event_sp); 3256 } 3257 3258 // If we have been interrupted (to kill us) in the middle of running, we may 3259 // not end up propagating the last events through the event system, in which 3260 // case we might strand the write lock. Unlock it here so when we do to tear 3261 // down the process we don't get an error destroying the lock. 3262 3263 m_public_run_lock.SetStopped(); 3264 return error; 3265 } 3266 3267 Status Process::Destroy(bool force_kill) { 3268 3269 // Tell ourselves we are in the process of destroying the process, so that we 3270 // don't do any unnecessary work that might hinder the destruction. Remember 3271 // to set this back to false when we are done. That way if the attempt 3272 // failed and the process stays around for some reason it won't be in a 3273 // confused state. 3274 3275 if (force_kill) 3276 m_should_detach = false; 3277 3278 if (GetShouldDetach()) { 3279 // FIXME: This will have to be a process setting: 3280 bool keep_stopped = false; 3281 Detach(keep_stopped); 3282 } 3283 3284 m_destroy_in_process = true; 3285 3286 Status error(WillDestroy()); 3287 if (error.Success()) { 3288 EventSP exit_event_sp; 3289 if (DestroyRequiresHalt()) { 3290 error = StopForDestroyOrDetach(exit_event_sp); 3291 } 3292 3293 if (m_public_state.GetValue() != eStateRunning) { 3294 // Ditch all thread plans, and remove all our breakpoints: in case we 3295 // have to restart the target to kill it, we don't want it hitting a 3296 // breakpoint... Only do this if we've stopped, however, since if we 3297 // didn't manage to halt it above, then we're not going to have much luck 3298 // doing this now. 3299 m_thread_list.DiscardThreadPlans(); 3300 DisableAllBreakpointSites(); 3301 } 3302 3303 error = DoDestroy(); 3304 if (error.Success()) { 3305 DidDestroy(); 3306 StopPrivateStateThread(); 3307 } 3308 m_stdio_communication.Disconnect(); 3309 m_stdio_communication.StopReadThread(); 3310 m_stdin_forward = false; 3311 3312 if (m_process_input_reader) { 3313 m_process_input_reader->SetIsDone(true); 3314 m_process_input_reader->Cancel(); 3315 m_process_input_reader.reset(); 3316 } 3317 3318 // If we exited when we were waiting for a process to stop, then forward 3319 // the event here so we don't lose the event 3320 if (exit_event_sp) { 3321 // Directly broadcast our exited event because we shut down our private 3322 // state thread above 3323 BroadcastEvent(exit_event_sp); 3324 } 3325 3326 // If we have been interrupted (to kill us) in the middle of running, we 3327 // may not end up propagating the last events through the event system, in 3328 // which case we might strand the write lock. Unlock it here so when we do 3329 // to tear down the process we don't get an error destroying the lock. 3330 m_public_run_lock.SetStopped(); 3331 } 3332 3333 m_destroy_in_process = false; 3334 3335 return error; 3336 } 3337 3338 Status Process::Signal(int signal) { 3339 Status error(WillSignal()); 3340 if (error.Success()) { 3341 error = DoSignal(signal); 3342 if (error.Success()) 3343 DidSignal(); 3344 } 3345 return error; 3346 } 3347 3348 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3349 assert(signals_sp && "null signals_sp"); 3350 m_unix_signals_sp = signals_sp; 3351 } 3352 3353 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3354 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3355 return m_unix_signals_sp; 3356 } 3357 3358 lldb::ByteOrder Process::GetByteOrder() const { 3359 return GetTarget().GetArchitecture().GetByteOrder(); 3360 } 3361 3362 uint32_t Process::GetAddressByteSize() const { 3363 return GetTarget().GetArchitecture().GetAddressByteSize(); 3364 } 3365 3366 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3367 const StateType state = 3368 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3369 bool return_value = true; 3370 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3371 LIBLLDB_LOG_PROCESS)); 3372 3373 switch (state) { 3374 case eStateDetached: 3375 case eStateExited: 3376 case eStateUnloaded: 3377 m_stdio_communication.SynchronizeWithReadThread(); 3378 m_stdio_communication.Disconnect(); 3379 m_stdio_communication.StopReadThread(); 3380 m_stdin_forward = false; 3381 3382 LLVM_FALLTHROUGH; 3383 case eStateConnected: 3384 case eStateAttaching: 3385 case eStateLaunching: 3386 // These events indicate changes in the state of the debugging session, 3387 // always report them. 3388 return_value = true; 3389 break; 3390 case eStateInvalid: 3391 // We stopped for no apparent reason, don't report it. 3392 return_value = false; 3393 break; 3394 case eStateRunning: 3395 case eStateStepping: 3396 // If we've started the target running, we handle the cases where we are 3397 // already running and where there is a transition from stopped to running 3398 // differently. running -> running: Automatically suppress extra running 3399 // events stopped -> running: Report except when there is one or more no 3400 // votes 3401 // and no yes votes. 3402 SynchronouslyNotifyStateChanged(state); 3403 if (m_force_next_event_delivery) 3404 return_value = true; 3405 else { 3406 switch (m_last_broadcast_state) { 3407 case eStateRunning: 3408 case eStateStepping: 3409 // We always suppress multiple runnings with no PUBLIC stop in between. 3410 return_value = false; 3411 break; 3412 default: 3413 // TODO: make this work correctly. For now always report 3414 // run if we aren't running so we don't miss any running events. If I 3415 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3416 // and hit the breakpoints on multiple threads, then somehow during the 3417 // stepping over of all breakpoints no run gets reported. 3418 3419 // This is a transition from stop to run. 3420 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3421 case eVoteYes: 3422 case eVoteNoOpinion: 3423 return_value = true; 3424 break; 3425 case eVoteNo: 3426 return_value = false; 3427 break; 3428 } 3429 break; 3430 } 3431 } 3432 break; 3433 case eStateStopped: 3434 case eStateCrashed: 3435 case eStateSuspended: 3436 // We've stopped. First see if we're going to restart the target. If we 3437 // are going to stop, then we always broadcast the event. If we aren't 3438 // going to stop, let the thread plans decide if we're going to report this 3439 // event. If no thread has an opinion, we don't report it. 3440 3441 m_stdio_communication.SynchronizeWithReadThread(); 3442 RefreshStateAfterStop(); 3443 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3444 if (log) 3445 log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an " 3446 "interrupt, state: %s", 3447 static_cast<void *>(event_ptr), StateAsCString(state)); 3448 // Even though we know we are going to stop, we should let the threads 3449 // have a look at the stop, so they can properly set their state. 3450 m_thread_list.ShouldStop(event_ptr); 3451 return_value = true; 3452 } else { 3453 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3454 bool should_resume = false; 3455 3456 // It makes no sense to ask "ShouldStop" if we've already been 3457 // restarted... Asking the thread list is also not likely to go well, 3458 // since we are running again. So in that case just report the event. 3459 3460 if (!was_restarted) 3461 should_resume = !m_thread_list.ShouldStop(event_ptr); 3462 3463 if (was_restarted || should_resume || m_resume_requested) { 3464 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3465 if (log) 3466 log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: " 3467 "%s was_restarted: %i stop_vote: %d.", 3468 should_resume, StateAsCString(state), was_restarted, 3469 stop_vote); 3470 3471 switch (stop_vote) { 3472 case eVoteYes: 3473 return_value = true; 3474 break; 3475 case eVoteNoOpinion: 3476 case eVoteNo: 3477 return_value = false; 3478 break; 3479 } 3480 3481 if (!was_restarted) { 3482 if (log) 3483 log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process " 3484 "from state: %s", 3485 static_cast<void *>(event_ptr), StateAsCString(state)); 3486 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3487 PrivateResume(); 3488 } 3489 } else { 3490 return_value = true; 3491 SynchronouslyNotifyStateChanged(state); 3492 } 3493 } 3494 break; 3495 } 3496 3497 // Forcing the next event delivery is a one shot deal. So reset it here. 3498 m_force_next_event_delivery = false; 3499 3500 // We do some coalescing of events (for instance two consecutive running 3501 // events get coalesced.) But we only coalesce against events we actually 3502 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3503 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3504 // done, because the PublicState reflects the last event pulled off the 3505 // queue, and there may be several events stacked up on the queue unserviced. 3506 // So the PublicState may not reflect the last broadcasted event yet. 3507 // m_last_broadcast_state gets updated here. 3508 3509 if (return_value) 3510 m_last_broadcast_state = state; 3511 3512 if (log) 3513 log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3514 "broadcast state: %s - %s", 3515 static_cast<void *>(event_ptr), StateAsCString(state), 3516 StateAsCString(m_last_broadcast_state), 3517 return_value ? "YES" : "NO"); 3518 return return_value; 3519 } 3520 3521 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3522 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3523 3524 bool already_running = PrivateStateThreadIsValid(); 3525 if (log) 3526 log->Printf("Process::%s()%s ", __FUNCTION__, 3527 already_running ? " already running" 3528 : " starting private state thread"); 3529 3530 if (!is_secondary_thread && already_running) 3531 return true; 3532 3533 // Create a thread that watches our internal state and controls which events 3534 // make it to clients (into the DCProcess event queue). 3535 char thread_name[1024]; 3536 uint32_t max_len = llvm::get_max_thread_name_length(); 3537 if (max_len > 0 && max_len <= 30) { 3538 // On platforms with abbreviated thread name lengths, choose thread names 3539 // that fit within the limit. 3540 if (already_running) 3541 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3542 else 3543 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3544 } else { 3545 if (already_running) 3546 snprintf(thread_name, sizeof(thread_name), 3547 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3548 GetID()); 3549 else 3550 snprintf(thread_name, sizeof(thread_name), 3551 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3552 } 3553 3554 // Create the private state thread, and start it running. 3555 PrivateStateThreadArgs *args_ptr = 3556 new PrivateStateThreadArgs(this, is_secondary_thread); 3557 m_private_state_thread = 3558 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3559 (void *)args_ptr, nullptr, 8 * 1024 * 1024); 3560 if (m_private_state_thread.IsJoinable()) { 3561 ResumePrivateStateThread(); 3562 return true; 3563 } else 3564 return false; 3565 } 3566 3567 void Process::PausePrivateStateThread() { 3568 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3569 } 3570 3571 void Process::ResumePrivateStateThread() { 3572 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3573 } 3574 3575 void Process::StopPrivateStateThread() { 3576 if (m_private_state_thread.IsJoinable()) 3577 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3578 else { 3579 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3580 if (log) 3581 log->Printf( 3582 "Went to stop the private state thread, but it was already invalid."); 3583 } 3584 } 3585 3586 void Process::ControlPrivateStateThread(uint32_t signal) { 3587 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3588 3589 assert(signal == eBroadcastInternalStateControlStop || 3590 signal == eBroadcastInternalStateControlPause || 3591 signal == eBroadcastInternalStateControlResume); 3592 3593 if (log) 3594 log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal); 3595 3596 // Signal the private state thread 3597 if (m_private_state_thread.IsJoinable()) { 3598 // Broadcast the event. 3599 // It is important to do this outside of the if below, because it's 3600 // possible that the thread state is invalid but that the thread is waiting 3601 // on a control event instead of simply being on its way out (this should 3602 // not happen, but it apparently can). 3603 if (log) 3604 log->Printf("Sending control event of type: %d.", signal); 3605 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3606 m_private_state_control_broadcaster.BroadcastEvent(signal, 3607 event_receipt_sp); 3608 3609 // Wait for the event receipt or for the private state thread to exit 3610 bool receipt_received = false; 3611 if (PrivateStateThreadIsValid()) { 3612 while (!receipt_received) { 3613 // Check for a receipt for 2 seconds and then check if the private 3614 // state thread is still around. 3615 receipt_received = 3616 event_receipt_sp->WaitForEventReceived(std::chrono::seconds(2)); 3617 if (!receipt_received) { 3618 // Check if the private state thread is still around. If it isn't 3619 // then we are done waiting 3620 if (!PrivateStateThreadIsValid()) 3621 break; // Private state thread exited or is exiting, we are done 3622 } 3623 } 3624 } 3625 3626 if (signal == eBroadcastInternalStateControlStop) { 3627 thread_result_t result = NULL; 3628 m_private_state_thread.Join(&result); 3629 m_private_state_thread.Reset(); 3630 } 3631 } else { 3632 if (log) 3633 log->Printf( 3634 "Private state thread already dead, no need to signal it to stop."); 3635 } 3636 } 3637 3638 void Process::SendAsyncInterrupt() { 3639 if (PrivateStateThreadIsValid()) 3640 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3641 nullptr); 3642 else 3643 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3644 } 3645 3646 void Process::HandlePrivateEvent(EventSP &event_sp) { 3647 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3648 m_resume_requested = false; 3649 3650 const StateType new_state = 3651 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3652 3653 // First check to see if anybody wants a shot at this event: 3654 if (m_next_event_action_up) { 3655 NextEventAction::EventActionResult action_result = 3656 m_next_event_action_up->PerformAction(event_sp); 3657 if (log) 3658 log->Printf("Ran next event action, result was %d.", action_result); 3659 3660 switch (action_result) { 3661 case NextEventAction::eEventActionSuccess: 3662 SetNextEventAction(nullptr); 3663 break; 3664 3665 case NextEventAction::eEventActionRetry: 3666 break; 3667 3668 case NextEventAction::eEventActionExit: 3669 // Handle Exiting Here. If we already got an exited event, we should 3670 // just propagate it. Otherwise, swallow this event, and set our state 3671 // to exit so the next event will kill us. 3672 if (new_state != eStateExited) { 3673 // FIXME: should cons up an exited event, and discard this one. 3674 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3675 SetNextEventAction(nullptr); 3676 return; 3677 } 3678 SetNextEventAction(nullptr); 3679 break; 3680 } 3681 } 3682 3683 // See if we should broadcast this state to external clients? 3684 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3685 3686 if (should_broadcast) { 3687 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3688 if (log) { 3689 log->Printf("Process::%s (pid = %" PRIu64 3690 ") broadcasting new state %s (old state %s) to %s", 3691 __FUNCTION__, GetID(), StateAsCString(new_state), 3692 StateAsCString(GetState()), 3693 is_hijacked ? "hijacked" : "public"); 3694 } 3695 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3696 if (StateIsRunningState(new_state)) { 3697 // Only push the input handler if we aren't fowarding events, as this 3698 // means the curses GUI is in use... Or don't push it if we are launching 3699 // since it will come up stopped. 3700 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3701 new_state != eStateLaunching && new_state != eStateAttaching) { 3702 PushProcessIOHandler(); 3703 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3704 eBroadcastAlways); 3705 if (log) 3706 log->Printf("Process::%s updated m_iohandler_sync to %d", 3707 __FUNCTION__, m_iohandler_sync.GetValue()); 3708 } 3709 } else if (StateIsStoppedState(new_state, false)) { 3710 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3711 // If the lldb_private::Debugger is handling the events, we don't want 3712 // to pop the process IOHandler here, we want to do it when we receive 3713 // the stopped event so we can carefully control when the process 3714 // IOHandler is popped because when we stop we want to display some 3715 // text stating how and why we stopped, then maybe some 3716 // process/thread/frame info, and then we want the "(lldb) " prompt to 3717 // show up. If we pop the process IOHandler here, then we will cause 3718 // the command interpreter to become the top IOHandler after the 3719 // process pops off and it will update its prompt right away... See the 3720 // Debugger.cpp file where it calls the function as 3721 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3722 // Otherwise we end up getting overlapping "(lldb) " prompts and 3723 // garbled output. 3724 // 3725 // If we aren't handling the events in the debugger (which is indicated 3726 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3727 // we are hijacked, then we always pop the process IO handler manually. 3728 // Hijacking happens when the internal process state thread is running 3729 // thread plans, or when commands want to run in synchronous mode and 3730 // they call "process->WaitForProcessToStop()". An example of something 3731 // that will hijack the events is a simple expression: 3732 // 3733 // (lldb) expr (int)puts("hello") 3734 // 3735 // This will cause the internal process state thread to resume and halt 3736 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3737 // events) and we do need the IO handler to be pushed and popped 3738 // correctly. 3739 3740 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3741 PopProcessIOHandler(); 3742 } 3743 } 3744 3745 BroadcastEvent(event_sp); 3746 } else { 3747 if (log) { 3748 log->Printf( 3749 "Process::%s (pid = %" PRIu64 3750 ") suppressing state %s (old state %s): should_broadcast == false", 3751 __FUNCTION__, GetID(), StateAsCString(new_state), 3752 StateAsCString(GetState())); 3753 } 3754 } 3755 } 3756 3757 Status Process::HaltPrivate() { 3758 EventSP event_sp; 3759 Status error(WillHalt()); 3760 if (error.Fail()) 3761 return error; 3762 3763 // Ask the process subclass to actually halt our process 3764 bool caused_stop; 3765 error = DoHalt(caused_stop); 3766 3767 DidHalt(); 3768 return error; 3769 } 3770 3771 thread_result_t Process::PrivateStateThread(void *arg) { 3772 std::unique_ptr<PrivateStateThreadArgs> args_up( 3773 static_cast<PrivateStateThreadArgs *>(arg)); 3774 thread_result_t result = 3775 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3776 return result; 3777 } 3778 3779 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3780 bool control_only = true; 3781 3782 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3783 if (log) 3784 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3785 __FUNCTION__, static_cast<void *>(this), GetID()); 3786 3787 bool exit_now = false; 3788 bool interrupt_requested = false; 3789 while (!exit_now) { 3790 EventSP event_sp; 3791 GetEventsPrivate(event_sp, llvm::None, control_only); 3792 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3793 if (log) 3794 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3795 ") got a control event: %d", 3796 __FUNCTION__, static_cast<void *>(this), GetID(), 3797 event_sp->GetType()); 3798 3799 switch (event_sp->GetType()) { 3800 case eBroadcastInternalStateControlStop: 3801 exit_now = true; 3802 break; // doing any internal state management below 3803 3804 case eBroadcastInternalStateControlPause: 3805 control_only = true; 3806 break; 3807 3808 case eBroadcastInternalStateControlResume: 3809 control_only = false; 3810 break; 3811 } 3812 3813 continue; 3814 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3815 if (m_public_state.GetValue() == eStateAttaching) { 3816 if (log) 3817 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3818 ") woke up with an interrupt while attaching - " 3819 "forwarding interrupt.", 3820 __FUNCTION__, static_cast<void *>(this), GetID()); 3821 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3822 } else if (StateIsRunningState(m_last_broadcast_state)) { 3823 if (log) 3824 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3825 ") woke up with an interrupt - Halting.", 3826 __FUNCTION__, static_cast<void *>(this), GetID()); 3827 Status error = HaltPrivate(); 3828 if (error.Fail() && log) 3829 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3830 ") failed to halt the process: %s", 3831 __FUNCTION__, static_cast<void *>(this), GetID(), 3832 error.AsCString()); 3833 // Halt should generate a stopped event. Make a note of the fact that 3834 // we were doing the interrupt, so we can set the interrupted flag 3835 // after we receive the event. We deliberately set this to true even if 3836 // HaltPrivate failed, so that we can interrupt on the next natural 3837 // stop. 3838 interrupt_requested = true; 3839 } else { 3840 // This can happen when someone (e.g. Process::Halt) sees that we are 3841 // running and sends an interrupt request, but the process actually 3842 // stops before we receive it. In that case, we can just ignore the 3843 // request. We use m_last_broadcast_state, because the Stopped event 3844 // may not have been popped of the event queue yet, which is when the 3845 // public state gets updated. 3846 if (log) 3847 log->Printf( 3848 "Process::%s ignoring interrupt as we have already stopped.", 3849 __FUNCTION__); 3850 } 3851 continue; 3852 } 3853 3854 const StateType internal_state = 3855 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3856 3857 if (internal_state != eStateInvalid) { 3858 if (m_clear_thread_plans_on_stop && 3859 StateIsStoppedState(internal_state, true)) { 3860 m_clear_thread_plans_on_stop = false; 3861 m_thread_list.DiscardThreadPlans(); 3862 } 3863 3864 if (interrupt_requested) { 3865 if (StateIsStoppedState(internal_state, true)) { 3866 // We requested the interrupt, so mark this as such in the stop event 3867 // so clients can tell an interrupted process from a natural stop 3868 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3869 interrupt_requested = false; 3870 } else if (log) { 3871 log->Printf("Process::%s interrupt_requested, but a non-stopped " 3872 "state '%s' received.", 3873 __FUNCTION__, StateAsCString(internal_state)); 3874 } 3875 } 3876 3877 HandlePrivateEvent(event_sp); 3878 } 3879 3880 if (internal_state == eStateInvalid || internal_state == eStateExited || 3881 internal_state == eStateDetached) { 3882 if (log) 3883 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3884 ") about to exit with internal state %s...", 3885 __FUNCTION__, static_cast<void *>(this), GetID(), 3886 StateAsCString(internal_state)); 3887 3888 break; 3889 } 3890 } 3891 3892 // Verify log is still enabled before attempting to write to it... 3893 if (log) 3894 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3895 __FUNCTION__, static_cast<void *>(this), GetID()); 3896 3897 // If we are a secondary thread, then the primary thread we are working for 3898 // will have already acquired the public_run_lock, and isn't done with what 3899 // it was doing yet, so don't try to change it on the way out. 3900 if (!is_secondary_thread) 3901 m_public_run_lock.SetStopped(); 3902 return NULL; 3903 } 3904 3905 //------------------------------------------------------------------ 3906 // Process Event Data 3907 //------------------------------------------------------------------ 3908 3909 Process::ProcessEventData::ProcessEventData() 3910 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3911 m_update_state(0), m_interrupted(false) {} 3912 3913 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3914 StateType state) 3915 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3916 m_update_state(0), m_interrupted(false) { 3917 if (process_sp) 3918 m_process_wp = process_sp; 3919 } 3920 3921 Process::ProcessEventData::~ProcessEventData() = default; 3922 3923 ConstString Process::ProcessEventData::GetFlavorString() { 3924 static ConstString g_flavor("Process::ProcessEventData"); 3925 return g_flavor; 3926 } 3927 3928 ConstString Process::ProcessEventData::GetFlavor() const { 3929 return ProcessEventData::GetFlavorString(); 3930 } 3931 3932 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3933 ProcessSP process_sp(m_process_wp.lock()); 3934 3935 if (!process_sp) 3936 return; 3937 3938 // This function gets called twice for each event, once when the event gets 3939 // pulled off of the private process event queue, and then any number of 3940 // times, first when it gets pulled off of the public event queue, then other 3941 // times when we're pretending that this is where we stopped at the end of 3942 // expression evaluation. m_update_state is used to distinguish these three 3943 // cases; it is 0 when we're just pulling it off for private handling, and > 3944 // 1 for expression evaluation, and we don't want to do the breakpoint 3945 // command handling then. 3946 if (m_update_state != 1) 3947 return; 3948 3949 process_sp->SetPublicState( 3950 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 3951 3952 if (m_state == eStateStopped && !m_restarted) { 3953 // Let process subclasses know we are about to do a public stop and do 3954 // anything they might need to in order to speed up register and memory 3955 // accesses. 3956 process_sp->WillPublicStop(); 3957 } 3958 3959 // If this is a halt event, even if the halt stopped with some reason other 3960 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 3961 // the halt request came through) don't do the StopInfo actions, as they may 3962 // end up restarting the process. 3963 if (m_interrupted) 3964 return; 3965 3966 // If we're stopped and haven't restarted, then do the StopInfo actions here: 3967 if (m_state == eStateStopped && !m_restarted) { 3968 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3969 uint32_t num_threads = curr_thread_list.GetSize(); 3970 uint32_t idx; 3971 3972 // The actions might change one of the thread's stop_info's opinions about 3973 // whether we should stop the process, so we need to query that as we go. 3974 3975 // One other complication here, is that we try to catch any case where the 3976 // target has run (except for expressions) and immediately exit, but if we 3977 // get that wrong (which is possible) then the thread list might have 3978 // changed, and that would cause our iteration here to crash. We could 3979 // make a copy of the thread list, but we'd really like to also know if it 3980 // has changed at all, so we make up a vector of the thread ID's and check 3981 // what we get back against this list & bag out if anything differs. 3982 std::vector<uint32_t> thread_index_array(num_threads); 3983 for (idx = 0; idx < num_threads; ++idx) 3984 thread_index_array[idx] = 3985 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 3986 3987 // Use this to track whether we should continue from here. We will only 3988 // continue the target running if no thread says we should stop. Of course 3989 // if some thread's PerformAction actually sets the target running, then it 3990 // doesn't matter what the other threads say... 3991 3992 bool still_should_stop = false; 3993 3994 // Sometimes - for instance if we have a bug in the stub we are talking to, 3995 // we stop but no thread has a valid stop reason. In that case we should 3996 // just stop, because we have no way of telling what the right thing to do 3997 // is, and it's better to let the user decide than continue behind their 3998 // backs. 3999 4000 bool does_anybody_have_an_opinion = false; 4001 4002 for (idx = 0; idx < num_threads; ++idx) { 4003 curr_thread_list = process_sp->GetThreadList(); 4004 if (curr_thread_list.GetSize() != num_threads) { 4005 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4006 LIBLLDB_LOG_PROCESS)); 4007 if (log) 4008 log->Printf( 4009 "Number of threads changed from %u to %u while processing event.", 4010 num_threads, curr_thread_list.GetSize()); 4011 break; 4012 } 4013 4014 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4015 4016 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4017 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4018 LIBLLDB_LOG_PROCESS)); 4019 if (log) 4020 log->Printf("The thread at position %u changed from %u to %u while " 4021 "processing event.", 4022 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4023 break; 4024 } 4025 4026 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4027 if (stop_info_sp && stop_info_sp->IsValid()) { 4028 does_anybody_have_an_opinion = true; 4029 bool this_thread_wants_to_stop; 4030 if (stop_info_sp->GetOverrideShouldStop()) { 4031 this_thread_wants_to_stop = 4032 stop_info_sp->GetOverriddenShouldStopValue(); 4033 } else { 4034 stop_info_sp->PerformAction(event_ptr); 4035 // The stop action might restart the target. If it does, then we 4036 // want to mark that in the event so that whoever is receiving it 4037 // will know to wait for the running event and reflect that state 4038 // appropriately. We also need to stop processing actions, since they 4039 // aren't expecting the target to be running. 4040 4041 // FIXME: we might have run. 4042 if (stop_info_sp->HasTargetRunSinceMe()) { 4043 SetRestarted(true); 4044 break; 4045 } 4046 4047 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4048 } 4049 4050 if (!still_should_stop) 4051 still_should_stop = this_thread_wants_to_stop; 4052 } 4053 } 4054 4055 if (!GetRestarted()) { 4056 if (!still_should_stop && does_anybody_have_an_opinion) { 4057 // We've been asked to continue, so do that here. 4058 SetRestarted(true); 4059 // Use the public resume method here, since this is just extending a 4060 // public resume. 4061 process_sp->PrivateResume(); 4062 } else { 4063 bool hijacked = 4064 process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) 4065 && !process_sp->StateChangedIsHijackedForSynchronousResume(); 4066 4067 if (!hijacked) { 4068 // If we didn't restart, run the Stop Hooks here. 4069 // Don't do that if state changed events aren't hooked up to the 4070 // public (or SyncResume) broadcasters. StopHooks are just for 4071 // real public stops. They might also restart the target, 4072 // so watch for that. 4073 process_sp->GetTarget().RunStopHooks(); 4074 if (process_sp->GetPrivateState() == eStateRunning) 4075 SetRestarted(true); 4076 } 4077 } 4078 } 4079 } 4080 } 4081 4082 void Process::ProcessEventData::Dump(Stream *s) const { 4083 ProcessSP process_sp(m_process_wp.lock()); 4084 4085 if (process_sp) 4086 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4087 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4088 else 4089 s->PutCString(" process = NULL, "); 4090 4091 s->Printf("state = %s", StateAsCString(GetState())); 4092 } 4093 4094 const Process::ProcessEventData * 4095 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4096 if (event_ptr) { 4097 const EventData *event_data = event_ptr->GetData(); 4098 if (event_data && 4099 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4100 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4101 } 4102 return nullptr; 4103 } 4104 4105 ProcessSP 4106 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4107 ProcessSP process_sp; 4108 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4109 if (data) 4110 process_sp = data->GetProcessSP(); 4111 return process_sp; 4112 } 4113 4114 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4115 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4116 if (data == nullptr) 4117 return eStateInvalid; 4118 else 4119 return data->GetState(); 4120 } 4121 4122 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4123 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4124 if (data == nullptr) 4125 return false; 4126 else 4127 return data->GetRestarted(); 4128 } 4129 4130 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4131 bool new_value) { 4132 ProcessEventData *data = 4133 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4134 if (data != nullptr) 4135 data->SetRestarted(new_value); 4136 } 4137 4138 size_t 4139 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4140 ProcessEventData *data = 4141 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4142 if (data != nullptr) 4143 return data->GetNumRestartedReasons(); 4144 else 4145 return 0; 4146 } 4147 4148 const char * 4149 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4150 size_t idx) { 4151 ProcessEventData *data = 4152 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4153 if (data != nullptr) 4154 return data->GetRestartedReasonAtIndex(idx); 4155 else 4156 return nullptr; 4157 } 4158 4159 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4160 const char *reason) { 4161 ProcessEventData *data = 4162 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4163 if (data != nullptr) 4164 data->AddRestartedReason(reason); 4165 } 4166 4167 bool Process::ProcessEventData::GetInterruptedFromEvent( 4168 const Event *event_ptr) { 4169 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4170 if (data == nullptr) 4171 return false; 4172 else 4173 return data->GetInterrupted(); 4174 } 4175 4176 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4177 bool new_value) { 4178 ProcessEventData *data = 4179 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4180 if (data != nullptr) 4181 data->SetInterrupted(new_value); 4182 } 4183 4184 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4185 ProcessEventData *data = 4186 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4187 if (data) { 4188 data->SetUpdateStateOnRemoval(); 4189 return true; 4190 } 4191 return false; 4192 } 4193 4194 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4195 4196 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4197 exe_ctx.SetTargetPtr(&GetTarget()); 4198 exe_ctx.SetProcessPtr(this); 4199 exe_ctx.SetThreadPtr(nullptr); 4200 exe_ctx.SetFramePtr(nullptr); 4201 } 4202 4203 // uint32_t 4204 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4205 // std::vector<lldb::pid_t> &pids) 4206 //{ 4207 // return 0; 4208 //} 4209 // 4210 // ArchSpec 4211 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4212 //{ 4213 // return Host::GetArchSpecForExistingProcess (pid); 4214 //} 4215 // 4216 // ArchSpec 4217 // Process::GetArchSpecForExistingProcess (const char *process_name) 4218 //{ 4219 // return Host::GetArchSpecForExistingProcess (process_name); 4220 //} 4221 4222 void Process::AppendSTDOUT(const char *s, size_t len) { 4223 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4224 m_stdout_data.append(s, len); 4225 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4226 new ProcessEventData(shared_from_this(), GetState())); 4227 } 4228 4229 void Process::AppendSTDERR(const char *s, size_t len) { 4230 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4231 m_stderr_data.append(s, len); 4232 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4233 new ProcessEventData(shared_from_this(), GetState())); 4234 } 4235 4236 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4237 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4238 m_profile_data.push_back(one_profile_data); 4239 BroadcastEventIfUnique(eBroadcastBitProfileData, 4240 new ProcessEventData(shared_from_this(), GetState())); 4241 } 4242 4243 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4244 const StructuredDataPluginSP &plugin_sp) { 4245 BroadcastEvent( 4246 eBroadcastBitStructuredData, 4247 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4248 } 4249 4250 StructuredDataPluginSP 4251 Process::GetStructuredDataPlugin(ConstString type_name) const { 4252 auto find_it = m_structured_data_plugin_map.find(type_name); 4253 if (find_it != m_structured_data_plugin_map.end()) 4254 return find_it->second; 4255 else 4256 return StructuredDataPluginSP(); 4257 } 4258 4259 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4260 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4261 if (m_profile_data.empty()) 4262 return 0; 4263 4264 std::string &one_profile_data = m_profile_data.front(); 4265 size_t bytes_available = one_profile_data.size(); 4266 if (bytes_available > 0) { 4267 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4268 if (log) 4269 log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4270 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4271 if (bytes_available > buf_size) { 4272 memcpy(buf, one_profile_data.c_str(), buf_size); 4273 one_profile_data.erase(0, buf_size); 4274 bytes_available = buf_size; 4275 } else { 4276 memcpy(buf, one_profile_data.c_str(), bytes_available); 4277 m_profile_data.erase(m_profile_data.begin()); 4278 } 4279 } 4280 return bytes_available; 4281 } 4282 4283 //------------------------------------------------------------------ 4284 // Process STDIO 4285 //------------------------------------------------------------------ 4286 4287 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4288 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4289 size_t bytes_available = m_stdout_data.size(); 4290 if (bytes_available > 0) { 4291 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4292 if (log) 4293 log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4294 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4295 if (bytes_available > buf_size) { 4296 memcpy(buf, m_stdout_data.c_str(), buf_size); 4297 m_stdout_data.erase(0, buf_size); 4298 bytes_available = buf_size; 4299 } else { 4300 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4301 m_stdout_data.clear(); 4302 } 4303 } 4304 return bytes_available; 4305 } 4306 4307 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4308 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4309 size_t bytes_available = m_stderr_data.size(); 4310 if (bytes_available > 0) { 4311 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4312 if (log) 4313 log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4314 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4315 if (bytes_available > buf_size) { 4316 memcpy(buf, m_stderr_data.c_str(), buf_size); 4317 m_stderr_data.erase(0, buf_size); 4318 bytes_available = buf_size; 4319 } else { 4320 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4321 m_stderr_data.clear(); 4322 } 4323 } 4324 return bytes_available; 4325 } 4326 4327 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4328 size_t src_len) { 4329 Process *process = (Process *)baton; 4330 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4331 } 4332 4333 class IOHandlerProcessSTDIO : public IOHandler { 4334 public: 4335 IOHandlerProcessSTDIO(Process *process, int write_fd) 4336 : IOHandler(process->GetTarget().GetDebugger(), 4337 IOHandler::Type::ProcessIO), 4338 m_process(process), m_write_file(write_fd, false) { 4339 m_pipe.CreateNew(false); 4340 m_read_file.SetDescriptor(GetInputFD(), false); 4341 } 4342 4343 ~IOHandlerProcessSTDIO() override = default; 4344 4345 // Each IOHandler gets to run until it is done. It should read data from the 4346 // "in" and place output into "out" and "err and return when done. 4347 void Run() override { 4348 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4349 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4350 SetIsDone(true); 4351 return; 4352 } 4353 4354 SetIsDone(false); 4355 const int read_fd = m_read_file.GetDescriptor(); 4356 TerminalState terminal_state; 4357 terminal_state.Save(read_fd, false); 4358 Terminal terminal(read_fd); 4359 terminal.SetCanonical(false); 4360 terminal.SetEcho(false); 4361 // FD_ZERO, FD_SET are not supported on windows 4362 #ifndef _WIN32 4363 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4364 m_is_running = true; 4365 while (!GetIsDone()) { 4366 SelectHelper select_helper; 4367 select_helper.FDSetRead(read_fd); 4368 select_helper.FDSetRead(pipe_read_fd); 4369 Status error = select_helper.Select(); 4370 4371 if (error.Fail()) { 4372 SetIsDone(true); 4373 } else { 4374 char ch = 0; 4375 size_t n; 4376 if (select_helper.FDIsSetRead(read_fd)) { 4377 n = 1; 4378 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4379 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4380 SetIsDone(true); 4381 } else 4382 SetIsDone(true); 4383 } 4384 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4385 size_t bytes_read; 4386 // Consume the interrupt byte 4387 Status error = m_pipe.Read(&ch, 1, bytes_read); 4388 if (error.Success()) { 4389 switch (ch) { 4390 case 'q': 4391 SetIsDone(true); 4392 break; 4393 case 'i': 4394 if (StateIsRunningState(m_process->GetState())) 4395 m_process->SendAsyncInterrupt(); 4396 break; 4397 } 4398 } 4399 } 4400 } 4401 } 4402 m_is_running = false; 4403 #endif 4404 terminal_state.Restore(); 4405 } 4406 4407 void Cancel() override { 4408 SetIsDone(true); 4409 // Only write to our pipe to cancel if we are in 4410 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4411 // is being run from the command interpreter: 4412 // 4413 // (lldb) step_process_thousands_of_times 4414 // 4415 // In this case the command interpreter will be in the middle of handling 4416 // the command and if the process pushes and pops the IOHandler thousands 4417 // of times, we can end up writing to m_pipe without ever consuming the 4418 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4419 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4420 if (m_is_running) { 4421 char ch = 'q'; // Send 'q' for quit 4422 size_t bytes_written = 0; 4423 m_pipe.Write(&ch, 1, bytes_written); 4424 } 4425 } 4426 4427 bool Interrupt() override { 4428 // Do only things that are safe to do in an interrupt context (like in a 4429 // SIGINT handler), like write 1 byte to a file descriptor. This will 4430 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4431 // that was written to the pipe and then call 4432 // m_process->SendAsyncInterrupt() from a much safer location in code. 4433 if (m_active) { 4434 char ch = 'i'; // Send 'i' for interrupt 4435 size_t bytes_written = 0; 4436 Status result = m_pipe.Write(&ch, 1, bytes_written); 4437 return result.Success(); 4438 } else { 4439 // This IOHandler might be pushed on the stack, but not being run 4440 // currently so do the right thing if we aren't actively watching for 4441 // STDIN by sending the interrupt to the process. Otherwise the write to 4442 // the pipe above would do nothing. This can happen when the command 4443 // interpreter is running and gets a "expression ...". It will be on the 4444 // IOHandler thread and sending the input is complete to the delegate 4445 // which will cause the expression to run, which will push the process IO 4446 // handler, but not run it. 4447 4448 if (StateIsRunningState(m_process->GetState())) { 4449 m_process->SendAsyncInterrupt(); 4450 return true; 4451 } 4452 } 4453 return false; 4454 } 4455 4456 void GotEOF() override {} 4457 4458 protected: 4459 Process *m_process; 4460 File m_read_file; // Read from this file (usually actual STDIN for LLDB 4461 File m_write_file; // Write to this file (usually the master pty for getting 4462 // io to debuggee) 4463 Pipe m_pipe; 4464 std::atomic<bool> m_is_running{false}; 4465 }; 4466 4467 void Process::SetSTDIOFileDescriptor(int fd) { 4468 // First set up the Read Thread for reading/handling process I/O 4469 4470 std::unique_ptr<ConnectionFileDescriptor> conn_up( 4471 new ConnectionFileDescriptor(fd, true)); 4472 4473 if (conn_up) { 4474 m_stdio_communication.SetConnection(conn_up.release()); 4475 if (m_stdio_communication.IsConnected()) { 4476 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4477 STDIOReadThreadBytesReceived, this); 4478 m_stdio_communication.StartReadThread(); 4479 4480 // Now read thread is set up, set up input reader. 4481 4482 if (!m_process_input_reader) 4483 m_process_input_reader = 4484 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4485 } 4486 } 4487 } 4488 4489 bool Process::ProcessIOHandlerIsActive() { 4490 IOHandlerSP io_handler_sp(m_process_input_reader); 4491 if (io_handler_sp) 4492 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4493 return false; 4494 } 4495 bool Process::PushProcessIOHandler() { 4496 IOHandlerSP io_handler_sp(m_process_input_reader); 4497 if (io_handler_sp) { 4498 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4499 if (log) 4500 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 4501 4502 io_handler_sp->SetIsDone(false); 4503 // If we evaluate an utility function, then we don't cancel the current 4504 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4505 // existing IOHandler that potentially provides the user interface (e.g. 4506 // the IOHandler for Editline). 4507 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4508 GetTarget().GetDebugger().PushIOHandler(io_handler_sp, cancel_top_handler); 4509 return true; 4510 } 4511 return false; 4512 } 4513 4514 bool Process::PopProcessIOHandler() { 4515 IOHandlerSP io_handler_sp(m_process_input_reader); 4516 if (io_handler_sp) 4517 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4518 return false; 4519 } 4520 4521 // The process needs to know about installed plug-ins 4522 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4523 4524 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4525 4526 namespace { 4527 // RestorePlanState is used to record the "is private", "is master" and "okay 4528 // to discard" fields of the plan we are running, and reset it on Clean or on 4529 // destruction. It will only reset the state once, so you can call Clean and 4530 // then monkey with the state and it won't get reset on you again. 4531 4532 class RestorePlanState { 4533 public: 4534 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4535 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4536 if (m_thread_plan_sp) { 4537 m_private = m_thread_plan_sp->GetPrivate(); 4538 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4539 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4540 } 4541 } 4542 4543 ~RestorePlanState() { Clean(); } 4544 4545 void Clean() { 4546 if (!m_already_reset && m_thread_plan_sp) { 4547 m_already_reset = true; 4548 m_thread_plan_sp->SetPrivate(m_private); 4549 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4550 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4551 } 4552 } 4553 4554 private: 4555 lldb::ThreadPlanSP m_thread_plan_sp; 4556 bool m_already_reset; 4557 bool m_private; 4558 bool m_is_master; 4559 bool m_okay_to_discard; 4560 }; 4561 } // anonymous namespace 4562 4563 static microseconds 4564 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4565 const milliseconds default_one_thread_timeout(250); 4566 4567 // If the overall wait is forever, then we don't need to worry about it. 4568 if (!options.GetTimeout()) { 4569 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4570 : default_one_thread_timeout; 4571 } 4572 4573 // If the one thread timeout is set, use it. 4574 if (options.GetOneThreadTimeout()) 4575 return *options.GetOneThreadTimeout(); 4576 4577 // Otherwise use half the total timeout, bounded by the 4578 // default_one_thread_timeout. 4579 return std::min<microseconds>(default_one_thread_timeout, 4580 *options.GetTimeout() / 2); 4581 } 4582 4583 static Timeout<std::micro> 4584 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4585 bool before_first_timeout) { 4586 // If we are going to run all threads the whole time, or if we are only going 4587 // to run one thread, we can just return the overall timeout. 4588 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4589 return options.GetTimeout(); 4590 4591 if (before_first_timeout) 4592 return GetOneThreadExpressionTimeout(options); 4593 4594 if (!options.GetTimeout()) 4595 return llvm::None; 4596 else 4597 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4598 } 4599 4600 static llvm::Optional<ExpressionResults> 4601 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4602 RestorePlanState &restorer, const EventSP &event_sp, 4603 EventSP &event_to_broadcast_sp, 4604 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4605 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4606 4607 ThreadPlanSP plan = thread.GetCompletedPlan(); 4608 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4609 LLDB_LOG(log, "execution completed successfully"); 4610 4611 // Restore the plan state so it will get reported as intended when we are 4612 // done. 4613 restorer.Clean(); 4614 return eExpressionCompleted; 4615 } 4616 4617 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4618 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4619 stop_info_sp->ShouldNotify(event_sp.get())) { 4620 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4621 if (!options.DoesIgnoreBreakpoints()) { 4622 // Restore the plan state and then force Private to false. We are going 4623 // to stop because of this plan so we need it to become a public plan or 4624 // it won't report correctly when we continue to its termination later 4625 // on. 4626 restorer.Clean(); 4627 thread_plan_sp->SetPrivate(false); 4628 event_to_broadcast_sp = event_sp; 4629 } 4630 return eExpressionHitBreakpoint; 4631 } 4632 4633 if (!handle_interrupts && 4634 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4635 return llvm::None; 4636 4637 LLDB_LOG(log, "thread plan did not successfully complete"); 4638 if (!options.DoesUnwindOnError()) 4639 event_to_broadcast_sp = event_sp; 4640 return eExpressionInterrupted; 4641 } 4642 4643 ExpressionResults 4644 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4645 lldb::ThreadPlanSP &thread_plan_sp, 4646 const EvaluateExpressionOptions &options, 4647 DiagnosticManager &diagnostic_manager) { 4648 ExpressionResults return_value = eExpressionSetupError; 4649 4650 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4651 4652 if (!thread_plan_sp) { 4653 diagnostic_manager.PutString( 4654 eDiagnosticSeverityError, 4655 "RunThreadPlan called with empty thread plan."); 4656 return eExpressionSetupError; 4657 } 4658 4659 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4660 diagnostic_manager.PutString( 4661 eDiagnosticSeverityError, 4662 "RunThreadPlan called with an invalid thread plan."); 4663 return eExpressionSetupError; 4664 } 4665 4666 if (exe_ctx.GetProcessPtr() != this) { 4667 diagnostic_manager.PutString(eDiagnosticSeverityError, 4668 "RunThreadPlan called on wrong process."); 4669 return eExpressionSetupError; 4670 } 4671 4672 Thread *thread = exe_ctx.GetThreadPtr(); 4673 if (thread == nullptr) { 4674 diagnostic_manager.PutString(eDiagnosticSeverityError, 4675 "RunThreadPlan called with invalid thread."); 4676 return eExpressionSetupError; 4677 } 4678 4679 // We need to change some of the thread plan attributes for the thread plan 4680 // runner. This will restore them when we are done: 4681 4682 RestorePlanState thread_plan_restorer(thread_plan_sp); 4683 4684 // We rely on the thread plan we are running returning "PlanCompleted" if 4685 // when it successfully completes. For that to be true the plan can't be 4686 // private - since private plans suppress themselves in the GetCompletedPlan 4687 // call. 4688 4689 thread_plan_sp->SetPrivate(false); 4690 4691 // The plans run with RunThreadPlan also need to be terminal master plans or 4692 // when they are done we will end up asking the plan above us whether we 4693 // should stop, which may give the wrong answer. 4694 4695 thread_plan_sp->SetIsMasterPlan(true); 4696 thread_plan_sp->SetOkayToDiscard(false); 4697 4698 // If we are running some utility expression for LLDB, we now have to mark 4699 // this in the ProcesModID of this process. This RAII takes care of marking 4700 // and reverting the mark it once we are done running the expression. 4701 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4702 4703 if (m_private_state.GetValue() != eStateStopped) { 4704 diagnostic_manager.PutString( 4705 eDiagnosticSeverityError, 4706 "RunThreadPlan called while the private state was not stopped."); 4707 return eExpressionSetupError; 4708 } 4709 4710 // Save the thread & frame from the exe_ctx for restoration after we run 4711 const uint32_t thread_idx_id = thread->GetIndexID(); 4712 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4713 if (!selected_frame_sp) { 4714 thread->SetSelectedFrame(nullptr); 4715 selected_frame_sp = thread->GetSelectedFrame(); 4716 if (!selected_frame_sp) { 4717 diagnostic_manager.Printf( 4718 eDiagnosticSeverityError, 4719 "RunThreadPlan called without a selected frame on thread %d", 4720 thread_idx_id); 4721 return eExpressionSetupError; 4722 } 4723 } 4724 4725 // Make sure the timeout values make sense. The one thread timeout needs to 4726 // be smaller than the overall timeout. 4727 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4728 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4729 diagnostic_manager.PutString(eDiagnosticSeverityError, 4730 "RunThreadPlan called with one thread " 4731 "timeout greater than total timeout"); 4732 return eExpressionSetupError; 4733 } 4734 4735 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4736 4737 // N.B. Running the target may unset the currently selected thread and frame. 4738 // We don't want to do that either, so we should arrange to reset them as 4739 // well. 4740 4741 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4742 4743 uint32_t selected_tid; 4744 StackID selected_stack_id; 4745 if (selected_thread_sp) { 4746 selected_tid = selected_thread_sp->GetIndexID(); 4747 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4748 } else { 4749 selected_tid = LLDB_INVALID_THREAD_ID; 4750 } 4751 4752 HostThread backup_private_state_thread; 4753 lldb::StateType old_state = eStateInvalid; 4754 lldb::ThreadPlanSP stopper_base_plan_sp; 4755 4756 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4757 LIBLLDB_LOG_PROCESS)); 4758 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4759 // Yikes, we are running on the private state thread! So we can't wait for 4760 // public events on this thread, since we are the thread that is generating 4761 // public events. The simplest thing to do is to spin up a temporary thread 4762 // to handle private state thread events while we are fielding public 4763 // events here. 4764 if (log) 4765 log->Printf("Running thread plan on private state thread, spinning up " 4766 "another state thread to handle the events."); 4767 4768 backup_private_state_thread = m_private_state_thread; 4769 4770 // One other bit of business: we want to run just this thread plan and 4771 // anything it pushes, and then stop, returning control here. But in the 4772 // normal course of things, the plan above us on the stack would be given a 4773 // shot at the stop event before deciding to stop, and we don't want that. 4774 // So we insert a "stopper" base plan on the stack before the plan we want 4775 // to run. Since base plans always stop and return control to the user, 4776 // that will do just what we want. 4777 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4778 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4779 // Have to make sure our public state is stopped, since otherwise the 4780 // reporting logic below doesn't work correctly. 4781 old_state = m_public_state.GetValue(); 4782 m_public_state.SetValueNoLock(eStateStopped); 4783 4784 // Now spin up the private state thread: 4785 StartPrivateStateThread(true); 4786 } 4787 4788 thread->QueueThreadPlan( 4789 thread_plan_sp, false); // This used to pass "true" does that make sense? 4790 4791 if (options.GetDebug()) { 4792 // In this case, we aren't actually going to run, we just want to stop 4793 // right away. Flush this thread so we will refetch the stacks and show the 4794 // correct backtrace. 4795 // FIXME: To make this prettier we should invent some stop reason for this, 4796 // but that 4797 // is only cosmetic, and this functionality is only of use to lldb 4798 // developers who can live with not pretty... 4799 thread->Flush(); 4800 return eExpressionStoppedForDebug; 4801 } 4802 4803 ListenerSP listener_sp( 4804 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4805 4806 lldb::EventSP event_to_broadcast_sp; 4807 4808 { 4809 // This process event hijacker Hijacks the Public events and its destructor 4810 // makes sure that the process events get restored on exit to the function. 4811 // 4812 // If the event needs to propagate beyond the hijacker (e.g., the process 4813 // exits during execution), then the event is put into 4814 // event_to_broadcast_sp for rebroadcasting. 4815 4816 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4817 4818 if (log) { 4819 StreamString s; 4820 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4821 log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4822 " to run thread plan \"%s\".", 4823 thread->GetIndexID(), thread->GetID(), s.GetData()); 4824 } 4825 4826 bool got_event; 4827 lldb::EventSP event_sp; 4828 lldb::StateType stop_state = lldb::eStateInvalid; 4829 4830 bool before_first_timeout = true; // This is set to false the first time 4831 // that we have to halt the target. 4832 bool do_resume = true; 4833 bool handle_running_event = true; 4834 4835 // This is just for accounting: 4836 uint32_t num_resumes = 0; 4837 4838 // If we are going to run all threads the whole time, or if we are only 4839 // going to run one thread, then we don't need the first timeout. So we 4840 // pretend we are after the first timeout already. 4841 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4842 before_first_timeout = false; 4843 4844 if (log) 4845 log->Printf("Stop others: %u, try all: %u, before_first: %u.\n", 4846 options.GetStopOthers(), options.GetTryAllThreads(), 4847 before_first_timeout); 4848 4849 // This isn't going to work if there are unfetched events on the queue. Are 4850 // there cases where we might want to run the remaining events here, and 4851 // then try to call the function? That's probably being too tricky for our 4852 // own good. 4853 4854 Event *other_events = listener_sp->PeekAtNextEvent(); 4855 if (other_events != nullptr) { 4856 diagnostic_manager.PutString( 4857 eDiagnosticSeverityError, 4858 "RunThreadPlan called with pending events on the queue."); 4859 return eExpressionSetupError; 4860 } 4861 4862 // We also need to make sure that the next event is delivered. We might be 4863 // calling a function as part of a thread plan, in which case the last 4864 // delivered event could be the running event, and we don't want event 4865 // coalescing to cause us to lose OUR running event... 4866 ForceNextEventDelivery(); 4867 4868 // This while loop must exit out the bottom, there's cleanup that we need to do 4869 // when we are done. So don't call return anywhere within it. 4870 4871 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4872 // It's pretty much impossible to write test cases for things like: One 4873 // thread timeout expires, I go to halt, but the process already stopped on 4874 // the function call stop breakpoint. Turning on this define will make us 4875 // not fetch the first event till after the halt. So if you run a quick 4876 // function, it will have completed, and the completion event will be 4877 // waiting, when you interrupt for halt. The expression evaluation should 4878 // still succeed. 4879 bool miss_first_event = true; 4880 #endif 4881 while (true) { 4882 // We usually want to resume the process if we get to the top of the 4883 // loop. The only exception is if we get two running events with no 4884 // intervening stop, which can happen, we will just wait for then next 4885 // stop event. 4886 if (log) 4887 log->Printf("Top of while loop: do_resume: %i handle_running_event: %i " 4888 "before_first_timeout: %i.", 4889 do_resume, handle_running_event, before_first_timeout); 4890 4891 if (do_resume || handle_running_event) { 4892 // Do the initial resume and wait for the running event before going 4893 // further. 4894 4895 if (do_resume) { 4896 num_resumes++; 4897 Status resume_error = PrivateResume(); 4898 if (!resume_error.Success()) { 4899 diagnostic_manager.Printf( 4900 eDiagnosticSeverityError, 4901 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4902 resume_error.AsCString()); 4903 return_value = eExpressionSetupError; 4904 break; 4905 } 4906 } 4907 4908 got_event = 4909 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 4910 if (!got_event) { 4911 if (log) 4912 log->Printf("Process::RunThreadPlan(): didn't get any event after " 4913 "resume %" PRIu32 ", exiting.", 4914 num_resumes); 4915 4916 diagnostic_manager.Printf(eDiagnosticSeverityError, 4917 "didn't get any event after resume %" PRIu32 4918 ", exiting.", 4919 num_resumes); 4920 return_value = eExpressionSetupError; 4921 break; 4922 } 4923 4924 stop_state = 4925 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4926 4927 if (stop_state != eStateRunning) { 4928 bool restarted = false; 4929 4930 if (stop_state == eStateStopped) { 4931 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4932 event_sp.get()); 4933 if (log) 4934 log->Printf( 4935 "Process::RunThreadPlan(): didn't get running event after " 4936 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4937 "handle_running_event: %i).", 4938 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4939 handle_running_event); 4940 } 4941 4942 if (restarted) { 4943 // This is probably an overabundance of caution, I don't think I 4944 // should ever get a stopped & restarted event here. But if I do, 4945 // the best thing is to Halt and then get out of here. 4946 const bool clear_thread_plans = false; 4947 const bool use_run_lock = false; 4948 Halt(clear_thread_plans, use_run_lock); 4949 } 4950 4951 diagnostic_manager.Printf( 4952 eDiagnosticSeverityError, 4953 "didn't get running event after initial resume, got %s instead.", 4954 StateAsCString(stop_state)); 4955 return_value = eExpressionSetupError; 4956 break; 4957 } 4958 4959 if (log) 4960 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4961 // We need to call the function synchronously, so spin waiting for it 4962 // to return. If we get interrupted while executing, we're going to 4963 // lose our context, and won't be able to gather the result at this 4964 // point. We set the timeout AFTER the resume, since the resume takes 4965 // some time and we don't want to charge that to the timeout. 4966 } else { 4967 if (log) 4968 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4969 } 4970 4971 do_resume = true; 4972 handle_running_event = true; 4973 4974 // Now wait for the process to stop again: 4975 event_sp.reset(); 4976 4977 Timeout<std::micro> timeout = 4978 GetExpressionTimeout(options, before_first_timeout); 4979 if (log) { 4980 if (timeout) { 4981 auto now = system_clock::now(); 4982 log->Printf("Process::RunThreadPlan(): about to wait - now is %s - " 4983 "endpoint is %s", 4984 llvm::to_string(now).c_str(), 4985 llvm::to_string(now + *timeout).c_str()); 4986 } else { 4987 log->Printf("Process::RunThreadPlan(): about to wait forever."); 4988 } 4989 } 4990 4991 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4992 // See comment above... 4993 if (miss_first_event) { 4994 usleep(1000); 4995 miss_first_event = false; 4996 got_event = false; 4997 } else 4998 #endif 4999 got_event = listener_sp->GetEvent(event_sp, timeout); 5000 5001 if (got_event) { 5002 if (event_sp) { 5003 bool keep_going = false; 5004 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5005 const bool clear_thread_plans = false; 5006 const bool use_run_lock = false; 5007 Halt(clear_thread_plans, use_run_lock); 5008 return_value = eExpressionInterrupted; 5009 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5010 "execution halted by user interrupt."); 5011 if (log) 5012 log->Printf("Process::RunThreadPlan(): Got interrupted by " 5013 "eBroadcastBitInterrupted, exiting."); 5014 break; 5015 } else { 5016 stop_state = 5017 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5018 if (log) 5019 log->Printf( 5020 "Process::RunThreadPlan(): in while loop, got event: %s.", 5021 StateAsCString(stop_state)); 5022 5023 switch (stop_state) { 5024 case lldb::eStateStopped: { 5025 // We stopped, figure out what we are going to do now. 5026 ThreadSP thread_sp = 5027 GetThreadList().FindThreadByIndexID(thread_idx_id); 5028 if (!thread_sp) { 5029 // Ooh, our thread has vanished. Unlikely that this was 5030 // successful execution... 5031 if (log) 5032 log->Printf("Process::RunThreadPlan(): execution completed " 5033 "but our thread (index-id=%u) has vanished.", 5034 thread_idx_id); 5035 return_value = eExpressionInterrupted; 5036 } else if (Process::ProcessEventData::GetRestartedFromEvent( 5037 event_sp.get())) { 5038 // If we were restarted, we just need to go back up to fetch 5039 // another event. 5040 if (log) { 5041 log->Printf("Process::RunThreadPlan(): Got a stop and " 5042 "restart, so we'll continue waiting."); 5043 } 5044 keep_going = true; 5045 do_resume = false; 5046 handle_running_event = true; 5047 } else { 5048 const bool handle_interrupts = true; 5049 return_value = *HandleStoppedEvent( 5050 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5051 event_to_broadcast_sp, options, handle_interrupts); 5052 } 5053 } break; 5054 5055 case lldb::eStateRunning: 5056 // This shouldn't really happen, but sometimes we do get two 5057 // running events without an intervening stop, and in that case 5058 // we should just go back to waiting for the stop. 5059 do_resume = false; 5060 keep_going = true; 5061 handle_running_event = false; 5062 break; 5063 5064 default: 5065 if (log) 5066 log->Printf("Process::RunThreadPlan(): execution stopped with " 5067 "unexpected state: %s.", 5068 StateAsCString(stop_state)); 5069 5070 if (stop_state == eStateExited) 5071 event_to_broadcast_sp = event_sp; 5072 5073 diagnostic_manager.PutString( 5074 eDiagnosticSeverityError, 5075 "execution stopped with unexpected state."); 5076 return_value = eExpressionInterrupted; 5077 break; 5078 } 5079 } 5080 5081 if (keep_going) 5082 continue; 5083 else 5084 break; 5085 } else { 5086 if (log) 5087 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5088 "the event pointer was null. How odd..."); 5089 return_value = eExpressionInterrupted; 5090 break; 5091 } 5092 } else { 5093 // If we didn't get an event that means we've timed out... We will 5094 // interrupt the process here. Depending on what we were asked to do 5095 // we will either exit, or try with all threads running for the same 5096 // timeout. 5097 5098 if (log) { 5099 if (options.GetTryAllThreads()) { 5100 if (before_first_timeout) { 5101 LLDB_LOG(log, 5102 "Running function with one thread timeout timed out."); 5103 } else 5104 LLDB_LOG(log, "Restarting function with all threads enabled and " 5105 "timeout: {0} timed out, abandoning execution.", 5106 timeout); 5107 } else 5108 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5109 "abandoning execution.", 5110 timeout); 5111 } 5112 5113 // It is possible that between the time we issued the Halt, and we get 5114 // around to calling Halt the target could have stopped. That's fine, 5115 // Halt will figure that out and send the appropriate Stopped event. 5116 // BUT it is also possible that we stopped & restarted (e.g. hit a 5117 // signal with "stop" set to false.) In 5118 // that case, we'll get the stopped & restarted event, and we should go 5119 // back to waiting for the Halt's stopped event. That's what this 5120 // while loop does. 5121 5122 bool back_to_top = true; 5123 uint32_t try_halt_again = 0; 5124 bool do_halt = true; 5125 const uint32_t num_retries = 5; 5126 while (try_halt_again < num_retries) { 5127 Status halt_error; 5128 if (do_halt) { 5129 if (log) 5130 log->Printf("Process::RunThreadPlan(): Running Halt."); 5131 const bool clear_thread_plans = false; 5132 const bool use_run_lock = false; 5133 Halt(clear_thread_plans, use_run_lock); 5134 } 5135 if (halt_error.Success()) { 5136 if (log) 5137 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5138 5139 got_event = 5140 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5141 5142 if (got_event) { 5143 stop_state = 5144 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5145 if (log) { 5146 log->Printf("Process::RunThreadPlan(): Stopped with event: %s", 5147 StateAsCString(stop_state)); 5148 if (stop_state == lldb::eStateStopped && 5149 Process::ProcessEventData::GetInterruptedFromEvent( 5150 event_sp.get())) 5151 log->PutCString(" Event was the Halt interruption event."); 5152 } 5153 5154 if (stop_state == lldb::eStateStopped) { 5155 if (Process::ProcessEventData::GetRestartedFromEvent( 5156 event_sp.get())) { 5157 if (log) 5158 log->PutCString("Process::RunThreadPlan(): Went to halt " 5159 "but got a restarted event, there must be " 5160 "an un-restarted stopped event so try " 5161 "again... " 5162 "Exiting wait loop."); 5163 try_halt_again++; 5164 do_halt = false; 5165 continue; 5166 } 5167 5168 // Between the time we initiated the Halt and the time we 5169 // delivered it, the process could have already finished its 5170 // job. Check that here: 5171 const bool handle_interrupts = false; 5172 if (auto result = HandleStoppedEvent( 5173 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5174 event_to_broadcast_sp, options, handle_interrupts)) { 5175 return_value = *result; 5176 back_to_top = false; 5177 break; 5178 } 5179 5180 if (!options.GetTryAllThreads()) { 5181 if (log) 5182 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5183 "was false, we stopped so now we're " 5184 "quitting."); 5185 return_value = eExpressionInterrupted; 5186 back_to_top = false; 5187 break; 5188 } 5189 5190 if (before_first_timeout) { 5191 // Set all the other threads to run, and return to the top of 5192 // the loop, which will continue; 5193 before_first_timeout = false; 5194 thread_plan_sp->SetStopOthers(false); 5195 if (log) 5196 log->PutCString( 5197 "Process::RunThreadPlan(): about to resume."); 5198 5199 back_to_top = true; 5200 break; 5201 } else { 5202 // Running all threads failed, so return Interrupted. 5203 if (log) 5204 log->PutCString("Process::RunThreadPlan(): running all " 5205 "threads timed out."); 5206 return_value = eExpressionInterrupted; 5207 back_to_top = false; 5208 break; 5209 } 5210 } 5211 } else { 5212 if (log) 5213 log->PutCString("Process::RunThreadPlan(): halt said it " 5214 "succeeded, but I got no event. " 5215 "I'm getting out of here passing Interrupted."); 5216 return_value = eExpressionInterrupted; 5217 back_to_top = false; 5218 break; 5219 } 5220 } else { 5221 try_halt_again++; 5222 continue; 5223 } 5224 } 5225 5226 if (!back_to_top || try_halt_again > num_retries) 5227 break; 5228 else 5229 continue; 5230 } 5231 } // END WAIT LOOP 5232 5233 // If we had to start up a temporary private state thread to run this 5234 // thread plan, shut it down now. 5235 if (backup_private_state_thread.IsJoinable()) { 5236 StopPrivateStateThread(); 5237 Status error; 5238 m_private_state_thread = backup_private_state_thread; 5239 if (stopper_base_plan_sp) { 5240 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5241 } 5242 if (old_state != eStateInvalid) 5243 m_public_state.SetValueNoLock(old_state); 5244 } 5245 5246 if (return_value != eExpressionCompleted && log) { 5247 // Print a backtrace into the log so we can figure out where we are: 5248 StreamString s; 5249 s.PutCString("Thread state after unsuccessful completion: \n"); 5250 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5251 log->PutString(s.GetString()); 5252 } 5253 // Restore the thread state if we are going to discard the plan execution. 5254 // There are three cases where this could happen: 1) The execution 5255 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5256 // was true 3) We got some other error, and discard_on_error was true 5257 bool should_unwind = (return_value == eExpressionInterrupted && 5258 options.DoesUnwindOnError()) || 5259 (return_value == eExpressionHitBreakpoint && 5260 options.DoesIgnoreBreakpoints()); 5261 5262 if (return_value == eExpressionCompleted || should_unwind) { 5263 thread_plan_sp->RestoreThreadState(); 5264 } 5265 5266 // Now do some processing on the results of the run: 5267 if (return_value == eExpressionInterrupted || 5268 return_value == eExpressionHitBreakpoint) { 5269 if (log) { 5270 StreamString s; 5271 if (event_sp) 5272 event_sp->Dump(&s); 5273 else { 5274 log->PutCString("Process::RunThreadPlan(): Stop event that " 5275 "interrupted us is NULL."); 5276 } 5277 5278 StreamString ts; 5279 5280 const char *event_explanation = nullptr; 5281 5282 do { 5283 if (!event_sp) { 5284 event_explanation = "<no event>"; 5285 break; 5286 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5287 event_explanation = "<user interrupt>"; 5288 break; 5289 } else { 5290 const Process::ProcessEventData *event_data = 5291 Process::ProcessEventData::GetEventDataFromEvent( 5292 event_sp.get()); 5293 5294 if (!event_data) { 5295 event_explanation = "<no event data>"; 5296 break; 5297 } 5298 5299 Process *process = event_data->GetProcessSP().get(); 5300 5301 if (!process) { 5302 event_explanation = "<no process>"; 5303 break; 5304 } 5305 5306 ThreadList &thread_list = process->GetThreadList(); 5307 5308 uint32_t num_threads = thread_list.GetSize(); 5309 uint32_t thread_index; 5310 5311 ts.Printf("<%u threads> ", num_threads); 5312 5313 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5314 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5315 5316 if (!thread) { 5317 ts.Printf("<?> "); 5318 continue; 5319 } 5320 5321 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5322 RegisterContext *register_context = 5323 thread->GetRegisterContext().get(); 5324 5325 if (register_context) 5326 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5327 else 5328 ts.Printf("[ip unknown] "); 5329 5330 // Show the private stop info here, the public stop info will be 5331 // from the last natural stop. 5332 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5333 if (stop_info_sp) { 5334 const char *stop_desc = stop_info_sp->GetDescription(); 5335 if (stop_desc) 5336 ts.PutCString(stop_desc); 5337 } 5338 ts.Printf(">"); 5339 } 5340 5341 event_explanation = ts.GetData(); 5342 } 5343 } while (0); 5344 5345 if (event_explanation) 5346 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", 5347 s.GetData(), event_explanation); 5348 else 5349 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", 5350 s.GetData()); 5351 } 5352 5353 if (should_unwind) { 5354 if (log) 5355 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - " 5356 "discarding thread plans up to %p.", 5357 static_cast<void *>(thread_plan_sp.get())); 5358 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5359 } else { 5360 if (log) 5361 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for " 5362 "plan: %p not discarding.", 5363 static_cast<void *>(thread_plan_sp.get())); 5364 } 5365 } else if (return_value == eExpressionSetupError) { 5366 if (log) 5367 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5368 5369 if (options.DoesUnwindOnError()) { 5370 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5371 } 5372 } else { 5373 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5374 if (log) 5375 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5376 return_value = eExpressionCompleted; 5377 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5378 if (log) 5379 log->PutCString( 5380 "Process::RunThreadPlan(): thread plan was discarded"); 5381 return_value = eExpressionDiscarded; 5382 } else { 5383 if (log) 5384 log->PutCString( 5385 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5386 if (options.DoesUnwindOnError() && thread_plan_sp) { 5387 if (log) 5388 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5389 "'cause unwind_on_error is set."); 5390 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5391 } 5392 } 5393 } 5394 5395 // Thread we ran the function in may have gone away because we ran the 5396 // target Check that it's still there, and if it is put it back in the 5397 // context. Also restore the frame in the context if it is still present. 5398 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5399 if (thread) { 5400 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5401 } 5402 5403 // Also restore the current process'es selected frame & thread, since this 5404 // function calling may be done behind the user's back. 5405 5406 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5407 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5408 selected_stack_id.IsValid()) { 5409 // We were able to restore the selected thread, now restore the frame: 5410 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5411 StackFrameSP old_frame_sp = 5412 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5413 selected_stack_id); 5414 if (old_frame_sp) 5415 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5416 old_frame_sp.get()); 5417 } 5418 } 5419 } 5420 5421 // If the process exited during the run of the thread plan, notify everyone. 5422 5423 if (event_to_broadcast_sp) { 5424 if (log) 5425 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5426 BroadcastEvent(event_to_broadcast_sp); 5427 } 5428 5429 return return_value; 5430 } 5431 5432 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5433 const char *result_name; 5434 5435 switch (result) { 5436 case eExpressionCompleted: 5437 result_name = "eExpressionCompleted"; 5438 break; 5439 case eExpressionDiscarded: 5440 result_name = "eExpressionDiscarded"; 5441 break; 5442 case eExpressionInterrupted: 5443 result_name = "eExpressionInterrupted"; 5444 break; 5445 case eExpressionHitBreakpoint: 5446 result_name = "eExpressionHitBreakpoint"; 5447 break; 5448 case eExpressionSetupError: 5449 result_name = "eExpressionSetupError"; 5450 break; 5451 case eExpressionParseError: 5452 result_name = "eExpressionParseError"; 5453 break; 5454 case eExpressionResultUnavailable: 5455 result_name = "eExpressionResultUnavailable"; 5456 break; 5457 case eExpressionTimedOut: 5458 result_name = "eExpressionTimedOut"; 5459 break; 5460 case eExpressionStoppedForDebug: 5461 result_name = "eExpressionStoppedForDebug"; 5462 break; 5463 } 5464 return result_name; 5465 } 5466 5467 void Process::GetStatus(Stream &strm) { 5468 const StateType state = GetState(); 5469 if (StateIsStoppedState(state, false)) { 5470 if (state == eStateExited) { 5471 int exit_status = GetExitStatus(); 5472 const char *exit_description = GetExitDescription(); 5473 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5474 GetID(), exit_status, exit_status, 5475 exit_description ? exit_description : ""); 5476 } else { 5477 if (state == eStateConnected) 5478 strm.Printf("Connected to remote target.\n"); 5479 else 5480 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5481 } 5482 } else { 5483 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5484 } 5485 } 5486 5487 size_t Process::GetThreadStatus(Stream &strm, 5488 bool only_threads_with_stop_reason, 5489 uint32_t start_frame, uint32_t num_frames, 5490 uint32_t num_frames_with_source, 5491 bool stop_format) { 5492 size_t num_thread_infos_dumped = 0; 5493 5494 // You can't hold the thread list lock while calling Thread::GetStatus. That 5495 // very well might run code (e.g. if we need it to get return values or 5496 // arguments.) For that to work the process has to be able to acquire it. 5497 // So instead copy the thread ID's, and look them up one by one: 5498 5499 uint32_t num_threads; 5500 std::vector<lldb::tid_t> thread_id_array; 5501 // Scope for thread list locker; 5502 { 5503 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5504 ThreadList &curr_thread_list = GetThreadList(); 5505 num_threads = curr_thread_list.GetSize(); 5506 uint32_t idx; 5507 thread_id_array.resize(num_threads); 5508 for (idx = 0; idx < num_threads; ++idx) 5509 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5510 } 5511 5512 for (uint32_t i = 0; i < num_threads; i++) { 5513 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5514 if (thread_sp) { 5515 if (only_threads_with_stop_reason) { 5516 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5517 if (!stop_info_sp || !stop_info_sp->IsValid()) 5518 continue; 5519 } 5520 thread_sp->GetStatus(strm, start_frame, num_frames, 5521 num_frames_with_source, 5522 stop_format); 5523 ++num_thread_infos_dumped; 5524 } else { 5525 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5526 if (log) 5527 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 5528 " vanished while running Thread::GetStatus."); 5529 } 5530 } 5531 return num_thread_infos_dumped; 5532 } 5533 5534 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5535 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5536 } 5537 5538 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5539 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5540 region.GetByteSize()); 5541 } 5542 5543 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5544 void *baton) { 5545 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5546 } 5547 5548 bool Process::RunPreResumeActions() { 5549 bool result = true; 5550 while (!m_pre_resume_actions.empty()) { 5551 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5552 m_pre_resume_actions.pop_back(); 5553 bool this_result = action.callback(action.baton); 5554 if (result) 5555 result = this_result; 5556 } 5557 return result; 5558 } 5559 5560 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5561 5562 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5563 { 5564 PreResumeCallbackAndBaton element(callback, baton); 5565 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5566 if (found_iter != m_pre_resume_actions.end()) 5567 { 5568 m_pre_resume_actions.erase(found_iter); 5569 } 5570 } 5571 5572 ProcessRunLock &Process::GetRunLock() { 5573 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5574 return m_private_run_lock; 5575 else 5576 return m_public_run_lock; 5577 } 5578 5579 void Process::Flush() { 5580 m_thread_list.Flush(); 5581 m_extended_thread_list.Flush(); 5582 m_extended_thread_stop_id = 0; 5583 m_queue_list.Clear(); 5584 m_queue_list_stop_id = 0; 5585 } 5586 5587 void Process::DidExec() { 5588 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5589 if (log) 5590 log->Printf("Process::%s()", __FUNCTION__); 5591 5592 Target &target = GetTarget(); 5593 target.CleanupProcess(); 5594 target.ClearModules(false); 5595 m_dynamic_checkers_up.reset(); 5596 m_abi_sp.reset(); 5597 m_system_runtime_up.reset(); 5598 m_os_up.reset(); 5599 m_dyld_up.reset(); 5600 m_jit_loaders_up.reset(); 5601 m_image_tokens.clear(); 5602 m_allocated_memory_cache.Clear(); 5603 m_language_runtimes.clear(); 5604 m_instrumentation_runtimes.clear(); 5605 m_thread_list.DiscardThreadPlans(); 5606 m_memory_cache.Clear(true); 5607 DoDidExec(); 5608 CompleteAttach(); 5609 // Flush the process (threads and all stack frames) after running 5610 // CompleteAttach() in case the dynamic loader loaded things in new 5611 // locations. 5612 Flush(); 5613 5614 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5615 // let the target know so it can do any cleanup it needs to. 5616 target.DidExec(); 5617 } 5618 5619 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5620 if (address == nullptr) { 5621 error.SetErrorString("Invalid address argument"); 5622 return LLDB_INVALID_ADDRESS; 5623 } 5624 5625 addr_t function_addr = LLDB_INVALID_ADDRESS; 5626 5627 addr_t addr = address->GetLoadAddress(&GetTarget()); 5628 std::map<addr_t, addr_t>::const_iterator iter = 5629 m_resolved_indirect_addresses.find(addr); 5630 if (iter != m_resolved_indirect_addresses.end()) { 5631 function_addr = (*iter).second; 5632 } else { 5633 if (!InferiorCall(this, address, function_addr)) { 5634 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5635 error.SetErrorStringWithFormat( 5636 "Unable to call resolver for indirect function %s", 5637 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5638 function_addr = LLDB_INVALID_ADDRESS; 5639 } else { 5640 m_resolved_indirect_addresses.insert( 5641 std::pair<addr_t, addr_t>(addr, function_addr)); 5642 } 5643 } 5644 return function_addr; 5645 } 5646 5647 void Process::ModulesDidLoad(ModuleList &module_list) { 5648 SystemRuntime *sys_runtime = GetSystemRuntime(); 5649 if (sys_runtime) { 5650 sys_runtime->ModulesDidLoad(module_list); 5651 } 5652 5653 GetJITLoaders().ModulesDidLoad(module_list); 5654 5655 // Give runtimes a chance to be created. 5656 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5657 m_instrumentation_runtimes); 5658 5659 // Tell runtimes about new modules. 5660 for (auto pos = m_instrumentation_runtimes.begin(); 5661 pos != m_instrumentation_runtimes.end(); ++pos) { 5662 InstrumentationRuntimeSP runtime = pos->second; 5663 runtime->ModulesDidLoad(module_list); 5664 } 5665 5666 // Let any language runtimes we have already created know about the modules 5667 // that loaded. 5668 5669 // Iterate over a copy of this language runtime list in case the language 5670 // runtime ModulesDidLoad somehow causes the language runtime to be 5671 // unloaded. 5672 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5673 for (const auto &pair : language_runtimes) { 5674 // We must check language_runtime_sp to make sure it is not nullptr as we 5675 // might cache the fact that we didn't have a language runtime for a 5676 // language. 5677 LanguageRuntimeSP language_runtime_sp = pair.second; 5678 if (language_runtime_sp) 5679 language_runtime_sp->ModulesDidLoad(module_list); 5680 } 5681 5682 // If we don't have an operating system plug-in, try to load one since 5683 // loading shared libraries might cause a new one to try and load 5684 if (!m_os_up) 5685 LoadOperatingSystemPlugin(false); 5686 5687 // Give structured-data plugins a chance to see the modified modules. 5688 for (auto pair : m_structured_data_plugin_map) { 5689 if (pair.second) 5690 pair.second->ModulesDidLoad(*this, module_list); 5691 } 5692 } 5693 5694 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5695 const char *fmt, ...) { 5696 bool print_warning = true; 5697 5698 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5699 if (!stream_sp) 5700 return; 5701 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5702 return; 5703 } 5704 5705 if (repeat_key != nullptr) { 5706 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5707 if (it == m_warnings_issued.end()) { 5708 m_warnings_issued[warning_type] = WarningsPointerSet(); 5709 m_warnings_issued[warning_type].insert(repeat_key); 5710 } else { 5711 if (it->second.find(repeat_key) != it->second.end()) { 5712 print_warning = false; 5713 } else { 5714 it->second.insert(repeat_key); 5715 } 5716 } 5717 } 5718 5719 if (print_warning) { 5720 va_list args; 5721 va_start(args, fmt); 5722 stream_sp->PrintfVarArg(fmt, args); 5723 va_end(args); 5724 } 5725 } 5726 5727 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5728 if (GetWarningsOptimization() && sc.module_sp && 5729 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5730 sc.function->GetIsOptimized()) { 5731 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5732 "%s was compiled with optimization - stepping may behave " 5733 "oddly; variables may not be available.\n", 5734 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5735 } 5736 } 5737 5738 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5739 info.Clear(); 5740 5741 PlatformSP platform_sp = GetTarget().GetPlatform(); 5742 if (!platform_sp) 5743 return false; 5744 5745 return platform_sp->GetProcessInfo(GetID(), info); 5746 } 5747 5748 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5749 ThreadCollectionSP threads; 5750 5751 const MemoryHistorySP &memory_history = 5752 MemoryHistory::FindPlugin(shared_from_this()); 5753 5754 if (!memory_history) { 5755 return threads; 5756 } 5757 5758 threads = std::make_shared<ThreadCollection>( 5759 memory_history->GetHistoryThreads(addr)); 5760 5761 return threads; 5762 } 5763 5764 InstrumentationRuntimeSP 5765 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5766 InstrumentationRuntimeCollection::iterator pos; 5767 pos = m_instrumentation_runtimes.find(type); 5768 if (pos == m_instrumentation_runtimes.end()) { 5769 return InstrumentationRuntimeSP(); 5770 } else 5771 return (*pos).second; 5772 } 5773 5774 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5775 const ArchSpec &arch, ModuleSpec &module_spec) { 5776 module_spec.Clear(); 5777 return false; 5778 } 5779 5780 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5781 m_image_tokens.push_back(image_ptr); 5782 return m_image_tokens.size() - 1; 5783 } 5784 5785 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5786 if (token < m_image_tokens.size()) 5787 return m_image_tokens[token]; 5788 return LLDB_INVALID_IMAGE_TOKEN; 5789 } 5790 5791 void Process::ResetImageToken(size_t token) { 5792 if (token < m_image_tokens.size()) 5793 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5794 } 5795 5796 Address 5797 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5798 AddressRange range_bounds) { 5799 Target &target = GetTarget(); 5800 DisassemblerSP disassembler_sp; 5801 InstructionList *insn_list = nullptr; 5802 5803 Address retval = default_stop_addr; 5804 5805 if (!target.GetUseFastStepping()) 5806 return retval; 5807 if (!default_stop_addr.IsValid()) 5808 return retval; 5809 5810 ExecutionContext exe_ctx(this); 5811 const char *plugin_name = nullptr; 5812 const char *flavor = nullptr; 5813 const bool prefer_file_cache = true; 5814 disassembler_sp = Disassembler::DisassembleRange( 5815 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 5816 prefer_file_cache); 5817 if (disassembler_sp) 5818 insn_list = &disassembler_sp->GetInstructionList(); 5819 5820 if (insn_list == nullptr) { 5821 return retval; 5822 } 5823 5824 size_t insn_offset = 5825 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5826 if (insn_offset == UINT32_MAX) { 5827 return retval; 5828 } 5829 5830 uint32_t branch_index = 5831 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target); 5832 if (branch_index == UINT32_MAX) { 5833 return retval; 5834 } 5835 5836 if (branch_index > insn_offset) { 5837 Address next_branch_insn_address = 5838 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5839 if (next_branch_insn_address.IsValid() && 5840 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5841 retval = next_branch_insn_address; 5842 } 5843 } 5844 5845 return retval; 5846 } 5847 5848 Status 5849 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5850 5851 Status error; 5852 5853 lldb::addr_t range_end = 0; 5854 5855 region_list.clear(); 5856 do { 5857 lldb_private::MemoryRegionInfo region_info; 5858 error = GetMemoryRegionInfo(range_end, region_info); 5859 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5860 if (error.Fail()) { 5861 region_list.clear(); 5862 break; 5863 } 5864 5865 range_end = region_info.GetRange().GetRangeEnd(); 5866 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5867 region_list.push_back(std::move(region_info)); 5868 } 5869 } while (range_end != LLDB_INVALID_ADDRESS); 5870 5871 return error; 5872 } 5873 5874 Status 5875 Process::ConfigureStructuredData(ConstString type_name, 5876 const StructuredData::ObjectSP &config_sp) { 5877 // If you get this, the Process-derived class needs to implement a method to 5878 // enable an already-reported asynchronous structured data feature. See 5879 // ProcessGDBRemote for an example implementation over gdb-remote. 5880 return Status("unimplemented"); 5881 } 5882 5883 void Process::MapSupportedStructuredDataPlugins( 5884 const StructuredData::Array &supported_type_names) { 5885 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5886 5887 // Bail out early if there are no type names to map. 5888 if (supported_type_names.GetSize() == 0) { 5889 if (log) 5890 log->Printf("Process::%s(): no structured data types supported", 5891 __FUNCTION__); 5892 return; 5893 } 5894 5895 // Convert StructuredData type names to ConstString instances. 5896 std::set<ConstString> const_type_names; 5897 5898 if (log) 5899 log->Printf("Process::%s(): the process supports the following async " 5900 "structured data types:", 5901 __FUNCTION__); 5902 5903 supported_type_names.ForEach( 5904 [&const_type_names, &log](StructuredData::Object *object) { 5905 if (!object) { 5906 // Invalid - shouldn't be null objects in the array. 5907 return false; 5908 } 5909 5910 auto type_name = object->GetAsString(); 5911 if (!type_name) { 5912 // Invalid format - all type names should be strings. 5913 return false; 5914 } 5915 5916 const_type_names.insert(ConstString(type_name->GetValue())); 5917 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5918 return true; 5919 }); 5920 5921 // For each StructuredDataPlugin, if the plugin handles any of the types in 5922 // the supported_type_names, map that type name to that plugin. Stop when 5923 // we've consumed all the type names. 5924 // FIXME: should we return an error if there are type names nobody 5925 // supports? 5926 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5927 auto create_instance = 5928 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5929 plugin_index); 5930 if (!create_instance) 5931 break; 5932 5933 // Create the plugin. 5934 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5935 if (!plugin_sp) { 5936 // This plugin doesn't think it can work with the process. Move on to the 5937 // next. 5938 continue; 5939 } 5940 5941 // For any of the remaining type names, map any that this plugin supports. 5942 std::vector<ConstString> names_to_remove; 5943 for (auto &type_name : const_type_names) { 5944 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5945 m_structured_data_plugin_map.insert( 5946 std::make_pair(type_name, plugin_sp)); 5947 names_to_remove.push_back(type_name); 5948 if (log) 5949 log->Printf("Process::%s(): using plugin %s for type name " 5950 "%s", 5951 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5952 type_name.GetCString()); 5953 } 5954 } 5955 5956 // Remove the type names that were consumed by this plugin. 5957 for (auto &type_name : names_to_remove) 5958 const_type_names.erase(type_name); 5959 } 5960 } 5961 5962 bool Process::RouteAsyncStructuredData( 5963 const StructuredData::ObjectSP object_sp) { 5964 // Nothing to do if there's no data. 5965 if (!object_sp) 5966 return false; 5967 5968 // The contract is this must be a dictionary, so we can look up the routing 5969 // key via the top-level 'type' string value within the dictionary. 5970 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5971 if (!dictionary) 5972 return false; 5973 5974 // Grab the async structured type name (i.e. the feature/plugin name). 5975 ConstString type_name; 5976 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5977 return false; 5978 5979 // Check if there's a plugin registered for this type name. 5980 auto find_it = m_structured_data_plugin_map.find(type_name); 5981 if (find_it == m_structured_data_plugin_map.end()) { 5982 // We don't have a mapping for this structured data type. 5983 return false; 5984 } 5985 5986 // Route the structured data to the plugin. 5987 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5988 return true; 5989 } 5990 5991 Status Process::UpdateAutomaticSignalFiltering() { 5992 // Default implementation does nothign. 5993 // No automatic signal filtering to speak of. 5994 return Status(); 5995 } 5996 5997 UtilityFunction *Process::GetLoadImageUtilityFunction( 5998 Platform *platform, 5999 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6000 if (platform != GetTarget().GetPlatform().get()) 6001 return nullptr; 6002 std::call_once(m_dlopen_utility_func_flag_once, 6003 [&] { m_dlopen_utility_func_up = factory(); }); 6004 return m_dlopen_utility_func_up.get(); 6005 } 6006