1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/DynamicLoader.h" 42 #include "lldb/Target/InstrumentationRuntime.h" 43 #include "lldb/Target/JITLoader.h" 44 #include "lldb/Target/JITLoaderList.h" 45 #include "lldb/Target/Language.h" 46 #include "lldb/Target/LanguageRuntime.h" 47 #include "lldb/Target/MemoryHistory.h" 48 #include "lldb/Target/MemoryRegionInfo.h" 49 #include "lldb/Target/OperatingSystem.h" 50 #include "lldb/Target/Platform.h" 51 #include "lldb/Target/Process.h" 52 #include "lldb/Target/RegisterContext.h" 53 #include "lldb/Target/StopInfo.h" 54 #include "lldb/Target/StructuredDataPlugin.h" 55 #include "lldb/Target/SystemRuntime.h" 56 #include "lldb/Target/Target.h" 57 #include "lldb/Target/TargetList.h" 58 #include "lldb/Target/Thread.h" 59 #include "lldb/Target/ThreadPlan.h" 60 #include "lldb/Target/ThreadPlanBase.h" 61 #include "lldb/Target/ThreadPlanCallFunction.h" 62 #include "lldb/Target/UnixSignals.h" 63 #include "lldb/Utility/Event.h" 64 #include "lldb/Utility/Log.h" 65 #include "lldb/Utility/NameMatches.h" 66 #include "lldb/Utility/ProcessInfo.h" 67 #include "lldb/Utility/SelectHelper.h" 68 #include "lldb/Utility/State.h" 69 70 using namespace lldb; 71 using namespace lldb_private; 72 using namespace std::chrono; 73 74 // Comment out line below to disable memory caching, overriding the process 75 // setting target.process.disable-memory-cache 76 #define ENABLE_MEMORY_CACHING 77 78 #ifdef ENABLE_MEMORY_CACHING 79 #define DISABLE_MEM_CACHE_DEFAULT false 80 #else 81 #define DISABLE_MEM_CACHE_DEFAULT true 82 #endif 83 84 class ProcessOptionValueProperties : public OptionValueProperties { 85 public: 86 ProcessOptionValueProperties(ConstString name) 87 : OptionValueProperties(name) {} 88 89 // This constructor is used when creating ProcessOptionValueProperties when 90 // it is part of a new lldb_private::Process instance. It will copy all 91 // current global property values as needed 92 ProcessOptionValueProperties(ProcessProperties *global_properties) 93 : OptionValueProperties(*global_properties->GetValueProperties()) {} 94 95 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 96 bool will_modify, 97 uint32_t idx) const override { 98 // When getting the value for a key from the process options, we will 99 // always try and grab the setting from the current process if there is 100 // one. Else we just use the one from this instance. 101 if (exe_ctx) { 102 Process *process = exe_ctx->GetProcessPtr(); 103 if (process) { 104 ProcessOptionValueProperties *instance_properties = 105 static_cast<ProcessOptionValueProperties *>( 106 process->GetValueProperties().get()); 107 if (this != instance_properties) 108 return instance_properties->ProtectedGetPropertyAtIndex(idx); 109 } 110 } 111 return ProtectedGetPropertyAtIndex(idx); 112 } 113 }; 114 115 #define LLDB_PROPERTIES_process 116 #include "TargetProperties.inc" 117 118 enum { 119 #define LLDB_PROPERTIES_process 120 #include "TargetPropertiesEnum.inc" 121 }; 122 123 ProcessProperties::ProcessProperties(lldb_private::Process *process) 124 : Properties(), 125 m_process(process) // Can be nullptr for global ProcessProperties 126 { 127 if (process == nullptr) { 128 // Global process properties, set them up one time 129 m_collection_sp = 130 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 131 m_collection_sp->Initialize(g_process_properties); 132 m_collection_sp->AppendProperty( 133 ConstString("thread"), ConstString("Settings specific to threads."), 134 true, Thread::GetGlobalProperties()->GetValueProperties()); 135 } else { 136 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 137 Process::GetGlobalProperties().get()); 138 m_collection_sp->SetValueChangedCallback( 139 ePropertyPythonOSPluginPath, 140 ProcessProperties::OptionValueChangedCallback, this); 141 } 142 } 143 144 ProcessProperties::~ProcessProperties() = default; 145 146 void ProcessProperties::OptionValueChangedCallback(void *baton, 147 OptionValue *option_value) { 148 ProcessProperties *properties = (ProcessProperties *)baton; 149 if (properties->m_process) 150 properties->m_process->LoadOperatingSystemPlugin(true); 151 } 152 153 bool ProcessProperties::GetDisableMemoryCache() const { 154 const uint32_t idx = ePropertyDisableMemCache; 155 return m_collection_sp->GetPropertyAtIndexAsBoolean( 156 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 157 } 158 159 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 160 const uint32_t idx = ePropertyMemCacheLineSize; 161 return m_collection_sp->GetPropertyAtIndexAsUInt64( 162 nullptr, idx, g_process_properties[idx].default_uint_value); 163 } 164 165 Args ProcessProperties::GetExtraStartupCommands() const { 166 Args args; 167 const uint32_t idx = ePropertyExtraStartCommand; 168 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 169 return args; 170 } 171 172 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 173 const uint32_t idx = ePropertyExtraStartCommand; 174 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 175 } 176 177 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 178 const uint32_t idx = ePropertyPythonOSPluginPath; 179 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 180 } 181 182 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 183 const uint32_t idx = ePropertyPythonOSPluginPath; 184 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 185 } 186 187 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 188 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 189 return m_collection_sp->GetPropertyAtIndexAsBoolean( 190 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 191 } 192 193 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 194 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 195 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 196 } 197 198 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 199 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 200 return m_collection_sp->GetPropertyAtIndexAsBoolean( 201 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 202 } 203 204 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 205 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 206 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 207 } 208 209 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 210 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 211 return m_collection_sp->GetPropertyAtIndexAsBoolean( 212 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 213 } 214 215 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 216 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 217 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 218 } 219 220 bool ProcessProperties::GetDetachKeepsStopped() const { 221 const uint32_t idx = ePropertyDetachKeepsStopped; 222 return m_collection_sp->GetPropertyAtIndexAsBoolean( 223 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 224 } 225 226 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 227 const uint32_t idx = ePropertyDetachKeepsStopped; 228 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 229 } 230 231 bool ProcessProperties::GetWarningsOptimization() const { 232 const uint32_t idx = ePropertyWarningOptimization; 233 return m_collection_sp->GetPropertyAtIndexAsBoolean( 234 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 235 } 236 237 bool ProcessProperties::GetStopOnExec() const { 238 const uint32_t idx = ePropertyStopOnExec; 239 return m_collection_sp->GetPropertyAtIndexAsBoolean( 240 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 241 } 242 243 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 244 const uint32_t idx = ePropertyUtilityExpressionTimeout; 245 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 246 nullptr, idx, g_process_properties[idx].default_uint_value); 247 return std::chrono::seconds(value); 248 } 249 250 Status ProcessLaunchCommandOptions::SetOptionValue( 251 uint32_t option_idx, llvm::StringRef option_arg, 252 ExecutionContext *execution_context) { 253 Status error; 254 const int short_option = m_getopt_table[option_idx].val; 255 256 switch (short_option) { 257 case 's': // Stop at program entry point 258 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 259 break; 260 261 case 'i': // STDIN for read only 262 { 263 FileAction action; 264 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 265 launch_info.AppendFileAction(action); 266 break; 267 } 268 269 case 'o': // Open STDOUT for write only 270 { 271 FileAction action; 272 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 273 launch_info.AppendFileAction(action); 274 break; 275 } 276 277 case 'e': // STDERR for write only 278 { 279 FileAction action; 280 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 281 launch_info.AppendFileAction(action); 282 break; 283 } 284 285 case 'p': // Process plug-in name 286 launch_info.SetProcessPluginName(option_arg); 287 break; 288 289 case 'n': // Disable STDIO 290 { 291 FileAction action; 292 const FileSpec dev_null(FileSystem::DEV_NULL); 293 if (action.Open(STDIN_FILENO, dev_null, true, false)) 294 launch_info.AppendFileAction(action); 295 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 296 launch_info.AppendFileAction(action); 297 if (action.Open(STDERR_FILENO, dev_null, false, true)) 298 launch_info.AppendFileAction(action); 299 break; 300 } 301 302 case 'w': 303 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 304 break; 305 306 case 't': // Open process in new terminal window 307 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 308 break; 309 310 case 'a': { 311 TargetSP target_sp = 312 execution_context ? execution_context->GetTargetSP() : TargetSP(); 313 PlatformSP platform_sp = 314 target_sp ? target_sp->GetPlatform() : PlatformSP(); 315 launch_info.GetArchitecture() = 316 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 317 } break; 318 319 case 'A': // Disable ASLR. 320 { 321 bool success; 322 const bool disable_aslr_arg = 323 OptionArgParser::ToBoolean(option_arg, true, &success); 324 if (success) 325 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 326 else 327 error.SetErrorStringWithFormat( 328 "Invalid boolean value for disable-aslr option: '%s'", 329 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 330 break; 331 } 332 333 case 'X': // shell expand args. 334 { 335 bool success; 336 const bool expand_args = 337 OptionArgParser::ToBoolean(option_arg, true, &success); 338 if (success) 339 launch_info.SetShellExpandArguments(expand_args); 340 else 341 error.SetErrorStringWithFormat( 342 "Invalid boolean value for shell-expand-args option: '%s'", 343 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 344 break; 345 } 346 347 case 'c': 348 if (!option_arg.empty()) 349 launch_info.SetShell(FileSpec(option_arg)); 350 else 351 launch_info.SetShell(HostInfo::GetDefaultShell()); 352 break; 353 354 case 'v': 355 launch_info.GetEnvironment().insert(option_arg); 356 break; 357 358 default: 359 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 360 short_option); 361 break; 362 } 363 return error; 364 } 365 366 static constexpr OptionDefinition g_process_launch_options[] = { 367 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 368 nullptr, {}, 0, eArgTypeNone, 369 "Stop at the entry point of the program when launching a process."}, 370 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 371 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 372 "Set whether to disable address space layout randomization when launching " 373 "a process."}, 374 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 375 nullptr, {}, 0, eArgTypePlugin, 376 "Name of the process plugin you want to use."}, 377 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 378 OptionParser::eRequiredArgument, nullptr, {}, 0, 379 eArgTypeDirectoryName, 380 "Set the current working directory to <path> when running the inferior."}, 381 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 382 nullptr, {}, 0, eArgTypeArchitecture, 383 "Set the architecture for the process to launch when ambiguous."}, 384 {LLDB_OPT_SET_ALL, false, "environment", 'v', 385 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 386 "Specify an environment variable name/value string (--environment " 387 "NAME=VALUE). Can be specified multiple times for subsequent environment " 388 "entries."}, 389 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 390 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 391 "Run the process in a shell (not supported on all platforms)."}, 392 393 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 394 nullptr, {}, 0, eArgTypeFilename, 395 "Redirect stdin for the process to <filename>."}, 396 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 397 nullptr, {}, 0, eArgTypeFilename, 398 "Redirect stdout for the process to <filename>."}, 399 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 400 nullptr, {}, 0, eArgTypeFilename, 401 "Redirect stderr for the process to <filename>."}, 402 403 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 404 {}, 0, eArgTypeNone, 405 "Start the process in a terminal (not supported on all platforms)."}, 406 407 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 408 {}, 0, eArgTypeNone, 409 "Do not set up for terminal I/O to go to running process."}, 410 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 411 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 412 "Set whether to shell expand arguments to the process when launching."}, 413 }; 414 415 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 416 return llvm::makeArrayRef(g_process_launch_options); 417 } 418 419 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 420 llvm::StringRef plugin_name, 421 ListenerSP listener_sp, 422 const FileSpec *crash_file_path) { 423 static uint32_t g_process_unique_id = 0; 424 425 ProcessSP process_sp; 426 ProcessCreateInstance create_callback = nullptr; 427 if (!plugin_name.empty()) { 428 ConstString const_plugin_name(plugin_name); 429 create_callback = 430 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 431 if (create_callback) { 432 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 433 if (process_sp) { 434 if (process_sp->CanDebug(target_sp, true)) { 435 process_sp->m_process_unique_id = ++g_process_unique_id; 436 } else 437 process_sp.reset(); 438 } 439 } 440 } else { 441 for (uint32_t idx = 0; 442 (create_callback = 443 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 444 ++idx) { 445 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 446 if (process_sp) { 447 if (process_sp->CanDebug(target_sp, false)) { 448 process_sp->m_process_unique_id = ++g_process_unique_id; 449 break; 450 } else 451 process_sp.reset(); 452 } 453 } 454 } 455 return process_sp; 456 } 457 458 ConstString &Process::GetStaticBroadcasterClass() { 459 static ConstString class_name("lldb.process"); 460 return class_name; 461 } 462 463 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 464 : Process(target_sp, listener_sp, 465 UnixSignals::Create(HostInfo::GetArchitecture())) { 466 // This constructor just delegates to the full Process constructor, 467 // defaulting to using the Host's UnixSignals. 468 } 469 470 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 471 const UnixSignalsSP &unix_signals_sp) 472 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 473 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 474 Process::GetStaticBroadcasterClass().AsCString()), 475 m_target_wp(target_sp), m_public_state(eStateUnloaded), 476 m_private_state(eStateUnloaded), 477 m_private_state_broadcaster(nullptr, 478 "lldb.process.internal_state_broadcaster"), 479 m_private_state_control_broadcaster( 480 nullptr, "lldb.process.internal_state_control_broadcaster"), 481 m_private_state_listener_sp( 482 Listener::MakeListener("lldb.process.internal_state_listener")), 483 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 484 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 485 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 486 m_thread_list(this), m_extended_thread_list(this), 487 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 488 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 489 m_breakpoint_site_list(), m_dynamic_checkers_up(), 490 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 491 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 492 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 493 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 494 m_memory_cache(*this), m_allocated_memory_cache(*this), 495 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 496 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 497 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 498 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 499 m_can_interpret_function_calls(false), m_warnings_issued(), 500 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 501 CheckInWithManager(); 502 503 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 504 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 505 506 if (!m_unix_signals_sp) 507 m_unix_signals_sp = std::make_shared<UnixSignals>(); 508 509 SetEventName(eBroadcastBitStateChanged, "state-changed"); 510 SetEventName(eBroadcastBitInterrupt, "interrupt"); 511 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 512 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 513 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 514 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 515 516 m_private_state_control_broadcaster.SetEventName( 517 eBroadcastInternalStateControlStop, "control-stop"); 518 m_private_state_control_broadcaster.SetEventName( 519 eBroadcastInternalStateControlPause, "control-pause"); 520 m_private_state_control_broadcaster.SetEventName( 521 eBroadcastInternalStateControlResume, "control-resume"); 522 523 m_listener_sp->StartListeningForEvents( 524 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 525 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 526 eBroadcastBitProfileData | eBroadcastBitStructuredData); 527 528 m_private_state_listener_sp->StartListeningForEvents( 529 &m_private_state_broadcaster, 530 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 531 532 m_private_state_listener_sp->StartListeningForEvents( 533 &m_private_state_control_broadcaster, 534 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 535 eBroadcastInternalStateControlResume); 536 // We need something valid here, even if just the default UnixSignalsSP. 537 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 538 539 // Allow the platform to override the default cache line size 540 OptionValueSP value_sp = 541 m_collection_sp 542 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 543 ->GetValue(); 544 uint32_t platform_cache_line_size = 545 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 546 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 547 value_sp->SetUInt64Value(platform_cache_line_size); 548 } 549 550 Process::~Process() { 551 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 552 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 553 StopPrivateStateThread(); 554 555 // ThreadList::Clear() will try to acquire this process's mutex, so 556 // explicitly clear the thread list here to ensure that the mutex is not 557 // destroyed before the thread list. 558 m_thread_list.Clear(); 559 } 560 561 const ProcessPropertiesSP &Process::GetGlobalProperties() { 562 // NOTE: intentional leak so we don't crash if global destructor chain gets 563 // called as other threads still use the result of this function 564 static ProcessPropertiesSP *g_settings_sp_ptr = 565 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 566 return *g_settings_sp_ptr; 567 } 568 569 void Process::Finalize() { 570 m_finalizing = true; 571 572 // Destroy this process if needed 573 switch (GetPrivateState()) { 574 case eStateConnected: 575 case eStateAttaching: 576 case eStateLaunching: 577 case eStateStopped: 578 case eStateRunning: 579 case eStateStepping: 580 case eStateCrashed: 581 case eStateSuspended: 582 Destroy(false); 583 break; 584 585 case eStateInvalid: 586 case eStateUnloaded: 587 case eStateDetached: 588 case eStateExited: 589 break; 590 } 591 592 // Clear our broadcaster before we proceed with destroying 593 Broadcaster::Clear(); 594 595 // Do any cleanup needed prior to being destructed... Subclasses that 596 // override this method should call this superclass method as well. 597 598 // We need to destroy the loader before the derived Process class gets 599 // destroyed since it is very likely that undoing the loader will require 600 // access to the real process. 601 m_dynamic_checkers_up.reset(); 602 m_abi_sp.reset(); 603 m_os_up.reset(); 604 m_system_runtime_up.reset(); 605 m_dyld_up.reset(); 606 m_jit_loaders_up.reset(); 607 m_thread_list_real.Destroy(); 608 m_thread_list.Destroy(); 609 m_extended_thread_list.Destroy(); 610 m_queue_list.Clear(); 611 m_queue_list_stop_id = 0; 612 std::vector<Notifications> empty_notifications; 613 m_notifications.swap(empty_notifications); 614 m_image_tokens.clear(); 615 m_memory_cache.Clear(); 616 m_allocated_memory_cache.Clear(); 617 { 618 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 619 m_language_runtimes.clear(); 620 } 621 m_instrumentation_runtimes.clear(); 622 m_next_event_action_up.reset(); 623 // Clear the last natural stop ID since it has a strong reference to this 624 // process 625 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 626 //#ifdef LLDB_CONFIGURATION_DEBUG 627 // StreamFile s(stdout, false); 628 // EventSP event_sp; 629 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 630 // { 631 // event_sp->Dump (&s); 632 // s.EOL(); 633 // } 634 //#endif 635 // We have to be very careful here as the m_private_state_listener might 636 // contain events that have ProcessSP values in them which can keep this 637 // process around forever. These events need to be cleared out. 638 m_private_state_listener_sp->Clear(); 639 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 640 m_public_run_lock.SetStopped(); 641 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 642 m_private_run_lock.SetStopped(); 643 m_structured_data_plugin_map.clear(); 644 m_finalize_called = true; 645 } 646 647 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 648 m_notifications.push_back(callbacks); 649 if (callbacks.initialize != nullptr) 650 callbacks.initialize(callbacks.baton, this); 651 } 652 653 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 654 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 655 for (pos = m_notifications.begin(); pos != end; ++pos) { 656 if (pos->baton == callbacks.baton && 657 pos->initialize == callbacks.initialize && 658 pos->process_state_changed == callbacks.process_state_changed) { 659 m_notifications.erase(pos); 660 return true; 661 } 662 } 663 return false; 664 } 665 666 void Process::SynchronouslyNotifyStateChanged(StateType state) { 667 std::vector<Notifications>::iterator notification_pos, 668 notification_end = m_notifications.end(); 669 for (notification_pos = m_notifications.begin(); 670 notification_pos != notification_end; ++notification_pos) { 671 if (notification_pos->process_state_changed) 672 notification_pos->process_state_changed(notification_pos->baton, this, 673 state); 674 } 675 } 676 677 // FIXME: We need to do some work on events before the general Listener sees 678 // them. 679 // For instance if we are continuing from a breakpoint, we need to ensure that 680 // we do the little "insert real insn, step & stop" trick. But we can't do 681 // that when the event is delivered by the broadcaster - since that is done on 682 // the thread that is waiting for new events, so if we needed more than one 683 // event for our handling, we would stall. So instead we do it when we fetch 684 // the event off of the queue. 685 // 686 687 StateType Process::GetNextEvent(EventSP &event_sp) { 688 StateType state = eStateInvalid; 689 690 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 691 std::chrono::seconds(0)) && 692 event_sp) 693 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 694 695 return state; 696 } 697 698 void Process::SyncIOHandler(uint32_t iohandler_id, 699 const Timeout<std::micro> &timeout) { 700 // don't sync (potentially context switch) in case where there is no process 701 // IO 702 if (!m_process_input_reader) 703 return; 704 705 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 706 707 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 708 if (Result) { 709 LLDB_LOG( 710 log, 711 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 712 iohandler_id, *Result); 713 } else { 714 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 715 iohandler_id); 716 } 717 } 718 719 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 720 EventSP *event_sp_ptr, bool wait_always, 721 ListenerSP hijack_listener_sp, 722 Stream *stream, bool use_run_lock) { 723 // We can't just wait for a "stopped" event, because the stopped event may 724 // have restarted the target. We have to actually check each event, and in 725 // the case of a stopped event check the restarted flag on the event. 726 if (event_sp_ptr) 727 event_sp_ptr->reset(); 728 StateType state = GetState(); 729 // If we are exited or detached, we won't ever get back to any other valid 730 // state... 731 if (state == eStateDetached || state == eStateExited) 732 return state; 733 734 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 735 LLDB_LOG(log, "timeout = {0}", timeout); 736 737 if (!wait_always && StateIsStoppedState(state, true) && 738 StateIsStoppedState(GetPrivateState(), true)) { 739 LLDB_LOGF(log, 740 "Process::%s returning without waiting for events; process " 741 "private and public states are already 'stopped'.", 742 __FUNCTION__); 743 // We need to toggle the run lock as this won't get done in 744 // SetPublicState() if the process is hijacked. 745 if (hijack_listener_sp && use_run_lock) 746 m_public_run_lock.SetStopped(); 747 return state; 748 } 749 750 while (state != eStateInvalid) { 751 EventSP event_sp; 752 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 753 if (event_sp_ptr && event_sp) 754 *event_sp_ptr = event_sp; 755 756 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 757 Process::HandleProcessStateChangedEvent(event_sp, stream, 758 pop_process_io_handler); 759 760 switch (state) { 761 case eStateCrashed: 762 case eStateDetached: 763 case eStateExited: 764 case eStateUnloaded: 765 // We need to toggle the run lock as this won't get done in 766 // SetPublicState() if the process is hijacked. 767 if (hijack_listener_sp && use_run_lock) 768 m_public_run_lock.SetStopped(); 769 return state; 770 case eStateStopped: 771 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 772 continue; 773 else { 774 // We need to toggle the run lock as this won't get done in 775 // SetPublicState() if the process is hijacked. 776 if (hijack_listener_sp && use_run_lock) 777 m_public_run_lock.SetStopped(); 778 return state; 779 } 780 default: 781 continue; 782 } 783 } 784 return state; 785 } 786 787 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 788 Stream *stream, 789 bool &pop_process_io_handler) { 790 const bool handle_pop = pop_process_io_handler; 791 792 pop_process_io_handler = false; 793 ProcessSP process_sp = 794 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 795 796 if (!process_sp) 797 return false; 798 799 StateType event_state = 800 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 801 if (event_state == eStateInvalid) 802 return false; 803 804 switch (event_state) { 805 case eStateInvalid: 806 case eStateUnloaded: 807 case eStateAttaching: 808 case eStateLaunching: 809 case eStateStepping: 810 case eStateDetached: 811 if (stream) 812 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 813 StateAsCString(event_state)); 814 if (event_state == eStateDetached) 815 pop_process_io_handler = true; 816 break; 817 818 case eStateConnected: 819 case eStateRunning: 820 // Don't be chatty when we run... 821 break; 822 823 case eStateExited: 824 if (stream) 825 process_sp->GetStatus(*stream); 826 pop_process_io_handler = true; 827 break; 828 829 case eStateStopped: 830 case eStateCrashed: 831 case eStateSuspended: 832 // Make sure the program hasn't been auto-restarted: 833 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 834 if (stream) { 835 size_t num_reasons = 836 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 837 if (num_reasons > 0) { 838 // FIXME: Do we want to report this, or would that just be annoyingly 839 // chatty? 840 if (num_reasons == 1) { 841 const char *reason = 842 Process::ProcessEventData::GetRestartedReasonAtIndex( 843 event_sp.get(), 0); 844 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 845 process_sp->GetID(), 846 reason ? reason : "<UNKNOWN REASON>"); 847 } else { 848 stream->Printf("Process %" PRIu64 849 " stopped and restarted, reasons:\n", 850 process_sp->GetID()); 851 852 for (size_t i = 0; i < num_reasons; i++) { 853 const char *reason = 854 Process::ProcessEventData::GetRestartedReasonAtIndex( 855 event_sp.get(), i); 856 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 857 } 858 } 859 } 860 } 861 } else { 862 StopInfoSP curr_thread_stop_info_sp; 863 // Lock the thread list so it doesn't change on us, this is the scope for 864 // the locker: 865 { 866 ThreadList &thread_list = process_sp->GetThreadList(); 867 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 868 869 ThreadSP curr_thread(thread_list.GetSelectedThread()); 870 ThreadSP thread; 871 StopReason curr_thread_stop_reason = eStopReasonInvalid; 872 if (curr_thread) { 873 curr_thread_stop_reason = curr_thread->GetStopReason(); 874 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 875 } 876 if (!curr_thread || !curr_thread->IsValid() || 877 curr_thread_stop_reason == eStopReasonInvalid || 878 curr_thread_stop_reason == eStopReasonNone) { 879 // Prefer a thread that has just completed its plan over another 880 // thread as current thread. 881 ThreadSP plan_thread; 882 ThreadSP other_thread; 883 884 const size_t num_threads = thread_list.GetSize(); 885 size_t i; 886 for (i = 0; i < num_threads; ++i) { 887 thread = thread_list.GetThreadAtIndex(i); 888 StopReason thread_stop_reason = thread->GetStopReason(); 889 switch (thread_stop_reason) { 890 case eStopReasonInvalid: 891 case eStopReasonNone: 892 break; 893 894 case eStopReasonSignal: { 895 // Don't select a signal thread if we weren't going to stop at 896 // that signal. We have to have had another reason for stopping 897 // here, and the user doesn't want to see this thread. 898 uint64_t signo = thread->GetStopInfo()->GetValue(); 899 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 900 if (!other_thread) 901 other_thread = thread; 902 } 903 break; 904 } 905 case eStopReasonTrace: 906 case eStopReasonBreakpoint: 907 case eStopReasonWatchpoint: 908 case eStopReasonException: 909 case eStopReasonExec: 910 case eStopReasonThreadExiting: 911 case eStopReasonInstrumentation: 912 if (!other_thread) 913 other_thread = thread; 914 break; 915 case eStopReasonPlanComplete: 916 if (!plan_thread) 917 plan_thread = thread; 918 break; 919 } 920 } 921 if (plan_thread) 922 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 923 else if (other_thread) 924 thread_list.SetSelectedThreadByID(other_thread->GetID()); 925 else { 926 if (curr_thread && curr_thread->IsValid()) 927 thread = curr_thread; 928 else 929 thread = thread_list.GetThreadAtIndex(0); 930 931 if (thread) 932 thread_list.SetSelectedThreadByID(thread->GetID()); 933 } 934 } 935 } 936 // Drop the ThreadList mutex by here, since GetThreadStatus below might 937 // have to run code, e.g. for Data formatters, and if we hold the 938 // ThreadList mutex, then the process is going to have a hard time 939 // restarting the process. 940 if (stream) { 941 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 942 if (debugger.GetTargetList().GetSelectedTarget().get() == 943 &process_sp->GetTarget()) { 944 const bool only_threads_with_stop_reason = true; 945 const uint32_t start_frame = 0; 946 const uint32_t num_frames = 1; 947 const uint32_t num_frames_with_source = 1; 948 const bool stop_format = true; 949 process_sp->GetStatus(*stream); 950 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 951 start_frame, num_frames, 952 num_frames_with_source, 953 stop_format); 954 if (curr_thread_stop_info_sp) { 955 lldb::addr_t crashing_address; 956 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 957 curr_thread_stop_info_sp, &crashing_address); 958 if (valobj_sp) { 959 const bool qualify_cxx_base_classes = false; 960 961 const ValueObject::GetExpressionPathFormat format = 962 ValueObject::GetExpressionPathFormat:: 963 eGetExpressionPathFormatHonorPointers; 964 stream->PutCString("Likely cause: "); 965 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 966 format); 967 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 968 } 969 } 970 } else { 971 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 972 process_sp->GetTarget().shared_from_this()); 973 if (target_idx != UINT32_MAX) 974 stream->Printf("Target %d: (", target_idx); 975 else 976 stream->Printf("Target <unknown index>: ("); 977 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 978 stream->Printf(") stopped.\n"); 979 } 980 } 981 982 // Pop the process IO handler 983 pop_process_io_handler = true; 984 } 985 break; 986 } 987 988 if (handle_pop && pop_process_io_handler) 989 process_sp->PopProcessIOHandler(); 990 991 return true; 992 } 993 994 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 995 if (listener_sp) { 996 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 997 eBroadcastBitInterrupt); 998 } else 999 return false; 1000 } 1001 1002 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1003 1004 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1005 const Timeout<std::micro> &timeout, 1006 ListenerSP hijack_listener_sp) { 1007 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1008 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1009 1010 ListenerSP listener_sp = hijack_listener_sp; 1011 if (!listener_sp) 1012 listener_sp = m_listener_sp; 1013 1014 StateType state = eStateInvalid; 1015 if (listener_sp->GetEventForBroadcasterWithType( 1016 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1017 timeout)) { 1018 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1019 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1020 else 1021 LLDB_LOG(log, "got no event or was interrupted."); 1022 } 1023 1024 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1025 return state; 1026 } 1027 1028 Event *Process::PeekAtStateChangedEvents() { 1029 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1030 1031 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1032 1033 Event *event_ptr; 1034 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1035 this, eBroadcastBitStateChanged); 1036 if (log) { 1037 if (event_ptr) { 1038 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1039 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1040 } else { 1041 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1042 } 1043 } 1044 return event_ptr; 1045 } 1046 1047 StateType 1048 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1049 const Timeout<std::micro> &timeout) { 1050 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1051 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1052 1053 StateType state = eStateInvalid; 1054 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1055 &m_private_state_broadcaster, 1056 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1057 timeout)) 1058 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1059 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1060 1061 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1062 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1063 return state; 1064 } 1065 1066 bool Process::GetEventsPrivate(EventSP &event_sp, 1067 const Timeout<std::micro> &timeout, 1068 bool control_only) { 1069 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1070 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1071 1072 if (control_only) 1073 return m_private_state_listener_sp->GetEventForBroadcaster( 1074 &m_private_state_control_broadcaster, event_sp, timeout); 1075 else 1076 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1077 } 1078 1079 bool Process::IsRunning() const { 1080 return StateIsRunningState(m_public_state.GetValue()); 1081 } 1082 1083 int Process::GetExitStatus() { 1084 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1085 1086 if (m_public_state.GetValue() == eStateExited) 1087 return m_exit_status; 1088 return -1; 1089 } 1090 1091 const char *Process::GetExitDescription() { 1092 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1093 1094 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1095 return m_exit_string.c_str(); 1096 return nullptr; 1097 } 1098 1099 bool Process::SetExitStatus(int status, const char *cstr) { 1100 // Use a mutex to protect setting the exit status. 1101 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1102 1103 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1104 LIBLLDB_LOG_PROCESS)); 1105 LLDB_LOGF( 1106 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1107 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1108 1109 // We were already in the exited state 1110 if (m_private_state.GetValue() == eStateExited) { 1111 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1112 "state was already set to eStateExited"); 1113 return false; 1114 } 1115 1116 m_exit_status = status; 1117 if (cstr) 1118 m_exit_string = cstr; 1119 else 1120 m_exit_string.clear(); 1121 1122 // Clear the last natural stop ID since it has a strong reference to this 1123 // process 1124 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1125 1126 SetPrivateState(eStateExited); 1127 1128 // Allow subclasses to do some cleanup 1129 DidExit(); 1130 1131 return true; 1132 } 1133 1134 bool Process::IsAlive() { 1135 switch (m_private_state.GetValue()) { 1136 case eStateConnected: 1137 case eStateAttaching: 1138 case eStateLaunching: 1139 case eStateStopped: 1140 case eStateRunning: 1141 case eStateStepping: 1142 case eStateCrashed: 1143 case eStateSuspended: 1144 return true; 1145 default: 1146 return false; 1147 } 1148 } 1149 1150 // This static callback can be used to watch for local child processes on the 1151 // current host. The child process exits, the process will be found in the 1152 // global target list (we want to be completely sure that the 1153 // lldb_private::Process doesn't go away before we can deliver the signal. 1154 bool Process::SetProcessExitStatus( 1155 lldb::pid_t pid, bool exited, 1156 int signo, // Zero for no signal 1157 int exit_status // Exit value of process if signal is zero 1158 ) { 1159 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1160 LLDB_LOGF(log, 1161 "Process::SetProcessExitStatus (pid=%" PRIu64 1162 ", exited=%i, signal=%i, exit_status=%i)\n", 1163 pid, exited, signo, exit_status); 1164 1165 if (exited) { 1166 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1167 if (target_sp) { 1168 ProcessSP process_sp(target_sp->GetProcessSP()); 1169 if (process_sp) { 1170 const char *signal_cstr = nullptr; 1171 if (signo) 1172 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1173 1174 process_sp->SetExitStatus(exit_status, signal_cstr); 1175 } 1176 } 1177 return true; 1178 } 1179 return false; 1180 } 1181 1182 void Process::UpdateThreadListIfNeeded() { 1183 const uint32_t stop_id = GetStopID(); 1184 if (m_thread_list.GetSize(false) == 0 || 1185 stop_id != m_thread_list.GetStopID()) { 1186 const StateType state = GetPrivateState(); 1187 if (StateIsStoppedState(state, true)) { 1188 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1189 // m_thread_list does have its own mutex, but we need to hold onto the 1190 // mutex between the call to UpdateThreadList(...) and the 1191 // os->UpdateThreadList(...) so it doesn't change on us 1192 ThreadList &old_thread_list = m_thread_list; 1193 ThreadList real_thread_list(this); 1194 ThreadList new_thread_list(this); 1195 // Always update the thread list with the protocol specific thread list, 1196 // but only update if "true" is returned 1197 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1198 // Don't call into the OperatingSystem to update the thread list if we 1199 // are shutting down, since that may call back into the SBAPI's, 1200 // requiring the API lock which is already held by whoever is shutting 1201 // us down, causing a deadlock. 1202 OperatingSystem *os = GetOperatingSystem(); 1203 if (os && !m_destroy_in_process) { 1204 // Clear any old backing threads where memory threads might have been 1205 // backed by actual threads from the lldb_private::Process subclass 1206 size_t num_old_threads = old_thread_list.GetSize(false); 1207 for (size_t i = 0; i < num_old_threads; ++i) 1208 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1209 1210 // Turn off dynamic types to ensure we don't run any expressions. 1211 // Objective-C can run an expression to determine if a SBValue is a 1212 // dynamic type or not and we need to avoid this. OperatingSystem 1213 // plug-ins can't run expressions that require running code... 1214 1215 Target &target = GetTarget(); 1216 const lldb::DynamicValueType saved_prefer_dynamic = 1217 target.GetPreferDynamicValue(); 1218 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1219 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1220 1221 // Now let the OperatingSystem plug-in update the thread list 1222 1223 os->UpdateThreadList( 1224 old_thread_list, // Old list full of threads created by OS plug-in 1225 real_thread_list, // The actual thread list full of threads 1226 // created by each lldb_private::Process 1227 // subclass 1228 new_thread_list); // The new thread list that we will show to the 1229 // user that gets filled in 1230 1231 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1232 target.SetPreferDynamicValue(saved_prefer_dynamic); 1233 } else { 1234 // No OS plug-in, the new thread list is the same as the real thread 1235 // list 1236 new_thread_list = real_thread_list; 1237 } 1238 1239 m_thread_list_real.Update(real_thread_list); 1240 m_thread_list.Update(new_thread_list); 1241 m_thread_list.SetStopID(stop_id); 1242 1243 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1244 // Clear any extended threads that we may have accumulated previously 1245 m_extended_thread_list.Clear(); 1246 m_extended_thread_stop_id = GetLastNaturalStopID(); 1247 1248 m_queue_list.Clear(); 1249 m_queue_list_stop_id = GetLastNaturalStopID(); 1250 } 1251 } 1252 } 1253 } 1254 } 1255 1256 void Process::UpdateQueueListIfNeeded() { 1257 if (m_system_runtime_up) { 1258 if (m_queue_list.GetSize() == 0 || 1259 m_queue_list_stop_id != GetLastNaturalStopID()) { 1260 const StateType state = GetPrivateState(); 1261 if (StateIsStoppedState(state, true)) { 1262 m_system_runtime_up->PopulateQueueList(m_queue_list); 1263 m_queue_list_stop_id = GetLastNaturalStopID(); 1264 } 1265 } 1266 } 1267 } 1268 1269 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1270 OperatingSystem *os = GetOperatingSystem(); 1271 if (os) 1272 return os->CreateThread(tid, context); 1273 return ThreadSP(); 1274 } 1275 1276 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1277 return AssignIndexIDToThread(thread_id); 1278 } 1279 1280 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1281 return (m_thread_id_to_index_id_map.find(thread_id) != 1282 m_thread_id_to_index_id_map.end()); 1283 } 1284 1285 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1286 uint32_t result = 0; 1287 std::map<uint64_t, uint32_t>::iterator iterator = 1288 m_thread_id_to_index_id_map.find(thread_id); 1289 if (iterator == m_thread_id_to_index_id_map.end()) { 1290 result = ++m_thread_index_id; 1291 m_thread_id_to_index_id_map[thread_id] = result; 1292 } else { 1293 result = iterator->second; 1294 } 1295 1296 return result; 1297 } 1298 1299 StateType Process::GetState() { 1300 return m_public_state.GetValue(); 1301 } 1302 1303 void Process::SetPublicState(StateType new_state, bool restarted) { 1304 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1305 LIBLLDB_LOG_PROCESS)); 1306 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1307 StateAsCString(new_state), restarted); 1308 const StateType old_state = m_public_state.GetValue(); 1309 m_public_state.SetValue(new_state); 1310 1311 // On the transition from Run to Stopped, we unlock the writer end of the run 1312 // lock. The lock gets locked in Resume, which is the public API to tell the 1313 // program to run. 1314 if (!StateChangedIsExternallyHijacked()) { 1315 if (new_state == eStateDetached) { 1316 LLDB_LOGF(log, 1317 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1318 StateAsCString(new_state)); 1319 m_public_run_lock.SetStopped(); 1320 } else { 1321 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1322 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1323 if ((old_state_is_stopped != new_state_is_stopped)) { 1324 if (new_state_is_stopped && !restarted) { 1325 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1326 StateAsCString(new_state)); 1327 m_public_run_lock.SetStopped(); 1328 } 1329 } 1330 } 1331 } 1332 } 1333 1334 Status Process::Resume() { 1335 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1336 LIBLLDB_LOG_PROCESS)); 1337 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1338 if (!m_public_run_lock.TrySetRunning()) { 1339 Status error("Resume request failed - process still running."); 1340 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1341 return error; 1342 } 1343 Status error = PrivateResume(); 1344 if (!error.Success()) { 1345 // Undo running state change 1346 m_public_run_lock.SetStopped(); 1347 } 1348 return error; 1349 } 1350 1351 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1352 1353 Status Process::ResumeSynchronous(Stream *stream) { 1354 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1355 LIBLLDB_LOG_PROCESS)); 1356 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1357 if (!m_public_run_lock.TrySetRunning()) { 1358 Status error("Resume request failed - process still running."); 1359 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1360 return error; 1361 } 1362 1363 ListenerSP listener_sp( 1364 Listener::MakeListener(g_resume_sync_name)); 1365 HijackProcessEvents(listener_sp); 1366 1367 Status error = PrivateResume(); 1368 if (error.Success()) { 1369 StateType state = 1370 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1371 const bool must_be_alive = 1372 false; // eStateExited is ok, so this must be false 1373 if (!StateIsStoppedState(state, must_be_alive)) 1374 error.SetErrorStringWithFormat( 1375 "process not in stopped state after synchronous resume: %s", 1376 StateAsCString(state)); 1377 } else { 1378 // Undo running state change 1379 m_public_run_lock.SetStopped(); 1380 } 1381 1382 // Undo the hijacking of process events... 1383 RestoreProcessEvents(); 1384 1385 return error; 1386 } 1387 1388 bool Process::StateChangedIsExternallyHijacked() { 1389 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1390 const char *hijacking_name = GetHijackingListenerName(); 1391 if (hijacking_name && 1392 strcmp(hijacking_name, g_resume_sync_name)) 1393 return true; 1394 } 1395 return false; 1396 } 1397 1398 bool Process::StateChangedIsHijackedForSynchronousResume() { 1399 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1400 const char *hijacking_name = GetHijackingListenerName(); 1401 if (hijacking_name && 1402 strcmp(hijacking_name, g_resume_sync_name) == 0) 1403 return true; 1404 } 1405 return false; 1406 } 1407 1408 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1409 1410 void Process::SetPrivateState(StateType new_state) { 1411 if (m_finalize_called) 1412 return; 1413 1414 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1415 LIBLLDB_LOG_PROCESS)); 1416 bool state_changed = false; 1417 1418 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1419 1420 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1421 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1422 1423 const StateType old_state = m_private_state.GetValueNoLock(); 1424 state_changed = old_state != new_state; 1425 1426 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1427 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1428 if (old_state_is_stopped != new_state_is_stopped) { 1429 if (new_state_is_stopped) 1430 m_private_run_lock.SetStopped(); 1431 else 1432 m_private_run_lock.SetRunning(); 1433 } 1434 1435 if (state_changed) { 1436 m_private_state.SetValueNoLock(new_state); 1437 EventSP event_sp( 1438 new Event(eBroadcastBitStateChanged, 1439 new ProcessEventData(shared_from_this(), new_state))); 1440 if (StateIsStoppedState(new_state, false)) { 1441 // Note, this currently assumes that all threads in the list stop when 1442 // the process stops. In the future we will want to support a debugging 1443 // model where some threads continue to run while others are stopped. 1444 // When that happens we will either need a way for the thread list to 1445 // identify which threads are stopping or create a special thread list 1446 // containing only threads which actually stopped. 1447 // 1448 // The process plugin is responsible for managing the actual behavior of 1449 // the threads and should have stopped any threads that are going to stop 1450 // before we get here. 1451 m_thread_list.DidStop(); 1452 1453 m_mod_id.BumpStopID(); 1454 if (!m_mod_id.IsLastResumeForUserExpression()) 1455 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1456 m_memory_cache.Clear(); 1457 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1458 StateAsCString(new_state), m_mod_id.GetStopID()); 1459 } 1460 1461 // Use our target to get a shared pointer to ourselves... 1462 if (m_finalize_called && !PrivateStateThreadIsValid()) 1463 BroadcastEvent(event_sp); 1464 else 1465 m_private_state_broadcaster.BroadcastEvent(event_sp); 1466 } else { 1467 LLDB_LOGF(log, 1468 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1469 StateAsCString(new_state)); 1470 } 1471 } 1472 1473 void Process::SetRunningUserExpression(bool on) { 1474 m_mod_id.SetRunningUserExpression(on); 1475 } 1476 1477 void Process::SetRunningUtilityFunction(bool on) { 1478 m_mod_id.SetRunningUtilityFunction(on); 1479 } 1480 1481 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1482 1483 const lldb::ABISP &Process::GetABI() { 1484 if (!m_abi_sp) 1485 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1486 return m_abi_sp; 1487 } 1488 1489 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1490 std::vector<LanguageRuntime *> language_runtimes; 1491 1492 if (m_finalizing) 1493 return language_runtimes; 1494 1495 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1496 // Before we pass off a copy of the language runtimes, we must make sure that 1497 // our collection is properly populated. It's possible that some of the 1498 // language runtimes were not loaded yet, either because nobody requested it 1499 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1500 // hadn't been loaded). 1501 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1502 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1503 language_runtimes.emplace_back(runtime); 1504 } 1505 1506 return language_runtimes; 1507 } 1508 1509 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1510 if (m_finalizing) 1511 return nullptr; 1512 1513 LanguageRuntime *runtime = nullptr; 1514 1515 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1516 LanguageRuntimeCollection::iterator pos; 1517 pos = m_language_runtimes.find(language); 1518 if (pos == m_language_runtimes.end() || !pos->second) { 1519 lldb::LanguageRuntimeSP runtime_sp( 1520 LanguageRuntime::FindPlugin(this, language)); 1521 1522 m_language_runtimes[language] = runtime_sp; 1523 runtime = runtime_sp.get(); 1524 } else 1525 runtime = pos->second.get(); 1526 1527 if (runtime) 1528 // It's possible that a language runtime can support multiple LanguageTypes, 1529 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1530 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1531 // primary language type and make sure that our runtime supports it. 1532 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1533 1534 return runtime; 1535 } 1536 1537 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1538 if (m_finalizing) 1539 return false; 1540 1541 if (in_value.IsDynamic()) 1542 return false; 1543 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1544 1545 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1546 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1547 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1548 } 1549 1550 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1551 if (runtime->CouldHaveDynamicValue(in_value)) 1552 return true; 1553 } 1554 1555 return false; 1556 } 1557 1558 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1559 m_dynamic_checkers_up.reset(dynamic_checkers); 1560 } 1561 1562 BreakpointSiteList &Process::GetBreakpointSiteList() { 1563 return m_breakpoint_site_list; 1564 } 1565 1566 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1567 return m_breakpoint_site_list; 1568 } 1569 1570 void Process::DisableAllBreakpointSites() { 1571 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1572 // bp_site->SetEnabled(true); 1573 DisableBreakpointSite(bp_site); 1574 }); 1575 } 1576 1577 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1578 Status error(DisableBreakpointSiteByID(break_id)); 1579 1580 if (error.Success()) 1581 m_breakpoint_site_list.Remove(break_id); 1582 1583 return error; 1584 } 1585 1586 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1587 Status error; 1588 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1589 if (bp_site_sp) { 1590 if (bp_site_sp->IsEnabled()) 1591 error = DisableBreakpointSite(bp_site_sp.get()); 1592 } else { 1593 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1594 break_id); 1595 } 1596 1597 return error; 1598 } 1599 1600 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1601 Status error; 1602 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1603 if (bp_site_sp) { 1604 if (!bp_site_sp->IsEnabled()) 1605 error = EnableBreakpointSite(bp_site_sp.get()); 1606 } else { 1607 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1608 break_id); 1609 } 1610 return error; 1611 } 1612 1613 lldb::break_id_t 1614 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1615 bool use_hardware) { 1616 addr_t load_addr = LLDB_INVALID_ADDRESS; 1617 1618 bool show_error = true; 1619 switch (GetState()) { 1620 case eStateInvalid: 1621 case eStateUnloaded: 1622 case eStateConnected: 1623 case eStateAttaching: 1624 case eStateLaunching: 1625 case eStateDetached: 1626 case eStateExited: 1627 show_error = false; 1628 break; 1629 1630 case eStateStopped: 1631 case eStateRunning: 1632 case eStateStepping: 1633 case eStateCrashed: 1634 case eStateSuspended: 1635 show_error = IsAlive(); 1636 break; 1637 } 1638 1639 // Reset the IsIndirect flag here, in case the location changes from pointing 1640 // to a indirect symbol to a regular symbol. 1641 owner->SetIsIndirect(false); 1642 1643 if (owner->ShouldResolveIndirectFunctions()) { 1644 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1645 if (symbol && symbol->IsIndirect()) { 1646 Status error; 1647 Address symbol_address = symbol->GetAddress(); 1648 load_addr = ResolveIndirectFunction(&symbol_address, error); 1649 if (!error.Success() && show_error) { 1650 GetTarget().GetDebugger().GetErrorStream().Printf( 1651 "warning: failed to resolve indirect function at 0x%" PRIx64 1652 " for breakpoint %i.%i: %s\n", 1653 symbol->GetLoadAddress(&GetTarget()), 1654 owner->GetBreakpoint().GetID(), owner->GetID(), 1655 error.AsCString() ? error.AsCString() : "unknown error"); 1656 return LLDB_INVALID_BREAK_ID; 1657 } 1658 Address resolved_address(load_addr); 1659 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1660 owner->SetIsIndirect(true); 1661 } else 1662 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1663 } else 1664 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1665 1666 if (load_addr != LLDB_INVALID_ADDRESS) { 1667 BreakpointSiteSP bp_site_sp; 1668 1669 // Look up this breakpoint site. If it exists, then add this new owner, 1670 // otherwise create a new breakpoint site and add it. 1671 1672 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1673 1674 if (bp_site_sp) { 1675 bp_site_sp->AddOwner(owner); 1676 owner->SetBreakpointSite(bp_site_sp); 1677 return bp_site_sp->GetID(); 1678 } else { 1679 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1680 load_addr, use_hardware)); 1681 if (bp_site_sp) { 1682 Status error = EnableBreakpointSite(bp_site_sp.get()); 1683 if (error.Success()) { 1684 owner->SetBreakpointSite(bp_site_sp); 1685 return m_breakpoint_site_list.Add(bp_site_sp); 1686 } else { 1687 if (show_error || use_hardware) { 1688 // Report error for setting breakpoint... 1689 GetTarget().GetDebugger().GetErrorStream().Printf( 1690 "warning: failed to set breakpoint site at 0x%" PRIx64 1691 " for breakpoint %i.%i: %s\n", 1692 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1693 error.AsCString() ? error.AsCString() : "unknown error"); 1694 } 1695 } 1696 } 1697 } 1698 } 1699 // We failed to enable the breakpoint 1700 return LLDB_INVALID_BREAK_ID; 1701 } 1702 1703 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1704 lldb::user_id_t owner_loc_id, 1705 BreakpointSiteSP &bp_site_sp) { 1706 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1707 if (num_owners == 0) { 1708 // Don't try to disable the site if we don't have a live process anymore. 1709 if (IsAlive()) 1710 DisableBreakpointSite(bp_site_sp.get()); 1711 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1712 } 1713 } 1714 1715 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1716 uint8_t *buf) const { 1717 size_t bytes_removed = 0; 1718 BreakpointSiteList bp_sites_in_range; 1719 1720 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1721 bp_sites_in_range)) { 1722 bp_sites_in_range.ForEach([bp_addr, size, 1723 buf](BreakpointSite *bp_site) -> void { 1724 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1725 addr_t intersect_addr; 1726 size_t intersect_size; 1727 size_t opcode_offset; 1728 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1729 &intersect_size, &opcode_offset)) { 1730 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1731 assert(bp_addr < intersect_addr + intersect_size && 1732 intersect_addr + intersect_size <= bp_addr + size); 1733 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1734 size_t buf_offset = intersect_addr - bp_addr; 1735 ::memcpy(buf + buf_offset, 1736 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1737 intersect_size); 1738 } 1739 } 1740 }); 1741 } 1742 return bytes_removed; 1743 } 1744 1745 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1746 PlatformSP platform_sp(GetTarget().GetPlatform()); 1747 if (platform_sp) 1748 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1749 return 0; 1750 } 1751 1752 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1753 Status error; 1754 assert(bp_site != nullptr); 1755 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1756 const addr_t bp_addr = bp_site->GetLoadAddress(); 1757 LLDB_LOGF( 1758 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1759 bp_site->GetID(), (uint64_t)bp_addr); 1760 if (bp_site->IsEnabled()) { 1761 LLDB_LOGF( 1762 log, 1763 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1764 " -- already enabled", 1765 bp_site->GetID(), (uint64_t)bp_addr); 1766 return error; 1767 } 1768 1769 if (bp_addr == LLDB_INVALID_ADDRESS) { 1770 error.SetErrorString("BreakpointSite contains an invalid load address."); 1771 return error; 1772 } 1773 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1774 // trap for the breakpoint site 1775 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1776 1777 if (bp_opcode_size == 0) { 1778 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1779 "returned zero, unable to get breakpoint " 1780 "trap for address 0x%" PRIx64, 1781 bp_addr); 1782 } else { 1783 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1784 1785 if (bp_opcode_bytes == nullptr) { 1786 error.SetErrorString( 1787 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1788 return error; 1789 } 1790 1791 // Save the original opcode by reading it 1792 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1793 error) == bp_opcode_size) { 1794 // Write a software breakpoint in place of the original opcode 1795 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1796 bp_opcode_size) { 1797 uint8_t verify_bp_opcode_bytes[64]; 1798 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1799 error) == bp_opcode_size) { 1800 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1801 bp_opcode_size) == 0) { 1802 bp_site->SetEnabled(true); 1803 bp_site->SetType(BreakpointSite::eSoftware); 1804 LLDB_LOGF(log, 1805 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1806 "addr = 0x%" PRIx64 " -- SUCCESS", 1807 bp_site->GetID(), (uint64_t)bp_addr); 1808 } else 1809 error.SetErrorString( 1810 "failed to verify the breakpoint trap in memory."); 1811 } else 1812 error.SetErrorString( 1813 "Unable to read memory to verify breakpoint trap."); 1814 } else 1815 error.SetErrorString("Unable to write breakpoint trap to memory."); 1816 } else 1817 error.SetErrorString("Unable to read memory at breakpoint address."); 1818 } 1819 if (log && error.Fail()) 1820 LLDB_LOGF( 1821 log, 1822 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1823 " -- FAILED: %s", 1824 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1825 return error; 1826 } 1827 1828 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1829 Status error; 1830 assert(bp_site != nullptr); 1831 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1832 addr_t bp_addr = bp_site->GetLoadAddress(); 1833 lldb::user_id_t breakID = bp_site->GetID(); 1834 LLDB_LOGF(log, 1835 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1836 ") addr = 0x%" PRIx64, 1837 breakID, (uint64_t)bp_addr); 1838 1839 if (bp_site->IsHardware()) { 1840 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1841 } else if (bp_site->IsEnabled()) { 1842 const size_t break_op_size = bp_site->GetByteSize(); 1843 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1844 if (break_op_size > 0) { 1845 // Clear a software breakpoint instruction 1846 uint8_t curr_break_op[8]; 1847 assert(break_op_size <= sizeof(curr_break_op)); 1848 bool break_op_found = false; 1849 1850 // Read the breakpoint opcode 1851 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1852 break_op_size) { 1853 bool verify = false; 1854 // Make sure the breakpoint opcode exists at this address 1855 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1856 break_op_found = true; 1857 // We found a valid breakpoint opcode at this address, now restore 1858 // the saved opcode. 1859 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1860 break_op_size, error) == break_op_size) { 1861 verify = true; 1862 } else 1863 error.SetErrorString( 1864 "Memory write failed when restoring original opcode."); 1865 } else { 1866 error.SetErrorString( 1867 "Original breakpoint trap is no longer in memory."); 1868 // Set verify to true and so we can check if the original opcode has 1869 // already been restored 1870 verify = true; 1871 } 1872 1873 if (verify) { 1874 uint8_t verify_opcode[8]; 1875 assert(break_op_size < sizeof(verify_opcode)); 1876 // Verify that our original opcode made it back to the inferior 1877 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1878 break_op_size) { 1879 // compare the memory we just read with the original opcode 1880 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1881 break_op_size) == 0) { 1882 // SUCCESS 1883 bp_site->SetEnabled(false); 1884 LLDB_LOGF(log, 1885 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1886 "addr = 0x%" PRIx64 " -- SUCCESS", 1887 bp_site->GetID(), (uint64_t)bp_addr); 1888 return error; 1889 } else { 1890 if (break_op_found) 1891 error.SetErrorString("Failed to restore original opcode."); 1892 } 1893 } else 1894 error.SetErrorString("Failed to read memory to verify that " 1895 "breakpoint trap was restored."); 1896 } 1897 } else 1898 error.SetErrorString( 1899 "Unable to read memory that should contain the breakpoint trap."); 1900 } 1901 } else { 1902 LLDB_LOGF( 1903 log, 1904 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1905 " -- already disabled", 1906 bp_site->GetID(), (uint64_t)bp_addr); 1907 return error; 1908 } 1909 1910 LLDB_LOGF( 1911 log, 1912 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1913 " -- FAILED: %s", 1914 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1915 return error; 1916 } 1917 1918 // Uncomment to verify memory caching works after making changes to caching 1919 // code 1920 //#define VERIFY_MEMORY_READS 1921 1922 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1923 error.Clear(); 1924 if (!GetDisableMemoryCache()) { 1925 #if defined(VERIFY_MEMORY_READS) 1926 // Memory caching is enabled, with debug verification 1927 1928 if (buf && size) { 1929 // Uncomment the line below to make sure memory caching is working. 1930 // I ran this through the test suite and got no assertions, so I am 1931 // pretty confident this is working well. If any changes are made to 1932 // memory caching, uncomment the line below and test your changes! 1933 1934 // Verify all memory reads by using the cache first, then redundantly 1935 // reading the same memory from the inferior and comparing to make sure 1936 // everything is exactly the same. 1937 std::string verify_buf(size, '\0'); 1938 assert(verify_buf.size() == size); 1939 const size_t cache_bytes_read = 1940 m_memory_cache.Read(this, addr, buf, size, error); 1941 Status verify_error; 1942 const size_t verify_bytes_read = 1943 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1944 verify_buf.size(), verify_error); 1945 assert(cache_bytes_read == verify_bytes_read); 1946 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1947 assert(verify_error.Success() == error.Success()); 1948 return cache_bytes_read; 1949 } 1950 return 0; 1951 #else // !defined(VERIFY_MEMORY_READS) 1952 // Memory caching is enabled, without debug verification 1953 1954 return m_memory_cache.Read(addr, buf, size, error); 1955 #endif // defined (VERIFY_MEMORY_READS) 1956 } else { 1957 // Memory caching is disabled 1958 1959 return ReadMemoryFromInferior(addr, buf, size, error); 1960 } 1961 } 1962 1963 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1964 Status &error) { 1965 char buf[256]; 1966 out_str.clear(); 1967 addr_t curr_addr = addr; 1968 while (true) { 1969 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1970 if (length == 0) 1971 break; 1972 out_str.append(buf, length); 1973 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1974 // to read some more characters 1975 if (length == sizeof(buf) - 1) 1976 curr_addr += length; 1977 else 1978 break; 1979 } 1980 return out_str.size(); 1981 } 1982 1983 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1984 Status &error, size_t type_width) { 1985 size_t total_bytes_read = 0; 1986 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1987 // Ensure a null terminator independent of the number of bytes that is 1988 // read. 1989 memset(dst, 0, max_bytes); 1990 size_t bytes_left = max_bytes - type_width; 1991 1992 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1993 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1994 "string with more than 4 bytes " 1995 "per character!"); 1996 1997 addr_t curr_addr = addr; 1998 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1999 char *curr_dst = dst; 2000 2001 error.Clear(); 2002 while (bytes_left > 0 && error.Success()) { 2003 addr_t cache_line_bytes_left = 2004 cache_line_size - (curr_addr % cache_line_size); 2005 addr_t bytes_to_read = 2006 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2007 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2008 2009 if (bytes_read == 0) 2010 break; 2011 2012 // Search for a null terminator of correct size and alignment in 2013 // bytes_read 2014 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2015 for (size_t i = aligned_start; 2016 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2017 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2018 error.Clear(); 2019 return i; 2020 } 2021 2022 total_bytes_read += bytes_read; 2023 curr_dst += bytes_read; 2024 curr_addr += bytes_read; 2025 bytes_left -= bytes_read; 2026 } 2027 } else { 2028 if (max_bytes) 2029 error.SetErrorString("invalid arguments"); 2030 } 2031 return total_bytes_read; 2032 } 2033 2034 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2035 // correct code to find null terminators. 2036 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2037 size_t dst_max_len, 2038 Status &result_error) { 2039 size_t total_cstr_len = 0; 2040 if (dst && dst_max_len) { 2041 result_error.Clear(); 2042 // NULL out everything just to be safe 2043 memset(dst, 0, dst_max_len); 2044 Status error; 2045 addr_t curr_addr = addr; 2046 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2047 size_t bytes_left = dst_max_len - 1; 2048 char *curr_dst = dst; 2049 2050 while (bytes_left > 0) { 2051 addr_t cache_line_bytes_left = 2052 cache_line_size - (curr_addr % cache_line_size); 2053 addr_t bytes_to_read = 2054 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2055 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2056 2057 if (bytes_read == 0) { 2058 result_error = error; 2059 dst[total_cstr_len] = '\0'; 2060 break; 2061 } 2062 const size_t len = strlen(curr_dst); 2063 2064 total_cstr_len += len; 2065 2066 if (len < bytes_to_read) 2067 break; 2068 2069 curr_dst += bytes_read; 2070 curr_addr += bytes_read; 2071 bytes_left -= bytes_read; 2072 } 2073 } else { 2074 if (dst == nullptr) 2075 result_error.SetErrorString("invalid arguments"); 2076 else 2077 result_error.Clear(); 2078 } 2079 return total_cstr_len; 2080 } 2081 2082 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2083 Status &error) { 2084 if (buf == nullptr || size == 0) 2085 return 0; 2086 2087 size_t bytes_read = 0; 2088 uint8_t *bytes = (uint8_t *)buf; 2089 2090 while (bytes_read < size) { 2091 const size_t curr_size = size - bytes_read; 2092 const size_t curr_bytes_read = 2093 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2094 bytes_read += curr_bytes_read; 2095 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2096 break; 2097 } 2098 2099 // Replace any software breakpoint opcodes that fall into this range back 2100 // into "buf" before we return 2101 if (bytes_read > 0) 2102 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2103 return bytes_read; 2104 } 2105 2106 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2107 size_t integer_byte_size, 2108 uint64_t fail_value, 2109 Status &error) { 2110 Scalar scalar; 2111 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2112 error)) 2113 return scalar.ULongLong(fail_value); 2114 return fail_value; 2115 } 2116 2117 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2118 size_t integer_byte_size, 2119 int64_t fail_value, 2120 Status &error) { 2121 Scalar scalar; 2122 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2123 error)) 2124 return scalar.SLongLong(fail_value); 2125 return fail_value; 2126 } 2127 2128 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2129 Scalar scalar; 2130 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2131 error)) 2132 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2133 return LLDB_INVALID_ADDRESS; 2134 } 2135 2136 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2137 Status &error) { 2138 Scalar scalar; 2139 const uint32_t addr_byte_size = GetAddressByteSize(); 2140 if (addr_byte_size <= 4) 2141 scalar = (uint32_t)ptr_value; 2142 else 2143 scalar = ptr_value; 2144 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2145 addr_byte_size; 2146 } 2147 2148 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2149 Status &error) { 2150 size_t bytes_written = 0; 2151 const uint8_t *bytes = (const uint8_t *)buf; 2152 2153 while (bytes_written < size) { 2154 const size_t curr_size = size - bytes_written; 2155 const size_t curr_bytes_written = DoWriteMemory( 2156 addr + bytes_written, bytes + bytes_written, curr_size, error); 2157 bytes_written += curr_bytes_written; 2158 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2159 break; 2160 } 2161 return bytes_written; 2162 } 2163 2164 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2165 Status &error) { 2166 #if defined(ENABLE_MEMORY_CACHING) 2167 m_memory_cache.Flush(addr, size); 2168 #endif 2169 2170 if (buf == nullptr || size == 0) 2171 return 0; 2172 2173 m_mod_id.BumpMemoryID(); 2174 2175 // We need to write any data that would go where any current software traps 2176 // (enabled software breakpoints) any software traps (breakpoints) that we 2177 // may have placed in our tasks memory. 2178 2179 BreakpointSiteList bp_sites_in_range; 2180 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2181 return WriteMemoryPrivate(addr, buf, size, error); 2182 2183 // No breakpoint sites overlap 2184 if (bp_sites_in_range.IsEmpty()) 2185 return WriteMemoryPrivate(addr, buf, size, error); 2186 2187 const uint8_t *ubuf = (const uint8_t *)buf; 2188 uint64_t bytes_written = 0; 2189 2190 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2191 &error](BreakpointSite *bp) -> void { 2192 if (error.Fail()) 2193 return; 2194 2195 addr_t intersect_addr; 2196 size_t intersect_size; 2197 size_t opcode_offset; 2198 const bool intersects = bp->IntersectsRange( 2199 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2200 UNUSED_IF_ASSERT_DISABLED(intersects); 2201 assert(intersects); 2202 assert(addr <= intersect_addr && intersect_addr < addr + size); 2203 assert(addr < intersect_addr + intersect_size && 2204 intersect_addr + intersect_size <= addr + size); 2205 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2206 2207 // Check for bytes before this breakpoint 2208 const addr_t curr_addr = addr + bytes_written; 2209 if (intersect_addr > curr_addr) { 2210 // There are some bytes before this breakpoint that we need to just 2211 // write to memory 2212 size_t curr_size = intersect_addr - curr_addr; 2213 size_t curr_bytes_written = 2214 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2215 bytes_written += curr_bytes_written; 2216 if (curr_bytes_written != curr_size) { 2217 // We weren't able to write all of the requested bytes, we are 2218 // done looping and will return the number of bytes that we have 2219 // written so far. 2220 if (error.Success()) 2221 error.SetErrorToGenericError(); 2222 } 2223 } 2224 // Now write any bytes that would cover up any software breakpoints 2225 // directly into the breakpoint opcode buffer 2226 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2227 intersect_size); 2228 bytes_written += intersect_size; 2229 }); 2230 2231 // Write any remaining bytes after the last breakpoint if we have any left 2232 if (bytes_written < size) 2233 bytes_written += 2234 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2235 size - bytes_written, error); 2236 2237 return bytes_written; 2238 } 2239 2240 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2241 size_t byte_size, Status &error) { 2242 if (byte_size == UINT32_MAX) 2243 byte_size = scalar.GetByteSize(); 2244 if (byte_size > 0) { 2245 uint8_t buf[32]; 2246 const size_t mem_size = 2247 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2248 if (mem_size > 0) 2249 return WriteMemory(addr, buf, mem_size, error); 2250 else 2251 error.SetErrorString("failed to get scalar as memory data"); 2252 } else { 2253 error.SetErrorString("invalid scalar value"); 2254 } 2255 return 0; 2256 } 2257 2258 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2259 bool is_signed, Scalar &scalar, 2260 Status &error) { 2261 uint64_t uval = 0; 2262 if (byte_size == 0) { 2263 error.SetErrorString("byte size is zero"); 2264 } else if (byte_size & (byte_size - 1)) { 2265 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2266 byte_size); 2267 } else if (byte_size <= sizeof(uval)) { 2268 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2269 if (bytes_read == byte_size) { 2270 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2271 GetAddressByteSize()); 2272 lldb::offset_t offset = 0; 2273 if (byte_size <= 4) 2274 scalar = data.GetMaxU32(&offset, byte_size); 2275 else 2276 scalar = data.GetMaxU64(&offset, byte_size); 2277 if (is_signed) 2278 scalar.SignExtend(byte_size * 8); 2279 return bytes_read; 2280 } 2281 } else { 2282 error.SetErrorStringWithFormat( 2283 "byte size of %u is too large for integer scalar type", byte_size); 2284 } 2285 return 0; 2286 } 2287 2288 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2289 Status error; 2290 for (const auto &Entry : entries) { 2291 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2292 error); 2293 if (!error.Success()) 2294 break; 2295 } 2296 return error; 2297 } 2298 2299 #define USE_ALLOCATE_MEMORY_CACHE 1 2300 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2301 Status &error) { 2302 if (GetPrivateState() != eStateStopped) { 2303 error.SetErrorToGenericError(); 2304 return LLDB_INVALID_ADDRESS; 2305 } 2306 2307 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2308 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2309 #else 2310 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2311 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2312 LLDB_LOGF(log, 2313 "Process::AllocateMemory(size=%" PRIu64 2314 ", permissions=%s) => 0x%16.16" PRIx64 2315 " (m_stop_id = %u m_memory_id = %u)", 2316 (uint64_t)size, GetPermissionsAsCString(permissions), 2317 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2318 m_mod_id.GetMemoryID()); 2319 return allocated_addr; 2320 #endif 2321 } 2322 2323 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2324 Status &error) { 2325 addr_t return_addr = AllocateMemory(size, permissions, error); 2326 if (error.Success()) { 2327 std::string buffer(size, 0); 2328 WriteMemory(return_addr, buffer.c_str(), size, error); 2329 } 2330 return return_addr; 2331 } 2332 2333 bool Process::CanJIT() { 2334 if (m_can_jit == eCanJITDontKnow) { 2335 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2336 Status err; 2337 2338 uint64_t allocated_memory = AllocateMemory( 2339 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2340 err); 2341 2342 if (err.Success()) { 2343 m_can_jit = eCanJITYes; 2344 LLDB_LOGF(log, 2345 "Process::%s pid %" PRIu64 2346 " allocation test passed, CanJIT () is true", 2347 __FUNCTION__, GetID()); 2348 } else { 2349 m_can_jit = eCanJITNo; 2350 LLDB_LOGF(log, 2351 "Process::%s pid %" PRIu64 2352 " allocation test failed, CanJIT () is false: %s", 2353 __FUNCTION__, GetID(), err.AsCString()); 2354 } 2355 2356 DeallocateMemory(allocated_memory); 2357 } 2358 2359 return m_can_jit == eCanJITYes; 2360 } 2361 2362 void Process::SetCanJIT(bool can_jit) { 2363 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2364 } 2365 2366 void Process::SetCanRunCode(bool can_run_code) { 2367 SetCanJIT(can_run_code); 2368 m_can_interpret_function_calls = can_run_code; 2369 } 2370 2371 Status Process::DeallocateMemory(addr_t ptr) { 2372 Status error; 2373 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2374 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2375 error.SetErrorStringWithFormat( 2376 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2377 } 2378 #else 2379 error = DoDeallocateMemory(ptr); 2380 2381 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2382 LLDB_LOGF(log, 2383 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2384 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2385 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2386 m_mod_id.GetMemoryID()); 2387 #endif 2388 return error; 2389 } 2390 2391 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2392 lldb::addr_t header_addr, 2393 size_t size_to_read) { 2394 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2395 if (log) { 2396 LLDB_LOGF(log, 2397 "Process::ReadModuleFromMemory reading %s binary from memory", 2398 file_spec.GetPath().c_str()); 2399 } 2400 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2401 if (module_sp) { 2402 Status error; 2403 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2404 shared_from_this(), header_addr, error, size_to_read); 2405 if (objfile) 2406 return module_sp; 2407 } 2408 return ModuleSP(); 2409 } 2410 2411 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2412 uint32_t &permissions) { 2413 MemoryRegionInfo range_info; 2414 permissions = 0; 2415 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2416 if (!error.Success()) 2417 return false; 2418 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2419 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2420 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2421 return false; 2422 } 2423 2424 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2425 permissions |= lldb::ePermissionsReadable; 2426 2427 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2428 permissions |= lldb::ePermissionsWritable; 2429 2430 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2431 permissions |= lldb::ePermissionsExecutable; 2432 2433 return true; 2434 } 2435 2436 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2437 Status error; 2438 error.SetErrorString("watchpoints are not supported"); 2439 return error; 2440 } 2441 2442 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2443 Status error; 2444 error.SetErrorString("watchpoints are not supported"); 2445 return error; 2446 } 2447 2448 StateType 2449 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2450 const Timeout<std::micro> &timeout) { 2451 StateType state; 2452 2453 while (true) { 2454 event_sp.reset(); 2455 state = GetStateChangedEventsPrivate(event_sp, timeout); 2456 2457 if (StateIsStoppedState(state, false)) 2458 break; 2459 2460 // If state is invalid, then we timed out 2461 if (state == eStateInvalid) 2462 break; 2463 2464 if (event_sp) 2465 HandlePrivateEvent(event_sp); 2466 } 2467 return state; 2468 } 2469 2470 void Process::LoadOperatingSystemPlugin(bool flush) { 2471 if (flush) 2472 m_thread_list.Clear(); 2473 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2474 if (flush) 2475 Flush(); 2476 } 2477 2478 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2479 Status error; 2480 m_abi_sp.reset(); 2481 m_dyld_up.reset(); 2482 m_jit_loaders_up.reset(); 2483 m_system_runtime_up.reset(); 2484 m_os_up.reset(); 2485 m_process_input_reader.reset(); 2486 2487 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2488 if (!exe_module) { 2489 error.SetErrorString("executable module does not exist"); 2490 return error; 2491 } 2492 2493 char local_exec_file_path[PATH_MAX]; 2494 char platform_exec_file_path[PATH_MAX]; 2495 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2496 sizeof(local_exec_file_path)); 2497 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2498 sizeof(platform_exec_file_path)); 2499 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2500 // Install anything that might need to be installed prior to launching. 2501 // For host systems, this will do nothing, but if we are connected to a 2502 // remote platform it will install any needed binaries 2503 error = GetTarget().Install(&launch_info); 2504 if (error.Fail()) 2505 return error; 2506 2507 if (PrivateStateThreadIsValid()) 2508 PausePrivateStateThread(); 2509 2510 error = WillLaunch(exe_module); 2511 if (error.Success()) { 2512 const bool restarted = false; 2513 SetPublicState(eStateLaunching, restarted); 2514 m_should_detach = false; 2515 2516 if (m_public_run_lock.TrySetRunning()) { 2517 // Now launch using these arguments. 2518 error = DoLaunch(exe_module, launch_info); 2519 } else { 2520 // This shouldn't happen 2521 error.SetErrorString("failed to acquire process run lock"); 2522 } 2523 2524 if (error.Fail()) { 2525 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2526 SetID(LLDB_INVALID_PROCESS_ID); 2527 const char *error_string = error.AsCString(); 2528 if (error_string == nullptr) 2529 error_string = "launch failed"; 2530 SetExitStatus(-1, error_string); 2531 } 2532 } else { 2533 EventSP event_sp; 2534 2535 // Now wait for the process to launch and return control to us, and then 2536 // call DidLaunch: 2537 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2538 2539 if (state == eStateInvalid || !event_sp) { 2540 // We were able to launch the process, but we failed to catch the 2541 // initial stop. 2542 error.SetErrorString("failed to catch stop after launch"); 2543 SetExitStatus(0, "failed to catch stop after launch"); 2544 Destroy(false); 2545 } else if (state == eStateStopped || state == eStateCrashed) { 2546 DidLaunch(); 2547 2548 DynamicLoader *dyld = GetDynamicLoader(); 2549 if (dyld) 2550 dyld->DidLaunch(); 2551 2552 GetJITLoaders().DidLaunch(); 2553 2554 SystemRuntime *system_runtime = GetSystemRuntime(); 2555 if (system_runtime) 2556 system_runtime->DidLaunch(); 2557 2558 if (!m_os_up) 2559 LoadOperatingSystemPlugin(false); 2560 2561 // We successfully launched the process and stopped, now it the 2562 // right time to set up signal filters before resuming. 2563 UpdateAutomaticSignalFiltering(); 2564 2565 // Note, the stop event was consumed above, but not handled. This 2566 // was done to give DidLaunch a chance to run. The target is either 2567 // stopped or crashed. Directly set the state. This is done to 2568 // prevent a stop message with a bunch of spurious output on thread 2569 // status, as well as not pop a ProcessIOHandler. 2570 SetPublicState(state, false); 2571 2572 if (PrivateStateThreadIsValid()) 2573 ResumePrivateStateThread(); 2574 else 2575 StartPrivateStateThread(); 2576 2577 // Target was stopped at entry as was intended. Need to notify the 2578 // listeners about it. 2579 if (state == eStateStopped && 2580 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2581 HandlePrivateEvent(event_sp); 2582 } else if (state == eStateExited) { 2583 // We exited while trying to launch somehow. Don't call DidLaunch 2584 // as that's not likely to work, and return an invalid pid. 2585 HandlePrivateEvent(event_sp); 2586 } 2587 } 2588 } 2589 } else { 2590 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2591 local_exec_file_path); 2592 } 2593 2594 return error; 2595 } 2596 2597 Status Process::LoadCore() { 2598 Status error = DoLoadCore(); 2599 if (error.Success()) { 2600 ListenerSP listener_sp( 2601 Listener::MakeListener("lldb.process.load_core_listener")); 2602 HijackProcessEvents(listener_sp); 2603 2604 if (PrivateStateThreadIsValid()) 2605 ResumePrivateStateThread(); 2606 else 2607 StartPrivateStateThread(); 2608 2609 DynamicLoader *dyld = GetDynamicLoader(); 2610 if (dyld) 2611 dyld->DidAttach(); 2612 2613 GetJITLoaders().DidAttach(); 2614 2615 SystemRuntime *system_runtime = GetSystemRuntime(); 2616 if (system_runtime) 2617 system_runtime->DidAttach(); 2618 2619 if (!m_os_up) 2620 LoadOperatingSystemPlugin(false); 2621 2622 // We successfully loaded a core file, now pretend we stopped so we can 2623 // show all of the threads in the core file and explore the crashed state. 2624 SetPrivateState(eStateStopped); 2625 2626 // Wait for a stopped event since we just posted one above... 2627 lldb::EventSP event_sp; 2628 StateType state = 2629 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2630 2631 if (!StateIsStoppedState(state, false)) { 2632 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2633 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2634 StateAsCString(state)); 2635 error.SetErrorString( 2636 "Did not get stopped event after loading the core file."); 2637 } 2638 RestoreProcessEvents(); 2639 } 2640 return error; 2641 } 2642 2643 DynamicLoader *Process::GetDynamicLoader() { 2644 if (!m_dyld_up) 2645 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2646 return m_dyld_up.get(); 2647 } 2648 2649 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2650 2651 JITLoaderList &Process::GetJITLoaders() { 2652 if (!m_jit_loaders_up) { 2653 m_jit_loaders_up.reset(new JITLoaderList()); 2654 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2655 } 2656 return *m_jit_loaders_up; 2657 } 2658 2659 SystemRuntime *Process::GetSystemRuntime() { 2660 if (!m_system_runtime_up) 2661 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2662 return m_system_runtime_up.get(); 2663 } 2664 2665 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2666 uint32_t exec_count) 2667 : NextEventAction(process), m_exec_count(exec_count) { 2668 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2669 LLDB_LOGF( 2670 log, 2671 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2672 __FUNCTION__, static_cast<void *>(process), exec_count); 2673 } 2674 2675 Process::NextEventAction::EventActionResult 2676 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2677 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2678 2679 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2680 LLDB_LOGF(log, 2681 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2682 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2683 2684 switch (state) { 2685 case eStateAttaching: 2686 return eEventActionSuccess; 2687 2688 case eStateRunning: 2689 case eStateConnected: 2690 return eEventActionRetry; 2691 2692 case eStateStopped: 2693 case eStateCrashed: 2694 // During attach, prior to sending the eStateStopped event, 2695 // lldb_private::Process subclasses must set the new process ID. 2696 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2697 // We don't want these events to be reported, so go set the 2698 // ShouldReportStop here: 2699 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2700 2701 if (m_exec_count > 0) { 2702 --m_exec_count; 2703 2704 LLDB_LOGF(log, 2705 "Process::AttachCompletionHandler::%s state %s: reduced " 2706 "remaining exec count to %" PRIu32 ", requesting resume", 2707 __FUNCTION__, StateAsCString(state), m_exec_count); 2708 2709 RequestResume(); 2710 return eEventActionRetry; 2711 } else { 2712 LLDB_LOGF(log, 2713 "Process::AttachCompletionHandler::%s state %s: no more " 2714 "execs expected to start, continuing with attach", 2715 __FUNCTION__, StateAsCString(state)); 2716 2717 m_process->CompleteAttach(); 2718 return eEventActionSuccess; 2719 } 2720 break; 2721 2722 default: 2723 case eStateExited: 2724 case eStateInvalid: 2725 break; 2726 } 2727 2728 m_exit_string.assign("No valid Process"); 2729 return eEventActionExit; 2730 } 2731 2732 Process::NextEventAction::EventActionResult 2733 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2734 return eEventActionSuccess; 2735 } 2736 2737 const char *Process::AttachCompletionHandler::GetExitString() { 2738 return m_exit_string.c_str(); 2739 } 2740 2741 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2742 if (m_listener_sp) 2743 return m_listener_sp; 2744 else 2745 return debugger.GetListener(); 2746 } 2747 2748 Status Process::Attach(ProcessAttachInfo &attach_info) { 2749 m_abi_sp.reset(); 2750 m_process_input_reader.reset(); 2751 m_dyld_up.reset(); 2752 m_jit_loaders_up.reset(); 2753 m_system_runtime_up.reset(); 2754 m_os_up.reset(); 2755 2756 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2757 Status error; 2758 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2759 char process_name[PATH_MAX]; 2760 2761 if (attach_info.GetExecutableFile().GetPath(process_name, 2762 sizeof(process_name))) { 2763 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2764 2765 if (wait_for_launch) { 2766 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2767 if (error.Success()) { 2768 if (m_public_run_lock.TrySetRunning()) { 2769 m_should_detach = true; 2770 const bool restarted = false; 2771 SetPublicState(eStateAttaching, restarted); 2772 // Now attach using these arguments. 2773 error = DoAttachToProcessWithName(process_name, attach_info); 2774 } else { 2775 // This shouldn't happen 2776 error.SetErrorString("failed to acquire process run lock"); 2777 } 2778 2779 if (error.Fail()) { 2780 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2781 SetID(LLDB_INVALID_PROCESS_ID); 2782 if (error.AsCString() == nullptr) 2783 error.SetErrorString("attach failed"); 2784 2785 SetExitStatus(-1, error.AsCString()); 2786 } 2787 } else { 2788 SetNextEventAction(new Process::AttachCompletionHandler( 2789 this, attach_info.GetResumeCount())); 2790 StartPrivateStateThread(); 2791 } 2792 return error; 2793 } 2794 } else { 2795 ProcessInstanceInfoList process_infos; 2796 PlatformSP platform_sp(GetTarget().GetPlatform()); 2797 2798 if (platform_sp) { 2799 ProcessInstanceInfoMatch match_info; 2800 match_info.GetProcessInfo() = attach_info; 2801 match_info.SetNameMatchType(NameMatch::Equals); 2802 platform_sp->FindProcesses(match_info, process_infos); 2803 const uint32_t num_matches = process_infos.GetSize(); 2804 if (num_matches == 1) { 2805 attach_pid = process_infos.GetProcessIDAtIndex(0); 2806 // Fall through and attach using the above process ID 2807 } else { 2808 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2809 process_name, sizeof(process_name)); 2810 if (num_matches > 1) { 2811 StreamString s; 2812 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2813 for (size_t i = 0; i < num_matches; i++) { 2814 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 2815 s, platform_sp->GetUserIDResolver(), true, false); 2816 } 2817 error.SetErrorStringWithFormat( 2818 "more than one process named %s:\n%s", process_name, 2819 s.GetData()); 2820 } else 2821 error.SetErrorStringWithFormat( 2822 "could not find a process named %s", process_name); 2823 } 2824 } else { 2825 error.SetErrorString( 2826 "invalid platform, can't find processes by name"); 2827 return error; 2828 } 2829 } 2830 } else { 2831 error.SetErrorString("invalid process name"); 2832 } 2833 } 2834 2835 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2836 error = WillAttachToProcessWithID(attach_pid); 2837 if (error.Success()) { 2838 2839 if (m_public_run_lock.TrySetRunning()) { 2840 // Now attach using these arguments. 2841 m_should_detach = true; 2842 const bool restarted = false; 2843 SetPublicState(eStateAttaching, restarted); 2844 error = DoAttachToProcessWithID(attach_pid, attach_info); 2845 } else { 2846 // This shouldn't happen 2847 error.SetErrorString("failed to acquire process run lock"); 2848 } 2849 2850 if (error.Success()) { 2851 SetNextEventAction(new Process::AttachCompletionHandler( 2852 this, attach_info.GetResumeCount())); 2853 StartPrivateStateThread(); 2854 } else { 2855 if (GetID() != LLDB_INVALID_PROCESS_ID) 2856 SetID(LLDB_INVALID_PROCESS_ID); 2857 2858 const char *error_string = error.AsCString(); 2859 if (error_string == nullptr) 2860 error_string = "attach failed"; 2861 2862 SetExitStatus(-1, error_string); 2863 } 2864 } 2865 } 2866 return error; 2867 } 2868 2869 void Process::CompleteAttach() { 2870 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2871 LIBLLDB_LOG_TARGET)); 2872 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2873 2874 // Let the process subclass figure out at much as it can about the process 2875 // before we go looking for a dynamic loader plug-in. 2876 ArchSpec process_arch; 2877 DidAttach(process_arch); 2878 2879 if (process_arch.IsValid()) { 2880 GetTarget().SetArchitecture(process_arch); 2881 if (log) { 2882 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2883 LLDB_LOGF(log, 2884 "Process::%s replacing process architecture with DidAttach() " 2885 "architecture: %s", 2886 __FUNCTION__, triple_str ? triple_str : "<null>"); 2887 } 2888 } 2889 2890 // We just attached. If we have a platform, ask it for the process 2891 // architecture, and if it isn't the same as the one we've already set, 2892 // switch architectures. 2893 PlatformSP platform_sp(GetTarget().GetPlatform()); 2894 assert(platform_sp); 2895 if (platform_sp) { 2896 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2897 if (target_arch.IsValid() && 2898 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2899 ArchSpec platform_arch; 2900 platform_sp = 2901 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2902 if (platform_sp) { 2903 GetTarget().SetPlatform(platform_sp); 2904 GetTarget().SetArchitecture(platform_arch); 2905 LLDB_LOGF(log, 2906 "Process::%s switching platform to %s and architecture " 2907 "to %s based on info from attach", 2908 __FUNCTION__, platform_sp->GetName().AsCString(""), 2909 platform_arch.GetTriple().getTriple().c_str()); 2910 } 2911 } else if (!process_arch.IsValid()) { 2912 ProcessInstanceInfo process_info; 2913 GetProcessInfo(process_info); 2914 const ArchSpec &process_arch = process_info.GetArchitecture(); 2915 if (process_arch.IsValid() && 2916 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 2917 GetTarget().SetArchitecture(process_arch); 2918 LLDB_LOGF(log, 2919 "Process::%s switching architecture to %s based on info " 2920 "the platform retrieved for pid %" PRIu64, 2921 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2922 GetID()); 2923 } 2924 } 2925 } 2926 2927 // We have completed the attach, now it is time to find the dynamic loader 2928 // plug-in 2929 DynamicLoader *dyld = GetDynamicLoader(); 2930 if (dyld) { 2931 dyld->DidAttach(); 2932 if (log) { 2933 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2934 LLDB_LOGF(log, 2935 "Process::%s after DynamicLoader::DidAttach(), target " 2936 "executable is %s (using %s plugin)", 2937 __FUNCTION__, 2938 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2939 : "<none>", 2940 dyld->GetPluginName().AsCString("<unnamed>")); 2941 } 2942 } 2943 2944 GetJITLoaders().DidAttach(); 2945 2946 SystemRuntime *system_runtime = GetSystemRuntime(); 2947 if (system_runtime) { 2948 system_runtime->DidAttach(); 2949 if (log) { 2950 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2951 LLDB_LOGF(log, 2952 "Process::%s after SystemRuntime::DidAttach(), target " 2953 "executable is %s (using %s plugin)", 2954 __FUNCTION__, 2955 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2956 : "<none>", 2957 system_runtime->GetPluginName().AsCString("<unnamed>")); 2958 } 2959 } 2960 2961 if (!m_os_up) { 2962 LoadOperatingSystemPlugin(false); 2963 if (m_os_up) { 2964 // Somebody might have gotten threads before now, but we need to force the 2965 // update after we've loaded the OperatingSystem plugin or it won't get a 2966 // chance to process the threads. 2967 m_thread_list.Clear(); 2968 UpdateThreadListIfNeeded(); 2969 } 2970 } 2971 // Figure out which one is the executable, and set that in our target: 2972 const ModuleList &target_modules = GetTarget().GetImages(); 2973 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 2974 size_t num_modules = target_modules.GetSize(); 2975 ModuleSP new_executable_module_sp; 2976 2977 for (size_t i = 0; i < num_modules; i++) { 2978 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 2979 if (module_sp && module_sp->IsExecutable()) { 2980 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2981 new_executable_module_sp = module_sp; 2982 break; 2983 } 2984 } 2985 if (new_executable_module_sp) { 2986 GetTarget().SetExecutableModule(new_executable_module_sp, 2987 eLoadDependentsNo); 2988 if (log) { 2989 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2990 LLDB_LOGF( 2991 log, 2992 "Process::%s after looping through modules, target executable is %s", 2993 __FUNCTION__, 2994 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2995 : "<none>"); 2996 } 2997 } 2998 } 2999 3000 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3001 m_abi_sp.reset(); 3002 m_process_input_reader.reset(); 3003 3004 // Find the process and its architecture. Make sure it matches the 3005 // architecture of the current Target, and if not adjust it. 3006 3007 Status error(DoConnectRemote(strm, remote_url)); 3008 if (error.Success()) { 3009 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3010 EventSP event_sp; 3011 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3012 3013 if (state == eStateStopped || state == eStateCrashed) { 3014 // If we attached and actually have a process on the other end, then 3015 // this ended up being the equivalent of an attach. 3016 CompleteAttach(); 3017 3018 // This delays passing the stopped event to listeners till 3019 // CompleteAttach gets a chance to complete... 3020 HandlePrivateEvent(event_sp); 3021 } 3022 } 3023 3024 if (PrivateStateThreadIsValid()) 3025 ResumePrivateStateThread(); 3026 else 3027 StartPrivateStateThread(); 3028 } 3029 return error; 3030 } 3031 3032 Status Process::PrivateResume() { 3033 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3034 LIBLLDB_LOG_STEP)); 3035 LLDB_LOGF(log, 3036 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3037 "private state: %s", 3038 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3039 StateAsCString(m_private_state.GetValue())); 3040 3041 // If signals handing status changed we might want to update our signal 3042 // filters before resuming. 3043 UpdateAutomaticSignalFiltering(); 3044 3045 Status error(WillResume()); 3046 // Tell the process it is about to resume before the thread list 3047 if (error.Success()) { 3048 // Now let the thread list know we are about to resume so it can let all of 3049 // our threads know that they are about to be resumed. Threads will each be 3050 // called with Thread::WillResume(StateType) where StateType contains the 3051 // state that they are supposed to have when the process is resumed 3052 // (suspended/running/stepping). Threads should also check their resume 3053 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3054 // start back up with a signal. 3055 if (m_thread_list.WillResume()) { 3056 // Last thing, do the PreResumeActions. 3057 if (!RunPreResumeActions()) { 3058 error.SetErrorStringWithFormat( 3059 "Process::PrivateResume PreResumeActions failed, not resuming."); 3060 } else { 3061 m_mod_id.BumpResumeID(); 3062 error = DoResume(); 3063 if (error.Success()) { 3064 DidResume(); 3065 m_thread_list.DidResume(); 3066 LLDB_LOGF(log, "Process thinks the process has resumed."); 3067 } else { 3068 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3069 return error; 3070 } 3071 } 3072 } else { 3073 // Somebody wanted to run without running (e.g. we were faking a step 3074 // from one frame of a set of inlined frames that share the same PC to 3075 // another.) So generate a continue & a stopped event, and let the world 3076 // handle them. 3077 LLDB_LOGF(log, 3078 "Process::PrivateResume() asked to simulate a start & stop."); 3079 3080 SetPrivateState(eStateRunning); 3081 SetPrivateState(eStateStopped); 3082 } 3083 } else 3084 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3085 error.AsCString("<unknown error>")); 3086 return error; 3087 } 3088 3089 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3090 if (!StateIsRunningState(m_public_state.GetValue())) 3091 return Status("Process is not running."); 3092 3093 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3094 // case it was already set and some thread plan logic calls halt on its own. 3095 m_clear_thread_plans_on_stop |= clear_thread_plans; 3096 3097 ListenerSP halt_listener_sp( 3098 Listener::MakeListener("lldb.process.halt_listener")); 3099 HijackProcessEvents(halt_listener_sp); 3100 3101 EventSP event_sp; 3102 3103 SendAsyncInterrupt(); 3104 3105 if (m_public_state.GetValue() == eStateAttaching) { 3106 // Don't hijack and eat the eStateExited as the code that was doing the 3107 // attach will be waiting for this event... 3108 RestoreProcessEvents(); 3109 SetExitStatus(SIGKILL, "Cancelled async attach."); 3110 Destroy(false); 3111 return Status(); 3112 } 3113 3114 // Wait for 10 second for the process to stop. 3115 StateType state = WaitForProcessToStop( 3116 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3117 RestoreProcessEvents(); 3118 3119 if (state == eStateInvalid || !event_sp) { 3120 // We timed out and didn't get a stop event... 3121 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3122 } 3123 3124 BroadcastEvent(event_sp); 3125 3126 return Status(); 3127 } 3128 3129 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3130 Status error; 3131 3132 // Check both the public & private states here. If we're hung evaluating an 3133 // expression, for instance, then the public state will be stopped, but we 3134 // still need to interrupt. 3135 if (m_public_state.GetValue() == eStateRunning || 3136 m_private_state.GetValue() == eStateRunning) { 3137 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3138 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3139 3140 ListenerSP listener_sp( 3141 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3142 HijackProcessEvents(listener_sp); 3143 3144 SendAsyncInterrupt(); 3145 3146 // Consume the interrupt event. 3147 StateType state = 3148 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3149 3150 RestoreProcessEvents(); 3151 3152 // If the process exited while we were waiting for it to stop, put the 3153 // exited event into the shared pointer passed in and return. Our caller 3154 // doesn't need to do anything else, since they don't have a process 3155 // anymore... 3156 3157 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3158 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3159 __FUNCTION__); 3160 return error; 3161 } else 3162 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3163 3164 if (state != eStateStopped) { 3165 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3166 StateAsCString(state)); 3167 // If we really couldn't stop the process then we should just error out 3168 // here, but if the lower levels just bobbled sending the event and we 3169 // really are stopped, then continue on. 3170 StateType private_state = m_private_state.GetValue(); 3171 if (private_state != eStateStopped) { 3172 return Status( 3173 "Attempt to stop the target in order to detach timed out. " 3174 "State = %s", 3175 StateAsCString(GetState())); 3176 } 3177 } 3178 } 3179 return error; 3180 } 3181 3182 Status Process::Detach(bool keep_stopped) { 3183 EventSP exit_event_sp; 3184 Status error; 3185 m_destroy_in_process = true; 3186 3187 error = WillDetach(); 3188 3189 if (error.Success()) { 3190 if (DetachRequiresHalt()) { 3191 error = StopForDestroyOrDetach(exit_event_sp); 3192 if (!error.Success()) { 3193 m_destroy_in_process = false; 3194 return error; 3195 } else if (exit_event_sp) { 3196 // We shouldn't need to do anything else here. There's no process left 3197 // to detach from... 3198 StopPrivateStateThread(); 3199 m_destroy_in_process = false; 3200 return error; 3201 } 3202 } 3203 3204 m_thread_list.DiscardThreadPlans(); 3205 DisableAllBreakpointSites(); 3206 3207 error = DoDetach(keep_stopped); 3208 if (error.Success()) { 3209 DidDetach(); 3210 StopPrivateStateThread(); 3211 } else { 3212 return error; 3213 } 3214 } 3215 m_destroy_in_process = false; 3216 3217 // If we exited when we were waiting for a process to stop, then forward the 3218 // event here so we don't lose the event 3219 if (exit_event_sp) { 3220 // Directly broadcast our exited event because we shut down our private 3221 // state thread above 3222 BroadcastEvent(exit_event_sp); 3223 } 3224 3225 // If we have been interrupted (to kill us) in the middle of running, we may 3226 // not end up propagating the last events through the event system, in which 3227 // case we might strand the write lock. Unlock it here so when we do to tear 3228 // down the process we don't get an error destroying the lock. 3229 3230 m_public_run_lock.SetStopped(); 3231 return error; 3232 } 3233 3234 Status Process::Destroy(bool force_kill) { 3235 3236 // Tell ourselves we are in the process of destroying the process, so that we 3237 // don't do any unnecessary work that might hinder the destruction. Remember 3238 // to set this back to false when we are done. That way if the attempt 3239 // failed and the process stays around for some reason it won't be in a 3240 // confused state. 3241 3242 if (force_kill) 3243 m_should_detach = false; 3244 3245 if (GetShouldDetach()) { 3246 // FIXME: This will have to be a process setting: 3247 bool keep_stopped = false; 3248 Detach(keep_stopped); 3249 } 3250 3251 m_destroy_in_process = true; 3252 3253 Status error(WillDestroy()); 3254 if (error.Success()) { 3255 EventSP exit_event_sp; 3256 if (DestroyRequiresHalt()) { 3257 error = StopForDestroyOrDetach(exit_event_sp); 3258 } 3259 3260 if (m_public_state.GetValue() != eStateRunning) { 3261 // Ditch all thread plans, and remove all our breakpoints: in case we 3262 // have to restart the target to kill it, we don't want it hitting a 3263 // breakpoint... Only do this if we've stopped, however, since if we 3264 // didn't manage to halt it above, then we're not going to have much luck 3265 // doing this now. 3266 m_thread_list.DiscardThreadPlans(); 3267 DisableAllBreakpointSites(); 3268 } 3269 3270 error = DoDestroy(); 3271 if (error.Success()) { 3272 DidDestroy(); 3273 StopPrivateStateThread(); 3274 } 3275 m_stdio_communication.Disconnect(); 3276 m_stdio_communication.StopReadThread(); 3277 m_stdin_forward = false; 3278 3279 if (m_process_input_reader) { 3280 m_process_input_reader->SetIsDone(true); 3281 m_process_input_reader->Cancel(); 3282 m_process_input_reader.reset(); 3283 } 3284 3285 // If we exited when we were waiting for a process to stop, then forward 3286 // the event here so we don't lose the event 3287 if (exit_event_sp) { 3288 // Directly broadcast our exited event because we shut down our private 3289 // state thread above 3290 BroadcastEvent(exit_event_sp); 3291 } 3292 3293 // If we have been interrupted (to kill us) in the middle of running, we 3294 // may not end up propagating the last events through the event system, in 3295 // which case we might strand the write lock. Unlock it here so when we do 3296 // to tear down the process we don't get an error destroying the lock. 3297 m_public_run_lock.SetStopped(); 3298 } 3299 3300 m_destroy_in_process = false; 3301 3302 return error; 3303 } 3304 3305 Status Process::Signal(int signal) { 3306 Status error(WillSignal()); 3307 if (error.Success()) { 3308 error = DoSignal(signal); 3309 if (error.Success()) 3310 DidSignal(); 3311 } 3312 return error; 3313 } 3314 3315 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3316 assert(signals_sp && "null signals_sp"); 3317 m_unix_signals_sp = signals_sp; 3318 } 3319 3320 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3321 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3322 return m_unix_signals_sp; 3323 } 3324 3325 lldb::ByteOrder Process::GetByteOrder() const { 3326 return GetTarget().GetArchitecture().GetByteOrder(); 3327 } 3328 3329 uint32_t Process::GetAddressByteSize() const { 3330 return GetTarget().GetArchitecture().GetAddressByteSize(); 3331 } 3332 3333 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3334 const StateType state = 3335 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3336 bool return_value = true; 3337 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3338 LIBLLDB_LOG_PROCESS)); 3339 3340 switch (state) { 3341 case eStateDetached: 3342 case eStateExited: 3343 case eStateUnloaded: 3344 m_stdio_communication.SynchronizeWithReadThread(); 3345 m_stdio_communication.Disconnect(); 3346 m_stdio_communication.StopReadThread(); 3347 m_stdin_forward = false; 3348 3349 LLVM_FALLTHROUGH; 3350 case eStateConnected: 3351 case eStateAttaching: 3352 case eStateLaunching: 3353 // These events indicate changes in the state of the debugging session, 3354 // always report them. 3355 return_value = true; 3356 break; 3357 case eStateInvalid: 3358 // We stopped for no apparent reason, don't report it. 3359 return_value = false; 3360 break; 3361 case eStateRunning: 3362 case eStateStepping: 3363 // If we've started the target running, we handle the cases where we are 3364 // already running and where there is a transition from stopped to running 3365 // differently. running -> running: Automatically suppress extra running 3366 // events stopped -> running: Report except when there is one or more no 3367 // votes 3368 // and no yes votes. 3369 SynchronouslyNotifyStateChanged(state); 3370 if (m_force_next_event_delivery) 3371 return_value = true; 3372 else { 3373 switch (m_last_broadcast_state) { 3374 case eStateRunning: 3375 case eStateStepping: 3376 // We always suppress multiple runnings with no PUBLIC stop in between. 3377 return_value = false; 3378 break; 3379 default: 3380 // TODO: make this work correctly. For now always report 3381 // run if we aren't running so we don't miss any running events. If I 3382 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3383 // and hit the breakpoints on multiple threads, then somehow during the 3384 // stepping over of all breakpoints no run gets reported. 3385 3386 // This is a transition from stop to run. 3387 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3388 case eVoteYes: 3389 case eVoteNoOpinion: 3390 return_value = true; 3391 break; 3392 case eVoteNo: 3393 return_value = false; 3394 break; 3395 } 3396 break; 3397 } 3398 } 3399 break; 3400 case eStateStopped: 3401 case eStateCrashed: 3402 case eStateSuspended: 3403 // We've stopped. First see if we're going to restart the target. If we 3404 // are going to stop, then we always broadcast the event. If we aren't 3405 // going to stop, let the thread plans decide if we're going to report this 3406 // event. If no thread has an opinion, we don't report it. 3407 3408 m_stdio_communication.SynchronizeWithReadThread(); 3409 RefreshStateAfterStop(); 3410 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3411 LLDB_LOGF(log, 3412 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3413 "interrupt, state: %s", 3414 static_cast<void *>(event_ptr), StateAsCString(state)); 3415 // Even though we know we are going to stop, we should let the threads 3416 // have a look at the stop, so they can properly set their state. 3417 m_thread_list.ShouldStop(event_ptr); 3418 return_value = true; 3419 } else { 3420 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3421 bool should_resume = false; 3422 3423 // It makes no sense to ask "ShouldStop" if we've already been 3424 // restarted... Asking the thread list is also not likely to go well, 3425 // since we are running again. So in that case just report the event. 3426 3427 if (!was_restarted) 3428 should_resume = !m_thread_list.ShouldStop(event_ptr); 3429 3430 if (was_restarted || should_resume || m_resume_requested) { 3431 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3432 LLDB_LOGF(log, 3433 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3434 "%s was_restarted: %i stop_vote: %d.", 3435 should_resume, StateAsCString(state), was_restarted, 3436 stop_vote); 3437 3438 switch (stop_vote) { 3439 case eVoteYes: 3440 return_value = true; 3441 break; 3442 case eVoteNoOpinion: 3443 case eVoteNo: 3444 return_value = false; 3445 break; 3446 } 3447 3448 if (!was_restarted) { 3449 LLDB_LOGF(log, 3450 "Process::ShouldBroadcastEvent (%p) Restarting process " 3451 "from state: %s", 3452 static_cast<void *>(event_ptr), StateAsCString(state)); 3453 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3454 PrivateResume(); 3455 } 3456 } else { 3457 return_value = true; 3458 SynchronouslyNotifyStateChanged(state); 3459 } 3460 } 3461 break; 3462 } 3463 3464 // Forcing the next event delivery is a one shot deal. So reset it here. 3465 m_force_next_event_delivery = false; 3466 3467 // We do some coalescing of events (for instance two consecutive running 3468 // events get coalesced.) But we only coalesce against events we actually 3469 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3470 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3471 // done, because the PublicState reflects the last event pulled off the 3472 // queue, and there may be several events stacked up on the queue unserviced. 3473 // So the PublicState may not reflect the last broadcasted event yet. 3474 // m_last_broadcast_state gets updated here. 3475 3476 if (return_value) 3477 m_last_broadcast_state = state; 3478 3479 LLDB_LOGF(log, 3480 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3481 "broadcast state: %s - %s", 3482 static_cast<void *>(event_ptr), StateAsCString(state), 3483 StateAsCString(m_last_broadcast_state), 3484 return_value ? "YES" : "NO"); 3485 return return_value; 3486 } 3487 3488 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3489 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3490 3491 bool already_running = PrivateStateThreadIsValid(); 3492 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3493 already_running ? " already running" 3494 : " starting private state thread"); 3495 3496 if (!is_secondary_thread && already_running) 3497 return true; 3498 3499 // Create a thread that watches our internal state and controls which events 3500 // make it to clients (into the DCProcess event queue). 3501 char thread_name[1024]; 3502 uint32_t max_len = llvm::get_max_thread_name_length(); 3503 if (max_len > 0 && max_len <= 30) { 3504 // On platforms with abbreviated thread name lengths, choose thread names 3505 // that fit within the limit. 3506 if (already_running) 3507 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3508 else 3509 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3510 } else { 3511 if (already_running) 3512 snprintf(thread_name, sizeof(thread_name), 3513 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3514 GetID()); 3515 else 3516 snprintf(thread_name, sizeof(thread_name), 3517 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3518 } 3519 3520 // Create the private state thread, and start it running. 3521 PrivateStateThreadArgs *args_ptr = 3522 new PrivateStateThreadArgs(this, is_secondary_thread); 3523 llvm::Expected<HostThread> private_state_thread = 3524 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3525 (void *)args_ptr, 8 * 1024 * 1024); 3526 if (!private_state_thread) { 3527 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3528 "failed to launch host thread: {}", 3529 llvm::toString(private_state_thread.takeError())); 3530 return false; 3531 } 3532 3533 assert(private_state_thread->IsJoinable()); 3534 m_private_state_thread = *private_state_thread; 3535 ResumePrivateStateThread(); 3536 return true; 3537 } 3538 3539 void Process::PausePrivateStateThread() { 3540 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3541 } 3542 3543 void Process::ResumePrivateStateThread() { 3544 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3545 } 3546 3547 void Process::StopPrivateStateThread() { 3548 if (m_private_state_thread.IsJoinable()) 3549 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3550 else { 3551 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3552 LLDB_LOGF( 3553 log, 3554 "Went to stop the private state thread, but it was already invalid."); 3555 } 3556 } 3557 3558 void Process::ControlPrivateStateThread(uint32_t signal) { 3559 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3560 3561 assert(signal == eBroadcastInternalStateControlStop || 3562 signal == eBroadcastInternalStateControlPause || 3563 signal == eBroadcastInternalStateControlResume); 3564 3565 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3566 3567 // Signal the private state thread 3568 if (m_private_state_thread.IsJoinable()) { 3569 // Broadcast the event. 3570 // It is important to do this outside of the if below, because it's 3571 // possible that the thread state is invalid but that the thread is waiting 3572 // on a control event instead of simply being on its way out (this should 3573 // not happen, but it apparently can). 3574 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3575 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3576 m_private_state_control_broadcaster.BroadcastEvent(signal, 3577 event_receipt_sp); 3578 3579 // Wait for the event receipt or for the private state thread to exit 3580 bool receipt_received = false; 3581 if (PrivateStateThreadIsValid()) { 3582 while (!receipt_received) { 3583 // Check for a receipt for n seconds and then check if the private 3584 // state thread is still around. 3585 receipt_received = 3586 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3587 if (!receipt_received) { 3588 // Check if the private state thread is still around. If it isn't 3589 // then we are done waiting 3590 if (!PrivateStateThreadIsValid()) 3591 break; // Private state thread exited or is exiting, we are done 3592 } 3593 } 3594 } 3595 3596 if (signal == eBroadcastInternalStateControlStop) { 3597 thread_result_t result = {}; 3598 m_private_state_thread.Join(&result); 3599 m_private_state_thread.Reset(); 3600 } 3601 } else { 3602 LLDB_LOGF( 3603 log, 3604 "Private state thread already dead, no need to signal it to stop."); 3605 } 3606 } 3607 3608 void Process::SendAsyncInterrupt() { 3609 if (PrivateStateThreadIsValid()) 3610 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3611 nullptr); 3612 else 3613 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3614 } 3615 3616 void Process::HandlePrivateEvent(EventSP &event_sp) { 3617 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3618 m_resume_requested = false; 3619 3620 const StateType new_state = 3621 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3622 3623 // First check to see if anybody wants a shot at this event: 3624 if (m_next_event_action_up) { 3625 NextEventAction::EventActionResult action_result = 3626 m_next_event_action_up->PerformAction(event_sp); 3627 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3628 3629 switch (action_result) { 3630 case NextEventAction::eEventActionSuccess: 3631 SetNextEventAction(nullptr); 3632 break; 3633 3634 case NextEventAction::eEventActionRetry: 3635 break; 3636 3637 case NextEventAction::eEventActionExit: 3638 // Handle Exiting Here. If we already got an exited event, we should 3639 // just propagate it. Otherwise, swallow this event, and set our state 3640 // to exit so the next event will kill us. 3641 if (new_state != eStateExited) { 3642 // FIXME: should cons up an exited event, and discard this one. 3643 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3644 SetNextEventAction(nullptr); 3645 return; 3646 } 3647 SetNextEventAction(nullptr); 3648 break; 3649 } 3650 } 3651 3652 // See if we should broadcast this state to external clients? 3653 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3654 3655 if (should_broadcast) { 3656 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3657 if (log) { 3658 LLDB_LOGF(log, 3659 "Process::%s (pid = %" PRIu64 3660 ") broadcasting new state %s (old state %s) to %s", 3661 __FUNCTION__, GetID(), StateAsCString(new_state), 3662 StateAsCString(GetState()), 3663 is_hijacked ? "hijacked" : "public"); 3664 } 3665 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3666 if (StateIsRunningState(new_state)) { 3667 // Only push the input handler if we aren't fowarding events, as this 3668 // means the curses GUI is in use... Or don't push it if we are launching 3669 // since it will come up stopped. 3670 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3671 new_state != eStateLaunching && new_state != eStateAttaching) { 3672 PushProcessIOHandler(); 3673 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3674 eBroadcastAlways); 3675 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3676 __FUNCTION__, m_iohandler_sync.GetValue()); 3677 } 3678 } else if (StateIsStoppedState(new_state, false)) { 3679 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3680 // If the lldb_private::Debugger is handling the events, we don't want 3681 // to pop the process IOHandler here, we want to do it when we receive 3682 // the stopped event so we can carefully control when the process 3683 // IOHandler is popped because when we stop we want to display some 3684 // text stating how and why we stopped, then maybe some 3685 // process/thread/frame info, and then we want the "(lldb) " prompt to 3686 // show up. If we pop the process IOHandler here, then we will cause 3687 // the command interpreter to become the top IOHandler after the 3688 // process pops off and it will update its prompt right away... See the 3689 // Debugger.cpp file where it calls the function as 3690 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3691 // Otherwise we end up getting overlapping "(lldb) " prompts and 3692 // garbled output. 3693 // 3694 // If we aren't handling the events in the debugger (which is indicated 3695 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3696 // we are hijacked, then we always pop the process IO handler manually. 3697 // Hijacking happens when the internal process state thread is running 3698 // thread plans, or when commands want to run in synchronous mode and 3699 // they call "process->WaitForProcessToStop()". An example of something 3700 // that will hijack the events is a simple expression: 3701 // 3702 // (lldb) expr (int)puts("hello") 3703 // 3704 // This will cause the internal process state thread to resume and halt 3705 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3706 // events) and we do need the IO handler to be pushed and popped 3707 // correctly. 3708 3709 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3710 PopProcessIOHandler(); 3711 } 3712 } 3713 3714 BroadcastEvent(event_sp); 3715 } else { 3716 if (log) { 3717 LLDB_LOGF( 3718 log, 3719 "Process::%s (pid = %" PRIu64 3720 ") suppressing state %s (old state %s): should_broadcast == false", 3721 __FUNCTION__, GetID(), StateAsCString(new_state), 3722 StateAsCString(GetState())); 3723 } 3724 } 3725 } 3726 3727 Status Process::HaltPrivate() { 3728 EventSP event_sp; 3729 Status error(WillHalt()); 3730 if (error.Fail()) 3731 return error; 3732 3733 // Ask the process subclass to actually halt our process 3734 bool caused_stop; 3735 error = DoHalt(caused_stop); 3736 3737 DidHalt(); 3738 return error; 3739 } 3740 3741 thread_result_t Process::PrivateStateThread(void *arg) { 3742 std::unique_ptr<PrivateStateThreadArgs> args_up( 3743 static_cast<PrivateStateThreadArgs *>(arg)); 3744 thread_result_t result = 3745 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3746 return result; 3747 } 3748 3749 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3750 bool control_only = true; 3751 3752 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3753 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3754 __FUNCTION__, static_cast<void *>(this), GetID()); 3755 3756 bool exit_now = false; 3757 bool interrupt_requested = false; 3758 while (!exit_now) { 3759 EventSP event_sp; 3760 GetEventsPrivate(event_sp, llvm::None, control_only); 3761 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3762 LLDB_LOGF(log, 3763 "Process::%s (arg = %p, pid = %" PRIu64 3764 ") got a control event: %d", 3765 __FUNCTION__, static_cast<void *>(this), GetID(), 3766 event_sp->GetType()); 3767 3768 switch (event_sp->GetType()) { 3769 case eBroadcastInternalStateControlStop: 3770 exit_now = true; 3771 break; // doing any internal state management below 3772 3773 case eBroadcastInternalStateControlPause: 3774 control_only = true; 3775 break; 3776 3777 case eBroadcastInternalStateControlResume: 3778 control_only = false; 3779 break; 3780 } 3781 3782 continue; 3783 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3784 if (m_public_state.GetValue() == eStateAttaching) { 3785 LLDB_LOGF(log, 3786 "Process::%s (arg = %p, pid = %" PRIu64 3787 ") woke up with an interrupt while attaching - " 3788 "forwarding interrupt.", 3789 __FUNCTION__, static_cast<void *>(this), GetID()); 3790 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3791 } else if (StateIsRunningState(m_last_broadcast_state)) { 3792 LLDB_LOGF(log, 3793 "Process::%s (arg = %p, pid = %" PRIu64 3794 ") woke up with an interrupt - Halting.", 3795 __FUNCTION__, static_cast<void *>(this), GetID()); 3796 Status error = HaltPrivate(); 3797 if (error.Fail() && log) 3798 LLDB_LOGF(log, 3799 "Process::%s (arg = %p, pid = %" PRIu64 3800 ") failed to halt the process: %s", 3801 __FUNCTION__, static_cast<void *>(this), GetID(), 3802 error.AsCString()); 3803 // Halt should generate a stopped event. Make a note of the fact that 3804 // we were doing the interrupt, so we can set the interrupted flag 3805 // after we receive the event. We deliberately set this to true even if 3806 // HaltPrivate failed, so that we can interrupt on the next natural 3807 // stop. 3808 interrupt_requested = true; 3809 } else { 3810 // This can happen when someone (e.g. Process::Halt) sees that we are 3811 // running and sends an interrupt request, but the process actually 3812 // stops before we receive it. In that case, we can just ignore the 3813 // request. We use m_last_broadcast_state, because the Stopped event 3814 // may not have been popped of the event queue yet, which is when the 3815 // public state gets updated. 3816 LLDB_LOGF(log, 3817 "Process::%s ignoring interrupt as we have already stopped.", 3818 __FUNCTION__); 3819 } 3820 continue; 3821 } 3822 3823 const StateType internal_state = 3824 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3825 3826 if (internal_state != eStateInvalid) { 3827 if (m_clear_thread_plans_on_stop && 3828 StateIsStoppedState(internal_state, true)) { 3829 m_clear_thread_plans_on_stop = false; 3830 m_thread_list.DiscardThreadPlans(); 3831 } 3832 3833 if (interrupt_requested) { 3834 if (StateIsStoppedState(internal_state, true)) { 3835 // We requested the interrupt, so mark this as such in the stop event 3836 // so clients can tell an interrupted process from a natural stop 3837 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3838 interrupt_requested = false; 3839 } else if (log) { 3840 LLDB_LOGF(log, 3841 "Process::%s interrupt_requested, but a non-stopped " 3842 "state '%s' received.", 3843 __FUNCTION__, StateAsCString(internal_state)); 3844 } 3845 } 3846 3847 HandlePrivateEvent(event_sp); 3848 } 3849 3850 if (internal_state == eStateInvalid || internal_state == eStateExited || 3851 internal_state == eStateDetached) { 3852 LLDB_LOGF(log, 3853 "Process::%s (arg = %p, pid = %" PRIu64 3854 ") about to exit with internal state %s...", 3855 __FUNCTION__, static_cast<void *>(this), GetID(), 3856 StateAsCString(internal_state)); 3857 3858 break; 3859 } 3860 } 3861 3862 // Verify log is still enabled before attempting to write to it... 3863 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3864 __FUNCTION__, static_cast<void *>(this), GetID()); 3865 3866 // If we are a secondary thread, then the primary thread we are working for 3867 // will have already acquired the public_run_lock, and isn't done with what 3868 // it was doing yet, so don't try to change it on the way out. 3869 if (!is_secondary_thread) 3870 m_public_run_lock.SetStopped(); 3871 return {}; 3872 } 3873 3874 // Process Event Data 3875 3876 Process::ProcessEventData::ProcessEventData() 3877 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3878 m_update_state(0), m_interrupted(false) {} 3879 3880 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3881 StateType state) 3882 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3883 m_update_state(0), m_interrupted(false) { 3884 if (process_sp) 3885 m_process_wp = process_sp; 3886 } 3887 3888 Process::ProcessEventData::~ProcessEventData() = default; 3889 3890 ConstString Process::ProcessEventData::GetFlavorString() { 3891 static ConstString g_flavor("Process::ProcessEventData"); 3892 return g_flavor; 3893 } 3894 3895 ConstString Process::ProcessEventData::GetFlavor() const { 3896 return ProcessEventData::GetFlavorString(); 3897 } 3898 3899 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3900 ProcessSP process_sp(m_process_wp.lock()); 3901 3902 if (!process_sp) 3903 return; 3904 3905 // This function gets called twice for each event, once when the event gets 3906 // pulled off of the private process event queue, and then any number of 3907 // times, first when it gets pulled off of the public event queue, then other 3908 // times when we're pretending that this is where we stopped at the end of 3909 // expression evaluation. m_update_state is used to distinguish these three 3910 // cases; it is 0 when we're just pulling it off for private handling, and > 3911 // 1 for expression evaluation, and we don't want to do the breakpoint 3912 // command handling then. 3913 if (m_update_state != 1) 3914 return; 3915 3916 process_sp->SetPublicState( 3917 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 3918 3919 if (m_state == eStateStopped && !m_restarted) { 3920 // Let process subclasses know we are about to do a public stop and do 3921 // anything they might need to in order to speed up register and memory 3922 // accesses. 3923 process_sp->WillPublicStop(); 3924 } 3925 3926 // If this is a halt event, even if the halt stopped with some reason other 3927 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 3928 // the halt request came through) don't do the StopInfo actions, as they may 3929 // end up restarting the process. 3930 if (m_interrupted) 3931 return; 3932 3933 // If we're stopped and haven't restarted, then do the StopInfo actions here: 3934 if (m_state == eStateStopped && !m_restarted) { 3935 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3936 uint32_t num_threads = curr_thread_list.GetSize(); 3937 uint32_t idx; 3938 3939 // The actions might change one of the thread's stop_info's opinions about 3940 // whether we should stop the process, so we need to query that as we go. 3941 3942 // One other complication here, is that we try to catch any case where the 3943 // target has run (except for expressions) and immediately exit, but if we 3944 // get that wrong (which is possible) then the thread list might have 3945 // changed, and that would cause our iteration here to crash. We could 3946 // make a copy of the thread list, but we'd really like to also know if it 3947 // has changed at all, so we make up a vector of the thread ID's and check 3948 // what we get back against this list & bag out if anything differs. 3949 std::vector<uint32_t> thread_index_array(num_threads); 3950 for (idx = 0; idx < num_threads; ++idx) 3951 thread_index_array[idx] = 3952 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 3953 3954 // Use this to track whether we should continue from here. We will only 3955 // continue the target running if no thread says we should stop. Of course 3956 // if some thread's PerformAction actually sets the target running, then it 3957 // doesn't matter what the other threads say... 3958 3959 bool still_should_stop = false; 3960 3961 // Sometimes - for instance if we have a bug in the stub we are talking to, 3962 // we stop but no thread has a valid stop reason. In that case we should 3963 // just stop, because we have no way of telling what the right thing to do 3964 // is, and it's better to let the user decide than continue behind their 3965 // backs. 3966 3967 bool does_anybody_have_an_opinion = false; 3968 3969 for (idx = 0; idx < num_threads; ++idx) { 3970 curr_thread_list = process_sp->GetThreadList(); 3971 if (curr_thread_list.GetSize() != num_threads) { 3972 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3973 LIBLLDB_LOG_PROCESS)); 3974 LLDB_LOGF( 3975 log, 3976 "Number of threads changed from %u to %u while processing event.", 3977 num_threads, curr_thread_list.GetSize()); 3978 break; 3979 } 3980 3981 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3982 3983 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3984 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3985 LIBLLDB_LOG_PROCESS)); 3986 LLDB_LOGF(log, 3987 "The thread at position %u changed from %u to %u while " 3988 "processing event.", 3989 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3990 break; 3991 } 3992 3993 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3994 if (stop_info_sp && stop_info_sp->IsValid()) { 3995 does_anybody_have_an_opinion = true; 3996 bool this_thread_wants_to_stop; 3997 if (stop_info_sp->GetOverrideShouldStop()) { 3998 this_thread_wants_to_stop = 3999 stop_info_sp->GetOverriddenShouldStopValue(); 4000 } else { 4001 stop_info_sp->PerformAction(event_ptr); 4002 // The stop action might restart the target. If it does, then we 4003 // want to mark that in the event so that whoever is receiving it 4004 // will know to wait for the running event and reflect that state 4005 // appropriately. We also need to stop processing actions, since they 4006 // aren't expecting the target to be running. 4007 4008 // FIXME: we might have run. 4009 if (stop_info_sp->HasTargetRunSinceMe()) { 4010 SetRestarted(true); 4011 break; 4012 } 4013 4014 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4015 } 4016 4017 if (!still_should_stop) 4018 still_should_stop = this_thread_wants_to_stop; 4019 } 4020 } 4021 4022 if (!GetRestarted()) { 4023 if (!still_should_stop && does_anybody_have_an_opinion) { 4024 // We've been asked to continue, so do that here. 4025 SetRestarted(true); 4026 // Use the public resume method here, since this is just extending a 4027 // public resume. 4028 process_sp->PrivateResume(); 4029 } else { 4030 bool hijacked = 4031 process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4032 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4033 4034 if (!hijacked) { 4035 // If we didn't restart, run the Stop Hooks here. 4036 // Don't do that if state changed events aren't hooked up to the 4037 // public (or SyncResume) broadcasters. StopHooks are just for 4038 // real public stops. They might also restart the target, 4039 // so watch for that. 4040 process_sp->GetTarget().RunStopHooks(); 4041 if (process_sp->GetPrivateState() == eStateRunning) 4042 SetRestarted(true); 4043 } 4044 } 4045 } 4046 } 4047 } 4048 4049 void Process::ProcessEventData::Dump(Stream *s) const { 4050 ProcessSP process_sp(m_process_wp.lock()); 4051 4052 if (process_sp) 4053 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4054 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4055 else 4056 s->PutCString(" process = NULL, "); 4057 4058 s->Printf("state = %s", StateAsCString(GetState())); 4059 } 4060 4061 const Process::ProcessEventData * 4062 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4063 if (event_ptr) { 4064 const EventData *event_data = event_ptr->GetData(); 4065 if (event_data && 4066 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4067 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4068 } 4069 return nullptr; 4070 } 4071 4072 ProcessSP 4073 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4074 ProcessSP process_sp; 4075 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4076 if (data) 4077 process_sp = data->GetProcessSP(); 4078 return process_sp; 4079 } 4080 4081 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4082 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4083 if (data == nullptr) 4084 return eStateInvalid; 4085 else 4086 return data->GetState(); 4087 } 4088 4089 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4090 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4091 if (data == nullptr) 4092 return false; 4093 else 4094 return data->GetRestarted(); 4095 } 4096 4097 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4098 bool new_value) { 4099 ProcessEventData *data = 4100 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4101 if (data != nullptr) 4102 data->SetRestarted(new_value); 4103 } 4104 4105 size_t 4106 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4107 ProcessEventData *data = 4108 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4109 if (data != nullptr) 4110 return data->GetNumRestartedReasons(); 4111 else 4112 return 0; 4113 } 4114 4115 const char * 4116 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4117 size_t idx) { 4118 ProcessEventData *data = 4119 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4120 if (data != nullptr) 4121 return data->GetRestartedReasonAtIndex(idx); 4122 else 4123 return nullptr; 4124 } 4125 4126 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4127 const char *reason) { 4128 ProcessEventData *data = 4129 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4130 if (data != nullptr) 4131 data->AddRestartedReason(reason); 4132 } 4133 4134 bool Process::ProcessEventData::GetInterruptedFromEvent( 4135 const Event *event_ptr) { 4136 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4137 if (data == nullptr) 4138 return false; 4139 else 4140 return data->GetInterrupted(); 4141 } 4142 4143 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4144 bool new_value) { 4145 ProcessEventData *data = 4146 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4147 if (data != nullptr) 4148 data->SetInterrupted(new_value); 4149 } 4150 4151 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4152 ProcessEventData *data = 4153 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4154 if (data) { 4155 data->SetUpdateStateOnRemoval(); 4156 return true; 4157 } 4158 return false; 4159 } 4160 4161 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4162 4163 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4164 exe_ctx.SetTargetPtr(&GetTarget()); 4165 exe_ctx.SetProcessPtr(this); 4166 exe_ctx.SetThreadPtr(nullptr); 4167 exe_ctx.SetFramePtr(nullptr); 4168 } 4169 4170 // uint32_t 4171 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4172 // std::vector<lldb::pid_t> &pids) 4173 //{ 4174 // return 0; 4175 //} 4176 // 4177 // ArchSpec 4178 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4179 //{ 4180 // return Host::GetArchSpecForExistingProcess (pid); 4181 //} 4182 // 4183 // ArchSpec 4184 // Process::GetArchSpecForExistingProcess (const char *process_name) 4185 //{ 4186 // return Host::GetArchSpecForExistingProcess (process_name); 4187 //} 4188 4189 void Process::AppendSTDOUT(const char *s, size_t len) { 4190 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4191 m_stdout_data.append(s, len); 4192 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4193 new ProcessEventData(shared_from_this(), GetState())); 4194 } 4195 4196 void Process::AppendSTDERR(const char *s, size_t len) { 4197 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4198 m_stderr_data.append(s, len); 4199 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4200 new ProcessEventData(shared_from_this(), GetState())); 4201 } 4202 4203 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4204 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4205 m_profile_data.push_back(one_profile_data); 4206 BroadcastEventIfUnique(eBroadcastBitProfileData, 4207 new ProcessEventData(shared_from_this(), GetState())); 4208 } 4209 4210 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4211 const StructuredDataPluginSP &plugin_sp) { 4212 BroadcastEvent( 4213 eBroadcastBitStructuredData, 4214 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4215 } 4216 4217 StructuredDataPluginSP 4218 Process::GetStructuredDataPlugin(ConstString type_name) const { 4219 auto find_it = m_structured_data_plugin_map.find(type_name); 4220 if (find_it != m_structured_data_plugin_map.end()) 4221 return find_it->second; 4222 else 4223 return StructuredDataPluginSP(); 4224 } 4225 4226 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4227 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4228 if (m_profile_data.empty()) 4229 return 0; 4230 4231 std::string &one_profile_data = m_profile_data.front(); 4232 size_t bytes_available = one_profile_data.size(); 4233 if (bytes_available > 0) { 4234 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4235 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4236 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4237 if (bytes_available > buf_size) { 4238 memcpy(buf, one_profile_data.c_str(), buf_size); 4239 one_profile_data.erase(0, buf_size); 4240 bytes_available = buf_size; 4241 } else { 4242 memcpy(buf, one_profile_data.c_str(), bytes_available); 4243 m_profile_data.erase(m_profile_data.begin()); 4244 } 4245 } 4246 return bytes_available; 4247 } 4248 4249 // Process STDIO 4250 4251 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4252 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4253 size_t bytes_available = m_stdout_data.size(); 4254 if (bytes_available > 0) { 4255 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4256 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4257 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4258 if (bytes_available > buf_size) { 4259 memcpy(buf, m_stdout_data.c_str(), buf_size); 4260 m_stdout_data.erase(0, buf_size); 4261 bytes_available = buf_size; 4262 } else { 4263 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4264 m_stdout_data.clear(); 4265 } 4266 } 4267 return bytes_available; 4268 } 4269 4270 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4271 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4272 size_t bytes_available = m_stderr_data.size(); 4273 if (bytes_available > 0) { 4274 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4275 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4276 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4277 if (bytes_available > buf_size) { 4278 memcpy(buf, m_stderr_data.c_str(), buf_size); 4279 m_stderr_data.erase(0, buf_size); 4280 bytes_available = buf_size; 4281 } else { 4282 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4283 m_stderr_data.clear(); 4284 } 4285 } 4286 return bytes_available; 4287 } 4288 4289 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4290 size_t src_len) { 4291 Process *process = (Process *)baton; 4292 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4293 } 4294 4295 class IOHandlerProcessSTDIO : public IOHandler { 4296 public: 4297 IOHandlerProcessSTDIO(Process *process, int write_fd) 4298 : IOHandler(process->GetTarget().GetDebugger(), 4299 IOHandler::Type::ProcessIO), 4300 m_process(process), 4301 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4302 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4303 m_pipe.CreateNew(false); 4304 } 4305 4306 ~IOHandlerProcessSTDIO() override = default; 4307 4308 // Each IOHandler gets to run until it is done. It should read data from the 4309 // "in" and place output into "out" and "err and return when done. 4310 void Run() override { 4311 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4312 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4313 SetIsDone(true); 4314 return; 4315 } 4316 4317 SetIsDone(false); 4318 const int read_fd = m_read_file.GetDescriptor(); 4319 TerminalState terminal_state; 4320 terminal_state.Save(read_fd, false); 4321 Terminal terminal(read_fd); 4322 terminal.SetCanonical(false); 4323 terminal.SetEcho(false); 4324 // FD_ZERO, FD_SET are not supported on windows 4325 #ifndef _WIN32 4326 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4327 m_is_running = true; 4328 while (!GetIsDone()) { 4329 SelectHelper select_helper; 4330 select_helper.FDSetRead(read_fd); 4331 select_helper.FDSetRead(pipe_read_fd); 4332 Status error = select_helper.Select(); 4333 4334 if (error.Fail()) { 4335 SetIsDone(true); 4336 } else { 4337 char ch = 0; 4338 size_t n; 4339 if (select_helper.FDIsSetRead(read_fd)) { 4340 n = 1; 4341 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4342 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4343 SetIsDone(true); 4344 } else 4345 SetIsDone(true); 4346 } 4347 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4348 size_t bytes_read; 4349 // Consume the interrupt byte 4350 Status error = m_pipe.Read(&ch, 1, bytes_read); 4351 if (error.Success()) { 4352 switch (ch) { 4353 case 'q': 4354 SetIsDone(true); 4355 break; 4356 case 'i': 4357 if (StateIsRunningState(m_process->GetState())) 4358 m_process->SendAsyncInterrupt(); 4359 break; 4360 } 4361 } 4362 } 4363 } 4364 } 4365 m_is_running = false; 4366 #endif 4367 terminal_state.Restore(); 4368 } 4369 4370 void Cancel() override { 4371 SetIsDone(true); 4372 // Only write to our pipe to cancel if we are in 4373 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4374 // is being run from the command interpreter: 4375 // 4376 // (lldb) step_process_thousands_of_times 4377 // 4378 // In this case the command interpreter will be in the middle of handling 4379 // the command and if the process pushes and pops the IOHandler thousands 4380 // of times, we can end up writing to m_pipe without ever consuming the 4381 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4382 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4383 if (m_is_running) { 4384 char ch = 'q'; // Send 'q' for quit 4385 size_t bytes_written = 0; 4386 m_pipe.Write(&ch, 1, bytes_written); 4387 } 4388 } 4389 4390 bool Interrupt() override { 4391 // Do only things that are safe to do in an interrupt context (like in a 4392 // SIGINT handler), like write 1 byte to a file descriptor. This will 4393 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4394 // that was written to the pipe and then call 4395 // m_process->SendAsyncInterrupt() from a much safer location in code. 4396 if (m_active) { 4397 char ch = 'i'; // Send 'i' for interrupt 4398 size_t bytes_written = 0; 4399 Status result = m_pipe.Write(&ch, 1, bytes_written); 4400 return result.Success(); 4401 } else { 4402 // This IOHandler might be pushed on the stack, but not being run 4403 // currently so do the right thing if we aren't actively watching for 4404 // STDIN by sending the interrupt to the process. Otherwise the write to 4405 // the pipe above would do nothing. This can happen when the command 4406 // interpreter is running and gets a "expression ...". It will be on the 4407 // IOHandler thread and sending the input is complete to the delegate 4408 // which will cause the expression to run, which will push the process IO 4409 // handler, but not run it. 4410 4411 if (StateIsRunningState(m_process->GetState())) { 4412 m_process->SendAsyncInterrupt(); 4413 return true; 4414 } 4415 } 4416 return false; 4417 } 4418 4419 void GotEOF() override {} 4420 4421 protected: 4422 Process *m_process; 4423 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4424 NativeFile m_write_file; // Write to this file (usually the master pty for 4425 // getting io to debuggee) 4426 Pipe m_pipe; 4427 std::atomic<bool> m_is_running{false}; 4428 }; 4429 4430 void Process::SetSTDIOFileDescriptor(int fd) { 4431 // First set up the Read Thread for reading/handling process I/O 4432 4433 std::unique_ptr<ConnectionFileDescriptor> conn_up( 4434 new ConnectionFileDescriptor(fd, true)); 4435 4436 if (conn_up) { 4437 m_stdio_communication.SetConnection(conn_up.release()); 4438 if (m_stdio_communication.IsConnected()) { 4439 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4440 STDIOReadThreadBytesReceived, this); 4441 m_stdio_communication.StartReadThread(); 4442 4443 // Now read thread is set up, set up input reader. 4444 4445 if (!m_process_input_reader) 4446 m_process_input_reader = 4447 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4448 } 4449 } 4450 } 4451 4452 bool Process::ProcessIOHandlerIsActive() { 4453 IOHandlerSP io_handler_sp(m_process_input_reader); 4454 if (io_handler_sp) 4455 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4456 return false; 4457 } 4458 bool Process::PushProcessIOHandler() { 4459 IOHandlerSP io_handler_sp(m_process_input_reader); 4460 if (io_handler_sp) { 4461 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4462 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4463 4464 io_handler_sp->SetIsDone(false); 4465 // If we evaluate an utility function, then we don't cancel the current 4466 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4467 // existing IOHandler that potentially provides the user interface (e.g. 4468 // the IOHandler for Editline). 4469 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4470 GetTarget().GetDebugger().PushIOHandler(io_handler_sp, cancel_top_handler); 4471 return true; 4472 } 4473 return false; 4474 } 4475 4476 bool Process::PopProcessIOHandler() { 4477 IOHandlerSP io_handler_sp(m_process_input_reader); 4478 if (io_handler_sp) 4479 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4480 return false; 4481 } 4482 4483 // The process needs to know about installed plug-ins 4484 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4485 4486 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4487 4488 namespace { 4489 // RestorePlanState is used to record the "is private", "is master" and "okay 4490 // to discard" fields of the plan we are running, and reset it on Clean or on 4491 // destruction. It will only reset the state once, so you can call Clean and 4492 // then monkey with the state and it won't get reset on you again. 4493 4494 class RestorePlanState { 4495 public: 4496 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4497 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4498 if (m_thread_plan_sp) { 4499 m_private = m_thread_plan_sp->GetPrivate(); 4500 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4501 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4502 } 4503 } 4504 4505 ~RestorePlanState() { Clean(); } 4506 4507 void Clean() { 4508 if (!m_already_reset && m_thread_plan_sp) { 4509 m_already_reset = true; 4510 m_thread_plan_sp->SetPrivate(m_private); 4511 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4512 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4513 } 4514 } 4515 4516 private: 4517 lldb::ThreadPlanSP m_thread_plan_sp; 4518 bool m_already_reset; 4519 bool m_private; 4520 bool m_is_master; 4521 bool m_okay_to_discard; 4522 }; 4523 } // anonymous namespace 4524 4525 static microseconds 4526 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4527 const milliseconds default_one_thread_timeout(250); 4528 4529 // If the overall wait is forever, then we don't need to worry about it. 4530 if (!options.GetTimeout()) { 4531 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4532 : default_one_thread_timeout; 4533 } 4534 4535 // If the one thread timeout is set, use it. 4536 if (options.GetOneThreadTimeout()) 4537 return *options.GetOneThreadTimeout(); 4538 4539 // Otherwise use half the total timeout, bounded by the 4540 // default_one_thread_timeout. 4541 return std::min<microseconds>(default_one_thread_timeout, 4542 *options.GetTimeout() / 2); 4543 } 4544 4545 static Timeout<std::micro> 4546 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4547 bool before_first_timeout) { 4548 // If we are going to run all threads the whole time, or if we are only going 4549 // to run one thread, we can just return the overall timeout. 4550 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4551 return options.GetTimeout(); 4552 4553 if (before_first_timeout) 4554 return GetOneThreadExpressionTimeout(options); 4555 4556 if (!options.GetTimeout()) 4557 return llvm::None; 4558 else 4559 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4560 } 4561 4562 static llvm::Optional<ExpressionResults> 4563 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4564 RestorePlanState &restorer, const EventSP &event_sp, 4565 EventSP &event_to_broadcast_sp, 4566 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4567 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4568 4569 ThreadPlanSP plan = thread.GetCompletedPlan(); 4570 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4571 LLDB_LOG(log, "execution completed successfully"); 4572 4573 // Restore the plan state so it will get reported as intended when we are 4574 // done. 4575 restorer.Clean(); 4576 return eExpressionCompleted; 4577 } 4578 4579 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4580 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4581 stop_info_sp->ShouldNotify(event_sp.get())) { 4582 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4583 if (!options.DoesIgnoreBreakpoints()) { 4584 // Restore the plan state and then force Private to false. We are going 4585 // to stop because of this plan so we need it to become a public plan or 4586 // it won't report correctly when we continue to its termination later 4587 // on. 4588 restorer.Clean(); 4589 thread_plan_sp->SetPrivate(false); 4590 event_to_broadcast_sp = event_sp; 4591 } 4592 return eExpressionHitBreakpoint; 4593 } 4594 4595 if (!handle_interrupts && 4596 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4597 return llvm::None; 4598 4599 LLDB_LOG(log, "thread plan did not successfully complete"); 4600 if (!options.DoesUnwindOnError()) 4601 event_to_broadcast_sp = event_sp; 4602 return eExpressionInterrupted; 4603 } 4604 4605 ExpressionResults 4606 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4607 lldb::ThreadPlanSP &thread_plan_sp, 4608 const EvaluateExpressionOptions &options, 4609 DiagnosticManager &diagnostic_manager) { 4610 ExpressionResults return_value = eExpressionSetupError; 4611 4612 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4613 4614 if (!thread_plan_sp) { 4615 diagnostic_manager.PutString( 4616 eDiagnosticSeverityError, 4617 "RunThreadPlan called with empty thread plan."); 4618 return eExpressionSetupError; 4619 } 4620 4621 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4622 diagnostic_manager.PutString( 4623 eDiagnosticSeverityError, 4624 "RunThreadPlan called with an invalid thread plan."); 4625 return eExpressionSetupError; 4626 } 4627 4628 if (exe_ctx.GetProcessPtr() != this) { 4629 diagnostic_manager.PutString(eDiagnosticSeverityError, 4630 "RunThreadPlan called on wrong process."); 4631 return eExpressionSetupError; 4632 } 4633 4634 Thread *thread = exe_ctx.GetThreadPtr(); 4635 if (thread == nullptr) { 4636 diagnostic_manager.PutString(eDiagnosticSeverityError, 4637 "RunThreadPlan called with invalid thread."); 4638 return eExpressionSetupError; 4639 } 4640 4641 // We need to change some of the thread plan attributes for the thread plan 4642 // runner. This will restore them when we are done: 4643 4644 RestorePlanState thread_plan_restorer(thread_plan_sp); 4645 4646 // We rely on the thread plan we are running returning "PlanCompleted" if 4647 // when it successfully completes. For that to be true the plan can't be 4648 // private - since private plans suppress themselves in the GetCompletedPlan 4649 // call. 4650 4651 thread_plan_sp->SetPrivate(false); 4652 4653 // The plans run with RunThreadPlan also need to be terminal master plans or 4654 // when they are done we will end up asking the plan above us whether we 4655 // should stop, which may give the wrong answer. 4656 4657 thread_plan_sp->SetIsMasterPlan(true); 4658 thread_plan_sp->SetOkayToDiscard(false); 4659 4660 // If we are running some utility expression for LLDB, we now have to mark 4661 // this in the ProcesModID of this process. This RAII takes care of marking 4662 // and reverting the mark it once we are done running the expression. 4663 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4664 4665 if (m_private_state.GetValue() != eStateStopped) { 4666 diagnostic_manager.PutString( 4667 eDiagnosticSeverityError, 4668 "RunThreadPlan called while the private state was not stopped."); 4669 return eExpressionSetupError; 4670 } 4671 4672 // Save the thread & frame from the exe_ctx for restoration after we run 4673 const uint32_t thread_idx_id = thread->GetIndexID(); 4674 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4675 if (!selected_frame_sp) { 4676 thread->SetSelectedFrame(nullptr); 4677 selected_frame_sp = thread->GetSelectedFrame(); 4678 if (!selected_frame_sp) { 4679 diagnostic_manager.Printf( 4680 eDiagnosticSeverityError, 4681 "RunThreadPlan called without a selected frame on thread %d", 4682 thread_idx_id); 4683 return eExpressionSetupError; 4684 } 4685 } 4686 4687 // Make sure the timeout values make sense. The one thread timeout needs to 4688 // be smaller than the overall timeout. 4689 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4690 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4691 diagnostic_manager.PutString(eDiagnosticSeverityError, 4692 "RunThreadPlan called with one thread " 4693 "timeout greater than total timeout"); 4694 return eExpressionSetupError; 4695 } 4696 4697 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4698 4699 // N.B. Running the target may unset the currently selected thread and frame. 4700 // We don't want to do that either, so we should arrange to reset them as 4701 // well. 4702 4703 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4704 4705 uint32_t selected_tid; 4706 StackID selected_stack_id; 4707 if (selected_thread_sp) { 4708 selected_tid = selected_thread_sp->GetIndexID(); 4709 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4710 } else { 4711 selected_tid = LLDB_INVALID_THREAD_ID; 4712 } 4713 4714 HostThread backup_private_state_thread; 4715 lldb::StateType old_state = eStateInvalid; 4716 lldb::ThreadPlanSP stopper_base_plan_sp; 4717 4718 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4719 LIBLLDB_LOG_PROCESS)); 4720 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4721 // Yikes, we are running on the private state thread! So we can't wait for 4722 // public events on this thread, since we are the thread that is generating 4723 // public events. The simplest thing to do is to spin up a temporary thread 4724 // to handle private state thread events while we are fielding public 4725 // events here. 4726 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4727 "another state thread to handle the events."); 4728 4729 backup_private_state_thread = m_private_state_thread; 4730 4731 // One other bit of business: we want to run just this thread plan and 4732 // anything it pushes, and then stop, returning control here. But in the 4733 // normal course of things, the plan above us on the stack would be given a 4734 // shot at the stop event before deciding to stop, and we don't want that. 4735 // So we insert a "stopper" base plan on the stack before the plan we want 4736 // to run. Since base plans always stop and return control to the user, 4737 // that will do just what we want. 4738 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4739 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4740 // Have to make sure our public state is stopped, since otherwise the 4741 // reporting logic below doesn't work correctly. 4742 old_state = m_public_state.GetValue(); 4743 m_public_state.SetValueNoLock(eStateStopped); 4744 4745 // Now spin up the private state thread: 4746 StartPrivateStateThread(true); 4747 } 4748 4749 thread->QueueThreadPlan( 4750 thread_plan_sp, false); // This used to pass "true" does that make sense? 4751 4752 if (options.GetDebug()) { 4753 // In this case, we aren't actually going to run, we just want to stop 4754 // right away. Flush this thread so we will refetch the stacks and show the 4755 // correct backtrace. 4756 // FIXME: To make this prettier we should invent some stop reason for this, 4757 // but that 4758 // is only cosmetic, and this functionality is only of use to lldb 4759 // developers who can live with not pretty... 4760 thread->Flush(); 4761 return eExpressionStoppedForDebug; 4762 } 4763 4764 ListenerSP listener_sp( 4765 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4766 4767 lldb::EventSP event_to_broadcast_sp; 4768 4769 { 4770 // This process event hijacker Hijacks the Public events and its destructor 4771 // makes sure that the process events get restored on exit to the function. 4772 // 4773 // If the event needs to propagate beyond the hijacker (e.g., the process 4774 // exits during execution), then the event is put into 4775 // event_to_broadcast_sp for rebroadcasting. 4776 4777 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4778 4779 if (log) { 4780 StreamString s; 4781 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4782 LLDB_LOGF(log, 4783 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4784 " to run thread plan \"%s\".", 4785 thread->GetIndexID(), thread->GetID(), s.GetData()); 4786 } 4787 4788 bool got_event; 4789 lldb::EventSP event_sp; 4790 lldb::StateType stop_state = lldb::eStateInvalid; 4791 4792 bool before_first_timeout = true; // This is set to false the first time 4793 // that we have to halt the target. 4794 bool do_resume = true; 4795 bool handle_running_event = true; 4796 4797 // This is just for accounting: 4798 uint32_t num_resumes = 0; 4799 4800 // If we are going to run all threads the whole time, or if we are only 4801 // going to run one thread, then we don't need the first timeout. So we 4802 // pretend we are after the first timeout already. 4803 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4804 before_first_timeout = false; 4805 4806 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4807 options.GetStopOthers(), options.GetTryAllThreads(), 4808 before_first_timeout); 4809 4810 // This isn't going to work if there are unfetched events on the queue. Are 4811 // there cases where we might want to run the remaining events here, and 4812 // then try to call the function? That's probably being too tricky for our 4813 // own good. 4814 4815 Event *other_events = listener_sp->PeekAtNextEvent(); 4816 if (other_events != nullptr) { 4817 diagnostic_manager.PutString( 4818 eDiagnosticSeverityError, 4819 "RunThreadPlan called with pending events on the queue."); 4820 return eExpressionSetupError; 4821 } 4822 4823 // We also need to make sure that the next event is delivered. We might be 4824 // calling a function as part of a thread plan, in which case the last 4825 // delivered event could be the running event, and we don't want event 4826 // coalescing to cause us to lose OUR running event... 4827 ForceNextEventDelivery(); 4828 4829 // This while loop must exit out the bottom, there's cleanup that we need to do 4830 // when we are done. So don't call return anywhere within it. 4831 4832 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4833 // It's pretty much impossible to write test cases for things like: One 4834 // thread timeout expires, I go to halt, but the process already stopped on 4835 // the function call stop breakpoint. Turning on this define will make us 4836 // not fetch the first event till after the halt. So if you run a quick 4837 // function, it will have completed, and the completion event will be 4838 // waiting, when you interrupt for halt. The expression evaluation should 4839 // still succeed. 4840 bool miss_first_event = true; 4841 #endif 4842 while (true) { 4843 // We usually want to resume the process if we get to the top of the 4844 // loop. The only exception is if we get two running events with no 4845 // intervening stop, which can happen, we will just wait for then next 4846 // stop event. 4847 LLDB_LOGF(log, 4848 "Top of while loop: do_resume: %i handle_running_event: %i " 4849 "before_first_timeout: %i.", 4850 do_resume, handle_running_event, before_first_timeout); 4851 4852 if (do_resume || handle_running_event) { 4853 // Do the initial resume and wait for the running event before going 4854 // further. 4855 4856 if (do_resume) { 4857 num_resumes++; 4858 Status resume_error = PrivateResume(); 4859 if (!resume_error.Success()) { 4860 diagnostic_manager.Printf( 4861 eDiagnosticSeverityError, 4862 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4863 resume_error.AsCString()); 4864 return_value = eExpressionSetupError; 4865 break; 4866 } 4867 } 4868 4869 got_event = 4870 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4871 if (!got_event) { 4872 LLDB_LOGF(log, 4873 "Process::RunThreadPlan(): didn't get any event after " 4874 "resume %" PRIu32 ", exiting.", 4875 num_resumes); 4876 4877 diagnostic_manager.Printf(eDiagnosticSeverityError, 4878 "didn't get any event after resume %" PRIu32 4879 ", exiting.", 4880 num_resumes); 4881 return_value = eExpressionSetupError; 4882 break; 4883 } 4884 4885 stop_state = 4886 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4887 4888 if (stop_state != eStateRunning) { 4889 bool restarted = false; 4890 4891 if (stop_state == eStateStopped) { 4892 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4893 event_sp.get()); 4894 LLDB_LOGF( 4895 log, 4896 "Process::RunThreadPlan(): didn't get running event after " 4897 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4898 "handle_running_event: %i).", 4899 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4900 handle_running_event); 4901 } 4902 4903 if (restarted) { 4904 // This is probably an overabundance of caution, I don't think I 4905 // should ever get a stopped & restarted event here. But if I do, 4906 // the best thing is to Halt and then get out of here. 4907 const bool clear_thread_plans = false; 4908 const bool use_run_lock = false; 4909 Halt(clear_thread_plans, use_run_lock); 4910 } 4911 4912 diagnostic_manager.Printf( 4913 eDiagnosticSeverityError, 4914 "didn't get running event after initial resume, got %s instead.", 4915 StateAsCString(stop_state)); 4916 return_value = eExpressionSetupError; 4917 break; 4918 } 4919 4920 if (log) 4921 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4922 // We need to call the function synchronously, so spin waiting for it 4923 // to return. If we get interrupted while executing, we're going to 4924 // lose our context, and won't be able to gather the result at this 4925 // point. We set the timeout AFTER the resume, since the resume takes 4926 // some time and we don't want to charge that to the timeout. 4927 } else { 4928 if (log) 4929 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4930 } 4931 4932 do_resume = true; 4933 handle_running_event = true; 4934 4935 // Now wait for the process to stop again: 4936 event_sp.reset(); 4937 4938 Timeout<std::micro> timeout = 4939 GetExpressionTimeout(options, before_first_timeout); 4940 if (log) { 4941 if (timeout) { 4942 auto now = system_clock::now(); 4943 LLDB_LOGF(log, 4944 "Process::RunThreadPlan(): about to wait - now is %s - " 4945 "endpoint is %s", 4946 llvm::to_string(now).c_str(), 4947 llvm::to_string(now + *timeout).c_str()); 4948 } else { 4949 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4950 } 4951 } 4952 4953 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4954 // See comment above... 4955 if (miss_first_event) { 4956 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4957 miss_first_event = false; 4958 got_event = false; 4959 } else 4960 #endif 4961 got_event = listener_sp->GetEvent(event_sp, timeout); 4962 4963 if (got_event) { 4964 if (event_sp) { 4965 bool keep_going = false; 4966 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4967 const bool clear_thread_plans = false; 4968 const bool use_run_lock = false; 4969 Halt(clear_thread_plans, use_run_lock); 4970 return_value = eExpressionInterrupted; 4971 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 4972 "execution halted by user interrupt."); 4973 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 4974 "eBroadcastBitInterrupted, exiting."); 4975 break; 4976 } else { 4977 stop_state = 4978 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4979 LLDB_LOGF(log, 4980 "Process::RunThreadPlan(): in while loop, got event: %s.", 4981 StateAsCString(stop_state)); 4982 4983 switch (stop_state) { 4984 case lldb::eStateStopped: { 4985 // We stopped, figure out what we are going to do now. 4986 ThreadSP thread_sp = 4987 GetThreadList().FindThreadByIndexID(thread_idx_id); 4988 if (!thread_sp) { 4989 // Ooh, our thread has vanished. Unlikely that this was 4990 // successful execution... 4991 LLDB_LOGF(log, 4992 "Process::RunThreadPlan(): execution completed " 4993 "but our thread (index-id=%u) has vanished.", 4994 thread_idx_id); 4995 return_value = eExpressionInterrupted; 4996 } else if (Process::ProcessEventData::GetRestartedFromEvent( 4997 event_sp.get())) { 4998 // If we were restarted, we just need to go back up to fetch 4999 // another event. 5000 if (log) { 5001 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5002 "restart, so we'll continue waiting."); 5003 } 5004 keep_going = true; 5005 do_resume = false; 5006 handle_running_event = true; 5007 } else { 5008 const bool handle_interrupts = true; 5009 return_value = *HandleStoppedEvent( 5010 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5011 event_to_broadcast_sp, options, handle_interrupts); 5012 } 5013 } break; 5014 5015 case lldb::eStateRunning: 5016 // This shouldn't really happen, but sometimes we do get two 5017 // running events without an intervening stop, and in that case 5018 // we should just go back to waiting for the stop. 5019 do_resume = false; 5020 keep_going = true; 5021 handle_running_event = false; 5022 break; 5023 5024 default: 5025 LLDB_LOGF(log, 5026 "Process::RunThreadPlan(): execution stopped with " 5027 "unexpected state: %s.", 5028 StateAsCString(stop_state)); 5029 5030 if (stop_state == eStateExited) 5031 event_to_broadcast_sp = event_sp; 5032 5033 diagnostic_manager.PutString( 5034 eDiagnosticSeverityError, 5035 "execution stopped with unexpected state."); 5036 return_value = eExpressionInterrupted; 5037 break; 5038 } 5039 } 5040 5041 if (keep_going) 5042 continue; 5043 else 5044 break; 5045 } else { 5046 if (log) 5047 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5048 "the event pointer was null. How odd..."); 5049 return_value = eExpressionInterrupted; 5050 break; 5051 } 5052 } else { 5053 // If we didn't get an event that means we've timed out... We will 5054 // interrupt the process here. Depending on what we were asked to do 5055 // we will either exit, or try with all threads running for the same 5056 // timeout. 5057 5058 if (log) { 5059 if (options.GetTryAllThreads()) { 5060 if (before_first_timeout) { 5061 LLDB_LOG(log, 5062 "Running function with one thread timeout timed out."); 5063 } else 5064 LLDB_LOG(log, "Restarting function with all threads enabled and " 5065 "timeout: {0} timed out, abandoning execution.", 5066 timeout); 5067 } else 5068 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5069 "abandoning execution.", 5070 timeout); 5071 } 5072 5073 // It is possible that between the time we issued the Halt, and we get 5074 // around to calling Halt the target could have stopped. That's fine, 5075 // Halt will figure that out and send the appropriate Stopped event. 5076 // BUT it is also possible that we stopped & restarted (e.g. hit a 5077 // signal with "stop" set to false.) In 5078 // that case, we'll get the stopped & restarted event, and we should go 5079 // back to waiting for the Halt's stopped event. That's what this 5080 // while loop does. 5081 5082 bool back_to_top = true; 5083 uint32_t try_halt_again = 0; 5084 bool do_halt = true; 5085 const uint32_t num_retries = 5; 5086 while (try_halt_again < num_retries) { 5087 Status halt_error; 5088 if (do_halt) { 5089 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5090 const bool clear_thread_plans = false; 5091 const bool use_run_lock = false; 5092 Halt(clear_thread_plans, use_run_lock); 5093 } 5094 if (halt_error.Success()) { 5095 if (log) 5096 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5097 5098 got_event = 5099 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5100 5101 if (got_event) { 5102 stop_state = 5103 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5104 if (log) { 5105 LLDB_LOGF(log, 5106 "Process::RunThreadPlan(): Stopped with event: %s", 5107 StateAsCString(stop_state)); 5108 if (stop_state == lldb::eStateStopped && 5109 Process::ProcessEventData::GetInterruptedFromEvent( 5110 event_sp.get())) 5111 log->PutCString(" Event was the Halt interruption event."); 5112 } 5113 5114 if (stop_state == lldb::eStateStopped) { 5115 if (Process::ProcessEventData::GetRestartedFromEvent( 5116 event_sp.get())) { 5117 if (log) 5118 log->PutCString("Process::RunThreadPlan(): Went to halt " 5119 "but got a restarted event, there must be " 5120 "an un-restarted stopped event so try " 5121 "again... " 5122 "Exiting wait loop."); 5123 try_halt_again++; 5124 do_halt = false; 5125 continue; 5126 } 5127 5128 // Between the time we initiated the Halt and the time we 5129 // delivered it, the process could have already finished its 5130 // job. Check that here: 5131 const bool handle_interrupts = false; 5132 if (auto result = HandleStoppedEvent( 5133 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5134 event_to_broadcast_sp, options, handle_interrupts)) { 5135 return_value = *result; 5136 back_to_top = false; 5137 break; 5138 } 5139 5140 if (!options.GetTryAllThreads()) { 5141 if (log) 5142 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5143 "was false, we stopped so now we're " 5144 "quitting."); 5145 return_value = eExpressionInterrupted; 5146 back_to_top = false; 5147 break; 5148 } 5149 5150 if (before_first_timeout) { 5151 // Set all the other threads to run, and return to the top of 5152 // the loop, which will continue; 5153 before_first_timeout = false; 5154 thread_plan_sp->SetStopOthers(false); 5155 if (log) 5156 log->PutCString( 5157 "Process::RunThreadPlan(): about to resume."); 5158 5159 back_to_top = true; 5160 break; 5161 } else { 5162 // Running all threads failed, so return Interrupted. 5163 if (log) 5164 log->PutCString("Process::RunThreadPlan(): running all " 5165 "threads timed out."); 5166 return_value = eExpressionInterrupted; 5167 back_to_top = false; 5168 break; 5169 } 5170 } 5171 } else { 5172 if (log) 5173 log->PutCString("Process::RunThreadPlan(): halt said it " 5174 "succeeded, but I got no event. " 5175 "I'm getting out of here passing Interrupted."); 5176 return_value = eExpressionInterrupted; 5177 back_to_top = false; 5178 break; 5179 } 5180 } else { 5181 try_halt_again++; 5182 continue; 5183 } 5184 } 5185 5186 if (!back_to_top || try_halt_again > num_retries) 5187 break; 5188 else 5189 continue; 5190 } 5191 } // END WAIT LOOP 5192 5193 // If we had to start up a temporary private state thread to run this 5194 // thread plan, shut it down now. 5195 if (backup_private_state_thread.IsJoinable()) { 5196 StopPrivateStateThread(); 5197 Status error; 5198 m_private_state_thread = backup_private_state_thread; 5199 if (stopper_base_plan_sp) { 5200 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5201 } 5202 if (old_state != eStateInvalid) 5203 m_public_state.SetValueNoLock(old_state); 5204 } 5205 5206 if (return_value != eExpressionCompleted && log) { 5207 // Print a backtrace into the log so we can figure out where we are: 5208 StreamString s; 5209 s.PutCString("Thread state after unsuccessful completion: \n"); 5210 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5211 log->PutString(s.GetString()); 5212 } 5213 // Restore the thread state if we are going to discard the plan execution. 5214 // There are three cases where this could happen: 1) The execution 5215 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5216 // was true 3) We got some other error, and discard_on_error was true 5217 bool should_unwind = (return_value == eExpressionInterrupted && 5218 options.DoesUnwindOnError()) || 5219 (return_value == eExpressionHitBreakpoint && 5220 options.DoesIgnoreBreakpoints()); 5221 5222 if (return_value == eExpressionCompleted || should_unwind) { 5223 thread_plan_sp->RestoreThreadState(); 5224 } 5225 5226 // Now do some processing on the results of the run: 5227 if (return_value == eExpressionInterrupted || 5228 return_value == eExpressionHitBreakpoint) { 5229 if (log) { 5230 StreamString s; 5231 if (event_sp) 5232 event_sp->Dump(&s); 5233 else { 5234 log->PutCString("Process::RunThreadPlan(): Stop event that " 5235 "interrupted us is NULL."); 5236 } 5237 5238 StreamString ts; 5239 5240 const char *event_explanation = nullptr; 5241 5242 do { 5243 if (!event_sp) { 5244 event_explanation = "<no event>"; 5245 break; 5246 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5247 event_explanation = "<user interrupt>"; 5248 break; 5249 } else { 5250 const Process::ProcessEventData *event_data = 5251 Process::ProcessEventData::GetEventDataFromEvent( 5252 event_sp.get()); 5253 5254 if (!event_data) { 5255 event_explanation = "<no event data>"; 5256 break; 5257 } 5258 5259 Process *process = event_data->GetProcessSP().get(); 5260 5261 if (!process) { 5262 event_explanation = "<no process>"; 5263 break; 5264 } 5265 5266 ThreadList &thread_list = process->GetThreadList(); 5267 5268 uint32_t num_threads = thread_list.GetSize(); 5269 uint32_t thread_index; 5270 5271 ts.Printf("<%u threads> ", num_threads); 5272 5273 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5274 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5275 5276 if (!thread) { 5277 ts.Printf("<?> "); 5278 continue; 5279 } 5280 5281 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5282 RegisterContext *register_context = 5283 thread->GetRegisterContext().get(); 5284 5285 if (register_context) 5286 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5287 else 5288 ts.Printf("[ip unknown] "); 5289 5290 // Show the private stop info here, the public stop info will be 5291 // from the last natural stop. 5292 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5293 if (stop_info_sp) { 5294 const char *stop_desc = stop_info_sp->GetDescription(); 5295 if (stop_desc) 5296 ts.PutCString(stop_desc); 5297 } 5298 ts.Printf(">"); 5299 } 5300 5301 event_explanation = ts.GetData(); 5302 } 5303 } while (false); 5304 5305 if (event_explanation) 5306 LLDB_LOGF(log, 5307 "Process::RunThreadPlan(): execution interrupted: %s %s", 5308 s.GetData(), event_explanation); 5309 else 5310 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5311 s.GetData()); 5312 } 5313 5314 if (should_unwind) { 5315 LLDB_LOGF(log, 5316 "Process::RunThreadPlan: ExecutionInterrupted - " 5317 "discarding thread plans up to %p.", 5318 static_cast<void *>(thread_plan_sp.get())); 5319 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5320 } else { 5321 LLDB_LOGF(log, 5322 "Process::RunThreadPlan: ExecutionInterrupted - for " 5323 "plan: %p not discarding.", 5324 static_cast<void *>(thread_plan_sp.get())); 5325 } 5326 } else if (return_value == eExpressionSetupError) { 5327 if (log) 5328 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5329 5330 if (options.DoesUnwindOnError()) { 5331 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5332 } 5333 } else { 5334 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5335 if (log) 5336 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5337 return_value = eExpressionCompleted; 5338 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5339 if (log) 5340 log->PutCString( 5341 "Process::RunThreadPlan(): thread plan was discarded"); 5342 return_value = eExpressionDiscarded; 5343 } else { 5344 if (log) 5345 log->PutCString( 5346 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5347 if (options.DoesUnwindOnError() && thread_plan_sp) { 5348 if (log) 5349 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5350 "'cause unwind_on_error is set."); 5351 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5352 } 5353 } 5354 } 5355 5356 // Thread we ran the function in may have gone away because we ran the 5357 // target Check that it's still there, and if it is put it back in the 5358 // context. Also restore the frame in the context if it is still present. 5359 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5360 if (thread) { 5361 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5362 } 5363 5364 // Also restore the current process'es selected frame & thread, since this 5365 // function calling may be done behind the user's back. 5366 5367 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5368 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5369 selected_stack_id.IsValid()) { 5370 // We were able to restore the selected thread, now restore the frame: 5371 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5372 StackFrameSP old_frame_sp = 5373 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5374 selected_stack_id); 5375 if (old_frame_sp) 5376 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5377 old_frame_sp.get()); 5378 } 5379 } 5380 } 5381 5382 // If the process exited during the run of the thread plan, notify everyone. 5383 5384 if (event_to_broadcast_sp) { 5385 if (log) 5386 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5387 BroadcastEvent(event_to_broadcast_sp); 5388 } 5389 5390 return return_value; 5391 } 5392 5393 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5394 const char *result_name; 5395 5396 switch (result) { 5397 case eExpressionCompleted: 5398 result_name = "eExpressionCompleted"; 5399 break; 5400 case eExpressionDiscarded: 5401 result_name = "eExpressionDiscarded"; 5402 break; 5403 case eExpressionInterrupted: 5404 result_name = "eExpressionInterrupted"; 5405 break; 5406 case eExpressionHitBreakpoint: 5407 result_name = "eExpressionHitBreakpoint"; 5408 break; 5409 case eExpressionSetupError: 5410 result_name = "eExpressionSetupError"; 5411 break; 5412 case eExpressionParseError: 5413 result_name = "eExpressionParseError"; 5414 break; 5415 case eExpressionResultUnavailable: 5416 result_name = "eExpressionResultUnavailable"; 5417 break; 5418 case eExpressionTimedOut: 5419 result_name = "eExpressionTimedOut"; 5420 break; 5421 case eExpressionStoppedForDebug: 5422 result_name = "eExpressionStoppedForDebug"; 5423 break; 5424 } 5425 return result_name; 5426 } 5427 5428 void Process::GetStatus(Stream &strm) { 5429 const StateType state = GetState(); 5430 if (StateIsStoppedState(state, false)) { 5431 if (state == eStateExited) { 5432 int exit_status = GetExitStatus(); 5433 const char *exit_description = GetExitDescription(); 5434 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5435 GetID(), exit_status, exit_status, 5436 exit_description ? exit_description : ""); 5437 } else { 5438 if (state == eStateConnected) 5439 strm.Printf("Connected to remote target.\n"); 5440 else 5441 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5442 } 5443 } else { 5444 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5445 } 5446 } 5447 5448 size_t Process::GetThreadStatus(Stream &strm, 5449 bool only_threads_with_stop_reason, 5450 uint32_t start_frame, uint32_t num_frames, 5451 uint32_t num_frames_with_source, 5452 bool stop_format) { 5453 size_t num_thread_infos_dumped = 0; 5454 5455 // You can't hold the thread list lock while calling Thread::GetStatus. That 5456 // very well might run code (e.g. if we need it to get return values or 5457 // arguments.) For that to work the process has to be able to acquire it. 5458 // So instead copy the thread ID's, and look them up one by one: 5459 5460 uint32_t num_threads; 5461 std::vector<lldb::tid_t> thread_id_array; 5462 // Scope for thread list locker; 5463 { 5464 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5465 ThreadList &curr_thread_list = GetThreadList(); 5466 num_threads = curr_thread_list.GetSize(); 5467 uint32_t idx; 5468 thread_id_array.resize(num_threads); 5469 for (idx = 0; idx < num_threads; ++idx) 5470 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5471 } 5472 5473 for (uint32_t i = 0; i < num_threads; i++) { 5474 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5475 if (thread_sp) { 5476 if (only_threads_with_stop_reason) { 5477 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5478 if (!stop_info_sp || !stop_info_sp->IsValid()) 5479 continue; 5480 } 5481 thread_sp->GetStatus(strm, start_frame, num_frames, 5482 num_frames_with_source, 5483 stop_format); 5484 ++num_thread_infos_dumped; 5485 } else { 5486 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5487 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5488 " vanished while running Thread::GetStatus."); 5489 } 5490 } 5491 return num_thread_infos_dumped; 5492 } 5493 5494 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5495 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5496 } 5497 5498 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5499 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5500 region.GetByteSize()); 5501 } 5502 5503 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5504 void *baton) { 5505 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5506 } 5507 5508 bool Process::RunPreResumeActions() { 5509 bool result = true; 5510 while (!m_pre_resume_actions.empty()) { 5511 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5512 m_pre_resume_actions.pop_back(); 5513 bool this_result = action.callback(action.baton); 5514 if (result) 5515 result = this_result; 5516 } 5517 return result; 5518 } 5519 5520 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5521 5522 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5523 { 5524 PreResumeCallbackAndBaton element(callback, baton); 5525 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5526 if (found_iter != m_pre_resume_actions.end()) 5527 { 5528 m_pre_resume_actions.erase(found_iter); 5529 } 5530 } 5531 5532 ProcessRunLock &Process::GetRunLock() { 5533 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5534 return m_private_run_lock; 5535 else 5536 return m_public_run_lock; 5537 } 5538 5539 bool Process::CurrentThreadIsPrivateStateThread() 5540 { 5541 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5542 } 5543 5544 5545 void Process::Flush() { 5546 m_thread_list.Flush(); 5547 m_extended_thread_list.Flush(); 5548 m_extended_thread_stop_id = 0; 5549 m_queue_list.Clear(); 5550 m_queue_list_stop_id = 0; 5551 } 5552 5553 void Process::DidExec() { 5554 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5555 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5556 5557 Target &target = GetTarget(); 5558 target.CleanupProcess(); 5559 target.ClearModules(false); 5560 m_dynamic_checkers_up.reset(); 5561 m_abi_sp.reset(); 5562 m_system_runtime_up.reset(); 5563 m_os_up.reset(); 5564 m_dyld_up.reset(); 5565 m_jit_loaders_up.reset(); 5566 m_image_tokens.clear(); 5567 m_allocated_memory_cache.Clear(); 5568 { 5569 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5570 m_language_runtimes.clear(); 5571 } 5572 m_instrumentation_runtimes.clear(); 5573 m_thread_list.DiscardThreadPlans(); 5574 m_memory_cache.Clear(true); 5575 DoDidExec(); 5576 CompleteAttach(); 5577 // Flush the process (threads and all stack frames) after running 5578 // CompleteAttach() in case the dynamic loader loaded things in new 5579 // locations. 5580 Flush(); 5581 5582 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5583 // let the target know so it can do any cleanup it needs to. 5584 target.DidExec(); 5585 } 5586 5587 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5588 if (address == nullptr) { 5589 error.SetErrorString("Invalid address argument"); 5590 return LLDB_INVALID_ADDRESS; 5591 } 5592 5593 addr_t function_addr = LLDB_INVALID_ADDRESS; 5594 5595 addr_t addr = address->GetLoadAddress(&GetTarget()); 5596 std::map<addr_t, addr_t>::const_iterator iter = 5597 m_resolved_indirect_addresses.find(addr); 5598 if (iter != m_resolved_indirect_addresses.end()) { 5599 function_addr = (*iter).second; 5600 } else { 5601 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5602 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5603 error.SetErrorStringWithFormat( 5604 "Unable to call resolver for indirect function %s", 5605 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5606 function_addr = LLDB_INVALID_ADDRESS; 5607 } else { 5608 m_resolved_indirect_addresses.insert( 5609 std::pair<addr_t, addr_t>(addr, function_addr)); 5610 } 5611 } 5612 return function_addr; 5613 } 5614 5615 void Process::ModulesDidLoad(ModuleList &module_list) { 5616 SystemRuntime *sys_runtime = GetSystemRuntime(); 5617 if (sys_runtime) { 5618 sys_runtime->ModulesDidLoad(module_list); 5619 } 5620 5621 GetJITLoaders().ModulesDidLoad(module_list); 5622 5623 // Give runtimes a chance to be created. 5624 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5625 m_instrumentation_runtimes); 5626 5627 // Tell runtimes about new modules. 5628 for (auto pos = m_instrumentation_runtimes.begin(); 5629 pos != m_instrumentation_runtimes.end(); ++pos) { 5630 InstrumentationRuntimeSP runtime = pos->second; 5631 runtime->ModulesDidLoad(module_list); 5632 } 5633 5634 // Let any language runtimes we have already created know about the modules 5635 // that loaded. 5636 5637 // Iterate over a copy of this language runtime list in case the language 5638 // runtime ModulesDidLoad somehow causes the language runtime to be 5639 // unloaded. 5640 { 5641 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5642 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5643 for (const auto &pair : language_runtimes) { 5644 // We must check language_runtime_sp to make sure it is not nullptr as we 5645 // might cache the fact that we didn't have a language runtime for a 5646 // language. 5647 LanguageRuntimeSP language_runtime_sp = pair.second; 5648 if (language_runtime_sp) 5649 language_runtime_sp->ModulesDidLoad(module_list); 5650 } 5651 } 5652 5653 // If we don't have an operating system plug-in, try to load one since 5654 // loading shared libraries might cause a new one to try and load 5655 if (!m_os_up) 5656 LoadOperatingSystemPlugin(false); 5657 5658 // Give structured-data plugins a chance to see the modified modules. 5659 for (auto pair : m_structured_data_plugin_map) { 5660 if (pair.second) 5661 pair.second->ModulesDidLoad(*this, module_list); 5662 } 5663 } 5664 5665 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5666 const char *fmt, ...) { 5667 bool print_warning = true; 5668 5669 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5670 if (!stream_sp) 5671 return; 5672 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5673 return; 5674 } 5675 5676 if (repeat_key != nullptr) { 5677 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5678 if (it == m_warnings_issued.end()) { 5679 m_warnings_issued[warning_type] = WarningsPointerSet(); 5680 m_warnings_issued[warning_type].insert(repeat_key); 5681 } else { 5682 if (it->second.find(repeat_key) != it->second.end()) { 5683 print_warning = false; 5684 } else { 5685 it->second.insert(repeat_key); 5686 } 5687 } 5688 } 5689 5690 if (print_warning) { 5691 va_list args; 5692 va_start(args, fmt); 5693 stream_sp->PrintfVarArg(fmt, args); 5694 va_end(args); 5695 } 5696 } 5697 5698 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5699 if (GetWarningsOptimization() && sc.module_sp && 5700 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5701 sc.function->GetIsOptimized()) { 5702 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5703 "%s was compiled with optimization - stepping may behave " 5704 "oddly; variables may not be available.\n", 5705 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5706 } 5707 } 5708 5709 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5710 info.Clear(); 5711 5712 PlatformSP platform_sp = GetTarget().GetPlatform(); 5713 if (!platform_sp) 5714 return false; 5715 5716 return platform_sp->GetProcessInfo(GetID(), info); 5717 } 5718 5719 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5720 ThreadCollectionSP threads; 5721 5722 const MemoryHistorySP &memory_history = 5723 MemoryHistory::FindPlugin(shared_from_this()); 5724 5725 if (!memory_history) { 5726 return threads; 5727 } 5728 5729 threads = std::make_shared<ThreadCollection>( 5730 memory_history->GetHistoryThreads(addr)); 5731 5732 return threads; 5733 } 5734 5735 InstrumentationRuntimeSP 5736 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5737 InstrumentationRuntimeCollection::iterator pos; 5738 pos = m_instrumentation_runtimes.find(type); 5739 if (pos == m_instrumentation_runtimes.end()) { 5740 return InstrumentationRuntimeSP(); 5741 } else 5742 return (*pos).second; 5743 } 5744 5745 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5746 const ArchSpec &arch, ModuleSpec &module_spec) { 5747 module_spec.Clear(); 5748 return false; 5749 } 5750 5751 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5752 m_image_tokens.push_back(image_ptr); 5753 return m_image_tokens.size() - 1; 5754 } 5755 5756 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5757 if (token < m_image_tokens.size()) 5758 return m_image_tokens[token]; 5759 return LLDB_INVALID_IMAGE_TOKEN; 5760 } 5761 5762 void Process::ResetImageToken(size_t token) { 5763 if (token < m_image_tokens.size()) 5764 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5765 } 5766 5767 Address 5768 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5769 AddressRange range_bounds) { 5770 Target &target = GetTarget(); 5771 DisassemblerSP disassembler_sp; 5772 InstructionList *insn_list = nullptr; 5773 5774 Address retval = default_stop_addr; 5775 5776 if (!target.GetUseFastStepping()) 5777 return retval; 5778 if (!default_stop_addr.IsValid()) 5779 return retval; 5780 5781 ExecutionContext exe_ctx(this); 5782 const char *plugin_name = nullptr; 5783 const char *flavor = nullptr; 5784 const bool prefer_file_cache = true; 5785 disassembler_sp = Disassembler::DisassembleRange( 5786 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 5787 prefer_file_cache); 5788 if (disassembler_sp) 5789 insn_list = &disassembler_sp->GetInstructionList(); 5790 5791 if (insn_list == nullptr) { 5792 return retval; 5793 } 5794 5795 size_t insn_offset = 5796 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5797 if (insn_offset == UINT32_MAX) { 5798 return retval; 5799 } 5800 5801 uint32_t branch_index = 5802 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target, 5803 false /* ignore_calls*/, 5804 nullptr); 5805 if (branch_index == UINT32_MAX) { 5806 return retval; 5807 } 5808 5809 if (branch_index > insn_offset) { 5810 Address next_branch_insn_address = 5811 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5812 if (next_branch_insn_address.IsValid() && 5813 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5814 retval = next_branch_insn_address; 5815 } 5816 } 5817 5818 return retval; 5819 } 5820 5821 Status 5822 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5823 5824 Status error; 5825 5826 lldb::addr_t range_end = 0; 5827 5828 region_list.clear(); 5829 do { 5830 lldb_private::MemoryRegionInfo region_info; 5831 error = GetMemoryRegionInfo(range_end, region_info); 5832 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5833 if (error.Fail()) { 5834 region_list.clear(); 5835 break; 5836 } 5837 5838 range_end = region_info.GetRange().GetRangeEnd(); 5839 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5840 region_list.push_back(std::move(region_info)); 5841 } 5842 } while (range_end != LLDB_INVALID_ADDRESS); 5843 5844 return error; 5845 } 5846 5847 Status 5848 Process::ConfigureStructuredData(ConstString type_name, 5849 const StructuredData::ObjectSP &config_sp) { 5850 // If you get this, the Process-derived class needs to implement a method to 5851 // enable an already-reported asynchronous structured data feature. See 5852 // ProcessGDBRemote for an example implementation over gdb-remote. 5853 return Status("unimplemented"); 5854 } 5855 5856 void Process::MapSupportedStructuredDataPlugins( 5857 const StructuredData::Array &supported_type_names) { 5858 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5859 5860 // Bail out early if there are no type names to map. 5861 if (supported_type_names.GetSize() == 0) { 5862 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5863 __FUNCTION__); 5864 return; 5865 } 5866 5867 // Convert StructuredData type names to ConstString instances. 5868 std::set<ConstString> const_type_names; 5869 5870 LLDB_LOGF(log, 5871 "Process::%s(): the process supports the following async " 5872 "structured data types:", 5873 __FUNCTION__); 5874 5875 supported_type_names.ForEach( 5876 [&const_type_names, &log](StructuredData::Object *object) { 5877 if (!object) { 5878 // Invalid - shouldn't be null objects in the array. 5879 return false; 5880 } 5881 5882 auto type_name = object->GetAsString(); 5883 if (!type_name) { 5884 // Invalid format - all type names should be strings. 5885 return false; 5886 } 5887 5888 const_type_names.insert(ConstString(type_name->GetValue())); 5889 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5890 return true; 5891 }); 5892 5893 // For each StructuredDataPlugin, if the plugin handles any of the types in 5894 // the supported_type_names, map that type name to that plugin. Stop when 5895 // we've consumed all the type names. 5896 // FIXME: should we return an error if there are type names nobody 5897 // supports? 5898 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5899 auto create_instance = 5900 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5901 plugin_index); 5902 if (!create_instance) 5903 break; 5904 5905 // Create the plugin. 5906 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5907 if (!plugin_sp) { 5908 // This plugin doesn't think it can work with the process. Move on to the 5909 // next. 5910 continue; 5911 } 5912 5913 // For any of the remaining type names, map any that this plugin supports. 5914 std::vector<ConstString> names_to_remove; 5915 for (auto &type_name : const_type_names) { 5916 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5917 m_structured_data_plugin_map.insert( 5918 std::make_pair(type_name, plugin_sp)); 5919 names_to_remove.push_back(type_name); 5920 LLDB_LOGF(log, 5921 "Process::%s(): using plugin %s for type name " 5922 "%s", 5923 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5924 type_name.GetCString()); 5925 } 5926 } 5927 5928 // Remove the type names that were consumed by this plugin. 5929 for (auto &type_name : names_to_remove) 5930 const_type_names.erase(type_name); 5931 } 5932 } 5933 5934 bool Process::RouteAsyncStructuredData( 5935 const StructuredData::ObjectSP object_sp) { 5936 // Nothing to do if there's no data. 5937 if (!object_sp) 5938 return false; 5939 5940 // The contract is this must be a dictionary, so we can look up the routing 5941 // key via the top-level 'type' string value within the dictionary. 5942 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5943 if (!dictionary) 5944 return false; 5945 5946 // Grab the async structured type name (i.e. the feature/plugin name). 5947 ConstString type_name; 5948 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5949 return false; 5950 5951 // Check if there's a plugin registered for this type name. 5952 auto find_it = m_structured_data_plugin_map.find(type_name); 5953 if (find_it == m_structured_data_plugin_map.end()) { 5954 // We don't have a mapping for this structured data type. 5955 return false; 5956 } 5957 5958 // Route the structured data to the plugin. 5959 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5960 return true; 5961 } 5962 5963 Status Process::UpdateAutomaticSignalFiltering() { 5964 // Default implementation does nothign. 5965 // No automatic signal filtering to speak of. 5966 return Status(); 5967 } 5968 5969 UtilityFunction *Process::GetLoadImageUtilityFunction( 5970 Platform *platform, 5971 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 5972 if (platform != GetTarget().GetPlatform().get()) 5973 return nullptr; 5974 llvm::call_once(m_dlopen_utility_func_flag_once, 5975 [&] { m_dlopen_utility_func_up = factory(); }); 5976 return m_dlopen_utility_func_up.get(); 5977 } 5978 5979 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 5980 addr_t &returned_func, 5981 bool trap_exceptions) { 5982 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 5983 if (thread == nullptr || address == nullptr) 5984 return false; 5985 5986 EvaluateExpressionOptions options; 5987 options.SetStopOthers(true); 5988 options.SetUnwindOnError(true); 5989 options.SetIgnoreBreakpoints(true); 5990 options.SetTryAllThreads(true); 5991 options.SetDebug(false); 5992 options.SetTimeout(GetUtilityExpressionTimeout()); 5993 options.SetTrapExceptions(trap_exceptions); 5994 5995 auto type_system_or_err = 5996 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 5997 if (!type_system_or_err) { 5998 llvm::consumeError(type_system_or_err.takeError()); 5999 return false; 6000 } 6001 CompilerType void_ptr_type = 6002 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6003 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6004 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6005 if (call_plan_sp) { 6006 DiagnosticManager diagnostics; 6007 6008 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6009 if (frame) { 6010 ExecutionContext exe_ctx; 6011 frame->CalculateExecutionContext(exe_ctx); 6012 ExpressionResults result = 6013 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6014 if (result == eExpressionCompleted) { 6015 returned_func = 6016 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6017 LLDB_INVALID_ADDRESS); 6018 6019 if (GetAddressByteSize() == 4) { 6020 if (returned_func == UINT32_MAX) 6021 return false; 6022 } else if (GetAddressByteSize() == 8) { 6023 if (returned_func == UINT64_MAX) 6024 return false; 6025 } 6026 return true; 6027 } 6028 } 6029 } 6030 6031 return false; 6032 } 6033