1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/ADT/ScopeExit.h" 14 #include "llvm/Support/ScopedPrinter.h" 15 #include "llvm/Support/Threading.h" 16 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/DynamicCheckerFunctions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/AssertFrameRecognizer.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/Language.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/ThreadPlanCallFunction.h" 64 #include "lldb/Target/ThreadPlanStack.h" 65 #include "lldb/Target/UnixSignals.h" 66 #include "lldb/Utility/Event.h" 67 #include "lldb/Utility/LLDBLog.h" 68 #include "lldb/Utility/Log.h" 69 #include "lldb/Utility/NameMatches.h" 70 #include "lldb/Utility/ProcessInfo.h" 71 #include "lldb/Utility/SelectHelper.h" 72 #include "lldb/Utility/State.h" 73 #include "lldb/Utility/Timer.h" 74 75 using namespace lldb; 76 using namespace lldb_private; 77 using namespace std::chrono; 78 79 // Comment out line below to disable memory caching, overriding the process 80 // setting target.process.disable-memory-cache 81 #define ENABLE_MEMORY_CACHING 82 83 #ifdef ENABLE_MEMORY_CACHING 84 #define DISABLE_MEM_CACHE_DEFAULT false 85 #else 86 #define DISABLE_MEM_CACHE_DEFAULT true 87 #endif 88 89 class ProcessOptionValueProperties 90 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 91 public: 92 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 93 94 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 95 bool will_modify, 96 uint32_t idx) const override { 97 // When getting the value for a key from the process options, we will 98 // always try and grab the setting from the current process if there is 99 // one. Else we just use the one from this instance. 100 if (exe_ctx) { 101 Process *process = exe_ctx->GetProcessPtr(); 102 if (process) { 103 ProcessOptionValueProperties *instance_properties = 104 static_cast<ProcessOptionValueProperties *>( 105 process->GetValueProperties().get()); 106 if (this != instance_properties) 107 return instance_properties->ProtectedGetPropertyAtIndex(idx); 108 } 109 } 110 return ProtectedGetPropertyAtIndex(idx); 111 } 112 }; 113 114 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 115 { 116 eFollowParent, 117 "parent", 118 "Continue tracing the parent process and detach the child.", 119 }, 120 { 121 eFollowChild, 122 "child", 123 "Trace the child process and detach the parent.", 124 }, 125 }; 126 127 #define LLDB_PROPERTIES_process 128 #include "TargetProperties.inc" 129 130 enum { 131 #define LLDB_PROPERTIES_process 132 #include "TargetPropertiesEnum.inc" 133 ePropertyExperimental, 134 }; 135 136 #define LLDB_PROPERTIES_process_experimental 137 #include "TargetProperties.inc" 138 139 enum { 140 #define LLDB_PROPERTIES_process_experimental 141 #include "TargetPropertiesEnum.inc" 142 }; 143 144 class ProcessExperimentalOptionValueProperties 145 : public Cloneable<ProcessExperimentalOptionValueProperties, 146 OptionValueProperties> { 147 public: 148 ProcessExperimentalOptionValueProperties() 149 : Cloneable( 150 ConstString(Properties::GetExperimentalSettingsName())) {} 151 }; 152 153 ProcessExperimentalProperties::ProcessExperimentalProperties() 154 : Properties(OptionValuePropertiesSP( 155 new ProcessExperimentalOptionValueProperties())) { 156 m_collection_sp->Initialize(g_process_experimental_properties); 157 } 158 159 ProcessProperties::ProcessProperties(lldb_private::Process *process) 160 : Properties(), 161 m_process(process) // Can be nullptr for global ProcessProperties 162 { 163 if (process == nullptr) { 164 // Global process properties, set them up one time 165 m_collection_sp = 166 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 167 m_collection_sp->Initialize(g_process_properties); 168 m_collection_sp->AppendProperty( 169 ConstString("thread"), ConstString("Settings specific to threads."), 170 true, Thread::GetGlobalProperties().GetValueProperties()); 171 } else { 172 m_collection_sp = 173 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 174 m_collection_sp->SetValueChangedCallback( 175 ePropertyPythonOSPluginPath, 176 [this] { m_process->LoadOperatingSystemPlugin(true); }); 177 } 178 179 m_experimental_properties_up = 180 std::make_unique<ProcessExperimentalProperties>(); 181 m_collection_sp->AppendProperty( 182 ConstString(Properties::GetExperimentalSettingsName()), 183 ConstString("Experimental settings - setting these won't produce " 184 "errors if the setting is not present."), 185 true, m_experimental_properties_up->GetValueProperties()); 186 } 187 188 ProcessProperties::~ProcessProperties() = default; 189 190 bool ProcessProperties::GetDisableMemoryCache() const { 191 const uint32_t idx = ePropertyDisableMemCache; 192 return m_collection_sp->GetPropertyAtIndexAsBoolean( 193 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 194 } 195 196 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 197 const uint32_t idx = ePropertyMemCacheLineSize; 198 return m_collection_sp->GetPropertyAtIndexAsUInt64( 199 nullptr, idx, g_process_properties[idx].default_uint_value); 200 } 201 202 Args ProcessProperties::GetExtraStartupCommands() const { 203 Args args; 204 const uint32_t idx = ePropertyExtraStartCommand; 205 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 206 return args; 207 } 208 209 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 210 const uint32_t idx = ePropertyExtraStartCommand; 211 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 212 } 213 214 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 215 const uint32_t idx = ePropertyPythonOSPluginPath; 216 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 217 } 218 219 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 220 const uint32_t idx = ePropertyVirtualAddressableBits; 221 return m_collection_sp->GetPropertyAtIndexAsUInt64( 222 nullptr, idx, g_process_properties[idx].default_uint_value); 223 } 224 225 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 226 const uint32_t idx = ePropertyVirtualAddressableBits; 227 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 228 } 229 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 230 const uint32_t idx = ePropertyPythonOSPluginPath; 231 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 232 } 233 234 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 235 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 236 return m_collection_sp->GetPropertyAtIndexAsBoolean( 237 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 238 } 239 240 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 241 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 242 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 243 } 244 245 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 246 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 247 return m_collection_sp->GetPropertyAtIndexAsBoolean( 248 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 249 } 250 251 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 252 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 253 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 254 } 255 256 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 257 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 258 return m_collection_sp->GetPropertyAtIndexAsBoolean( 259 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 260 } 261 262 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 263 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 264 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 265 } 266 267 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 268 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 269 return m_collection_sp->GetPropertyAtIndexAsBoolean( 270 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 271 } 272 273 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 274 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 275 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 276 m_process->Flush(); 277 } 278 279 bool ProcessProperties::GetDetachKeepsStopped() const { 280 const uint32_t idx = ePropertyDetachKeepsStopped; 281 return m_collection_sp->GetPropertyAtIndexAsBoolean( 282 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 283 } 284 285 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 286 const uint32_t idx = ePropertyDetachKeepsStopped; 287 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 288 } 289 290 bool ProcessProperties::GetWarningsOptimization() const { 291 const uint32_t idx = ePropertyWarningOptimization; 292 return m_collection_sp->GetPropertyAtIndexAsBoolean( 293 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 294 } 295 296 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 297 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 298 return m_collection_sp->GetPropertyAtIndexAsBoolean( 299 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 300 } 301 302 bool ProcessProperties::GetStopOnExec() const { 303 const uint32_t idx = ePropertyStopOnExec; 304 return m_collection_sp->GetPropertyAtIndexAsBoolean( 305 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 306 } 307 308 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 309 const uint32_t idx = ePropertyUtilityExpressionTimeout; 310 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 311 nullptr, idx, g_process_properties[idx].default_uint_value); 312 return std::chrono::seconds(value); 313 } 314 315 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 316 const uint32_t idx = ePropertyInterruptTimeout; 317 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 318 nullptr, idx, g_process_properties[idx].default_uint_value); 319 return std::chrono::seconds(value); 320 } 321 322 bool ProcessProperties::GetSteppingRunsAllThreads() const { 323 const uint32_t idx = ePropertySteppingRunsAllThreads; 324 return m_collection_sp->GetPropertyAtIndexAsBoolean( 325 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 326 } 327 328 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 329 const bool fail_value = true; 330 const Property *exp_property = 331 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 332 OptionValueProperties *exp_values = 333 exp_property->GetValue()->GetAsProperties(); 334 if (!exp_values) 335 return fail_value; 336 337 return exp_values->GetPropertyAtIndexAsBoolean( 338 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 339 } 340 341 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 342 const Property *exp_property = 343 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 344 OptionValueProperties *exp_values = 345 exp_property->GetValue()->GetAsProperties(); 346 if (exp_values) 347 exp_values->SetPropertyAtIndexAsBoolean( 348 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 349 } 350 351 FollowForkMode ProcessProperties::GetFollowForkMode() const { 352 const uint32_t idx = ePropertyFollowForkMode; 353 return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration( 354 nullptr, idx, g_process_properties[idx].default_uint_value); 355 } 356 357 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 358 llvm::StringRef plugin_name, 359 ListenerSP listener_sp, 360 const FileSpec *crash_file_path, 361 bool can_connect) { 362 static uint32_t g_process_unique_id = 0; 363 364 ProcessSP process_sp; 365 ProcessCreateInstance create_callback = nullptr; 366 if (!plugin_name.empty()) { 367 create_callback = 368 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); 369 if (create_callback) { 370 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 371 can_connect); 372 if (process_sp) { 373 if (process_sp->CanDebug(target_sp, true)) { 374 process_sp->m_process_unique_id = ++g_process_unique_id; 375 } else 376 process_sp.reset(); 377 } 378 } 379 } else { 380 for (uint32_t idx = 0; 381 (create_callback = 382 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 383 ++idx) { 384 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 385 can_connect); 386 if (process_sp) { 387 if (process_sp->CanDebug(target_sp, false)) { 388 process_sp->m_process_unique_id = ++g_process_unique_id; 389 break; 390 } else 391 process_sp.reset(); 392 } 393 } 394 } 395 return process_sp; 396 } 397 398 ConstString &Process::GetStaticBroadcasterClass() { 399 static ConstString class_name("lldb.process"); 400 return class_name; 401 } 402 403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 404 : Process(target_sp, listener_sp, 405 UnixSignals::Create(HostInfo::GetArchitecture())) { 406 // This constructor just delegates to the full Process constructor, 407 // defaulting to using the Host's UnixSignals. 408 } 409 410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 411 const UnixSignalsSP &unix_signals_sp) 412 : ProcessProperties(this), 413 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 414 Process::GetStaticBroadcasterClass().AsCString()), 415 m_target_wp(target_sp), m_public_state(eStateUnloaded), 416 m_private_state(eStateUnloaded), 417 m_private_state_broadcaster(nullptr, 418 "lldb.process.internal_state_broadcaster"), 419 m_private_state_control_broadcaster( 420 nullptr, "lldb.process.internal_state_control_broadcaster"), 421 m_private_state_listener_sp( 422 Listener::MakeListener("lldb.process.internal_state_listener")), 423 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 424 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 425 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 426 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 427 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 428 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 429 m_breakpoint_site_list(), m_dynamic_checkers_up(), 430 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 431 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 432 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 433 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 434 m_memory_cache(*this), m_allocated_memory_cache(*this), 435 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 436 m_private_run_lock(), m_finalizing(false), 437 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 438 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 439 m_can_interpret_function_calls(false), m_warnings_issued(), 440 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 441 CheckInWithManager(); 442 443 Log *log = GetLog(LLDBLog::Object); 444 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 445 446 if (!m_unix_signals_sp) 447 m_unix_signals_sp = std::make_shared<UnixSignals>(); 448 449 SetEventName(eBroadcastBitStateChanged, "state-changed"); 450 SetEventName(eBroadcastBitInterrupt, "interrupt"); 451 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 452 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 453 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 454 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 455 456 m_private_state_control_broadcaster.SetEventName( 457 eBroadcastInternalStateControlStop, "control-stop"); 458 m_private_state_control_broadcaster.SetEventName( 459 eBroadcastInternalStateControlPause, "control-pause"); 460 m_private_state_control_broadcaster.SetEventName( 461 eBroadcastInternalStateControlResume, "control-resume"); 462 463 m_listener_sp->StartListeningForEvents( 464 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 465 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 466 eBroadcastBitProfileData | eBroadcastBitStructuredData); 467 468 m_private_state_listener_sp->StartListeningForEvents( 469 &m_private_state_broadcaster, 470 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 471 472 m_private_state_listener_sp->StartListeningForEvents( 473 &m_private_state_control_broadcaster, 474 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 475 eBroadcastInternalStateControlResume); 476 // We need something valid here, even if just the default UnixSignalsSP. 477 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 478 479 // Allow the platform to override the default cache line size 480 OptionValueSP value_sp = 481 m_collection_sp 482 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 483 ->GetValue(); 484 uint32_t platform_cache_line_size = 485 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 486 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 487 value_sp->SetUInt64Value(platform_cache_line_size); 488 489 RegisterAssertFrameRecognizer(this); 490 } 491 492 Process::~Process() { 493 Log *log = GetLog(LLDBLog::Object); 494 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 495 StopPrivateStateThread(); 496 497 // ThreadList::Clear() will try to acquire this process's mutex, so 498 // explicitly clear the thread list here to ensure that the mutex is not 499 // destroyed before the thread list. 500 m_thread_list.Clear(); 501 } 502 503 ProcessProperties &Process::GetGlobalProperties() { 504 // NOTE: intentional leak so we don't crash if global destructor chain gets 505 // called as other threads still use the result of this function 506 static ProcessProperties *g_settings_ptr = 507 new ProcessProperties(nullptr); 508 return *g_settings_ptr; 509 } 510 511 void Process::Finalize() { 512 if (m_finalizing.exchange(true)) 513 return; 514 515 // Destroy the process. This will call the virtual function DoDestroy under 516 // the hood, giving our derived class a chance to do the ncessary tear down. 517 DestroyImpl(false); 518 519 // Clear our broadcaster before we proceed with destroying 520 Broadcaster::Clear(); 521 522 // Do any cleanup needed prior to being destructed... Subclasses that 523 // override this method should call this superclass method as well. 524 525 // We need to destroy the loader before the derived Process class gets 526 // destroyed since it is very likely that undoing the loader will require 527 // access to the real process. 528 m_dynamic_checkers_up.reset(); 529 m_abi_sp.reset(); 530 m_os_up.reset(); 531 m_system_runtime_up.reset(); 532 m_dyld_up.reset(); 533 m_jit_loaders_up.reset(); 534 m_thread_plans.Clear(); 535 m_thread_list_real.Destroy(); 536 m_thread_list.Destroy(); 537 m_extended_thread_list.Destroy(); 538 m_queue_list.Clear(); 539 m_queue_list_stop_id = 0; 540 std::vector<Notifications> empty_notifications; 541 m_notifications.swap(empty_notifications); 542 m_image_tokens.clear(); 543 m_memory_cache.Clear(); 544 m_allocated_memory_cache.Clear(); 545 { 546 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 547 m_language_runtimes.clear(); 548 } 549 m_instrumentation_runtimes.clear(); 550 m_next_event_action_up.reset(); 551 // Clear the last natural stop ID since it has a strong reference to this 552 // process 553 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 554 //#ifdef LLDB_CONFIGURATION_DEBUG 555 // StreamFile s(stdout, false); 556 // EventSP event_sp; 557 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 558 // { 559 // event_sp->Dump (&s); 560 // s.EOL(); 561 // } 562 //#endif 563 // We have to be very careful here as the m_private_state_listener might 564 // contain events that have ProcessSP values in them which can keep this 565 // process around forever. These events need to be cleared out. 566 m_private_state_listener_sp->Clear(); 567 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 568 m_public_run_lock.SetStopped(); 569 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 570 m_private_run_lock.SetStopped(); 571 m_structured_data_plugin_map.clear(); 572 } 573 574 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 575 m_notifications.push_back(callbacks); 576 if (callbacks.initialize != nullptr) 577 callbacks.initialize(callbacks.baton, this); 578 } 579 580 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 581 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 582 for (pos = m_notifications.begin(); pos != end; ++pos) { 583 if (pos->baton == callbacks.baton && 584 pos->initialize == callbacks.initialize && 585 pos->process_state_changed == callbacks.process_state_changed) { 586 m_notifications.erase(pos); 587 return true; 588 } 589 } 590 return false; 591 } 592 593 void Process::SynchronouslyNotifyStateChanged(StateType state) { 594 std::vector<Notifications>::iterator notification_pos, 595 notification_end = m_notifications.end(); 596 for (notification_pos = m_notifications.begin(); 597 notification_pos != notification_end; ++notification_pos) { 598 if (notification_pos->process_state_changed) 599 notification_pos->process_state_changed(notification_pos->baton, this, 600 state); 601 } 602 } 603 604 // FIXME: We need to do some work on events before the general Listener sees 605 // them. 606 // For instance if we are continuing from a breakpoint, we need to ensure that 607 // we do the little "insert real insn, step & stop" trick. But we can't do 608 // that when the event is delivered by the broadcaster - since that is done on 609 // the thread that is waiting for new events, so if we needed more than one 610 // event for our handling, we would stall. So instead we do it when we fetch 611 // the event off of the queue. 612 // 613 614 StateType Process::GetNextEvent(EventSP &event_sp) { 615 StateType state = eStateInvalid; 616 617 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 618 std::chrono::seconds(0)) && 619 event_sp) 620 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 621 622 return state; 623 } 624 625 void Process::SyncIOHandler(uint32_t iohandler_id, 626 const Timeout<std::micro> &timeout) { 627 // don't sync (potentially context switch) in case where there is no process 628 // IO 629 if (!m_process_input_reader) 630 return; 631 632 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 633 634 Log *log = GetLog(LLDBLog::Process); 635 if (Result) { 636 LLDB_LOG( 637 log, 638 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 639 iohandler_id, *Result); 640 } else { 641 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 642 iohandler_id); 643 } 644 } 645 646 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 647 EventSP *event_sp_ptr, bool wait_always, 648 ListenerSP hijack_listener_sp, 649 Stream *stream, bool use_run_lock) { 650 // We can't just wait for a "stopped" event, because the stopped event may 651 // have restarted the target. We have to actually check each event, and in 652 // the case of a stopped event check the restarted flag on the event. 653 if (event_sp_ptr) 654 event_sp_ptr->reset(); 655 StateType state = GetState(); 656 // If we are exited or detached, we won't ever get back to any other valid 657 // state... 658 if (state == eStateDetached || state == eStateExited) 659 return state; 660 661 Log *log = GetLog(LLDBLog::Process); 662 LLDB_LOG(log, "timeout = {0}", timeout); 663 664 if (!wait_always && StateIsStoppedState(state, true) && 665 StateIsStoppedState(GetPrivateState(), true)) { 666 LLDB_LOGF(log, 667 "Process::%s returning without waiting for events; process " 668 "private and public states are already 'stopped'.", 669 __FUNCTION__); 670 // We need to toggle the run lock as this won't get done in 671 // SetPublicState() if the process is hijacked. 672 if (hijack_listener_sp && use_run_lock) 673 m_public_run_lock.SetStopped(); 674 return state; 675 } 676 677 while (state != eStateInvalid) { 678 EventSP event_sp; 679 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 680 if (event_sp_ptr && event_sp) 681 *event_sp_ptr = event_sp; 682 683 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 684 Process::HandleProcessStateChangedEvent(event_sp, stream, 685 pop_process_io_handler); 686 687 switch (state) { 688 case eStateCrashed: 689 case eStateDetached: 690 case eStateExited: 691 case eStateUnloaded: 692 // We need to toggle the run lock as this won't get done in 693 // SetPublicState() if the process is hijacked. 694 if (hijack_listener_sp && use_run_lock) 695 m_public_run_lock.SetStopped(); 696 return state; 697 case eStateStopped: 698 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 699 continue; 700 else { 701 // We need to toggle the run lock as this won't get done in 702 // SetPublicState() if the process is hijacked. 703 if (hijack_listener_sp && use_run_lock) 704 m_public_run_lock.SetStopped(); 705 return state; 706 } 707 default: 708 continue; 709 } 710 } 711 return state; 712 } 713 714 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 715 Stream *stream, 716 bool &pop_process_io_handler) { 717 const bool handle_pop = pop_process_io_handler; 718 719 pop_process_io_handler = false; 720 ProcessSP process_sp = 721 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 722 723 if (!process_sp) 724 return false; 725 726 StateType event_state = 727 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 728 if (event_state == eStateInvalid) 729 return false; 730 731 switch (event_state) { 732 case eStateInvalid: 733 case eStateUnloaded: 734 case eStateAttaching: 735 case eStateLaunching: 736 case eStateStepping: 737 case eStateDetached: 738 if (stream) 739 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 740 StateAsCString(event_state)); 741 if (event_state == eStateDetached) 742 pop_process_io_handler = true; 743 break; 744 745 case eStateConnected: 746 case eStateRunning: 747 // Don't be chatty when we run... 748 break; 749 750 case eStateExited: 751 if (stream) 752 process_sp->GetStatus(*stream); 753 pop_process_io_handler = true; 754 break; 755 756 case eStateStopped: 757 case eStateCrashed: 758 case eStateSuspended: 759 // Make sure the program hasn't been auto-restarted: 760 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 761 if (stream) { 762 size_t num_reasons = 763 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 764 if (num_reasons > 0) { 765 // FIXME: Do we want to report this, or would that just be annoyingly 766 // chatty? 767 if (num_reasons == 1) { 768 const char *reason = 769 Process::ProcessEventData::GetRestartedReasonAtIndex( 770 event_sp.get(), 0); 771 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 772 process_sp->GetID(), 773 reason ? reason : "<UNKNOWN REASON>"); 774 } else { 775 stream->Printf("Process %" PRIu64 776 " stopped and restarted, reasons:\n", 777 process_sp->GetID()); 778 779 for (size_t i = 0; i < num_reasons; i++) { 780 const char *reason = 781 Process::ProcessEventData::GetRestartedReasonAtIndex( 782 event_sp.get(), i); 783 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 784 } 785 } 786 } 787 } 788 } else { 789 StopInfoSP curr_thread_stop_info_sp; 790 // Lock the thread list so it doesn't change on us, this is the scope for 791 // the locker: 792 { 793 ThreadList &thread_list = process_sp->GetThreadList(); 794 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 795 796 ThreadSP curr_thread(thread_list.GetSelectedThread()); 797 ThreadSP thread; 798 StopReason curr_thread_stop_reason = eStopReasonInvalid; 799 bool prefer_curr_thread = false; 800 if (curr_thread && curr_thread->IsValid()) { 801 curr_thread_stop_reason = curr_thread->GetStopReason(); 802 switch (curr_thread_stop_reason) { 803 case eStopReasonNone: 804 case eStopReasonInvalid: 805 // Don't prefer the current thread if it didn't stop for a reason. 806 break; 807 case eStopReasonSignal: { 808 // We need to do the same computation we do for other threads 809 // below in case the current thread happens to be the one that 810 // stopped for the no-stop signal. 811 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 812 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 813 prefer_curr_thread = true; 814 } break; 815 default: 816 prefer_curr_thread = true; 817 break; 818 } 819 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 820 } 821 822 if (!prefer_curr_thread) { 823 // Prefer a thread that has just completed its plan over another 824 // thread as current thread. 825 ThreadSP plan_thread; 826 ThreadSP other_thread; 827 828 const size_t num_threads = thread_list.GetSize(); 829 size_t i; 830 for (i = 0; i < num_threads; ++i) { 831 thread = thread_list.GetThreadAtIndex(i); 832 StopReason thread_stop_reason = thread->GetStopReason(); 833 switch (thread_stop_reason) { 834 case eStopReasonInvalid: 835 case eStopReasonNone: 836 break; 837 838 case eStopReasonSignal: { 839 // Don't select a signal thread if we weren't going to stop at 840 // that signal. We have to have had another reason for stopping 841 // here, and the user doesn't want to see this thread. 842 uint64_t signo = thread->GetStopInfo()->GetValue(); 843 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 844 if (!other_thread) 845 other_thread = thread; 846 } 847 break; 848 } 849 case eStopReasonTrace: 850 case eStopReasonBreakpoint: 851 case eStopReasonWatchpoint: 852 case eStopReasonException: 853 case eStopReasonExec: 854 case eStopReasonFork: 855 case eStopReasonVFork: 856 case eStopReasonVForkDone: 857 case eStopReasonThreadExiting: 858 case eStopReasonInstrumentation: 859 case eStopReasonProcessorTrace: 860 if (!other_thread) 861 other_thread = thread; 862 break; 863 case eStopReasonPlanComplete: 864 if (!plan_thread) 865 plan_thread = thread; 866 break; 867 } 868 } 869 if (plan_thread) 870 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 871 else if (other_thread) 872 thread_list.SetSelectedThreadByID(other_thread->GetID()); 873 else { 874 if (curr_thread && curr_thread->IsValid()) 875 thread = curr_thread; 876 else 877 thread = thread_list.GetThreadAtIndex(0); 878 879 if (thread) 880 thread_list.SetSelectedThreadByID(thread->GetID()); 881 } 882 } 883 } 884 // Drop the ThreadList mutex by here, since GetThreadStatus below might 885 // have to run code, e.g. for Data formatters, and if we hold the 886 // ThreadList mutex, then the process is going to have a hard time 887 // restarting the process. 888 if (stream) { 889 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 890 if (debugger.GetTargetList().GetSelectedTarget().get() == 891 &process_sp->GetTarget()) { 892 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 893 894 if (!thread_sp || !thread_sp->IsValid()) 895 return false; 896 897 const bool only_threads_with_stop_reason = true; 898 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 899 const uint32_t num_frames = 1; 900 const uint32_t num_frames_with_source = 1; 901 const bool stop_format = true; 902 903 process_sp->GetStatus(*stream); 904 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 905 start_frame, num_frames, 906 num_frames_with_source, 907 stop_format); 908 if (curr_thread_stop_info_sp) { 909 lldb::addr_t crashing_address; 910 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 911 curr_thread_stop_info_sp, &crashing_address); 912 if (valobj_sp) { 913 const ValueObject::GetExpressionPathFormat format = 914 ValueObject::GetExpressionPathFormat:: 915 eGetExpressionPathFormatHonorPointers; 916 stream->PutCString("Likely cause: "); 917 valobj_sp->GetExpressionPath(*stream, format); 918 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 919 } 920 } 921 } else { 922 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 923 process_sp->GetTarget().shared_from_this()); 924 if (target_idx != UINT32_MAX) 925 stream->Printf("Target %d: (", target_idx); 926 else 927 stream->Printf("Target <unknown index>: ("); 928 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 929 stream->Printf(") stopped.\n"); 930 } 931 } 932 933 // Pop the process IO handler 934 pop_process_io_handler = true; 935 } 936 break; 937 } 938 939 if (handle_pop && pop_process_io_handler) 940 process_sp->PopProcessIOHandler(); 941 942 return true; 943 } 944 945 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 946 if (listener_sp) { 947 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 948 eBroadcastBitInterrupt); 949 } else 950 return false; 951 } 952 953 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 954 955 StateType Process::GetStateChangedEvents(EventSP &event_sp, 956 const Timeout<std::micro> &timeout, 957 ListenerSP hijack_listener_sp) { 958 Log *log = GetLog(LLDBLog::Process); 959 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 960 961 ListenerSP listener_sp = hijack_listener_sp; 962 if (!listener_sp) 963 listener_sp = m_listener_sp; 964 965 StateType state = eStateInvalid; 966 if (listener_sp->GetEventForBroadcasterWithType( 967 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 968 timeout)) { 969 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 970 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 971 else 972 LLDB_LOG(log, "got no event or was interrupted."); 973 } 974 975 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 976 return state; 977 } 978 979 Event *Process::PeekAtStateChangedEvents() { 980 Log *log = GetLog(LLDBLog::Process); 981 982 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 983 984 Event *event_ptr; 985 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 986 this, eBroadcastBitStateChanged); 987 if (log) { 988 if (event_ptr) { 989 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 990 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 991 } else { 992 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 993 } 994 } 995 return event_ptr; 996 } 997 998 StateType 999 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1000 const Timeout<std::micro> &timeout) { 1001 Log *log = GetLog(LLDBLog::Process); 1002 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1003 1004 StateType state = eStateInvalid; 1005 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1006 &m_private_state_broadcaster, 1007 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1008 timeout)) 1009 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1010 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1011 1012 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1013 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1014 return state; 1015 } 1016 1017 bool Process::GetEventsPrivate(EventSP &event_sp, 1018 const Timeout<std::micro> &timeout, 1019 bool control_only) { 1020 Log *log = GetLog(LLDBLog::Process); 1021 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1022 1023 if (control_only) 1024 return m_private_state_listener_sp->GetEventForBroadcaster( 1025 &m_private_state_control_broadcaster, event_sp, timeout); 1026 else 1027 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1028 } 1029 1030 bool Process::IsRunning() const { 1031 return StateIsRunningState(m_public_state.GetValue()); 1032 } 1033 1034 int Process::GetExitStatus() { 1035 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1036 1037 if (m_public_state.GetValue() == eStateExited) 1038 return m_exit_status; 1039 return -1; 1040 } 1041 1042 const char *Process::GetExitDescription() { 1043 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1044 1045 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1046 return m_exit_string.c_str(); 1047 return nullptr; 1048 } 1049 1050 bool Process::SetExitStatus(int status, const char *cstr) { 1051 // Use a mutex to protect setting the exit status. 1052 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1053 1054 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1055 LLDB_LOGF( 1056 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1057 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1058 1059 // We were already in the exited state 1060 if (m_private_state.GetValue() == eStateExited) { 1061 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1062 "state was already set to eStateExited"); 1063 return false; 1064 } 1065 1066 m_exit_status = status; 1067 if (cstr) 1068 m_exit_string = cstr; 1069 else 1070 m_exit_string.clear(); 1071 1072 // Clear the last natural stop ID since it has a strong reference to this 1073 // process 1074 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1075 1076 SetPrivateState(eStateExited); 1077 1078 // Allow subclasses to do some cleanup 1079 DidExit(); 1080 1081 return true; 1082 } 1083 1084 bool Process::IsAlive() { 1085 switch (m_private_state.GetValue()) { 1086 case eStateConnected: 1087 case eStateAttaching: 1088 case eStateLaunching: 1089 case eStateStopped: 1090 case eStateRunning: 1091 case eStateStepping: 1092 case eStateCrashed: 1093 case eStateSuspended: 1094 return true; 1095 default: 1096 return false; 1097 } 1098 } 1099 1100 // This static callback can be used to watch for local child processes on the 1101 // current host. The child process exits, the process will be found in the 1102 // global target list (we want to be completely sure that the 1103 // lldb_private::Process doesn't go away before we can deliver the signal. 1104 bool Process::SetProcessExitStatus( 1105 lldb::pid_t pid, bool exited, 1106 int signo, // Zero for no signal 1107 int exit_status // Exit value of process if signal is zero 1108 ) { 1109 Log *log = GetLog(LLDBLog::Process); 1110 LLDB_LOGF(log, 1111 "Process::SetProcessExitStatus (pid=%" PRIu64 1112 ", exited=%i, signal=%i, exit_status=%i)\n", 1113 pid, exited, signo, exit_status); 1114 1115 if (exited) { 1116 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1117 if (target_sp) { 1118 ProcessSP process_sp(target_sp->GetProcessSP()); 1119 if (process_sp) { 1120 const char *signal_cstr = nullptr; 1121 if (signo) 1122 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1123 1124 process_sp->SetExitStatus(exit_status, signal_cstr); 1125 } 1126 } 1127 return true; 1128 } 1129 return false; 1130 } 1131 1132 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1133 ThreadList &new_thread_list) { 1134 m_thread_plans.ClearThreadCache(); 1135 return DoUpdateThreadList(old_thread_list, new_thread_list); 1136 } 1137 1138 void Process::UpdateThreadListIfNeeded() { 1139 const uint32_t stop_id = GetStopID(); 1140 if (m_thread_list.GetSize(false) == 0 || 1141 stop_id != m_thread_list.GetStopID()) { 1142 bool clear_unused_threads = true; 1143 const StateType state = GetPrivateState(); 1144 if (StateIsStoppedState(state, true)) { 1145 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1146 m_thread_list.SetStopID(stop_id); 1147 1148 // m_thread_list does have its own mutex, but we need to hold onto the 1149 // mutex between the call to UpdateThreadList(...) and the 1150 // os->UpdateThreadList(...) so it doesn't change on us 1151 ThreadList &old_thread_list = m_thread_list; 1152 ThreadList real_thread_list(this); 1153 ThreadList new_thread_list(this); 1154 // Always update the thread list with the protocol specific thread list, 1155 // but only update if "true" is returned 1156 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1157 // Don't call into the OperatingSystem to update the thread list if we 1158 // are shutting down, since that may call back into the SBAPI's, 1159 // requiring the API lock which is already held by whoever is shutting 1160 // us down, causing a deadlock. 1161 OperatingSystem *os = GetOperatingSystem(); 1162 if (os && !m_destroy_in_process) { 1163 // Clear any old backing threads where memory threads might have been 1164 // backed by actual threads from the lldb_private::Process subclass 1165 size_t num_old_threads = old_thread_list.GetSize(false); 1166 for (size_t i = 0; i < num_old_threads; ++i) 1167 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1168 // See if the OS plugin reports all threads. If it does, then 1169 // it is safe to clear unseen thread's plans here. Otherwise we 1170 // should preserve them in case they show up again: 1171 clear_unused_threads = GetOSPluginReportsAllThreads(); 1172 1173 // Turn off dynamic types to ensure we don't run any expressions. 1174 // Objective-C can run an expression to determine if a SBValue is a 1175 // dynamic type or not and we need to avoid this. OperatingSystem 1176 // plug-ins can't run expressions that require running code... 1177 1178 Target &target = GetTarget(); 1179 const lldb::DynamicValueType saved_prefer_dynamic = 1180 target.GetPreferDynamicValue(); 1181 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1182 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1183 1184 // Now let the OperatingSystem plug-in update the thread list 1185 1186 os->UpdateThreadList( 1187 old_thread_list, // Old list full of threads created by OS plug-in 1188 real_thread_list, // The actual thread list full of threads 1189 // created by each lldb_private::Process 1190 // subclass 1191 new_thread_list); // The new thread list that we will show to the 1192 // user that gets filled in 1193 1194 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1195 target.SetPreferDynamicValue(saved_prefer_dynamic); 1196 } else { 1197 // No OS plug-in, the new thread list is the same as the real thread 1198 // list. 1199 new_thread_list = real_thread_list; 1200 } 1201 1202 m_thread_list_real.Update(real_thread_list); 1203 m_thread_list.Update(new_thread_list); 1204 m_thread_list.SetStopID(stop_id); 1205 1206 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1207 // Clear any extended threads that we may have accumulated previously 1208 m_extended_thread_list.Clear(); 1209 m_extended_thread_stop_id = GetLastNaturalStopID(); 1210 1211 m_queue_list.Clear(); 1212 m_queue_list_stop_id = GetLastNaturalStopID(); 1213 } 1214 } 1215 // Now update the plan stack map. 1216 // If we do have an OS plugin, any absent real threads in the 1217 // m_thread_list have already been removed from the ThreadPlanStackMap. 1218 // So any remaining threads are OS Plugin threads, and those we want to 1219 // preserve in case they show up again. 1220 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1221 } 1222 } 1223 } 1224 1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1226 return m_thread_plans.Find(tid); 1227 } 1228 1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1230 return m_thread_plans.PrunePlansForTID(tid); 1231 } 1232 1233 void Process::PruneThreadPlans() { 1234 m_thread_plans.Update(GetThreadList(), true, false); 1235 } 1236 1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1238 lldb::DescriptionLevel desc_level, 1239 bool internal, bool condense_trivial, 1240 bool skip_unreported_plans) { 1241 return m_thread_plans.DumpPlansForTID( 1242 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1243 } 1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1245 bool internal, bool condense_trivial, 1246 bool skip_unreported_plans) { 1247 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1248 skip_unreported_plans); 1249 } 1250 1251 void Process::UpdateQueueListIfNeeded() { 1252 if (m_system_runtime_up) { 1253 if (m_queue_list.GetSize() == 0 || 1254 m_queue_list_stop_id != GetLastNaturalStopID()) { 1255 const StateType state = GetPrivateState(); 1256 if (StateIsStoppedState(state, true)) { 1257 m_system_runtime_up->PopulateQueueList(m_queue_list); 1258 m_queue_list_stop_id = GetLastNaturalStopID(); 1259 } 1260 } 1261 } 1262 } 1263 1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1265 OperatingSystem *os = GetOperatingSystem(); 1266 if (os) 1267 return os->CreateThread(tid, context); 1268 return ThreadSP(); 1269 } 1270 1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1272 return AssignIndexIDToThread(thread_id); 1273 } 1274 1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1276 return (m_thread_id_to_index_id_map.find(thread_id) != 1277 m_thread_id_to_index_id_map.end()); 1278 } 1279 1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1281 uint32_t result = 0; 1282 std::map<uint64_t, uint32_t>::iterator iterator = 1283 m_thread_id_to_index_id_map.find(thread_id); 1284 if (iterator == m_thread_id_to_index_id_map.end()) { 1285 result = ++m_thread_index_id; 1286 m_thread_id_to_index_id_map[thread_id] = result; 1287 } else { 1288 result = iterator->second; 1289 } 1290 1291 return result; 1292 } 1293 1294 StateType Process::GetState() { 1295 return m_public_state.GetValue(); 1296 } 1297 1298 void Process::SetPublicState(StateType new_state, bool restarted) { 1299 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1300 if (new_state_is_stopped) { 1301 // This will only set the time if the public stop time has no value, so 1302 // it is ok to call this multiple times. With a public stop we can't look 1303 // at the stop ID because many private stops might have happened, so we 1304 // can't check for a stop ID of zero. This allows the "statistics" command 1305 // to dump the time it takes to reach somewhere in your code, like a 1306 // breakpoint you set. 1307 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1308 } 1309 1310 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1311 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1312 StateAsCString(new_state), restarted); 1313 const StateType old_state = m_public_state.GetValue(); 1314 m_public_state.SetValue(new_state); 1315 1316 // On the transition from Run to Stopped, we unlock the writer end of the run 1317 // lock. The lock gets locked in Resume, which is the public API to tell the 1318 // program to run. 1319 if (!StateChangedIsExternallyHijacked()) { 1320 if (new_state == eStateDetached) { 1321 LLDB_LOGF(log, 1322 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1323 StateAsCString(new_state)); 1324 m_public_run_lock.SetStopped(); 1325 } else { 1326 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1327 if ((old_state_is_stopped != new_state_is_stopped)) { 1328 if (new_state_is_stopped && !restarted) { 1329 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1330 StateAsCString(new_state)); 1331 m_public_run_lock.SetStopped(); 1332 } 1333 } 1334 } 1335 } 1336 } 1337 1338 Status Process::Resume() { 1339 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1340 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1341 if (!m_public_run_lock.TrySetRunning()) { 1342 Status error("Resume request failed - process still running."); 1343 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1344 return error; 1345 } 1346 Status error = PrivateResume(); 1347 if (!error.Success()) { 1348 // Undo running state change 1349 m_public_run_lock.SetStopped(); 1350 } 1351 return error; 1352 } 1353 1354 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1355 1356 Status Process::ResumeSynchronous(Stream *stream) { 1357 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1358 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1359 if (!m_public_run_lock.TrySetRunning()) { 1360 Status error("Resume request failed - process still running."); 1361 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1362 return error; 1363 } 1364 1365 ListenerSP listener_sp( 1366 Listener::MakeListener(g_resume_sync_name)); 1367 HijackProcessEvents(listener_sp); 1368 1369 Status error = PrivateResume(); 1370 if (error.Success()) { 1371 StateType state = WaitForProcessToStop(llvm::None, nullptr, true, 1372 listener_sp, stream); 1373 const bool must_be_alive = 1374 false; // eStateExited is ok, so this must be false 1375 if (!StateIsStoppedState(state, must_be_alive)) 1376 error.SetErrorStringWithFormat( 1377 "process not in stopped state after synchronous resume: %s", 1378 StateAsCString(state)); 1379 } else { 1380 // Undo running state change 1381 m_public_run_lock.SetStopped(); 1382 } 1383 1384 // Undo the hijacking of process events... 1385 RestoreProcessEvents(); 1386 1387 return error; 1388 } 1389 1390 bool Process::StateChangedIsExternallyHijacked() { 1391 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1392 const char *hijacking_name = GetHijackingListenerName(); 1393 if (hijacking_name && 1394 strcmp(hijacking_name, g_resume_sync_name)) 1395 return true; 1396 } 1397 return false; 1398 } 1399 1400 bool Process::StateChangedIsHijackedForSynchronousResume() { 1401 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1402 const char *hijacking_name = GetHijackingListenerName(); 1403 if (hijacking_name && 1404 strcmp(hijacking_name, g_resume_sync_name) == 0) 1405 return true; 1406 } 1407 return false; 1408 } 1409 1410 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1411 1412 void Process::SetPrivateState(StateType new_state) { 1413 if (m_finalizing) 1414 return; 1415 1416 Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); 1417 bool state_changed = false; 1418 1419 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1420 1421 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1422 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1423 1424 const StateType old_state = m_private_state.GetValueNoLock(); 1425 state_changed = old_state != new_state; 1426 1427 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1428 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1429 if (old_state_is_stopped != new_state_is_stopped) { 1430 if (new_state_is_stopped) 1431 m_private_run_lock.SetStopped(); 1432 else 1433 m_private_run_lock.SetRunning(); 1434 } 1435 1436 if (state_changed) { 1437 m_private_state.SetValueNoLock(new_state); 1438 EventSP event_sp( 1439 new Event(eBroadcastBitStateChanged, 1440 new ProcessEventData(shared_from_this(), new_state))); 1441 if (StateIsStoppedState(new_state, false)) { 1442 // Note, this currently assumes that all threads in the list stop when 1443 // the process stops. In the future we will want to support a debugging 1444 // model where some threads continue to run while others are stopped. 1445 // When that happens we will either need a way for the thread list to 1446 // identify which threads are stopping or create a special thread list 1447 // containing only threads which actually stopped. 1448 // 1449 // The process plugin is responsible for managing the actual behavior of 1450 // the threads and should have stopped any threads that are going to stop 1451 // before we get here. 1452 m_thread_list.DidStop(); 1453 1454 if (m_mod_id.BumpStopID() == 0) 1455 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1456 1457 if (!m_mod_id.IsLastResumeForUserExpression()) 1458 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1459 m_memory_cache.Clear(); 1460 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1461 StateAsCString(new_state), m_mod_id.GetStopID()); 1462 } 1463 1464 m_private_state_broadcaster.BroadcastEvent(event_sp); 1465 } else { 1466 LLDB_LOGF(log, 1467 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1468 StateAsCString(new_state)); 1469 } 1470 } 1471 1472 void Process::SetRunningUserExpression(bool on) { 1473 m_mod_id.SetRunningUserExpression(on); 1474 } 1475 1476 void Process::SetRunningUtilityFunction(bool on) { 1477 m_mod_id.SetRunningUtilityFunction(on); 1478 } 1479 1480 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1481 1482 const lldb::ABISP &Process::GetABI() { 1483 if (!m_abi_sp) 1484 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1485 return m_abi_sp; 1486 } 1487 1488 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1489 std::vector<LanguageRuntime *> language_runtimes; 1490 1491 if (m_finalizing) 1492 return language_runtimes; 1493 1494 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1495 // Before we pass off a copy of the language runtimes, we must make sure that 1496 // our collection is properly populated. It's possible that some of the 1497 // language runtimes were not loaded yet, either because nobody requested it 1498 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1499 // hadn't been loaded). 1500 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1501 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1502 language_runtimes.emplace_back(runtime); 1503 } 1504 1505 return language_runtimes; 1506 } 1507 1508 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1509 if (m_finalizing) 1510 return nullptr; 1511 1512 LanguageRuntime *runtime = nullptr; 1513 1514 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1515 LanguageRuntimeCollection::iterator pos; 1516 pos = m_language_runtimes.find(language); 1517 if (pos == m_language_runtimes.end() || !pos->second) { 1518 lldb::LanguageRuntimeSP runtime_sp( 1519 LanguageRuntime::FindPlugin(this, language)); 1520 1521 m_language_runtimes[language] = runtime_sp; 1522 runtime = runtime_sp.get(); 1523 } else 1524 runtime = pos->second.get(); 1525 1526 if (runtime) 1527 // It's possible that a language runtime can support multiple LanguageTypes, 1528 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1529 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1530 // primary language type and make sure that our runtime supports it. 1531 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1532 1533 return runtime; 1534 } 1535 1536 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1537 if (m_finalizing) 1538 return false; 1539 1540 if (in_value.IsDynamic()) 1541 return false; 1542 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1543 1544 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1545 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1546 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1547 } 1548 1549 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1550 if (runtime->CouldHaveDynamicValue(in_value)) 1551 return true; 1552 } 1553 1554 return false; 1555 } 1556 1557 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1558 m_dynamic_checkers_up.reset(dynamic_checkers); 1559 } 1560 1561 BreakpointSiteList &Process::GetBreakpointSiteList() { 1562 return m_breakpoint_site_list; 1563 } 1564 1565 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1566 return m_breakpoint_site_list; 1567 } 1568 1569 void Process::DisableAllBreakpointSites() { 1570 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1571 // bp_site->SetEnabled(true); 1572 DisableBreakpointSite(bp_site); 1573 }); 1574 } 1575 1576 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1577 Status error(DisableBreakpointSiteByID(break_id)); 1578 1579 if (error.Success()) 1580 m_breakpoint_site_list.Remove(break_id); 1581 1582 return error; 1583 } 1584 1585 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1586 Status error; 1587 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1588 if (bp_site_sp) { 1589 if (bp_site_sp->IsEnabled()) 1590 error = DisableBreakpointSite(bp_site_sp.get()); 1591 } else { 1592 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1593 break_id); 1594 } 1595 1596 return error; 1597 } 1598 1599 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1600 Status error; 1601 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1602 if (bp_site_sp) { 1603 if (!bp_site_sp->IsEnabled()) 1604 error = EnableBreakpointSite(bp_site_sp.get()); 1605 } else { 1606 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1607 break_id); 1608 } 1609 return error; 1610 } 1611 1612 lldb::break_id_t 1613 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1614 bool use_hardware) { 1615 addr_t load_addr = LLDB_INVALID_ADDRESS; 1616 1617 bool show_error = true; 1618 switch (GetState()) { 1619 case eStateInvalid: 1620 case eStateUnloaded: 1621 case eStateConnected: 1622 case eStateAttaching: 1623 case eStateLaunching: 1624 case eStateDetached: 1625 case eStateExited: 1626 show_error = false; 1627 break; 1628 1629 case eStateStopped: 1630 case eStateRunning: 1631 case eStateStepping: 1632 case eStateCrashed: 1633 case eStateSuspended: 1634 show_error = IsAlive(); 1635 break; 1636 } 1637 1638 // Reset the IsIndirect flag here, in case the location changes from pointing 1639 // to a indirect symbol to a regular symbol. 1640 owner->SetIsIndirect(false); 1641 1642 if (owner->ShouldResolveIndirectFunctions()) { 1643 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1644 if (symbol && symbol->IsIndirect()) { 1645 Status error; 1646 Address symbol_address = symbol->GetAddress(); 1647 load_addr = ResolveIndirectFunction(&symbol_address, error); 1648 if (!error.Success() && show_error) { 1649 GetTarget().GetDebugger().GetErrorStream().Printf( 1650 "warning: failed to resolve indirect function at 0x%" PRIx64 1651 " for breakpoint %i.%i: %s\n", 1652 symbol->GetLoadAddress(&GetTarget()), 1653 owner->GetBreakpoint().GetID(), owner->GetID(), 1654 error.AsCString() ? error.AsCString() : "unknown error"); 1655 return LLDB_INVALID_BREAK_ID; 1656 } 1657 Address resolved_address(load_addr); 1658 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1659 owner->SetIsIndirect(true); 1660 } else 1661 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1662 } else 1663 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1664 1665 if (load_addr != LLDB_INVALID_ADDRESS) { 1666 BreakpointSiteSP bp_site_sp; 1667 1668 // Look up this breakpoint site. If it exists, then add this new owner, 1669 // otherwise create a new breakpoint site and add it. 1670 1671 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1672 1673 if (bp_site_sp) { 1674 bp_site_sp->AddOwner(owner); 1675 owner->SetBreakpointSite(bp_site_sp); 1676 return bp_site_sp->GetID(); 1677 } else { 1678 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1679 load_addr, use_hardware)); 1680 if (bp_site_sp) { 1681 Status error = EnableBreakpointSite(bp_site_sp.get()); 1682 if (error.Success()) { 1683 owner->SetBreakpointSite(bp_site_sp); 1684 return m_breakpoint_site_list.Add(bp_site_sp); 1685 } else { 1686 if (show_error || use_hardware) { 1687 // Report error for setting breakpoint... 1688 GetTarget().GetDebugger().GetErrorStream().Printf( 1689 "warning: failed to set breakpoint site at 0x%" PRIx64 1690 " for breakpoint %i.%i: %s\n", 1691 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1692 error.AsCString() ? error.AsCString() : "unknown error"); 1693 } 1694 } 1695 } 1696 } 1697 } 1698 // We failed to enable the breakpoint 1699 return LLDB_INVALID_BREAK_ID; 1700 } 1701 1702 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1703 lldb::user_id_t owner_loc_id, 1704 BreakpointSiteSP &bp_site_sp) { 1705 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1706 if (num_owners == 0) { 1707 // Don't try to disable the site if we don't have a live process anymore. 1708 if (IsAlive()) 1709 DisableBreakpointSite(bp_site_sp.get()); 1710 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1711 } 1712 } 1713 1714 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1715 uint8_t *buf) const { 1716 size_t bytes_removed = 0; 1717 BreakpointSiteList bp_sites_in_range; 1718 1719 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1720 bp_sites_in_range)) { 1721 bp_sites_in_range.ForEach([bp_addr, size, 1722 buf](BreakpointSite *bp_site) -> void { 1723 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1724 addr_t intersect_addr; 1725 size_t intersect_size; 1726 size_t opcode_offset; 1727 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1728 &intersect_size, &opcode_offset)) { 1729 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1730 assert(bp_addr < intersect_addr + intersect_size && 1731 intersect_addr + intersect_size <= bp_addr + size); 1732 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1733 size_t buf_offset = intersect_addr - bp_addr; 1734 ::memcpy(buf + buf_offset, 1735 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1736 intersect_size); 1737 } 1738 } 1739 }); 1740 } 1741 return bytes_removed; 1742 } 1743 1744 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1745 PlatformSP platform_sp(GetTarget().GetPlatform()); 1746 if (platform_sp) 1747 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1748 return 0; 1749 } 1750 1751 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1752 Status error; 1753 assert(bp_site != nullptr); 1754 Log *log = GetLog(LLDBLog::Breakpoints); 1755 const addr_t bp_addr = bp_site->GetLoadAddress(); 1756 LLDB_LOGF( 1757 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1758 bp_site->GetID(), (uint64_t)bp_addr); 1759 if (bp_site->IsEnabled()) { 1760 LLDB_LOGF( 1761 log, 1762 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1763 " -- already enabled", 1764 bp_site->GetID(), (uint64_t)bp_addr); 1765 return error; 1766 } 1767 1768 if (bp_addr == LLDB_INVALID_ADDRESS) { 1769 error.SetErrorString("BreakpointSite contains an invalid load address."); 1770 return error; 1771 } 1772 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1773 // trap for the breakpoint site 1774 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1775 1776 if (bp_opcode_size == 0) { 1777 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1778 "returned zero, unable to get breakpoint " 1779 "trap for address 0x%" PRIx64, 1780 bp_addr); 1781 } else { 1782 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1783 1784 if (bp_opcode_bytes == nullptr) { 1785 error.SetErrorString( 1786 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1787 return error; 1788 } 1789 1790 // Save the original opcode by reading it 1791 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1792 error) == bp_opcode_size) { 1793 // Write a software breakpoint in place of the original opcode 1794 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1795 bp_opcode_size) { 1796 uint8_t verify_bp_opcode_bytes[64]; 1797 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1798 error) == bp_opcode_size) { 1799 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1800 bp_opcode_size) == 0) { 1801 bp_site->SetEnabled(true); 1802 bp_site->SetType(BreakpointSite::eSoftware); 1803 LLDB_LOGF(log, 1804 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1805 "addr = 0x%" PRIx64 " -- SUCCESS", 1806 bp_site->GetID(), (uint64_t)bp_addr); 1807 } else 1808 error.SetErrorString( 1809 "failed to verify the breakpoint trap in memory."); 1810 } else 1811 error.SetErrorString( 1812 "Unable to read memory to verify breakpoint trap."); 1813 } else 1814 error.SetErrorString("Unable to write breakpoint trap to memory."); 1815 } else 1816 error.SetErrorString("Unable to read memory at breakpoint address."); 1817 } 1818 if (log && error.Fail()) 1819 LLDB_LOGF( 1820 log, 1821 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1822 " -- FAILED: %s", 1823 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1824 return error; 1825 } 1826 1827 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1828 Status error; 1829 assert(bp_site != nullptr); 1830 Log *log = GetLog(LLDBLog::Breakpoints); 1831 addr_t bp_addr = bp_site->GetLoadAddress(); 1832 lldb::user_id_t breakID = bp_site->GetID(); 1833 LLDB_LOGF(log, 1834 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1835 ") addr = 0x%" PRIx64, 1836 breakID, (uint64_t)bp_addr); 1837 1838 if (bp_site->IsHardware()) { 1839 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1840 } else if (bp_site->IsEnabled()) { 1841 const size_t break_op_size = bp_site->GetByteSize(); 1842 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1843 if (break_op_size > 0) { 1844 // Clear a software breakpoint instruction 1845 uint8_t curr_break_op[8]; 1846 assert(break_op_size <= sizeof(curr_break_op)); 1847 bool break_op_found = false; 1848 1849 // Read the breakpoint opcode 1850 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1851 break_op_size) { 1852 bool verify = false; 1853 // Make sure the breakpoint opcode exists at this address 1854 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1855 break_op_found = true; 1856 // We found a valid breakpoint opcode at this address, now restore 1857 // the saved opcode. 1858 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1859 break_op_size, error) == break_op_size) { 1860 verify = true; 1861 } else 1862 error.SetErrorString( 1863 "Memory write failed when restoring original opcode."); 1864 } else { 1865 error.SetErrorString( 1866 "Original breakpoint trap is no longer in memory."); 1867 // Set verify to true and so we can check if the original opcode has 1868 // already been restored 1869 verify = true; 1870 } 1871 1872 if (verify) { 1873 uint8_t verify_opcode[8]; 1874 assert(break_op_size < sizeof(verify_opcode)); 1875 // Verify that our original opcode made it back to the inferior 1876 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1877 break_op_size) { 1878 // compare the memory we just read with the original opcode 1879 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1880 break_op_size) == 0) { 1881 // SUCCESS 1882 bp_site->SetEnabled(false); 1883 LLDB_LOGF(log, 1884 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1885 "addr = 0x%" PRIx64 " -- SUCCESS", 1886 bp_site->GetID(), (uint64_t)bp_addr); 1887 return error; 1888 } else { 1889 if (break_op_found) 1890 error.SetErrorString("Failed to restore original opcode."); 1891 } 1892 } else 1893 error.SetErrorString("Failed to read memory to verify that " 1894 "breakpoint trap was restored."); 1895 } 1896 } else 1897 error.SetErrorString( 1898 "Unable to read memory that should contain the breakpoint trap."); 1899 } 1900 } else { 1901 LLDB_LOGF( 1902 log, 1903 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1904 " -- already disabled", 1905 bp_site->GetID(), (uint64_t)bp_addr); 1906 return error; 1907 } 1908 1909 LLDB_LOGF( 1910 log, 1911 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1912 " -- FAILED: %s", 1913 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1914 return error; 1915 } 1916 1917 // Uncomment to verify memory caching works after making changes to caching 1918 // code 1919 //#define VERIFY_MEMORY_READS 1920 1921 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1922 error.Clear(); 1923 if (!GetDisableMemoryCache()) { 1924 #if defined(VERIFY_MEMORY_READS) 1925 // Memory caching is enabled, with debug verification 1926 1927 if (buf && size) { 1928 // Uncomment the line below to make sure memory caching is working. 1929 // I ran this through the test suite and got no assertions, so I am 1930 // pretty confident this is working well. If any changes are made to 1931 // memory caching, uncomment the line below and test your changes! 1932 1933 // Verify all memory reads by using the cache first, then redundantly 1934 // reading the same memory from the inferior and comparing to make sure 1935 // everything is exactly the same. 1936 std::string verify_buf(size, '\0'); 1937 assert(verify_buf.size() == size); 1938 const size_t cache_bytes_read = 1939 m_memory_cache.Read(this, addr, buf, size, error); 1940 Status verify_error; 1941 const size_t verify_bytes_read = 1942 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1943 verify_buf.size(), verify_error); 1944 assert(cache_bytes_read == verify_bytes_read); 1945 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1946 assert(verify_error.Success() == error.Success()); 1947 return cache_bytes_read; 1948 } 1949 return 0; 1950 #else // !defined(VERIFY_MEMORY_READS) 1951 // Memory caching is enabled, without debug verification 1952 1953 return m_memory_cache.Read(addr, buf, size, error); 1954 #endif // defined (VERIFY_MEMORY_READS) 1955 } else { 1956 // Memory caching is disabled 1957 1958 return ReadMemoryFromInferior(addr, buf, size, error); 1959 } 1960 } 1961 1962 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1963 Status &error) { 1964 char buf[256]; 1965 out_str.clear(); 1966 addr_t curr_addr = addr; 1967 while (true) { 1968 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1969 if (length == 0) 1970 break; 1971 out_str.append(buf, length); 1972 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1973 // to read some more characters 1974 if (length == sizeof(buf) - 1) 1975 curr_addr += length; 1976 else 1977 break; 1978 } 1979 return out_str.size(); 1980 } 1981 1982 // Deprecated in favor of ReadStringFromMemory which has wchar support and 1983 // correct code to find null terminators. 1984 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 1985 size_t dst_max_len, 1986 Status &result_error) { 1987 size_t total_cstr_len = 0; 1988 if (dst && dst_max_len) { 1989 result_error.Clear(); 1990 // NULL out everything just to be safe 1991 memset(dst, 0, dst_max_len); 1992 Status error; 1993 addr_t curr_addr = addr; 1994 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1995 size_t bytes_left = dst_max_len - 1; 1996 char *curr_dst = dst; 1997 1998 while (bytes_left > 0) { 1999 addr_t cache_line_bytes_left = 2000 cache_line_size - (curr_addr % cache_line_size); 2001 addr_t bytes_to_read = 2002 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2003 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2004 2005 if (bytes_read == 0) { 2006 result_error = error; 2007 dst[total_cstr_len] = '\0'; 2008 break; 2009 } 2010 const size_t len = strlen(curr_dst); 2011 2012 total_cstr_len += len; 2013 2014 if (len < bytes_to_read) 2015 break; 2016 2017 curr_dst += bytes_read; 2018 curr_addr += bytes_read; 2019 bytes_left -= bytes_read; 2020 } 2021 } else { 2022 if (dst == nullptr) 2023 result_error.SetErrorString("invalid arguments"); 2024 else 2025 result_error.Clear(); 2026 } 2027 return total_cstr_len; 2028 } 2029 2030 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2031 Status &error) { 2032 LLDB_SCOPED_TIMER(); 2033 2034 if (buf == nullptr || size == 0) 2035 return 0; 2036 2037 size_t bytes_read = 0; 2038 uint8_t *bytes = (uint8_t *)buf; 2039 2040 while (bytes_read < size) { 2041 const size_t curr_size = size - bytes_read; 2042 const size_t curr_bytes_read = 2043 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2044 bytes_read += curr_bytes_read; 2045 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2046 break; 2047 } 2048 2049 // Replace any software breakpoint opcodes that fall into this range back 2050 // into "buf" before we return 2051 if (bytes_read > 0) 2052 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2053 return bytes_read; 2054 } 2055 2056 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2057 size_t integer_byte_size, 2058 uint64_t fail_value, 2059 Status &error) { 2060 Scalar scalar; 2061 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2062 error)) 2063 return scalar.ULongLong(fail_value); 2064 return fail_value; 2065 } 2066 2067 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2068 size_t integer_byte_size, 2069 int64_t fail_value, 2070 Status &error) { 2071 Scalar scalar; 2072 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2073 error)) 2074 return scalar.SLongLong(fail_value); 2075 return fail_value; 2076 } 2077 2078 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2079 Scalar scalar; 2080 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2081 error)) 2082 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2083 return LLDB_INVALID_ADDRESS; 2084 } 2085 2086 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2087 Status &error) { 2088 Scalar scalar; 2089 const uint32_t addr_byte_size = GetAddressByteSize(); 2090 if (addr_byte_size <= 4) 2091 scalar = (uint32_t)ptr_value; 2092 else 2093 scalar = ptr_value; 2094 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2095 addr_byte_size; 2096 } 2097 2098 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2099 Status &error) { 2100 size_t bytes_written = 0; 2101 const uint8_t *bytes = (const uint8_t *)buf; 2102 2103 while (bytes_written < size) { 2104 const size_t curr_size = size - bytes_written; 2105 const size_t curr_bytes_written = DoWriteMemory( 2106 addr + bytes_written, bytes + bytes_written, curr_size, error); 2107 bytes_written += curr_bytes_written; 2108 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2109 break; 2110 } 2111 return bytes_written; 2112 } 2113 2114 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2115 Status &error) { 2116 #if defined(ENABLE_MEMORY_CACHING) 2117 m_memory_cache.Flush(addr, size); 2118 #endif 2119 2120 if (buf == nullptr || size == 0) 2121 return 0; 2122 2123 m_mod_id.BumpMemoryID(); 2124 2125 // We need to write any data that would go where any current software traps 2126 // (enabled software breakpoints) any software traps (breakpoints) that we 2127 // may have placed in our tasks memory. 2128 2129 BreakpointSiteList bp_sites_in_range; 2130 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2131 return WriteMemoryPrivate(addr, buf, size, error); 2132 2133 // No breakpoint sites overlap 2134 if (bp_sites_in_range.IsEmpty()) 2135 return WriteMemoryPrivate(addr, buf, size, error); 2136 2137 const uint8_t *ubuf = (const uint8_t *)buf; 2138 uint64_t bytes_written = 0; 2139 2140 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2141 &error](BreakpointSite *bp) -> void { 2142 if (error.Fail()) 2143 return; 2144 2145 if (bp->GetType() != BreakpointSite::eSoftware) 2146 return; 2147 2148 addr_t intersect_addr; 2149 size_t intersect_size; 2150 size_t opcode_offset; 2151 const bool intersects = bp->IntersectsRange( 2152 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2153 UNUSED_IF_ASSERT_DISABLED(intersects); 2154 assert(intersects); 2155 assert(addr <= intersect_addr && intersect_addr < addr + size); 2156 assert(addr < intersect_addr + intersect_size && 2157 intersect_addr + intersect_size <= addr + size); 2158 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2159 2160 // Check for bytes before this breakpoint 2161 const addr_t curr_addr = addr + bytes_written; 2162 if (intersect_addr > curr_addr) { 2163 // There are some bytes before this breakpoint that we need to just 2164 // write to memory 2165 size_t curr_size = intersect_addr - curr_addr; 2166 size_t curr_bytes_written = 2167 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2168 bytes_written += curr_bytes_written; 2169 if (curr_bytes_written != curr_size) { 2170 // We weren't able to write all of the requested bytes, we are 2171 // done looping and will return the number of bytes that we have 2172 // written so far. 2173 if (error.Success()) 2174 error.SetErrorToGenericError(); 2175 } 2176 } 2177 // Now write any bytes that would cover up any software breakpoints 2178 // directly into the breakpoint opcode buffer 2179 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2180 intersect_size); 2181 bytes_written += intersect_size; 2182 }); 2183 2184 // Write any remaining bytes after the last breakpoint if we have any left 2185 if (bytes_written < size) 2186 bytes_written += 2187 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2188 size - bytes_written, error); 2189 2190 return bytes_written; 2191 } 2192 2193 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2194 size_t byte_size, Status &error) { 2195 if (byte_size == UINT32_MAX) 2196 byte_size = scalar.GetByteSize(); 2197 if (byte_size > 0) { 2198 uint8_t buf[32]; 2199 const size_t mem_size = 2200 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2201 if (mem_size > 0) 2202 return WriteMemory(addr, buf, mem_size, error); 2203 else 2204 error.SetErrorString("failed to get scalar as memory data"); 2205 } else { 2206 error.SetErrorString("invalid scalar value"); 2207 } 2208 return 0; 2209 } 2210 2211 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2212 bool is_signed, Scalar &scalar, 2213 Status &error) { 2214 uint64_t uval = 0; 2215 if (byte_size == 0) { 2216 error.SetErrorString("byte size is zero"); 2217 } else if (byte_size & (byte_size - 1)) { 2218 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2219 byte_size); 2220 } else if (byte_size <= sizeof(uval)) { 2221 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2222 if (bytes_read == byte_size) { 2223 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2224 GetAddressByteSize()); 2225 lldb::offset_t offset = 0; 2226 if (byte_size <= 4) 2227 scalar = data.GetMaxU32(&offset, byte_size); 2228 else 2229 scalar = data.GetMaxU64(&offset, byte_size); 2230 if (is_signed) 2231 scalar.SignExtend(byte_size * 8); 2232 return bytes_read; 2233 } 2234 } else { 2235 error.SetErrorStringWithFormat( 2236 "byte size of %u is too large for integer scalar type", byte_size); 2237 } 2238 return 0; 2239 } 2240 2241 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2242 Status error; 2243 for (const auto &Entry : entries) { 2244 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2245 error); 2246 if (!error.Success()) 2247 break; 2248 } 2249 return error; 2250 } 2251 2252 #define USE_ALLOCATE_MEMORY_CACHE 1 2253 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2254 Status &error) { 2255 if (GetPrivateState() != eStateStopped) { 2256 error.SetErrorToGenericError(); 2257 return LLDB_INVALID_ADDRESS; 2258 } 2259 2260 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2261 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2262 #else 2263 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2264 Log *log = GetLog(LLDBLog::Process); 2265 LLDB_LOGF(log, 2266 "Process::AllocateMemory(size=%" PRIu64 2267 ", permissions=%s) => 0x%16.16" PRIx64 2268 " (m_stop_id = %u m_memory_id = %u)", 2269 (uint64_t)size, GetPermissionsAsCString(permissions), 2270 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2271 m_mod_id.GetMemoryID()); 2272 return allocated_addr; 2273 #endif 2274 } 2275 2276 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2277 Status &error) { 2278 addr_t return_addr = AllocateMemory(size, permissions, error); 2279 if (error.Success()) { 2280 std::string buffer(size, 0); 2281 WriteMemory(return_addr, buffer.c_str(), size, error); 2282 } 2283 return return_addr; 2284 } 2285 2286 bool Process::CanJIT() { 2287 if (m_can_jit == eCanJITDontKnow) { 2288 Log *log = GetLog(LLDBLog::Process); 2289 Status err; 2290 2291 uint64_t allocated_memory = AllocateMemory( 2292 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2293 err); 2294 2295 if (err.Success()) { 2296 m_can_jit = eCanJITYes; 2297 LLDB_LOGF(log, 2298 "Process::%s pid %" PRIu64 2299 " allocation test passed, CanJIT () is true", 2300 __FUNCTION__, GetID()); 2301 } else { 2302 m_can_jit = eCanJITNo; 2303 LLDB_LOGF(log, 2304 "Process::%s pid %" PRIu64 2305 " allocation test failed, CanJIT () is false: %s", 2306 __FUNCTION__, GetID(), err.AsCString()); 2307 } 2308 2309 DeallocateMemory(allocated_memory); 2310 } 2311 2312 return m_can_jit == eCanJITYes; 2313 } 2314 2315 void Process::SetCanJIT(bool can_jit) { 2316 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2317 } 2318 2319 void Process::SetCanRunCode(bool can_run_code) { 2320 SetCanJIT(can_run_code); 2321 m_can_interpret_function_calls = can_run_code; 2322 } 2323 2324 Status Process::DeallocateMemory(addr_t ptr) { 2325 Status error; 2326 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2327 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2328 error.SetErrorStringWithFormat( 2329 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2330 } 2331 #else 2332 error = DoDeallocateMemory(ptr); 2333 2334 Log *log = GetLog(LLDBLog::Process); 2335 LLDB_LOGF(log, 2336 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2337 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2338 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2339 m_mod_id.GetMemoryID()); 2340 #endif 2341 return error; 2342 } 2343 2344 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2345 lldb::addr_t header_addr, 2346 size_t size_to_read) { 2347 Log *log = GetLog(LLDBLog::Host); 2348 if (log) { 2349 LLDB_LOGF(log, 2350 "Process::ReadModuleFromMemory reading %s binary from memory", 2351 file_spec.GetPath().c_str()); 2352 } 2353 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2354 if (module_sp) { 2355 Status error; 2356 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2357 shared_from_this(), header_addr, error, size_to_read); 2358 if (objfile) 2359 return module_sp; 2360 } 2361 return ModuleSP(); 2362 } 2363 2364 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2365 uint32_t &permissions) { 2366 MemoryRegionInfo range_info; 2367 permissions = 0; 2368 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2369 if (!error.Success()) 2370 return false; 2371 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2372 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2373 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2374 return false; 2375 } 2376 2377 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2378 permissions |= lldb::ePermissionsReadable; 2379 2380 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2381 permissions |= lldb::ePermissionsWritable; 2382 2383 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2384 permissions |= lldb::ePermissionsExecutable; 2385 2386 return true; 2387 } 2388 2389 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2390 Status error; 2391 error.SetErrorString("watchpoints are not supported"); 2392 return error; 2393 } 2394 2395 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2396 Status error; 2397 error.SetErrorString("watchpoints are not supported"); 2398 return error; 2399 } 2400 2401 StateType 2402 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2403 const Timeout<std::micro> &timeout) { 2404 StateType state; 2405 2406 while (true) { 2407 event_sp.reset(); 2408 state = GetStateChangedEventsPrivate(event_sp, timeout); 2409 2410 if (StateIsStoppedState(state, false)) 2411 break; 2412 2413 // If state is invalid, then we timed out 2414 if (state == eStateInvalid) 2415 break; 2416 2417 if (event_sp) 2418 HandlePrivateEvent(event_sp); 2419 } 2420 return state; 2421 } 2422 2423 void Process::LoadOperatingSystemPlugin(bool flush) { 2424 if (flush) 2425 m_thread_list.Clear(); 2426 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2427 if (flush) 2428 Flush(); 2429 } 2430 2431 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2432 StateType state_after_launch = eStateInvalid; 2433 EventSP first_stop_event_sp; 2434 Status status = 2435 LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp); 2436 if (status.Fail()) 2437 return status; 2438 2439 if (state_after_launch != eStateStopped && 2440 state_after_launch != eStateCrashed) 2441 return Status(); 2442 2443 // Note, the stop event was consumed above, but not handled. This 2444 // was done to give DidLaunch a chance to run. The target is either 2445 // stopped or crashed. Directly set the state. This is done to 2446 // prevent a stop message with a bunch of spurious output on thread 2447 // status, as well as not pop a ProcessIOHandler. 2448 SetPublicState(state_after_launch, false); 2449 2450 if (PrivateStateThreadIsValid()) 2451 ResumePrivateStateThread(); 2452 else 2453 StartPrivateStateThread(); 2454 2455 // Target was stopped at entry as was intended. Need to notify the 2456 // listeners about it. 2457 if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2458 HandlePrivateEvent(first_stop_event_sp); 2459 2460 return Status(); 2461 } 2462 2463 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, 2464 EventSP &event_sp) { 2465 Status error; 2466 m_abi_sp.reset(); 2467 m_dyld_up.reset(); 2468 m_jit_loaders_up.reset(); 2469 m_system_runtime_up.reset(); 2470 m_os_up.reset(); 2471 m_process_input_reader.reset(); 2472 2473 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2474 2475 // The "remote executable path" is hooked up to the local Executable 2476 // module. But we should be able to debug a remote process even if the 2477 // executable module only exists on the remote. However, there needs to 2478 // be a way to express this path, without actually having a module. 2479 // The way to do that is to set the ExecutableFile in the LaunchInfo. 2480 // Figure that out here: 2481 2482 FileSpec exe_spec_to_use; 2483 if (!exe_module) { 2484 if (!launch_info.GetExecutableFile()) { 2485 error.SetErrorString("executable module does not exist"); 2486 return error; 2487 } 2488 exe_spec_to_use = launch_info.GetExecutableFile(); 2489 } else 2490 exe_spec_to_use = exe_module->GetFileSpec(); 2491 2492 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2493 // Install anything that might need to be installed prior to launching. 2494 // For host systems, this will do nothing, but if we are connected to a 2495 // remote platform it will install any needed binaries 2496 error = GetTarget().Install(&launch_info); 2497 if (error.Fail()) 2498 return error; 2499 } 2500 2501 // Listen and queue events that are broadcasted during the process launch. 2502 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2503 HijackProcessEvents(listener_sp); 2504 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2505 2506 if (PrivateStateThreadIsValid()) 2507 PausePrivateStateThread(); 2508 2509 error = WillLaunch(exe_module); 2510 if (error.Fail()) { 2511 std::string local_exec_file_path = exe_spec_to_use.GetPath(); 2512 return Status("file doesn't exist: '%s'", local_exec_file_path.c_str()); 2513 } 2514 2515 const bool restarted = false; 2516 SetPublicState(eStateLaunching, restarted); 2517 m_should_detach = false; 2518 2519 if (m_public_run_lock.TrySetRunning()) { 2520 // Now launch using these arguments. 2521 error = DoLaunch(exe_module, launch_info); 2522 } else { 2523 // This shouldn't happen 2524 error.SetErrorString("failed to acquire process run lock"); 2525 } 2526 2527 if (error.Fail()) { 2528 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2529 SetID(LLDB_INVALID_PROCESS_ID); 2530 const char *error_string = error.AsCString(); 2531 if (error_string == nullptr) 2532 error_string = "launch failed"; 2533 SetExitStatus(-1, error_string); 2534 } 2535 return error; 2536 } 2537 2538 // Now wait for the process to launch and return control to us, and then 2539 // call DidLaunch: 2540 state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2541 2542 if (state == eStateInvalid || !event_sp) { 2543 // We were able to launch the process, but we failed to catch the 2544 // initial stop. 2545 error.SetErrorString("failed to catch stop after launch"); 2546 SetExitStatus(0, error.AsCString()); 2547 Destroy(false); 2548 return error; 2549 } 2550 2551 if (state == eStateExited) { 2552 // We exited while trying to launch somehow. Don't call DidLaunch 2553 // as that's not likely to work, and return an invalid pid. 2554 HandlePrivateEvent(event_sp); 2555 return Status(); 2556 } 2557 2558 if (state == eStateStopped || state == eStateCrashed) { 2559 DidLaunch(); 2560 2561 DynamicLoader *dyld = GetDynamicLoader(); 2562 if (dyld) 2563 dyld->DidLaunch(); 2564 2565 GetJITLoaders().DidLaunch(); 2566 2567 SystemRuntime *system_runtime = GetSystemRuntime(); 2568 if (system_runtime) 2569 system_runtime->DidLaunch(); 2570 2571 if (!m_os_up) 2572 LoadOperatingSystemPlugin(false); 2573 2574 // We successfully launched the process and stopped, now it the 2575 // right time to set up signal filters before resuming. 2576 UpdateAutomaticSignalFiltering(); 2577 return Status(); 2578 } 2579 2580 return Status("Unexpected process state after the launch: %s, expected %s, " 2581 "%s, %s or %s", 2582 StateAsCString(state), StateAsCString(eStateInvalid), 2583 StateAsCString(eStateExited), StateAsCString(eStateStopped), 2584 StateAsCString(eStateCrashed)); 2585 } 2586 2587 Status Process::LoadCore() { 2588 Status error = DoLoadCore(); 2589 if (error.Success()) { 2590 ListenerSP listener_sp( 2591 Listener::MakeListener("lldb.process.load_core_listener")); 2592 HijackProcessEvents(listener_sp); 2593 2594 if (PrivateStateThreadIsValid()) 2595 ResumePrivateStateThread(); 2596 else 2597 StartPrivateStateThread(); 2598 2599 DynamicLoader *dyld = GetDynamicLoader(); 2600 if (dyld) 2601 dyld->DidAttach(); 2602 2603 GetJITLoaders().DidAttach(); 2604 2605 SystemRuntime *system_runtime = GetSystemRuntime(); 2606 if (system_runtime) 2607 system_runtime->DidAttach(); 2608 2609 if (!m_os_up) 2610 LoadOperatingSystemPlugin(false); 2611 2612 // We successfully loaded a core file, now pretend we stopped so we can 2613 // show all of the threads in the core file and explore the crashed state. 2614 SetPrivateState(eStateStopped); 2615 2616 // Wait for a stopped event since we just posted one above... 2617 lldb::EventSP event_sp; 2618 StateType state = 2619 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2620 2621 if (!StateIsStoppedState(state, false)) { 2622 Log *log = GetLog(LLDBLog::Process); 2623 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2624 StateAsCString(state)); 2625 error.SetErrorString( 2626 "Did not get stopped event after loading the core file."); 2627 } 2628 RestoreProcessEvents(); 2629 } 2630 return error; 2631 } 2632 2633 DynamicLoader *Process::GetDynamicLoader() { 2634 if (!m_dyld_up) 2635 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2636 return m_dyld_up.get(); 2637 } 2638 2639 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2640 2641 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2642 return false; 2643 } 2644 2645 JITLoaderList &Process::GetJITLoaders() { 2646 if (!m_jit_loaders_up) { 2647 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2648 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2649 } 2650 return *m_jit_loaders_up; 2651 } 2652 2653 SystemRuntime *Process::GetSystemRuntime() { 2654 if (!m_system_runtime_up) 2655 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2656 return m_system_runtime_up.get(); 2657 } 2658 2659 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2660 uint32_t exec_count) 2661 : NextEventAction(process), m_exec_count(exec_count) { 2662 Log *log = GetLog(LLDBLog::Process); 2663 LLDB_LOGF( 2664 log, 2665 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2666 __FUNCTION__, static_cast<void *>(process), exec_count); 2667 } 2668 2669 Process::NextEventAction::EventActionResult 2670 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2671 Log *log = GetLog(LLDBLog::Process); 2672 2673 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2674 LLDB_LOGF(log, 2675 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2676 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2677 2678 switch (state) { 2679 case eStateAttaching: 2680 return eEventActionSuccess; 2681 2682 case eStateRunning: 2683 case eStateConnected: 2684 return eEventActionRetry; 2685 2686 case eStateStopped: 2687 case eStateCrashed: 2688 // During attach, prior to sending the eStateStopped event, 2689 // lldb_private::Process subclasses must set the new process ID. 2690 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2691 // We don't want these events to be reported, so go set the 2692 // ShouldReportStop here: 2693 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2694 2695 if (m_exec_count > 0) { 2696 --m_exec_count; 2697 2698 LLDB_LOGF(log, 2699 "Process::AttachCompletionHandler::%s state %s: reduced " 2700 "remaining exec count to %" PRIu32 ", requesting resume", 2701 __FUNCTION__, StateAsCString(state), m_exec_count); 2702 2703 RequestResume(); 2704 return eEventActionRetry; 2705 } else { 2706 LLDB_LOGF(log, 2707 "Process::AttachCompletionHandler::%s state %s: no more " 2708 "execs expected to start, continuing with attach", 2709 __FUNCTION__, StateAsCString(state)); 2710 2711 m_process->CompleteAttach(); 2712 return eEventActionSuccess; 2713 } 2714 break; 2715 2716 default: 2717 case eStateExited: 2718 case eStateInvalid: 2719 break; 2720 } 2721 2722 m_exit_string.assign("No valid Process"); 2723 return eEventActionExit; 2724 } 2725 2726 Process::NextEventAction::EventActionResult 2727 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2728 return eEventActionSuccess; 2729 } 2730 2731 const char *Process::AttachCompletionHandler::GetExitString() { 2732 return m_exit_string.c_str(); 2733 } 2734 2735 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2736 if (m_listener_sp) 2737 return m_listener_sp; 2738 else 2739 return debugger.GetListener(); 2740 } 2741 2742 Status Process::Attach(ProcessAttachInfo &attach_info) { 2743 m_abi_sp.reset(); 2744 m_process_input_reader.reset(); 2745 m_dyld_up.reset(); 2746 m_jit_loaders_up.reset(); 2747 m_system_runtime_up.reset(); 2748 m_os_up.reset(); 2749 2750 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2751 Status error; 2752 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2753 char process_name[PATH_MAX]; 2754 2755 if (attach_info.GetExecutableFile().GetPath(process_name, 2756 sizeof(process_name))) { 2757 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2758 2759 if (wait_for_launch) { 2760 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2761 if (error.Success()) { 2762 if (m_public_run_lock.TrySetRunning()) { 2763 m_should_detach = true; 2764 const bool restarted = false; 2765 SetPublicState(eStateAttaching, restarted); 2766 // Now attach using these arguments. 2767 error = DoAttachToProcessWithName(process_name, attach_info); 2768 } else { 2769 // This shouldn't happen 2770 error.SetErrorString("failed to acquire process run lock"); 2771 } 2772 2773 if (error.Fail()) { 2774 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2775 SetID(LLDB_INVALID_PROCESS_ID); 2776 if (error.AsCString() == nullptr) 2777 error.SetErrorString("attach failed"); 2778 2779 SetExitStatus(-1, error.AsCString()); 2780 } 2781 } else { 2782 SetNextEventAction(new Process::AttachCompletionHandler( 2783 this, attach_info.GetResumeCount())); 2784 StartPrivateStateThread(); 2785 } 2786 return error; 2787 } 2788 } else { 2789 ProcessInstanceInfoList process_infos; 2790 PlatformSP platform_sp(GetTarget().GetPlatform()); 2791 2792 if (platform_sp) { 2793 ProcessInstanceInfoMatch match_info; 2794 match_info.GetProcessInfo() = attach_info; 2795 match_info.SetNameMatchType(NameMatch::Equals); 2796 platform_sp->FindProcesses(match_info, process_infos); 2797 const uint32_t num_matches = process_infos.size(); 2798 if (num_matches == 1) { 2799 attach_pid = process_infos[0].GetProcessID(); 2800 // Fall through and attach using the above process ID 2801 } else { 2802 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2803 process_name, sizeof(process_name)); 2804 if (num_matches > 1) { 2805 StreamString s; 2806 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2807 for (size_t i = 0; i < num_matches; i++) { 2808 process_infos[i].DumpAsTableRow( 2809 s, platform_sp->GetUserIDResolver(), true, false); 2810 } 2811 error.SetErrorStringWithFormat( 2812 "more than one process named %s:\n%s", process_name, 2813 s.GetData()); 2814 } else 2815 error.SetErrorStringWithFormat( 2816 "could not find a process named %s", process_name); 2817 } 2818 } else { 2819 error.SetErrorString( 2820 "invalid platform, can't find processes by name"); 2821 return error; 2822 } 2823 } 2824 } else { 2825 error.SetErrorString("invalid process name"); 2826 } 2827 } 2828 2829 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2830 error = WillAttachToProcessWithID(attach_pid); 2831 if (error.Success()) { 2832 2833 if (m_public_run_lock.TrySetRunning()) { 2834 // Now attach using these arguments. 2835 m_should_detach = true; 2836 const bool restarted = false; 2837 SetPublicState(eStateAttaching, restarted); 2838 error = DoAttachToProcessWithID(attach_pid, attach_info); 2839 } else { 2840 // This shouldn't happen 2841 error.SetErrorString("failed to acquire process run lock"); 2842 } 2843 2844 if (error.Success()) { 2845 SetNextEventAction(new Process::AttachCompletionHandler( 2846 this, attach_info.GetResumeCount())); 2847 StartPrivateStateThread(); 2848 } else { 2849 if (GetID() != LLDB_INVALID_PROCESS_ID) 2850 SetID(LLDB_INVALID_PROCESS_ID); 2851 2852 const char *error_string = error.AsCString(); 2853 if (error_string == nullptr) 2854 error_string = "attach failed"; 2855 2856 SetExitStatus(-1, error_string); 2857 } 2858 } 2859 } 2860 return error; 2861 } 2862 2863 void Process::CompleteAttach() { 2864 Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); 2865 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2866 2867 // Let the process subclass figure out at much as it can about the process 2868 // before we go looking for a dynamic loader plug-in. 2869 ArchSpec process_arch; 2870 DidAttach(process_arch); 2871 2872 if (process_arch.IsValid()) { 2873 GetTarget().SetArchitecture(process_arch); 2874 if (log) { 2875 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2876 LLDB_LOGF(log, 2877 "Process::%s replacing process architecture with DidAttach() " 2878 "architecture: %s", 2879 __FUNCTION__, triple_str ? triple_str : "<null>"); 2880 } 2881 } 2882 2883 // We just attached. If we have a platform, ask it for the process 2884 // architecture, and if it isn't the same as the one we've already set, 2885 // switch architectures. 2886 PlatformSP platform_sp(GetTarget().GetPlatform()); 2887 assert(platform_sp); 2888 ArchSpec process_host_arch = GetSystemArchitecture(); 2889 if (platform_sp) { 2890 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2891 if (target_arch.IsValid() && 2892 !platform_sp->IsCompatibleArchitecture(target_arch, process_host_arch, 2893 false, nullptr)) { 2894 ArchSpec platform_arch; 2895 platform_sp = platform_sp->GetPlatformForArchitecture( 2896 target_arch, process_host_arch, &platform_arch); 2897 if (platform_sp) { 2898 GetTarget().SetPlatform(platform_sp); 2899 GetTarget().SetArchitecture(platform_arch); 2900 LLDB_LOG(log, 2901 "switching platform to {0} and architecture to {1} based on " 2902 "info from attach", 2903 platform_sp->GetName(), platform_arch.GetTriple().getTriple()); 2904 } 2905 } else if (!process_arch.IsValid()) { 2906 ProcessInstanceInfo process_info; 2907 GetProcessInfo(process_info); 2908 const ArchSpec &process_arch = process_info.GetArchitecture(); 2909 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2910 if (process_arch.IsValid() && 2911 target_arch.IsCompatibleMatch(process_arch) && 2912 !target_arch.IsExactMatch(process_arch)) { 2913 GetTarget().SetArchitecture(process_arch); 2914 LLDB_LOGF(log, 2915 "Process::%s switching architecture to %s based on info " 2916 "the platform retrieved for pid %" PRIu64, 2917 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2918 GetID()); 2919 } 2920 } 2921 } 2922 2923 // We have completed the attach, now it is time to find the dynamic loader 2924 // plug-in 2925 DynamicLoader *dyld = GetDynamicLoader(); 2926 if (dyld) { 2927 dyld->DidAttach(); 2928 if (log) { 2929 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2930 LLDB_LOG(log, 2931 "after DynamicLoader::DidAttach(), target " 2932 "executable is {0} (using {1} plugin)", 2933 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2934 dyld->GetPluginName()); 2935 } 2936 } 2937 2938 GetJITLoaders().DidAttach(); 2939 2940 SystemRuntime *system_runtime = GetSystemRuntime(); 2941 if (system_runtime) { 2942 system_runtime->DidAttach(); 2943 if (log) { 2944 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2945 LLDB_LOG(log, 2946 "after SystemRuntime::DidAttach(), target " 2947 "executable is {0} (using {1} plugin)", 2948 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2949 system_runtime->GetPluginName()); 2950 } 2951 } 2952 2953 if (!m_os_up) { 2954 LoadOperatingSystemPlugin(false); 2955 if (m_os_up) { 2956 // Somebody might have gotten threads before now, but we need to force the 2957 // update after we've loaded the OperatingSystem plugin or it won't get a 2958 // chance to process the threads. 2959 m_thread_list.Clear(); 2960 UpdateThreadListIfNeeded(); 2961 } 2962 } 2963 // Figure out which one is the executable, and set that in our target: 2964 ModuleSP new_executable_module_sp; 2965 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2966 if (module_sp && module_sp->IsExecutable()) { 2967 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2968 new_executable_module_sp = module_sp; 2969 break; 2970 } 2971 } 2972 if (new_executable_module_sp) { 2973 GetTarget().SetExecutableModule(new_executable_module_sp, 2974 eLoadDependentsNo); 2975 if (log) { 2976 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2977 LLDB_LOGF( 2978 log, 2979 "Process::%s after looping through modules, target executable is %s", 2980 __FUNCTION__, 2981 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2982 : "<none>"); 2983 } 2984 } 2985 } 2986 2987 Status Process::ConnectRemote(llvm::StringRef remote_url) { 2988 m_abi_sp.reset(); 2989 m_process_input_reader.reset(); 2990 2991 // Find the process and its architecture. Make sure it matches the 2992 // architecture of the current Target, and if not adjust it. 2993 2994 Status error(DoConnectRemote(remote_url)); 2995 if (error.Success()) { 2996 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2997 EventSP event_sp; 2998 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 2999 3000 if (state == eStateStopped || state == eStateCrashed) { 3001 // If we attached and actually have a process on the other end, then 3002 // this ended up being the equivalent of an attach. 3003 CompleteAttach(); 3004 3005 // This delays passing the stopped event to listeners till 3006 // CompleteAttach gets a chance to complete... 3007 HandlePrivateEvent(event_sp); 3008 } 3009 } 3010 3011 if (PrivateStateThreadIsValid()) 3012 ResumePrivateStateThread(); 3013 else 3014 StartPrivateStateThread(); 3015 } 3016 return error; 3017 } 3018 3019 Status Process::PrivateResume() { 3020 Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); 3021 LLDB_LOGF(log, 3022 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3023 "private state: %s", 3024 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3025 StateAsCString(m_private_state.GetValue())); 3026 3027 // If signals handing status changed we might want to update our signal 3028 // filters before resuming. 3029 UpdateAutomaticSignalFiltering(); 3030 3031 Status error(WillResume()); 3032 // Tell the process it is about to resume before the thread list 3033 if (error.Success()) { 3034 // Now let the thread list know we are about to resume so it can let all of 3035 // our threads know that they are about to be resumed. Threads will each be 3036 // called with Thread::WillResume(StateType) where StateType contains the 3037 // state that they are supposed to have when the process is resumed 3038 // (suspended/running/stepping). Threads should also check their resume 3039 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3040 // start back up with a signal. 3041 if (m_thread_list.WillResume()) { 3042 // Last thing, do the PreResumeActions. 3043 if (!RunPreResumeActions()) { 3044 error.SetErrorString( 3045 "Process::PrivateResume PreResumeActions failed, not resuming."); 3046 } else { 3047 m_mod_id.BumpResumeID(); 3048 error = DoResume(); 3049 if (error.Success()) { 3050 DidResume(); 3051 m_thread_list.DidResume(); 3052 LLDB_LOGF(log, "Process thinks the process has resumed."); 3053 } else { 3054 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3055 return error; 3056 } 3057 } 3058 } else { 3059 // Somebody wanted to run without running (e.g. we were faking a step 3060 // from one frame of a set of inlined frames that share the same PC to 3061 // another.) So generate a continue & a stopped event, and let the world 3062 // handle them. 3063 LLDB_LOGF(log, 3064 "Process::PrivateResume() asked to simulate a start & stop."); 3065 3066 SetPrivateState(eStateRunning); 3067 SetPrivateState(eStateStopped); 3068 } 3069 } else 3070 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3071 error.AsCString("<unknown error>")); 3072 return error; 3073 } 3074 3075 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3076 if (!StateIsRunningState(m_public_state.GetValue())) 3077 return Status("Process is not running."); 3078 3079 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3080 // case it was already set and some thread plan logic calls halt on its own. 3081 m_clear_thread_plans_on_stop |= clear_thread_plans; 3082 3083 ListenerSP halt_listener_sp( 3084 Listener::MakeListener("lldb.process.halt_listener")); 3085 HijackProcessEvents(halt_listener_sp); 3086 3087 EventSP event_sp; 3088 3089 SendAsyncInterrupt(); 3090 3091 if (m_public_state.GetValue() == eStateAttaching) { 3092 // Don't hijack and eat the eStateExited as the code that was doing the 3093 // attach will be waiting for this event... 3094 RestoreProcessEvents(); 3095 SetExitStatus(SIGKILL, "Cancelled async attach."); 3096 Destroy(false); 3097 return Status(); 3098 } 3099 3100 // Wait for the process halt timeout seconds for the process to stop. 3101 StateType state = 3102 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3103 halt_listener_sp, nullptr, use_run_lock); 3104 RestoreProcessEvents(); 3105 3106 if (state == eStateInvalid || !event_sp) { 3107 // We timed out and didn't get a stop event... 3108 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3109 } 3110 3111 BroadcastEvent(event_sp); 3112 3113 return Status(); 3114 } 3115 3116 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3117 Status error; 3118 3119 // Check both the public & private states here. If we're hung evaluating an 3120 // expression, for instance, then the public state will be stopped, but we 3121 // still need to interrupt. 3122 if (m_public_state.GetValue() == eStateRunning || 3123 m_private_state.GetValue() == eStateRunning) { 3124 Log *log = GetLog(LLDBLog::Process); 3125 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3126 3127 ListenerSP listener_sp( 3128 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3129 HijackProcessEvents(listener_sp); 3130 3131 SendAsyncInterrupt(); 3132 3133 // Consume the interrupt event. 3134 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3135 &exit_event_sp, true, listener_sp); 3136 3137 RestoreProcessEvents(); 3138 3139 // If the process exited while we were waiting for it to stop, put the 3140 // exited event into the shared pointer passed in and return. Our caller 3141 // doesn't need to do anything else, since they don't have a process 3142 // anymore... 3143 3144 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3145 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3146 __FUNCTION__); 3147 return error; 3148 } else 3149 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3150 3151 if (state != eStateStopped) { 3152 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3153 StateAsCString(state)); 3154 // If we really couldn't stop the process then we should just error out 3155 // here, but if the lower levels just bobbled sending the event and we 3156 // really are stopped, then continue on. 3157 StateType private_state = m_private_state.GetValue(); 3158 if (private_state != eStateStopped) { 3159 return Status( 3160 "Attempt to stop the target in order to detach timed out. " 3161 "State = %s", 3162 StateAsCString(GetState())); 3163 } 3164 } 3165 } 3166 return error; 3167 } 3168 3169 Status Process::Detach(bool keep_stopped) { 3170 EventSP exit_event_sp; 3171 Status error; 3172 m_destroy_in_process = true; 3173 3174 error = WillDetach(); 3175 3176 if (error.Success()) { 3177 if (DetachRequiresHalt()) { 3178 error = StopForDestroyOrDetach(exit_event_sp); 3179 if (!error.Success()) { 3180 m_destroy_in_process = false; 3181 return error; 3182 } else if (exit_event_sp) { 3183 // We shouldn't need to do anything else here. There's no process left 3184 // to detach from... 3185 StopPrivateStateThread(); 3186 m_destroy_in_process = false; 3187 return error; 3188 } 3189 } 3190 3191 m_thread_list.DiscardThreadPlans(); 3192 DisableAllBreakpointSites(); 3193 3194 error = DoDetach(keep_stopped); 3195 if (error.Success()) { 3196 DidDetach(); 3197 StopPrivateStateThread(); 3198 } else { 3199 return error; 3200 } 3201 } 3202 m_destroy_in_process = false; 3203 3204 // If we exited when we were waiting for a process to stop, then forward the 3205 // event here so we don't lose the event 3206 if (exit_event_sp) { 3207 // Directly broadcast our exited event because we shut down our private 3208 // state thread above 3209 BroadcastEvent(exit_event_sp); 3210 } 3211 3212 // If we have been interrupted (to kill us) in the middle of running, we may 3213 // not end up propagating the last events through the event system, in which 3214 // case we might strand the write lock. Unlock it here so when we do to tear 3215 // down the process we don't get an error destroying the lock. 3216 3217 m_public_run_lock.SetStopped(); 3218 return error; 3219 } 3220 3221 Status Process::Destroy(bool force_kill) { 3222 // If we've already called Process::Finalize then there's nothing useful to 3223 // be done here. Finalize has actually called Destroy already. 3224 if (m_finalizing) 3225 return {}; 3226 return DestroyImpl(force_kill); 3227 } 3228 3229 Status Process::DestroyImpl(bool force_kill) { 3230 // Tell ourselves we are in the process of destroying the process, so that we 3231 // don't do any unnecessary work that might hinder the destruction. Remember 3232 // to set this back to false when we are done. That way if the attempt 3233 // failed and the process stays around for some reason it won't be in a 3234 // confused state. 3235 3236 if (force_kill) 3237 m_should_detach = false; 3238 3239 if (GetShouldDetach()) { 3240 // FIXME: This will have to be a process setting: 3241 bool keep_stopped = false; 3242 Detach(keep_stopped); 3243 } 3244 3245 m_destroy_in_process = true; 3246 3247 Status error(WillDestroy()); 3248 if (error.Success()) { 3249 EventSP exit_event_sp; 3250 if (DestroyRequiresHalt()) { 3251 error = StopForDestroyOrDetach(exit_event_sp); 3252 } 3253 3254 if (m_public_state.GetValue() == eStateStopped) { 3255 // Ditch all thread plans, and remove all our breakpoints: in case we 3256 // have to restart the target to kill it, we don't want it hitting a 3257 // breakpoint... Only do this if we've stopped, however, since if we 3258 // didn't manage to halt it above, then we're not going to have much luck 3259 // doing this now. 3260 m_thread_list.DiscardThreadPlans(); 3261 DisableAllBreakpointSites(); 3262 } 3263 3264 error = DoDestroy(); 3265 if (error.Success()) { 3266 DidDestroy(); 3267 StopPrivateStateThread(); 3268 } 3269 m_stdio_communication.StopReadThread(); 3270 m_stdio_communication.Disconnect(); 3271 m_stdin_forward = false; 3272 3273 if (m_process_input_reader) { 3274 m_process_input_reader->SetIsDone(true); 3275 m_process_input_reader->Cancel(); 3276 m_process_input_reader.reset(); 3277 } 3278 3279 // If we exited when we were waiting for a process to stop, then forward 3280 // the event here so we don't lose the event 3281 if (exit_event_sp) { 3282 // Directly broadcast our exited event because we shut down our private 3283 // state thread above 3284 BroadcastEvent(exit_event_sp); 3285 } 3286 3287 // If we have been interrupted (to kill us) in the middle of running, we 3288 // may not end up propagating the last events through the event system, in 3289 // which case we might strand the write lock. Unlock it here so when we do 3290 // to tear down the process we don't get an error destroying the lock. 3291 m_public_run_lock.SetStopped(); 3292 } 3293 3294 m_destroy_in_process = false; 3295 3296 return error; 3297 } 3298 3299 Status Process::Signal(int signal) { 3300 Status error(WillSignal()); 3301 if (error.Success()) { 3302 error = DoSignal(signal); 3303 if (error.Success()) 3304 DidSignal(); 3305 } 3306 return error; 3307 } 3308 3309 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3310 assert(signals_sp && "null signals_sp"); 3311 m_unix_signals_sp = signals_sp; 3312 } 3313 3314 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3315 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3316 return m_unix_signals_sp; 3317 } 3318 3319 lldb::ByteOrder Process::GetByteOrder() const { 3320 return GetTarget().GetArchitecture().GetByteOrder(); 3321 } 3322 3323 uint32_t Process::GetAddressByteSize() const { 3324 return GetTarget().GetArchitecture().GetAddressByteSize(); 3325 } 3326 3327 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3328 const StateType state = 3329 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3330 bool return_value = true; 3331 Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); 3332 3333 switch (state) { 3334 case eStateDetached: 3335 case eStateExited: 3336 case eStateUnloaded: 3337 m_stdio_communication.SynchronizeWithReadThread(); 3338 m_stdio_communication.StopReadThread(); 3339 m_stdio_communication.Disconnect(); 3340 m_stdin_forward = false; 3341 3342 LLVM_FALLTHROUGH; 3343 case eStateConnected: 3344 case eStateAttaching: 3345 case eStateLaunching: 3346 // These events indicate changes in the state of the debugging session, 3347 // always report them. 3348 return_value = true; 3349 break; 3350 case eStateInvalid: 3351 // We stopped for no apparent reason, don't report it. 3352 return_value = false; 3353 break; 3354 case eStateRunning: 3355 case eStateStepping: 3356 // If we've started the target running, we handle the cases where we are 3357 // already running and where there is a transition from stopped to running 3358 // differently. running -> running: Automatically suppress extra running 3359 // events stopped -> running: Report except when there is one or more no 3360 // votes 3361 // and no yes votes. 3362 SynchronouslyNotifyStateChanged(state); 3363 if (m_force_next_event_delivery) 3364 return_value = true; 3365 else { 3366 switch (m_last_broadcast_state) { 3367 case eStateRunning: 3368 case eStateStepping: 3369 // We always suppress multiple runnings with no PUBLIC stop in between. 3370 return_value = false; 3371 break; 3372 default: 3373 // TODO: make this work correctly. For now always report 3374 // run if we aren't running so we don't miss any running events. If I 3375 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3376 // and hit the breakpoints on multiple threads, then somehow during the 3377 // stepping over of all breakpoints no run gets reported. 3378 3379 // This is a transition from stop to run. 3380 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3381 case eVoteYes: 3382 case eVoteNoOpinion: 3383 return_value = true; 3384 break; 3385 case eVoteNo: 3386 return_value = false; 3387 break; 3388 } 3389 break; 3390 } 3391 } 3392 break; 3393 case eStateStopped: 3394 case eStateCrashed: 3395 case eStateSuspended: 3396 // We've stopped. First see if we're going to restart the target. If we 3397 // are going to stop, then we always broadcast the event. If we aren't 3398 // going to stop, let the thread plans decide if we're going to report this 3399 // event. If no thread has an opinion, we don't report it. 3400 3401 m_stdio_communication.SynchronizeWithReadThread(); 3402 RefreshStateAfterStop(); 3403 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3404 LLDB_LOGF(log, 3405 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3406 "interrupt, state: %s", 3407 static_cast<void *>(event_ptr), StateAsCString(state)); 3408 // Even though we know we are going to stop, we should let the threads 3409 // have a look at the stop, so they can properly set their state. 3410 m_thread_list.ShouldStop(event_ptr); 3411 return_value = true; 3412 } else { 3413 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3414 bool should_resume = false; 3415 3416 // It makes no sense to ask "ShouldStop" if we've already been 3417 // restarted... Asking the thread list is also not likely to go well, 3418 // since we are running again. So in that case just report the event. 3419 3420 if (!was_restarted) 3421 should_resume = !m_thread_list.ShouldStop(event_ptr); 3422 3423 if (was_restarted || should_resume || m_resume_requested) { 3424 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3425 LLDB_LOGF(log, 3426 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3427 "%s was_restarted: %i report_stop_vote: %d.", 3428 should_resume, StateAsCString(state), was_restarted, 3429 report_stop_vote); 3430 3431 switch (report_stop_vote) { 3432 case eVoteYes: 3433 return_value = true; 3434 break; 3435 case eVoteNoOpinion: 3436 case eVoteNo: 3437 return_value = false; 3438 break; 3439 } 3440 3441 if (!was_restarted) { 3442 LLDB_LOGF(log, 3443 "Process::ShouldBroadcastEvent (%p) Restarting process " 3444 "from state: %s", 3445 static_cast<void *>(event_ptr), StateAsCString(state)); 3446 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3447 PrivateResume(); 3448 } 3449 } else { 3450 return_value = true; 3451 SynchronouslyNotifyStateChanged(state); 3452 } 3453 } 3454 break; 3455 } 3456 3457 // Forcing the next event delivery is a one shot deal. So reset it here. 3458 m_force_next_event_delivery = false; 3459 3460 // We do some coalescing of events (for instance two consecutive running 3461 // events get coalesced.) But we only coalesce against events we actually 3462 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3463 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3464 // done, because the PublicState reflects the last event pulled off the 3465 // queue, and there may be several events stacked up on the queue unserviced. 3466 // So the PublicState may not reflect the last broadcasted event yet. 3467 // m_last_broadcast_state gets updated here. 3468 3469 if (return_value) 3470 m_last_broadcast_state = state; 3471 3472 LLDB_LOGF(log, 3473 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3474 "broadcast state: %s - %s", 3475 static_cast<void *>(event_ptr), StateAsCString(state), 3476 StateAsCString(m_last_broadcast_state), 3477 return_value ? "YES" : "NO"); 3478 return return_value; 3479 } 3480 3481 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3482 Log *log = GetLog(LLDBLog::Events); 3483 3484 bool already_running = PrivateStateThreadIsValid(); 3485 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3486 already_running ? " already running" 3487 : " starting private state thread"); 3488 3489 if (!is_secondary_thread && already_running) 3490 return true; 3491 3492 // Create a thread that watches our internal state and controls which events 3493 // make it to clients (into the DCProcess event queue). 3494 char thread_name[1024]; 3495 uint32_t max_len = llvm::get_max_thread_name_length(); 3496 if (max_len > 0 && max_len <= 30) { 3497 // On platforms with abbreviated thread name lengths, choose thread names 3498 // that fit within the limit. 3499 if (already_running) 3500 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3501 else 3502 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3503 } else { 3504 if (already_running) 3505 snprintf(thread_name, sizeof(thread_name), 3506 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3507 GetID()); 3508 else 3509 snprintf(thread_name, sizeof(thread_name), 3510 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3511 } 3512 3513 llvm::Expected<HostThread> private_state_thread = 3514 ThreadLauncher::LaunchThread( 3515 thread_name, 3516 [this, is_secondary_thread] { 3517 return RunPrivateStateThread(is_secondary_thread); 3518 }, 3519 8 * 1024 * 1024); 3520 if (!private_state_thread) { 3521 LLDB_LOG(GetLog(LLDBLog::Host), "failed to launch host thread: {}", 3522 llvm::toString(private_state_thread.takeError())); 3523 return false; 3524 } 3525 3526 assert(private_state_thread->IsJoinable()); 3527 m_private_state_thread = *private_state_thread; 3528 ResumePrivateStateThread(); 3529 return true; 3530 } 3531 3532 void Process::PausePrivateStateThread() { 3533 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3534 } 3535 3536 void Process::ResumePrivateStateThread() { 3537 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3538 } 3539 3540 void Process::StopPrivateStateThread() { 3541 if (m_private_state_thread.IsJoinable()) 3542 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3543 else { 3544 Log *log = GetLog(LLDBLog::Process); 3545 LLDB_LOGF( 3546 log, 3547 "Went to stop the private state thread, but it was already invalid."); 3548 } 3549 } 3550 3551 void Process::ControlPrivateStateThread(uint32_t signal) { 3552 Log *log = GetLog(LLDBLog::Process); 3553 3554 assert(signal == eBroadcastInternalStateControlStop || 3555 signal == eBroadcastInternalStateControlPause || 3556 signal == eBroadcastInternalStateControlResume); 3557 3558 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3559 3560 // Signal the private state thread 3561 if (m_private_state_thread.IsJoinable()) { 3562 // Broadcast the event. 3563 // It is important to do this outside of the if below, because it's 3564 // possible that the thread state is invalid but that the thread is waiting 3565 // on a control event instead of simply being on its way out (this should 3566 // not happen, but it apparently can). 3567 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3568 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3569 m_private_state_control_broadcaster.BroadcastEvent(signal, 3570 event_receipt_sp); 3571 3572 // Wait for the event receipt or for the private state thread to exit 3573 bool receipt_received = false; 3574 if (PrivateStateThreadIsValid()) { 3575 while (!receipt_received) { 3576 // Check for a receipt for n seconds and then check if the private 3577 // state thread is still around. 3578 receipt_received = 3579 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3580 if (!receipt_received) { 3581 // Check if the private state thread is still around. If it isn't 3582 // then we are done waiting 3583 if (!PrivateStateThreadIsValid()) 3584 break; // Private state thread exited or is exiting, we are done 3585 } 3586 } 3587 } 3588 3589 if (signal == eBroadcastInternalStateControlStop) { 3590 thread_result_t result = {}; 3591 m_private_state_thread.Join(&result); 3592 m_private_state_thread.Reset(); 3593 } 3594 } else { 3595 LLDB_LOGF( 3596 log, 3597 "Private state thread already dead, no need to signal it to stop."); 3598 } 3599 } 3600 3601 void Process::SendAsyncInterrupt() { 3602 if (PrivateStateThreadIsValid()) 3603 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3604 nullptr); 3605 else 3606 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3607 } 3608 3609 void Process::HandlePrivateEvent(EventSP &event_sp) { 3610 Log *log = GetLog(LLDBLog::Process); 3611 m_resume_requested = false; 3612 3613 const StateType new_state = 3614 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3615 3616 // First check to see if anybody wants a shot at this event: 3617 if (m_next_event_action_up) { 3618 NextEventAction::EventActionResult action_result = 3619 m_next_event_action_up->PerformAction(event_sp); 3620 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3621 3622 switch (action_result) { 3623 case NextEventAction::eEventActionSuccess: 3624 SetNextEventAction(nullptr); 3625 break; 3626 3627 case NextEventAction::eEventActionRetry: 3628 break; 3629 3630 case NextEventAction::eEventActionExit: 3631 // Handle Exiting Here. If we already got an exited event, we should 3632 // just propagate it. Otherwise, swallow this event, and set our state 3633 // to exit so the next event will kill us. 3634 if (new_state != eStateExited) { 3635 // FIXME: should cons up an exited event, and discard this one. 3636 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3637 SetNextEventAction(nullptr); 3638 return; 3639 } 3640 SetNextEventAction(nullptr); 3641 break; 3642 } 3643 } 3644 3645 // See if we should broadcast this state to external clients? 3646 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3647 3648 if (should_broadcast) { 3649 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3650 if (log) { 3651 LLDB_LOGF(log, 3652 "Process::%s (pid = %" PRIu64 3653 ") broadcasting new state %s (old state %s) to %s", 3654 __FUNCTION__, GetID(), StateAsCString(new_state), 3655 StateAsCString(GetState()), 3656 is_hijacked ? "hijacked" : "public"); 3657 } 3658 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3659 if (StateIsRunningState(new_state)) { 3660 // Only push the input handler if we aren't fowarding events, as this 3661 // means the curses GUI is in use... Or don't push it if we are launching 3662 // since it will come up stopped. 3663 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3664 new_state != eStateLaunching && new_state != eStateAttaching) { 3665 PushProcessIOHandler(); 3666 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3667 eBroadcastAlways); 3668 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3669 __FUNCTION__, m_iohandler_sync.GetValue()); 3670 } 3671 } else if (StateIsStoppedState(new_state, false)) { 3672 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3673 // If the lldb_private::Debugger is handling the events, we don't want 3674 // to pop the process IOHandler here, we want to do it when we receive 3675 // the stopped event so we can carefully control when the process 3676 // IOHandler is popped because when we stop we want to display some 3677 // text stating how and why we stopped, then maybe some 3678 // process/thread/frame info, and then we want the "(lldb) " prompt to 3679 // show up. If we pop the process IOHandler here, then we will cause 3680 // the command interpreter to become the top IOHandler after the 3681 // process pops off and it will update its prompt right away... See the 3682 // Debugger.cpp file where it calls the function as 3683 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3684 // Otherwise we end up getting overlapping "(lldb) " prompts and 3685 // garbled output. 3686 // 3687 // If we aren't handling the events in the debugger (which is indicated 3688 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3689 // we are hijacked, then we always pop the process IO handler manually. 3690 // Hijacking happens when the internal process state thread is running 3691 // thread plans, or when commands want to run in synchronous mode and 3692 // they call "process->WaitForProcessToStop()". An example of something 3693 // that will hijack the events is a simple expression: 3694 // 3695 // (lldb) expr (int)puts("hello") 3696 // 3697 // This will cause the internal process state thread to resume and halt 3698 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3699 // events) and we do need the IO handler to be pushed and popped 3700 // correctly. 3701 3702 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3703 PopProcessIOHandler(); 3704 } 3705 } 3706 3707 BroadcastEvent(event_sp); 3708 } else { 3709 if (log) { 3710 LLDB_LOGF( 3711 log, 3712 "Process::%s (pid = %" PRIu64 3713 ") suppressing state %s (old state %s): should_broadcast == false", 3714 __FUNCTION__, GetID(), StateAsCString(new_state), 3715 StateAsCString(GetState())); 3716 } 3717 } 3718 } 3719 3720 Status Process::HaltPrivate() { 3721 EventSP event_sp; 3722 Status error(WillHalt()); 3723 if (error.Fail()) 3724 return error; 3725 3726 // Ask the process subclass to actually halt our process 3727 bool caused_stop; 3728 error = DoHalt(caused_stop); 3729 3730 DidHalt(); 3731 return error; 3732 } 3733 3734 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3735 bool control_only = true; 3736 3737 Log *log = GetLog(LLDBLog::Process); 3738 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3739 __FUNCTION__, static_cast<void *>(this), GetID()); 3740 3741 bool exit_now = false; 3742 bool interrupt_requested = false; 3743 while (!exit_now) { 3744 EventSP event_sp; 3745 GetEventsPrivate(event_sp, llvm::None, control_only); 3746 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3747 LLDB_LOGF(log, 3748 "Process::%s (arg = %p, pid = %" PRIu64 3749 ") got a control event: %d", 3750 __FUNCTION__, static_cast<void *>(this), GetID(), 3751 event_sp->GetType()); 3752 3753 switch (event_sp->GetType()) { 3754 case eBroadcastInternalStateControlStop: 3755 exit_now = true; 3756 break; // doing any internal state management below 3757 3758 case eBroadcastInternalStateControlPause: 3759 control_only = true; 3760 break; 3761 3762 case eBroadcastInternalStateControlResume: 3763 control_only = false; 3764 break; 3765 } 3766 3767 continue; 3768 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3769 if (m_public_state.GetValue() == eStateAttaching) { 3770 LLDB_LOGF(log, 3771 "Process::%s (arg = %p, pid = %" PRIu64 3772 ") woke up with an interrupt while attaching - " 3773 "forwarding interrupt.", 3774 __FUNCTION__, static_cast<void *>(this), GetID()); 3775 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3776 } else if (StateIsRunningState(m_last_broadcast_state)) { 3777 LLDB_LOGF(log, 3778 "Process::%s (arg = %p, pid = %" PRIu64 3779 ") woke up with an interrupt - Halting.", 3780 __FUNCTION__, static_cast<void *>(this), GetID()); 3781 Status error = HaltPrivate(); 3782 if (error.Fail() && log) 3783 LLDB_LOGF(log, 3784 "Process::%s (arg = %p, pid = %" PRIu64 3785 ") failed to halt the process: %s", 3786 __FUNCTION__, static_cast<void *>(this), GetID(), 3787 error.AsCString()); 3788 // Halt should generate a stopped event. Make a note of the fact that 3789 // we were doing the interrupt, so we can set the interrupted flag 3790 // after we receive the event. We deliberately set this to true even if 3791 // HaltPrivate failed, so that we can interrupt on the next natural 3792 // stop. 3793 interrupt_requested = true; 3794 } else { 3795 // This can happen when someone (e.g. Process::Halt) sees that we are 3796 // running and sends an interrupt request, but the process actually 3797 // stops before we receive it. In that case, we can just ignore the 3798 // request. We use m_last_broadcast_state, because the Stopped event 3799 // may not have been popped of the event queue yet, which is when the 3800 // public state gets updated. 3801 LLDB_LOGF(log, 3802 "Process::%s ignoring interrupt as we have already stopped.", 3803 __FUNCTION__); 3804 } 3805 continue; 3806 } 3807 3808 const StateType internal_state = 3809 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3810 3811 if (internal_state != eStateInvalid) { 3812 if (m_clear_thread_plans_on_stop && 3813 StateIsStoppedState(internal_state, true)) { 3814 m_clear_thread_plans_on_stop = false; 3815 m_thread_list.DiscardThreadPlans(); 3816 } 3817 3818 if (interrupt_requested) { 3819 if (StateIsStoppedState(internal_state, true)) { 3820 // We requested the interrupt, so mark this as such in the stop event 3821 // so clients can tell an interrupted process from a natural stop 3822 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3823 interrupt_requested = false; 3824 } else if (log) { 3825 LLDB_LOGF(log, 3826 "Process::%s interrupt_requested, but a non-stopped " 3827 "state '%s' received.", 3828 __FUNCTION__, StateAsCString(internal_state)); 3829 } 3830 } 3831 3832 HandlePrivateEvent(event_sp); 3833 } 3834 3835 if (internal_state == eStateInvalid || internal_state == eStateExited || 3836 internal_state == eStateDetached) { 3837 LLDB_LOGF(log, 3838 "Process::%s (arg = %p, pid = %" PRIu64 3839 ") about to exit with internal state %s...", 3840 __FUNCTION__, static_cast<void *>(this), GetID(), 3841 StateAsCString(internal_state)); 3842 3843 break; 3844 } 3845 } 3846 3847 // Verify log is still enabled before attempting to write to it... 3848 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3849 __FUNCTION__, static_cast<void *>(this), GetID()); 3850 3851 // If we are a secondary thread, then the primary thread we are working for 3852 // will have already acquired the public_run_lock, and isn't done with what 3853 // it was doing yet, so don't try to change it on the way out. 3854 if (!is_secondary_thread) 3855 m_public_run_lock.SetStopped(); 3856 return {}; 3857 } 3858 3859 // Process Event Data 3860 3861 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 3862 3863 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3864 StateType state) 3865 : EventData(), m_process_wp(), m_state(state) { 3866 if (process_sp) 3867 m_process_wp = process_sp; 3868 } 3869 3870 Process::ProcessEventData::~ProcessEventData() = default; 3871 3872 ConstString Process::ProcessEventData::GetFlavorString() { 3873 static ConstString g_flavor("Process::ProcessEventData"); 3874 return g_flavor; 3875 } 3876 3877 ConstString Process::ProcessEventData::GetFlavor() const { 3878 return ProcessEventData::GetFlavorString(); 3879 } 3880 3881 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3882 bool &found_valid_stopinfo) { 3883 found_valid_stopinfo = false; 3884 3885 ProcessSP process_sp(m_process_wp.lock()); 3886 if (!process_sp) 3887 return false; 3888 3889 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3890 uint32_t num_threads = curr_thread_list.GetSize(); 3891 uint32_t idx; 3892 3893 // The actions might change one of the thread's stop_info's opinions about 3894 // whether we should stop the process, so we need to query that as we go. 3895 3896 // One other complication here, is that we try to catch any case where the 3897 // target has run (except for expressions) and immediately exit, but if we 3898 // get that wrong (which is possible) then the thread list might have 3899 // changed, and that would cause our iteration here to crash. We could 3900 // make a copy of the thread list, but we'd really like to also know if it 3901 // has changed at all, so we make up a vector of the thread ID's and check 3902 // what we get back against this list & bag out if anything differs. 3903 ThreadList not_suspended_thread_list(process_sp.get()); 3904 std::vector<uint32_t> thread_index_array(num_threads); 3905 uint32_t not_suspended_idx = 0; 3906 for (idx = 0; idx < num_threads; ++idx) { 3907 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3908 3909 /* 3910 Filter out all suspended threads, they could not be the reason 3911 of stop and no need to perform any actions on them. 3912 */ 3913 if (thread_sp->GetResumeState() != eStateSuspended) { 3914 not_suspended_thread_list.AddThread(thread_sp); 3915 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3916 not_suspended_idx++; 3917 } 3918 } 3919 3920 // Use this to track whether we should continue from here. We will only 3921 // continue the target running if no thread says we should stop. Of course 3922 // if some thread's PerformAction actually sets the target running, then it 3923 // doesn't matter what the other threads say... 3924 3925 bool still_should_stop = false; 3926 3927 // Sometimes - for instance if we have a bug in the stub we are talking to, 3928 // we stop but no thread has a valid stop reason. In that case we should 3929 // just stop, because we have no way of telling what the right thing to do 3930 // is, and it's better to let the user decide than continue behind their 3931 // backs. 3932 3933 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3934 curr_thread_list = process_sp->GetThreadList(); 3935 if (curr_thread_list.GetSize() != num_threads) { 3936 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 3937 LLDB_LOGF( 3938 log, 3939 "Number of threads changed from %u to %u while processing event.", 3940 num_threads, curr_thread_list.GetSize()); 3941 break; 3942 } 3943 3944 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3945 3946 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3947 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 3948 LLDB_LOGF(log, 3949 "The thread at position %u changed from %u to %u while " 3950 "processing event.", 3951 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3952 break; 3953 } 3954 3955 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3956 if (stop_info_sp && stop_info_sp->IsValid()) { 3957 found_valid_stopinfo = true; 3958 bool this_thread_wants_to_stop; 3959 if (stop_info_sp->GetOverrideShouldStop()) { 3960 this_thread_wants_to_stop = 3961 stop_info_sp->GetOverriddenShouldStopValue(); 3962 } else { 3963 stop_info_sp->PerformAction(event_ptr); 3964 // The stop action might restart the target. If it does, then we 3965 // want to mark that in the event so that whoever is receiving it 3966 // will know to wait for the running event and reflect that state 3967 // appropriately. We also need to stop processing actions, since they 3968 // aren't expecting the target to be running. 3969 3970 // FIXME: we might have run. 3971 if (stop_info_sp->HasTargetRunSinceMe()) { 3972 SetRestarted(true); 3973 break; 3974 } 3975 3976 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 3977 } 3978 3979 if (!still_should_stop) 3980 still_should_stop = this_thread_wants_to_stop; 3981 } 3982 } 3983 3984 return still_should_stop; 3985 } 3986 3987 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3988 ProcessSP process_sp(m_process_wp.lock()); 3989 3990 if (!process_sp) 3991 return; 3992 3993 // This function gets called twice for each event, once when the event gets 3994 // pulled off of the private process event queue, and then any number of 3995 // times, first when it gets pulled off of the public event queue, then other 3996 // times when we're pretending that this is where we stopped at the end of 3997 // expression evaluation. m_update_state is used to distinguish these three 3998 // cases; it is 0 when we're just pulling it off for private handling, and > 3999 // 1 for expression evaluation, and we don't want to do the breakpoint 4000 // command handling then. 4001 if (m_update_state != 1) 4002 return; 4003 4004 process_sp->SetPublicState( 4005 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4006 4007 if (m_state == eStateStopped && !m_restarted) { 4008 // Let process subclasses know we are about to do a public stop and do 4009 // anything they might need to in order to speed up register and memory 4010 // accesses. 4011 process_sp->WillPublicStop(); 4012 } 4013 4014 // If this is a halt event, even if the halt stopped with some reason other 4015 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4016 // the halt request came through) don't do the StopInfo actions, as they may 4017 // end up restarting the process. 4018 if (m_interrupted) 4019 return; 4020 4021 // If we're not stopped or have restarted, then skip the StopInfo actions: 4022 if (m_state != eStateStopped || m_restarted) { 4023 return; 4024 } 4025 4026 bool does_anybody_have_an_opinion = false; 4027 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4028 4029 if (GetRestarted()) { 4030 return; 4031 } 4032 4033 if (!still_should_stop && does_anybody_have_an_opinion) { 4034 // We've been asked to continue, so do that here. 4035 SetRestarted(true); 4036 // Use the public resume method here, since this is just extending a 4037 // public resume. 4038 process_sp->PrivateResume(); 4039 } else { 4040 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4041 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4042 4043 if (!hijacked) { 4044 // If we didn't restart, run the Stop Hooks here. 4045 // Don't do that if state changed events aren't hooked up to the 4046 // public (or SyncResume) broadcasters. StopHooks are just for 4047 // real public stops. They might also restart the target, 4048 // so watch for that. 4049 if (process_sp->GetTarget().RunStopHooks()) 4050 SetRestarted(true); 4051 } 4052 } 4053 } 4054 4055 void Process::ProcessEventData::Dump(Stream *s) const { 4056 ProcessSP process_sp(m_process_wp.lock()); 4057 4058 if (process_sp) 4059 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4060 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4061 else 4062 s->PutCString(" process = NULL, "); 4063 4064 s->Printf("state = %s", StateAsCString(GetState())); 4065 } 4066 4067 const Process::ProcessEventData * 4068 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4069 if (event_ptr) { 4070 const EventData *event_data = event_ptr->GetData(); 4071 if (event_data && 4072 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4073 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4074 } 4075 return nullptr; 4076 } 4077 4078 ProcessSP 4079 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4080 ProcessSP process_sp; 4081 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4082 if (data) 4083 process_sp = data->GetProcessSP(); 4084 return process_sp; 4085 } 4086 4087 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4088 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4089 if (data == nullptr) 4090 return eStateInvalid; 4091 else 4092 return data->GetState(); 4093 } 4094 4095 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4096 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4097 if (data == nullptr) 4098 return false; 4099 else 4100 return data->GetRestarted(); 4101 } 4102 4103 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4104 bool new_value) { 4105 ProcessEventData *data = 4106 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4107 if (data != nullptr) 4108 data->SetRestarted(new_value); 4109 } 4110 4111 size_t 4112 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4113 ProcessEventData *data = 4114 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4115 if (data != nullptr) 4116 return data->GetNumRestartedReasons(); 4117 else 4118 return 0; 4119 } 4120 4121 const char * 4122 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4123 size_t idx) { 4124 ProcessEventData *data = 4125 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4126 if (data != nullptr) 4127 return data->GetRestartedReasonAtIndex(idx); 4128 else 4129 return nullptr; 4130 } 4131 4132 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4133 const char *reason) { 4134 ProcessEventData *data = 4135 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4136 if (data != nullptr) 4137 data->AddRestartedReason(reason); 4138 } 4139 4140 bool Process::ProcessEventData::GetInterruptedFromEvent( 4141 const Event *event_ptr) { 4142 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4143 if (data == nullptr) 4144 return false; 4145 else 4146 return data->GetInterrupted(); 4147 } 4148 4149 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4150 bool new_value) { 4151 ProcessEventData *data = 4152 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4153 if (data != nullptr) 4154 data->SetInterrupted(new_value); 4155 } 4156 4157 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4158 ProcessEventData *data = 4159 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4160 if (data) { 4161 data->SetUpdateStateOnRemoval(); 4162 return true; 4163 } 4164 return false; 4165 } 4166 4167 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4168 4169 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4170 exe_ctx.SetTargetPtr(&GetTarget()); 4171 exe_ctx.SetProcessPtr(this); 4172 exe_ctx.SetThreadPtr(nullptr); 4173 exe_ctx.SetFramePtr(nullptr); 4174 } 4175 4176 // uint32_t 4177 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4178 // std::vector<lldb::pid_t> &pids) 4179 //{ 4180 // return 0; 4181 //} 4182 // 4183 // ArchSpec 4184 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4185 //{ 4186 // return Host::GetArchSpecForExistingProcess (pid); 4187 //} 4188 // 4189 // ArchSpec 4190 // Process::GetArchSpecForExistingProcess (const char *process_name) 4191 //{ 4192 // return Host::GetArchSpecForExistingProcess (process_name); 4193 //} 4194 4195 void Process::AppendSTDOUT(const char *s, size_t len) { 4196 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4197 m_stdout_data.append(s, len); 4198 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4199 new ProcessEventData(shared_from_this(), GetState())); 4200 } 4201 4202 void Process::AppendSTDERR(const char *s, size_t len) { 4203 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4204 m_stderr_data.append(s, len); 4205 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4206 new ProcessEventData(shared_from_this(), GetState())); 4207 } 4208 4209 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4210 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4211 m_profile_data.push_back(one_profile_data); 4212 BroadcastEventIfUnique(eBroadcastBitProfileData, 4213 new ProcessEventData(shared_from_this(), GetState())); 4214 } 4215 4216 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4217 const StructuredDataPluginSP &plugin_sp) { 4218 BroadcastEvent( 4219 eBroadcastBitStructuredData, 4220 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4221 } 4222 4223 StructuredDataPluginSP 4224 Process::GetStructuredDataPlugin(ConstString type_name) const { 4225 auto find_it = m_structured_data_plugin_map.find(type_name); 4226 if (find_it != m_structured_data_plugin_map.end()) 4227 return find_it->second; 4228 else 4229 return StructuredDataPluginSP(); 4230 } 4231 4232 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4233 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4234 if (m_profile_data.empty()) 4235 return 0; 4236 4237 std::string &one_profile_data = m_profile_data.front(); 4238 size_t bytes_available = one_profile_data.size(); 4239 if (bytes_available > 0) { 4240 Log *log = GetLog(LLDBLog::Process); 4241 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4242 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4243 if (bytes_available > buf_size) { 4244 memcpy(buf, one_profile_data.c_str(), buf_size); 4245 one_profile_data.erase(0, buf_size); 4246 bytes_available = buf_size; 4247 } else { 4248 memcpy(buf, one_profile_data.c_str(), bytes_available); 4249 m_profile_data.erase(m_profile_data.begin()); 4250 } 4251 } 4252 return bytes_available; 4253 } 4254 4255 // Process STDIO 4256 4257 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4258 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4259 size_t bytes_available = m_stdout_data.size(); 4260 if (bytes_available > 0) { 4261 Log *log = GetLog(LLDBLog::Process); 4262 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4263 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4264 if (bytes_available > buf_size) { 4265 memcpy(buf, m_stdout_data.c_str(), buf_size); 4266 m_stdout_data.erase(0, buf_size); 4267 bytes_available = buf_size; 4268 } else { 4269 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4270 m_stdout_data.clear(); 4271 } 4272 } 4273 return bytes_available; 4274 } 4275 4276 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4277 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4278 size_t bytes_available = m_stderr_data.size(); 4279 if (bytes_available > 0) { 4280 Log *log = GetLog(LLDBLog::Process); 4281 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4282 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4283 if (bytes_available > buf_size) { 4284 memcpy(buf, m_stderr_data.c_str(), buf_size); 4285 m_stderr_data.erase(0, buf_size); 4286 bytes_available = buf_size; 4287 } else { 4288 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4289 m_stderr_data.clear(); 4290 } 4291 } 4292 return bytes_available; 4293 } 4294 4295 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4296 size_t src_len) { 4297 Process *process = (Process *)baton; 4298 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4299 } 4300 4301 class IOHandlerProcessSTDIO : public IOHandler { 4302 public: 4303 IOHandlerProcessSTDIO(Process *process, int write_fd) 4304 : IOHandler(process->GetTarget().GetDebugger(), 4305 IOHandler::Type::ProcessIO), 4306 m_process(process), 4307 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4308 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4309 m_pipe.CreateNew(false); 4310 } 4311 4312 ~IOHandlerProcessSTDIO() override = default; 4313 4314 void SetIsRunning(bool running) { 4315 std::lock_guard<std::mutex> guard(m_mutex); 4316 SetIsDone(!running); 4317 m_is_running = running; 4318 } 4319 4320 // Each IOHandler gets to run until it is done. It should read data from the 4321 // "in" and place output into "out" and "err and return when done. 4322 void Run() override { 4323 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4324 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4325 SetIsDone(true); 4326 return; 4327 } 4328 4329 SetIsDone(false); 4330 const int read_fd = m_read_file.GetDescriptor(); 4331 Terminal terminal(read_fd); 4332 TerminalState terminal_state(terminal, false); 4333 // FIXME: error handling? 4334 llvm::consumeError(terminal.SetCanonical(false)); 4335 llvm::consumeError(terminal.SetEcho(false)); 4336 // FD_ZERO, FD_SET are not supported on windows 4337 #ifndef _WIN32 4338 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4339 SetIsRunning(true); 4340 while (true) { 4341 { 4342 std::lock_guard<std::mutex> guard(m_mutex); 4343 if (GetIsDone()) 4344 break; 4345 } 4346 4347 SelectHelper select_helper; 4348 select_helper.FDSetRead(read_fd); 4349 select_helper.FDSetRead(pipe_read_fd); 4350 Status error = select_helper.Select(); 4351 4352 if (error.Fail()) 4353 break; 4354 4355 char ch = 0; 4356 size_t n; 4357 if (select_helper.FDIsSetRead(read_fd)) { 4358 n = 1; 4359 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4360 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4361 break; 4362 } else 4363 break; 4364 } 4365 4366 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4367 size_t bytes_read; 4368 // Consume the interrupt byte 4369 Status error = m_pipe.Read(&ch, 1, bytes_read); 4370 if (error.Success()) { 4371 if (ch == 'q') 4372 break; 4373 if (ch == 'i') 4374 if (StateIsRunningState(m_process->GetState())) 4375 m_process->SendAsyncInterrupt(); 4376 } 4377 } 4378 } 4379 SetIsRunning(false); 4380 #endif 4381 } 4382 4383 void Cancel() override { 4384 std::lock_guard<std::mutex> guard(m_mutex); 4385 SetIsDone(true); 4386 // Only write to our pipe to cancel if we are in 4387 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4388 // is being run from the command interpreter: 4389 // 4390 // (lldb) step_process_thousands_of_times 4391 // 4392 // In this case the command interpreter will be in the middle of handling 4393 // the command and if the process pushes and pops the IOHandler thousands 4394 // of times, we can end up writing to m_pipe without ever consuming the 4395 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4396 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4397 if (m_is_running) { 4398 char ch = 'q'; // Send 'q' for quit 4399 size_t bytes_written = 0; 4400 m_pipe.Write(&ch, 1, bytes_written); 4401 } 4402 } 4403 4404 bool Interrupt() override { 4405 // Do only things that are safe to do in an interrupt context (like in a 4406 // SIGINT handler), like write 1 byte to a file descriptor. This will 4407 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4408 // that was written to the pipe and then call 4409 // m_process->SendAsyncInterrupt() from a much safer location in code. 4410 if (m_active) { 4411 char ch = 'i'; // Send 'i' for interrupt 4412 size_t bytes_written = 0; 4413 Status result = m_pipe.Write(&ch, 1, bytes_written); 4414 return result.Success(); 4415 } else { 4416 // This IOHandler might be pushed on the stack, but not being run 4417 // currently so do the right thing if we aren't actively watching for 4418 // STDIN by sending the interrupt to the process. Otherwise the write to 4419 // the pipe above would do nothing. This can happen when the command 4420 // interpreter is running and gets a "expression ...". It will be on the 4421 // IOHandler thread and sending the input is complete to the delegate 4422 // which will cause the expression to run, which will push the process IO 4423 // handler, but not run it. 4424 4425 if (StateIsRunningState(m_process->GetState())) { 4426 m_process->SendAsyncInterrupt(); 4427 return true; 4428 } 4429 } 4430 return false; 4431 } 4432 4433 void GotEOF() override {} 4434 4435 protected: 4436 Process *m_process; 4437 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4438 NativeFile m_write_file; // Write to this file (usually the primary pty for 4439 // getting io to debuggee) 4440 Pipe m_pipe; 4441 std::mutex m_mutex; 4442 bool m_is_running = false; 4443 }; 4444 4445 void Process::SetSTDIOFileDescriptor(int fd) { 4446 // First set up the Read Thread for reading/handling process I/O 4447 m_stdio_communication.SetConnection( 4448 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4449 if (m_stdio_communication.IsConnected()) { 4450 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4451 STDIOReadThreadBytesReceived, this); 4452 m_stdio_communication.StartReadThread(); 4453 4454 // Now read thread is set up, set up input reader. 4455 4456 if (!m_process_input_reader) 4457 m_process_input_reader = 4458 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4459 } 4460 } 4461 4462 bool Process::ProcessIOHandlerIsActive() { 4463 IOHandlerSP io_handler_sp(m_process_input_reader); 4464 if (io_handler_sp) 4465 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4466 return false; 4467 } 4468 bool Process::PushProcessIOHandler() { 4469 IOHandlerSP io_handler_sp(m_process_input_reader); 4470 if (io_handler_sp) { 4471 Log *log = GetLog(LLDBLog::Process); 4472 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4473 4474 io_handler_sp->SetIsDone(false); 4475 // If we evaluate an utility function, then we don't cancel the current 4476 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4477 // existing IOHandler that potentially provides the user interface (e.g. 4478 // the IOHandler for Editline). 4479 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4480 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4481 cancel_top_handler); 4482 return true; 4483 } 4484 return false; 4485 } 4486 4487 bool Process::PopProcessIOHandler() { 4488 IOHandlerSP io_handler_sp(m_process_input_reader); 4489 if (io_handler_sp) 4490 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4491 return false; 4492 } 4493 4494 // The process needs to know about installed plug-ins 4495 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4496 4497 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4498 4499 namespace { 4500 // RestorePlanState is used to record the "is private", "is controlling" and 4501 // "okay 4502 // to discard" fields of the plan we are running, and reset it on Clean or on 4503 // destruction. It will only reset the state once, so you can call Clean and 4504 // then monkey with the state and it won't get reset on you again. 4505 4506 class RestorePlanState { 4507 public: 4508 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4509 : m_thread_plan_sp(thread_plan_sp) { 4510 if (m_thread_plan_sp) { 4511 m_private = m_thread_plan_sp->GetPrivate(); 4512 m_is_controlling = m_thread_plan_sp->IsControllingPlan(); 4513 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4514 } 4515 } 4516 4517 ~RestorePlanState() { Clean(); } 4518 4519 void Clean() { 4520 if (!m_already_reset && m_thread_plan_sp) { 4521 m_already_reset = true; 4522 m_thread_plan_sp->SetPrivate(m_private); 4523 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); 4524 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4525 } 4526 } 4527 4528 private: 4529 lldb::ThreadPlanSP m_thread_plan_sp; 4530 bool m_already_reset = false; 4531 bool m_private; 4532 bool m_is_controlling; 4533 bool m_okay_to_discard; 4534 }; 4535 } // anonymous namespace 4536 4537 static microseconds 4538 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4539 const milliseconds default_one_thread_timeout(250); 4540 4541 // If the overall wait is forever, then we don't need to worry about it. 4542 if (!options.GetTimeout()) { 4543 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4544 : default_one_thread_timeout; 4545 } 4546 4547 // If the one thread timeout is set, use it. 4548 if (options.GetOneThreadTimeout()) 4549 return *options.GetOneThreadTimeout(); 4550 4551 // Otherwise use half the total timeout, bounded by the 4552 // default_one_thread_timeout. 4553 return std::min<microseconds>(default_one_thread_timeout, 4554 *options.GetTimeout() / 2); 4555 } 4556 4557 static Timeout<std::micro> 4558 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4559 bool before_first_timeout) { 4560 // If we are going to run all threads the whole time, or if we are only going 4561 // to run one thread, we can just return the overall timeout. 4562 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4563 return options.GetTimeout(); 4564 4565 if (before_first_timeout) 4566 return GetOneThreadExpressionTimeout(options); 4567 4568 if (!options.GetTimeout()) 4569 return llvm::None; 4570 else 4571 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4572 } 4573 4574 static llvm::Optional<ExpressionResults> 4575 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4576 RestorePlanState &restorer, const EventSP &event_sp, 4577 EventSP &event_to_broadcast_sp, 4578 const EvaluateExpressionOptions &options, 4579 bool handle_interrupts) { 4580 Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); 4581 4582 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4583 .GetProcessSP() 4584 ->GetThreadList() 4585 .FindThreadByID(thread_id); 4586 if (!thread_sp) { 4587 LLDB_LOG(log, 4588 "The thread on which we were running the " 4589 "expression: tid = {0}, exited while " 4590 "the expression was running.", 4591 thread_id); 4592 return eExpressionThreadVanished; 4593 } 4594 4595 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4596 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4597 LLDB_LOG(log, "execution completed successfully"); 4598 4599 // Restore the plan state so it will get reported as intended when we are 4600 // done. 4601 restorer.Clean(); 4602 return eExpressionCompleted; 4603 } 4604 4605 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4606 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4607 stop_info_sp->ShouldNotify(event_sp.get())) { 4608 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4609 if (!options.DoesIgnoreBreakpoints()) { 4610 // Restore the plan state and then force Private to false. We are going 4611 // to stop because of this plan so we need it to become a public plan or 4612 // it won't report correctly when we continue to its termination later 4613 // on. 4614 restorer.Clean(); 4615 thread_plan_sp->SetPrivate(false); 4616 event_to_broadcast_sp = event_sp; 4617 } 4618 return eExpressionHitBreakpoint; 4619 } 4620 4621 if (!handle_interrupts && 4622 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4623 return llvm::None; 4624 4625 LLDB_LOG(log, "thread plan did not successfully complete"); 4626 if (!options.DoesUnwindOnError()) 4627 event_to_broadcast_sp = event_sp; 4628 return eExpressionInterrupted; 4629 } 4630 4631 ExpressionResults 4632 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4633 lldb::ThreadPlanSP &thread_plan_sp, 4634 const EvaluateExpressionOptions &options, 4635 DiagnosticManager &diagnostic_manager) { 4636 ExpressionResults return_value = eExpressionSetupError; 4637 4638 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4639 4640 if (!thread_plan_sp) { 4641 diagnostic_manager.PutString( 4642 eDiagnosticSeverityError, 4643 "RunThreadPlan called with empty thread plan."); 4644 return eExpressionSetupError; 4645 } 4646 4647 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4648 diagnostic_manager.PutString( 4649 eDiagnosticSeverityError, 4650 "RunThreadPlan called with an invalid thread plan."); 4651 return eExpressionSetupError; 4652 } 4653 4654 if (exe_ctx.GetProcessPtr() != this) { 4655 diagnostic_manager.PutString(eDiagnosticSeverityError, 4656 "RunThreadPlan called on wrong process."); 4657 return eExpressionSetupError; 4658 } 4659 4660 Thread *thread = exe_ctx.GetThreadPtr(); 4661 if (thread == nullptr) { 4662 diagnostic_manager.PutString(eDiagnosticSeverityError, 4663 "RunThreadPlan called with invalid thread."); 4664 return eExpressionSetupError; 4665 } 4666 4667 // Record the thread's id so we can tell when a thread we were using 4668 // to run the expression exits during the expression evaluation. 4669 lldb::tid_t expr_thread_id = thread->GetID(); 4670 4671 // We need to change some of the thread plan attributes for the thread plan 4672 // runner. This will restore them when we are done: 4673 4674 RestorePlanState thread_plan_restorer(thread_plan_sp); 4675 4676 // We rely on the thread plan we are running returning "PlanCompleted" if 4677 // when it successfully completes. For that to be true the plan can't be 4678 // private - since private plans suppress themselves in the GetCompletedPlan 4679 // call. 4680 4681 thread_plan_sp->SetPrivate(false); 4682 4683 // The plans run with RunThreadPlan also need to be terminal controlling plans 4684 // or when they are done we will end up asking the plan above us whether we 4685 // should stop, which may give the wrong answer. 4686 4687 thread_plan_sp->SetIsControllingPlan(true); 4688 thread_plan_sp->SetOkayToDiscard(false); 4689 4690 // If we are running some utility expression for LLDB, we now have to mark 4691 // this in the ProcesModID of this process. This RAII takes care of marking 4692 // and reverting the mark it once we are done running the expression. 4693 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4694 4695 if (m_private_state.GetValue() != eStateStopped) { 4696 diagnostic_manager.PutString( 4697 eDiagnosticSeverityError, 4698 "RunThreadPlan called while the private state was not stopped."); 4699 return eExpressionSetupError; 4700 } 4701 4702 // Save the thread & frame from the exe_ctx for restoration after we run 4703 const uint32_t thread_idx_id = thread->GetIndexID(); 4704 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4705 if (!selected_frame_sp) { 4706 thread->SetSelectedFrame(nullptr); 4707 selected_frame_sp = thread->GetSelectedFrame(); 4708 if (!selected_frame_sp) { 4709 diagnostic_manager.Printf( 4710 eDiagnosticSeverityError, 4711 "RunThreadPlan called without a selected frame on thread %d", 4712 thread_idx_id); 4713 return eExpressionSetupError; 4714 } 4715 } 4716 4717 // Make sure the timeout values make sense. The one thread timeout needs to 4718 // be smaller than the overall timeout. 4719 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4720 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4721 diagnostic_manager.PutString(eDiagnosticSeverityError, 4722 "RunThreadPlan called with one thread " 4723 "timeout greater than total timeout"); 4724 return eExpressionSetupError; 4725 } 4726 4727 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4728 4729 // N.B. Running the target may unset the currently selected thread and frame. 4730 // We don't want to do that either, so we should arrange to reset them as 4731 // well. 4732 4733 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4734 4735 uint32_t selected_tid; 4736 StackID selected_stack_id; 4737 if (selected_thread_sp) { 4738 selected_tid = selected_thread_sp->GetIndexID(); 4739 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4740 } else { 4741 selected_tid = LLDB_INVALID_THREAD_ID; 4742 } 4743 4744 HostThread backup_private_state_thread; 4745 lldb::StateType old_state = eStateInvalid; 4746 lldb::ThreadPlanSP stopper_base_plan_sp; 4747 4748 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4749 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4750 // Yikes, we are running on the private state thread! So we can't wait for 4751 // public events on this thread, since we are the thread that is generating 4752 // public events. The simplest thing to do is to spin up a temporary thread 4753 // to handle private state thread events while we are fielding public 4754 // events here. 4755 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4756 "another state thread to handle the events."); 4757 4758 backup_private_state_thread = m_private_state_thread; 4759 4760 // One other bit of business: we want to run just this thread plan and 4761 // anything it pushes, and then stop, returning control here. But in the 4762 // normal course of things, the plan above us on the stack would be given a 4763 // shot at the stop event before deciding to stop, and we don't want that. 4764 // So we insert a "stopper" base plan on the stack before the plan we want 4765 // to run. Since base plans always stop and return control to the user, 4766 // that will do just what we want. 4767 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4768 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4769 // Have to make sure our public state is stopped, since otherwise the 4770 // reporting logic below doesn't work correctly. 4771 old_state = m_public_state.GetValue(); 4772 m_public_state.SetValueNoLock(eStateStopped); 4773 4774 // Now spin up the private state thread: 4775 StartPrivateStateThread(true); 4776 } 4777 4778 thread->QueueThreadPlan( 4779 thread_plan_sp, false); // This used to pass "true" does that make sense? 4780 4781 if (options.GetDebug()) { 4782 // In this case, we aren't actually going to run, we just want to stop 4783 // right away. Flush this thread so we will refetch the stacks and show the 4784 // correct backtrace. 4785 // FIXME: To make this prettier we should invent some stop reason for this, 4786 // but that 4787 // is only cosmetic, and this functionality is only of use to lldb 4788 // developers who can live with not pretty... 4789 thread->Flush(); 4790 return eExpressionStoppedForDebug; 4791 } 4792 4793 ListenerSP listener_sp( 4794 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4795 4796 lldb::EventSP event_to_broadcast_sp; 4797 4798 { 4799 // This process event hijacker Hijacks the Public events and its destructor 4800 // makes sure that the process events get restored on exit to the function. 4801 // 4802 // If the event needs to propagate beyond the hijacker (e.g., the process 4803 // exits during execution), then the event is put into 4804 // event_to_broadcast_sp for rebroadcasting. 4805 4806 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4807 4808 if (log) { 4809 StreamString s; 4810 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4811 LLDB_LOGF(log, 4812 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4813 " to run thread plan \"%s\".", 4814 thread_idx_id, expr_thread_id, s.GetData()); 4815 } 4816 4817 bool got_event; 4818 lldb::EventSP event_sp; 4819 lldb::StateType stop_state = lldb::eStateInvalid; 4820 4821 bool before_first_timeout = true; // This is set to false the first time 4822 // that we have to halt the target. 4823 bool do_resume = true; 4824 bool handle_running_event = true; 4825 4826 // This is just for accounting: 4827 uint32_t num_resumes = 0; 4828 4829 // If we are going to run all threads the whole time, or if we are only 4830 // going to run one thread, then we don't need the first timeout. So we 4831 // pretend we are after the first timeout already. 4832 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4833 before_first_timeout = false; 4834 4835 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4836 options.GetStopOthers(), options.GetTryAllThreads(), 4837 before_first_timeout); 4838 4839 // This isn't going to work if there are unfetched events on the queue. Are 4840 // there cases where we might want to run the remaining events here, and 4841 // then try to call the function? That's probably being too tricky for our 4842 // own good. 4843 4844 Event *other_events = listener_sp->PeekAtNextEvent(); 4845 if (other_events != nullptr) { 4846 diagnostic_manager.PutString( 4847 eDiagnosticSeverityError, 4848 "RunThreadPlan called with pending events on the queue."); 4849 return eExpressionSetupError; 4850 } 4851 4852 // We also need to make sure that the next event is delivered. We might be 4853 // calling a function as part of a thread plan, in which case the last 4854 // delivered event could be the running event, and we don't want event 4855 // coalescing to cause us to lose OUR running event... 4856 ForceNextEventDelivery(); 4857 4858 // This while loop must exit out the bottom, there's cleanup that we need to do 4859 // when we are done. So don't call return anywhere within it. 4860 4861 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4862 // It's pretty much impossible to write test cases for things like: One 4863 // thread timeout expires, I go to halt, but the process already stopped on 4864 // the function call stop breakpoint. Turning on this define will make us 4865 // not fetch the first event till after the halt. So if you run a quick 4866 // function, it will have completed, and the completion event will be 4867 // waiting, when you interrupt for halt. The expression evaluation should 4868 // still succeed. 4869 bool miss_first_event = true; 4870 #endif 4871 while (true) { 4872 // We usually want to resume the process if we get to the top of the 4873 // loop. The only exception is if we get two running events with no 4874 // intervening stop, which can happen, we will just wait for then next 4875 // stop event. 4876 LLDB_LOGF(log, 4877 "Top of while loop: do_resume: %i handle_running_event: %i " 4878 "before_first_timeout: %i.", 4879 do_resume, handle_running_event, before_first_timeout); 4880 4881 if (do_resume || handle_running_event) { 4882 // Do the initial resume and wait for the running event before going 4883 // further. 4884 4885 if (do_resume) { 4886 num_resumes++; 4887 Status resume_error = PrivateResume(); 4888 if (!resume_error.Success()) { 4889 diagnostic_manager.Printf( 4890 eDiagnosticSeverityError, 4891 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4892 resume_error.AsCString()); 4893 return_value = eExpressionSetupError; 4894 break; 4895 } 4896 } 4897 4898 got_event = 4899 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4900 if (!got_event) { 4901 LLDB_LOGF(log, 4902 "Process::RunThreadPlan(): didn't get any event after " 4903 "resume %" PRIu32 ", exiting.", 4904 num_resumes); 4905 4906 diagnostic_manager.Printf(eDiagnosticSeverityError, 4907 "didn't get any event after resume %" PRIu32 4908 ", exiting.", 4909 num_resumes); 4910 return_value = eExpressionSetupError; 4911 break; 4912 } 4913 4914 stop_state = 4915 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4916 4917 if (stop_state != eStateRunning) { 4918 bool restarted = false; 4919 4920 if (stop_state == eStateStopped) { 4921 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4922 event_sp.get()); 4923 LLDB_LOGF( 4924 log, 4925 "Process::RunThreadPlan(): didn't get running event after " 4926 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4927 "handle_running_event: %i).", 4928 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4929 handle_running_event); 4930 } 4931 4932 if (restarted) { 4933 // This is probably an overabundance of caution, I don't think I 4934 // should ever get a stopped & restarted event here. But if I do, 4935 // the best thing is to Halt and then get out of here. 4936 const bool clear_thread_plans = false; 4937 const bool use_run_lock = false; 4938 Halt(clear_thread_plans, use_run_lock); 4939 } 4940 4941 diagnostic_manager.Printf( 4942 eDiagnosticSeverityError, 4943 "didn't get running event after initial resume, got %s instead.", 4944 StateAsCString(stop_state)); 4945 return_value = eExpressionSetupError; 4946 break; 4947 } 4948 4949 if (log) 4950 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4951 // We need to call the function synchronously, so spin waiting for it 4952 // to return. If we get interrupted while executing, we're going to 4953 // lose our context, and won't be able to gather the result at this 4954 // point. We set the timeout AFTER the resume, since the resume takes 4955 // some time and we don't want to charge that to the timeout. 4956 } else { 4957 if (log) 4958 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4959 } 4960 4961 do_resume = true; 4962 handle_running_event = true; 4963 4964 // Now wait for the process to stop again: 4965 event_sp.reset(); 4966 4967 Timeout<std::micro> timeout = 4968 GetExpressionTimeout(options, before_first_timeout); 4969 if (log) { 4970 if (timeout) { 4971 auto now = system_clock::now(); 4972 LLDB_LOGF(log, 4973 "Process::RunThreadPlan(): about to wait - now is %s - " 4974 "endpoint is %s", 4975 llvm::to_string(now).c_str(), 4976 llvm::to_string(now + *timeout).c_str()); 4977 } else { 4978 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4979 } 4980 } 4981 4982 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4983 // See comment above... 4984 if (miss_first_event) { 4985 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4986 miss_first_event = false; 4987 got_event = false; 4988 } else 4989 #endif 4990 got_event = listener_sp->GetEvent(event_sp, timeout); 4991 4992 if (got_event) { 4993 if (event_sp) { 4994 bool keep_going = false; 4995 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4996 const bool clear_thread_plans = false; 4997 const bool use_run_lock = false; 4998 Halt(clear_thread_plans, use_run_lock); 4999 return_value = eExpressionInterrupted; 5000 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5001 "execution halted by user interrupt."); 5002 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5003 "eBroadcastBitInterrupted, exiting."); 5004 break; 5005 } else { 5006 stop_state = 5007 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5008 LLDB_LOGF(log, 5009 "Process::RunThreadPlan(): in while loop, got event: %s.", 5010 StateAsCString(stop_state)); 5011 5012 switch (stop_state) { 5013 case lldb::eStateStopped: { 5014 if (Process::ProcessEventData::GetRestartedFromEvent( 5015 event_sp.get())) { 5016 // If we were restarted, we just need to go back up to fetch 5017 // another event. 5018 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5019 "restart, so we'll continue waiting."); 5020 keep_going = true; 5021 do_resume = false; 5022 handle_running_event = true; 5023 } else { 5024 const bool handle_interrupts = true; 5025 return_value = *HandleStoppedEvent( 5026 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5027 event_sp, event_to_broadcast_sp, options, 5028 handle_interrupts); 5029 if (return_value == eExpressionThreadVanished) 5030 keep_going = false; 5031 } 5032 } break; 5033 5034 case lldb::eStateRunning: 5035 // This shouldn't really happen, but sometimes we do get two 5036 // running events without an intervening stop, and in that case 5037 // we should just go back to waiting for the stop. 5038 do_resume = false; 5039 keep_going = true; 5040 handle_running_event = false; 5041 break; 5042 5043 default: 5044 LLDB_LOGF(log, 5045 "Process::RunThreadPlan(): execution stopped with " 5046 "unexpected state: %s.", 5047 StateAsCString(stop_state)); 5048 5049 if (stop_state == eStateExited) 5050 event_to_broadcast_sp = event_sp; 5051 5052 diagnostic_manager.PutString( 5053 eDiagnosticSeverityError, 5054 "execution stopped with unexpected state."); 5055 return_value = eExpressionInterrupted; 5056 break; 5057 } 5058 } 5059 5060 if (keep_going) 5061 continue; 5062 else 5063 break; 5064 } else { 5065 if (log) 5066 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5067 "the event pointer was null. How odd..."); 5068 return_value = eExpressionInterrupted; 5069 break; 5070 } 5071 } else { 5072 // If we didn't get an event that means we've timed out... We will 5073 // interrupt the process here. Depending on what we were asked to do 5074 // we will either exit, or try with all threads running for the same 5075 // timeout. 5076 5077 if (log) { 5078 if (options.GetTryAllThreads()) { 5079 if (before_first_timeout) { 5080 LLDB_LOG(log, 5081 "Running function with one thread timeout timed out."); 5082 } else 5083 LLDB_LOG(log, "Restarting function with all threads enabled and " 5084 "timeout: {0} timed out, abandoning execution.", 5085 timeout); 5086 } else 5087 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5088 "abandoning execution.", 5089 timeout); 5090 } 5091 5092 // It is possible that between the time we issued the Halt, and we get 5093 // around to calling Halt the target could have stopped. That's fine, 5094 // Halt will figure that out and send the appropriate Stopped event. 5095 // BUT it is also possible that we stopped & restarted (e.g. hit a 5096 // signal with "stop" set to false.) In 5097 // that case, we'll get the stopped & restarted event, and we should go 5098 // back to waiting for the Halt's stopped event. That's what this 5099 // while loop does. 5100 5101 bool back_to_top = true; 5102 uint32_t try_halt_again = 0; 5103 bool do_halt = true; 5104 const uint32_t num_retries = 5; 5105 while (try_halt_again < num_retries) { 5106 Status halt_error; 5107 if (do_halt) { 5108 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5109 const bool clear_thread_plans = false; 5110 const bool use_run_lock = false; 5111 Halt(clear_thread_plans, use_run_lock); 5112 } 5113 if (halt_error.Success()) { 5114 if (log) 5115 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5116 5117 got_event = 5118 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5119 5120 if (got_event) { 5121 stop_state = 5122 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5123 if (log) { 5124 LLDB_LOGF(log, 5125 "Process::RunThreadPlan(): Stopped with event: %s", 5126 StateAsCString(stop_state)); 5127 if (stop_state == lldb::eStateStopped && 5128 Process::ProcessEventData::GetInterruptedFromEvent( 5129 event_sp.get())) 5130 log->PutCString(" Event was the Halt interruption event."); 5131 } 5132 5133 if (stop_state == lldb::eStateStopped) { 5134 if (Process::ProcessEventData::GetRestartedFromEvent( 5135 event_sp.get())) { 5136 if (log) 5137 log->PutCString("Process::RunThreadPlan(): Went to halt " 5138 "but got a restarted event, there must be " 5139 "an un-restarted stopped event so try " 5140 "again... " 5141 "Exiting wait loop."); 5142 try_halt_again++; 5143 do_halt = false; 5144 continue; 5145 } 5146 5147 // Between the time we initiated the Halt and the time we 5148 // delivered it, the process could have already finished its 5149 // job. Check that here: 5150 const bool handle_interrupts = false; 5151 if (auto result = HandleStoppedEvent( 5152 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5153 event_sp, event_to_broadcast_sp, options, 5154 handle_interrupts)) { 5155 return_value = *result; 5156 back_to_top = false; 5157 break; 5158 } 5159 5160 if (!options.GetTryAllThreads()) { 5161 if (log) 5162 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5163 "was false, we stopped so now we're " 5164 "quitting."); 5165 return_value = eExpressionInterrupted; 5166 back_to_top = false; 5167 break; 5168 } 5169 5170 if (before_first_timeout) { 5171 // Set all the other threads to run, and return to the top of 5172 // the loop, which will continue; 5173 before_first_timeout = false; 5174 thread_plan_sp->SetStopOthers(false); 5175 if (log) 5176 log->PutCString( 5177 "Process::RunThreadPlan(): about to resume."); 5178 5179 back_to_top = true; 5180 break; 5181 } else { 5182 // Running all threads failed, so return Interrupted. 5183 if (log) 5184 log->PutCString("Process::RunThreadPlan(): running all " 5185 "threads timed out."); 5186 return_value = eExpressionInterrupted; 5187 back_to_top = false; 5188 break; 5189 } 5190 } 5191 } else { 5192 if (log) 5193 log->PutCString("Process::RunThreadPlan(): halt said it " 5194 "succeeded, but I got no event. " 5195 "I'm getting out of here passing Interrupted."); 5196 return_value = eExpressionInterrupted; 5197 back_to_top = false; 5198 break; 5199 } 5200 } else { 5201 try_halt_again++; 5202 continue; 5203 } 5204 } 5205 5206 if (!back_to_top || try_halt_again > num_retries) 5207 break; 5208 else 5209 continue; 5210 } 5211 } // END WAIT LOOP 5212 5213 // If we had to start up a temporary private state thread to run this 5214 // thread plan, shut it down now. 5215 if (backup_private_state_thread.IsJoinable()) { 5216 StopPrivateStateThread(); 5217 Status error; 5218 m_private_state_thread = backup_private_state_thread; 5219 if (stopper_base_plan_sp) { 5220 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5221 } 5222 if (old_state != eStateInvalid) 5223 m_public_state.SetValueNoLock(old_state); 5224 } 5225 5226 // If our thread went away on us, we need to get out of here without 5227 // doing any more work. We don't have to clean up the thread plan, that 5228 // will have happened when the Thread was destroyed. 5229 if (return_value == eExpressionThreadVanished) { 5230 return return_value; 5231 } 5232 5233 if (return_value != eExpressionCompleted && log) { 5234 // Print a backtrace into the log so we can figure out where we are: 5235 StreamString s; 5236 s.PutCString("Thread state after unsuccessful completion: \n"); 5237 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5238 log->PutString(s.GetString()); 5239 } 5240 // Restore the thread state if we are going to discard the plan execution. 5241 // There are three cases where this could happen: 1) The execution 5242 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5243 // was true 3) We got some other error, and discard_on_error was true 5244 bool should_unwind = (return_value == eExpressionInterrupted && 5245 options.DoesUnwindOnError()) || 5246 (return_value == eExpressionHitBreakpoint && 5247 options.DoesIgnoreBreakpoints()); 5248 5249 if (return_value == eExpressionCompleted || should_unwind) { 5250 thread_plan_sp->RestoreThreadState(); 5251 } 5252 5253 // Now do some processing on the results of the run: 5254 if (return_value == eExpressionInterrupted || 5255 return_value == eExpressionHitBreakpoint) { 5256 if (log) { 5257 StreamString s; 5258 if (event_sp) 5259 event_sp->Dump(&s); 5260 else { 5261 log->PutCString("Process::RunThreadPlan(): Stop event that " 5262 "interrupted us is NULL."); 5263 } 5264 5265 StreamString ts; 5266 5267 const char *event_explanation = nullptr; 5268 5269 do { 5270 if (!event_sp) { 5271 event_explanation = "<no event>"; 5272 break; 5273 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5274 event_explanation = "<user interrupt>"; 5275 break; 5276 } else { 5277 const Process::ProcessEventData *event_data = 5278 Process::ProcessEventData::GetEventDataFromEvent( 5279 event_sp.get()); 5280 5281 if (!event_data) { 5282 event_explanation = "<no event data>"; 5283 break; 5284 } 5285 5286 Process *process = event_data->GetProcessSP().get(); 5287 5288 if (!process) { 5289 event_explanation = "<no process>"; 5290 break; 5291 } 5292 5293 ThreadList &thread_list = process->GetThreadList(); 5294 5295 uint32_t num_threads = thread_list.GetSize(); 5296 uint32_t thread_index; 5297 5298 ts.Printf("<%u threads> ", num_threads); 5299 5300 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5301 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5302 5303 if (!thread) { 5304 ts.Printf("<?> "); 5305 continue; 5306 } 5307 5308 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5309 RegisterContext *register_context = 5310 thread->GetRegisterContext().get(); 5311 5312 if (register_context) 5313 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5314 else 5315 ts.Printf("[ip unknown] "); 5316 5317 // Show the private stop info here, the public stop info will be 5318 // from the last natural stop. 5319 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5320 if (stop_info_sp) { 5321 const char *stop_desc = stop_info_sp->GetDescription(); 5322 if (stop_desc) 5323 ts.PutCString(stop_desc); 5324 } 5325 ts.Printf(">"); 5326 } 5327 5328 event_explanation = ts.GetData(); 5329 } 5330 } while (false); 5331 5332 if (event_explanation) 5333 LLDB_LOGF(log, 5334 "Process::RunThreadPlan(): execution interrupted: %s %s", 5335 s.GetData(), event_explanation); 5336 else 5337 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5338 s.GetData()); 5339 } 5340 5341 if (should_unwind) { 5342 LLDB_LOGF(log, 5343 "Process::RunThreadPlan: ExecutionInterrupted - " 5344 "discarding thread plans up to %p.", 5345 static_cast<void *>(thread_plan_sp.get())); 5346 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5347 } else { 5348 LLDB_LOGF(log, 5349 "Process::RunThreadPlan: ExecutionInterrupted - for " 5350 "plan: %p not discarding.", 5351 static_cast<void *>(thread_plan_sp.get())); 5352 } 5353 } else if (return_value == eExpressionSetupError) { 5354 if (log) 5355 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5356 5357 if (options.DoesUnwindOnError()) { 5358 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5359 } 5360 } else { 5361 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5362 if (log) 5363 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5364 return_value = eExpressionCompleted; 5365 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5366 if (log) 5367 log->PutCString( 5368 "Process::RunThreadPlan(): thread plan was discarded"); 5369 return_value = eExpressionDiscarded; 5370 } else { 5371 if (log) 5372 log->PutCString( 5373 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5374 if (options.DoesUnwindOnError() && thread_plan_sp) { 5375 if (log) 5376 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5377 "'cause unwind_on_error is set."); 5378 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5379 } 5380 } 5381 } 5382 5383 // Thread we ran the function in may have gone away because we ran the 5384 // target Check that it's still there, and if it is put it back in the 5385 // context. Also restore the frame in the context if it is still present. 5386 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5387 if (thread) { 5388 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5389 } 5390 5391 // Also restore the current process'es selected frame & thread, since this 5392 // function calling may be done behind the user's back. 5393 5394 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5395 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5396 selected_stack_id.IsValid()) { 5397 // We were able to restore the selected thread, now restore the frame: 5398 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5399 StackFrameSP old_frame_sp = 5400 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5401 selected_stack_id); 5402 if (old_frame_sp) 5403 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5404 old_frame_sp.get()); 5405 } 5406 } 5407 } 5408 5409 // If the process exited during the run of the thread plan, notify everyone. 5410 5411 if (event_to_broadcast_sp) { 5412 if (log) 5413 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5414 BroadcastEvent(event_to_broadcast_sp); 5415 } 5416 5417 return return_value; 5418 } 5419 5420 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5421 const char *result_name = "<unknown>"; 5422 5423 switch (result) { 5424 case eExpressionCompleted: 5425 result_name = "eExpressionCompleted"; 5426 break; 5427 case eExpressionDiscarded: 5428 result_name = "eExpressionDiscarded"; 5429 break; 5430 case eExpressionInterrupted: 5431 result_name = "eExpressionInterrupted"; 5432 break; 5433 case eExpressionHitBreakpoint: 5434 result_name = "eExpressionHitBreakpoint"; 5435 break; 5436 case eExpressionSetupError: 5437 result_name = "eExpressionSetupError"; 5438 break; 5439 case eExpressionParseError: 5440 result_name = "eExpressionParseError"; 5441 break; 5442 case eExpressionResultUnavailable: 5443 result_name = "eExpressionResultUnavailable"; 5444 break; 5445 case eExpressionTimedOut: 5446 result_name = "eExpressionTimedOut"; 5447 break; 5448 case eExpressionStoppedForDebug: 5449 result_name = "eExpressionStoppedForDebug"; 5450 break; 5451 case eExpressionThreadVanished: 5452 result_name = "eExpressionThreadVanished"; 5453 } 5454 return result_name; 5455 } 5456 5457 void Process::GetStatus(Stream &strm) { 5458 const StateType state = GetState(); 5459 if (StateIsStoppedState(state, false)) { 5460 if (state == eStateExited) { 5461 int exit_status = GetExitStatus(); 5462 const char *exit_description = GetExitDescription(); 5463 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5464 GetID(), exit_status, exit_status, 5465 exit_description ? exit_description : ""); 5466 } else { 5467 if (state == eStateConnected) 5468 strm.Printf("Connected to remote target.\n"); 5469 else 5470 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5471 } 5472 } else { 5473 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5474 } 5475 } 5476 5477 size_t Process::GetThreadStatus(Stream &strm, 5478 bool only_threads_with_stop_reason, 5479 uint32_t start_frame, uint32_t num_frames, 5480 uint32_t num_frames_with_source, 5481 bool stop_format) { 5482 size_t num_thread_infos_dumped = 0; 5483 5484 // You can't hold the thread list lock while calling Thread::GetStatus. That 5485 // very well might run code (e.g. if we need it to get return values or 5486 // arguments.) For that to work the process has to be able to acquire it. 5487 // So instead copy the thread ID's, and look them up one by one: 5488 5489 uint32_t num_threads; 5490 std::vector<lldb::tid_t> thread_id_array; 5491 // Scope for thread list locker; 5492 { 5493 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5494 ThreadList &curr_thread_list = GetThreadList(); 5495 num_threads = curr_thread_list.GetSize(); 5496 uint32_t idx; 5497 thread_id_array.resize(num_threads); 5498 for (idx = 0; idx < num_threads; ++idx) 5499 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5500 } 5501 5502 for (uint32_t i = 0; i < num_threads; i++) { 5503 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5504 if (thread_sp) { 5505 if (only_threads_with_stop_reason) { 5506 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5507 if (!stop_info_sp || !stop_info_sp->IsValid()) 5508 continue; 5509 } 5510 thread_sp->GetStatus(strm, start_frame, num_frames, 5511 num_frames_with_source, 5512 stop_format); 5513 ++num_thread_infos_dumped; 5514 } else { 5515 Log *log = GetLog(LLDBLog::Process); 5516 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5517 " vanished while running Thread::GetStatus."); 5518 } 5519 } 5520 return num_thread_infos_dumped; 5521 } 5522 5523 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5524 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5525 } 5526 5527 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5528 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5529 region.GetByteSize()); 5530 } 5531 5532 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5533 void *baton) { 5534 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5535 } 5536 5537 bool Process::RunPreResumeActions() { 5538 bool result = true; 5539 while (!m_pre_resume_actions.empty()) { 5540 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5541 m_pre_resume_actions.pop_back(); 5542 bool this_result = action.callback(action.baton); 5543 if (result) 5544 result = this_result; 5545 } 5546 return result; 5547 } 5548 5549 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5550 5551 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5552 { 5553 PreResumeCallbackAndBaton element(callback, baton); 5554 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5555 if (found_iter != m_pre_resume_actions.end()) 5556 { 5557 m_pre_resume_actions.erase(found_iter); 5558 } 5559 } 5560 5561 ProcessRunLock &Process::GetRunLock() { 5562 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5563 return m_private_run_lock; 5564 else 5565 return m_public_run_lock; 5566 } 5567 5568 bool Process::CurrentThreadIsPrivateStateThread() 5569 { 5570 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5571 } 5572 5573 5574 void Process::Flush() { 5575 m_thread_list.Flush(); 5576 m_extended_thread_list.Flush(); 5577 m_extended_thread_stop_id = 0; 5578 m_queue_list.Clear(); 5579 m_queue_list_stop_id = 0; 5580 } 5581 5582 lldb::addr_t Process::GetCodeAddressMask() { 5583 if (m_code_address_mask == 0) { 5584 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5585 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5586 SetCodeAddressMask(address_mask); 5587 } 5588 } 5589 return m_code_address_mask; 5590 } 5591 5592 lldb::addr_t Process::GetDataAddressMask() { 5593 if (m_data_address_mask == 0) { 5594 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5595 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5596 SetDataAddressMask(address_mask); 5597 } 5598 } 5599 return m_data_address_mask; 5600 } 5601 5602 void Process::DidExec() { 5603 Log *log = GetLog(LLDBLog::Process); 5604 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5605 5606 Target &target = GetTarget(); 5607 target.CleanupProcess(); 5608 target.ClearModules(false); 5609 m_dynamic_checkers_up.reset(); 5610 m_abi_sp.reset(); 5611 m_system_runtime_up.reset(); 5612 m_os_up.reset(); 5613 m_dyld_up.reset(); 5614 m_jit_loaders_up.reset(); 5615 m_image_tokens.clear(); 5616 m_allocated_memory_cache.Clear(); 5617 { 5618 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5619 m_language_runtimes.clear(); 5620 } 5621 m_instrumentation_runtimes.clear(); 5622 m_thread_list.DiscardThreadPlans(); 5623 m_memory_cache.Clear(true); 5624 DoDidExec(); 5625 CompleteAttach(); 5626 // Flush the process (threads and all stack frames) after running 5627 // CompleteAttach() in case the dynamic loader loaded things in new 5628 // locations. 5629 Flush(); 5630 5631 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5632 // let the target know so it can do any cleanup it needs to. 5633 target.DidExec(); 5634 } 5635 5636 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5637 if (address == nullptr) { 5638 error.SetErrorString("Invalid address argument"); 5639 return LLDB_INVALID_ADDRESS; 5640 } 5641 5642 addr_t function_addr = LLDB_INVALID_ADDRESS; 5643 5644 addr_t addr = address->GetLoadAddress(&GetTarget()); 5645 std::map<addr_t, addr_t>::const_iterator iter = 5646 m_resolved_indirect_addresses.find(addr); 5647 if (iter != m_resolved_indirect_addresses.end()) { 5648 function_addr = (*iter).second; 5649 } else { 5650 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5651 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5652 error.SetErrorStringWithFormat( 5653 "Unable to call resolver for indirect function %s", 5654 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5655 function_addr = LLDB_INVALID_ADDRESS; 5656 } else { 5657 if (ABISP abi_sp = GetABI()) 5658 function_addr = abi_sp->FixCodeAddress(function_addr); 5659 m_resolved_indirect_addresses.insert( 5660 std::pair<addr_t, addr_t>(addr, function_addr)); 5661 } 5662 } 5663 return function_addr; 5664 } 5665 5666 void Process::ModulesDidLoad(ModuleList &module_list) { 5667 // Inform the system runtime of the modified modules. 5668 SystemRuntime *sys_runtime = GetSystemRuntime(); 5669 if (sys_runtime) 5670 sys_runtime->ModulesDidLoad(module_list); 5671 5672 GetJITLoaders().ModulesDidLoad(module_list); 5673 5674 // Give the instrumentation runtimes a chance to be created before informing 5675 // them of the modified modules. 5676 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5677 m_instrumentation_runtimes); 5678 for (auto &runtime : m_instrumentation_runtimes) 5679 runtime.second->ModulesDidLoad(module_list); 5680 5681 // Give the language runtimes a chance to be created before informing them of 5682 // the modified modules. 5683 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5684 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5685 runtime->ModulesDidLoad(module_list); 5686 } 5687 5688 // If we don't have an operating system plug-in, try to load one since 5689 // loading shared libraries might cause a new one to try and load 5690 if (!m_os_up) 5691 LoadOperatingSystemPlugin(false); 5692 5693 // Inform the structured-data plugins of the modified modules. 5694 for (auto pair : m_structured_data_plugin_map) { 5695 if (pair.second) 5696 pair.second->ModulesDidLoad(*this, module_list); 5697 } 5698 } 5699 5700 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5701 const char *fmt, ...) { 5702 bool print_warning = true; 5703 5704 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5705 if (!stream_sp) 5706 return; 5707 5708 if (repeat_key != nullptr) { 5709 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5710 if (it == m_warnings_issued.end()) { 5711 m_warnings_issued[warning_type] = WarningsPointerSet(); 5712 m_warnings_issued[warning_type].insert(repeat_key); 5713 } else { 5714 if (it->second.find(repeat_key) != it->second.end()) { 5715 print_warning = false; 5716 } else { 5717 it->second.insert(repeat_key); 5718 } 5719 } 5720 } 5721 5722 if (print_warning) { 5723 va_list args; 5724 va_start(args, fmt); 5725 stream_sp->PrintfVarArg(fmt, args); 5726 va_end(args); 5727 } 5728 } 5729 5730 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5731 if (!GetWarningsOptimization()) 5732 return; 5733 if (!sc.module_sp) 5734 return; 5735 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5736 sc.function->GetIsOptimized()) { 5737 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5738 "%s was compiled with optimization - stepping may behave " 5739 "oddly; variables may not be available.\n", 5740 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5741 } 5742 } 5743 5744 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5745 if (!GetWarningsUnsupportedLanguage()) 5746 return; 5747 if (!sc.module_sp) 5748 return; 5749 LanguageType language = sc.GetLanguage(); 5750 if (language == eLanguageTypeUnknown) 5751 return; 5752 LanguageSet plugins = 5753 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5754 if (!plugins[language]) { 5755 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5756 sc.module_sp.get(), 5757 "This version of LLDB has no plugin for the language \"%s\". " 5758 "Inspection of frame variables will be limited.\n", 5759 Language::GetNameForLanguageType(language)); 5760 } 5761 } 5762 5763 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5764 info.Clear(); 5765 5766 PlatformSP platform_sp = GetTarget().GetPlatform(); 5767 if (!platform_sp) 5768 return false; 5769 5770 return platform_sp->GetProcessInfo(GetID(), info); 5771 } 5772 5773 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5774 ThreadCollectionSP threads; 5775 5776 const MemoryHistorySP &memory_history = 5777 MemoryHistory::FindPlugin(shared_from_this()); 5778 5779 if (!memory_history) { 5780 return threads; 5781 } 5782 5783 threads = std::make_shared<ThreadCollection>( 5784 memory_history->GetHistoryThreads(addr)); 5785 5786 return threads; 5787 } 5788 5789 InstrumentationRuntimeSP 5790 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5791 InstrumentationRuntimeCollection::iterator pos; 5792 pos = m_instrumentation_runtimes.find(type); 5793 if (pos == m_instrumentation_runtimes.end()) { 5794 return InstrumentationRuntimeSP(); 5795 } else 5796 return (*pos).second; 5797 } 5798 5799 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5800 const ArchSpec &arch, ModuleSpec &module_spec) { 5801 module_spec.Clear(); 5802 return false; 5803 } 5804 5805 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5806 m_image_tokens.push_back(image_ptr); 5807 return m_image_tokens.size() - 1; 5808 } 5809 5810 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5811 if (token < m_image_tokens.size()) 5812 return m_image_tokens[token]; 5813 return LLDB_INVALID_ADDRESS; 5814 } 5815 5816 void Process::ResetImageToken(size_t token) { 5817 if (token < m_image_tokens.size()) 5818 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5819 } 5820 5821 Address 5822 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5823 AddressRange range_bounds) { 5824 Target &target = GetTarget(); 5825 DisassemblerSP disassembler_sp; 5826 InstructionList *insn_list = nullptr; 5827 5828 Address retval = default_stop_addr; 5829 5830 if (!target.GetUseFastStepping()) 5831 return retval; 5832 if (!default_stop_addr.IsValid()) 5833 return retval; 5834 5835 const char *plugin_name = nullptr; 5836 const char *flavor = nullptr; 5837 disassembler_sp = Disassembler::DisassembleRange( 5838 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5839 if (disassembler_sp) 5840 insn_list = &disassembler_sp->GetInstructionList(); 5841 5842 if (insn_list == nullptr) { 5843 return retval; 5844 } 5845 5846 size_t insn_offset = 5847 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5848 if (insn_offset == UINT32_MAX) { 5849 return retval; 5850 } 5851 5852 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5853 insn_offset, false /* ignore_calls*/, nullptr); 5854 if (branch_index == UINT32_MAX) { 5855 return retval; 5856 } 5857 5858 if (branch_index > insn_offset) { 5859 Address next_branch_insn_address = 5860 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5861 if (next_branch_insn_address.IsValid() && 5862 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5863 retval = next_branch_insn_address; 5864 } 5865 } 5866 5867 return retval; 5868 } 5869 5870 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, 5871 MemoryRegionInfo &range_info) { 5872 if (const lldb::ABISP &abi = GetABI()) 5873 load_addr = abi->FixDataAddress(load_addr); 5874 return DoGetMemoryRegionInfo(load_addr, range_info); 5875 } 5876 5877 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5878 Status error; 5879 5880 lldb::addr_t range_end = 0; 5881 const lldb::ABISP &abi = GetABI(); 5882 5883 region_list.clear(); 5884 do { 5885 lldb_private::MemoryRegionInfo region_info; 5886 error = GetMemoryRegionInfo(range_end, region_info); 5887 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5888 if (error.Fail()) { 5889 region_list.clear(); 5890 break; 5891 } 5892 5893 // We only check the end address, not start and end, because we assume that 5894 // the start will not have non-address bits until the first unmappable 5895 // region. We will have exited the loop by that point because the previous 5896 // region, the last mappable region, will have non-address bits in its end 5897 // address. 5898 range_end = region_info.GetRange().GetRangeEnd(); 5899 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5900 region_list.push_back(std::move(region_info)); 5901 } 5902 } while ( 5903 // For a process with no non-address bits, all address bits 5904 // set means the end of memory. 5905 range_end != LLDB_INVALID_ADDRESS && 5906 // If we have non-address bits and some are set then the end 5907 // is at or beyond the end of mappable memory. 5908 !(abi && (abi->FixDataAddress(range_end) != range_end))); 5909 5910 return error; 5911 } 5912 5913 Status 5914 Process::ConfigureStructuredData(ConstString type_name, 5915 const StructuredData::ObjectSP &config_sp) { 5916 // If you get this, the Process-derived class needs to implement a method to 5917 // enable an already-reported asynchronous structured data feature. See 5918 // ProcessGDBRemote for an example implementation over gdb-remote. 5919 return Status("unimplemented"); 5920 } 5921 5922 void Process::MapSupportedStructuredDataPlugins( 5923 const StructuredData::Array &supported_type_names) { 5924 Log *log = GetLog(LLDBLog::Process); 5925 5926 // Bail out early if there are no type names to map. 5927 if (supported_type_names.GetSize() == 0) { 5928 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5929 __FUNCTION__); 5930 return; 5931 } 5932 5933 // Convert StructuredData type names to ConstString instances. 5934 std::set<ConstString> const_type_names; 5935 5936 LLDB_LOGF(log, 5937 "Process::%s(): the process supports the following async " 5938 "structured data types:", 5939 __FUNCTION__); 5940 5941 supported_type_names.ForEach( 5942 [&const_type_names, &log](StructuredData::Object *object) { 5943 if (!object) { 5944 // Invalid - shouldn't be null objects in the array. 5945 return false; 5946 } 5947 5948 auto type_name = object->GetAsString(); 5949 if (!type_name) { 5950 // Invalid format - all type names should be strings. 5951 return false; 5952 } 5953 5954 const_type_names.insert(ConstString(type_name->GetValue())); 5955 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5956 return true; 5957 }); 5958 5959 // For each StructuredDataPlugin, if the plugin handles any of the types in 5960 // the supported_type_names, map that type name to that plugin. Stop when 5961 // we've consumed all the type names. 5962 // FIXME: should we return an error if there are type names nobody 5963 // supports? 5964 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5965 auto create_instance = 5966 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5967 plugin_index); 5968 if (!create_instance) 5969 break; 5970 5971 // Create the plugin. 5972 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5973 if (!plugin_sp) { 5974 // This plugin doesn't think it can work with the process. Move on to the 5975 // next. 5976 continue; 5977 } 5978 5979 // For any of the remaining type names, map any that this plugin supports. 5980 std::vector<ConstString> names_to_remove; 5981 for (auto &type_name : const_type_names) { 5982 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5983 m_structured_data_plugin_map.insert( 5984 std::make_pair(type_name, plugin_sp)); 5985 names_to_remove.push_back(type_name); 5986 LLDB_LOG(log, "using plugin {0} for type name {1}", 5987 plugin_sp->GetPluginName(), type_name); 5988 } 5989 } 5990 5991 // Remove the type names that were consumed by this plugin. 5992 for (auto &type_name : names_to_remove) 5993 const_type_names.erase(type_name); 5994 } 5995 } 5996 5997 bool Process::RouteAsyncStructuredData( 5998 const StructuredData::ObjectSP object_sp) { 5999 // Nothing to do if there's no data. 6000 if (!object_sp) 6001 return false; 6002 6003 // The contract is this must be a dictionary, so we can look up the routing 6004 // key via the top-level 'type' string value within the dictionary. 6005 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6006 if (!dictionary) 6007 return false; 6008 6009 // Grab the async structured type name (i.e. the feature/plugin name). 6010 ConstString type_name; 6011 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6012 return false; 6013 6014 // Check if there's a plugin registered for this type name. 6015 auto find_it = m_structured_data_plugin_map.find(type_name); 6016 if (find_it == m_structured_data_plugin_map.end()) { 6017 // We don't have a mapping for this structured data type. 6018 return false; 6019 } 6020 6021 // Route the structured data to the plugin. 6022 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6023 return true; 6024 } 6025 6026 Status Process::UpdateAutomaticSignalFiltering() { 6027 // Default implementation does nothign. 6028 // No automatic signal filtering to speak of. 6029 return Status(); 6030 } 6031 6032 UtilityFunction *Process::GetLoadImageUtilityFunction( 6033 Platform *platform, 6034 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6035 if (platform != GetTarget().GetPlatform().get()) 6036 return nullptr; 6037 llvm::call_once(m_dlopen_utility_func_flag_once, 6038 [&] { m_dlopen_utility_func_up = factory(); }); 6039 return m_dlopen_utility_func_up.get(); 6040 } 6041 6042 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6043 if (!IsLiveDebugSession()) 6044 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6045 "Can't trace a non-live process."); 6046 return llvm::make_error<UnimplementedError>(); 6047 } 6048 6049 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6050 addr_t &returned_func, 6051 bool trap_exceptions) { 6052 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6053 if (thread == nullptr || address == nullptr) 6054 return false; 6055 6056 EvaluateExpressionOptions options; 6057 options.SetStopOthers(true); 6058 options.SetUnwindOnError(true); 6059 options.SetIgnoreBreakpoints(true); 6060 options.SetTryAllThreads(true); 6061 options.SetDebug(false); 6062 options.SetTimeout(GetUtilityExpressionTimeout()); 6063 options.SetTrapExceptions(trap_exceptions); 6064 6065 auto type_system_or_err = 6066 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6067 if (!type_system_or_err) { 6068 llvm::consumeError(type_system_or_err.takeError()); 6069 return false; 6070 } 6071 CompilerType void_ptr_type = 6072 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6073 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6074 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6075 if (call_plan_sp) { 6076 DiagnosticManager diagnostics; 6077 6078 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6079 if (frame) { 6080 ExecutionContext exe_ctx; 6081 frame->CalculateExecutionContext(exe_ctx); 6082 ExpressionResults result = 6083 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6084 if (result == eExpressionCompleted) { 6085 returned_func = 6086 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6087 LLDB_INVALID_ADDRESS); 6088 6089 if (GetAddressByteSize() == 4) { 6090 if (returned_func == UINT32_MAX) 6091 return false; 6092 } else if (GetAddressByteSize() == 8) { 6093 if (returned_func == UINT64_MAX) 6094 return false; 6095 } 6096 return true; 6097 } 6098 } 6099 } 6100 6101 return false; 6102 } 6103 6104 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6105 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6106 const MemoryTagManager *tag_manager = 6107 arch ? arch->GetMemoryTagManager() : nullptr; 6108 if (!arch || !tag_manager) { 6109 return llvm::createStringError( 6110 llvm::inconvertibleErrorCode(), 6111 "This architecture does not support memory tagging"); 6112 } 6113 6114 if (!SupportsMemoryTagging()) { 6115 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6116 "Process does not support memory tagging"); 6117 } 6118 6119 return tag_manager; 6120 } 6121 6122 llvm::Expected<std::vector<lldb::addr_t>> 6123 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6124 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6125 GetMemoryTagManager(); 6126 if (!tag_manager_or_err) 6127 return tag_manager_or_err.takeError(); 6128 6129 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6130 llvm::Expected<std::vector<uint8_t>> tag_data = 6131 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6132 if (!tag_data) 6133 return tag_data.takeError(); 6134 6135 return tag_manager->UnpackTagsData(*tag_data, 6136 len / tag_manager->GetGranuleSize()); 6137 } 6138 6139 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6140 const std::vector<lldb::addr_t> &tags) { 6141 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6142 GetMemoryTagManager(); 6143 if (!tag_manager_or_err) 6144 return Status(tag_manager_or_err.takeError()); 6145 6146 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6147 llvm::Expected<std::vector<uint8_t>> packed_tags = 6148 tag_manager->PackTags(tags); 6149 if (!packed_tags) { 6150 return Status(packed_tags.takeError()); 6151 } 6152 6153 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6154 *packed_tags); 6155 } 6156