1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
17 #include "lldb/Breakpoint/BreakpointLocation.h"
18 #include "lldb/Breakpoint/StoppointCallbackContext.h"
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Expression/DiagnosticManager.h"
25 #include "lldb/Expression/DynamicCheckerFunctions.h"
26 #include "lldb/Expression/UserExpression.h"
27 #include "lldb/Expression/UtilityFunction.h"
28 #include "lldb/Host/ConnectionFileDescriptor.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Interpreter/CommandInterpreter.h"
37 #include "lldb/Interpreter/OptionArgParser.h"
38 #include "lldb/Interpreter/OptionValueProperties.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
42 #include "lldb/Target/AssertFrameRecognizer.h"
43 #include "lldb/Target/DynamicLoader.h"
44 #include "lldb/Target/InstrumentationRuntime.h"
45 #include "lldb/Target/JITLoader.h"
46 #include "lldb/Target/JITLoaderList.h"
47 #include "lldb/Target/Language.h"
48 #include "lldb/Target/LanguageRuntime.h"
49 #include "lldb/Target/MemoryHistory.h"
50 #include "lldb/Target/MemoryRegionInfo.h"
51 #include "lldb/Target/OperatingSystem.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
54 #include "lldb/Target/RegisterContext.h"
55 #include "lldb/Target/StopInfo.h"
56 #include "lldb/Target/StructuredDataPlugin.h"
57 #include "lldb/Target/SystemRuntime.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
62 #include "lldb/Target/ThreadPlanBase.h"
63 #include "lldb/Target/ThreadPlanCallFunction.h"
64 #include "lldb/Target/ThreadPlanStack.h"
65 #include "lldb/Target/UnixSignals.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/LLDBLog.h"
68 #include "lldb/Utility/Log.h"
69 #include "lldb/Utility/NameMatches.h"
70 #include "lldb/Utility/ProcessInfo.h"
71 #include "lldb/Utility/SelectHelper.h"
72 #include "lldb/Utility/State.h"
73 #include "lldb/Utility/Timer.h"
74 
75 using namespace lldb;
76 using namespace lldb_private;
77 using namespace std::chrono;
78 
79 // Comment out line below to disable memory caching, overriding the process
80 // setting target.process.disable-memory-cache
81 #define ENABLE_MEMORY_CACHING
82 
83 #ifdef ENABLE_MEMORY_CACHING
84 #define DISABLE_MEM_CACHE_DEFAULT false
85 #else
86 #define DISABLE_MEM_CACHE_DEFAULT true
87 #endif
88 
89 class ProcessOptionValueProperties
90     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
91 public:
92   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
93 
94   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
95                                      bool will_modify,
96                                      uint32_t idx) const override {
97     // When getting the value for a key from the process options, we will
98     // always try and grab the setting from the current process if there is
99     // one. Else we just use the one from this instance.
100     if (exe_ctx) {
101       Process *process = exe_ctx->GetProcessPtr();
102       if (process) {
103         ProcessOptionValueProperties *instance_properties =
104             static_cast<ProcessOptionValueProperties *>(
105                 process->GetValueProperties().get());
106         if (this != instance_properties)
107           return instance_properties->ProtectedGetPropertyAtIndex(idx);
108       }
109     }
110     return ProtectedGetPropertyAtIndex(idx);
111   }
112 };
113 
114 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
115     {
116         eFollowParent,
117         "parent",
118         "Continue tracing the parent process and detach the child.",
119     },
120     {
121         eFollowChild,
122         "child",
123         "Trace the child process and detach the parent.",
124     },
125 };
126 
127 #define LLDB_PROPERTIES_process
128 #include "TargetProperties.inc"
129 
130 enum {
131 #define LLDB_PROPERTIES_process
132 #include "TargetPropertiesEnum.inc"
133   ePropertyExperimental,
134 };
135 
136 #define LLDB_PROPERTIES_process_experimental
137 #include "TargetProperties.inc"
138 
139 enum {
140 #define LLDB_PROPERTIES_process_experimental
141 #include "TargetPropertiesEnum.inc"
142 };
143 
144 class ProcessExperimentalOptionValueProperties
145     : public Cloneable<ProcessExperimentalOptionValueProperties,
146                        OptionValueProperties> {
147 public:
148   ProcessExperimentalOptionValueProperties()
149       : Cloneable(
150             ConstString(Properties::GetExperimentalSettingsName())) {}
151 };
152 
153 ProcessExperimentalProperties::ProcessExperimentalProperties()
154     : Properties(OptionValuePropertiesSP(
155           new ProcessExperimentalOptionValueProperties())) {
156   m_collection_sp->Initialize(g_process_experimental_properties);
157 }
158 
159 ProcessProperties::ProcessProperties(lldb_private::Process *process)
160     : Properties(),
161       m_process(process) // Can be nullptr for global ProcessProperties
162 {
163   if (process == nullptr) {
164     // Global process properties, set them up one time
165     m_collection_sp =
166         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
167     m_collection_sp->Initialize(g_process_properties);
168     m_collection_sp->AppendProperty(
169         ConstString("thread"), ConstString("Settings specific to threads."),
170         true, Thread::GetGlobalProperties().GetValueProperties());
171   } else {
172     m_collection_sp =
173         OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
174     m_collection_sp->SetValueChangedCallback(
175         ePropertyPythonOSPluginPath,
176         [this] { m_process->LoadOperatingSystemPlugin(true); });
177   }
178 
179   m_experimental_properties_up =
180       std::make_unique<ProcessExperimentalProperties>();
181   m_collection_sp->AppendProperty(
182       ConstString(Properties::GetExperimentalSettingsName()),
183       ConstString("Experimental settings - setting these won't produce "
184                   "errors if the setting is not present."),
185       true, m_experimental_properties_up->GetValueProperties());
186 }
187 
188 ProcessProperties::~ProcessProperties() = default;
189 
190 bool ProcessProperties::GetDisableMemoryCache() const {
191   const uint32_t idx = ePropertyDisableMemCache;
192   return m_collection_sp->GetPropertyAtIndexAsBoolean(
193       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
194 }
195 
196 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
197   const uint32_t idx = ePropertyMemCacheLineSize;
198   return m_collection_sp->GetPropertyAtIndexAsUInt64(
199       nullptr, idx, g_process_properties[idx].default_uint_value);
200 }
201 
202 Args ProcessProperties::GetExtraStartupCommands() const {
203   Args args;
204   const uint32_t idx = ePropertyExtraStartCommand;
205   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
206   return args;
207 }
208 
209 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
210   const uint32_t idx = ePropertyExtraStartCommand;
211   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
212 }
213 
214 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
215   const uint32_t idx = ePropertyPythonOSPluginPath;
216   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
217 }
218 
219 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
220   const uint32_t idx = ePropertyVirtualAddressableBits;
221   return m_collection_sp->GetPropertyAtIndexAsUInt64(
222       nullptr, idx, g_process_properties[idx].default_uint_value);
223 }
224 
225 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
226   const uint32_t idx = ePropertyVirtualAddressableBits;
227   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
228 }
229 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
230   const uint32_t idx = ePropertyPythonOSPluginPath;
231   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
232 }
233 
234 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
235   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
236   return m_collection_sp->GetPropertyAtIndexAsBoolean(
237       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
238 }
239 
240 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
241   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
242   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
243 }
244 
245 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
246   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
247   return m_collection_sp->GetPropertyAtIndexAsBoolean(
248       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
249 }
250 
251 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
252   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
253   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
254 }
255 
256 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
257   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
258   return m_collection_sp->GetPropertyAtIndexAsBoolean(
259       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
260 }
261 
262 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
263   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
264   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
265 }
266 
267 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
268   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
269   return m_collection_sp->GetPropertyAtIndexAsBoolean(
270       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
271 }
272 
273 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
274   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
275   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
276   m_process->Flush();
277 }
278 
279 bool ProcessProperties::GetDetachKeepsStopped() const {
280   const uint32_t idx = ePropertyDetachKeepsStopped;
281   return m_collection_sp->GetPropertyAtIndexAsBoolean(
282       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
283 }
284 
285 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
286   const uint32_t idx = ePropertyDetachKeepsStopped;
287   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
288 }
289 
290 bool ProcessProperties::GetWarningsOptimization() const {
291   const uint32_t idx = ePropertyWarningOptimization;
292   return m_collection_sp->GetPropertyAtIndexAsBoolean(
293       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
294 }
295 
296 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
297   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
298   return m_collection_sp->GetPropertyAtIndexAsBoolean(
299       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
300 }
301 
302 bool ProcessProperties::GetStopOnExec() const {
303   const uint32_t idx = ePropertyStopOnExec;
304   return m_collection_sp->GetPropertyAtIndexAsBoolean(
305       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
306 }
307 
308 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
309   const uint32_t idx = ePropertyUtilityExpressionTimeout;
310   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
311       nullptr, idx, g_process_properties[idx].default_uint_value);
312   return std::chrono::seconds(value);
313 }
314 
315 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
316   const uint32_t idx = ePropertyInterruptTimeout;
317   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
318       nullptr, idx, g_process_properties[idx].default_uint_value);
319   return std::chrono::seconds(value);
320 }
321 
322 bool ProcessProperties::GetSteppingRunsAllThreads() const {
323   const uint32_t idx = ePropertySteppingRunsAllThreads;
324   return m_collection_sp->GetPropertyAtIndexAsBoolean(
325       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
326 }
327 
328 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
329   const bool fail_value = true;
330   const Property *exp_property =
331       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
332   OptionValueProperties *exp_values =
333       exp_property->GetValue()->GetAsProperties();
334   if (!exp_values)
335     return fail_value;
336 
337   return exp_values->GetPropertyAtIndexAsBoolean(
338       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
339 }
340 
341 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
342   const Property *exp_property =
343       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
344   OptionValueProperties *exp_values =
345       exp_property->GetValue()->GetAsProperties();
346   if (exp_values)
347     exp_values->SetPropertyAtIndexAsBoolean(
348         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
349 }
350 
351 FollowForkMode ProcessProperties::GetFollowForkMode() const {
352   const uint32_t idx = ePropertyFollowForkMode;
353   return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration(
354       nullptr, idx, g_process_properties[idx].default_uint_value);
355 }
356 
357 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
358                               llvm::StringRef plugin_name,
359                               ListenerSP listener_sp,
360                               const FileSpec *crash_file_path,
361                               bool can_connect) {
362   static uint32_t g_process_unique_id = 0;
363 
364   ProcessSP process_sp;
365   ProcessCreateInstance create_callback = nullptr;
366   if (!plugin_name.empty()) {
367     create_callback =
368         PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
369     if (create_callback) {
370       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
371                                    can_connect);
372       if (process_sp) {
373         if (process_sp->CanDebug(target_sp, true)) {
374           process_sp->m_process_unique_id = ++g_process_unique_id;
375         } else
376           process_sp.reset();
377       }
378     }
379   } else {
380     for (uint32_t idx = 0;
381          (create_callback =
382               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
383          ++idx) {
384       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
385                                    can_connect);
386       if (process_sp) {
387         if (process_sp->CanDebug(target_sp, false)) {
388           process_sp->m_process_unique_id = ++g_process_unique_id;
389           break;
390         } else
391           process_sp.reset();
392       }
393     }
394   }
395   return process_sp;
396 }
397 
398 ConstString &Process::GetStaticBroadcasterClass() {
399   static ConstString class_name("lldb.process");
400   return class_name;
401 }
402 
403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
404     : Process(target_sp, listener_sp,
405               UnixSignals::Create(HostInfo::GetArchitecture())) {
406   // This constructor just delegates to the full Process constructor,
407   // defaulting to using the Host's UnixSignals.
408 }
409 
410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
411                  const UnixSignalsSP &unix_signals_sp)
412     : ProcessProperties(this),
413       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
414                   Process::GetStaticBroadcasterClass().AsCString()),
415       m_target_wp(target_sp), m_public_state(eStateUnloaded),
416       m_private_state(eStateUnloaded),
417       m_private_state_broadcaster(nullptr,
418                                   "lldb.process.internal_state_broadcaster"),
419       m_private_state_control_broadcaster(
420           nullptr, "lldb.process.internal_state_control_broadcaster"),
421       m_private_state_listener_sp(
422           Listener::MakeListener("lldb.process.internal_state_listener")),
423       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
424       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
425       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
426       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
427       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
428       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
429       m_breakpoint_site_list(), m_dynamic_checkers_up(),
430       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
431       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
432       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
433       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
434       m_memory_cache(*this), m_allocated_memory_cache(*this),
435       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
436       m_private_run_lock(), m_finalizing(false),
437       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
438       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
439       m_can_interpret_function_calls(false), m_warnings_issued(),
440       m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
441   CheckInWithManager();
442 
443   Log *log = GetLog(LLDBLog::Object);
444   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
445 
446   if (!m_unix_signals_sp)
447     m_unix_signals_sp = std::make_shared<UnixSignals>();
448 
449   SetEventName(eBroadcastBitStateChanged, "state-changed");
450   SetEventName(eBroadcastBitInterrupt, "interrupt");
451   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
452   SetEventName(eBroadcastBitSTDERR, "stderr-available");
453   SetEventName(eBroadcastBitProfileData, "profile-data-available");
454   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
455 
456   m_private_state_control_broadcaster.SetEventName(
457       eBroadcastInternalStateControlStop, "control-stop");
458   m_private_state_control_broadcaster.SetEventName(
459       eBroadcastInternalStateControlPause, "control-pause");
460   m_private_state_control_broadcaster.SetEventName(
461       eBroadcastInternalStateControlResume, "control-resume");
462 
463   m_listener_sp->StartListeningForEvents(
464       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
465                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
466                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
467 
468   m_private_state_listener_sp->StartListeningForEvents(
469       &m_private_state_broadcaster,
470       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
471 
472   m_private_state_listener_sp->StartListeningForEvents(
473       &m_private_state_control_broadcaster,
474       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
475           eBroadcastInternalStateControlResume);
476   // We need something valid here, even if just the default UnixSignalsSP.
477   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
478 
479   // Allow the platform to override the default cache line size
480   OptionValueSP value_sp =
481       m_collection_sp
482           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
483           ->GetValue();
484   uint32_t platform_cache_line_size =
485       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
486   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
487     value_sp->SetUInt64Value(platform_cache_line_size);
488 
489   RegisterAssertFrameRecognizer(this);
490 }
491 
492 Process::~Process() {
493   Log *log = GetLog(LLDBLog::Object);
494   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
495   StopPrivateStateThread();
496 
497   // ThreadList::Clear() will try to acquire this process's mutex, so
498   // explicitly clear the thread list here to ensure that the mutex is not
499   // destroyed before the thread list.
500   m_thread_list.Clear();
501 }
502 
503 ProcessProperties &Process::GetGlobalProperties() {
504   // NOTE: intentional leak so we don't crash if global destructor chain gets
505   // called as other threads still use the result of this function
506   static ProcessProperties *g_settings_ptr =
507       new ProcessProperties(nullptr);
508   return *g_settings_ptr;
509 }
510 
511 void Process::Finalize() {
512   if (m_finalizing.exchange(true))
513     return;
514 
515   // Destroy the process. This will call the virtual function DoDestroy under
516   // the hood, giving our derived class a chance to do the ncessary tear down.
517   DestroyImpl(false);
518 
519   // Clear our broadcaster before we proceed with destroying
520   Broadcaster::Clear();
521 
522   // Do any cleanup needed prior to being destructed... Subclasses that
523   // override this method should call this superclass method as well.
524 
525   // We need to destroy the loader before the derived Process class gets
526   // destroyed since it is very likely that undoing the loader will require
527   // access to the real process.
528   m_dynamic_checkers_up.reset();
529   m_abi_sp.reset();
530   m_os_up.reset();
531   m_system_runtime_up.reset();
532   m_dyld_up.reset();
533   m_jit_loaders_up.reset();
534   m_thread_plans.Clear();
535   m_thread_list_real.Destroy();
536   m_thread_list.Destroy();
537   m_extended_thread_list.Destroy();
538   m_queue_list.Clear();
539   m_queue_list_stop_id = 0;
540   std::vector<Notifications> empty_notifications;
541   m_notifications.swap(empty_notifications);
542   m_image_tokens.clear();
543   m_memory_cache.Clear();
544   m_allocated_memory_cache.Clear();
545   {
546     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
547     m_language_runtimes.clear();
548   }
549   m_instrumentation_runtimes.clear();
550   m_next_event_action_up.reset();
551   // Clear the last natural stop ID since it has a strong reference to this
552   // process
553   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
554   //#ifdef LLDB_CONFIGURATION_DEBUG
555   //    StreamFile s(stdout, false);
556   //    EventSP event_sp;
557   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
558   //    {
559   //        event_sp->Dump (&s);
560   //        s.EOL();
561   //    }
562   //#endif
563   // We have to be very careful here as the m_private_state_listener might
564   // contain events that have ProcessSP values in them which can keep this
565   // process around forever. These events need to be cleared out.
566   m_private_state_listener_sp->Clear();
567   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
568   m_public_run_lock.SetStopped();
569   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
570   m_private_run_lock.SetStopped();
571   m_structured_data_plugin_map.clear();
572 }
573 
574 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
575   m_notifications.push_back(callbacks);
576   if (callbacks.initialize != nullptr)
577     callbacks.initialize(callbacks.baton, this);
578 }
579 
580 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
581   std::vector<Notifications>::iterator pos, end = m_notifications.end();
582   for (pos = m_notifications.begin(); pos != end; ++pos) {
583     if (pos->baton == callbacks.baton &&
584         pos->initialize == callbacks.initialize &&
585         pos->process_state_changed == callbacks.process_state_changed) {
586       m_notifications.erase(pos);
587       return true;
588     }
589   }
590   return false;
591 }
592 
593 void Process::SynchronouslyNotifyStateChanged(StateType state) {
594   std::vector<Notifications>::iterator notification_pos,
595       notification_end = m_notifications.end();
596   for (notification_pos = m_notifications.begin();
597        notification_pos != notification_end; ++notification_pos) {
598     if (notification_pos->process_state_changed)
599       notification_pos->process_state_changed(notification_pos->baton, this,
600                                               state);
601   }
602 }
603 
604 // FIXME: We need to do some work on events before the general Listener sees
605 // them.
606 // For instance if we are continuing from a breakpoint, we need to ensure that
607 // we do the little "insert real insn, step & stop" trick.  But we can't do
608 // that when the event is delivered by the broadcaster - since that is done on
609 // the thread that is waiting for new events, so if we needed more than one
610 // event for our handling, we would stall.  So instead we do it when we fetch
611 // the event off of the queue.
612 //
613 
614 StateType Process::GetNextEvent(EventSP &event_sp) {
615   StateType state = eStateInvalid;
616 
617   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
618                                             std::chrono::seconds(0)) &&
619       event_sp)
620     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
621 
622   return state;
623 }
624 
625 void Process::SyncIOHandler(uint32_t iohandler_id,
626                             const Timeout<std::micro> &timeout) {
627   // don't sync (potentially context switch) in case where there is no process
628   // IO
629   if (!m_process_input_reader)
630     return;
631 
632   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
633 
634   Log *log = GetLog(LLDBLog::Process);
635   if (Result) {
636     LLDB_LOG(
637         log,
638         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
639         iohandler_id, *Result);
640   } else {
641     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
642              iohandler_id);
643   }
644 }
645 
646 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
647                                         EventSP *event_sp_ptr, bool wait_always,
648                                         ListenerSP hijack_listener_sp,
649                                         Stream *stream, bool use_run_lock) {
650   // We can't just wait for a "stopped" event, because the stopped event may
651   // have restarted the target. We have to actually check each event, and in
652   // the case of a stopped event check the restarted flag on the event.
653   if (event_sp_ptr)
654     event_sp_ptr->reset();
655   StateType state = GetState();
656   // If we are exited or detached, we won't ever get back to any other valid
657   // state...
658   if (state == eStateDetached || state == eStateExited)
659     return state;
660 
661   Log *log = GetLog(LLDBLog::Process);
662   LLDB_LOG(log, "timeout = {0}", timeout);
663 
664   if (!wait_always && StateIsStoppedState(state, true) &&
665       StateIsStoppedState(GetPrivateState(), true)) {
666     LLDB_LOGF(log,
667               "Process::%s returning without waiting for events; process "
668               "private and public states are already 'stopped'.",
669               __FUNCTION__);
670     // We need to toggle the run lock as this won't get done in
671     // SetPublicState() if the process is hijacked.
672     if (hijack_listener_sp && use_run_lock)
673       m_public_run_lock.SetStopped();
674     return state;
675   }
676 
677   while (state != eStateInvalid) {
678     EventSP event_sp;
679     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
680     if (event_sp_ptr && event_sp)
681       *event_sp_ptr = event_sp;
682 
683     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
684     Process::HandleProcessStateChangedEvent(event_sp, stream,
685                                             pop_process_io_handler);
686 
687     switch (state) {
688     case eStateCrashed:
689     case eStateDetached:
690     case eStateExited:
691     case eStateUnloaded:
692       // We need to toggle the run lock as this won't get done in
693       // SetPublicState() if the process is hijacked.
694       if (hijack_listener_sp && use_run_lock)
695         m_public_run_lock.SetStopped();
696       return state;
697     case eStateStopped:
698       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
699         continue;
700       else {
701         // We need to toggle the run lock as this won't get done in
702         // SetPublicState() if the process is hijacked.
703         if (hijack_listener_sp && use_run_lock)
704           m_public_run_lock.SetStopped();
705         return state;
706       }
707     default:
708       continue;
709     }
710   }
711   return state;
712 }
713 
714 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
715                                              Stream *stream,
716                                              bool &pop_process_io_handler) {
717   const bool handle_pop = pop_process_io_handler;
718 
719   pop_process_io_handler = false;
720   ProcessSP process_sp =
721       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
722 
723   if (!process_sp)
724     return false;
725 
726   StateType event_state =
727       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
728   if (event_state == eStateInvalid)
729     return false;
730 
731   switch (event_state) {
732   case eStateInvalid:
733   case eStateUnloaded:
734   case eStateAttaching:
735   case eStateLaunching:
736   case eStateStepping:
737   case eStateDetached:
738     if (stream)
739       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
740                      StateAsCString(event_state));
741     if (event_state == eStateDetached)
742       pop_process_io_handler = true;
743     break;
744 
745   case eStateConnected:
746   case eStateRunning:
747     // Don't be chatty when we run...
748     break;
749 
750   case eStateExited:
751     if (stream)
752       process_sp->GetStatus(*stream);
753     pop_process_io_handler = true;
754     break;
755 
756   case eStateStopped:
757   case eStateCrashed:
758   case eStateSuspended:
759     // Make sure the program hasn't been auto-restarted:
760     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
761       if (stream) {
762         size_t num_reasons =
763             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
764         if (num_reasons > 0) {
765           // FIXME: Do we want to report this, or would that just be annoyingly
766           // chatty?
767           if (num_reasons == 1) {
768             const char *reason =
769                 Process::ProcessEventData::GetRestartedReasonAtIndex(
770                     event_sp.get(), 0);
771             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
772                            process_sp->GetID(),
773                            reason ? reason : "<UNKNOWN REASON>");
774           } else {
775             stream->Printf("Process %" PRIu64
776                            " stopped and restarted, reasons:\n",
777                            process_sp->GetID());
778 
779             for (size_t i = 0; i < num_reasons; i++) {
780               const char *reason =
781                   Process::ProcessEventData::GetRestartedReasonAtIndex(
782                       event_sp.get(), i);
783               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
784             }
785           }
786         }
787       }
788     } else {
789       StopInfoSP curr_thread_stop_info_sp;
790       // Lock the thread list so it doesn't change on us, this is the scope for
791       // the locker:
792       {
793         ThreadList &thread_list = process_sp->GetThreadList();
794         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
795 
796         ThreadSP curr_thread(thread_list.GetSelectedThread());
797         ThreadSP thread;
798         StopReason curr_thread_stop_reason = eStopReasonInvalid;
799         bool prefer_curr_thread = false;
800         if (curr_thread && curr_thread->IsValid()) {
801           curr_thread_stop_reason = curr_thread->GetStopReason();
802           switch (curr_thread_stop_reason) {
803           case eStopReasonNone:
804           case eStopReasonInvalid:
805             // Don't prefer the current thread if it didn't stop for a reason.
806             break;
807           case eStopReasonSignal: {
808             // We need to do the same computation we do for other threads
809             // below in case the current thread happens to be the one that
810             // stopped for the no-stop signal.
811             uint64_t signo = curr_thread->GetStopInfo()->GetValue();
812             if (process_sp->GetUnixSignals()->GetShouldStop(signo))
813               prefer_curr_thread = true;
814           } break;
815           default:
816             prefer_curr_thread = true;
817             break;
818           }
819           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
820         }
821 
822         if (!prefer_curr_thread) {
823           // Prefer a thread that has just completed its plan over another
824           // thread as current thread.
825           ThreadSP plan_thread;
826           ThreadSP other_thread;
827 
828           const size_t num_threads = thread_list.GetSize();
829           size_t i;
830           for (i = 0; i < num_threads; ++i) {
831             thread = thread_list.GetThreadAtIndex(i);
832             StopReason thread_stop_reason = thread->GetStopReason();
833             switch (thread_stop_reason) {
834             case eStopReasonInvalid:
835             case eStopReasonNone:
836               break;
837 
838             case eStopReasonSignal: {
839               // Don't select a signal thread if we weren't going to stop at
840               // that signal.  We have to have had another reason for stopping
841               // here, and the user doesn't want to see this thread.
842               uint64_t signo = thread->GetStopInfo()->GetValue();
843               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
844                 if (!other_thread)
845                   other_thread = thread;
846               }
847               break;
848             }
849             case eStopReasonTrace:
850             case eStopReasonBreakpoint:
851             case eStopReasonWatchpoint:
852             case eStopReasonException:
853             case eStopReasonExec:
854             case eStopReasonFork:
855             case eStopReasonVFork:
856             case eStopReasonVForkDone:
857             case eStopReasonThreadExiting:
858             case eStopReasonInstrumentation:
859             case eStopReasonProcessorTrace:
860               if (!other_thread)
861                 other_thread = thread;
862               break;
863             case eStopReasonPlanComplete:
864               if (!plan_thread)
865                 plan_thread = thread;
866               break;
867             }
868           }
869           if (plan_thread)
870             thread_list.SetSelectedThreadByID(plan_thread->GetID());
871           else if (other_thread)
872             thread_list.SetSelectedThreadByID(other_thread->GetID());
873           else {
874             if (curr_thread && curr_thread->IsValid())
875               thread = curr_thread;
876             else
877               thread = thread_list.GetThreadAtIndex(0);
878 
879             if (thread)
880               thread_list.SetSelectedThreadByID(thread->GetID());
881           }
882         }
883       }
884       // Drop the ThreadList mutex by here, since GetThreadStatus below might
885       // have to run code, e.g. for Data formatters, and if we hold the
886       // ThreadList mutex, then the process is going to have a hard time
887       // restarting the process.
888       if (stream) {
889         Debugger &debugger = process_sp->GetTarget().GetDebugger();
890         if (debugger.GetTargetList().GetSelectedTarget().get() ==
891             &process_sp->GetTarget()) {
892           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
893 
894           if (!thread_sp || !thread_sp->IsValid())
895             return false;
896 
897           const bool only_threads_with_stop_reason = true;
898           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
899           const uint32_t num_frames = 1;
900           const uint32_t num_frames_with_source = 1;
901           const bool stop_format = true;
902 
903           process_sp->GetStatus(*stream);
904           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
905                                       start_frame, num_frames,
906                                       num_frames_with_source,
907                                       stop_format);
908           if (curr_thread_stop_info_sp) {
909             lldb::addr_t crashing_address;
910             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
911                 curr_thread_stop_info_sp, &crashing_address);
912             if (valobj_sp) {
913               const ValueObject::GetExpressionPathFormat format =
914                   ValueObject::GetExpressionPathFormat::
915                       eGetExpressionPathFormatHonorPointers;
916               stream->PutCString("Likely cause: ");
917               valobj_sp->GetExpressionPath(*stream, format);
918               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
919             }
920           }
921         } else {
922           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
923               process_sp->GetTarget().shared_from_this());
924           if (target_idx != UINT32_MAX)
925             stream->Printf("Target %d: (", target_idx);
926           else
927             stream->Printf("Target <unknown index>: (");
928           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
929           stream->Printf(") stopped.\n");
930         }
931       }
932 
933       // Pop the process IO handler
934       pop_process_io_handler = true;
935     }
936     break;
937   }
938 
939   if (handle_pop && pop_process_io_handler)
940     process_sp->PopProcessIOHandler();
941 
942   return true;
943 }
944 
945 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
946   if (listener_sp) {
947     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
948                                               eBroadcastBitInterrupt);
949   } else
950     return false;
951 }
952 
953 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
954 
955 StateType Process::GetStateChangedEvents(EventSP &event_sp,
956                                          const Timeout<std::micro> &timeout,
957                                          ListenerSP hijack_listener_sp) {
958   Log *log = GetLog(LLDBLog::Process);
959   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
960 
961   ListenerSP listener_sp = hijack_listener_sp;
962   if (!listener_sp)
963     listener_sp = m_listener_sp;
964 
965   StateType state = eStateInvalid;
966   if (listener_sp->GetEventForBroadcasterWithType(
967           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
968           timeout)) {
969     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
970       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
971     else
972       LLDB_LOG(log, "got no event or was interrupted.");
973   }
974 
975   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
976   return state;
977 }
978 
979 Event *Process::PeekAtStateChangedEvents() {
980   Log *log = GetLog(LLDBLog::Process);
981 
982   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
983 
984   Event *event_ptr;
985   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
986       this, eBroadcastBitStateChanged);
987   if (log) {
988     if (event_ptr) {
989       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
990                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
991     } else {
992       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
993     }
994   }
995   return event_ptr;
996 }
997 
998 StateType
999 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
1000                                       const Timeout<std::micro> &timeout) {
1001   Log *log = GetLog(LLDBLog::Process);
1002   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1003 
1004   StateType state = eStateInvalid;
1005   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1006           &m_private_state_broadcaster,
1007           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1008           timeout))
1009     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1010       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1011 
1012   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1013            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1014   return state;
1015 }
1016 
1017 bool Process::GetEventsPrivate(EventSP &event_sp,
1018                                const Timeout<std::micro> &timeout,
1019                                bool control_only) {
1020   Log *log = GetLog(LLDBLog::Process);
1021   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1022 
1023   if (control_only)
1024     return m_private_state_listener_sp->GetEventForBroadcaster(
1025         &m_private_state_control_broadcaster, event_sp, timeout);
1026   else
1027     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1028 }
1029 
1030 bool Process::IsRunning() const {
1031   return StateIsRunningState(m_public_state.GetValue());
1032 }
1033 
1034 int Process::GetExitStatus() {
1035   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1036 
1037   if (m_public_state.GetValue() == eStateExited)
1038     return m_exit_status;
1039   return -1;
1040 }
1041 
1042 const char *Process::GetExitDescription() {
1043   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1044 
1045   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1046     return m_exit_string.c_str();
1047   return nullptr;
1048 }
1049 
1050 bool Process::SetExitStatus(int status, const char *cstr) {
1051   // Use a mutex to protect setting the exit status.
1052   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1053 
1054   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1055   LLDB_LOGF(
1056       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1057       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1058 
1059   // We were already in the exited state
1060   if (m_private_state.GetValue() == eStateExited) {
1061     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1062                    "state was already set to eStateExited");
1063     return false;
1064   }
1065 
1066   m_exit_status = status;
1067   if (cstr)
1068     m_exit_string = cstr;
1069   else
1070     m_exit_string.clear();
1071 
1072   // Clear the last natural stop ID since it has a strong reference to this
1073   // process
1074   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1075 
1076   SetPrivateState(eStateExited);
1077 
1078   // Allow subclasses to do some cleanup
1079   DidExit();
1080 
1081   return true;
1082 }
1083 
1084 bool Process::IsAlive() {
1085   switch (m_private_state.GetValue()) {
1086   case eStateConnected:
1087   case eStateAttaching:
1088   case eStateLaunching:
1089   case eStateStopped:
1090   case eStateRunning:
1091   case eStateStepping:
1092   case eStateCrashed:
1093   case eStateSuspended:
1094     return true;
1095   default:
1096     return false;
1097   }
1098 }
1099 
1100 // This static callback can be used to watch for local child processes on the
1101 // current host. The child process exits, the process will be found in the
1102 // global target list (we want to be completely sure that the
1103 // lldb_private::Process doesn't go away before we can deliver the signal.
1104 bool Process::SetProcessExitStatus(
1105     lldb::pid_t pid, bool exited,
1106     int signo,      // Zero for no signal
1107     int exit_status // Exit value of process if signal is zero
1108     ) {
1109   Log *log = GetLog(LLDBLog::Process);
1110   LLDB_LOGF(log,
1111             "Process::SetProcessExitStatus (pid=%" PRIu64
1112             ", exited=%i, signal=%i, exit_status=%i)\n",
1113             pid, exited, signo, exit_status);
1114 
1115   if (exited) {
1116     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1117     if (target_sp) {
1118       ProcessSP process_sp(target_sp->GetProcessSP());
1119       if (process_sp) {
1120         const char *signal_cstr = nullptr;
1121         if (signo)
1122           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1123 
1124         process_sp->SetExitStatus(exit_status, signal_cstr);
1125       }
1126     }
1127     return true;
1128   }
1129   return false;
1130 }
1131 
1132 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1133                                ThreadList &new_thread_list) {
1134   m_thread_plans.ClearThreadCache();
1135   return DoUpdateThreadList(old_thread_list, new_thread_list);
1136 }
1137 
1138 void Process::UpdateThreadListIfNeeded() {
1139   const uint32_t stop_id = GetStopID();
1140   if (m_thread_list.GetSize(false) == 0 ||
1141       stop_id != m_thread_list.GetStopID()) {
1142     bool clear_unused_threads = true;
1143     const StateType state = GetPrivateState();
1144     if (StateIsStoppedState(state, true)) {
1145       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1146       m_thread_list.SetStopID(stop_id);
1147 
1148       // m_thread_list does have its own mutex, but we need to hold onto the
1149       // mutex between the call to UpdateThreadList(...) and the
1150       // os->UpdateThreadList(...) so it doesn't change on us
1151       ThreadList &old_thread_list = m_thread_list;
1152       ThreadList real_thread_list(this);
1153       ThreadList new_thread_list(this);
1154       // Always update the thread list with the protocol specific thread list,
1155       // but only update if "true" is returned
1156       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1157         // Don't call into the OperatingSystem to update the thread list if we
1158         // are shutting down, since that may call back into the SBAPI's,
1159         // requiring the API lock which is already held by whoever is shutting
1160         // us down, causing a deadlock.
1161         OperatingSystem *os = GetOperatingSystem();
1162         if (os && !m_destroy_in_process) {
1163           // Clear any old backing threads where memory threads might have been
1164           // backed by actual threads from the lldb_private::Process subclass
1165           size_t num_old_threads = old_thread_list.GetSize(false);
1166           for (size_t i = 0; i < num_old_threads; ++i)
1167             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1168           // See if the OS plugin reports all threads.  If it does, then
1169           // it is safe to clear unseen thread's plans here.  Otherwise we
1170           // should preserve them in case they show up again:
1171           clear_unused_threads = GetOSPluginReportsAllThreads();
1172 
1173           // Turn off dynamic types to ensure we don't run any expressions.
1174           // Objective-C can run an expression to determine if a SBValue is a
1175           // dynamic type or not and we need to avoid this. OperatingSystem
1176           // plug-ins can't run expressions that require running code...
1177 
1178           Target &target = GetTarget();
1179           const lldb::DynamicValueType saved_prefer_dynamic =
1180               target.GetPreferDynamicValue();
1181           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1182             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1183 
1184           // Now let the OperatingSystem plug-in update the thread list
1185 
1186           os->UpdateThreadList(
1187               old_thread_list, // Old list full of threads created by OS plug-in
1188               real_thread_list, // The actual thread list full of threads
1189                                 // created by each lldb_private::Process
1190                                 // subclass
1191               new_thread_list); // The new thread list that we will show to the
1192                                 // user that gets filled in
1193 
1194           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1195             target.SetPreferDynamicValue(saved_prefer_dynamic);
1196         } else {
1197           // No OS plug-in, the new thread list is the same as the real thread
1198           // list.
1199           new_thread_list = real_thread_list;
1200         }
1201 
1202         m_thread_list_real.Update(real_thread_list);
1203         m_thread_list.Update(new_thread_list);
1204         m_thread_list.SetStopID(stop_id);
1205 
1206         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1207           // Clear any extended threads that we may have accumulated previously
1208           m_extended_thread_list.Clear();
1209           m_extended_thread_stop_id = GetLastNaturalStopID();
1210 
1211           m_queue_list.Clear();
1212           m_queue_list_stop_id = GetLastNaturalStopID();
1213         }
1214       }
1215       // Now update the plan stack map.
1216       // If we do have an OS plugin, any absent real threads in the
1217       // m_thread_list have already been removed from the ThreadPlanStackMap.
1218       // So any remaining threads are OS Plugin threads, and those we want to
1219       // preserve in case they show up again.
1220       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1221     }
1222   }
1223 }
1224 
1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1226   return m_thread_plans.Find(tid);
1227 }
1228 
1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1230   return m_thread_plans.PrunePlansForTID(tid);
1231 }
1232 
1233 void Process::PruneThreadPlans() {
1234   m_thread_plans.Update(GetThreadList(), true, false);
1235 }
1236 
1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1238                                     lldb::DescriptionLevel desc_level,
1239                                     bool internal, bool condense_trivial,
1240                                     bool skip_unreported_plans) {
1241   return m_thread_plans.DumpPlansForTID(
1242       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1243 }
1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1245                               bool internal, bool condense_trivial,
1246                               bool skip_unreported_plans) {
1247   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1248                            skip_unreported_plans);
1249 }
1250 
1251 void Process::UpdateQueueListIfNeeded() {
1252   if (m_system_runtime_up) {
1253     if (m_queue_list.GetSize() == 0 ||
1254         m_queue_list_stop_id != GetLastNaturalStopID()) {
1255       const StateType state = GetPrivateState();
1256       if (StateIsStoppedState(state, true)) {
1257         m_system_runtime_up->PopulateQueueList(m_queue_list);
1258         m_queue_list_stop_id = GetLastNaturalStopID();
1259       }
1260     }
1261   }
1262 }
1263 
1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1265   OperatingSystem *os = GetOperatingSystem();
1266   if (os)
1267     return os->CreateThread(tid, context);
1268   return ThreadSP();
1269 }
1270 
1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1272   return AssignIndexIDToThread(thread_id);
1273 }
1274 
1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1276   return (m_thread_id_to_index_id_map.find(thread_id) !=
1277           m_thread_id_to_index_id_map.end());
1278 }
1279 
1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1281   uint32_t result = 0;
1282   std::map<uint64_t, uint32_t>::iterator iterator =
1283       m_thread_id_to_index_id_map.find(thread_id);
1284   if (iterator == m_thread_id_to_index_id_map.end()) {
1285     result = ++m_thread_index_id;
1286     m_thread_id_to_index_id_map[thread_id] = result;
1287   } else {
1288     result = iterator->second;
1289   }
1290 
1291   return result;
1292 }
1293 
1294 StateType Process::GetState() {
1295   return m_public_state.GetValue();
1296 }
1297 
1298 void Process::SetPublicState(StateType new_state, bool restarted) {
1299   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1300   if (new_state_is_stopped) {
1301     // This will only set the time if the public stop time has no value, so
1302     // it is ok to call this multiple times. With a public stop we can't look
1303     // at the stop ID because many private stops might have happened, so we
1304     // can't check for a stop ID of zero. This allows the "statistics" command
1305     // to dump the time it takes to reach somewhere in your code, like a
1306     // breakpoint you set.
1307     GetTarget().GetStatistics().SetFirstPublicStopTime();
1308   }
1309 
1310   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1311   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1312             StateAsCString(new_state), restarted);
1313   const StateType old_state = m_public_state.GetValue();
1314   m_public_state.SetValue(new_state);
1315 
1316   // On the transition from Run to Stopped, we unlock the writer end of the run
1317   // lock.  The lock gets locked in Resume, which is the public API to tell the
1318   // program to run.
1319   if (!StateChangedIsExternallyHijacked()) {
1320     if (new_state == eStateDetached) {
1321       LLDB_LOGF(log,
1322                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1323                 StateAsCString(new_state));
1324       m_public_run_lock.SetStopped();
1325     } else {
1326       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1327       if ((old_state_is_stopped != new_state_is_stopped)) {
1328         if (new_state_is_stopped && !restarted) {
1329           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1330                     StateAsCString(new_state));
1331           m_public_run_lock.SetStopped();
1332         }
1333       }
1334     }
1335   }
1336 }
1337 
1338 Status Process::Resume() {
1339   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1340   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1341   if (!m_public_run_lock.TrySetRunning()) {
1342     Status error("Resume request failed - process still running.");
1343     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1344     return error;
1345   }
1346   Status error = PrivateResume();
1347   if (!error.Success()) {
1348     // Undo running state change
1349     m_public_run_lock.SetStopped();
1350   }
1351   return error;
1352 }
1353 
1354 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1355 
1356 Status Process::ResumeSynchronous(Stream *stream) {
1357   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1358   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1359   if (!m_public_run_lock.TrySetRunning()) {
1360     Status error("Resume request failed - process still running.");
1361     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1362     return error;
1363   }
1364 
1365   ListenerSP listener_sp(
1366       Listener::MakeListener(g_resume_sync_name));
1367   HijackProcessEvents(listener_sp);
1368 
1369   Status error = PrivateResume();
1370   if (error.Success()) {
1371     StateType state = WaitForProcessToStop(llvm::None, nullptr, true,
1372                                            listener_sp, stream);
1373     const bool must_be_alive =
1374         false; // eStateExited is ok, so this must be false
1375     if (!StateIsStoppedState(state, must_be_alive))
1376       error.SetErrorStringWithFormat(
1377           "process not in stopped state after synchronous resume: %s",
1378           StateAsCString(state));
1379   } else {
1380     // Undo running state change
1381     m_public_run_lock.SetStopped();
1382   }
1383 
1384   // Undo the hijacking of process events...
1385   RestoreProcessEvents();
1386 
1387   return error;
1388 }
1389 
1390 bool Process::StateChangedIsExternallyHijacked() {
1391   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1392     const char *hijacking_name = GetHijackingListenerName();
1393     if (hijacking_name &&
1394         strcmp(hijacking_name, g_resume_sync_name))
1395       return true;
1396   }
1397   return false;
1398 }
1399 
1400 bool Process::StateChangedIsHijackedForSynchronousResume() {
1401   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1402     const char *hijacking_name = GetHijackingListenerName();
1403     if (hijacking_name &&
1404         strcmp(hijacking_name, g_resume_sync_name) == 0)
1405       return true;
1406   }
1407   return false;
1408 }
1409 
1410 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1411 
1412 void Process::SetPrivateState(StateType new_state) {
1413   if (m_finalizing)
1414     return;
1415 
1416   Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind));
1417   bool state_changed = false;
1418 
1419   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1420 
1421   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1422   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1423 
1424   const StateType old_state = m_private_state.GetValueNoLock();
1425   state_changed = old_state != new_state;
1426 
1427   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1428   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1429   if (old_state_is_stopped != new_state_is_stopped) {
1430     if (new_state_is_stopped)
1431       m_private_run_lock.SetStopped();
1432     else
1433       m_private_run_lock.SetRunning();
1434   }
1435 
1436   if (state_changed) {
1437     m_private_state.SetValueNoLock(new_state);
1438     EventSP event_sp(
1439         new Event(eBroadcastBitStateChanged,
1440                   new ProcessEventData(shared_from_this(), new_state)));
1441     if (StateIsStoppedState(new_state, false)) {
1442       // Note, this currently assumes that all threads in the list stop when
1443       // the process stops.  In the future we will want to support a debugging
1444       // model where some threads continue to run while others are stopped.
1445       // When that happens we will either need a way for the thread list to
1446       // identify which threads are stopping or create a special thread list
1447       // containing only threads which actually stopped.
1448       //
1449       // The process plugin is responsible for managing the actual behavior of
1450       // the threads and should have stopped any threads that are going to stop
1451       // before we get here.
1452       m_thread_list.DidStop();
1453 
1454       if (m_mod_id.BumpStopID() == 0)
1455         GetTarget().GetStatistics().SetFirstPrivateStopTime();
1456 
1457       if (!m_mod_id.IsLastResumeForUserExpression())
1458         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1459       m_memory_cache.Clear();
1460       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1461                 StateAsCString(new_state), m_mod_id.GetStopID());
1462     }
1463 
1464     m_private_state_broadcaster.BroadcastEvent(event_sp);
1465   } else {
1466     LLDB_LOGF(log,
1467               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1468               StateAsCString(new_state));
1469   }
1470 }
1471 
1472 void Process::SetRunningUserExpression(bool on) {
1473   m_mod_id.SetRunningUserExpression(on);
1474 }
1475 
1476 void Process::SetRunningUtilityFunction(bool on) {
1477   m_mod_id.SetRunningUtilityFunction(on);
1478 }
1479 
1480 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1481 
1482 const lldb::ABISP &Process::GetABI() {
1483   if (!m_abi_sp)
1484     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1485   return m_abi_sp;
1486 }
1487 
1488 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1489   std::vector<LanguageRuntime *> language_runtimes;
1490 
1491   if (m_finalizing)
1492     return language_runtimes;
1493 
1494   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1495   // Before we pass off a copy of the language runtimes, we must make sure that
1496   // our collection is properly populated. It's possible that some of the
1497   // language runtimes were not loaded yet, either because nobody requested it
1498   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1499   // hadn't been loaded).
1500   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1501     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1502       language_runtimes.emplace_back(runtime);
1503   }
1504 
1505   return language_runtimes;
1506 }
1507 
1508 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1509   if (m_finalizing)
1510     return nullptr;
1511 
1512   LanguageRuntime *runtime = nullptr;
1513 
1514   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1515   LanguageRuntimeCollection::iterator pos;
1516   pos = m_language_runtimes.find(language);
1517   if (pos == m_language_runtimes.end() || !pos->second) {
1518     lldb::LanguageRuntimeSP runtime_sp(
1519         LanguageRuntime::FindPlugin(this, language));
1520 
1521     m_language_runtimes[language] = runtime_sp;
1522     runtime = runtime_sp.get();
1523   } else
1524     runtime = pos->second.get();
1525 
1526   if (runtime)
1527     // It's possible that a language runtime can support multiple LanguageTypes,
1528     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1529     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1530     // primary language type and make sure that our runtime supports it.
1531     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1532 
1533   return runtime;
1534 }
1535 
1536 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1537   if (m_finalizing)
1538     return false;
1539 
1540   if (in_value.IsDynamic())
1541     return false;
1542   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1543 
1544   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1545     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1546     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1547   }
1548 
1549   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1550     if (runtime->CouldHaveDynamicValue(in_value))
1551       return true;
1552   }
1553 
1554   return false;
1555 }
1556 
1557 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1558   m_dynamic_checkers_up.reset(dynamic_checkers);
1559 }
1560 
1561 BreakpointSiteList &Process::GetBreakpointSiteList() {
1562   return m_breakpoint_site_list;
1563 }
1564 
1565 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1566   return m_breakpoint_site_list;
1567 }
1568 
1569 void Process::DisableAllBreakpointSites() {
1570   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1571     //        bp_site->SetEnabled(true);
1572     DisableBreakpointSite(bp_site);
1573   });
1574 }
1575 
1576 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1577   Status error(DisableBreakpointSiteByID(break_id));
1578 
1579   if (error.Success())
1580     m_breakpoint_site_list.Remove(break_id);
1581 
1582   return error;
1583 }
1584 
1585 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1586   Status error;
1587   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1588   if (bp_site_sp) {
1589     if (bp_site_sp->IsEnabled())
1590       error = DisableBreakpointSite(bp_site_sp.get());
1591   } else {
1592     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1593                                    break_id);
1594   }
1595 
1596   return error;
1597 }
1598 
1599 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1600   Status error;
1601   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1602   if (bp_site_sp) {
1603     if (!bp_site_sp->IsEnabled())
1604       error = EnableBreakpointSite(bp_site_sp.get());
1605   } else {
1606     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1607                                    break_id);
1608   }
1609   return error;
1610 }
1611 
1612 lldb::break_id_t
1613 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1614                               bool use_hardware) {
1615   addr_t load_addr = LLDB_INVALID_ADDRESS;
1616 
1617   bool show_error = true;
1618   switch (GetState()) {
1619   case eStateInvalid:
1620   case eStateUnloaded:
1621   case eStateConnected:
1622   case eStateAttaching:
1623   case eStateLaunching:
1624   case eStateDetached:
1625   case eStateExited:
1626     show_error = false;
1627     break;
1628 
1629   case eStateStopped:
1630   case eStateRunning:
1631   case eStateStepping:
1632   case eStateCrashed:
1633   case eStateSuspended:
1634     show_error = IsAlive();
1635     break;
1636   }
1637 
1638   // Reset the IsIndirect flag here, in case the location changes from pointing
1639   // to a indirect symbol to a regular symbol.
1640   owner->SetIsIndirect(false);
1641 
1642   if (owner->ShouldResolveIndirectFunctions()) {
1643     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1644     if (symbol && symbol->IsIndirect()) {
1645       Status error;
1646       Address symbol_address = symbol->GetAddress();
1647       load_addr = ResolveIndirectFunction(&symbol_address, error);
1648       if (!error.Success() && show_error) {
1649         GetTarget().GetDebugger().GetErrorStream().Printf(
1650             "warning: failed to resolve indirect function at 0x%" PRIx64
1651             " for breakpoint %i.%i: %s\n",
1652             symbol->GetLoadAddress(&GetTarget()),
1653             owner->GetBreakpoint().GetID(), owner->GetID(),
1654             error.AsCString() ? error.AsCString() : "unknown error");
1655         return LLDB_INVALID_BREAK_ID;
1656       }
1657       Address resolved_address(load_addr);
1658       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1659       owner->SetIsIndirect(true);
1660     } else
1661       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1662   } else
1663     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1664 
1665   if (load_addr != LLDB_INVALID_ADDRESS) {
1666     BreakpointSiteSP bp_site_sp;
1667 
1668     // Look up this breakpoint site.  If it exists, then add this new owner,
1669     // otherwise create a new breakpoint site and add it.
1670 
1671     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1672 
1673     if (bp_site_sp) {
1674       bp_site_sp->AddOwner(owner);
1675       owner->SetBreakpointSite(bp_site_sp);
1676       return bp_site_sp->GetID();
1677     } else {
1678       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1679                                           load_addr, use_hardware));
1680       if (bp_site_sp) {
1681         Status error = EnableBreakpointSite(bp_site_sp.get());
1682         if (error.Success()) {
1683           owner->SetBreakpointSite(bp_site_sp);
1684           return m_breakpoint_site_list.Add(bp_site_sp);
1685         } else {
1686           if (show_error || use_hardware) {
1687             // Report error for setting breakpoint...
1688             GetTarget().GetDebugger().GetErrorStream().Printf(
1689                 "warning: failed to set breakpoint site at 0x%" PRIx64
1690                 " for breakpoint %i.%i: %s\n",
1691                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1692                 error.AsCString() ? error.AsCString() : "unknown error");
1693           }
1694         }
1695       }
1696     }
1697   }
1698   // We failed to enable the breakpoint
1699   return LLDB_INVALID_BREAK_ID;
1700 }
1701 
1702 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1703                                             lldb::user_id_t owner_loc_id,
1704                                             BreakpointSiteSP &bp_site_sp) {
1705   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1706   if (num_owners == 0) {
1707     // Don't try to disable the site if we don't have a live process anymore.
1708     if (IsAlive())
1709       DisableBreakpointSite(bp_site_sp.get());
1710     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1711   }
1712 }
1713 
1714 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1715                                                   uint8_t *buf) const {
1716   size_t bytes_removed = 0;
1717   BreakpointSiteList bp_sites_in_range;
1718 
1719   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1720                                          bp_sites_in_range)) {
1721     bp_sites_in_range.ForEach([bp_addr, size,
1722                                buf](BreakpointSite *bp_site) -> void {
1723       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1724         addr_t intersect_addr;
1725         size_t intersect_size;
1726         size_t opcode_offset;
1727         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1728                                      &intersect_size, &opcode_offset)) {
1729           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1730           assert(bp_addr < intersect_addr + intersect_size &&
1731                  intersect_addr + intersect_size <= bp_addr + size);
1732           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1733           size_t buf_offset = intersect_addr - bp_addr;
1734           ::memcpy(buf + buf_offset,
1735                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1736                    intersect_size);
1737         }
1738       }
1739     });
1740   }
1741   return bytes_removed;
1742 }
1743 
1744 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1745   PlatformSP platform_sp(GetTarget().GetPlatform());
1746   if (platform_sp)
1747     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1748   return 0;
1749 }
1750 
1751 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1752   Status error;
1753   assert(bp_site != nullptr);
1754   Log *log = GetLog(LLDBLog::Breakpoints);
1755   const addr_t bp_addr = bp_site->GetLoadAddress();
1756   LLDB_LOGF(
1757       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1758       bp_site->GetID(), (uint64_t)bp_addr);
1759   if (bp_site->IsEnabled()) {
1760     LLDB_LOGF(
1761         log,
1762         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1763         " -- already enabled",
1764         bp_site->GetID(), (uint64_t)bp_addr);
1765     return error;
1766   }
1767 
1768   if (bp_addr == LLDB_INVALID_ADDRESS) {
1769     error.SetErrorString("BreakpointSite contains an invalid load address.");
1770     return error;
1771   }
1772   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1773   // trap for the breakpoint site
1774   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1775 
1776   if (bp_opcode_size == 0) {
1777     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1778                                    "returned zero, unable to get breakpoint "
1779                                    "trap for address 0x%" PRIx64,
1780                                    bp_addr);
1781   } else {
1782     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1783 
1784     if (bp_opcode_bytes == nullptr) {
1785       error.SetErrorString(
1786           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1787       return error;
1788     }
1789 
1790     // Save the original opcode by reading it
1791     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1792                      error) == bp_opcode_size) {
1793       // Write a software breakpoint in place of the original opcode
1794       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1795           bp_opcode_size) {
1796         uint8_t verify_bp_opcode_bytes[64];
1797         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1798                          error) == bp_opcode_size) {
1799           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1800                        bp_opcode_size) == 0) {
1801             bp_site->SetEnabled(true);
1802             bp_site->SetType(BreakpointSite::eSoftware);
1803             LLDB_LOGF(log,
1804                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1805                       "addr = 0x%" PRIx64 " -- SUCCESS",
1806                       bp_site->GetID(), (uint64_t)bp_addr);
1807           } else
1808             error.SetErrorString(
1809                 "failed to verify the breakpoint trap in memory.");
1810         } else
1811           error.SetErrorString(
1812               "Unable to read memory to verify breakpoint trap.");
1813       } else
1814         error.SetErrorString("Unable to write breakpoint trap to memory.");
1815     } else
1816       error.SetErrorString("Unable to read memory at breakpoint address.");
1817   }
1818   if (log && error.Fail())
1819     LLDB_LOGF(
1820         log,
1821         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1822         " -- FAILED: %s",
1823         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1824   return error;
1825 }
1826 
1827 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1828   Status error;
1829   assert(bp_site != nullptr);
1830   Log *log = GetLog(LLDBLog::Breakpoints);
1831   addr_t bp_addr = bp_site->GetLoadAddress();
1832   lldb::user_id_t breakID = bp_site->GetID();
1833   LLDB_LOGF(log,
1834             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1835             ") addr = 0x%" PRIx64,
1836             breakID, (uint64_t)bp_addr);
1837 
1838   if (bp_site->IsHardware()) {
1839     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1840   } else if (bp_site->IsEnabled()) {
1841     const size_t break_op_size = bp_site->GetByteSize();
1842     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1843     if (break_op_size > 0) {
1844       // Clear a software breakpoint instruction
1845       uint8_t curr_break_op[8];
1846       assert(break_op_size <= sizeof(curr_break_op));
1847       bool break_op_found = false;
1848 
1849       // Read the breakpoint opcode
1850       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1851           break_op_size) {
1852         bool verify = false;
1853         // Make sure the breakpoint opcode exists at this address
1854         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1855           break_op_found = true;
1856           // We found a valid breakpoint opcode at this address, now restore
1857           // the saved opcode.
1858           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1859                             break_op_size, error) == break_op_size) {
1860             verify = true;
1861           } else
1862             error.SetErrorString(
1863                 "Memory write failed when restoring original opcode.");
1864         } else {
1865           error.SetErrorString(
1866               "Original breakpoint trap is no longer in memory.");
1867           // Set verify to true and so we can check if the original opcode has
1868           // already been restored
1869           verify = true;
1870         }
1871 
1872         if (verify) {
1873           uint8_t verify_opcode[8];
1874           assert(break_op_size < sizeof(verify_opcode));
1875           // Verify that our original opcode made it back to the inferior
1876           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1877               break_op_size) {
1878             // compare the memory we just read with the original opcode
1879             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1880                          break_op_size) == 0) {
1881               // SUCCESS
1882               bp_site->SetEnabled(false);
1883               LLDB_LOGF(log,
1884                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1885                         "addr = 0x%" PRIx64 " -- SUCCESS",
1886                         bp_site->GetID(), (uint64_t)bp_addr);
1887               return error;
1888             } else {
1889               if (break_op_found)
1890                 error.SetErrorString("Failed to restore original opcode.");
1891             }
1892           } else
1893             error.SetErrorString("Failed to read memory to verify that "
1894                                  "breakpoint trap was restored.");
1895         }
1896       } else
1897         error.SetErrorString(
1898             "Unable to read memory that should contain the breakpoint trap.");
1899     }
1900   } else {
1901     LLDB_LOGF(
1902         log,
1903         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1904         " -- already disabled",
1905         bp_site->GetID(), (uint64_t)bp_addr);
1906     return error;
1907   }
1908 
1909   LLDB_LOGF(
1910       log,
1911       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1912       " -- FAILED: %s",
1913       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1914   return error;
1915 }
1916 
1917 // Uncomment to verify memory caching works after making changes to caching
1918 // code
1919 //#define VERIFY_MEMORY_READS
1920 
1921 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1922   error.Clear();
1923   if (!GetDisableMemoryCache()) {
1924 #if defined(VERIFY_MEMORY_READS)
1925     // Memory caching is enabled, with debug verification
1926 
1927     if (buf && size) {
1928       // Uncomment the line below to make sure memory caching is working.
1929       // I ran this through the test suite and got no assertions, so I am
1930       // pretty confident this is working well. If any changes are made to
1931       // memory caching, uncomment the line below and test your changes!
1932 
1933       // Verify all memory reads by using the cache first, then redundantly
1934       // reading the same memory from the inferior and comparing to make sure
1935       // everything is exactly the same.
1936       std::string verify_buf(size, '\0');
1937       assert(verify_buf.size() == size);
1938       const size_t cache_bytes_read =
1939           m_memory_cache.Read(this, addr, buf, size, error);
1940       Status verify_error;
1941       const size_t verify_bytes_read =
1942           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1943                                  verify_buf.size(), verify_error);
1944       assert(cache_bytes_read == verify_bytes_read);
1945       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1946       assert(verify_error.Success() == error.Success());
1947       return cache_bytes_read;
1948     }
1949     return 0;
1950 #else  // !defined(VERIFY_MEMORY_READS)
1951     // Memory caching is enabled, without debug verification
1952 
1953     return m_memory_cache.Read(addr, buf, size, error);
1954 #endif // defined (VERIFY_MEMORY_READS)
1955   } else {
1956     // Memory caching is disabled
1957 
1958     return ReadMemoryFromInferior(addr, buf, size, error);
1959   }
1960 }
1961 
1962 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1963                                       Status &error) {
1964   char buf[256];
1965   out_str.clear();
1966   addr_t curr_addr = addr;
1967   while (true) {
1968     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1969     if (length == 0)
1970       break;
1971     out_str.append(buf, length);
1972     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1973     // to read some more characters
1974     if (length == sizeof(buf) - 1)
1975       curr_addr += length;
1976     else
1977       break;
1978   }
1979   return out_str.size();
1980 }
1981 
1982 // Deprecated in favor of ReadStringFromMemory which has wchar support and
1983 // correct code to find null terminators.
1984 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
1985                                       size_t dst_max_len,
1986                                       Status &result_error) {
1987   size_t total_cstr_len = 0;
1988   if (dst && dst_max_len) {
1989     result_error.Clear();
1990     // NULL out everything just to be safe
1991     memset(dst, 0, dst_max_len);
1992     Status error;
1993     addr_t curr_addr = addr;
1994     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1995     size_t bytes_left = dst_max_len - 1;
1996     char *curr_dst = dst;
1997 
1998     while (bytes_left > 0) {
1999       addr_t cache_line_bytes_left =
2000           cache_line_size - (curr_addr % cache_line_size);
2001       addr_t bytes_to_read =
2002           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2003       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2004 
2005       if (bytes_read == 0) {
2006         result_error = error;
2007         dst[total_cstr_len] = '\0';
2008         break;
2009       }
2010       const size_t len = strlen(curr_dst);
2011 
2012       total_cstr_len += len;
2013 
2014       if (len < bytes_to_read)
2015         break;
2016 
2017       curr_dst += bytes_read;
2018       curr_addr += bytes_read;
2019       bytes_left -= bytes_read;
2020     }
2021   } else {
2022     if (dst == nullptr)
2023       result_error.SetErrorString("invalid arguments");
2024     else
2025       result_error.Clear();
2026   }
2027   return total_cstr_len;
2028 }
2029 
2030 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2031                                        Status &error) {
2032   LLDB_SCOPED_TIMER();
2033 
2034   if (buf == nullptr || size == 0)
2035     return 0;
2036 
2037   size_t bytes_read = 0;
2038   uint8_t *bytes = (uint8_t *)buf;
2039 
2040   while (bytes_read < size) {
2041     const size_t curr_size = size - bytes_read;
2042     const size_t curr_bytes_read =
2043         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2044     bytes_read += curr_bytes_read;
2045     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2046       break;
2047   }
2048 
2049   // Replace any software breakpoint opcodes that fall into this range back
2050   // into "buf" before we return
2051   if (bytes_read > 0)
2052     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2053   return bytes_read;
2054 }
2055 
2056 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2057                                                 size_t integer_byte_size,
2058                                                 uint64_t fail_value,
2059                                                 Status &error) {
2060   Scalar scalar;
2061   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2062                                   error))
2063     return scalar.ULongLong(fail_value);
2064   return fail_value;
2065 }
2066 
2067 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2068                                              size_t integer_byte_size,
2069                                              int64_t fail_value,
2070                                              Status &error) {
2071   Scalar scalar;
2072   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2073                                   error))
2074     return scalar.SLongLong(fail_value);
2075   return fail_value;
2076 }
2077 
2078 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2079   Scalar scalar;
2080   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2081                                   error))
2082     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2083   return LLDB_INVALID_ADDRESS;
2084 }
2085 
2086 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2087                                    Status &error) {
2088   Scalar scalar;
2089   const uint32_t addr_byte_size = GetAddressByteSize();
2090   if (addr_byte_size <= 4)
2091     scalar = (uint32_t)ptr_value;
2092   else
2093     scalar = ptr_value;
2094   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2095          addr_byte_size;
2096 }
2097 
2098 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2099                                    Status &error) {
2100   size_t bytes_written = 0;
2101   const uint8_t *bytes = (const uint8_t *)buf;
2102 
2103   while (bytes_written < size) {
2104     const size_t curr_size = size - bytes_written;
2105     const size_t curr_bytes_written = DoWriteMemory(
2106         addr + bytes_written, bytes + bytes_written, curr_size, error);
2107     bytes_written += curr_bytes_written;
2108     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2109       break;
2110   }
2111   return bytes_written;
2112 }
2113 
2114 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2115                             Status &error) {
2116 #if defined(ENABLE_MEMORY_CACHING)
2117   m_memory_cache.Flush(addr, size);
2118 #endif
2119 
2120   if (buf == nullptr || size == 0)
2121     return 0;
2122 
2123   m_mod_id.BumpMemoryID();
2124 
2125   // We need to write any data that would go where any current software traps
2126   // (enabled software breakpoints) any software traps (breakpoints) that we
2127   // may have placed in our tasks memory.
2128 
2129   BreakpointSiteList bp_sites_in_range;
2130   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2131     return WriteMemoryPrivate(addr, buf, size, error);
2132 
2133   // No breakpoint sites overlap
2134   if (bp_sites_in_range.IsEmpty())
2135     return WriteMemoryPrivate(addr, buf, size, error);
2136 
2137   const uint8_t *ubuf = (const uint8_t *)buf;
2138   uint64_t bytes_written = 0;
2139 
2140   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2141                              &error](BreakpointSite *bp) -> void {
2142     if (error.Fail())
2143       return;
2144 
2145     if (bp->GetType() != BreakpointSite::eSoftware)
2146       return;
2147 
2148     addr_t intersect_addr;
2149     size_t intersect_size;
2150     size_t opcode_offset;
2151     const bool intersects = bp->IntersectsRange(
2152         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2153     UNUSED_IF_ASSERT_DISABLED(intersects);
2154     assert(intersects);
2155     assert(addr <= intersect_addr && intersect_addr < addr + size);
2156     assert(addr < intersect_addr + intersect_size &&
2157            intersect_addr + intersect_size <= addr + size);
2158     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2159 
2160     // Check for bytes before this breakpoint
2161     const addr_t curr_addr = addr + bytes_written;
2162     if (intersect_addr > curr_addr) {
2163       // There are some bytes before this breakpoint that we need to just
2164       // write to memory
2165       size_t curr_size = intersect_addr - curr_addr;
2166       size_t curr_bytes_written =
2167           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2168       bytes_written += curr_bytes_written;
2169       if (curr_bytes_written != curr_size) {
2170         // We weren't able to write all of the requested bytes, we are
2171         // done looping and will return the number of bytes that we have
2172         // written so far.
2173         if (error.Success())
2174           error.SetErrorToGenericError();
2175       }
2176     }
2177     // Now write any bytes that would cover up any software breakpoints
2178     // directly into the breakpoint opcode buffer
2179     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2180              intersect_size);
2181     bytes_written += intersect_size;
2182   });
2183 
2184   // Write any remaining bytes after the last breakpoint if we have any left
2185   if (bytes_written < size)
2186     bytes_written +=
2187         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2188                            size - bytes_written, error);
2189 
2190   return bytes_written;
2191 }
2192 
2193 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2194                                     size_t byte_size, Status &error) {
2195   if (byte_size == UINT32_MAX)
2196     byte_size = scalar.GetByteSize();
2197   if (byte_size > 0) {
2198     uint8_t buf[32];
2199     const size_t mem_size =
2200         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2201     if (mem_size > 0)
2202       return WriteMemory(addr, buf, mem_size, error);
2203     else
2204       error.SetErrorString("failed to get scalar as memory data");
2205   } else {
2206     error.SetErrorString("invalid scalar value");
2207   }
2208   return 0;
2209 }
2210 
2211 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2212                                             bool is_signed, Scalar &scalar,
2213                                             Status &error) {
2214   uint64_t uval = 0;
2215   if (byte_size == 0) {
2216     error.SetErrorString("byte size is zero");
2217   } else if (byte_size & (byte_size - 1)) {
2218     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2219                                    byte_size);
2220   } else if (byte_size <= sizeof(uval)) {
2221     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2222     if (bytes_read == byte_size) {
2223       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2224                          GetAddressByteSize());
2225       lldb::offset_t offset = 0;
2226       if (byte_size <= 4)
2227         scalar = data.GetMaxU32(&offset, byte_size);
2228       else
2229         scalar = data.GetMaxU64(&offset, byte_size);
2230       if (is_signed)
2231         scalar.SignExtend(byte_size * 8);
2232       return bytes_read;
2233     }
2234   } else {
2235     error.SetErrorStringWithFormat(
2236         "byte size of %u is too large for integer scalar type", byte_size);
2237   }
2238   return 0;
2239 }
2240 
2241 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2242   Status error;
2243   for (const auto &Entry : entries) {
2244     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2245                 error);
2246     if (!error.Success())
2247       break;
2248   }
2249   return error;
2250 }
2251 
2252 #define USE_ALLOCATE_MEMORY_CACHE 1
2253 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2254                                Status &error) {
2255   if (GetPrivateState() != eStateStopped) {
2256     error.SetErrorToGenericError();
2257     return LLDB_INVALID_ADDRESS;
2258   }
2259 
2260 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2261   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2262 #else
2263   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2264   Log *log = GetLog(LLDBLog::Process);
2265   LLDB_LOGF(log,
2266             "Process::AllocateMemory(size=%" PRIu64
2267             ", permissions=%s) => 0x%16.16" PRIx64
2268             " (m_stop_id = %u m_memory_id = %u)",
2269             (uint64_t)size, GetPermissionsAsCString(permissions),
2270             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2271             m_mod_id.GetMemoryID());
2272   return allocated_addr;
2273 #endif
2274 }
2275 
2276 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2277                                 Status &error) {
2278   addr_t return_addr = AllocateMemory(size, permissions, error);
2279   if (error.Success()) {
2280     std::string buffer(size, 0);
2281     WriteMemory(return_addr, buffer.c_str(), size, error);
2282   }
2283   return return_addr;
2284 }
2285 
2286 bool Process::CanJIT() {
2287   if (m_can_jit == eCanJITDontKnow) {
2288     Log *log = GetLog(LLDBLog::Process);
2289     Status err;
2290 
2291     uint64_t allocated_memory = AllocateMemory(
2292         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2293         err);
2294 
2295     if (err.Success()) {
2296       m_can_jit = eCanJITYes;
2297       LLDB_LOGF(log,
2298                 "Process::%s pid %" PRIu64
2299                 " allocation test passed, CanJIT () is true",
2300                 __FUNCTION__, GetID());
2301     } else {
2302       m_can_jit = eCanJITNo;
2303       LLDB_LOGF(log,
2304                 "Process::%s pid %" PRIu64
2305                 " allocation test failed, CanJIT () is false: %s",
2306                 __FUNCTION__, GetID(), err.AsCString());
2307     }
2308 
2309     DeallocateMemory(allocated_memory);
2310   }
2311 
2312   return m_can_jit == eCanJITYes;
2313 }
2314 
2315 void Process::SetCanJIT(bool can_jit) {
2316   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2317 }
2318 
2319 void Process::SetCanRunCode(bool can_run_code) {
2320   SetCanJIT(can_run_code);
2321   m_can_interpret_function_calls = can_run_code;
2322 }
2323 
2324 Status Process::DeallocateMemory(addr_t ptr) {
2325   Status error;
2326 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2327   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2328     error.SetErrorStringWithFormat(
2329         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2330   }
2331 #else
2332   error = DoDeallocateMemory(ptr);
2333 
2334   Log *log = GetLog(LLDBLog::Process);
2335   LLDB_LOGF(log,
2336             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2337             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2338             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2339             m_mod_id.GetMemoryID());
2340 #endif
2341   return error;
2342 }
2343 
2344 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2345                                        lldb::addr_t header_addr,
2346                                        size_t size_to_read) {
2347   Log *log = GetLog(LLDBLog::Host);
2348   if (log) {
2349     LLDB_LOGF(log,
2350               "Process::ReadModuleFromMemory reading %s binary from memory",
2351               file_spec.GetPath().c_str());
2352   }
2353   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2354   if (module_sp) {
2355     Status error;
2356     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2357         shared_from_this(), header_addr, error, size_to_read);
2358     if (objfile)
2359       return module_sp;
2360   }
2361   return ModuleSP();
2362 }
2363 
2364 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2365                                         uint32_t &permissions) {
2366   MemoryRegionInfo range_info;
2367   permissions = 0;
2368   Status error(GetMemoryRegionInfo(load_addr, range_info));
2369   if (!error.Success())
2370     return false;
2371   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2372       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2373       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2374     return false;
2375   }
2376 
2377   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2378     permissions |= lldb::ePermissionsReadable;
2379 
2380   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2381     permissions |= lldb::ePermissionsWritable;
2382 
2383   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2384     permissions |= lldb::ePermissionsExecutable;
2385 
2386   return true;
2387 }
2388 
2389 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2390   Status error;
2391   error.SetErrorString("watchpoints are not supported");
2392   return error;
2393 }
2394 
2395 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2396   Status error;
2397   error.SetErrorString("watchpoints are not supported");
2398   return error;
2399 }
2400 
2401 StateType
2402 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2403                                    const Timeout<std::micro> &timeout) {
2404   StateType state;
2405 
2406   while (true) {
2407     event_sp.reset();
2408     state = GetStateChangedEventsPrivate(event_sp, timeout);
2409 
2410     if (StateIsStoppedState(state, false))
2411       break;
2412 
2413     // If state is invalid, then we timed out
2414     if (state == eStateInvalid)
2415       break;
2416 
2417     if (event_sp)
2418       HandlePrivateEvent(event_sp);
2419   }
2420   return state;
2421 }
2422 
2423 void Process::LoadOperatingSystemPlugin(bool flush) {
2424   if (flush)
2425     m_thread_list.Clear();
2426   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2427   if (flush)
2428     Flush();
2429 }
2430 
2431 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2432   StateType state_after_launch = eStateInvalid;
2433   EventSP first_stop_event_sp;
2434   Status status =
2435       LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
2436   if (status.Fail())
2437     return status;
2438 
2439   if (state_after_launch != eStateStopped &&
2440       state_after_launch != eStateCrashed)
2441     return Status();
2442 
2443   // Note, the stop event was consumed above, but not handled. This
2444   // was done to give DidLaunch a chance to run. The target is either
2445   // stopped or crashed. Directly set the state.  This is done to
2446   // prevent a stop message with a bunch of spurious output on thread
2447   // status, as well as not pop a ProcessIOHandler.
2448   SetPublicState(state_after_launch, false);
2449 
2450   if (PrivateStateThreadIsValid())
2451     ResumePrivateStateThread();
2452   else
2453     StartPrivateStateThread();
2454 
2455   // Target was stopped at entry as was intended. Need to notify the
2456   // listeners about it.
2457   if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2458     HandlePrivateEvent(first_stop_event_sp);
2459 
2460   return Status();
2461 }
2462 
2463 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state,
2464                               EventSP &event_sp) {
2465   Status error;
2466   m_abi_sp.reset();
2467   m_dyld_up.reset();
2468   m_jit_loaders_up.reset();
2469   m_system_runtime_up.reset();
2470   m_os_up.reset();
2471   m_process_input_reader.reset();
2472 
2473   Module *exe_module = GetTarget().GetExecutableModulePointer();
2474 
2475   // The "remote executable path" is hooked up to the local Executable
2476   // module.  But we should be able to debug a remote process even if the
2477   // executable module only exists on the remote.  However, there needs to
2478   // be a way to express this path, without actually having a module.
2479   // The way to do that is to set the ExecutableFile in the LaunchInfo.
2480   // Figure that out here:
2481 
2482   FileSpec exe_spec_to_use;
2483   if (!exe_module) {
2484     if (!launch_info.GetExecutableFile()) {
2485       error.SetErrorString("executable module does not exist");
2486       return error;
2487     }
2488     exe_spec_to_use = launch_info.GetExecutableFile();
2489   } else
2490     exe_spec_to_use = exe_module->GetFileSpec();
2491 
2492   if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2493     // Install anything that might need to be installed prior to launching.
2494     // For host systems, this will do nothing, but if we are connected to a
2495     // remote platform it will install any needed binaries
2496     error = GetTarget().Install(&launch_info);
2497     if (error.Fail())
2498       return error;
2499   }
2500 
2501   // Listen and queue events that are broadcasted during the process launch.
2502   ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2503   HijackProcessEvents(listener_sp);
2504   auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2505 
2506   if (PrivateStateThreadIsValid())
2507     PausePrivateStateThread();
2508 
2509   error = WillLaunch(exe_module);
2510   if (error.Fail()) {
2511     std::string local_exec_file_path = exe_spec_to_use.GetPath();
2512     return Status("file doesn't exist: '%s'", local_exec_file_path.c_str());
2513   }
2514 
2515   const bool restarted = false;
2516   SetPublicState(eStateLaunching, restarted);
2517   m_should_detach = false;
2518 
2519   if (m_public_run_lock.TrySetRunning()) {
2520     // Now launch using these arguments.
2521     error = DoLaunch(exe_module, launch_info);
2522   } else {
2523     // This shouldn't happen
2524     error.SetErrorString("failed to acquire process run lock");
2525   }
2526 
2527   if (error.Fail()) {
2528     if (GetID() != LLDB_INVALID_PROCESS_ID) {
2529       SetID(LLDB_INVALID_PROCESS_ID);
2530       const char *error_string = error.AsCString();
2531       if (error_string == nullptr)
2532         error_string = "launch failed";
2533       SetExitStatus(-1, error_string);
2534     }
2535     return error;
2536   }
2537 
2538   // Now wait for the process to launch and return control to us, and then
2539   // call DidLaunch:
2540   state = WaitForProcessStopPrivate(event_sp, seconds(10));
2541 
2542   if (state == eStateInvalid || !event_sp) {
2543     // We were able to launch the process, but we failed to catch the
2544     // initial stop.
2545     error.SetErrorString("failed to catch stop after launch");
2546     SetExitStatus(0, error.AsCString());
2547     Destroy(false);
2548     return error;
2549   }
2550 
2551   if (state == eStateExited) {
2552     // We exited while trying to launch somehow.  Don't call DidLaunch
2553     // as that's not likely to work, and return an invalid pid.
2554     HandlePrivateEvent(event_sp);
2555     return Status();
2556   }
2557 
2558   if (state == eStateStopped || state == eStateCrashed) {
2559     DidLaunch();
2560 
2561     DynamicLoader *dyld = GetDynamicLoader();
2562     if (dyld)
2563       dyld->DidLaunch();
2564 
2565     GetJITLoaders().DidLaunch();
2566 
2567     SystemRuntime *system_runtime = GetSystemRuntime();
2568     if (system_runtime)
2569       system_runtime->DidLaunch();
2570 
2571     if (!m_os_up)
2572       LoadOperatingSystemPlugin(false);
2573 
2574     // We successfully launched the process and stopped, now it the
2575     // right time to set up signal filters before resuming.
2576     UpdateAutomaticSignalFiltering();
2577     return Status();
2578   }
2579 
2580   return Status("Unexpected process state after the launch: %s, expected %s, "
2581                 "%s, %s or %s",
2582                 StateAsCString(state), StateAsCString(eStateInvalid),
2583                 StateAsCString(eStateExited), StateAsCString(eStateStopped),
2584                 StateAsCString(eStateCrashed));
2585 }
2586 
2587 Status Process::LoadCore() {
2588   Status error = DoLoadCore();
2589   if (error.Success()) {
2590     ListenerSP listener_sp(
2591         Listener::MakeListener("lldb.process.load_core_listener"));
2592     HijackProcessEvents(listener_sp);
2593 
2594     if (PrivateStateThreadIsValid())
2595       ResumePrivateStateThread();
2596     else
2597       StartPrivateStateThread();
2598 
2599     DynamicLoader *dyld = GetDynamicLoader();
2600     if (dyld)
2601       dyld->DidAttach();
2602 
2603     GetJITLoaders().DidAttach();
2604 
2605     SystemRuntime *system_runtime = GetSystemRuntime();
2606     if (system_runtime)
2607       system_runtime->DidAttach();
2608 
2609     if (!m_os_up)
2610       LoadOperatingSystemPlugin(false);
2611 
2612     // We successfully loaded a core file, now pretend we stopped so we can
2613     // show all of the threads in the core file and explore the crashed state.
2614     SetPrivateState(eStateStopped);
2615 
2616     // Wait for a stopped event since we just posted one above...
2617     lldb::EventSP event_sp;
2618     StateType state =
2619         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2620 
2621     if (!StateIsStoppedState(state, false)) {
2622       Log *log = GetLog(LLDBLog::Process);
2623       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2624                 StateAsCString(state));
2625       error.SetErrorString(
2626           "Did not get stopped event after loading the core file.");
2627     }
2628     RestoreProcessEvents();
2629   }
2630   return error;
2631 }
2632 
2633 DynamicLoader *Process::GetDynamicLoader() {
2634   if (!m_dyld_up)
2635     m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2636   return m_dyld_up.get();
2637 }
2638 
2639 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2640 
2641 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2642   return false;
2643 }
2644 
2645 JITLoaderList &Process::GetJITLoaders() {
2646   if (!m_jit_loaders_up) {
2647     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2648     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2649   }
2650   return *m_jit_loaders_up;
2651 }
2652 
2653 SystemRuntime *Process::GetSystemRuntime() {
2654   if (!m_system_runtime_up)
2655     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2656   return m_system_runtime_up.get();
2657 }
2658 
2659 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2660                                                           uint32_t exec_count)
2661     : NextEventAction(process), m_exec_count(exec_count) {
2662   Log *log = GetLog(LLDBLog::Process);
2663   LLDB_LOGF(
2664       log,
2665       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2666       __FUNCTION__, static_cast<void *>(process), exec_count);
2667 }
2668 
2669 Process::NextEventAction::EventActionResult
2670 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2671   Log *log = GetLog(LLDBLog::Process);
2672 
2673   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2674   LLDB_LOGF(log,
2675             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2676             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2677 
2678   switch (state) {
2679   case eStateAttaching:
2680     return eEventActionSuccess;
2681 
2682   case eStateRunning:
2683   case eStateConnected:
2684     return eEventActionRetry;
2685 
2686   case eStateStopped:
2687   case eStateCrashed:
2688     // During attach, prior to sending the eStateStopped event,
2689     // lldb_private::Process subclasses must set the new process ID.
2690     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2691     // We don't want these events to be reported, so go set the
2692     // ShouldReportStop here:
2693     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2694 
2695     if (m_exec_count > 0) {
2696       --m_exec_count;
2697 
2698       LLDB_LOGF(log,
2699                 "Process::AttachCompletionHandler::%s state %s: reduced "
2700                 "remaining exec count to %" PRIu32 ", requesting resume",
2701                 __FUNCTION__, StateAsCString(state), m_exec_count);
2702 
2703       RequestResume();
2704       return eEventActionRetry;
2705     } else {
2706       LLDB_LOGF(log,
2707                 "Process::AttachCompletionHandler::%s state %s: no more "
2708                 "execs expected to start, continuing with attach",
2709                 __FUNCTION__, StateAsCString(state));
2710 
2711       m_process->CompleteAttach();
2712       return eEventActionSuccess;
2713     }
2714     break;
2715 
2716   default:
2717   case eStateExited:
2718   case eStateInvalid:
2719     break;
2720   }
2721 
2722   m_exit_string.assign("No valid Process");
2723   return eEventActionExit;
2724 }
2725 
2726 Process::NextEventAction::EventActionResult
2727 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2728   return eEventActionSuccess;
2729 }
2730 
2731 const char *Process::AttachCompletionHandler::GetExitString() {
2732   return m_exit_string.c_str();
2733 }
2734 
2735 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2736   if (m_listener_sp)
2737     return m_listener_sp;
2738   else
2739     return debugger.GetListener();
2740 }
2741 
2742 Status Process::Attach(ProcessAttachInfo &attach_info) {
2743   m_abi_sp.reset();
2744   m_process_input_reader.reset();
2745   m_dyld_up.reset();
2746   m_jit_loaders_up.reset();
2747   m_system_runtime_up.reset();
2748   m_os_up.reset();
2749 
2750   lldb::pid_t attach_pid = attach_info.GetProcessID();
2751   Status error;
2752   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2753     char process_name[PATH_MAX];
2754 
2755     if (attach_info.GetExecutableFile().GetPath(process_name,
2756                                                 sizeof(process_name))) {
2757       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2758 
2759       if (wait_for_launch) {
2760         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2761         if (error.Success()) {
2762           if (m_public_run_lock.TrySetRunning()) {
2763             m_should_detach = true;
2764             const bool restarted = false;
2765             SetPublicState(eStateAttaching, restarted);
2766             // Now attach using these arguments.
2767             error = DoAttachToProcessWithName(process_name, attach_info);
2768           } else {
2769             // This shouldn't happen
2770             error.SetErrorString("failed to acquire process run lock");
2771           }
2772 
2773           if (error.Fail()) {
2774             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2775               SetID(LLDB_INVALID_PROCESS_ID);
2776               if (error.AsCString() == nullptr)
2777                 error.SetErrorString("attach failed");
2778 
2779               SetExitStatus(-1, error.AsCString());
2780             }
2781           } else {
2782             SetNextEventAction(new Process::AttachCompletionHandler(
2783                 this, attach_info.GetResumeCount()));
2784             StartPrivateStateThread();
2785           }
2786           return error;
2787         }
2788       } else {
2789         ProcessInstanceInfoList process_infos;
2790         PlatformSP platform_sp(GetTarget().GetPlatform());
2791 
2792         if (platform_sp) {
2793           ProcessInstanceInfoMatch match_info;
2794           match_info.GetProcessInfo() = attach_info;
2795           match_info.SetNameMatchType(NameMatch::Equals);
2796           platform_sp->FindProcesses(match_info, process_infos);
2797           const uint32_t num_matches = process_infos.size();
2798           if (num_matches == 1) {
2799             attach_pid = process_infos[0].GetProcessID();
2800             // Fall through and attach using the above process ID
2801           } else {
2802             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2803                 process_name, sizeof(process_name));
2804             if (num_matches > 1) {
2805               StreamString s;
2806               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2807               for (size_t i = 0; i < num_matches; i++) {
2808                 process_infos[i].DumpAsTableRow(
2809                     s, platform_sp->GetUserIDResolver(), true, false);
2810               }
2811               error.SetErrorStringWithFormat(
2812                   "more than one process named %s:\n%s", process_name,
2813                   s.GetData());
2814             } else
2815               error.SetErrorStringWithFormat(
2816                   "could not find a process named %s", process_name);
2817           }
2818         } else {
2819           error.SetErrorString(
2820               "invalid platform, can't find processes by name");
2821           return error;
2822         }
2823       }
2824     } else {
2825       error.SetErrorString("invalid process name");
2826     }
2827   }
2828 
2829   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2830     error = WillAttachToProcessWithID(attach_pid);
2831     if (error.Success()) {
2832 
2833       if (m_public_run_lock.TrySetRunning()) {
2834         // Now attach using these arguments.
2835         m_should_detach = true;
2836         const bool restarted = false;
2837         SetPublicState(eStateAttaching, restarted);
2838         error = DoAttachToProcessWithID(attach_pid, attach_info);
2839       } else {
2840         // This shouldn't happen
2841         error.SetErrorString("failed to acquire process run lock");
2842       }
2843 
2844       if (error.Success()) {
2845         SetNextEventAction(new Process::AttachCompletionHandler(
2846             this, attach_info.GetResumeCount()));
2847         StartPrivateStateThread();
2848       } else {
2849         if (GetID() != LLDB_INVALID_PROCESS_ID)
2850           SetID(LLDB_INVALID_PROCESS_ID);
2851 
2852         const char *error_string = error.AsCString();
2853         if (error_string == nullptr)
2854           error_string = "attach failed";
2855 
2856         SetExitStatus(-1, error_string);
2857       }
2858     }
2859   }
2860   return error;
2861 }
2862 
2863 void Process::CompleteAttach() {
2864   Log *log(GetLog(LLDBLog::Process | LLDBLog::Target));
2865   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2866 
2867   // Let the process subclass figure out at much as it can about the process
2868   // before we go looking for a dynamic loader plug-in.
2869   ArchSpec process_arch;
2870   DidAttach(process_arch);
2871 
2872   if (process_arch.IsValid()) {
2873     GetTarget().SetArchitecture(process_arch);
2874     if (log) {
2875       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2876       LLDB_LOGF(log,
2877                 "Process::%s replacing process architecture with DidAttach() "
2878                 "architecture: %s",
2879                 __FUNCTION__, triple_str ? triple_str : "<null>");
2880     }
2881   }
2882 
2883   // We just attached.  If we have a platform, ask it for the process
2884   // architecture, and if it isn't the same as the one we've already set,
2885   // switch architectures.
2886   PlatformSP platform_sp(GetTarget().GetPlatform());
2887   assert(platform_sp);
2888   ArchSpec process_host_arch = GetSystemArchitecture();
2889   if (platform_sp) {
2890     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2891     if (target_arch.IsValid() &&
2892         !platform_sp->IsCompatibleArchitecture(target_arch, process_host_arch,
2893                                                false, nullptr)) {
2894       ArchSpec platform_arch;
2895       platform_sp = platform_sp->GetPlatformForArchitecture(
2896           target_arch, process_host_arch, &platform_arch);
2897       if (platform_sp) {
2898         GetTarget().SetPlatform(platform_sp);
2899         GetTarget().SetArchitecture(platform_arch);
2900         LLDB_LOG(log,
2901                  "switching platform to {0} and architecture to {1} based on "
2902                  "info from attach",
2903                  platform_sp->GetName(), platform_arch.GetTriple().getTriple());
2904       }
2905     } else if (!process_arch.IsValid()) {
2906       ProcessInstanceInfo process_info;
2907       GetProcessInfo(process_info);
2908       const ArchSpec &process_arch = process_info.GetArchitecture();
2909       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2910       if (process_arch.IsValid() &&
2911           target_arch.IsCompatibleMatch(process_arch) &&
2912           !target_arch.IsExactMatch(process_arch)) {
2913         GetTarget().SetArchitecture(process_arch);
2914         LLDB_LOGF(log,
2915                   "Process::%s switching architecture to %s based on info "
2916                   "the platform retrieved for pid %" PRIu64,
2917                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2918                   GetID());
2919       }
2920     }
2921   }
2922 
2923   // We have completed the attach, now it is time to find the dynamic loader
2924   // plug-in
2925   DynamicLoader *dyld = GetDynamicLoader();
2926   if (dyld) {
2927     dyld->DidAttach();
2928     if (log) {
2929       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2930       LLDB_LOG(log,
2931                "after DynamicLoader::DidAttach(), target "
2932                "executable is {0} (using {1} plugin)",
2933                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2934                dyld->GetPluginName());
2935     }
2936   }
2937 
2938   GetJITLoaders().DidAttach();
2939 
2940   SystemRuntime *system_runtime = GetSystemRuntime();
2941   if (system_runtime) {
2942     system_runtime->DidAttach();
2943     if (log) {
2944       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2945       LLDB_LOG(log,
2946                "after SystemRuntime::DidAttach(), target "
2947                "executable is {0} (using {1} plugin)",
2948                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2949                system_runtime->GetPluginName());
2950     }
2951   }
2952 
2953   if (!m_os_up) {
2954     LoadOperatingSystemPlugin(false);
2955     if (m_os_up) {
2956       // Somebody might have gotten threads before now, but we need to force the
2957       // update after we've loaded the OperatingSystem plugin or it won't get a
2958       // chance to process the threads.
2959       m_thread_list.Clear();
2960       UpdateThreadListIfNeeded();
2961     }
2962   }
2963   // Figure out which one is the executable, and set that in our target:
2964   ModuleSP new_executable_module_sp;
2965   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2966     if (module_sp && module_sp->IsExecutable()) {
2967       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2968         new_executable_module_sp = module_sp;
2969       break;
2970     }
2971   }
2972   if (new_executable_module_sp) {
2973     GetTarget().SetExecutableModule(new_executable_module_sp,
2974                                     eLoadDependentsNo);
2975     if (log) {
2976       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2977       LLDB_LOGF(
2978           log,
2979           "Process::%s after looping through modules, target executable is %s",
2980           __FUNCTION__,
2981           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2982                         : "<none>");
2983     }
2984   }
2985 }
2986 
2987 Status Process::ConnectRemote(llvm::StringRef remote_url) {
2988   m_abi_sp.reset();
2989   m_process_input_reader.reset();
2990 
2991   // Find the process and its architecture.  Make sure it matches the
2992   // architecture of the current Target, and if not adjust it.
2993 
2994   Status error(DoConnectRemote(remote_url));
2995   if (error.Success()) {
2996     if (GetID() != LLDB_INVALID_PROCESS_ID) {
2997       EventSP event_sp;
2998       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
2999 
3000       if (state == eStateStopped || state == eStateCrashed) {
3001         // If we attached and actually have a process on the other end, then
3002         // this ended up being the equivalent of an attach.
3003         CompleteAttach();
3004 
3005         // This delays passing the stopped event to listeners till
3006         // CompleteAttach gets a chance to complete...
3007         HandlePrivateEvent(event_sp);
3008       }
3009     }
3010 
3011     if (PrivateStateThreadIsValid())
3012       ResumePrivateStateThread();
3013     else
3014       StartPrivateStateThread();
3015   }
3016   return error;
3017 }
3018 
3019 Status Process::PrivateResume() {
3020   Log *log(GetLog(LLDBLog::Process | LLDBLog::Step));
3021   LLDB_LOGF(log,
3022             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3023             "private state: %s",
3024             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3025             StateAsCString(m_private_state.GetValue()));
3026 
3027   // If signals handing status changed we might want to update our signal
3028   // filters before resuming.
3029   UpdateAutomaticSignalFiltering();
3030 
3031   Status error(WillResume());
3032   // Tell the process it is about to resume before the thread list
3033   if (error.Success()) {
3034     // Now let the thread list know we are about to resume so it can let all of
3035     // our threads know that they are about to be resumed. Threads will each be
3036     // called with Thread::WillResume(StateType) where StateType contains the
3037     // state that they are supposed to have when the process is resumed
3038     // (suspended/running/stepping). Threads should also check their resume
3039     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3040     // start back up with a signal.
3041     if (m_thread_list.WillResume()) {
3042       // Last thing, do the PreResumeActions.
3043       if (!RunPreResumeActions()) {
3044         error.SetErrorString(
3045             "Process::PrivateResume PreResumeActions failed, not resuming.");
3046       } else {
3047         m_mod_id.BumpResumeID();
3048         error = DoResume();
3049         if (error.Success()) {
3050           DidResume();
3051           m_thread_list.DidResume();
3052           LLDB_LOGF(log, "Process thinks the process has resumed.");
3053         } else {
3054           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3055           return error;
3056         }
3057       }
3058     } else {
3059       // Somebody wanted to run without running (e.g. we were faking a step
3060       // from one frame of a set of inlined frames that share the same PC to
3061       // another.)  So generate a continue & a stopped event, and let the world
3062       // handle them.
3063       LLDB_LOGF(log,
3064                 "Process::PrivateResume() asked to simulate a start & stop.");
3065 
3066       SetPrivateState(eStateRunning);
3067       SetPrivateState(eStateStopped);
3068     }
3069   } else
3070     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3071               error.AsCString("<unknown error>"));
3072   return error;
3073 }
3074 
3075 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3076   if (!StateIsRunningState(m_public_state.GetValue()))
3077     return Status("Process is not running.");
3078 
3079   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3080   // case it was already set and some thread plan logic calls halt on its own.
3081   m_clear_thread_plans_on_stop |= clear_thread_plans;
3082 
3083   ListenerSP halt_listener_sp(
3084       Listener::MakeListener("lldb.process.halt_listener"));
3085   HijackProcessEvents(halt_listener_sp);
3086 
3087   EventSP event_sp;
3088 
3089   SendAsyncInterrupt();
3090 
3091   if (m_public_state.GetValue() == eStateAttaching) {
3092     // Don't hijack and eat the eStateExited as the code that was doing the
3093     // attach will be waiting for this event...
3094     RestoreProcessEvents();
3095     SetExitStatus(SIGKILL, "Cancelled async attach.");
3096     Destroy(false);
3097     return Status();
3098   }
3099 
3100   // Wait for the process halt timeout seconds for the process to stop.
3101   StateType state =
3102       WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3103                            halt_listener_sp, nullptr, use_run_lock);
3104   RestoreProcessEvents();
3105 
3106   if (state == eStateInvalid || !event_sp) {
3107     // We timed out and didn't get a stop event...
3108     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3109   }
3110 
3111   BroadcastEvent(event_sp);
3112 
3113   return Status();
3114 }
3115 
3116 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3117   Status error;
3118 
3119   // Check both the public & private states here.  If we're hung evaluating an
3120   // expression, for instance, then the public state will be stopped, but we
3121   // still need to interrupt.
3122   if (m_public_state.GetValue() == eStateRunning ||
3123       m_private_state.GetValue() == eStateRunning) {
3124     Log *log = GetLog(LLDBLog::Process);
3125     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3126 
3127     ListenerSP listener_sp(
3128         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3129     HijackProcessEvents(listener_sp);
3130 
3131     SendAsyncInterrupt();
3132 
3133     // Consume the interrupt event.
3134     StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3135                                            &exit_event_sp, true, listener_sp);
3136 
3137     RestoreProcessEvents();
3138 
3139     // If the process exited while we were waiting for it to stop, put the
3140     // exited event into the shared pointer passed in and return.  Our caller
3141     // doesn't need to do anything else, since they don't have a process
3142     // anymore...
3143 
3144     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3145       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3146                 __FUNCTION__);
3147       return error;
3148     } else
3149       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3150 
3151     if (state != eStateStopped) {
3152       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3153                 StateAsCString(state));
3154       // If we really couldn't stop the process then we should just error out
3155       // here, but if the lower levels just bobbled sending the event and we
3156       // really are stopped, then continue on.
3157       StateType private_state = m_private_state.GetValue();
3158       if (private_state != eStateStopped) {
3159         return Status(
3160             "Attempt to stop the target in order to detach timed out. "
3161             "State = %s",
3162             StateAsCString(GetState()));
3163       }
3164     }
3165   }
3166   return error;
3167 }
3168 
3169 Status Process::Detach(bool keep_stopped) {
3170   EventSP exit_event_sp;
3171   Status error;
3172   m_destroy_in_process = true;
3173 
3174   error = WillDetach();
3175 
3176   if (error.Success()) {
3177     if (DetachRequiresHalt()) {
3178       error = StopForDestroyOrDetach(exit_event_sp);
3179       if (!error.Success()) {
3180         m_destroy_in_process = false;
3181         return error;
3182       } else if (exit_event_sp) {
3183         // We shouldn't need to do anything else here.  There's no process left
3184         // to detach from...
3185         StopPrivateStateThread();
3186         m_destroy_in_process = false;
3187         return error;
3188       }
3189     }
3190 
3191     m_thread_list.DiscardThreadPlans();
3192     DisableAllBreakpointSites();
3193 
3194     error = DoDetach(keep_stopped);
3195     if (error.Success()) {
3196       DidDetach();
3197       StopPrivateStateThread();
3198     } else {
3199       return error;
3200     }
3201   }
3202   m_destroy_in_process = false;
3203 
3204   // If we exited when we were waiting for a process to stop, then forward the
3205   // event here so we don't lose the event
3206   if (exit_event_sp) {
3207     // Directly broadcast our exited event because we shut down our private
3208     // state thread above
3209     BroadcastEvent(exit_event_sp);
3210   }
3211 
3212   // If we have been interrupted (to kill us) in the middle of running, we may
3213   // not end up propagating the last events through the event system, in which
3214   // case we might strand the write lock.  Unlock it here so when we do to tear
3215   // down the process we don't get an error destroying the lock.
3216 
3217   m_public_run_lock.SetStopped();
3218   return error;
3219 }
3220 
3221 Status Process::Destroy(bool force_kill) {
3222   // If we've already called Process::Finalize then there's nothing useful to
3223   // be done here.  Finalize has actually called Destroy already.
3224   if (m_finalizing)
3225     return {};
3226   return DestroyImpl(force_kill);
3227 }
3228 
3229 Status Process::DestroyImpl(bool force_kill) {
3230   // Tell ourselves we are in the process of destroying the process, so that we
3231   // don't do any unnecessary work that might hinder the destruction.  Remember
3232   // to set this back to false when we are done.  That way if the attempt
3233   // failed and the process stays around for some reason it won't be in a
3234   // confused state.
3235 
3236   if (force_kill)
3237     m_should_detach = false;
3238 
3239   if (GetShouldDetach()) {
3240     // FIXME: This will have to be a process setting:
3241     bool keep_stopped = false;
3242     Detach(keep_stopped);
3243   }
3244 
3245   m_destroy_in_process = true;
3246 
3247   Status error(WillDestroy());
3248   if (error.Success()) {
3249     EventSP exit_event_sp;
3250     if (DestroyRequiresHalt()) {
3251       error = StopForDestroyOrDetach(exit_event_sp);
3252     }
3253 
3254     if (m_public_state.GetValue() == eStateStopped) {
3255       // Ditch all thread plans, and remove all our breakpoints: in case we
3256       // have to restart the target to kill it, we don't want it hitting a
3257       // breakpoint... Only do this if we've stopped, however, since if we
3258       // didn't manage to halt it above, then we're not going to have much luck
3259       // doing this now.
3260       m_thread_list.DiscardThreadPlans();
3261       DisableAllBreakpointSites();
3262     }
3263 
3264     error = DoDestroy();
3265     if (error.Success()) {
3266       DidDestroy();
3267       StopPrivateStateThread();
3268     }
3269     m_stdio_communication.StopReadThread();
3270     m_stdio_communication.Disconnect();
3271     m_stdin_forward = false;
3272 
3273     if (m_process_input_reader) {
3274       m_process_input_reader->SetIsDone(true);
3275       m_process_input_reader->Cancel();
3276       m_process_input_reader.reset();
3277     }
3278 
3279     // If we exited when we were waiting for a process to stop, then forward
3280     // the event here so we don't lose the event
3281     if (exit_event_sp) {
3282       // Directly broadcast our exited event because we shut down our private
3283       // state thread above
3284       BroadcastEvent(exit_event_sp);
3285     }
3286 
3287     // If we have been interrupted (to kill us) in the middle of running, we
3288     // may not end up propagating the last events through the event system, in
3289     // which case we might strand the write lock.  Unlock it here so when we do
3290     // to tear down the process we don't get an error destroying the lock.
3291     m_public_run_lock.SetStopped();
3292   }
3293 
3294   m_destroy_in_process = false;
3295 
3296   return error;
3297 }
3298 
3299 Status Process::Signal(int signal) {
3300   Status error(WillSignal());
3301   if (error.Success()) {
3302     error = DoSignal(signal);
3303     if (error.Success())
3304       DidSignal();
3305   }
3306   return error;
3307 }
3308 
3309 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3310   assert(signals_sp && "null signals_sp");
3311   m_unix_signals_sp = signals_sp;
3312 }
3313 
3314 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3315   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3316   return m_unix_signals_sp;
3317 }
3318 
3319 lldb::ByteOrder Process::GetByteOrder() const {
3320   return GetTarget().GetArchitecture().GetByteOrder();
3321 }
3322 
3323 uint32_t Process::GetAddressByteSize() const {
3324   return GetTarget().GetArchitecture().GetAddressByteSize();
3325 }
3326 
3327 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3328   const StateType state =
3329       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3330   bool return_value = true;
3331   Log *log(GetLog(LLDBLog::Events | LLDBLog::Process));
3332 
3333   switch (state) {
3334   case eStateDetached:
3335   case eStateExited:
3336   case eStateUnloaded:
3337     m_stdio_communication.SynchronizeWithReadThread();
3338     m_stdio_communication.StopReadThread();
3339     m_stdio_communication.Disconnect();
3340     m_stdin_forward = false;
3341 
3342     LLVM_FALLTHROUGH;
3343   case eStateConnected:
3344   case eStateAttaching:
3345   case eStateLaunching:
3346     // These events indicate changes in the state of the debugging session,
3347     // always report them.
3348     return_value = true;
3349     break;
3350   case eStateInvalid:
3351     // We stopped for no apparent reason, don't report it.
3352     return_value = false;
3353     break;
3354   case eStateRunning:
3355   case eStateStepping:
3356     // If we've started the target running, we handle the cases where we are
3357     // already running and where there is a transition from stopped to running
3358     // differently. running -> running: Automatically suppress extra running
3359     // events stopped -> running: Report except when there is one or more no
3360     // votes
3361     //     and no yes votes.
3362     SynchronouslyNotifyStateChanged(state);
3363     if (m_force_next_event_delivery)
3364       return_value = true;
3365     else {
3366       switch (m_last_broadcast_state) {
3367       case eStateRunning:
3368       case eStateStepping:
3369         // We always suppress multiple runnings with no PUBLIC stop in between.
3370         return_value = false;
3371         break;
3372       default:
3373         // TODO: make this work correctly. For now always report
3374         // run if we aren't running so we don't miss any running events. If I
3375         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3376         // and hit the breakpoints on multiple threads, then somehow during the
3377         // stepping over of all breakpoints no run gets reported.
3378 
3379         // This is a transition from stop to run.
3380         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3381         case eVoteYes:
3382         case eVoteNoOpinion:
3383           return_value = true;
3384           break;
3385         case eVoteNo:
3386           return_value = false;
3387           break;
3388         }
3389         break;
3390       }
3391     }
3392     break;
3393   case eStateStopped:
3394   case eStateCrashed:
3395   case eStateSuspended:
3396     // We've stopped.  First see if we're going to restart the target. If we
3397     // are going to stop, then we always broadcast the event. If we aren't
3398     // going to stop, let the thread plans decide if we're going to report this
3399     // event. If no thread has an opinion, we don't report it.
3400 
3401     m_stdio_communication.SynchronizeWithReadThread();
3402     RefreshStateAfterStop();
3403     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3404       LLDB_LOGF(log,
3405                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3406                 "interrupt, state: %s",
3407                 static_cast<void *>(event_ptr), StateAsCString(state));
3408       // Even though we know we are going to stop, we should let the threads
3409       // have a look at the stop, so they can properly set their state.
3410       m_thread_list.ShouldStop(event_ptr);
3411       return_value = true;
3412     } else {
3413       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3414       bool should_resume = false;
3415 
3416       // It makes no sense to ask "ShouldStop" if we've already been
3417       // restarted... Asking the thread list is also not likely to go well,
3418       // since we are running again. So in that case just report the event.
3419 
3420       if (!was_restarted)
3421         should_resume = !m_thread_list.ShouldStop(event_ptr);
3422 
3423       if (was_restarted || should_resume || m_resume_requested) {
3424         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3425         LLDB_LOGF(log,
3426                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3427                   "%s was_restarted: %i report_stop_vote: %d.",
3428                   should_resume, StateAsCString(state), was_restarted,
3429                   report_stop_vote);
3430 
3431         switch (report_stop_vote) {
3432         case eVoteYes:
3433           return_value = true;
3434           break;
3435         case eVoteNoOpinion:
3436         case eVoteNo:
3437           return_value = false;
3438           break;
3439         }
3440 
3441         if (!was_restarted) {
3442           LLDB_LOGF(log,
3443                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3444                     "from state: %s",
3445                     static_cast<void *>(event_ptr), StateAsCString(state));
3446           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3447           PrivateResume();
3448         }
3449       } else {
3450         return_value = true;
3451         SynchronouslyNotifyStateChanged(state);
3452       }
3453     }
3454     break;
3455   }
3456 
3457   // Forcing the next event delivery is a one shot deal.  So reset it here.
3458   m_force_next_event_delivery = false;
3459 
3460   // We do some coalescing of events (for instance two consecutive running
3461   // events get coalesced.) But we only coalesce against events we actually
3462   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3463   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3464   // done, because the PublicState reflects the last event pulled off the
3465   // queue, and there may be several events stacked up on the queue unserviced.
3466   // So the PublicState may not reflect the last broadcasted event yet.
3467   // m_last_broadcast_state gets updated here.
3468 
3469   if (return_value)
3470     m_last_broadcast_state = state;
3471 
3472   LLDB_LOGF(log,
3473             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3474             "broadcast state: %s - %s",
3475             static_cast<void *>(event_ptr), StateAsCString(state),
3476             StateAsCString(m_last_broadcast_state),
3477             return_value ? "YES" : "NO");
3478   return return_value;
3479 }
3480 
3481 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3482   Log *log = GetLog(LLDBLog::Events);
3483 
3484   bool already_running = PrivateStateThreadIsValid();
3485   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3486             already_running ? " already running"
3487                             : " starting private state thread");
3488 
3489   if (!is_secondary_thread && already_running)
3490     return true;
3491 
3492   // Create a thread that watches our internal state and controls which events
3493   // make it to clients (into the DCProcess event queue).
3494   char thread_name[1024];
3495   uint32_t max_len = llvm::get_max_thread_name_length();
3496   if (max_len > 0 && max_len <= 30) {
3497     // On platforms with abbreviated thread name lengths, choose thread names
3498     // that fit within the limit.
3499     if (already_running)
3500       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3501     else
3502       snprintf(thread_name, sizeof(thread_name), "intern-state");
3503   } else {
3504     if (already_running)
3505       snprintf(thread_name, sizeof(thread_name),
3506                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3507                GetID());
3508     else
3509       snprintf(thread_name, sizeof(thread_name),
3510                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3511   }
3512 
3513   llvm::Expected<HostThread> private_state_thread =
3514       ThreadLauncher::LaunchThread(
3515           thread_name,
3516           [this, is_secondary_thread] {
3517             return RunPrivateStateThread(is_secondary_thread);
3518           },
3519           8 * 1024 * 1024);
3520   if (!private_state_thread) {
3521     LLDB_LOG(GetLog(LLDBLog::Host), "failed to launch host thread: {}",
3522              llvm::toString(private_state_thread.takeError()));
3523     return false;
3524   }
3525 
3526   assert(private_state_thread->IsJoinable());
3527   m_private_state_thread = *private_state_thread;
3528   ResumePrivateStateThread();
3529   return true;
3530 }
3531 
3532 void Process::PausePrivateStateThread() {
3533   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3534 }
3535 
3536 void Process::ResumePrivateStateThread() {
3537   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3538 }
3539 
3540 void Process::StopPrivateStateThread() {
3541   if (m_private_state_thread.IsJoinable())
3542     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3543   else {
3544     Log *log = GetLog(LLDBLog::Process);
3545     LLDB_LOGF(
3546         log,
3547         "Went to stop the private state thread, but it was already invalid.");
3548   }
3549 }
3550 
3551 void Process::ControlPrivateStateThread(uint32_t signal) {
3552   Log *log = GetLog(LLDBLog::Process);
3553 
3554   assert(signal == eBroadcastInternalStateControlStop ||
3555          signal == eBroadcastInternalStateControlPause ||
3556          signal == eBroadcastInternalStateControlResume);
3557 
3558   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3559 
3560   // Signal the private state thread
3561   if (m_private_state_thread.IsJoinable()) {
3562     // Broadcast the event.
3563     // It is important to do this outside of the if below, because it's
3564     // possible that the thread state is invalid but that the thread is waiting
3565     // on a control event instead of simply being on its way out (this should
3566     // not happen, but it apparently can).
3567     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3568     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3569     m_private_state_control_broadcaster.BroadcastEvent(signal,
3570                                                        event_receipt_sp);
3571 
3572     // Wait for the event receipt or for the private state thread to exit
3573     bool receipt_received = false;
3574     if (PrivateStateThreadIsValid()) {
3575       while (!receipt_received) {
3576         // Check for a receipt for n seconds and then check if the private
3577         // state thread is still around.
3578         receipt_received =
3579           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3580         if (!receipt_received) {
3581           // Check if the private state thread is still around. If it isn't
3582           // then we are done waiting
3583           if (!PrivateStateThreadIsValid())
3584             break; // Private state thread exited or is exiting, we are done
3585         }
3586       }
3587     }
3588 
3589     if (signal == eBroadcastInternalStateControlStop) {
3590       thread_result_t result = {};
3591       m_private_state_thread.Join(&result);
3592       m_private_state_thread.Reset();
3593     }
3594   } else {
3595     LLDB_LOGF(
3596         log,
3597         "Private state thread already dead, no need to signal it to stop.");
3598   }
3599 }
3600 
3601 void Process::SendAsyncInterrupt() {
3602   if (PrivateStateThreadIsValid())
3603     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3604                                                nullptr);
3605   else
3606     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3607 }
3608 
3609 void Process::HandlePrivateEvent(EventSP &event_sp) {
3610   Log *log = GetLog(LLDBLog::Process);
3611   m_resume_requested = false;
3612 
3613   const StateType new_state =
3614       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3615 
3616   // First check to see if anybody wants a shot at this event:
3617   if (m_next_event_action_up) {
3618     NextEventAction::EventActionResult action_result =
3619         m_next_event_action_up->PerformAction(event_sp);
3620     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3621 
3622     switch (action_result) {
3623     case NextEventAction::eEventActionSuccess:
3624       SetNextEventAction(nullptr);
3625       break;
3626 
3627     case NextEventAction::eEventActionRetry:
3628       break;
3629 
3630     case NextEventAction::eEventActionExit:
3631       // Handle Exiting Here.  If we already got an exited event, we should
3632       // just propagate it.  Otherwise, swallow this event, and set our state
3633       // to exit so the next event will kill us.
3634       if (new_state != eStateExited) {
3635         // FIXME: should cons up an exited event, and discard this one.
3636         SetExitStatus(0, m_next_event_action_up->GetExitString());
3637         SetNextEventAction(nullptr);
3638         return;
3639       }
3640       SetNextEventAction(nullptr);
3641       break;
3642     }
3643   }
3644 
3645   // See if we should broadcast this state to external clients?
3646   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3647 
3648   if (should_broadcast) {
3649     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3650     if (log) {
3651       LLDB_LOGF(log,
3652                 "Process::%s (pid = %" PRIu64
3653                 ") broadcasting new state %s (old state %s) to %s",
3654                 __FUNCTION__, GetID(), StateAsCString(new_state),
3655                 StateAsCString(GetState()),
3656                 is_hijacked ? "hijacked" : "public");
3657     }
3658     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3659     if (StateIsRunningState(new_state)) {
3660       // Only push the input handler if we aren't fowarding events, as this
3661       // means the curses GUI is in use... Or don't push it if we are launching
3662       // since it will come up stopped.
3663       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3664           new_state != eStateLaunching && new_state != eStateAttaching) {
3665         PushProcessIOHandler();
3666         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3667                                   eBroadcastAlways);
3668         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3669                   __FUNCTION__, m_iohandler_sync.GetValue());
3670       }
3671     } else if (StateIsStoppedState(new_state, false)) {
3672       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3673         // If the lldb_private::Debugger is handling the events, we don't want
3674         // to pop the process IOHandler here, we want to do it when we receive
3675         // the stopped event so we can carefully control when the process
3676         // IOHandler is popped because when we stop we want to display some
3677         // text stating how and why we stopped, then maybe some
3678         // process/thread/frame info, and then we want the "(lldb) " prompt to
3679         // show up. If we pop the process IOHandler here, then we will cause
3680         // the command interpreter to become the top IOHandler after the
3681         // process pops off and it will update its prompt right away... See the
3682         // Debugger.cpp file where it calls the function as
3683         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3684         // Otherwise we end up getting overlapping "(lldb) " prompts and
3685         // garbled output.
3686         //
3687         // If we aren't handling the events in the debugger (which is indicated
3688         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3689         // we are hijacked, then we always pop the process IO handler manually.
3690         // Hijacking happens when the internal process state thread is running
3691         // thread plans, or when commands want to run in synchronous mode and
3692         // they call "process->WaitForProcessToStop()". An example of something
3693         // that will hijack the events is a simple expression:
3694         //
3695         //  (lldb) expr (int)puts("hello")
3696         //
3697         // This will cause the internal process state thread to resume and halt
3698         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3699         // events) and we do need the IO handler to be pushed and popped
3700         // correctly.
3701 
3702         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3703           PopProcessIOHandler();
3704       }
3705     }
3706 
3707     BroadcastEvent(event_sp);
3708   } else {
3709     if (log) {
3710       LLDB_LOGF(
3711           log,
3712           "Process::%s (pid = %" PRIu64
3713           ") suppressing state %s (old state %s): should_broadcast == false",
3714           __FUNCTION__, GetID(), StateAsCString(new_state),
3715           StateAsCString(GetState()));
3716     }
3717   }
3718 }
3719 
3720 Status Process::HaltPrivate() {
3721   EventSP event_sp;
3722   Status error(WillHalt());
3723   if (error.Fail())
3724     return error;
3725 
3726   // Ask the process subclass to actually halt our process
3727   bool caused_stop;
3728   error = DoHalt(caused_stop);
3729 
3730   DidHalt();
3731   return error;
3732 }
3733 
3734 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3735   bool control_only = true;
3736 
3737   Log *log = GetLog(LLDBLog::Process);
3738   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3739             __FUNCTION__, static_cast<void *>(this), GetID());
3740 
3741   bool exit_now = false;
3742   bool interrupt_requested = false;
3743   while (!exit_now) {
3744     EventSP event_sp;
3745     GetEventsPrivate(event_sp, llvm::None, control_only);
3746     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3747       LLDB_LOGF(log,
3748                 "Process::%s (arg = %p, pid = %" PRIu64
3749                 ") got a control event: %d",
3750                 __FUNCTION__, static_cast<void *>(this), GetID(),
3751                 event_sp->GetType());
3752 
3753       switch (event_sp->GetType()) {
3754       case eBroadcastInternalStateControlStop:
3755         exit_now = true;
3756         break; // doing any internal state management below
3757 
3758       case eBroadcastInternalStateControlPause:
3759         control_only = true;
3760         break;
3761 
3762       case eBroadcastInternalStateControlResume:
3763         control_only = false;
3764         break;
3765       }
3766 
3767       continue;
3768     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3769       if (m_public_state.GetValue() == eStateAttaching) {
3770         LLDB_LOGF(log,
3771                   "Process::%s (arg = %p, pid = %" PRIu64
3772                   ") woke up with an interrupt while attaching - "
3773                   "forwarding interrupt.",
3774                   __FUNCTION__, static_cast<void *>(this), GetID());
3775         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3776       } else if (StateIsRunningState(m_last_broadcast_state)) {
3777         LLDB_LOGF(log,
3778                   "Process::%s (arg = %p, pid = %" PRIu64
3779                   ") woke up with an interrupt - Halting.",
3780                   __FUNCTION__, static_cast<void *>(this), GetID());
3781         Status error = HaltPrivate();
3782         if (error.Fail() && log)
3783           LLDB_LOGF(log,
3784                     "Process::%s (arg = %p, pid = %" PRIu64
3785                     ") failed to halt the process: %s",
3786                     __FUNCTION__, static_cast<void *>(this), GetID(),
3787                     error.AsCString());
3788         // Halt should generate a stopped event. Make a note of the fact that
3789         // we were doing the interrupt, so we can set the interrupted flag
3790         // after we receive the event. We deliberately set this to true even if
3791         // HaltPrivate failed, so that we can interrupt on the next natural
3792         // stop.
3793         interrupt_requested = true;
3794       } else {
3795         // This can happen when someone (e.g. Process::Halt) sees that we are
3796         // running and sends an interrupt request, but the process actually
3797         // stops before we receive it. In that case, we can just ignore the
3798         // request. We use m_last_broadcast_state, because the Stopped event
3799         // may not have been popped of the event queue yet, which is when the
3800         // public state gets updated.
3801         LLDB_LOGF(log,
3802                   "Process::%s ignoring interrupt as we have already stopped.",
3803                   __FUNCTION__);
3804       }
3805       continue;
3806     }
3807 
3808     const StateType internal_state =
3809         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3810 
3811     if (internal_state != eStateInvalid) {
3812       if (m_clear_thread_plans_on_stop &&
3813           StateIsStoppedState(internal_state, true)) {
3814         m_clear_thread_plans_on_stop = false;
3815         m_thread_list.DiscardThreadPlans();
3816       }
3817 
3818       if (interrupt_requested) {
3819         if (StateIsStoppedState(internal_state, true)) {
3820           // We requested the interrupt, so mark this as such in the stop event
3821           // so clients can tell an interrupted process from a natural stop
3822           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3823           interrupt_requested = false;
3824         } else if (log) {
3825           LLDB_LOGF(log,
3826                     "Process::%s interrupt_requested, but a non-stopped "
3827                     "state '%s' received.",
3828                     __FUNCTION__, StateAsCString(internal_state));
3829         }
3830       }
3831 
3832       HandlePrivateEvent(event_sp);
3833     }
3834 
3835     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3836         internal_state == eStateDetached) {
3837       LLDB_LOGF(log,
3838                 "Process::%s (arg = %p, pid = %" PRIu64
3839                 ") about to exit with internal state %s...",
3840                 __FUNCTION__, static_cast<void *>(this), GetID(),
3841                 StateAsCString(internal_state));
3842 
3843       break;
3844     }
3845   }
3846 
3847   // Verify log is still enabled before attempting to write to it...
3848   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3849             __FUNCTION__, static_cast<void *>(this), GetID());
3850 
3851   // If we are a secondary thread, then the primary thread we are working for
3852   // will have already acquired the public_run_lock, and isn't done with what
3853   // it was doing yet, so don't try to change it on the way out.
3854   if (!is_secondary_thread)
3855     m_public_run_lock.SetStopped();
3856   return {};
3857 }
3858 
3859 // Process Event Data
3860 
3861 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3862 
3863 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3864                                             StateType state)
3865     : EventData(), m_process_wp(), m_state(state) {
3866   if (process_sp)
3867     m_process_wp = process_sp;
3868 }
3869 
3870 Process::ProcessEventData::~ProcessEventData() = default;
3871 
3872 ConstString Process::ProcessEventData::GetFlavorString() {
3873   static ConstString g_flavor("Process::ProcessEventData");
3874   return g_flavor;
3875 }
3876 
3877 ConstString Process::ProcessEventData::GetFlavor() const {
3878   return ProcessEventData::GetFlavorString();
3879 }
3880 
3881 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3882                                            bool &found_valid_stopinfo) {
3883   found_valid_stopinfo = false;
3884 
3885   ProcessSP process_sp(m_process_wp.lock());
3886   if (!process_sp)
3887     return false;
3888 
3889   ThreadList &curr_thread_list = process_sp->GetThreadList();
3890   uint32_t num_threads = curr_thread_list.GetSize();
3891   uint32_t idx;
3892 
3893   // The actions might change one of the thread's stop_info's opinions about
3894   // whether we should stop the process, so we need to query that as we go.
3895 
3896   // One other complication here, is that we try to catch any case where the
3897   // target has run (except for expressions) and immediately exit, but if we
3898   // get that wrong (which is possible) then the thread list might have
3899   // changed, and that would cause our iteration here to crash.  We could
3900   // make a copy of the thread list, but we'd really like to also know if it
3901   // has changed at all, so we make up a vector of the thread ID's and check
3902   // what we get back against this list & bag out if anything differs.
3903   ThreadList not_suspended_thread_list(process_sp.get());
3904   std::vector<uint32_t> thread_index_array(num_threads);
3905   uint32_t not_suspended_idx = 0;
3906   for (idx = 0; idx < num_threads; ++idx) {
3907     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3908 
3909     /*
3910      Filter out all suspended threads, they could not be the reason
3911      of stop and no need to perform any actions on them.
3912      */
3913     if (thread_sp->GetResumeState() != eStateSuspended) {
3914       not_suspended_thread_list.AddThread(thread_sp);
3915       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3916       not_suspended_idx++;
3917     }
3918   }
3919 
3920   // Use this to track whether we should continue from here.  We will only
3921   // continue the target running if no thread says we should stop.  Of course
3922   // if some thread's PerformAction actually sets the target running, then it
3923   // doesn't matter what the other threads say...
3924 
3925   bool still_should_stop = false;
3926 
3927   // Sometimes - for instance if we have a bug in the stub we are talking to,
3928   // we stop but no thread has a valid stop reason.  In that case we should
3929   // just stop, because we have no way of telling what the right thing to do
3930   // is, and it's better to let the user decide than continue behind their
3931   // backs.
3932 
3933   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3934     curr_thread_list = process_sp->GetThreadList();
3935     if (curr_thread_list.GetSize() != num_threads) {
3936       Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
3937       LLDB_LOGF(
3938           log,
3939           "Number of threads changed from %u to %u while processing event.",
3940           num_threads, curr_thread_list.GetSize());
3941       break;
3942     }
3943 
3944     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3945 
3946     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3947       Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
3948       LLDB_LOGF(log,
3949                 "The thread at position %u changed from %u to %u while "
3950                 "processing event.",
3951                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3952       break;
3953     }
3954 
3955     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3956     if (stop_info_sp && stop_info_sp->IsValid()) {
3957       found_valid_stopinfo = true;
3958       bool this_thread_wants_to_stop;
3959       if (stop_info_sp->GetOverrideShouldStop()) {
3960         this_thread_wants_to_stop =
3961             stop_info_sp->GetOverriddenShouldStopValue();
3962       } else {
3963         stop_info_sp->PerformAction(event_ptr);
3964         // The stop action might restart the target.  If it does, then we
3965         // want to mark that in the event so that whoever is receiving it
3966         // will know to wait for the running event and reflect that state
3967         // appropriately. We also need to stop processing actions, since they
3968         // aren't expecting the target to be running.
3969 
3970         // FIXME: we might have run.
3971         if (stop_info_sp->HasTargetRunSinceMe()) {
3972           SetRestarted(true);
3973           break;
3974         }
3975 
3976         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
3977       }
3978 
3979       if (!still_should_stop)
3980         still_should_stop = this_thread_wants_to_stop;
3981     }
3982   }
3983 
3984   return still_should_stop;
3985 }
3986 
3987 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
3988   ProcessSP process_sp(m_process_wp.lock());
3989 
3990   if (!process_sp)
3991     return;
3992 
3993   // This function gets called twice for each event, once when the event gets
3994   // pulled off of the private process event queue, and then any number of
3995   // times, first when it gets pulled off of the public event queue, then other
3996   // times when we're pretending that this is where we stopped at the end of
3997   // expression evaluation.  m_update_state is used to distinguish these three
3998   // cases; it is 0 when we're just pulling it off for private handling, and >
3999   // 1 for expression evaluation, and we don't want to do the breakpoint
4000   // command handling then.
4001   if (m_update_state != 1)
4002     return;
4003 
4004   process_sp->SetPublicState(
4005       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4006 
4007   if (m_state == eStateStopped && !m_restarted) {
4008     // Let process subclasses know we are about to do a public stop and do
4009     // anything they might need to in order to speed up register and memory
4010     // accesses.
4011     process_sp->WillPublicStop();
4012   }
4013 
4014   // If this is a halt event, even if the halt stopped with some reason other
4015   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4016   // the halt request came through) don't do the StopInfo actions, as they may
4017   // end up restarting the process.
4018   if (m_interrupted)
4019     return;
4020 
4021   // If we're not stopped or have restarted, then skip the StopInfo actions:
4022   if (m_state != eStateStopped || m_restarted) {
4023     return;
4024   }
4025 
4026   bool does_anybody_have_an_opinion = false;
4027   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4028 
4029   if (GetRestarted()) {
4030     return;
4031   }
4032 
4033   if (!still_should_stop && does_anybody_have_an_opinion) {
4034     // We've been asked to continue, so do that here.
4035     SetRestarted(true);
4036     // Use the public resume method here, since this is just extending a
4037     // public resume.
4038     process_sp->PrivateResume();
4039   } else {
4040     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4041                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4042 
4043     if (!hijacked) {
4044       // If we didn't restart, run the Stop Hooks here.
4045       // Don't do that if state changed events aren't hooked up to the
4046       // public (or SyncResume) broadcasters.  StopHooks are just for
4047       // real public stops.  They might also restart the target,
4048       // so watch for that.
4049       if (process_sp->GetTarget().RunStopHooks())
4050         SetRestarted(true);
4051     }
4052   }
4053 }
4054 
4055 void Process::ProcessEventData::Dump(Stream *s) const {
4056   ProcessSP process_sp(m_process_wp.lock());
4057 
4058   if (process_sp)
4059     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4060               static_cast<void *>(process_sp.get()), process_sp->GetID());
4061   else
4062     s->PutCString(" process = NULL, ");
4063 
4064   s->Printf("state = %s", StateAsCString(GetState()));
4065 }
4066 
4067 const Process::ProcessEventData *
4068 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4069   if (event_ptr) {
4070     const EventData *event_data = event_ptr->GetData();
4071     if (event_data &&
4072         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4073       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4074   }
4075   return nullptr;
4076 }
4077 
4078 ProcessSP
4079 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4080   ProcessSP process_sp;
4081   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4082   if (data)
4083     process_sp = data->GetProcessSP();
4084   return process_sp;
4085 }
4086 
4087 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4088   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4089   if (data == nullptr)
4090     return eStateInvalid;
4091   else
4092     return data->GetState();
4093 }
4094 
4095 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4096   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4097   if (data == nullptr)
4098     return false;
4099   else
4100     return data->GetRestarted();
4101 }
4102 
4103 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4104                                                     bool new_value) {
4105   ProcessEventData *data =
4106       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4107   if (data != nullptr)
4108     data->SetRestarted(new_value);
4109 }
4110 
4111 size_t
4112 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4113   ProcessEventData *data =
4114       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4115   if (data != nullptr)
4116     return data->GetNumRestartedReasons();
4117   else
4118     return 0;
4119 }
4120 
4121 const char *
4122 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4123                                                      size_t idx) {
4124   ProcessEventData *data =
4125       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4126   if (data != nullptr)
4127     return data->GetRestartedReasonAtIndex(idx);
4128   else
4129     return nullptr;
4130 }
4131 
4132 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4133                                                    const char *reason) {
4134   ProcessEventData *data =
4135       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4136   if (data != nullptr)
4137     data->AddRestartedReason(reason);
4138 }
4139 
4140 bool Process::ProcessEventData::GetInterruptedFromEvent(
4141     const Event *event_ptr) {
4142   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4143   if (data == nullptr)
4144     return false;
4145   else
4146     return data->GetInterrupted();
4147 }
4148 
4149 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4150                                                       bool new_value) {
4151   ProcessEventData *data =
4152       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4153   if (data != nullptr)
4154     data->SetInterrupted(new_value);
4155 }
4156 
4157 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4158   ProcessEventData *data =
4159       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4160   if (data) {
4161     data->SetUpdateStateOnRemoval();
4162     return true;
4163   }
4164   return false;
4165 }
4166 
4167 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4168 
4169 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4170   exe_ctx.SetTargetPtr(&GetTarget());
4171   exe_ctx.SetProcessPtr(this);
4172   exe_ctx.SetThreadPtr(nullptr);
4173   exe_ctx.SetFramePtr(nullptr);
4174 }
4175 
4176 // uint32_t
4177 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4178 // std::vector<lldb::pid_t> &pids)
4179 //{
4180 //    return 0;
4181 //}
4182 //
4183 // ArchSpec
4184 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4185 //{
4186 //    return Host::GetArchSpecForExistingProcess (pid);
4187 //}
4188 //
4189 // ArchSpec
4190 // Process::GetArchSpecForExistingProcess (const char *process_name)
4191 //{
4192 //    return Host::GetArchSpecForExistingProcess (process_name);
4193 //}
4194 
4195 void Process::AppendSTDOUT(const char *s, size_t len) {
4196   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4197   m_stdout_data.append(s, len);
4198   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4199                          new ProcessEventData(shared_from_this(), GetState()));
4200 }
4201 
4202 void Process::AppendSTDERR(const char *s, size_t len) {
4203   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4204   m_stderr_data.append(s, len);
4205   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4206                          new ProcessEventData(shared_from_this(), GetState()));
4207 }
4208 
4209 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4210   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4211   m_profile_data.push_back(one_profile_data);
4212   BroadcastEventIfUnique(eBroadcastBitProfileData,
4213                          new ProcessEventData(shared_from_this(), GetState()));
4214 }
4215 
4216 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4217                                       const StructuredDataPluginSP &plugin_sp) {
4218   BroadcastEvent(
4219       eBroadcastBitStructuredData,
4220       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4221 }
4222 
4223 StructuredDataPluginSP
4224 Process::GetStructuredDataPlugin(ConstString type_name) const {
4225   auto find_it = m_structured_data_plugin_map.find(type_name);
4226   if (find_it != m_structured_data_plugin_map.end())
4227     return find_it->second;
4228   else
4229     return StructuredDataPluginSP();
4230 }
4231 
4232 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4233   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4234   if (m_profile_data.empty())
4235     return 0;
4236 
4237   std::string &one_profile_data = m_profile_data.front();
4238   size_t bytes_available = one_profile_data.size();
4239   if (bytes_available > 0) {
4240     Log *log = GetLog(LLDBLog::Process);
4241     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4242               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4243     if (bytes_available > buf_size) {
4244       memcpy(buf, one_profile_data.c_str(), buf_size);
4245       one_profile_data.erase(0, buf_size);
4246       bytes_available = buf_size;
4247     } else {
4248       memcpy(buf, one_profile_data.c_str(), bytes_available);
4249       m_profile_data.erase(m_profile_data.begin());
4250     }
4251   }
4252   return bytes_available;
4253 }
4254 
4255 // Process STDIO
4256 
4257 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4258   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4259   size_t bytes_available = m_stdout_data.size();
4260   if (bytes_available > 0) {
4261     Log *log = GetLog(LLDBLog::Process);
4262     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4263               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4264     if (bytes_available > buf_size) {
4265       memcpy(buf, m_stdout_data.c_str(), buf_size);
4266       m_stdout_data.erase(0, buf_size);
4267       bytes_available = buf_size;
4268     } else {
4269       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4270       m_stdout_data.clear();
4271     }
4272   }
4273   return bytes_available;
4274 }
4275 
4276 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4277   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4278   size_t bytes_available = m_stderr_data.size();
4279   if (bytes_available > 0) {
4280     Log *log = GetLog(LLDBLog::Process);
4281     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4282               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4283     if (bytes_available > buf_size) {
4284       memcpy(buf, m_stderr_data.c_str(), buf_size);
4285       m_stderr_data.erase(0, buf_size);
4286       bytes_available = buf_size;
4287     } else {
4288       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4289       m_stderr_data.clear();
4290     }
4291   }
4292   return bytes_available;
4293 }
4294 
4295 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4296                                            size_t src_len) {
4297   Process *process = (Process *)baton;
4298   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4299 }
4300 
4301 class IOHandlerProcessSTDIO : public IOHandler {
4302 public:
4303   IOHandlerProcessSTDIO(Process *process, int write_fd)
4304       : IOHandler(process->GetTarget().GetDebugger(),
4305                   IOHandler::Type::ProcessIO),
4306         m_process(process),
4307         m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4308         m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4309     m_pipe.CreateNew(false);
4310   }
4311 
4312   ~IOHandlerProcessSTDIO() override = default;
4313 
4314   void SetIsRunning(bool running) {
4315     std::lock_guard<std::mutex> guard(m_mutex);
4316     SetIsDone(!running);
4317     m_is_running = running;
4318   }
4319 
4320   // Each IOHandler gets to run until it is done. It should read data from the
4321   // "in" and place output into "out" and "err and return when done.
4322   void Run() override {
4323     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4324         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4325       SetIsDone(true);
4326       return;
4327     }
4328 
4329     SetIsDone(false);
4330     const int read_fd = m_read_file.GetDescriptor();
4331     Terminal terminal(read_fd);
4332     TerminalState terminal_state(terminal, false);
4333     // FIXME: error handling?
4334     llvm::consumeError(terminal.SetCanonical(false));
4335     llvm::consumeError(terminal.SetEcho(false));
4336 // FD_ZERO, FD_SET are not supported on windows
4337 #ifndef _WIN32
4338     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4339     SetIsRunning(true);
4340     while (true) {
4341       {
4342         std::lock_guard<std::mutex> guard(m_mutex);
4343         if (GetIsDone())
4344           break;
4345       }
4346 
4347       SelectHelper select_helper;
4348       select_helper.FDSetRead(read_fd);
4349       select_helper.FDSetRead(pipe_read_fd);
4350       Status error = select_helper.Select();
4351 
4352       if (error.Fail())
4353         break;
4354 
4355       char ch = 0;
4356       size_t n;
4357       if (select_helper.FDIsSetRead(read_fd)) {
4358         n = 1;
4359         if (m_read_file.Read(&ch, n).Success() && n == 1) {
4360           if (m_write_file.Write(&ch, n).Fail() || n != 1)
4361             break;
4362         } else
4363           break;
4364       }
4365 
4366       if (select_helper.FDIsSetRead(pipe_read_fd)) {
4367         size_t bytes_read;
4368         // Consume the interrupt byte
4369         Status error = m_pipe.Read(&ch, 1, bytes_read);
4370         if (error.Success()) {
4371           if (ch == 'q')
4372             break;
4373           if (ch == 'i')
4374             if (StateIsRunningState(m_process->GetState()))
4375               m_process->SendAsyncInterrupt();
4376         }
4377       }
4378     }
4379     SetIsRunning(false);
4380 #endif
4381   }
4382 
4383   void Cancel() override {
4384     std::lock_guard<std::mutex> guard(m_mutex);
4385     SetIsDone(true);
4386     // Only write to our pipe to cancel if we are in
4387     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4388     // is being run from the command interpreter:
4389     //
4390     // (lldb) step_process_thousands_of_times
4391     //
4392     // In this case the command interpreter will be in the middle of handling
4393     // the command and if the process pushes and pops the IOHandler thousands
4394     // of times, we can end up writing to m_pipe without ever consuming the
4395     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4396     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4397     if (m_is_running) {
4398       char ch = 'q'; // Send 'q' for quit
4399       size_t bytes_written = 0;
4400       m_pipe.Write(&ch, 1, bytes_written);
4401     }
4402   }
4403 
4404   bool Interrupt() override {
4405     // Do only things that are safe to do in an interrupt context (like in a
4406     // SIGINT handler), like write 1 byte to a file descriptor. This will
4407     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4408     // that was written to the pipe and then call
4409     // m_process->SendAsyncInterrupt() from a much safer location in code.
4410     if (m_active) {
4411       char ch = 'i'; // Send 'i' for interrupt
4412       size_t bytes_written = 0;
4413       Status result = m_pipe.Write(&ch, 1, bytes_written);
4414       return result.Success();
4415     } else {
4416       // This IOHandler might be pushed on the stack, but not being run
4417       // currently so do the right thing if we aren't actively watching for
4418       // STDIN by sending the interrupt to the process. Otherwise the write to
4419       // the pipe above would do nothing. This can happen when the command
4420       // interpreter is running and gets a "expression ...". It will be on the
4421       // IOHandler thread and sending the input is complete to the delegate
4422       // which will cause the expression to run, which will push the process IO
4423       // handler, but not run it.
4424 
4425       if (StateIsRunningState(m_process->GetState())) {
4426         m_process->SendAsyncInterrupt();
4427         return true;
4428       }
4429     }
4430     return false;
4431   }
4432 
4433   void GotEOF() override {}
4434 
4435 protected:
4436   Process *m_process;
4437   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4438   NativeFile m_write_file; // Write to this file (usually the primary pty for
4439                            // getting io to debuggee)
4440   Pipe m_pipe;
4441   std::mutex m_mutex;
4442   bool m_is_running = false;
4443 };
4444 
4445 void Process::SetSTDIOFileDescriptor(int fd) {
4446   // First set up the Read Thread for reading/handling process I/O
4447   m_stdio_communication.SetConnection(
4448       std::make_unique<ConnectionFileDescriptor>(fd, true));
4449   if (m_stdio_communication.IsConnected()) {
4450     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4451         STDIOReadThreadBytesReceived, this);
4452     m_stdio_communication.StartReadThread();
4453 
4454     // Now read thread is set up, set up input reader.
4455 
4456     if (!m_process_input_reader)
4457       m_process_input_reader =
4458           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4459   }
4460 }
4461 
4462 bool Process::ProcessIOHandlerIsActive() {
4463   IOHandlerSP io_handler_sp(m_process_input_reader);
4464   if (io_handler_sp)
4465     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4466   return false;
4467 }
4468 bool Process::PushProcessIOHandler() {
4469   IOHandlerSP io_handler_sp(m_process_input_reader);
4470   if (io_handler_sp) {
4471     Log *log = GetLog(LLDBLog::Process);
4472     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4473 
4474     io_handler_sp->SetIsDone(false);
4475     // If we evaluate an utility function, then we don't cancel the current
4476     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4477     // existing IOHandler that potentially provides the user interface (e.g.
4478     // the IOHandler for Editline).
4479     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4480     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4481                                                 cancel_top_handler);
4482     return true;
4483   }
4484   return false;
4485 }
4486 
4487 bool Process::PopProcessIOHandler() {
4488   IOHandlerSP io_handler_sp(m_process_input_reader);
4489   if (io_handler_sp)
4490     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4491   return false;
4492 }
4493 
4494 // The process needs to know about installed plug-ins
4495 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4496 
4497 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4498 
4499 namespace {
4500 // RestorePlanState is used to record the "is private", "is controlling" and
4501 // "okay
4502 // to discard" fields of the plan we are running, and reset it on Clean or on
4503 // destruction. It will only reset the state once, so you can call Clean and
4504 // then monkey with the state and it won't get reset on you again.
4505 
4506 class RestorePlanState {
4507 public:
4508   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4509       : m_thread_plan_sp(thread_plan_sp) {
4510     if (m_thread_plan_sp) {
4511       m_private = m_thread_plan_sp->GetPrivate();
4512       m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4513       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4514     }
4515   }
4516 
4517   ~RestorePlanState() { Clean(); }
4518 
4519   void Clean() {
4520     if (!m_already_reset && m_thread_plan_sp) {
4521       m_already_reset = true;
4522       m_thread_plan_sp->SetPrivate(m_private);
4523       m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4524       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4525     }
4526   }
4527 
4528 private:
4529   lldb::ThreadPlanSP m_thread_plan_sp;
4530   bool m_already_reset = false;
4531   bool m_private;
4532   bool m_is_controlling;
4533   bool m_okay_to_discard;
4534 };
4535 } // anonymous namespace
4536 
4537 static microseconds
4538 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4539   const milliseconds default_one_thread_timeout(250);
4540 
4541   // If the overall wait is forever, then we don't need to worry about it.
4542   if (!options.GetTimeout()) {
4543     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4544                                          : default_one_thread_timeout;
4545   }
4546 
4547   // If the one thread timeout is set, use it.
4548   if (options.GetOneThreadTimeout())
4549     return *options.GetOneThreadTimeout();
4550 
4551   // Otherwise use half the total timeout, bounded by the
4552   // default_one_thread_timeout.
4553   return std::min<microseconds>(default_one_thread_timeout,
4554                                 *options.GetTimeout() / 2);
4555 }
4556 
4557 static Timeout<std::micro>
4558 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4559                      bool before_first_timeout) {
4560   // If we are going to run all threads the whole time, or if we are only going
4561   // to run one thread, we can just return the overall timeout.
4562   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4563     return options.GetTimeout();
4564 
4565   if (before_first_timeout)
4566     return GetOneThreadExpressionTimeout(options);
4567 
4568   if (!options.GetTimeout())
4569     return llvm::None;
4570   else
4571     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4572 }
4573 
4574 static llvm::Optional<ExpressionResults>
4575 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4576                    RestorePlanState &restorer, const EventSP &event_sp,
4577                    EventSP &event_to_broadcast_sp,
4578                    const EvaluateExpressionOptions &options,
4579                    bool handle_interrupts) {
4580   Log *log = GetLog(LLDBLog::Step | LLDBLog::Process);
4581 
4582   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4583                            .GetProcessSP()
4584                            ->GetThreadList()
4585                            .FindThreadByID(thread_id);
4586   if (!thread_sp) {
4587     LLDB_LOG(log,
4588              "The thread on which we were running the "
4589              "expression: tid = {0}, exited while "
4590              "the expression was running.",
4591              thread_id);
4592     return eExpressionThreadVanished;
4593   }
4594 
4595   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4596   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4597     LLDB_LOG(log, "execution completed successfully");
4598 
4599     // Restore the plan state so it will get reported as intended when we are
4600     // done.
4601     restorer.Clean();
4602     return eExpressionCompleted;
4603   }
4604 
4605   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4606   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4607       stop_info_sp->ShouldNotify(event_sp.get())) {
4608     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4609     if (!options.DoesIgnoreBreakpoints()) {
4610       // Restore the plan state and then force Private to false.  We are going
4611       // to stop because of this plan so we need it to become a public plan or
4612       // it won't report correctly when we continue to its termination later
4613       // on.
4614       restorer.Clean();
4615       thread_plan_sp->SetPrivate(false);
4616       event_to_broadcast_sp = event_sp;
4617     }
4618     return eExpressionHitBreakpoint;
4619   }
4620 
4621   if (!handle_interrupts &&
4622       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4623     return llvm::None;
4624 
4625   LLDB_LOG(log, "thread plan did not successfully complete");
4626   if (!options.DoesUnwindOnError())
4627     event_to_broadcast_sp = event_sp;
4628   return eExpressionInterrupted;
4629 }
4630 
4631 ExpressionResults
4632 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4633                        lldb::ThreadPlanSP &thread_plan_sp,
4634                        const EvaluateExpressionOptions &options,
4635                        DiagnosticManager &diagnostic_manager) {
4636   ExpressionResults return_value = eExpressionSetupError;
4637 
4638   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4639 
4640   if (!thread_plan_sp) {
4641     diagnostic_manager.PutString(
4642         eDiagnosticSeverityError,
4643         "RunThreadPlan called with empty thread plan.");
4644     return eExpressionSetupError;
4645   }
4646 
4647   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4648     diagnostic_manager.PutString(
4649         eDiagnosticSeverityError,
4650         "RunThreadPlan called with an invalid thread plan.");
4651     return eExpressionSetupError;
4652   }
4653 
4654   if (exe_ctx.GetProcessPtr() != this) {
4655     diagnostic_manager.PutString(eDiagnosticSeverityError,
4656                                  "RunThreadPlan called on wrong process.");
4657     return eExpressionSetupError;
4658   }
4659 
4660   Thread *thread = exe_ctx.GetThreadPtr();
4661   if (thread == nullptr) {
4662     diagnostic_manager.PutString(eDiagnosticSeverityError,
4663                                  "RunThreadPlan called with invalid thread.");
4664     return eExpressionSetupError;
4665   }
4666 
4667   // Record the thread's id so we can tell when a thread we were using
4668   // to run the expression exits during the expression evaluation.
4669   lldb::tid_t expr_thread_id = thread->GetID();
4670 
4671   // We need to change some of the thread plan attributes for the thread plan
4672   // runner.  This will restore them when we are done:
4673 
4674   RestorePlanState thread_plan_restorer(thread_plan_sp);
4675 
4676   // We rely on the thread plan we are running returning "PlanCompleted" if
4677   // when it successfully completes. For that to be true the plan can't be
4678   // private - since private plans suppress themselves in the GetCompletedPlan
4679   // call.
4680 
4681   thread_plan_sp->SetPrivate(false);
4682 
4683   // The plans run with RunThreadPlan also need to be terminal controlling plans
4684   // or when they are done we will end up asking the plan above us whether we
4685   // should stop, which may give the wrong answer.
4686 
4687   thread_plan_sp->SetIsControllingPlan(true);
4688   thread_plan_sp->SetOkayToDiscard(false);
4689 
4690   // If we are running some utility expression for LLDB, we now have to mark
4691   // this in the ProcesModID of this process. This RAII takes care of marking
4692   // and reverting the mark it once we are done running the expression.
4693   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4694 
4695   if (m_private_state.GetValue() != eStateStopped) {
4696     diagnostic_manager.PutString(
4697         eDiagnosticSeverityError,
4698         "RunThreadPlan called while the private state was not stopped.");
4699     return eExpressionSetupError;
4700   }
4701 
4702   // Save the thread & frame from the exe_ctx for restoration after we run
4703   const uint32_t thread_idx_id = thread->GetIndexID();
4704   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4705   if (!selected_frame_sp) {
4706     thread->SetSelectedFrame(nullptr);
4707     selected_frame_sp = thread->GetSelectedFrame();
4708     if (!selected_frame_sp) {
4709       diagnostic_manager.Printf(
4710           eDiagnosticSeverityError,
4711           "RunThreadPlan called without a selected frame on thread %d",
4712           thread_idx_id);
4713       return eExpressionSetupError;
4714     }
4715   }
4716 
4717   // Make sure the timeout values make sense. The one thread timeout needs to
4718   // be smaller than the overall timeout.
4719   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4720       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4721     diagnostic_manager.PutString(eDiagnosticSeverityError,
4722                                  "RunThreadPlan called with one thread "
4723                                  "timeout greater than total timeout");
4724     return eExpressionSetupError;
4725   }
4726 
4727   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4728 
4729   // N.B. Running the target may unset the currently selected thread and frame.
4730   // We don't want to do that either, so we should arrange to reset them as
4731   // well.
4732 
4733   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4734 
4735   uint32_t selected_tid;
4736   StackID selected_stack_id;
4737   if (selected_thread_sp) {
4738     selected_tid = selected_thread_sp->GetIndexID();
4739     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4740   } else {
4741     selected_tid = LLDB_INVALID_THREAD_ID;
4742   }
4743 
4744   HostThread backup_private_state_thread;
4745   lldb::StateType old_state = eStateInvalid;
4746   lldb::ThreadPlanSP stopper_base_plan_sp;
4747 
4748   Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4749   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4750     // Yikes, we are running on the private state thread!  So we can't wait for
4751     // public events on this thread, since we are the thread that is generating
4752     // public events. The simplest thing to do is to spin up a temporary thread
4753     // to handle private state thread events while we are fielding public
4754     // events here.
4755     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4756                    "another state thread to handle the events.");
4757 
4758     backup_private_state_thread = m_private_state_thread;
4759 
4760     // One other bit of business: we want to run just this thread plan and
4761     // anything it pushes, and then stop, returning control here. But in the
4762     // normal course of things, the plan above us on the stack would be given a
4763     // shot at the stop event before deciding to stop, and we don't want that.
4764     // So we insert a "stopper" base plan on the stack before the plan we want
4765     // to run.  Since base plans always stop and return control to the user,
4766     // that will do just what we want.
4767     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4768     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4769     // Have to make sure our public state is stopped, since otherwise the
4770     // reporting logic below doesn't work correctly.
4771     old_state = m_public_state.GetValue();
4772     m_public_state.SetValueNoLock(eStateStopped);
4773 
4774     // Now spin up the private state thread:
4775     StartPrivateStateThread(true);
4776   }
4777 
4778   thread->QueueThreadPlan(
4779       thread_plan_sp, false); // This used to pass "true" does that make sense?
4780 
4781   if (options.GetDebug()) {
4782     // In this case, we aren't actually going to run, we just want to stop
4783     // right away. Flush this thread so we will refetch the stacks and show the
4784     // correct backtrace.
4785     // FIXME: To make this prettier we should invent some stop reason for this,
4786     // but that
4787     // is only cosmetic, and this functionality is only of use to lldb
4788     // developers who can live with not pretty...
4789     thread->Flush();
4790     return eExpressionStoppedForDebug;
4791   }
4792 
4793   ListenerSP listener_sp(
4794       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4795 
4796   lldb::EventSP event_to_broadcast_sp;
4797 
4798   {
4799     // This process event hijacker Hijacks the Public events and its destructor
4800     // makes sure that the process events get restored on exit to the function.
4801     //
4802     // If the event needs to propagate beyond the hijacker (e.g., the process
4803     // exits during execution), then the event is put into
4804     // event_to_broadcast_sp for rebroadcasting.
4805 
4806     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4807 
4808     if (log) {
4809       StreamString s;
4810       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4811       LLDB_LOGF(log,
4812                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4813                 " to run thread plan \"%s\".",
4814                 thread_idx_id, expr_thread_id, s.GetData());
4815     }
4816 
4817     bool got_event;
4818     lldb::EventSP event_sp;
4819     lldb::StateType stop_state = lldb::eStateInvalid;
4820 
4821     bool before_first_timeout = true; // This is set to false the first time
4822                                       // that we have to halt the target.
4823     bool do_resume = true;
4824     bool handle_running_event = true;
4825 
4826     // This is just for accounting:
4827     uint32_t num_resumes = 0;
4828 
4829     // If we are going to run all threads the whole time, or if we are only
4830     // going to run one thread, then we don't need the first timeout.  So we
4831     // pretend we are after the first timeout already.
4832     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4833       before_first_timeout = false;
4834 
4835     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4836               options.GetStopOthers(), options.GetTryAllThreads(),
4837               before_first_timeout);
4838 
4839     // This isn't going to work if there are unfetched events on the queue. Are
4840     // there cases where we might want to run the remaining events here, and
4841     // then try to call the function?  That's probably being too tricky for our
4842     // own good.
4843 
4844     Event *other_events = listener_sp->PeekAtNextEvent();
4845     if (other_events != nullptr) {
4846       diagnostic_manager.PutString(
4847           eDiagnosticSeverityError,
4848           "RunThreadPlan called with pending events on the queue.");
4849       return eExpressionSetupError;
4850     }
4851 
4852     // We also need to make sure that the next event is delivered.  We might be
4853     // calling a function as part of a thread plan, in which case the last
4854     // delivered event could be the running event, and we don't want event
4855     // coalescing to cause us to lose OUR running event...
4856     ForceNextEventDelivery();
4857 
4858 // This while loop must exit out the bottom, there's cleanup that we need to do
4859 // when we are done. So don't call return anywhere within it.
4860 
4861 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4862     // It's pretty much impossible to write test cases for things like: One
4863     // thread timeout expires, I go to halt, but the process already stopped on
4864     // the function call stop breakpoint.  Turning on this define will make us
4865     // not fetch the first event till after the halt.  So if you run a quick
4866     // function, it will have completed, and the completion event will be
4867     // waiting, when you interrupt for halt. The expression evaluation should
4868     // still succeed.
4869     bool miss_first_event = true;
4870 #endif
4871     while (true) {
4872       // We usually want to resume the process if we get to the top of the
4873       // loop. The only exception is if we get two running events with no
4874       // intervening stop, which can happen, we will just wait for then next
4875       // stop event.
4876       LLDB_LOGF(log,
4877                 "Top of while loop: do_resume: %i handle_running_event: %i "
4878                 "before_first_timeout: %i.",
4879                 do_resume, handle_running_event, before_first_timeout);
4880 
4881       if (do_resume || handle_running_event) {
4882         // Do the initial resume and wait for the running event before going
4883         // further.
4884 
4885         if (do_resume) {
4886           num_resumes++;
4887           Status resume_error = PrivateResume();
4888           if (!resume_error.Success()) {
4889             diagnostic_manager.Printf(
4890                 eDiagnosticSeverityError,
4891                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4892                 resume_error.AsCString());
4893             return_value = eExpressionSetupError;
4894             break;
4895           }
4896         }
4897 
4898         got_event =
4899             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4900         if (!got_event) {
4901           LLDB_LOGF(log,
4902                     "Process::RunThreadPlan(): didn't get any event after "
4903                     "resume %" PRIu32 ", exiting.",
4904                     num_resumes);
4905 
4906           diagnostic_manager.Printf(eDiagnosticSeverityError,
4907                                     "didn't get any event after resume %" PRIu32
4908                                     ", exiting.",
4909                                     num_resumes);
4910           return_value = eExpressionSetupError;
4911           break;
4912         }
4913 
4914         stop_state =
4915             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4916 
4917         if (stop_state != eStateRunning) {
4918           bool restarted = false;
4919 
4920           if (stop_state == eStateStopped) {
4921             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4922                 event_sp.get());
4923             LLDB_LOGF(
4924                 log,
4925                 "Process::RunThreadPlan(): didn't get running event after "
4926                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4927                 "handle_running_event: %i).",
4928                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4929                 handle_running_event);
4930           }
4931 
4932           if (restarted) {
4933             // This is probably an overabundance of caution, I don't think I
4934             // should ever get a stopped & restarted event here.  But if I do,
4935             // the best thing is to Halt and then get out of here.
4936             const bool clear_thread_plans = false;
4937             const bool use_run_lock = false;
4938             Halt(clear_thread_plans, use_run_lock);
4939           }
4940 
4941           diagnostic_manager.Printf(
4942               eDiagnosticSeverityError,
4943               "didn't get running event after initial resume, got %s instead.",
4944               StateAsCString(stop_state));
4945           return_value = eExpressionSetupError;
4946           break;
4947         }
4948 
4949         if (log)
4950           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4951         // We need to call the function synchronously, so spin waiting for it
4952         // to return. If we get interrupted while executing, we're going to
4953         // lose our context, and won't be able to gather the result at this
4954         // point. We set the timeout AFTER the resume, since the resume takes
4955         // some time and we don't want to charge that to the timeout.
4956       } else {
4957         if (log)
4958           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4959       }
4960 
4961       do_resume = true;
4962       handle_running_event = true;
4963 
4964       // Now wait for the process to stop again:
4965       event_sp.reset();
4966 
4967       Timeout<std::micro> timeout =
4968           GetExpressionTimeout(options, before_first_timeout);
4969       if (log) {
4970         if (timeout) {
4971           auto now = system_clock::now();
4972           LLDB_LOGF(log,
4973                     "Process::RunThreadPlan(): about to wait - now is %s - "
4974                     "endpoint is %s",
4975                     llvm::to_string(now).c_str(),
4976                     llvm::to_string(now + *timeout).c_str());
4977         } else {
4978           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
4979         }
4980       }
4981 
4982 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4983       // See comment above...
4984       if (miss_first_event) {
4985         std::this_thread::sleep_for(std::chrono::milliseconds(1));
4986         miss_first_event = false;
4987         got_event = false;
4988       } else
4989 #endif
4990         got_event = listener_sp->GetEvent(event_sp, timeout);
4991 
4992       if (got_event) {
4993         if (event_sp) {
4994           bool keep_going = false;
4995           if (event_sp->GetType() == eBroadcastBitInterrupt) {
4996             const bool clear_thread_plans = false;
4997             const bool use_run_lock = false;
4998             Halt(clear_thread_plans, use_run_lock);
4999             return_value = eExpressionInterrupted;
5000             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
5001                                          "execution halted by user interrupt.");
5002             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
5003                            "eBroadcastBitInterrupted, exiting.");
5004             break;
5005           } else {
5006             stop_state =
5007                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5008             LLDB_LOGF(log,
5009                       "Process::RunThreadPlan(): in while loop, got event: %s.",
5010                       StateAsCString(stop_state));
5011 
5012             switch (stop_state) {
5013             case lldb::eStateStopped: {
5014               if (Process::ProcessEventData::GetRestartedFromEvent(
5015                       event_sp.get())) {
5016                 // If we were restarted, we just need to go back up to fetch
5017                 // another event.
5018                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5019                                "restart, so we'll continue waiting.");
5020                 keep_going = true;
5021                 do_resume = false;
5022                 handle_running_event = true;
5023               } else {
5024                 const bool handle_interrupts = true;
5025                 return_value = *HandleStoppedEvent(
5026                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5027                     event_sp, event_to_broadcast_sp, options,
5028                     handle_interrupts);
5029                 if (return_value == eExpressionThreadVanished)
5030                   keep_going = false;
5031               }
5032             } break;
5033 
5034             case lldb::eStateRunning:
5035               // This shouldn't really happen, but sometimes we do get two
5036               // running events without an intervening stop, and in that case
5037               // we should just go back to waiting for the stop.
5038               do_resume = false;
5039               keep_going = true;
5040               handle_running_event = false;
5041               break;
5042 
5043             default:
5044               LLDB_LOGF(log,
5045                         "Process::RunThreadPlan(): execution stopped with "
5046                         "unexpected state: %s.",
5047                         StateAsCString(stop_state));
5048 
5049               if (stop_state == eStateExited)
5050                 event_to_broadcast_sp = event_sp;
5051 
5052               diagnostic_manager.PutString(
5053                   eDiagnosticSeverityError,
5054                   "execution stopped with unexpected state.");
5055               return_value = eExpressionInterrupted;
5056               break;
5057             }
5058           }
5059 
5060           if (keep_going)
5061             continue;
5062           else
5063             break;
5064         } else {
5065           if (log)
5066             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5067                             "the event pointer was null.  How odd...");
5068           return_value = eExpressionInterrupted;
5069           break;
5070         }
5071       } else {
5072         // If we didn't get an event that means we've timed out... We will
5073         // interrupt the process here.  Depending on what we were asked to do
5074         // we will either exit, or try with all threads running for the same
5075         // timeout.
5076 
5077         if (log) {
5078           if (options.GetTryAllThreads()) {
5079             if (before_first_timeout) {
5080               LLDB_LOG(log,
5081                        "Running function with one thread timeout timed out.");
5082             } else
5083               LLDB_LOG(log, "Restarting function with all threads enabled and "
5084                             "timeout: {0} timed out, abandoning execution.",
5085                        timeout);
5086           } else
5087             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5088                           "abandoning execution.",
5089                      timeout);
5090         }
5091 
5092         // It is possible that between the time we issued the Halt, and we get
5093         // around to calling Halt the target could have stopped.  That's fine,
5094         // Halt will figure that out and send the appropriate Stopped event.
5095         // BUT it is also possible that we stopped & restarted (e.g. hit a
5096         // signal with "stop" set to false.)  In
5097         // that case, we'll get the stopped & restarted event, and we should go
5098         // back to waiting for the Halt's stopped event.  That's what this
5099         // while loop does.
5100 
5101         bool back_to_top = true;
5102         uint32_t try_halt_again = 0;
5103         bool do_halt = true;
5104         const uint32_t num_retries = 5;
5105         while (try_halt_again < num_retries) {
5106           Status halt_error;
5107           if (do_halt) {
5108             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5109             const bool clear_thread_plans = false;
5110             const bool use_run_lock = false;
5111             Halt(clear_thread_plans, use_run_lock);
5112           }
5113           if (halt_error.Success()) {
5114             if (log)
5115               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5116 
5117             got_event =
5118                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5119 
5120             if (got_event) {
5121               stop_state =
5122                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5123               if (log) {
5124                 LLDB_LOGF(log,
5125                           "Process::RunThreadPlan(): Stopped with event: %s",
5126                           StateAsCString(stop_state));
5127                 if (stop_state == lldb::eStateStopped &&
5128                     Process::ProcessEventData::GetInterruptedFromEvent(
5129                         event_sp.get()))
5130                   log->PutCString("    Event was the Halt interruption event.");
5131               }
5132 
5133               if (stop_state == lldb::eStateStopped) {
5134                 if (Process::ProcessEventData::GetRestartedFromEvent(
5135                         event_sp.get())) {
5136                   if (log)
5137                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5138                                     "but got a restarted event, there must be "
5139                                     "an un-restarted stopped event so try "
5140                                     "again...  "
5141                                     "Exiting wait loop.");
5142                   try_halt_again++;
5143                   do_halt = false;
5144                   continue;
5145                 }
5146 
5147                 // Between the time we initiated the Halt and the time we
5148                 // delivered it, the process could have already finished its
5149                 // job.  Check that here:
5150                 const bool handle_interrupts = false;
5151                 if (auto result = HandleStoppedEvent(
5152                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5153                         event_sp, event_to_broadcast_sp, options,
5154                         handle_interrupts)) {
5155                   return_value = *result;
5156                   back_to_top = false;
5157                   break;
5158                 }
5159 
5160                 if (!options.GetTryAllThreads()) {
5161                   if (log)
5162                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5163                                     "was false, we stopped so now we're "
5164                                     "quitting.");
5165                   return_value = eExpressionInterrupted;
5166                   back_to_top = false;
5167                   break;
5168                 }
5169 
5170                 if (before_first_timeout) {
5171                   // Set all the other threads to run, and return to the top of
5172                   // the loop, which will continue;
5173                   before_first_timeout = false;
5174                   thread_plan_sp->SetStopOthers(false);
5175                   if (log)
5176                     log->PutCString(
5177                         "Process::RunThreadPlan(): about to resume.");
5178 
5179                   back_to_top = true;
5180                   break;
5181                 } else {
5182                   // Running all threads failed, so return Interrupted.
5183                   if (log)
5184                     log->PutCString("Process::RunThreadPlan(): running all "
5185                                     "threads timed out.");
5186                   return_value = eExpressionInterrupted;
5187                   back_to_top = false;
5188                   break;
5189                 }
5190               }
5191             } else {
5192               if (log)
5193                 log->PutCString("Process::RunThreadPlan(): halt said it "
5194                                 "succeeded, but I got no event.  "
5195                                 "I'm getting out of here passing Interrupted.");
5196               return_value = eExpressionInterrupted;
5197               back_to_top = false;
5198               break;
5199             }
5200           } else {
5201             try_halt_again++;
5202             continue;
5203           }
5204         }
5205 
5206         if (!back_to_top || try_halt_again > num_retries)
5207           break;
5208         else
5209           continue;
5210       }
5211     } // END WAIT LOOP
5212 
5213     // If we had to start up a temporary private state thread to run this
5214     // thread plan, shut it down now.
5215     if (backup_private_state_thread.IsJoinable()) {
5216       StopPrivateStateThread();
5217       Status error;
5218       m_private_state_thread = backup_private_state_thread;
5219       if (stopper_base_plan_sp) {
5220         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5221       }
5222       if (old_state != eStateInvalid)
5223         m_public_state.SetValueNoLock(old_state);
5224     }
5225 
5226     // If our thread went away on us, we need to get out of here without
5227     // doing any more work.  We don't have to clean up the thread plan, that
5228     // will have happened when the Thread was destroyed.
5229     if (return_value == eExpressionThreadVanished) {
5230       return return_value;
5231     }
5232 
5233     if (return_value != eExpressionCompleted && log) {
5234       // Print a backtrace into the log so we can figure out where we are:
5235       StreamString s;
5236       s.PutCString("Thread state after unsuccessful completion: \n");
5237       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5238       log->PutString(s.GetString());
5239     }
5240     // Restore the thread state if we are going to discard the plan execution.
5241     // There are three cases where this could happen: 1) The execution
5242     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5243     // was true 3) We got some other error, and discard_on_error was true
5244     bool should_unwind = (return_value == eExpressionInterrupted &&
5245                           options.DoesUnwindOnError()) ||
5246                          (return_value == eExpressionHitBreakpoint &&
5247                           options.DoesIgnoreBreakpoints());
5248 
5249     if (return_value == eExpressionCompleted || should_unwind) {
5250       thread_plan_sp->RestoreThreadState();
5251     }
5252 
5253     // Now do some processing on the results of the run:
5254     if (return_value == eExpressionInterrupted ||
5255         return_value == eExpressionHitBreakpoint) {
5256       if (log) {
5257         StreamString s;
5258         if (event_sp)
5259           event_sp->Dump(&s);
5260         else {
5261           log->PutCString("Process::RunThreadPlan(): Stop event that "
5262                           "interrupted us is NULL.");
5263         }
5264 
5265         StreamString ts;
5266 
5267         const char *event_explanation = nullptr;
5268 
5269         do {
5270           if (!event_sp) {
5271             event_explanation = "<no event>";
5272             break;
5273           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5274             event_explanation = "<user interrupt>";
5275             break;
5276           } else {
5277             const Process::ProcessEventData *event_data =
5278                 Process::ProcessEventData::GetEventDataFromEvent(
5279                     event_sp.get());
5280 
5281             if (!event_data) {
5282               event_explanation = "<no event data>";
5283               break;
5284             }
5285 
5286             Process *process = event_data->GetProcessSP().get();
5287 
5288             if (!process) {
5289               event_explanation = "<no process>";
5290               break;
5291             }
5292 
5293             ThreadList &thread_list = process->GetThreadList();
5294 
5295             uint32_t num_threads = thread_list.GetSize();
5296             uint32_t thread_index;
5297 
5298             ts.Printf("<%u threads> ", num_threads);
5299 
5300             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5301               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5302 
5303               if (!thread) {
5304                 ts.Printf("<?> ");
5305                 continue;
5306               }
5307 
5308               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5309               RegisterContext *register_context =
5310                   thread->GetRegisterContext().get();
5311 
5312               if (register_context)
5313                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5314               else
5315                 ts.Printf("[ip unknown] ");
5316 
5317               // Show the private stop info here, the public stop info will be
5318               // from the last natural stop.
5319               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5320               if (stop_info_sp) {
5321                 const char *stop_desc = stop_info_sp->GetDescription();
5322                 if (stop_desc)
5323                   ts.PutCString(stop_desc);
5324               }
5325               ts.Printf(">");
5326             }
5327 
5328             event_explanation = ts.GetData();
5329           }
5330         } while (false);
5331 
5332         if (event_explanation)
5333           LLDB_LOGF(log,
5334                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5335                     s.GetData(), event_explanation);
5336         else
5337           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5338                     s.GetData());
5339       }
5340 
5341       if (should_unwind) {
5342         LLDB_LOGF(log,
5343                   "Process::RunThreadPlan: ExecutionInterrupted - "
5344                   "discarding thread plans up to %p.",
5345                   static_cast<void *>(thread_plan_sp.get()));
5346         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5347       } else {
5348         LLDB_LOGF(log,
5349                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5350                   "plan: %p not discarding.",
5351                   static_cast<void *>(thread_plan_sp.get()));
5352       }
5353     } else if (return_value == eExpressionSetupError) {
5354       if (log)
5355         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5356 
5357       if (options.DoesUnwindOnError()) {
5358         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5359       }
5360     } else {
5361       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5362         if (log)
5363           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5364         return_value = eExpressionCompleted;
5365       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5366         if (log)
5367           log->PutCString(
5368               "Process::RunThreadPlan(): thread plan was discarded");
5369         return_value = eExpressionDiscarded;
5370       } else {
5371         if (log)
5372           log->PutCString(
5373               "Process::RunThreadPlan(): thread plan stopped in mid course");
5374         if (options.DoesUnwindOnError() && thread_plan_sp) {
5375           if (log)
5376             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5377                             "'cause unwind_on_error is set.");
5378           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5379         }
5380       }
5381     }
5382 
5383     // Thread we ran the function in may have gone away because we ran the
5384     // target Check that it's still there, and if it is put it back in the
5385     // context. Also restore the frame in the context if it is still present.
5386     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5387     if (thread) {
5388       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5389     }
5390 
5391     // Also restore the current process'es selected frame & thread, since this
5392     // function calling may be done behind the user's back.
5393 
5394     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5395       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5396           selected_stack_id.IsValid()) {
5397         // We were able to restore the selected thread, now restore the frame:
5398         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5399         StackFrameSP old_frame_sp =
5400             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5401                 selected_stack_id);
5402         if (old_frame_sp)
5403           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5404               old_frame_sp.get());
5405       }
5406     }
5407   }
5408 
5409   // If the process exited during the run of the thread plan, notify everyone.
5410 
5411   if (event_to_broadcast_sp) {
5412     if (log)
5413       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5414     BroadcastEvent(event_to_broadcast_sp);
5415   }
5416 
5417   return return_value;
5418 }
5419 
5420 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5421   const char *result_name = "<unknown>";
5422 
5423   switch (result) {
5424   case eExpressionCompleted:
5425     result_name = "eExpressionCompleted";
5426     break;
5427   case eExpressionDiscarded:
5428     result_name = "eExpressionDiscarded";
5429     break;
5430   case eExpressionInterrupted:
5431     result_name = "eExpressionInterrupted";
5432     break;
5433   case eExpressionHitBreakpoint:
5434     result_name = "eExpressionHitBreakpoint";
5435     break;
5436   case eExpressionSetupError:
5437     result_name = "eExpressionSetupError";
5438     break;
5439   case eExpressionParseError:
5440     result_name = "eExpressionParseError";
5441     break;
5442   case eExpressionResultUnavailable:
5443     result_name = "eExpressionResultUnavailable";
5444     break;
5445   case eExpressionTimedOut:
5446     result_name = "eExpressionTimedOut";
5447     break;
5448   case eExpressionStoppedForDebug:
5449     result_name = "eExpressionStoppedForDebug";
5450     break;
5451   case eExpressionThreadVanished:
5452     result_name = "eExpressionThreadVanished";
5453   }
5454   return result_name;
5455 }
5456 
5457 void Process::GetStatus(Stream &strm) {
5458   const StateType state = GetState();
5459   if (StateIsStoppedState(state, false)) {
5460     if (state == eStateExited) {
5461       int exit_status = GetExitStatus();
5462       const char *exit_description = GetExitDescription();
5463       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5464                   GetID(), exit_status, exit_status,
5465                   exit_description ? exit_description : "");
5466     } else {
5467       if (state == eStateConnected)
5468         strm.Printf("Connected to remote target.\n");
5469       else
5470         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5471     }
5472   } else {
5473     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5474   }
5475 }
5476 
5477 size_t Process::GetThreadStatus(Stream &strm,
5478                                 bool only_threads_with_stop_reason,
5479                                 uint32_t start_frame, uint32_t num_frames,
5480                                 uint32_t num_frames_with_source,
5481                                 bool stop_format) {
5482   size_t num_thread_infos_dumped = 0;
5483 
5484   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5485   // very well might run code (e.g. if we need it to get return values or
5486   // arguments.)  For that to work the process has to be able to acquire it.
5487   // So instead copy the thread ID's, and look them up one by one:
5488 
5489   uint32_t num_threads;
5490   std::vector<lldb::tid_t> thread_id_array;
5491   // Scope for thread list locker;
5492   {
5493     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5494     ThreadList &curr_thread_list = GetThreadList();
5495     num_threads = curr_thread_list.GetSize();
5496     uint32_t idx;
5497     thread_id_array.resize(num_threads);
5498     for (idx = 0; idx < num_threads; ++idx)
5499       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5500   }
5501 
5502   for (uint32_t i = 0; i < num_threads; i++) {
5503     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5504     if (thread_sp) {
5505       if (only_threads_with_stop_reason) {
5506         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5507         if (!stop_info_sp || !stop_info_sp->IsValid())
5508           continue;
5509       }
5510       thread_sp->GetStatus(strm, start_frame, num_frames,
5511                            num_frames_with_source,
5512                            stop_format);
5513       ++num_thread_infos_dumped;
5514     } else {
5515       Log *log = GetLog(LLDBLog::Process);
5516       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5517                      " vanished while running Thread::GetStatus.");
5518     }
5519   }
5520   return num_thread_infos_dumped;
5521 }
5522 
5523 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5524   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5525 }
5526 
5527 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5528   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5529                                            region.GetByteSize());
5530 }
5531 
5532 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5533                                  void *baton) {
5534   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5535 }
5536 
5537 bool Process::RunPreResumeActions() {
5538   bool result = true;
5539   while (!m_pre_resume_actions.empty()) {
5540     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5541     m_pre_resume_actions.pop_back();
5542     bool this_result = action.callback(action.baton);
5543     if (result)
5544       result = this_result;
5545   }
5546   return result;
5547 }
5548 
5549 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5550 
5551 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5552 {
5553     PreResumeCallbackAndBaton element(callback, baton);
5554     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5555     if (found_iter != m_pre_resume_actions.end())
5556     {
5557         m_pre_resume_actions.erase(found_iter);
5558     }
5559 }
5560 
5561 ProcessRunLock &Process::GetRunLock() {
5562   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5563     return m_private_run_lock;
5564   else
5565     return m_public_run_lock;
5566 }
5567 
5568 bool Process::CurrentThreadIsPrivateStateThread()
5569 {
5570   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5571 }
5572 
5573 
5574 void Process::Flush() {
5575   m_thread_list.Flush();
5576   m_extended_thread_list.Flush();
5577   m_extended_thread_stop_id = 0;
5578   m_queue_list.Clear();
5579   m_queue_list_stop_id = 0;
5580 }
5581 
5582 lldb::addr_t Process::GetCodeAddressMask() {
5583   if (m_code_address_mask == 0) {
5584     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5585       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5586       SetCodeAddressMask(address_mask);
5587     }
5588   }
5589   return m_code_address_mask;
5590 }
5591 
5592 lldb::addr_t Process::GetDataAddressMask() {
5593   if (m_data_address_mask == 0) {
5594     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5595       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5596       SetDataAddressMask(address_mask);
5597     }
5598   }
5599   return m_data_address_mask;
5600 }
5601 
5602 void Process::DidExec() {
5603   Log *log = GetLog(LLDBLog::Process);
5604   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5605 
5606   Target &target = GetTarget();
5607   target.CleanupProcess();
5608   target.ClearModules(false);
5609   m_dynamic_checkers_up.reset();
5610   m_abi_sp.reset();
5611   m_system_runtime_up.reset();
5612   m_os_up.reset();
5613   m_dyld_up.reset();
5614   m_jit_loaders_up.reset();
5615   m_image_tokens.clear();
5616   m_allocated_memory_cache.Clear();
5617   {
5618     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5619     m_language_runtimes.clear();
5620   }
5621   m_instrumentation_runtimes.clear();
5622   m_thread_list.DiscardThreadPlans();
5623   m_memory_cache.Clear(true);
5624   DoDidExec();
5625   CompleteAttach();
5626   // Flush the process (threads and all stack frames) after running
5627   // CompleteAttach() in case the dynamic loader loaded things in new
5628   // locations.
5629   Flush();
5630 
5631   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5632   // let the target know so it can do any cleanup it needs to.
5633   target.DidExec();
5634 }
5635 
5636 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5637   if (address == nullptr) {
5638     error.SetErrorString("Invalid address argument");
5639     return LLDB_INVALID_ADDRESS;
5640   }
5641 
5642   addr_t function_addr = LLDB_INVALID_ADDRESS;
5643 
5644   addr_t addr = address->GetLoadAddress(&GetTarget());
5645   std::map<addr_t, addr_t>::const_iterator iter =
5646       m_resolved_indirect_addresses.find(addr);
5647   if (iter != m_resolved_indirect_addresses.end()) {
5648     function_addr = (*iter).second;
5649   } else {
5650     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5651       Symbol *symbol = address->CalculateSymbolContextSymbol();
5652       error.SetErrorStringWithFormat(
5653           "Unable to call resolver for indirect function %s",
5654           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5655       function_addr = LLDB_INVALID_ADDRESS;
5656     } else {
5657       if (ABISP abi_sp = GetABI())
5658         function_addr = abi_sp->FixCodeAddress(function_addr);
5659       m_resolved_indirect_addresses.insert(
5660           std::pair<addr_t, addr_t>(addr, function_addr));
5661     }
5662   }
5663   return function_addr;
5664 }
5665 
5666 void Process::ModulesDidLoad(ModuleList &module_list) {
5667   // Inform the system runtime of the modified modules.
5668   SystemRuntime *sys_runtime = GetSystemRuntime();
5669   if (sys_runtime)
5670     sys_runtime->ModulesDidLoad(module_list);
5671 
5672   GetJITLoaders().ModulesDidLoad(module_list);
5673 
5674   // Give the instrumentation runtimes a chance to be created before informing
5675   // them of the modified modules.
5676   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5677                                          m_instrumentation_runtimes);
5678   for (auto &runtime : m_instrumentation_runtimes)
5679     runtime.second->ModulesDidLoad(module_list);
5680 
5681   // Give the language runtimes a chance to be created before informing them of
5682   // the modified modules.
5683   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5684     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5685       runtime->ModulesDidLoad(module_list);
5686   }
5687 
5688   // If we don't have an operating system plug-in, try to load one since
5689   // loading shared libraries might cause a new one to try and load
5690   if (!m_os_up)
5691     LoadOperatingSystemPlugin(false);
5692 
5693   // Inform the structured-data plugins of the modified modules.
5694   for (auto pair : m_structured_data_plugin_map) {
5695     if (pair.second)
5696       pair.second->ModulesDidLoad(*this, module_list);
5697   }
5698 }
5699 
5700 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key,
5701                            const char *fmt, ...) {
5702   bool print_warning = true;
5703 
5704   StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream();
5705   if (!stream_sp)
5706     return;
5707 
5708   if (repeat_key != nullptr) {
5709     WarningsCollection::iterator it = m_warnings_issued.find(warning_type);
5710     if (it == m_warnings_issued.end()) {
5711       m_warnings_issued[warning_type] = WarningsPointerSet();
5712       m_warnings_issued[warning_type].insert(repeat_key);
5713     } else {
5714       if (it->second.find(repeat_key) != it->second.end()) {
5715         print_warning = false;
5716       } else {
5717         it->second.insert(repeat_key);
5718       }
5719     }
5720   }
5721 
5722   if (print_warning) {
5723     va_list args;
5724     va_start(args, fmt);
5725     stream_sp->PrintfVarArg(fmt, args);
5726     va_end(args);
5727   }
5728 }
5729 
5730 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5731   if (!GetWarningsOptimization())
5732     return;
5733   if (!sc.module_sp)
5734     return;
5735   if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function &&
5736       sc.function->GetIsOptimized()) {
5737     PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(),
5738                  "%s was compiled with optimization - stepping may behave "
5739                  "oddly; variables may not be available.\n",
5740                  sc.module_sp->GetFileSpec().GetFilename().GetCString());
5741   }
5742 }
5743 
5744 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5745   if (!GetWarningsUnsupportedLanguage())
5746     return;
5747   if (!sc.module_sp)
5748     return;
5749   LanguageType language = sc.GetLanguage();
5750   if (language == eLanguageTypeUnknown)
5751     return;
5752   LanguageSet plugins =
5753       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5754   if (!plugins[language]) {
5755     PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage,
5756                  sc.module_sp.get(),
5757                  "This version of LLDB has no plugin for the language \"%s\". "
5758                  "Inspection of frame variables will be limited.\n",
5759                  Language::GetNameForLanguageType(language));
5760   }
5761 }
5762 
5763 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5764   info.Clear();
5765 
5766   PlatformSP platform_sp = GetTarget().GetPlatform();
5767   if (!platform_sp)
5768     return false;
5769 
5770   return platform_sp->GetProcessInfo(GetID(), info);
5771 }
5772 
5773 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5774   ThreadCollectionSP threads;
5775 
5776   const MemoryHistorySP &memory_history =
5777       MemoryHistory::FindPlugin(shared_from_this());
5778 
5779   if (!memory_history) {
5780     return threads;
5781   }
5782 
5783   threads = std::make_shared<ThreadCollection>(
5784       memory_history->GetHistoryThreads(addr));
5785 
5786   return threads;
5787 }
5788 
5789 InstrumentationRuntimeSP
5790 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5791   InstrumentationRuntimeCollection::iterator pos;
5792   pos = m_instrumentation_runtimes.find(type);
5793   if (pos == m_instrumentation_runtimes.end()) {
5794     return InstrumentationRuntimeSP();
5795   } else
5796     return (*pos).second;
5797 }
5798 
5799 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5800                             const ArchSpec &arch, ModuleSpec &module_spec) {
5801   module_spec.Clear();
5802   return false;
5803 }
5804 
5805 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5806   m_image_tokens.push_back(image_ptr);
5807   return m_image_tokens.size() - 1;
5808 }
5809 
5810 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5811   if (token < m_image_tokens.size())
5812     return m_image_tokens[token];
5813   return LLDB_INVALID_ADDRESS;
5814 }
5815 
5816 void Process::ResetImageToken(size_t token) {
5817   if (token < m_image_tokens.size())
5818     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5819 }
5820 
5821 Address
5822 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5823                                                AddressRange range_bounds) {
5824   Target &target = GetTarget();
5825   DisassemblerSP disassembler_sp;
5826   InstructionList *insn_list = nullptr;
5827 
5828   Address retval = default_stop_addr;
5829 
5830   if (!target.GetUseFastStepping())
5831     return retval;
5832   if (!default_stop_addr.IsValid())
5833     return retval;
5834 
5835   const char *plugin_name = nullptr;
5836   const char *flavor = nullptr;
5837   disassembler_sp = Disassembler::DisassembleRange(
5838       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5839   if (disassembler_sp)
5840     insn_list = &disassembler_sp->GetInstructionList();
5841 
5842   if (insn_list == nullptr) {
5843     return retval;
5844   }
5845 
5846   size_t insn_offset =
5847       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5848   if (insn_offset == UINT32_MAX) {
5849     return retval;
5850   }
5851 
5852   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5853       insn_offset, false /* ignore_calls*/, nullptr);
5854   if (branch_index == UINT32_MAX) {
5855     return retval;
5856   }
5857 
5858   if (branch_index > insn_offset) {
5859     Address next_branch_insn_address =
5860         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5861     if (next_branch_insn_address.IsValid() &&
5862         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5863       retval = next_branch_insn_address;
5864     }
5865   }
5866 
5867   return retval;
5868 }
5869 
5870 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
5871                                     MemoryRegionInfo &range_info) {
5872   if (const lldb::ABISP &abi = GetABI())
5873     load_addr = abi->FixDataAddress(load_addr);
5874   return DoGetMemoryRegionInfo(load_addr, range_info);
5875 }
5876 
5877 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5878   Status error;
5879 
5880   lldb::addr_t range_end = 0;
5881   const lldb::ABISP &abi = GetABI();
5882 
5883   region_list.clear();
5884   do {
5885     lldb_private::MemoryRegionInfo region_info;
5886     error = GetMemoryRegionInfo(range_end, region_info);
5887     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5888     if (error.Fail()) {
5889       region_list.clear();
5890       break;
5891     }
5892 
5893     // We only check the end address, not start and end, because we assume that
5894     // the start will not have non-address bits until the first unmappable
5895     // region. We will have exited the loop by that point because the previous
5896     // region, the last mappable region, will have non-address bits in its end
5897     // address.
5898     range_end = region_info.GetRange().GetRangeEnd();
5899     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5900       region_list.push_back(std::move(region_info));
5901     }
5902   } while (
5903       // For a process with no non-address bits, all address bits
5904       // set means the end of memory.
5905       range_end != LLDB_INVALID_ADDRESS &&
5906       // If we have non-address bits and some are set then the end
5907       // is at or beyond the end of mappable memory.
5908       !(abi && (abi->FixDataAddress(range_end) != range_end)));
5909 
5910   return error;
5911 }
5912 
5913 Status
5914 Process::ConfigureStructuredData(ConstString type_name,
5915                                  const StructuredData::ObjectSP &config_sp) {
5916   // If you get this, the Process-derived class needs to implement a method to
5917   // enable an already-reported asynchronous structured data feature. See
5918   // ProcessGDBRemote for an example implementation over gdb-remote.
5919   return Status("unimplemented");
5920 }
5921 
5922 void Process::MapSupportedStructuredDataPlugins(
5923     const StructuredData::Array &supported_type_names) {
5924   Log *log = GetLog(LLDBLog::Process);
5925 
5926   // Bail out early if there are no type names to map.
5927   if (supported_type_names.GetSize() == 0) {
5928     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5929               __FUNCTION__);
5930     return;
5931   }
5932 
5933   // Convert StructuredData type names to ConstString instances.
5934   std::set<ConstString> const_type_names;
5935 
5936   LLDB_LOGF(log,
5937             "Process::%s(): the process supports the following async "
5938             "structured data types:",
5939             __FUNCTION__);
5940 
5941   supported_type_names.ForEach(
5942       [&const_type_names, &log](StructuredData::Object *object) {
5943         if (!object) {
5944           // Invalid - shouldn't be null objects in the array.
5945           return false;
5946         }
5947 
5948         auto type_name = object->GetAsString();
5949         if (!type_name) {
5950           // Invalid format - all type names should be strings.
5951           return false;
5952         }
5953 
5954         const_type_names.insert(ConstString(type_name->GetValue()));
5955         LLDB_LOG(log, "- {0}", type_name->GetValue());
5956         return true;
5957       });
5958 
5959   // For each StructuredDataPlugin, if the plugin handles any of the types in
5960   // the supported_type_names, map that type name to that plugin. Stop when
5961   // we've consumed all the type names.
5962   // FIXME: should we return an error if there are type names nobody
5963   // supports?
5964   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5965     auto create_instance =
5966            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5967                plugin_index);
5968     if (!create_instance)
5969       break;
5970 
5971     // Create the plugin.
5972     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5973     if (!plugin_sp) {
5974       // This plugin doesn't think it can work with the process. Move on to the
5975       // next.
5976       continue;
5977     }
5978 
5979     // For any of the remaining type names, map any that this plugin supports.
5980     std::vector<ConstString> names_to_remove;
5981     for (auto &type_name : const_type_names) {
5982       if (plugin_sp->SupportsStructuredDataType(type_name)) {
5983         m_structured_data_plugin_map.insert(
5984             std::make_pair(type_name, plugin_sp));
5985         names_to_remove.push_back(type_name);
5986         LLDB_LOG(log, "using plugin {0} for type name {1}",
5987                  plugin_sp->GetPluginName(), type_name);
5988       }
5989     }
5990 
5991     // Remove the type names that were consumed by this plugin.
5992     for (auto &type_name : names_to_remove)
5993       const_type_names.erase(type_name);
5994   }
5995 }
5996 
5997 bool Process::RouteAsyncStructuredData(
5998     const StructuredData::ObjectSP object_sp) {
5999   // Nothing to do if there's no data.
6000   if (!object_sp)
6001     return false;
6002 
6003   // The contract is this must be a dictionary, so we can look up the routing
6004   // key via the top-level 'type' string value within the dictionary.
6005   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
6006   if (!dictionary)
6007     return false;
6008 
6009   // Grab the async structured type name (i.e. the feature/plugin name).
6010   ConstString type_name;
6011   if (!dictionary->GetValueForKeyAsString("type", type_name))
6012     return false;
6013 
6014   // Check if there's a plugin registered for this type name.
6015   auto find_it = m_structured_data_plugin_map.find(type_name);
6016   if (find_it == m_structured_data_plugin_map.end()) {
6017     // We don't have a mapping for this structured data type.
6018     return false;
6019   }
6020 
6021   // Route the structured data to the plugin.
6022   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6023   return true;
6024 }
6025 
6026 Status Process::UpdateAutomaticSignalFiltering() {
6027   // Default implementation does nothign.
6028   // No automatic signal filtering to speak of.
6029   return Status();
6030 }
6031 
6032 UtilityFunction *Process::GetLoadImageUtilityFunction(
6033     Platform *platform,
6034     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6035   if (platform != GetTarget().GetPlatform().get())
6036     return nullptr;
6037   llvm::call_once(m_dlopen_utility_func_flag_once,
6038                   [&] { m_dlopen_utility_func_up = factory(); });
6039   return m_dlopen_utility_func_up.get();
6040 }
6041 
6042 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6043   if (!IsLiveDebugSession())
6044     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6045                                    "Can't trace a non-live process.");
6046   return llvm::make_error<UnimplementedError>();
6047 }
6048 
6049 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6050                                        addr_t &returned_func,
6051                                        bool trap_exceptions) {
6052   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6053   if (thread == nullptr || address == nullptr)
6054     return false;
6055 
6056   EvaluateExpressionOptions options;
6057   options.SetStopOthers(true);
6058   options.SetUnwindOnError(true);
6059   options.SetIgnoreBreakpoints(true);
6060   options.SetTryAllThreads(true);
6061   options.SetDebug(false);
6062   options.SetTimeout(GetUtilityExpressionTimeout());
6063   options.SetTrapExceptions(trap_exceptions);
6064 
6065   auto type_system_or_err =
6066       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6067   if (!type_system_or_err) {
6068     llvm::consumeError(type_system_or_err.takeError());
6069     return false;
6070   }
6071   CompilerType void_ptr_type =
6072       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6073   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6074       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6075   if (call_plan_sp) {
6076     DiagnosticManager diagnostics;
6077 
6078     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6079     if (frame) {
6080       ExecutionContext exe_ctx;
6081       frame->CalculateExecutionContext(exe_ctx);
6082       ExpressionResults result =
6083           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6084       if (result == eExpressionCompleted) {
6085         returned_func =
6086             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6087                 LLDB_INVALID_ADDRESS);
6088 
6089         if (GetAddressByteSize() == 4) {
6090           if (returned_func == UINT32_MAX)
6091             return false;
6092         } else if (GetAddressByteSize() == 8) {
6093           if (returned_func == UINT64_MAX)
6094             return false;
6095         }
6096         return true;
6097       }
6098     }
6099   }
6100 
6101   return false;
6102 }
6103 
6104 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6105   Architecture *arch = GetTarget().GetArchitecturePlugin();
6106   const MemoryTagManager *tag_manager =
6107       arch ? arch->GetMemoryTagManager() : nullptr;
6108   if (!arch || !tag_manager) {
6109     return llvm::createStringError(
6110         llvm::inconvertibleErrorCode(),
6111         "This architecture does not support memory tagging");
6112   }
6113 
6114   if (!SupportsMemoryTagging()) {
6115     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6116                                    "Process does not support memory tagging");
6117   }
6118 
6119   return tag_manager;
6120 }
6121 
6122 llvm::Expected<std::vector<lldb::addr_t>>
6123 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6124   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6125       GetMemoryTagManager();
6126   if (!tag_manager_or_err)
6127     return tag_manager_or_err.takeError();
6128 
6129   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6130   llvm::Expected<std::vector<uint8_t>> tag_data =
6131       DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6132   if (!tag_data)
6133     return tag_data.takeError();
6134 
6135   return tag_manager->UnpackTagsData(*tag_data,
6136                                      len / tag_manager->GetGranuleSize());
6137 }
6138 
6139 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6140                                 const std::vector<lldb::addr_t> &tags) {
6141   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6142       GetMemoryTagManager();
6143   if (!tag_manager_or_err)
6144     return Status(tag_manager_or_err.takeError());
6145 
6146   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6147   llvm::Expected<std::vector<uint8_t>> packed_tags =
6148       tag_manager->PackTags(tags);
6149   if (!packed_tags) {
6150     return Status(packed_tags.takeError());
6151   }
6152 
6153   return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6154                            *packed_tags);
6155 }
6156