1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
17 #include "lldb/Breakpoint/BreakpointLocation.h"
18 #include "lldb/Breakpoint/StoppointCallbackContext.h"
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Expression/DiagnosticManager.h"
25 #include "lldb/Expression/DynamicCheckerFunctions.h"
26 #include "lldb/Expression/UserExpression.h"
27 #include "lldb/Expression/UtilityFunction.h"
28 #include "lldb/Host/ConnectionFileDescriptor.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Interpreter/CommandInterpreter.h"
37 #include "lldb/Interpreter/OptionArgParser.h"
38 #include "lldb/Interpreter/OptionValueProperties.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
42 #include "lldb/Target/AssertFrameRecognizer.h"
43 #include "lldb/Target/DynamicLoader.h"
44 #include "lldb/Target/InstrumentationRuntime.h"
45 #include "lldb/Target/JITLoader.h"
46 #include "lldb/Target/JITLoaderList.h"
47 #include "lldb/Target/Language.h"
48 #include "lldb/Target/LanguageRuntime.h"
49 #include "lldb/Target/MemoryHistory.h"
50 #include "lldb/Target/MemoryRegionInfo.h"
51 #include "lldb/Target/OperatingSystem.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
54 #include "lldb/Target/RegisterContext.h"
55 #include "lldb/Target/StopInfo.h"
56 #include "lldb/Target/StructuredDataPlugin.h"
57 #include "lldb/Target/SystemRuntime.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
62 #include "lldb/Target/ThreadPlanBase.h"
63 #include "lldb/Target/ThreadPlanCallFunction.h"
64 #include "lldb/Target/ThreadPlanStack.h"
65 #include "lldb/Target/UnixSignals.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/Log.h"
68 #include "lldb/Utility/NameMatches.h"
69 #include "lldb/Utility/ProcessInfo.h"
70 #include "lldb/Utility/SelectHelper.h"
71 #include "lldb/Utility/State.h"
72 #include "lldb/Utility/Timer.h"
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace std::chrono;
77 
78 // Comment out line below to disable memory caching, overriding the process
79 // setting target.process.disable-memory-cache
80 #define ENABLE_MEMORY_CACHING
81 
82 #ifdef ENABLE_MEMORY_CACHING
83 #define DISABLE_MEM_CACHE_DEFAULT false
84 #else
85 #define DISABLE_MEM_CACHE_DEFAULT true
86 #endif
87 
88 class ProcessOptionValueProperties
89     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
90 public:
91   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
92 
93   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
94                                      bool will_modify,
95                                      uint32_t idx) const override {
96     // When getting the value for a key from the process options, we will
97     // always try and grab the setting from the current process if there is
98     // one. Else we just use the one from this instance.
99     if (exe_ctx) {
100       Process *process = exe_ctx->GetProcessPtr();
101       if (process) {
102         ProcessOptionValueProperties *instance_properties =
103             static_cast<ProcessOptionValueProperties *>(
104                 process->GetValueProperties().get());
105         if (this != instance_properties)
106           return instance_properties->ProtectedGetPropertyAtIndex(idx);
107       }
108     }
109     return ProtectedGetPropertyAtIndex(idx);
110   }
111 };
112 
113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
114     {
115         eFollowParent,
116         "parent",
117         "Continue tracing the parent process and detach the child.",
118     },
119     {
120         eFollowChild,
121         "child",
122         "Trace the child process and detach the parent.",
123     },
124 };
125 
126 #define LLDB_PROPERTIES_process
127 #include "TargetProperties.inc"
128 
129 enum {
130 #define LLDB_PROPERTIES_process
131 #include "TargetPropertiesEnum.inc"
132   ePropertyExperimental,
133 };
134 
135 #define LLDB_PROPERTIES_process_experimental
136 #include "TargetProperties.inc"
137 
138 enum {
139 #define LLDB_PROPERTIES_process_experimental
140 #include "TargetPropertiesEnum.inc"
141 };
142 
143 class ProcessExperimentalOptionValueProperties
144     : public Cloneable<ProcessExperimentalOptionValueProperties,
145                        OptionValueProperties> {
146 public:
147   ProcessExperimentalOptionValueProperties()
148       : Cloneable(
149             ConstString(Properties::GetExperimentalSettingsName())) {}
150 };
151 
152 ProcessExperimentalProperties::ProcessExperimentalProperties()
153     : Properties(OptionValuePropertiesSP(
154           new ProcessExperimentalOptionValueProperties())) {
155   m_collection_sp->Initialize(g_process_experimental_properties);
156 }
157 
158 ProcessProperties::ProcessProperties(lldb_private::Process *process)
159     : Properties(),
160       m_process(process) // Can be nullptr for global ProcessProperties
161 {
162   if (process == nullptr) {
163     // Global process properties, set them up one time
164     m_collection_sp =
165         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
166     m_collection_sp->Initialize(g_process_properties);
167     m_collection_sp->AppendProperty(
168         ConstString("thread"), ConstString("Settings specific to threads."),
169         true, Thread::GetGlobalProperties()->GetValueProperties());
170   } else {
171     m_collection_sp =
172         OptionValueProperties::CreateLocalCopy(*Process::GetGlobalProperties());
173     m_collection_sp->SetValueChangedCallback(
174         ePropertyPythonOSPluginPath,
175         [this] { m_process->LoadOperatingSystemPlugin(true); });
176   }
177 
178   m_experimental_properties_up =
179       std::make_unique<ProcessExperimentalProperties>();
180   m_collection_sp->AppendProperty(
181       ConstString(Properties::GetExperimentalSettingsName()),
182       ConstString("Experimental settings - setting these won't produce "
183                   "errors if the setting is not present."),
184       true, m_experimental_properties_up->GetValueProperties());
185 }
186 
187 ProcessProperties::~ProcessProperties() = default;
188 
189 bool ProcessProperties::GetDisableMemoryCache() const {
190   const uint32_t idx = ePropertyDisableMemCache;
191   return m_collection_sp->GetPropertyAtIndexAsBoolean(
192       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
193 }
194 
195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
196   const uint32_t idx = ePropertyMemCacheLineSize;
197   return m_collection_sp->GetPropertyAtIndexAsUInt64(
198       nullptr, idx, g_process_properties[idx].default_uint_value);
199 }
200 
201 Args ProcessProperties::GetExtraStartupCommands() const {
202   Args args;
203   const uint32_t idx = ePropertyExtraStartCommand;
204   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
205   return args;
206 }
207 
208 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
209   const uint32_t idx = ePropertyExtraStartCommand;
210   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
211 }
212 
213 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
214   const uint32_t idx = ePropertyPythonOSPluginPath;
215   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
216 }
217 
218 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
219   const uint32_t idx = ePropertyVirtualAddressableBits;
220   return m_collection_sp->GetPropertyAtIndexAsUInt64(
221       nullptr, idx, g_process_properties[idx].default_uint_value);
222 }
223 
224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
225   const uint32_t idx = ePropertyVirtualAddressableBits;
226   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
227 }
228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
229   const uint32_t idx = ePropertyPythonOSPluginPath;
230   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
231 }
232 
233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
234   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
235   return m_collection_sp->GetPropertyAtIndexAsBoolean(
236       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
237 }
238 
239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
240   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
241   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
242 }
243 
244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
245   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
246   return m_collection_sp->GetPropertyAtIndexAsBoolean(
247       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
248 }
249 
250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
251   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
252   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
253 }
254 
255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
256   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
257   return m_collection_sp->GetPropertyAtIndexAsBoolean(
258       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
259 }
260 
261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
262   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
263   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
264 }
265 
266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
267   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
268   return m_collection_sp->GetPropertyAtIndexAsBoolean(
269       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
270 }
271 
272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
273   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
274   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
275   m_process->Flush();
276 }
277 
278 bool ProcessProperties::GetDetachKeepsStopped() const {
279   const uint32_t idx = ePropertyDetachKeepsStopped;
280   return m_collection_sp->GetPropertyAtIndexAsBoolean(
281       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
282 }
283 
284 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
285   const uint32_t idx = ePropertyDetachKeepsStopped;
286   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
287 }
288 
289 bool ProcessProperties::GetWarningsOptimization() const {
290   const uint32_t idx = ePropertyWarningOptimization;
291   return m_collection_sp->GetPropertyAtIndexAsBoolean(
292       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
293 }
294 
295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
296   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
297   return m_collection_sp->GetPropertyAtIndexAsBoolean(
298       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
299 }
300 
301 bool ProcessProperties::GetStopOnExec() const {
302   const uint32_t idx = ePropertyStopOnExec;
303   return m_collection_sp->GetPropertyAtIndexAsBoolean(
304       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
305 }
306 
307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
308   const uint32_t idx = ePropertyUtilityExpressionTimeout;
309   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
310       nullptr, idx, g_process_properties[idx].default_uint_value);
311   return std::chrono::seconds(value);
312 }
313 
314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
315   const uint32_t idx = ePropertyInterruptTimeout;
316   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
317       nullptr, idx, g_process_properties[idx].default_uint_value);
318   return std::chrono::seconds(value);
319 }
320 
321 bool ProcessProperties::GetSteppingRunsAllThreads() const {
322   const uint32_t idx = ePropertySteppingRunsAllThreads;
323   return m_collection_sp->GetPropertyAtIndexAsBoolean(
324       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
325 }
326 
327 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
328   const bool fail_value = true;
329   const Property *exp_property =
330       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
331   OptionValueProperties *exp_values =
332       exp_property->GetValue()->GetAsProperties();
333   if (!exp_values)
334     return fail_value;
335 
336   return exp_values->GetPropertyAtIndexAsBoolean(
337       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
338 }
339 
340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
341   const Property *exp_property =
342       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
343   OptionValueProperties *exp_values =
344       exp_property->GetValue()->GetAsProperties();
345   if (exp_values)
346     exp_values->SetPropertyAtIndexAsBoolean(
347         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
348 }
349 
350 FollowForkMode ProcessProperties::GetFollowForkMode() const {
351   const uint32_t idx = ePropertyFollowForkMode;
352   return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration(
353       nullptr, idx, g_process_properties[idx].default_uint_value);
354 }
355 
356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
357                               llvm::StringRef plugin_name,
358                               ListenerSP listener_sp,
359                               const FileSpec *crash_file_path,
360                               bool can_connect) {
361   static uint32_t g_process_unique_id = 0;
362 
363   ProcessSP process_sp;
364   ProcessCreateInstance create_callback = nullptr;
365   if (!plugin_name.empty()) {
366     ConstString const_plugin_name(plugin_name);
367     create_callback =
368         PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name);
369     if (create_callback) {
370       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
371                                    can_connect);
372       if (process_sp) {
373         if (process_sp->CanDebug(target_sp, true)) {
374           process_sp->m_process_unique_id = ++g_process_unique_id;
375         } else
376           process_sp.reset();
377       }
378     }
379   } else {
380     for (uint32_t idx = 0;
381          (create_callback =
382               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
383          ++idx) {
384       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
385                                    can_connect);
386       if (process_sp) {
387         if (process_sp->CanDebug(target_sp, false)) {
388           process_sp->m_process_unique_id = ++g_process_unique_id;
389           break;
390         } else
391           process_sp.reset();
392       }
393     }
394   }
395   return process_sp;
396 }
397 
398 ConstString &Process::GetStaticBroadcasterClass() {
399   static ConstString class_name("lldb.process");
400   return class_name;
401 }
402 
403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
404     : Process(target_sp, listener_sp,
405               UnixSignals::Create(HostInfo::GetArchitecture())) {
406   // This constructor just delegates to the full Process constructor,
407   // defaulting to using the Host's UnixSignals.
408 }
409 
410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
411                  const UnixSignalsSP &unix_signals_sp)
412     : ProcessProperties(this),
413       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
414                   Process::GetStaticBroadcasterClass().AsCString()),
415       m_target_wp(target_sp), m_public_state(eStateUnloaded),
416       m_private_state(eStateUnloaded),
417       m_private_state_broadcaster(nullptr,
418                                   "lldb.process.internal_state_broadcaster"),
419       m_private_state_control_broadcaster(
420           nullptr, "lldb.process.internal_state_control_broadcaster"),
421       m_private_state_listener_sp(
422           Listener::MakeListener("lldb.process.internal_state_listener")),
423       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
424       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
425       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
426       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
427       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
428       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
429       m_breakpoint_site_list(), m_dynamic_checkers_up(),
430       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
431       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
432       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
433       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
434       m_memory_cache(*this), m_allocated_memory_cache(*this),
435       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
436       m_private_run_lock(), m_finalizing(false),
437       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
438       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
439       m_can_interpret_function_calls(false), m_warnings_issued(),
440       m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
441   CheckInWithManager();
442 
443   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
444   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
445 
446   if (!m_unix_signals_sp)
447     m_unix_signals_sp = std::make_shared<UnixSignals>();
448 
449   SetEventName(eBroadcastBitStateChanged, "state-changed");
450   SetEventName(eBroadcastBitInterrupt, "interrupt");
451   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
452   SetEventName(eBroadcastBitSTDERR, "stderr-available");
453   SetEventName(eBroadcastBitProfileData, "profile-data-available");
454   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
455 
456   m_private_state_control_broadcaster.SetEventName(
457       eBroadcastInternalStateControlStop, "control-stop");
458   m_private_state_control_broadcaster.SetEventName(
459       eBroadcastInternalStateControlPause, "control-pause");
460   m_private_state_control_broadcaster.SetEventName(
461       eBroadcastInternalStateControlResume, "control-resume");
462 
463   m_listener_sp->StartListeningForEvents(
464       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
465                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
466                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
467 
468   m_private_state_listener_sp->StartListeningForEvents(
469       &m_private_state_broadcaster,
470       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
471 
472   m_private_state_listener_sp->StartListeningForEvents(
473       &m_private_state_control_broadcaster,
474       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
475           eBroadcastInternalStateControlResume);
476   // We need something valid here, even if just the default UnixSignalsSP.
477   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
478 
479   // Allow the platform to override the default cache line size
480   OptionValueSP value_sp =
481       m_collection_sp
482           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
483           ->GetValue();
484   uint32_t platform_cache_line_size =
485       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
486   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
487     value_sp->SetUInt64Value(platform_cache_line_size);
488 
489   RegisterAssertFrameRecognizer(this);
490 }
491 
492 Process::~Process() {
493   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
494   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
495   StopPrivateStateThread();
496 
497   // ThreadList::Clear() will try to acquire this process's mutex, so
498   // explicitly clear the thread list here to ensure that the mutex is not
499   // destroyed before the thread list.
500   m_thread_list.Clear();
501 }
502 
503 const ProcessPropertiesSP &Process::GetGlobalProperties() {
504   // NOTE: intentional leak so we don't crash if global destructor chain gets
505   // called as other threads still use the result of this function
506   static ProcessPropertiesSP *g_settings_sp_ptr =
507       new ProcessPropertiesSP(new ProcessProperties(nullptr));
508   return *g_settings_sp_ptr;
509 }
510 
511 void Process::Finalize() {
512   if (m_finalizing.exchange(true))
513     return;
514 
515   // Destroy the process. This will call the virtual function DoDestroy under
516   // the hood, giving our derived class a chance to do the ncessary tear down.
517   DestroyImpl(false);
518 
519   // Clear our broadcaster before we proceed with destroying
520   Broadcaster::Clear();
521 
522   // Do any cleanup needed prior to being destructed... Subclasses that
523   // override this method should call this superclass method as well.
524 
525   // We need to destroy the loader before the derived Process class gets
526   // destroyed since it is very likely that undoing the loader will require
527   // access to the real process.
528   m_dynamic_checkers_up.reset();
529   m_abi_sp.reset();
530   m_os_up.reset();
531   m_system_runtime_up.reset();
532   m_dyld_up.reset();
533   m_jit_loaders_up.reset();
534   m_thread_plans.Clear();
535   m_thread_list_real.Destroy();
536   m_thread_list.Destroy();
537   m_extended_thread_list.Destroy();
538   m_queue_list.Clear();
539   m_queue_list_stop_id = 0;
540   std::vector<Notifications> empty_notifications;
541   m_notifications.swap(empty_notifications);
542   m_image_tokens.clear();
543   m_memory_cache.Clear();
544   m_allocated_memory_cache.Clear();
545   {
546     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
547     m_language_runtimes.clear();
548   }
549   m_instrumentation_runtimes.clear();
550   m_next_event_action_up.reset();
551   // Clear the last natural stop ID since it has a strong reference to this
552   // process
553   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
554   //#ifdef LLDB_CONFIGURATION_DEBUG
555   //    StreamFile s(stdout, false);
556   //    EventSP event_sp;
557   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
558   //    {
559   //        event_sp->Dump (&s);
560   //        s.EOL();
561   //    }
562   //#endif
563   // We have to be very careful here as the m_private_state_listener might
564   // contain events that have ProcessSP values in them which can keep this
565   // process around forever. These events need to be cleared out.
566   m_private_state_listener_sp->Clear();
567   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
568   m_public_run_lock.SetStopped();
569   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
570   m_private_run_lock.SetStopped();
571   m_structured_data_plugin_map.clear();
572 }
573 
574 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
575   m_notifications.push_back(callbacks);
576   if (callbacks.initialize != nullptr)
577     callbacks.initialize(callbacks.baton, this);
578 }
579 
580 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
581   std::vector<Notifications>::iterator pos, end = m_notifications.end();
582   for (pos = m_notifications.begin(); pos != end; ++pos) {
583     if (pos->baton == callbacks.baton &&
584         pos->initialize == callbacks.initialize &&
585         pos->process_state_changed == callbacks.process_state_changed) {
586       m_notifications.erase(pos);
587       return true;
588     }
589   }
590   return false;
591 }
592 
593 void Process::SynchronouslyNotifyStateChanged(StateType state) {
594   std::vector<Notifications>::iterator notification_pos,
595       notification_end = m_notifications.end();
596   for (notification_pos = m_notifications.begin();
597        notification_pos != notification_end; ++notification_pos) {
598     if (notification_pos->process_state_changed)
599       notification_pos->process_state_changed(notification_pos->baton, this,
600                                               state);
601   }
602 }
603 
604 // FIXME: We need to do some work on events before the general Listener sees
605 // them.
606 // For instance if we are continuing from a breakpoint, we need to ensure that
607 // we do the little "insert real insn, step & stop" trick.  But we can't do
608 // that when the event is delivered by the broadcaster - since that is done on
609 // the thread that is waiting for new events, so if we needed more than one
610 // event for our handling, we would stall.  So instead we do it when we fetch
611 // the event off of the queue.
612 //
613 
614 StateType Process::GetNextEvent(EventSP &event_sp) {
615   StateType state = eStateInvalid;
616 
617   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
618                                             std::chrono::seconds(0)) &&
619       event_sp)
620     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
621 
622   return state;
623 }
624 
625 void Process::SyncIOHandler(uint32_t iohandler_id,
626                             const Timeout<std::micro> &timeout) {
627   // don't sync (potentially context switch) in case where there is no process
628   // IO
629   if (!m_process_input_reader)
630     return;
631 
632   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
633 
634   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
635   if (Result) {
636     LLDB_LOG(
637         log,
638         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
639         iohandler_id, *Result);
640   } else {
641     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
642              iohandler_id);
643   }
644 }
645 
646 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
647                                         EventSP *event_sp_ptr, bool wait_always,
648                                         ListenerSP hijack_listener_sp,
649                                         Stream *stream, bool use_run_lock) {
650   // We can't just wait for a "stopped" event, because the stopped event may
651   // have restarted the target. We have to actually check each event, and in
652   // the case of a stopped event check the restarted flag on the event.
653   if (event_sp_ptr)
654     event_sp_ptr->reset();
655   StateType state = GetState();
656   // If we are exited or detached, we won't ever get back to any other valid
657   // state...
658   if (state == eStateDetached || state == eStateExited)
659     return state;
660 
661   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
662   LLDB_LOG(log, "timeout = {0}", timeout);
663 
664   if (!wait_always && StateIsStoppedState(state, true) &&
665       StateIsStoppedState(GetPrivateState(), true)) {
666     LLDB_LOGF(log,
667               "Process::%s returning without waiting for events; process "
668               "private and public states are already 'stopped'.",
669               __FUNCTION__);
670     // We need to toggle the run lock as this won't get done in
671     // SetPublicState() if the process is hijacked.
672     if (hijack_listener_sp && use_run_lock)
673       m_public_run_lock.SetStopped();
674     return state;
675   }
676 
677   while (state != eStateInvalid) {
678     EventSP event_sp;
679     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
680     if (event_sp_ptr && event_sp)
681       *event_sp_ptr = event_sp;
682 
683     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
684     Process::HandleProcessStateChangedEvent(event_sp, stream,
685                                             pop_process_io_handler);
686 
687     switch (state) {
688     case eStateCrashed:
689     case eStateDetached:
690     case eStateExited:
691     case eStateUnloaded:
692       // We need to toggle the run lock as this won't get done in
693       // SetPublicState() if the process is hijacked.
694       if (hijack_listener_sp && use_run_lock)
695         m_public_run_lock.SetStopped();
696       return state;
697     case eStateStopped:
698       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
699         continue;
700       else {
701         // We need to toggle the run lock as this won't get done in
702         // SetPublicState() if the process is hijacked.
703         if (hijack_listener_sp && use_run_lock)
704           m_public_run_lock.SetStopped();
705         return state;
706       }
707     default:
708       continue;
709     }
710   }
711   return state;
712 }
713 
714 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
715                                              Stream *stream,
716                                              bool &pop_process_io_handler) {
717   const bool handle_pop = pop_process_io_handler;
718 
719   pop_process_io_handler = false;
720   ProcessSP process_sp =
721       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
722 
723   if (!process_sp)
724     return false;
725 
726   StateType event_state =
727       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
728   if (event_state == eStateInvalid)
729     return false;
730 
731   switch (event_state) {
732   case eStateInvalid:
733   case eStateUnloaded:
734   case eStateAttaching:
735   case eStateLaunching:
736   case eStateStepping:
737   case eStateDetached:
738     if (stream)
739       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
740                      StateAsCString(event_state));
741     if (event_state == eStateDetached)
742       pop_process_io_handler = true;
743     break;
744 
745   case eStateConnected:
746   case eStateRunning:
747     // Don't be chatty when we run...
748     break;
749 
750   case eStateExited:
751     if (stream)
752       process_sp->GetStatus(*stream);
753     pop_process_io_handler = true;
754     break;
755 
756   case eStateStopped:
757   case eStateCrashed:
758   case eStateSuspended:
759     // Make sure the program hasn't been auto-restarted:
760     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
761       if (stream) {
762         size_t num_reasons =
763             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
764         if (num_reasons > 0) {
765           // FIXME: Do we want to report this, or would that just be annoyingly
766           // chatty?
767           if (num_reasons == 1) {
768             const char *reason =
769                 Process::ProcessEventData::GetRestartedReasonAtIndex(
770                     event_sp.get(), 0);
771             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
772                            process_sp->GetID(),
773                            reason ? reason : "<UNKNOWN REASON>");
774           } else {
775             stream->Printf("Process %" PRIu64
776                            " stopped and restarted, reasons:\n",
777                            process_sp->GetID());
778 
779             for (size_t i = 0; i < num_reasons; i++) {
780               const char *reason =
781                   Process::ProcessEventData::GetRestartedReasonAtIndex(
782                       event_sp.get(), i);
783               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
784             }
785           }
786         }
787       }
788     } else {
789       StopInfoSP curr_thread_stop_info_sp;
790       // Lock the thread list so it doesn't change on us, this is the scope for
791       // the locker:
792       {
793         ThreadList &thread_list = process_sp->GetThreadList();
794         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
795 
796         ThreadSP curr_thread(thread_list.GetSelectedThread());
797         ThreadSP thread;
798         StopReason curr_thread_stop_reason = eStopReasonInvalid;
799         bool prefer_curr_thread = false;
800         if (curr_thread && curr_thread->IsValid()) {
801           curr_thread_stop_reason = curr_thread->GetStopReason();
802           switch (curr_thread_stop_reason) {
803           case eStopReasonNone:
804           case eStopReasonInvalid:
805             // Don't prefer the current thread if it didn't stop for a reason.
806             break;
807           case eStopReasonSignal: {
808             // We need to do the same computation we do for other threads
809             // below in case the current thread happens to be the one that
810             // stopped for the no-stop signal.
811             uint64_t signo = curr_thread->GetStopInfo()->GetValue();
812             if (process_sp->GetUnixSignals()->GetShouldStop(signo))
813               prefer_curr_thread = true;
814           } break;
815           default:
816             prefer_curr_thread = true;
817             break;
818           }
819           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
820         }
821 
822         if (!prefer_curr_thread) {
823           // Prefer a thread that has just completed its plan over another
824           // thread as current thread.
825           ThreadSP plan_thread;
826           ThreadSP other_thread;
827 
828           const size_t num_threads = thread_list.GetSize();
829           size_t i;
830           for (i = 0; i < num_threads; ++i) {
831             thread = thread_list.GetThreadAtIndex(i);
832             StopReason thread_stop_reason = thread->GetStopReason();
833             switch (thread_stop_reason) {
834             case eStopReasonInvalid:
835             case eStopReasonNone:
836               break;
837 
838             case eStopReasonSignal: {
839               // Don't select a signal thread if we weren't going to stop at
840               // that signal.  We have to have had another reason for stopping
841               // here, and the user doesn't want to see this thread.
842               uint64_t signo = thread->GetStopInfo()->GetValue();
843               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
844                 if (!other_thread)
845                   other_thread = thread;
846               }
847               break;
848             }
849             case eStopReasonTrace:
850             case eStopReasonBreakpoint:
851             case eStopReasonWatchpoint:
852             case eStopReasonException:
853             case eStopReasonExec:
854             case eStopReasonFork:
855             case eStopReasonVFork:
856             case eStopReasonVForkDone:
857             case eStopReasonThreadExiting:
858             case eStopReasonInstrumentation:
859             case eStopReasonProcessorTrace:
860               if (!other_thread)
861                 other_thread = thread;
862               break;
863             case eStopReasonPlanComplete:
864               if (!plan_thread)
865                 plan_thread = thread;
866               break;
867             }
868           }
869           if (plan_thread)
870             thread_list.SetSelectedThreadByID(plan_thread->GetID());
871           else if (other_thread)
872             thread_list.SetSelectedThreadByID(other_thread->GetID());
873           else {
874             if (curr_thread && curr_thread->IsValid())
875               thread = curr_thread;
876             else
877               thread = thread_list.GetThreadAtIndex(0);
878 
879             if (thread)
880               thread_list.SetSelectedThreadByID(thread->GetID());
881           }
882         }
883       }
884       // Drop the ThreadList mutex by here, since GetThreadStatus below might
885       // have to run code, e.g. for Data formatters, and if we hold the
886       // ThreadList mutex, then the process is going to have a hard time
887       // restarting the process.
888       if (stream) {
889         Debugger &debugger = process_sp->GetTarget().GetDebugger();
890         if (debugger.GetTargetList().GetSelectedTarget().get() ==
891             &process_sp->GetTarget()) {
892           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
893 
894           if (!thread_sp || !thread_sp->IsValid())
895             return false;
896 
897           const bool only_threads_with_stop_reason = true;
898           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
899           const uint32_t num_frames = 1;
900           const uint32_t num_frames_with_source = 1;
901           const bool stop_format = true;
902 
903           process_sp->GetStatus(*stream);
904           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
905                                       start_frame, num_frames,
906                                       num_frames_with_source,
907                                       stop_format);
908           if (curr_thread_stop_info_sp) {
909             lldb::addr_t crashing_address;
910             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
911                 curr_thread_stop_info_sp, &crashing_address);
912             if (valobj_sp) {
913               const ValueObject::GetExpressionPathFormat format =
914                   ValueObject::GetExpressionPathFormat::
915                       eGetExpressionPathFormatHonorPointers;
916               stream->PutCString("Likely cause: ");
917               valobj_sp->GetExpressionPath(*stream, format);
918               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
919             }
920           }
921         } else {
922           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
923               process_sp->GetTarget().shared_from_this());
924           if (target_idx != UINT32_MAX)
925             stream->Printf("Target %d: (", target_idx);
926           else
927             stream->Printf("Target <unknown index>: (");
928           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
929           stream->Printf(") stopped.\n");
930         }
931       }
932 
933       // Pop the process IO handler
934       pop_process_io_handler = true;
935     }
936     break;
937   }
938 
939   if (handle_pop && pop_process_io_handler)
940     process_sp->PopProcessIOHandler();
941 
942   return true;
943 }
944 
945 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
946   if (listener_sp) {
947     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
948                                               eBroadcastBitInterrupt);
949   } else
950     return false;
951 }
952 
953 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
954 
955 StateType Process::GetStateChangedEvents(EventSP &event_sp,
956                                          const Timeout<std::micro> &timeout,
957                                          ListenerSP hijack_listener_sp) {
958   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
959   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
960 
961   ListenerSP listener_sp = hijack_listener_sp;
962   if (!listener_sp)
963     listener_sp = m_listener_sp;
964 
965   StateType state = eStateInvalid;
966   if (listener_sp->GetEventForBroadcasterWithType(
967           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
968           timeout)) {
969     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
970       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
971     else
972       LLDB_LOG(log, "got no event or was interrupted.");
973   }
974 
975   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
976   return state;
977 }
978 
979 Event *Process::PeekAtStateChangedEvents() {
980   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
981 
982   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
983 
984   Event *event_ptr;
985   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
986       this, eBroadcastBitStateChanged);
987   if (log) {
988     if (event_ptr) {
989       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
990                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
991     } else {
992       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
993     }
994   }
995   return event_ptr;
996 }
997 
998 StateType
999 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
1000                                       const Timeout<std::micro> &timeout) {
1001   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1002   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1003 
1004   StateType state = eStateInvalid;
1005   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1006           &m_private_state_broadcaster,
1007           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1008           timeout))
1009     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1010       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1011 
1012   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1013            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1014   return state;
1015 }
1016 
1017 bool Process::GetEventsPrivate(EventSP &event_sp,
1018                                const Timeout<std::micro> &timeout,
1019                                bool control_only) {
1020   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1021   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1022 
1023   if (control_only)
1024     return m_private_state_listener_sp->GetEventForBroadcaster(
1025         &m_private_state_control_broadcaster, event_sp, timeout);
1026   else
1027     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1028 }
1029 
1030 bool Process::IsRunning() const {
1031   return StateIsRunningState(m_public_state.GetValue());
1032 }
1033 
1034 int Process::GetExitStatus() {
1035   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1036 
1037   if (m_public_state.GetValue() == eStateExited)
1038     return m_exit_status;
1039   return -1;
1040 }
1041 
1042 const char *Process::GetExitDescription() {
1043   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1044 
1045   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1046     return m_exit_string.c_str();
1047   return nullptr;
1048 }
1049 
1050 bool Process::SetExitStatus(int status, const char *cstr) {
1051   // Use a mutex to protect setting the exit status.
1052   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1053 
1054   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1055                                                   LIBLLDB_LOG_PROCESS));
1056   LLDB_LOGF(
1057       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1058       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1059 
1060   // We were already in the exited state
1061   if (m_private_state.GetValue() == eStateExited) {
1062     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1063                    "state was already set to eStateExited");
1064     return false;
1065   }
1066 
1067   m_exit_status = status;
1068   if (cstr)
1069     m_exit_string = cstr;
1070   else
1071     m_exit_string.clear();
1072 
1073   // Clear the last natural stop ID since it has a strong reference to this
1074   // process
1075   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1076 
1077   SetPrivateState(eStateExited);
1078 
1079   // Allow subclasses to do some cleanup
1080   DidExit();
1081 
1082   return true;
1083 }
1084 
1085 bool Process::IsAlive() {
1086   switch (m_private_state.GetValue()) {
1087   case eStateConnected:
1088   case eStateAttaching:
1089   case eStateLaunching:
1090   case eStateStopped:
1091   case eStateRunning:
1092   case eStateStepping:
1093   case eStateCrashed:
1094   case eStateSuspended:
1095     return true;
1096   default:
1097     return false;
1098   }
1099 }
1100 
1101 // This static callback can be used to watch for local child processes on the
1102 // current host. The child process exits, the process will be found in the
1103 // global target list (we want to be completely sure that the
1104 // lldb_private::Process doesn't go away before we can deliver the signal.
1105 bool Process::SetProcessExitStatus(
1106     lldb::pid_t pid, bool exited,
1107     int signo,      // Zero for no signal
1108     int exit_status // Exit value of process if signal is zero
1109     ) {
1110   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
1111   LLDB_LOGF(log,
1112             "Process::SetProcessExitStatus (pid=%" PRIu64
1113             ", exited=%i, signal=%i, exit_status=%i)\n",
1114             pid, exited, signo, exit_status);
1115 
1116   if (exited) {
1117     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1118     if (target_sp) {
1119       ProcessSP process_sp(target_sp->GetProcessSP());
1120       if (process_sp) {
1121         const char *signal_cstr = nullptr;
1122         if (signo)
1123           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1124 
1125         process_sp->SetExitStatus(exit_status, signal_cstr);
1126       }
1127     }
1128     return true;
1129   }
1130   return false;
1131 }
1132 
1133 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1134                                ThreadList &new_thread_list) {
1135   m_thread_plans.ClearThreadCache();
1136   return DoUpdateThreadList(old_thread_list, new_thread_list);
1137 }
1138 
1139 void Process::UpdateThreadListIfNeeded() {
1140   const uint32_t stop_id = GetStopID();
1141   if (m_thread_list.GetSize(false) == 0 ||
1142       stop_id != m_thread_list.GetStopID()) {
1143     bool clear_unused_threads = true;
1144     const StateType state = GetPrivateState();
1145     if (StateIsStoppedState(state, true)) {
1146       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1147       m_thread_list.SetStopID(stop_id);
1148 
1149       // m_thread_list does have its own mutex, but we need to hold onto the
1150       // mutex between the call to UpdateThreadList(...) and the
1151       // os->UpdateThreadList(...) so it doesn't change on us
1152       ThreadList &old_thread_list = m_thread_list;
1153       ThreadList real_thread_list(this);
1154       ThreadList new_thread_list(this);
1155       // Always update the thread list with the protocol specific thread list,
1156       // but only update if "true" is returned
1157       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1158         // Don't call into the OperatingSystem to update the thread list if we
1159         // are shutting down, since that may call back into the SBAPI's,
1160         // requiring the API lock which is already held by whoever is shutting
1161         // us down, causing a deadlock.
1162         OperatingSystem *os = GetOperatingSystem();
1163         if (os && !m_destroy_in_process) {
1164           // Clear any old backing threads where memory threads might have been
1165           // backed by actual threads from the lldb_private::Process subclass
1166           size_t num_old_threads = old_thread_list.GetSize(false);
1167           for (size_t i = 0; i < num_old_threads; ++i)
1168             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1169           // See if the OS plugin reports all threads.  If it does, then
1170           // it is safe to clear unseen thread's plans here.  Otherwise we
1171           // should preserve them in case they show up again:
1172           clear_unused_threads = GetOSPluginReportsAllThreads();
1173 
1174           // Turn off dynamic types to ensure we don't run any expressions.
1175           // Objective-C can run an expression to determine if a SBValue is a
1176           // dynamic type or not and we need to avoid this. OperatingSystem
1177           // plug-ins can't run expressions that require running code...
1178 
1179           Target &target = GetTarget();
1180           const lldb::DynamicValueType saved_prefer_dynamic =
1181               target.GetPreferDynamicValue();
1182           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1183             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1184 
1185           // Now let the OperatingSystem plug-in update the thread list
1186 
1187           os->UpdateThreadList(
1188               old_thread_list, // Old list full of threads created by OS plug-in
1189               real_thread_list, // The actual thread list full of threads
1190                                 // created by each lldb_private::Process
1191                                 // subclass
1192               new_thread_list); // The new thread list that we will show to the
1193                                 // user that gets filled in
1194 
1195           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1196             target.SetPreferDynamicValue(saved_prefer_dynamic);
1197         } else {
1198           // No OS plug-in, the new thread list is the same as the real thread
1199           // list.
1200           new_thread_list = real_thread_list;
1201         }
1202 
1203         m_thread_list_real.Update(real_thread_list);
1204         m_thread_list.Update(new_thread_list);
1205         m_thread_list.SetStopID(stop_id);
1206 
1207         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1208           // Clear any extended threads that we may have accumulated previously
1209           m_extended_thread_list.Clear();
1210           m_extended_thread_stop_id = GetLastNaturalStopID();
1211 
1212           m_queue_list.Clear();
1213           m_queue_list_stop_id = GetLastNaturalStopID();
1214         }
1215       }
1216       // Now update the plan stack map.
1217       // If we do have an OS plugin, any absent real threads in the
1218       // m_thread_list have already been removed from the ThreadPlanStackMap.
1219       // So any remaining threads are OS Plugin threads, and those we want to
1220       // preserve in case they show up again.
1221       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1222     }
1223   }
1224 }
1225 
1226 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1227   return m_thread_plans.Find(tid);
1228 }
1229 
1230 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1231   return m_thread_plans.PrunePlansForTID(tid);
1232 }
1233 
1234 void Process::PruneThreadPlans() {
1235   m_thread_plans.Update(GetThreadList(), true, false);
1236 }
1237 
1238 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1239                                     lldb::DescriptionLevel desc_level,
1240                                     bool internal, bool condense_trivial,
1241                                     bool skip_unreported_plans) {
1242   return m_thread_plans.DumpPlansForTID(
1243       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1244 }
1245 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1246                               bool internal, bool condense_trivial,
1247                               bool skip_unreported_plans) {
1248   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1249                            skip_unreported_plans);
1250 }
1251 
1252 void Process::UpdateQueueListIfNeeded() {
1253   if (m_system_runtime_up) {
1254     if (m_queue_list.GetSize() == 0 ||
1255         m_queue_list_stop_id != GetLastNaturalStopID()) {
1256       const StateType state = GetPrivateState();
1257       if (StateIsStoppedState(state, true)) {
1258         m_system_runtime_up->PopulateQueueList(m_queue_list);
1259         m_queue_list_stop_id = GetLastNaturalStopID();
1260       }
1261     }
1262   }
1263 }
1264 
1265 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1266   OperatingSystem *os = GetOperatingSystem();
1267   if (os)
1268     return os->CreateThread(tid, context);
1269   return ThreadSP();
1270 }
1271 
1272 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1273   return AssignIndexIDToThread(thread_id);
1274 }
1275 
1276 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1277   return (m_thread_id_to_index_id_map.find(thread_id) !=
1278           m_thread_id_to_index_id_map.end());
1279 }
1280 
1281 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1282   uint32_t result = 0;
1283   std::map<uint64_t, uint32_t>::iterator iterator =
1284       m_thread_id_to_index_id_map.find(thread_id);
1285   if (iterator == m_thread_id_to_index_id_map.end()) {
1286     result = ++m_thread_index_id;
1287     m_thread_id_to_index_id_map[thread_id] = result;
1288   } else {
1289     result = iterator->second;
1290   }
1291 
1292   return result;
1293 }
1294 
1295 StateType Process::GetState() {
1296   return m_public_state.GetValue();
1297 }
1298 
1299 void Process::SetPublicState(StateType new_state, bool restarted) {
1300   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1301                                                   LIBLLDB_LOG_PROCESS));
1302   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1303             StateAsCString(new_state), restarted);
1304   const StateType old_state = m_public_state.GetValue();
1305   m_public_state.SetValue(new_state);
1306 
1307   // On the transition from Run to Stopped, we unlock the writer end of the run
1308   // lock.  The lock gets locked in Resume, which is the public API to tell the
1309   // program to run.
1310   if (!StateChangedIsExternallyHijacked()) {
1311     if (new_state == eStateDetached) {
1312       LLDB_LOGF(log,
1313                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1314                 StateAsCString(new_state));
1315       m_public_run_lock.SetStopped();
1316     } else {
1317       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1318       const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1319       if ((old_state_is_stopped != new_state_is_stopped)) {
1320         if (new_state_is_stopped && !restarted) {
1321           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1322                     StateAsCString(new_state));
1323           m_public_run_lock.SetStopped();
1324         }
1325       }
1326     }
1327   }
1328 }
1329 
1330 Status Process::Resume() {
1331   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1332                                                   LIBLLDB_LOG_PROCESS));
1333   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1334   if (!m_public_run_lock.TrySetRunning()) {
1335     Status error("Resume request failed - process still running.");
1336     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1337     return error;
1338   }
1339   Status error = PrivateResume();
1340   if (!error.Success()) {
1341     // Undo running state change
1342     m_public_run_lock.SetStopped();
1343   }
1344   return error;
1345 }
1346 
1347 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1348 
1349 Status Process::ResumeSynchronous(Stream *stream) {
1350   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1351                                                   LIBLLDB_LOG_PROCESS));
1352   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1353   if (!m_public_run_lock.TrySetRunning()) {
1354     Status error("Resume request failed - process still running.");
1355     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1356     return error;
1357   }
1358 
1359   ListenerSP listener_sp(
1360       Listener::MakeListener(g_resume_sync_name));
1361   HijackProcessEvents(listener_sp);
1362 
1363   Status error = PrivateResume();
1364   if (error.Success()) {
1365     StateType state = WaitForProcessToStop(llvm::None, nullptr, true,
1366                                            listener_sp, stream);
1367     const bool must_be_alive =
1368         false; // eStateExited is ok, so this must be false
1369     if (!StateIsStoppedState(state, must_be_alive))
1370       error.SetErrorStringWithFormat(
1371           "process not in stopped state after synchronous resume: %s",
1372           StateAsCString(state));
1373   } else {
1374     // Undo running state change
1375     m_public_run_lock.SetStopped();
1376   }
1377 
1378   // Undo the hijacking of process events...
1379   RestoreProcessEvents();
1380 
1381   return error;
1382 }
1383 
1384 bool Process::StateChangedIsExternallyHijacked() {
1385   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1386     const char *hijacking_name = GetHijackingListenerName();
1387     if (hijacking_name &&
1388         strcmp(hijacking_name, g_resume_sync_name))
1389       return true;
1390   }
1391   return false;
1392 }
1393 
1394 bool Process::StateChangedIsHijackedForSynchronousResume() {
1395   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1396     const char *hijacking_name = GetHijackingListenerName();
1397     if (hijacking_name &&
1398         strcmp(hijacking_name, g_resume_sync_name) == 0)
1399       return true;
1400   }
1401   return false;
1402 }
1403 
1404 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1405 
1406 void Process::SetPrivateState(StateType new_state) {
1407   if (m_finalizing)
1408     return;
1409 
1410   Log *log(lldb_private::GetLogIfAnyCategoriesSet(
1411       LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND));
1412   bool state_changed = false;
1413 
1414   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1415 
1416   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1417   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1418 
1419   const StateType old_state = m_private_state.GetValueNoLock();
1420   state_changed = old_state != new_state;
1421 
1422   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1423   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1424   if (old_state_is_stopped != new_state_is_stopped) {
1425     if (new_state_is_stopped)
1426       m_private_run_lock.SetStopped();
1427     else
1428       m_private_run_lock.SetRunning();
1429   }
1430 
1431   if (state_changed) {
1432     m_private_state.SetValueNoLock(new_state);
1433     EventSP event_sp(
1434         new Event(eBroadcastBitStateChanged,
1435                   new ProcessEventData(shared_from_this(), new_state)));
1436     if (StateIsStoppedState(new_state, false)) {
1437       // Note, this currently assumes that all threads in the list stop when
1438       // the process stops.  In the future we will want to support a debugging
1439       // model where some threads continue to run while others are stopped.
1440       // When that happens we will either need a way for the thread list to
1441       // identify which threads are stopping or create a special thread list
1442       // containing only threads which actually stopped.
1443       //
1444       // The process plugin is responsible for managing the actual behavior of
1445       // the threads and should have stopped any threads that are going to stop
1446       // before we get here.
1447       m_thread_list.DidStop();
1448 
1449       m_mod_id.BumpStopID();
1450       if (!m_mod_id.IsLastResumeForUserExpression())
1451         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1452       m_memory_cache.Clear();
1453       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1454                 StateAsCString(new_state), m_mod_id.GetStopID());
1455     }
1456 
1457     m_private_state_broadcaster.BroadcastEvent(event_sp);
1458   } else {
1459     LLDB_LOGF(log,
1460               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1461               StateAsCString(new_state));
1462   }
1463 }
1464 
1465 void Process::SetRunningUserExpression(bool on) {
1466   m_mod_id.SetRunningUserExpression(on);
1467 }
1468 
1469 void Process::SetRunningUtilityFunction(bool on) {
1470   m_mod_id.SetRunningUtilityFunction(on);
1471 }
1472 
1473 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1474 
1475 const lldb::ABISP &Process::GetABI() {
1476   if (!m_abi_sp)
1477     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1478   return m_abi_sp;
1479 }
1480 
1481 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1482   std::vector<LanguageRuntime *> language_runtimes;
1483 
1484   if (m_finalizing)
1485     return language_runtimes;
1486 
1487   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1488   // Before we pass off a copy of the language runtimes, we must make sure that
1489   // our collection is properly populated. It's possible that some of the
1490   // language runtimes were not loaded yet, either because nobody requested it
1491   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1492   // hadn't been loaded).
1493   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1494     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1495       language_runtimes.emplace_back(runtime);
1496   }
1497 
1498   return language_runtimes;
1499 }
1500 
1501 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1502   if (m_finalizing)
1503     return nullptr;
1504 
1505   LanguageRuntime *runtime = nullptr;
1506 
1507   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1508   LanguageRuntimeCollection::iterator pos;
1509   pos = m_language_runtimes.find(language);
1510   if (pos == m_language_runtimes.end() || !pos->second) {
1511     lldb::LanguageRuntimeSP runtime_sp(
1512         LanguageRuntime::FindPlugin(this, language));
1513 
1514     m_language_runtimes[language] = runtime_sp;
1515     runtime = runtime_sp.get();
1516   } else
1517     runtime = pos->second.get();
1518 
1519   if (runtime)
1520     // It's possible that a language runtime can support multiple LanguageTypes,
1521     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1522     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1523     // primary language type and make sure that our runtime supports it.
1524     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1525 
1526   return runtime;
1527 }
1528 
1529 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1530   if (m_finalizing)
1531     return false;
1532 
1533   if (in_value.IsDynamic())
1534     return false;
1535   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1536 
1537   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1538     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1539     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1540   }
1541 
1542   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1543     if (runtime->CouldHaveDynamicValue(in_value))
1544       return true;
1545   }
1546 
1547   return false;
1548 }
1549 
1550 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1551   m_dynamic_checkers_up.reset(dynamic_checkers);
1552 }
1553 
1554 BreakpointSiteList &Process::GetBreakpointSiteList() {
1555   return m_breakpoint_site_list;
1556 }
1557 
1558 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1559   return m_breakpoint_site_list;
1560 }
1561 
1562 void Process::DisableAllBreakpointSites() {
1563   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1564     //        bp_site->SetEnabled(true);
1565     DisableBreakpointSite(bp_site);
1566   });
1567 }
1568 
1569 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1570   Status error(DisableBreakpointSiteByID(break_id));
1571 
1572   if (error.Success())
1573     m_breakpoint_site_list.Remove(break_id);
1574 
1575   return error;
1576 }
1577 
1578 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1579   Status error;
1580   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1581   if (bp_site_sp) {
1582     if (bp_site_sp->IsEnabled())
1583       error = DisableBreakpointSite(bp_site_sp.get());
1584   } else {
1585     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1586                                    break_id);
1587   }
1588 
1589   return error;
1590 }
1591 
1592 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1593   Status error;
1594   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1595   if (bp_site_sp) {
1596     if (!bp_site_sp->IsEnabled())
1597       error = EnableBreakpointSite(bp_site_sp.get());
1598   } else {
1599     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1600                                    break_id);
1601   }
1602   return error;
1603 }
1604 
1605 lldb::break_id_t
1606 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1607                               bool use_hardware) {
1608   addr_t load_addr = LLDB_INVALID_ADDRESS;
1609 
1610   bool show_error = true;
1611   switch (GetState()) {
1612   case eStateInvalid:
1613   case eStateUnloaded:
1614   case eStateConnected:
1615   case eStateAttaching:
1616   case eStateLaunching:
1617   case eStateDetached:
1618   case eStateExited:
1619     show_error = false;
1620     break;
1621 
1622   case eStateStopped:
1623   case eStateRunning:
1624   case eStateStepping:
1625   case eStateCrashed:
1626   case eStateSuspended:
1627     show_error = IsAlive();
1628     break;
1629   }
1630 
1631   // Reset the IsIndirect flag here, in case the location changes from pointing
1632   // to a indirect symbol to a regular symbol.
1633   owner->SetIsIndirect(false);
1634 
1635   if (owner->ShouldResolveIndirectFunctions()) {
1636     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1637     if (symbol && symbol->IsIndirect()) {
1638       Status error;
1639       Address symbol_address = symbol->GetAddress();
1640       load_addr = ResolveIndirectFunction(&symbol_address, error);
1641       if (!error.Success() && show_error) {
1642         GetTarget().GetDebugger().GetErrorStream().Printf(
1643             "warning: failed to resolve indirect function at 0x%" PRIx64
1644             " for breakpoint %i.%i: %s\n",
1645             symbol->GetLoadAddress(&GetTarget()),
1646             owner->GetBreakpoint().GetID(), owner->GetID(),
1647             error.AsCString() ? error.AsCString() : "unknown error");
1648         return LLDB_INVALID_BREAK_ID;
1649       }
1650       Address resolved_address(load_addr);
1651       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1652       owner->SetIsIndirect(true);
1653     } else
1654       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1655   } else
1656     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1657 
1658   if (load_addr != LLDB_INVALID_ADDRESS) {
1659     BreakpointSiteSP bp_site_sp;
1660 
1661     // Look up this breakpoint site.  If it exists, then add this new owner,
1662     // otherwise create a new breakpoint site and add it.
1663 
1664     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1665 
1666     if (bp_site_sp) {
1667       bp_site_sp->AddOwner(owner);
1668       owner->SetBreakpointSite(bp_site_sp);
1669       return bp_site_sp->GetID();
1670     } else {
1671       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1672                                           load_addr, use_hardware));
1673       if (bp_site_sp) {
1674         Status error = EnableBreakpointSite(bp_site_sp.get());
1675         if (error.Success()) {
1676           owner->SetBreakpointSite(bp_site_sp);
1677           return m_breakpoint_site_list.Add(bp_site_sp);
1678         } else {
1679           if (show_error || use_hardware) {
1680             // Report error for setting breakpoint...
1681             GetTarget().GetDebugger().GetErrorStream().Printf(
1682                 "warning: failed to set breakpoint site at 0x%" PRIx64
1683                 " for breakpoint %i.%i: %s\n",
1684                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1685                 error.AsCString() ? error.AsCString() : "unknown error");
1686           }
1687         }
1688       }
1689     }
1690   }
1691   // We failed to enable the breakpoint
1692   return LLDB_INVALID_BREAK_ID;
1693 }
1694 
1695 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1696                                             lldb::user_id_t owner_loc_id,
1697                                             BreakpointSiteSP &bp_site_sp) {
1698   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1699   if (num_owners == 0) {
1700     // Don't try to disable the site if we don't have a live process anymore.
1701     if (IsAlive())
1702       DisableBreakpointSite(bp_site_sp.get());
1703     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1704   }
1705 }
1706 
1707 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1708                                                   uint8_t *buf) const {
1709   size_t bytes_removed = 0;
1710   BreakpointSiteList bp_sites_in_range;
1711 
1712   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1713                                          bp_sites_in_range)) {
1714     bp_sites_in_range.ForEach([bp_addr, size,
1715                                buf](BreakpointSite *bp_site) -> void {
1716       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1717         addr_t intersect_addr;
1718         size_t intersect_size;
1719         size_t opcode_offset;
1720         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1721                                      &intersect_size, &opcode_offset)) {
1722           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1723           assert(bp_addr < intersect_addr + intersect_size &&
1724                  intersect_addr + intersect_size <= bp_addr + size);
1725           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1726           size_t buf_offset = intersect_addr - bp_addr;
1727           ::memcpy(buf + buf_offset,
1728                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1729                    intersect_size);
1730         }
1731       }
1732     });
1733   }
1734   return bytes_removed;
1735 }
1736 
1737 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1738   PlatformSP platform_sp(GetTarget().GetPlatform());
1739   if (platform_sp)
1740     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1741   return 0;
1742 }
1743 
1744 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1745   Status error;
1746   assert(bp_site != nullptr);
1747   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1748   const addr_t bp_addr = bp_site->GetLoadAddress();
1749   LLDB_LOGF(
1750       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1751       bp_site->GetID(), (uint64_t)bp_addr);
1752   if (bp_site->IsEnabled()) {
1753     LLDB_LOGF(
1754         log,
1755         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1756         " -- already enabled",
1757         bp_site->GetID(), (uint64_t)bp_addr);
1758     return error;
1759   }
1760 
1761   if (bp_addr == LLDB_INVALID_ADDRESS) {
1762     error.SetErrorString("BreakpointSite contains an invalid load address.");
1763     return error;
1764   }
1765   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1766   // trap for the breakpoint site
1767   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1768 
1769   if (bp_opcode_size == 0) {
1770     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1771                                    "returned zero, unable to get breakpoint "
1772                                    "trap for address 0x%" PRIx64,
1773                                    bp_addr);
1774   } else {
1775     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1776 
1777     if (bp_opcode_bytes == nullptr) {
1778       error.SetErrorString(
1779           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1780       return error;
1781     }
1782 
1783     // Save the original opcode by reading it
1784     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1785                      error) == bp_opcode_size) {
1786       // Write a software breakpoint in place of the original opcode
1787       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1788           bp_opcode_size) {
1789         uint8_t verify_bp_opcode_bytes[64];
1790         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1791                          error) == bp_opcode_size) {
1792           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1793                        bp_opcode_size) == 0) {
1794             bp_site->SetEnabled(true);
1795             bp_site->SetType(BreakpointSite::eSoftware);
1796             LLDB_LOGF(log,
1797                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1798                       "addr = 0x%" PRIx64 " -- SUCCESS",
1799                       bp_site->GetID(), (uint64_t)bp_addr);
1800           } else
1801             error.SetErrorString(
1802                 "failed to verify the breakpoint trap in memory.");
1803         } else
1804           error.SetErrorString(
1805               "Unable to read memory to verify breakpoint trap.");
1806       } else
1807         error.SetErrorString("Unable to write breakpoint trap to memory.");
1808     } else
1809       error.SetErrorString("Unable to read memory at breakpoint address.");
1810   }
1811   if (log && error.Fail())
1812     LLDB_LOGF(
1813         log,
1814         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1815         " -- FAILED: %s",
1816         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1817   return error;
1818 }
1819 
1820 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1821   Status error;
1822   assert(bp_site != nullptr);
1823   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1824   addr_t bp_addr = bp_site->GetLoadAddress();
1825   lldb::user_id_t breakID = bp_site->GetID();
1826   LLDB_LOGF(log,
1827             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1828             ") addr = 0x%" PRIx64,
1829             breakID, (uint64_t)bp_addr);
1830 
1831   if (bp_site->IsHardware()) {
1832     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1833   } else if (bp_site->IsEnabled()) {
1834     const size_t break_op_size = bp_site->GetByteSize();
1835     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1836     if (break_op_size > 0) {
1837       // Clear a software breakpoint instruction
1838       uint8_t curr_break_op[8];
1839       assert(break_op_size <= sizeof(curr_break_op));
1840       bool break_op_found = false;
1841 
1842       // Read the breakpoint opcode
1843       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1844           break_op_size) {
1845         bool verify = false;
1846         // Make sure the breakpoint opcode exists at this address
1847         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1848           break_op_found = true;
1849           // We found a valid breakpoint opcode at this address, now restore
1850           // the saved opcode.
1851           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1852                             break_op_size, error) == break_op_size) {
1853             verify = true;
1854           } else
1855             error.SetErrorString(
1856                 "Memory write failed when restoring original opcode.");
1857         } else {
1858           error.SetErrorString(
1859               "Original breakpoint trap is no longer in memory.");
1860           // Set verify to true and so we can check if the original opcode has
1861           // already been restored
1862           verify = true;
1863         }
1864 
1865         if (verify) {
1866           uint8_t verify_opcode[8];
1867           assert(break_op_size < sizeof(verify_opcode));
1868           // Verify that our original opcode made it back to the inferior
1869           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1870               break_op_size) {
1871             // compare the memory we just read with the original opcode
1872             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1873                          break_op_size) == 0) {
1874               // SUCCESS
1875               bp_site->SetEnabled(false);
1876               LLDB_LOGF(log,
1877                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1878                         "addr = 0x%" PRIx64 " -- SUCCESS",
1879                         bp_site->GetID(), (uint64_t)bp_addr);
1880               return error;
1881             } else {
1882               if (break_op_found)
1883                 error.SetErrorString("Failed to restore original opcode.");
1884             }
1885           } else
1886             error.SetErrorString("Failed to read memory to verify that "
1887                                  "breakpoint trap was restored.");
1888         }
1889       } else
1890         error.SetErrorString(
1891             "Unable to read memory that should contain the breakpoint trap.");
1892     }
1893   } else {
1894     LLDB_LOGF(
1895         log,
1896         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1897         " -- already disabled",
1898         bp_site->GetID(), (uint64_t)bp_addr);
1899     return error;
1900   }
1901 
1902   LLDB_LOGF(
1903       log,
1904       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1905       " -- FAILED: %s",
1906       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1907   return error;
1908 }
1909 
1910 // Uncomment to verify memory caching works after making changes to caching
1911 // code
1912 //#define VERIFY_MEMORY_READS
1913 
1914 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1915   error.Clear();
1916   if (!GetDisableMemoryCache()) {
1917 #if defined(VERIFY_MEMORY_READS)
1918     // Memory caching is enabled, with debug verification
1919 
1920     if (buf && size) {
1921       // Uncomment the line below to make sure memory caching is working.
1922       // I ran this through the test suite and got no assertions, so I am
1923       // pretty confident this is working well. If any changes are made to
1924       // memory caching, uncomment the line below and test your changes!
1925 
1926       // Verify all memory reads by using the cache first, then redundantly
1927       // reading the same memory from the inferior and comparing to make sure
1928       // everything is exactly the same.
1929       std::string verify_buf(size, '\0');
1930       assert(verify_buf.size() == size);
1931       const size_t cache_bytes_read =
1932           m_memory_cache.Read(this, addr, buf, size, error);
1933       Status verify_error;
1934       const size_t verify_bytes_read =
1935           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1936                                  verify_buf.size(), verify_error);
1937       assert(cache_bytes_read == verify_bytes_read);
1938       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1939       assert(verify_error.Success() == error.Success());
1940       return cache_bytes_read;
1941     }
1942     return 0;
1943 #else  // !defined(VERIFY_MEMORY_READS)
1944     // Memory caching is enabled, without debug verification
1945 
1946     return m_memory_cache.Read(addr, buf, size, error);
1947 #endif // defined (VERIFY_MEMORY_READS)
1948   } else {
1949     // Memory caching is disabled
1950 
1951     return ReadMemoryFromInferior(addr, buf, size, error);
1952   }
1953 }
1954 
1955 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1956                                       Status &error) {
1957   char buf[256];
1958   out_str.clear();
1959   addr_t curr_addr = addr;
1960   while (true) {
1961     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1962     if (length == 0)
1963       break;
1964     out_str.append(buf, length);
1965     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1966     // to read some more characters
1967     if (length == sizeof(buf) - 1)
1968       curr_addr += length;
1969     else
1970       break;
1971   }
1972   return out_str.size();
1973 }
1974 
1975 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes,
1976                                      Status &error, size_t type_width) {
1977   size_t total_bytes_read = 0;
1978   if (dst && max_bytes && type_width && max_bytes >= type_width) {
1979     // Ensure a null terminator independent of the number of bytes that is
1980     // read.
1981     memset(dst, 0, max_bytes);
1982     size_t bytes_left = max_bytes - type_width;
1983 
1984     const char terminator[4] = {'\0', '\0', '\0', '\0'};
1985     assert(sizeof(terminator) >= type_width && "Attempting to validate a "
1986                                                "string with more than 4 bytes "
1987                                                "per character!");
1988 
1989     addr_t curr_addr = addr;
1990     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1991     char *curr_dst = dst;
1992 
1993     error.Clear();
1994     while (bytes_left > 0 && error.Success()) {
1995       addr_t cache_line_bytes_left =
1996           cache_line_size - (curr_addr % cache_line_size);
1997       addr_t bytes_to_read =
1998           std::min<addr_t>(bytes_left, cache_line_bytes_left);
1999       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2000 
2001       if (bytes_read == 0)
2002         break;
2003 
2004       // Search for a null terminator of correct size and alignment in
2005       // bytes_read
2006       size_t aligned_start = total_bytes_read - total_bytes_read % type_width;
2007       for (size_t i = aligned_start;
2008            i + type_width <= total_bytes_read + bytes_read; i += type_width)
2009         if (::memcmp(&dst[i], terminator, type_width) == 0) {
2010           error.Clear();
2011           return i;
2012         }
2013 
2014       total_bytes_read += bytes_read;
2015       curr_dst += bytes_read;
2016       curr_addr += bytes_read;
2017       bytes_left -= bytes_read;
2018     }
2019   } else {
2020     if (max_bytes)
2021       error.SetErrorString("invalid arguments");
2022   }
2023   return total_bytes_read;
2024 }
2025 
2026 // Deprecated in favor of ReadStringFromMemory which has wchar support and
2027 // correct code to find null terminators.
2028 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2029                                       size_t dst_max_len,
2030                                       Status &result_error) {
2031   size_t total_cstr_len = 0;
2032   if (dst && dst_max_len) {
2033     result_error.Clear();
2034     // NULL out everything just to be safe
2035     memset(dst, 0, dst_max_len);
2036     Status error;
2037     addr_t curr_addr = addr;
2038     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2039     size_t bytes_left = dst_max_len - 1;
2040     char *curr_dst = dst;
2041 
2042     while (bytes_left > 0) {
2043       addr_t cache_line_bytes_left =
2044           cache_line_size - (curr_addr % cache_line_size);
2045       addr_t bytes_to_read =
2046           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2047       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2048 
2049       if (bytes_read == 0) {
2050         result_error = error;
2051         dst[total_cstr_len] = '\0';
2052         break;
2053       }
2054       const size_t len = strlen(curr_dst);
2055 
2056       total_cstr_len += len;
2057 
2058       if (len < bytes_to_read)
2059         break;
2060 
2061       curr_dst += bytes_read;
2062       curr_addr += bytes_read;
2063       bytes_left -= bytes_read;
2064     }
2065   } else {
2066     if (dst == nullptr)
2067       result_error.SetErrorString("invalid arguments");
2068     else
2069       result_error.Clear();
2070   }
2071   return total_cstr_len;
2072 }
2073 
2074 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2075                                        Status &error) {
2076   LLDB_SCOPED_TIMER();
2077 
2078   if (buf == nullptr || size == 0)
2079     return 0;
2080 
2081   size_t bytes_read = 0;
2082   uint8_t *bytes = (uint8_t *)buf;
2083 
2084   while (bytes_read < size) {
2085     const size_t curr_size = size - bytes_read;
2086     const size_t curr_bytes_read =
2087         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2088     bytes_read += curr_bytes_read;
2089     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2090       break;
2091   }
2092 
2093   // Replace any software breakpoint opcodes that fall into this range back
2094   // into "buf" before we return
2095   if (bytes_read > 0)
2096     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2097   return bytes_read;
2098 }
2099 
2100 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2101                                                 size_t integer_byte_size,
2102                                                 uint64_t fail_value,
2103                                                 Status &error) {
2104   Scalar scalar;
2105   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2106                                   error))
2107     return scalar.ULongLong(fail_value);
2108   return fail_value;
2109 }
2110 
2111 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2112                                              size_t integer_byte_size,
2113                                              int64_t fail_value,
2114                                              Status &error) {
2115   Scalar scalar;
2116   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2117                                   error))
2118     return scalar.SLongLong(fail_value);
2119   return fail_value;
2120 }
2121 
2122 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2123   Scalar scalar;
2124   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2125                                   error))
2126     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2127   return LLDB_INVALID_ADDRESS;
2128 }
2129 
2130 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2131                                    Status &error) {
2132   Scalar scalar;
2133   const uint32_t addr_byte_size = GetAddressByteSize();
2134   if (addr_byte_size <= 4)
2135     scalar = (uint32_t)ptr_value;
2136   else
2137     scalar = ptr_value;
2138   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2139          addr_byte_size;
2140 }
2141 
2142 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2143                                    Status &error) {
2144   size_t bytes_written = 0;
2145   const uint8_t *bytes = (const uint8_t *)buf;
2146 
2147   while (bytes_written < size) {
2148     const size_t curr_size = size - bytes_written;
2149     const size_t curr_bytes_written = DoWriteMemory(
2150         addr + bytes_written, bytes + bytes_written, curr_size, error);
2151     bytes_written += curr_bytes_written;
2152     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2153       break;
2154   }
2155   return bytes_written;
2156 }
2157 
2158 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2159                             Status &error) {
2160 #if defined(ENABLE_MEMORY_CACHING)
2161   m_memory_cache.Flush(addr, size);
2162 #endif
2163 
2164   if (buf == nullptr || size == 0)
2165     return 0;
2166 
2167   m_mod_id.BumpMemoryID();
2168 
2169   // We need to write any data that would go where any current software traps
2170   // (enabled software breakpoints) any software traps (breakpoints) that we
2171   // may have placed in our tasks memory.
2172 
2173   BreakpointSiteList bp_sites_in_range;
2174   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2175     return WriteMemoryPrivate(addr, buf, size, error);
2176 
2177   // No breakpoint sites overlap
2178   if (bp_sites_in_range.IsEmpty())
2179     return WriteMemoryPrivate(addr, buf, size, error);
2180 
2181   const uint8_t *ubuf = (const uint8_t *)buf;
2182   uint64_t bytes_written = 0;
2183 
2184   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2185                              &error](BreakpointSite *bp) -> void {
2186     if (error.Fail())
2187       return;
2188 
2189     if (bp->GetType() != BreakpointSite::eSoftware)
2190       return;
2191 
2192     addr_t intersect_addr;
2193     size_t intersect_size;
2194     size_t opcode_offset;
2195     const bool intersects = bp->IntersectsRange(
2196         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2197     UNUSED_IF_ASSERT_DISABLED(intersects);
2198     assert(intersects);
2199     assert(addr <= intersect_addr && intersect_addr < addr + size);
2200     assert(addr < intersect_addr + intersect_size &&
2201            intersect_addr + intersect_size <= addr + size);
2202     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2203 
2204     // Check for bytes before this breakpoint
2205     const addr_t curr_addr = addr + bytes_written;
2206     if (intersect_addr > curr_addr) {
2207       // There are some bytes before this breakpoint that we need to just
2208       // write to memory
2209       size_t curr_size = intersect_addr - curr_addr;
2210       size_t curr_bytes_written =
2211           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2212       bytes_written += curr_bytes_written;
2213       if (curr_bytes_written != curr_size) {
2214         // We weren't able to write all of the requested bytes, we are
2215         // done looping and will return the number of bytes that we have
2216         // written so far.
2217         if (error.Success())
2218           error.SetErrorToGenericError();
2219       }
2220     }
2221     // Now write any bytes that would cover up any software breakpoints
2222     // directly into the breakpoint opcode buffer
2223     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2224              intersect_size);
2225     bytes_written += intersect_size;
2226   });
2227 
2228   // Write any remaining bytes after the last breakpoint if we have any left
2229   if (bytes_written < size)
2230     bytes_written +=
2231         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2232                            size - bytes_written, error);
2233 
2234   return bytes_written;
2235 }
2236 
2237 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2238                                     size_t byte_size, Status &error) {
2239   if (byte_size == UINT32_MAX)
2240     byte_size = scalar.GetByteSize();
2241   if (byte_size > 0) {
2242     uint8_t buf[32];
2243     const size_t mem_size =
2244         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2245     if (mem_size > 0)
2246       return WriteMemory(addr, buf, mem_size, error);
2247     else
2248       error.SetErrorString("failed to get scalar as memory data");
2249   } else {
2250     error.SetErrorString("invalid scalar value");
2251   }
2252   return 0;
2253 }
2254 
2255 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2256                                             bool is_signed, Scalar &scalar,
2257                                             Status &error) {
2258   uint64_t uval = 0;
2259   if (byte_size == 0) {
2260     error.SetErrorString("byte size is zero");
2261   } else if (byte_size & (byte_size - 1)) {
2262     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2263                                    byte_size);
2264   } else if (byte_size <= sizeof(uval)) {
2265     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2266     if (bytes_read == byte_size) {
2267       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2268                          GetAddressByteSize());
2269       lldb::offset_t offset = 0;
2270       if (byte_size <= 4)
2271         scalar = data.GetMaxU32(&offset, byte_size);
2272       else
2273         scalar = data.GetMaxU64(&offset, byte_size);
2274       if (is_signed)
2275         scalar.SignExtend(byte_size * 8);
2276       return bytes_read;
2277     }
2278   } else {
2279     error.SetErrorStringWithFormat(
2280         "byte size of %u is too large for integer scalar type", byte_size);
2281   }
2282   return 0;
2283 }
2284 
2285 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2286   Status error;
2287   for (const auto &Entry : entries) {
2288     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2289                 error);
2290     if (!error.Success())
2291       break;
2292   }
2293   return error;
2294 }
2295 
2296 #define USE_ALLOCATE_MEMORY_CACHE 1
2297 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2298                                Status &error) {
2299   if (GetPrivateState() != eStateStopped) {
2300     error.SetErrorToGenericError();
2301     return LLDB_INVALID_ADDRESS;
2302   }
2303 
2304 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2305   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2306 #else
2307   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2308   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2309   LLDB_LOGF(log,
2310             "Process::AllocateMemory(size=%" PRIu64
2311             ", permissions=%s) => 0x%16.16" PRIx64
2312             " (m_stop_id = %u m_memory_id = %u)",
2313             (uint64_t)size, GetPermissionsAsCString(permissions),
2314             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2315             m_mod_id.GetMemoryID());
2316   return allocated_addr;
2317 #endif
2318 }
2319 
2320 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2321                                 Status &error) {
2322   addr_t return_addr = AllocateMemory(size, permissions, error);
2323   if (error.Success()) {
2324     std::string buffer(size, 0);
2325     WriteMemory(return_addr, buffer.c_str(), size, error);
2326   }
2327   return return_addr;
2328 }
2329 
2330 bool Process::CanJIT() {
2331   if (m_can_jit == eCanJITDontKnow) {
2332     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2333     Status err;
2334 
2335     uint64_t allocated_memory = AllocateMemory(
2336         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2337         err);
2338 
2339     if (err.Success()) {
2340       m_can_jit = eCanJITYes;
2341       LLDB_LOGF(log,
2342                 "Process::%s pid %" PRIu64
2343                 " allocation test passed, CanJIT () is true",
2344                 __FUNCTION__, GetID());
2345     } else {
2346       m_can_jit = eCanJITNo;
2347       LLDB_LOGF(log,
2348                 "Process::%s pid %" PRIu64
2349                 " allocation test failed, CanJIT () is false: %s",
2350                 __FUNCTION__, GetID(), err.AsCString());
2351     }
2352 
2353     DeallocateMemory(allocated_memory);
2354   }
2355 
2356   return m_can_jit == eCanJITYes;
2357 }
2358 
2359 void Process::SetCanJIT(bool can_jit) {
2360   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2361 }
2362 
2363 void Process::SetCanRunCode(bool can_run_code) {
2364   SetCanJIT(can_run_code);
2365   m_can_interpret_function_calls = can_run_code;
2366 }
2367 
2368 Status Process::DeallocateMemory(addr_t ptr) {
2369   Status error;
2370 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2371   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2372     error.SetErrorStringWithFormat(
2373         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2374   }
2375 #else
2376   error = DoDeallocateMemory(ptr);
2377 
2378   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2379   LLDB_LOGF(log,
2380             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2381             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2382             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2383             m_mod_id.GetMemoryID());
2384 #endif
2385   return error;
2386 }
2387 
2388 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2389                                        lldb::addr_t header_addr,
2390                                        size_t size_to_read) {
2391   Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
2392   if (log) {
2393     LLDB_LOGF(log,
2394               "Process::ReadModuleFromMemory reading %s binary from memory",
2395               file_spec.GetPath().c_str());
2396   }
2397   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2398   if (module_sp) {
2399     Status error;
2400     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2401         shared_from_this(), header_addr, error, size_to_read);
2402     if (objfile)
2403       return module_sp;
2404   }
2405   return ModuleSP();
2406 }
2407 
2408 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2409                                         uint32_t &permissions) {
2410   MemoryRegionInfo range_info;
2411   permissions = 0;
2412   Status error(GetMemoryRegionInfo(load_addr, range_info));
2413   if (!error.Success())
2414     return false;
2415   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2416       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2417       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2418     return false;
2419   }
2420 
2421   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2422     permissions |= lldb::ePermissionsReadable;
2423 
2424   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2425     permissions |= lldb::ePermissionsWritable;
2426 
2427   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2428     permissions |= lldb::ePermissionsExecutable;
2429 
2430   return true;
2431 }
2432 
2433 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2434   Status error;
2435   error.SetErrorString("watchpoints are not supported");
2436   return error;
2437 }
2438 
2439 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2440   Status error;
2441   error.SetErrorString("watchpoints are not supported");
2442   return error;
2443 }
2444 
2445 StateType
2446 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2447                                    const Timeout<std::micro> &timeout) {
2448   StateType state;
2449 
2450   while (true) {
2451     event_sp.reset();
2452     state = GetStateChangedEventsPrivate(event_sp, timeout);
2453 
2454     if (StateIsStoppedState(state, false))
2455       break;
2456 
2457     // If state is invalid, then we timed out
2458     if (state == eStateInvalid)
2459       break;
2460 
2461     if (event_sp)
2462       HandlePrivateEvent(event_sp);
2463   }
2464   return state;
2465 }
2466 
2467 void Process::LoadOperatingSystemPlugin(bool flush) {
2468   if (flush)
2469     m_thread_list.Clear();
2470   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2471   if (flush)
2472     Flush();
2473 }
2474 
2475 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2476   Status error;
2477   m_abi_sp.reset();
2478   m_dyld_up.reset();
2479   m_jit_loaders_up.reset();
2480   m_system_runtime_up.reset();
2481   m_os_up.reset();
2482   m_process_input_reader.reset();
2483 
2484   Module *exe_module = GetTarget().GetExecutableModulePointer();
2485   if (!exe_module) {
2486     error.SetErrorString("executable module does not exist");
2487     return error;
2488   }
2489 
2490   char local_exec_file_path[PATH_MAX];
2491   char platform_exec_file_path[PATH_MAX];
2492   exe_module->GetFileSpec().GetPath(local_exec_file_path,
2493                                     sizeof(local_exec_file_path));
2494   exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path,
2495                                             sizeof(platform_exec_file_path));
2496   if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2497     // Install anything that might need to be installed prior to launching.
2498     // For host systems, this will do nothing, but if we are connected to a
2499     // remote platform it will install any needed binaries
2500     error = GetTarget().Install(&launch_info);
2501     if (error.Fail())
2502       return error;
2503 
2504     // Listen and queue events that are broadcasted during the process launch.
2505     ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2506     HijackProcessEvents(listener_sp);
2507     auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2508 
2509     if (PrivateStateThreadIsValid())
2510       PausePrivateStateThread();
2511 
2512     error = WillLaunch(exe_module);
2513     if (error.Success()) {
2514       const bool restarted = false;
2515       SetPublicState(eStateLaunching, restarted);
2516       m_should_detach = false;
2517 
2518       if (m_public_run_lock.TrySetRunning()) {
2519         // Now launch using these arguments.
2520         error = DoLaunch(exe_module, launch_info);
2521       } else {
2522         // This shouldn't happen
2523         error.SetErrorString("failed to acquire process run lock");
2524       }
2525 
2526       if (error.Fail()) {
2527         if (GetID() != LLDB_INVALID_PROCESS_ID) {
2528           SetID(LLDB_INVALID_PROCESS_ID);
2529           const char *error_string = error.AsCString();
2530           if (error_string == nullptr)
2531             error_string = "launch failed";
2532           SetExitStatus(-1, error_string);
2533         }
2534       } else {
2535         EventSP event_sp;
2536 
2537         // Now wait for the process to launch and return control to us, and then
2538         // call DidLaunch:
2539         StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
2540 
2541         if (state == eStateInvalid || !event_sp) {
2542           // We were able to launch the process, but we failed to catch the
2543           // initial stop.
2544           error.SetErrorString("failed to catch stop after launch");
2545           SetExitStatus(0, "failed to catch stop after launch");
2546           Destroy(false);
2547         } else if (state == eStateStopped || state == eStateCrashed) {
2548           DidLaunch();
2549 
2550           DynamicLoader *dyld = GetDynamicLoader();
2551           if (dyld)
2552             dyld->DidLaunch();
2553 
2554           GetJITLoaders().DidLaunch();
2555 
2556           SystemRuntime *system_runtime = GetSystemRuntime();
2557           if (system_runtime)
2558             system_runtime->DidLaunch();
2559 
2560           if (!m_os_up)
2561             LoadOperatingSystemPlugin(false);
2562 
2563           // We successfully launched the process and stopped, now it the
2564           // right time to set up signal filters before resuming.
2565           UpdateAutomaticSignalFiltering();
2566 
2567           // Note, the stop event was consumed above, but not handled. This
2568           // was done to give DidLaunch a chance to run. The target is either
2569           // stopped or crashed. Directly set the state.  This is done to
2570           // prevent a stop message with a bunch of spurious output on thread
2571           // status, as well as not pop a ProcessIOHandler.
2572           SetPublicState(state, false);
2573 
2574           if (PrivateStateThreadIsValid())
2575             ResumePrivateStateThread();
2576           else
2577             StartPrivateStateThread();
2578 
2579           // Target was stopped at entry as was intended. Need to notify the
2580           // listeners about it.
2581           if (state == eStateStopped &&
2582               launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2583             HandlePrivateEvent(event_sp);
2584         } else if (state == eStateExited) {
2585           // We exited while trying to launch somehow.  Don't call DidLaunch
2586           // as that's not likely to work, and return an invalid pid.
2587           HandlePrivateEvent(event_sp);
2588         }
2589       }
2590     }
2591   } else {
2592     error.SetErrorStringWithFormat("file doesn't exist: '%s'",
2593                                    local_exec_file_path);
2594   }
2595 
2596   return error;
2597 }
2598 
2599 Status Process::LoadCore() {
2600   Status error = DoLoadCore();
2601   if (error.Success()) {
2602     ListenerSP listener_sp(
2603         Listener::MakeListener("lldb.process.load_core_listener"));
2604     HijackProcessEvents(listener_sp);
2605 
2606     if (PrivateStateThreadIsValid())
2607       ResumePrivateStateThread();
2608     else
2609       StartPrivateStateThread();
2610 
2611     DynamicLoader *dyld = GetDynamicLoader();
2612     if (dyld)
2613       dyld->DidAttach();
2614 
2615     GetJITLoaders().DidAttach();
2616 
2617     SystemRuntime *system_runtime = GetSystemRuntime();
2618     if (system_runtime)
2619       system_runtime->DidAttach();
2620 
2621     if (!m_os_up)
2622       LoadOperatingSystemPlugin(false);
2623 
2624     // We successfully loaded a core file, now pretend we stopped so we can
2625     // show all of the threads in the core file and explore the crashed state.
2626     SetPrivateState(eStateStopped);
2627 
2628     // Wait for a stopped event since we just posted one above...
2629     lldb::EventSP event_sp;
2630     StateType state =
2631         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2632 
2633     if (!StateIsStoppedState(state, false)) {
2634       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2635       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2636                 StateAsCString(state));
2637       error.SetErrorString(
2638           "Did not get stopped event after loading the core file.");
2639     }
2640     RestoreProcessEvents();
2641   }
2642   return error;
2643 }
2644 
2645 DynamicLoader *Process::GetDynamicLoader() {
2646   if (!m_dyld_up)
2647     m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr));
2648   return m_dyld_up.get();
2649 }
2650 
2651 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2652 
2653 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2654   return false;
2655 }
2656 
2657 JITLoaderList &Process::GetJITLoaders() {
2658   if (!m_jit_loaders_up) {
2659     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2660     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2661   }
2662   return *m_jit_loaders_up;
2663 }
2664 
2665 SystemRuntime *Process::GetSystemRuntime() {
2666   if (!m_system_runtime_up)
2667     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2668   return m_system_runtime_up.get();
2669 }
2670 
2671 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2672                                                           uint32_t exec_count)
2673     : NextEventAction(process), m_exec_count(exec_count) {
2674   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2675   LLDB_LOGF(
2676       log,
2677       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2678       __FUNCTION__, static_cast<void *>(process), exec_count);
2679 }
2680 
2681 Process::NextEventAction::EventActionResult
2682 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2683   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2684 
2685   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2686   LLDB_LOGF(log,
2687             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2688             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2689 
2690   switch (state) {
2691   case eStateAttaching:
2692     return eEventActionSuccess;
2693 
2694   case eStateRunning:
2695   case eStateConnected:
2696     return eEventActionRetry;
2697 
2698   case eStateStopped:
2699   case eStateCrashed:
2700     // During attach, prior to sending the eStateStopped event,
2701     // lldb_private::Process subclasses must set the new process ID.
2702     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2703     // We don't want these events to be reported, so go set the
2704     // ShouldReportStop here:
2705     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2706 
2707     if (m_exec_count > 0) {
2708       --m_exec_count;
2709 
2710       LLDB_LOGF(log,
2711                 "Process::AttachCompletionHandler::%s state %s: reduced "
2712                 "remaining exec count to %" PRIu32 ", requesting resume",
2713                 __FUNCTION__, StateAsCString(state), m_exec_count);
2714 
2715       RequestResume();
2716       return eEventActionRetry;
2717     } else {
2718       LLDB_LOGF(log,
2719                 "Process::AttachCompletionHandler::%s state %s: no more "
2720                 "execs expected to start, continuing with attach",
2721                 __FUNCTION__, StateAsCString(state));
2722 
2723       m_process->CompleteAttach();
2724       return eEventActionSuccess;
2725     }
2726     break;
2727 
2728   default:
2729   case eStateExited:
2730   case eStateInvalid:
2731     break;
2732   }
2733 
2734   m_exit_string.assign("No valid Process");
2735   return eEventActionExit;
2736 }
2737 
2738 Process::NextEventAction::EventActionResult
2739 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2740   return eEventActionSuccess;
2741 }
2742 
2743 const char *Process::AttachCompletionHandler::GetExitString() {
2744   return m_exit_string.c_str();
2745 }
2746 
2747 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2748   if (m_listener_sp)
2749     return m_listener_sp;
2750   else
2751     return debugger.GetListener();
2752 }
2753 
2754 Status Process::Attach(ProcessAttachInfo &attach_info) {
2755   m_abi_sp.reset();
2756   m_process_input_reader.reset();
2757   m_dyld_up.reset();
2758   m_jit_loaders_up.reset();
2759   m_system_runtime_up.reset();
2760   m_os_up.reset();
2761 
2762   lldb::pid_t attach_pid = attach_info.GetProcessID();
2763   Status error;
2764   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2765     char process_name[PATH_MAX];
2766 
2767     if (attach_info.GetExecutableFile().GetPath(process_name,
2768                                                 sizeof(process_name))) {
2769       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2770 
2771       if (wait_for_launch) {
2772         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2773         if (error.Success()) {
2774           if (m_public_run_lock.TrySetRunning()) {
2775             m_should_detach = true;
2776             const bool restarted = false;
2777             SetPublicState(eStateAttaching, restarted);
2778             // Now attach using these arguments.
2779             error = DoAttachToProcessWithName(process_name, attach_info);
2780           } else {
2781             // This shouldn't happen
2782             error.SetErrorString("failed to acquire process run lock");
2783           }
2784 
2785           if (error.Fail()) {
2786             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2787               SetID(LLDB_INVALID_PROCESS_ID);
2788               if (error.AsCString() == nullptr)
2789                 error.SetErrorString("attach failed");
2790 
2791               SetExitStatus(-1, error.AsCString());
2792             }
2793           } else {
2794             SetNextEventAction(new Process::AttachCompletionHandler(
2795                 this, attach_info.GetResumeCount()));
2796             StartPrivateStateThread();
2797           }
2798           return error;
2799         }
2800       } else {
2801         ProcessInstanceInfoList process_infos;
2802         PlatformSP platform_sp(GetTarget().GetPlatform());
2803 
2804         if (platform_sp) {
2805           ProcessInstanceInfoMatch match_info;
2806           match_info.GetProcessInfo() = attach_info;
2807           match_info.SetNameMatchType(NameMatch::Equals);
2808           platform_sp->FindProcesses(match_info, process_infos);
2809           const uint32_t num_matches = process_infos.size();
2810           if (num_matches == 1) {
2811             attach_pid = process_infos[0].GetProcessID();
2812             // Fall through and attach using the above process ID
2813           } else {
2814             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2815                 process_name, sizeof(process_name));
2816             if (num_matches > 1) {
2817               StreamString s;
2818               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2819               for (size_t i = 0; i < num_matches; i++) {
2820                 process_infos[i].DumpAsTableRow(
2821                     s, platform_sp->GetUserIDResolver(), true, false);
2822               }
2823               error.SetErrorStringWithFormat(
2824                   "more than one process named %s:\n%s", process_name,
2825                   s.GetData());
2826             } else
2827               error.SetErrorStringWithFormat(
2828                   "could not find a process named %s", process_name);
2829           }
2830         } else {
2831           error.SetErrorString(
2832               "invalid platform, can't find processes by name");
2833           return error;
2834         }
2835       }
2836     } else {
2837       error.SetErrorString("invalid process name");
2838     }
2839   }
2840 
2841   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2842     error = WillAttachToProcessWithID(attach_pid);
2843     if (error.Success()) {
2844 
2845       if (m_public_run_lock.TrySetRunning()) {
2846         // Now attach using these arguments.
2847         m_should_detach = true;
2848         const bool restarted = false;
2849         SetPublicState(eStateAttaching, restarted);
2850         error = DoAttachToProcessWithID(attach_pid, attach_info);
2851       } else {
2852         // This shouldn't happen
2853         error.SetErrorString("failed to acquire process run lock");
2854       }
2855 
2856       if (error.Success()) {
2857         SetNextEventAction(new Process::AttachCompletionHandler(
2858             this, attach_info.GetResumeCount()));
2859         StartPrivateStateThread();
2860       } else {
2861         if (GetID() != LLDB_INVALID_PROCESS_ID)
2862           SetID(LLDB_INVALID_PROCESS_ID);
2863 
2864         const char *error_string = error.AsCString();
2865         if (error_string == nullptr)
2866           error_string = "attach failed";
2867 
2868         SetExitStatus(-1, error_string);
2869       }
2870     }
2871   }
2872   return error;
2873 }
2874 
2875 void Process::CompleteAttach() {
2876   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
2877                                                   LIBLLDB_LOG_TARGET));
2878   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2879 
2880   // Let the process subclass figure out at much as it can about the process
2881   // before we go looking for a dynamic loader plug-in.
2882   ArchSpec process_arch;
2883   DidAttach(process_arch);
2884 
2885   if (process_arch.IsValid()) {
2886     GetTarget().SetArchitecture(process_arch);
2887     if (log) {
2888       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2889       LLDB_LOGF(log,
2890                 "Process::%s replacing process architecture with DidAttach() "
2891                 "architecture: %s",
2892                 __FUNCTION__, triple_str ? triple_str : "<null>");
2893     }
2894   }
2895 
2896   // We just attached.  If we have a platform, ask it for the process
2897   // architecture, and if it isn't the same as the one we've already set,
2898   // switch architectures.
2899   PlatformSP platform_sp(GetTarget().GetPlatform());
2900   assert(platform_sp);
2901   if (platform_sp) {
2902     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2903     if (target_arch.IsValid() &&
2904         !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) {
2905       ArchSpec platform_arch;
2906       platform_sp =
2907           platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch);
2908       if (platform_sp) {
2909         GetTarget().SetPlatform(platform_sp);
2910         GetTarget().SetArchitecture(platform_arch);
2911         LLDB_LOGF(log,
2912                   "Process::%s switching platform to %s and architecture "
2913                   "to %s based on info from attach",
2914                   __FUNCTION__, platform_sp->GetName().AsCString(""),
2915                   platform_arch.GetTriple().getTriple().c_str());
2916       }
2917     } else if (!process_arch.IsValid()) {
2918       ProcessInstanceInfo process_info;
2919       GetProcessInfo(process_info);
2920       const ArchSpec &process_arch = process_info.GetArchitecture();
2921       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2922       if (process_arch.IsValid() &&
2923           target_arch.IsCompatibleMatch(process_arch) &&
2924           !target_arch.IsExactMatch(process_arch)) {
2925         GetTarget().SetArchitecture(process_arch);
2926         LLDB_LOGF(log,
2927                   "Process::%s switching architecture to %s based on info "
2928                   "the platform retrieved for pid %" PRIu64,
2929                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2930                   GetID());
2931       }
2932     }
2933   }
2934 
2935   // We have completed the attach, now it is time to find the dynamic loader
2936   // plug-in
2937   DynamicLoader *dyld = GetDynamicLoader();
2938   if (dyld) {
2939     dyld->DidAttach();
2940     if (log) {
2941       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2942       LLDB_LOGF(log,
2943                 "Process::%s after DynamicLoader::DidAttach(), target "
2944                 "executable is %s (using %s plugin)",
2945                 __FUNCTION__,
2946                 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2947                               : "<none>",
2948                 dyld->GetPluginName().AsCString("<unnamed>"));
2949     }
2950   }
2951 
2952   GetJITLoaders().DidAttach();
2953 
2954   SystemRuntime *system_runtime = GetSystemRuntime();
2955   if (system_runtime) {
2956     system_runtime->DidAttach();
2957     if (log) {
2958       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2959       LLDB_LOGF(log,
2960                 "Process::%s after SystemRuntime::DidAttach(), target "
2961                 "executable is %s (using %s plugin)",
2962                 __FUNCTION__,
2963                 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2964                               : "<none>",
2965                 system_runtime->GetPluginName().AsCString("<unnamed>"));
2966     }
2967   }
2968 
2969   if (!m_os_up) {
2970     LoadOperatingSystemPlugin(false);
2971     if (m_os_up) {
2972       // Somebody might have gotten threads before now, but we need to force the
2973       // update after we've loaded the OperatingSystem plugin or it won't get a
2974       // chance to process the threads.
2975       m_thread_list.Clear();
2976       UpdateThreadListIfNeeded();
2977     }
2978   }
2979   // Figure out which one is the executable, and set that in our target:
2980   ModuleSP new_executable_module_sp;
2981   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2982     if (module_sp && module_sp->IsExecutable()) {
2983       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2984         new_executable_module_sp = module_sp;
2985       break;
2986     }
2987   }
2988   if (new_executable_module_sp) {
2989     GetTarget().SetExecutableModule(new_executable_module_sp,
2990                                     eLoadDependentsNo);
2991     if (log) {
2992       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2993       LLDB_LOGF(
2994           log,
2995           "Process::%s after looping through modules, target executable is %s",
2996           __FUNCTION__,
2997           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2998                         : "<none>");
2999     }
3000   }
3001 }
3002 
3003 Status Process::ConnectRemote(llvm::StringRef remote_url) {
3004   m_abi_sp.reset();
3005   m_process_input_reader.reset();
3006 
3007   // Find the process and its architecture.  Make sure it matches the
3008   // architecture of the current Target, and if not adjust it.
3009 
3010   Status error(DoConnectRemote(remote_url));
3011   if (error.Success()) {
3012     if (GetID() != LLDB_INVALID_PROCESS_ID) {
3013       EventSP event_sp;
3014       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
3015 
3016       if (state == eStateStopped || state == eStateCrashed) {
3017         // If we attached and actually have a process on the other end, then
3018         // this ended up being the equivalent of an attach.
3019         CompleteAttach();
3020 
3021         // This delays passing the stopped event to listeners till
3022         // CompleteAttach gets a chance to complete...
3023         HandlePrivateEvent(event_sp);
3024       }
3025     }
3026 
3027     if (PrivateStateThreadIsValid())
3028       ResumePrivateStateThread();
3029     else
3030       StartPrivateStateThread();
3031   }
3032   return error;
3033 }
3034 
3035 Status Process::PrivateResume() {
3036   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
3037                                                   LIBLLDB_LOG_STEP));
3038   LLDB_LOGF(log,
3039             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3040             "private state: %s",
3041             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3042             StateAsCString(m_private_state.GetValue()));
3043 
3044   // If signals handing status changed we might want to update our signal
3045   // filters before resuming.
3046   UpdateAutomaticSignalFiltering();
3047 
3048   Status error(WillResume());
3049   // Tell the process it is about to resume before the thread list
3050   if (error.Success()) {
3051     // Now let the thread list know we are about to resume so it can let all of
3052     // our threads know that they are about to be resumed. Threads will each be
3053     // called with Thread::WillResume(StateType) where StateType contains the
3054     // state that they are supposed to have when the process is resumed
3055     // (suspended/running/stepping). Threads should also check their resume
3056     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3057     // start back up with a signal.
3058     if (m_thread_list.WillResume()) {
3059       // Last thing, do the PreResumeActions.
3060       if (!RunPreResumeActions()) {
3061         error.SetErrorString(
3062             "Process::PrivateResume PreResumeActions failed, not resuming.");
3063       } else {
3064         m_mod_id.BumpResumeID();
3065         error = DoResume();
3066         if (error.Success()) {
3067           DidResume();
3068           m_thread_list.DidResume();
3069           LLDB_LOGF(log, "Process thinks the process has resumed.");
3070         } else {
3071           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3072           return error;
3073         }
3074       }
3075     } else {
3076       // Somebody wanted to run without running (e.g. we were faking a step
3077       // from one frame of a set of inlined frames that share the same PC to
3078       // another.)  So generate a continue & a stopped event, and let the world
3079       // handle them.
3080       LLDB_LOGF(log,
3081                 "Process::PrivateResume() asked to simulate a start & stop.");
3082 
3083       SetPrivateState(eStateRunning);
3084       SetPrivateState(eStateStopped);
3085     }
3086   } else
3087     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3088               error.AsCString("<unknown error>"));
3089   return error;
3090 }
3091 
3092 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3093   if (!StateIsRunningState(m_public_state.GetValue()))
3094     return Status("Process is not running.");
3095 
3096   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3097   // case it was already set and some thread plan logic calls halt on its own.
3098   m_clear_thread_plans_on_stop |= clear_thread_plans;
3099 
3100   ListenerSP halt_listener_sp(
3101       Listener::MakeListener("lldb.process.halt_listener"));
3102   HijackProcessEvents(halt_listener_sp);
3103 
3104   EventSP event_sp;
3105 
3106   SendAsyncInterrupt();
3107 
3108   if (m_public_state.GetValue() == eStateAttaching) {
3109     // Don't hijack and eat the eStateExited as the code that was doing the
3110     // attach will be waiting for this event...
3111     RestoreProcessEvents();
3112     SetExitStatus(SIGKILL, "Cancelled async attach.");
3113     Destroy(false);
3114     return Status();
3115   }
3116 
3117   // Wait for the process halt timeout seconds for the process to stop.
3118   StateType state =
3119       WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3120                            halt_listener_sp, nullptr, use_run_lock);
3121   RestoreProcessEvents();
3122 
3123   if (state == eStateInvalid || !event_sp) {
3124     // We timed out and didn't get a stop event...
3125     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3126   }
3127 
3128   BroadcastEvent(event_sp);
3129 
3130   return Status();
3131 }
3132 
3133 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3134   Status error;
3135 
3136   // Check both the public & private states here.  If we're hung evaluating an
3137   // expression, for instance, then the public state will be stopped, but we
3138   // still need to interrupt.
3139   if (m_public_state.GetValue() == eStateRunning ||
3140       m_private_state.GetValue() == eStateRunning) {
3141     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3142     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3143 
3144     ListenerSP listener_sp(
3145         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3146     HijackProcessEvents(listener_sp);
3147 
3148     SendAsyncInterrupt();
3149 
3150     // Consume the interrupt event.
3151     StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3152                                            &exit_event_sp, true, listener_sp);
3153 
3154     RestoreProcessEvents();
3155 
3156     // If the process exited while we were waiting for it to stop, put the
3157     // exited event into the shared pointer passed in and return.  Our caller
3158     // doesn't need to do anything else, since they don't have a process
3159     // anymore...
3160 
3161     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3162       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3163                 __FUNCTION__);
3164       return error;
3165     } else
3166       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3167 
3168     if (state != eStateStopped) {
3169       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3170                 StateAsCString(state));
3171       // If we really couldn't stop the process then we should just error out
3172       // here, but if the lower levels just bobbled sending the event and we
3173       // really are stopped, then continue on.
3174       StateType private_state = m_private_state.GetValue();
3175       if (private_state != eStateStopped) {
3176         return Status(
3177             "Attempt to stop the target in order to detach timed out. "
3178             "State = %s",
3179             StateAsCString(GetState()));
3180       }
3181     }
3182   }
3183   return error;
3184 }
3185 
3186 Status Process::Detach(bool keep_stopped) {
3187   EventSP exit_event_sp;
3188   Status error;
3189   m_destroy_in_process = true;
3190 
3191   error = WillDetach();
3192 
3193   if (error.Success()) {
3194     if (DetachRequiresHalt()) {
3195       error = StopForDestroyOrDetach(exit_event_sp);
3196       if (!error.Success()) {
3197         m_destroy_in_process = false;
3198         return error;
3199       } else if (exit_event_sp) {
3200         // We shouldn't need to do anything else here.  There's no process left
3201         // to detach from...
3202         StopPrivateStateThread();
3203         m_destroy_in_process = false;
3204         return error;
3205       }
3206     }
3207 
3208     m_thread_list.DiscardThreadPlans();
3209     DisableAllBreakpointSites();
3210 
3211     error = DoDetach(keep_stopped);
3212     if (error.Success()) {
3213       DidDetach();
3214       StopPrivateStateThread();
3215     } else {
3216       return error;
3217     }
3218   }
3219   m_destroy_in_process = false;
3220 
3221   // If we exited when we were waiting for a process to stop, then forward the
3222   // event here so we don't lose the event
3223   if (exit_event_sp) {
3224     // Directly broadcast our exited event because we shut down our private
3225     // state thread above
3226     BroadcastEvent(exit_event_sp);
3227   }
3228 
3229   // If we have been interrupted (to kill us) in the middle of running, we may
3230   // not end up propagating the last events through the event system, in which
3231   // case we might strand the write lock.  Unlock it here so when we do to tear
3232   // down the process we don't get an error destroying the lock.
3233 
3234   m_public_run_lock.SetStopped();
3235   return error;
3236 }
3237 
3238 Status Process::Destroy(bool force_kill) {
3239   // If we've already called Process::Finalize then there's nothing useful to
3240   // be done here.  Finalize has actually called Destroy already.
3241   if (m_finalizing)
3242     return {};
3243   return DestroyImpl(force_kill);
3244 }
3245 
3246 Status Process::DestroyImpl(bool force_kill) {
3247   // Tell ourselves we are in the process of destroying the process, so that we
3248   // don't do any unnecessary work that might hinder the destruction.  Remember
3249   // to set this back to false when we are done.  That way if the attempt
3250   // failed and the process stays around for some reason it won't be in a
3251   // confused state.
3252 
3253   if (force_kill)
3254     m_should_detach = false;
3255 
3256   if (GetShouldDetach()) {
3257     // FIXME: This will have to be a process setting:
3258     bool keep_stopped = false;
3259     Detach(keep_stopped);
3260   }
3261 
3262   m_destroy_in_process = true;
3263 
3264   Status error(WillDestroy());
3265   if (error.Success()) {
3266     EventSP exit_event_sp;
3267     if (DestroyRequiresHalt()) {
3268       error = StopForDestroyOrDetach(exit_event_sp);
3269     }
3270 
3271     if (m_public_state.GetValue() == eStateStopped) {
3272       // Ditch all thread plans, and remove all our breakpoints: in case we
3273       // have to restart the target to kill it, we don't want it hitting a
3274       // breakpoint... Only do this if we've stopped, however, since if we
3275       // didn't manage to halt it above, then we're not going to have much luck
3276       // doing this now.
3277       m_thread_list.DiscardThreadPlans();
3278       DisableAllBreakpointSites();
3279     }
3280 
3281     error = DoDestroy();
3282     if (error.Success()) {
3283       DidDestroy();
3284       StopPrivateStateThread();
3285     }
3286     m_stdio_communication.StopReadThread();
3287     m_stdio_communication.Disconnect();
3288     m_stdin_forward = false;
3289 
3290     if (m_process_input_reader) {
3291       m_process_input_reader->SetIsDone(true);
3292       m_process_input_reader->Cancel();
3293       m_process_input_reader.reset();
3294     }
3295 
3296     // If we exited when we were waiting for a process to stop, then forward
3297     // the event here so we don't lose the event
3298     if (exit_event_sp) {
3299       // Directly broadcast our exited event because we shut down our private
3300       // state thread above
3301       BroadcastEvent(exit_event_sp);
3302     }
3303 
3304     // If we have been interrupted (to kill us) in the middle of running, we
3305     // may not end up propagating the last events through the event system, in
3306     // which case we might strand the write lock.  Unlock it here so when we do
3307     // to tear down the process we don't get an error destroying the lock.
3308     m_public_run_lock.SetStopped();
3309   }
3310 
3311   m_destroy_in_process = false;
3312 
3313   return error;
3314 }
3315 
3316 Status Process::Signal(int signal) {
3317   Status error(WillSignal());
3318   if (error.Success()) {
3319     error = DoSignal(signal);
3320     if (error.Success())
3321       DidSignal();
3322   }
3323   return error;
3324 }
3325 
3326 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3327   assert(signals_sp && "null signals_sp");
3328   m_unix_signals_sp = signals_sp;
3329 }
3330 
3331 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3332   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3333   return m_unix_signals_sp;
3334 }
3335 
3336 lldb::ByteOrder Process::GetByteOrder() const {
3337   return GetTarget().GetArchitecture().GetByteOrder();
3338 }
3339 
3340 uint32_t Process::GetAddressByteSize() const {
3341   return GetTarget().GetArchitecture().GetAddressByteSize();
3342 }
3343 
3344 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3345   const StateType state =
3346       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3347   bool return_value = true;
3348   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS |
3349                                                   LIBLLDB_LOG_PROCESS));
3350 
3351   switch (state) {
3352   case eStateDetached:
3353   case eStateExited:
3354   case eStateUnloaded:
3355     m_stdio_communication.SynchronizeWithReadThread();
3356     m_stdio_communication.StopReadThread();
3357     m_stdio_communication.Disconnect();
3358     m_stdin_forward = false;
3359 
3360     LLVM_FALLTHROUGH;
3361   case eStateConnected:
3362   case eStateAttaching:
3363   case eStateLaunching:
3364     // These events indicate changes in the state of the debugging session,
3365     // always report them.
3366     return_value = true;
3367     break;
3368   case eStateInvalid:
3369     // We stopped for no apparent reason, don't report it.
3370     return_value = false;
3371     break;
3372   case eStateRunning:
3373   case eStateStepping:
3374     // If we've started the target running, we handle the cases where we are
3375     // already running and where there is a transition from stopped to running
3376     // differently. running -> running: Automatically suppress extra running
3377     // events stopped -> running: Report except when there is one or more no
3378     // votes
3379     //     and no yes votes.
3380     SynchronouslyNotifyStateChanged(state);
3381     if (m_force_next_event_delivery)
3382       return_value = true;
3383     else {
3384       switch (m_last_broadcast_state) {
3385       case eStateRunning:
3386       case eStateStepping:
3387         // We always suppress multiple runnings with no PUBLIC stop in between.
3388         return_value = false;
3389         break;
3390       default:
3391         // TODO: make this work correctly. For now always report
3392         // run if we aren't running so we don't miss any running events. If I
3393         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3394         // and hit the breakpoints on multiple threads, then somehow during the
3395         // stepping over of all breakpoints no run gets reported.
3396 
3397         // This is a transition from stop to run.
3398         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3399         case eVoteYes:
3400         case eVoteNoOpinion:
3401           return_value = true;
3402           break;
3403         case eVoteNo:
3404           return_value = false;
3405           break;
3406         }
3407         break;
3408       }
3409     }
3410     break;
3411   case eStateStopped:
3412   case eStateCrashed:
3413   case eStateSuspended:
3414     // We've stopped.  First see if we're going to restart the target. If we
3415     // are going to stop, then we always broadcast the event. If we aren't
3416     // going to stop, let the thread plans decide if we're going to report this
3417     // event. If no thread has an opinion, we don't report it.
3418 
3419     m_stdio_communication.SynchronizeWithReadThread();
3420     RefreshStateAfterStop();
3421     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3422       LLDB_LOGF(log,
3423                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3424                 "interrupt, state: %s",
3425                 static_cast<void *>(event_ptr), StateAsCString(state));
3426       // Even though we know we are going to stop, we should let the threads
3427       // have a look at the stop, so they can properly set their state.
3428       m_thread_list.ShouldStop(event_ptr);
3429       return_value = true;
3430     } else {
3431       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3432       bool should_resume = false;
3433 
3434       // It makes no sense to ask "ShouldStop" if we've already been
3435       // restarted... Asking the thread list is also not likely to go well,
3436       // since we are running again. So in that case just report the event.
3437 
3438       if (!was_restarted)
3439         should_resume = !m_thread_list.ShouldStop(event_ptr);
3440 
3441       if (was_restarted || should_resume || m_resume_requested) {
3442         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3443         LLDB_LOGF(log,
3444                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3445                   "%s was_restarted: %i report_stop_vote: %d.",
3446                   should_resume, StateAsCString(state), was_restarted,
3447                   report_stop_vote);
3448 
3449         switch (report_stop_vote) {
3450         case eVoteYes:
3451           return_value = true;
3452           break;
3453         case eVoteNoOpinion:
3454         case eVoteNo:
3455           return_value = false;
3456           break;
3457         }
3458 
3459         if (!was_restarted) {
3460           LLDB_LOGF(log,
3461                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3462                     "from state: %s",
3463                     static_cast<void *>(event_ptr), StateAsCString(state));
3464           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3465           PrivateResume();
3466         }
3467       } else {
3468         return_value = true;
3469         SynchronouslyNotifyStateChanged(state);
3470       }
3471     }
3472     break;
3473   }
3474 
3475   // Forcing the next event delivery is a one shot deal.  So reset it here.
3476   m_force_next_event_delivery = false;
3477 
3478   // We do some coalescing of events (for instance two consecutive running
3479   // events get coalesced.) But we only coalesce against events we actually
3480   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3481   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3482   // done, because the PublicState reflects the last event pulled off the
3483   // queue, and there may be several events stacked up on the queue unserviced.
3484   // So the PublicState may not reflect the last broadcasted event yet.
3485   // m_last_broadcast_state gets updated here.
3486 
3487   if (return_value)
3488     m_last_broadcast_state = state;
3489 
3490   LLDB_LOGF(log,
3491             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3492             "broadcast state: %s - %s",
3493             static_cast<void *>(event_ptr), StateAsCString(state),
3494             StateAsCString(m_last_broadcast_state),
3495             return_value ? "YES" : "NO");
3496   return return_value;
3497 }
3498 
3499 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3500   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
3501 
3502   bool already_running = PrivateStateThreadIsValid();
3503   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3504             already_running ? " already running"
3505                             : " starting private state thread");
3506 
3507   if (!is_secondary_thread && already_running)
3508     return true;
3509 
3510   // Create a thread that watches our internal state and controls which events
3511   // make it to clients (into the DCProcess event queue).
3512   char thread_name[1024];
3513   uint32_t max_len = llvm::get_max_thread_name_length();
3514   if (max_len > 0 && max_len <= 30) {
3515     // On platforms with abbreviated thread name lengths, choose thread names
3516     // that fit within the limit.
3517     if (already_running)
3518       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3519     else
3520       snprintf(thread_name, sizeof(thread_name), "intern-state");
3521   } else {
3522     if (already_running)
3523       snprintf(thread_name, sizeof(thread_name),
3524                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3525                GetID());
3526     else
3527       snprintf(thread_name, sizeof(thread_name),
3528                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3529   }
3530 
3531   // Create the private state thread, and start it running.
3532   PrivateStateThreadArgs *args_ptr =
3533       new PrivateStateThreadArgs(this, is_secondary_thread);
3534   llvm::Expected<HostThread> private_state_thread =
3535       ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread,
3536                                    (void *)args_ptr, 8 * 1024 * 1024);
3537   if (!private_state_thread) {
3538     LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST),
3539              "failed to launch host thread: {}",
3540              llvm::toString(private_state_thread.takeError()));
3541     return false;
3542   }
3543 
3544   assert(private_state_thread->IsJoinable());
3545   m_private_state_thread = *private_state_thread;
3546   ResumePrivateStateThread();
3547   return true;
3548 }
3549 
3550 void Process::PausePrivateStateThread() {
3551   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3552 }
3553 
3554 void Process::ResumePrivateStateThread() {
3555   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3556 }
3557 
3558 void Process::StopPrivateStateThread() {
3559   if (m_private_state_thread.IsJoinable())
3560     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3561   else {
3562     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3563     LLDB_LOGF(
3564         log,
3565         "Went to stop the private state thread, but it was already invalid.");
3566   }
3567 }
3568 
3569 void Process::ControlPrivateStateThread(uint32_t signal) {
3570   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3571 
3572   assert(signal == eBroadcastInternalStateControlStop ||
3573          signal == eBroadcastInternalStateControlPause ||
3574          signal == eBroadcastInternalStateControlResume);
3575 
3576   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3577 
3578   // Signal the private state thread
3579   if (m_private_state_thread.IsJoinable()) {
3580     // Broadcast the event.
3581     // It is important to do this outside of the if below, because it's
3582     // possible that the thread state is invalid but that the thread is waiting
3583     // on a control event instead of simply being on its way out (this should
3584     // not happen, but it apparently can).
3585     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3586     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3587     m_private_state_control_broadcaster.BroadcastEvent(signal,
3588                                                        event_receipt_sp);
3589 
3590     // Wait for the event receipt or for the private state thread to exit
3591     bool receipt_received = false;
3592     if (PrivateStateThreadIsValid()) {
3593       while (!receipt_received) {
3594         // Check for a receipt for n seconds and then check if the private
3595         // state thread is still around.
3596         receipt_received =
3597           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3598         if (!receipt_received) {
3599           // Check if the private state thread is still around. If it isn't
3600           // then we are done waiting
3601           if (!PrivateStateThreadIsValid())
3602             break; // Private state thread exited or is exiting, we are done
3603         }
3604       }
3605     }
3606 
3607     if (signal == eBroadcastInternalStateControlStop) {
3608       thread_result_t result = {};
3609       m_private_state_thread.Join(&result);
3610       m_private_state_thread.Reset();
3611     }
3612   } else {
3613     LLDB_LOGF(
3614         log,
3615         "Private state thread already dead, no need to signal it to stop.");
3616   }
3617 }
3618 
3619 void Process::SendAsyncInterrupt() {
3620   if (PrivateStateThreadIsValid())
3621     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3622                                                nullptr);
3623   else
3624     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3625 }
3626 
3627 void Process::HandlePrivateEvent(EventSP &event_sp) {
3628   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3629   m_resume_requested = false;
3630 
3631   const StateType new_state =
3632       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3633 
3634   // First check to see if anybody wants a shot at this event:
3635   if (m_next_event_action_up) {
3636     NextEventAction::EventActionResult action_result =
3637         m_next_event_action_up->PerformAction(event_sp);
3638     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3639 
3640     switch (action_result) {
3641     case NextEventAction::eEventActionSuccess:
3642       SetNextEventAction(nullptr);
3643       break;
3644 
3645     case NextEventAction::eEventActionRetry:
3646       break;
3647 
3648     case NextEventAction::eEventActionExit:
3649       // Handle Exiting Here.  If we already got an exited event, we should
3650       // just propagate it.  Otherwise, swallow this event, and set our state
3651       // to exit so the next event will kill us.
3652       if (new_state != eStateExited) {
3653         // FIXME: should cons up an exited event, and discard this one.
3654         SetExitStatus(0, m_next_event_action_up->GetExitString());
3655         SetNextEventAction(nullptr);
3656         return;
3657       }
3658       SetNextEventAction(nullptr);
3659       break;
3660     }
3661   }
3662 
3663   // See if we should broadcast this state to external clients?
3664   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3665 
3666   if (should_broadcast) {
3667     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3668     if (log) {
3669       LLDB_LOGF(log,
3670                 "Process::%s (pid = %" PRIu64
3671                 ") broadcasting new state %s (old state %s) to %s",
3672                 __FUNCTION__, GetID(), StateAsCString(new_state),
3673                 StateAsCString(GetState()),
3674                 is_hijacked ? "hijacked" : "public");
3675     }
3676     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3677     if (StateIsRunningState(new_state)) {
3678       // Only push the input handler if we aren't fowarding events, as this
3679       // means the curses GUI is in use... Or don't push it if we are launching
3680       // since it will come up stopped.
3681       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3682           new_state != eStateLaunching && new_state != eStateAttaching) {
3683         PushProcessIOHandler();
3684         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3685                                   eBroadcastAlways);
3686         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3687                   __FUNCTION__, m_iohandler_sync.GetValue());
3688       }
3689     } else if (StateIsStoppedState(new_state, false)) {
3690       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3691         // If the lldb_private::Debugger is handling the events, we don't want
3692         // to pop the process IOHandler here, we want to do it when we receive
3693         // the stopped event so we can carefully control when the process
3694         // IOHandler is popped because when we stop we want to display some
3695         // text stating how and why we stopped, then maybe some
3696         // process/thread/frame info, and then we want the "(lldb) " prompt to
3697         // show up. If we pop the process IOHandler here, then we will cause
3698         // the command interpreter to become the top IOHandler after the
3699         // process pops off and it will update its prompt right away... See the
3700         // Debugger.cpp file where it calls the function as
3701         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3702         // Otherwise we end up getting overlapping "(lldb) " prompts and
3703         // garbled output.
3704         //
3705         // If we aren't handling the events in the debugger (which is indicated
3706         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3707         // we are hijacked, then we always pop the process IO handler manually.
3708         // Hijacking happens when the internal process state thread is running
3709         // thread plans, or when commands want to run in synchronous mode and
3710         // they call "process->WaitForProcessToStop()". An example of something
3711         // that will hijack the events is a simple expression:
3712         //
3713         //  (lldb) expr (int)puts("hello")
3714         //
3715         // This will cause the internal process state thread to resume and halt
3716         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3717         // events) and we do need the IO handler to be pushed and popped
3718         // correctly.
3719 
3720         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3721           PopProcessIOHandler();
3722       }
3723     }
3724 
3725     BroadcastEvent(event_sp);
3726   } else {
3727     if (log) {
3728       LLDB_LOGF(
3729           log,
3730           "Process::%s (pid = %" PRIu64
3731           ") suppressing state %s (old state %s): should_broadcast == false",
3732           __FUNCTION__, GetID(), StateAsCString(new_state),
3733           StateAsCString(GetState()));
3734     }
3735   }
3736 }
3737 
3738 Status Process::HaltPrivate() {
3739   EventSP event_sp;
3740   Status error(WillHalt());
3741   if (error.Fail())
3742     return error;
3743 
3744   // Ask the process subclass to actually halt our process
3745   bool caused_stop;
3746   error = DoHalt(caused_stop);
3747 
3748   DidHalt();
3749   return error;
3750 }
3751 
3752 thread_result_t Process::PrivateStateThread(void *arg) {
3753   std::unique_ptr<PrivateStateThreadArgs> args_up(
3754       static_cast<PrivateStateThreadArgs *>(arg));
3755   thread_result_t result =
3756       args_up->process->RunPrivateStateThread(args_up->is_secondary_thread);
3757   return result;
3758 }
3759 
3760 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3761   bool control_only = true;
3762 
3763   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3764   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3765             __FUNCTION__, static_cast<void *>(this), GetID());
3766 
3767   bool exit_now = false;
3768   bool interrupt_requested = false;
3769   while (!exit_now) {
3770     EventSP event_sp;
3771     GetEventsPrivate(event_sp, llvm::None, control_only);
3772     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3773       LLDB_LOGF(log,
3774                 "Process::%s (arg = %p, pid = %" PRIu64
3775                 ") got a control event: %d",
3776                 __FUNCTION__, static_cast<void *>(this), GetID(),
3777                 event_sp->GetType());
3778 
3779       switch (event_sp->GetType()) {
3780       case eBroadcastInternalStateControlStop:
3781         exit_now = true;
3782         break; // doing any internal state management below
3783 
3784       case eBroadcastInternalStateControlPause:
3785         control_only = true;
3786         break;
3787 
3788       case eBroadcastInternalStateControlResume:
3789         control_only = false;
3790         break;
3791       }
3792 
3793       continue;
3794     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3795       if (m_public_state.GetValue() == eStateAttaching) {
3796         LLDB_LOGF(log,
3797                   "Process::%s (arg = %p, pid = %" PRIu64
3798                   ") woke up with an interrupt while attaching - "
3799                   "forwarding interrupt.",
3800                   __FUNCTION__, static_cast<void *>(this), GetID());
3801         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3802       } else if (StateIsRunningState(m_last_broadcast_state)) {
3803         LLDB_LOGF(log,
3804                   "Process::%s (arg = %p, pid = %" PRIu64
3805                   ") woke up with an interrupt - Halting.",
3806                   __FUNCTION__, static_cast<void *>(this), GetID());
3807         Status error = HaltPrivate();
3808         if (error.Fail() && log)
3809           LLDB_LOGF(log,
3810                     "Process::%s (arg = %p, pid = %" PRIu64
3811                     ") failed to halt the process: %s",
3812                     __FUNCTION__, static_cast<void *>(this), GetID(),
3813                     error.AsCString());
3814         // Halt should generate a stopped event. Make a note of the fact that
3815         // we were doing the interrupt, so we can set the interrupted flag
3816         // after we receive the event. We deliberately set this to true even if
3817         // HaltPrivate failed, so that we can interrupt on the next natural
3818         // stop.
3819         interrupt_requested = true;
3820       } else {
3821         // This can happen when someone (e.g. Process::Halt) sees that we are
3822         // running and sends an interrupt request, but the process actually
3823         // stops before we receive it. In that case, we can just ignore the
3824         // request. We use m_last_broadcast_state, because the Stopped event
3825         // may not have been popped of the event queue yet, which is when the
3826         // public state gets updated.
3827         LLDB_LOGF(log,
3828                   "Process::%s ignoring interrupt as we have already stopped.",
3829                   __FUNCTION__);
3830       }
3831       continue;
3832     }
3833 
3834     const StateType internal_state =
3835         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3836 
3837     if (internal_state != eStateInvalid) {
3838       if (m_clear_thread_plans_on_stop &&
3839           StateIsStoppedState(internal_state, true)) {
3840         m_clear_thread_plans_on_stop = false;
3841         m_thread_list.DiscardThreadPlans();
3842       }
3843 
3844       if (interrupt_requested) {
3845         if (StateIsStoppedState(internal_state, true)) {
3846           // We requested the interrupt, so mark this as such in the stop event
3847           // so clients can tell an interrupted process from a natural stop
3848           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3849           interrupt_requested = false;
3850         } else if (log) {
3851           LLDB_LOGF(log,
3852                     "Process::%s interrupt_requested, but a non-stopped "
3853                     "state '%s' received.",
3854                     __FUNCTION__, StateAsCString(internal_state));
3855         }
3856       }
3857 
3858       HandlePrivateEvent(event_sp);
3859     }
3860 
3861     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3862         internal_state == eStateDetached) {
3863       LLDB_LOGF(log,
3864                 "Process::%s (arg = %p, pid = %" PRIu64
3865                 ") about to exit with internal state %s...",
3866                 __FUNCTION__, static_cast<void *>(this), GetID(),
3867                 StateAsCString(internal_state));
3868 
3869       break;
3870     }
3871   }
3872 
3873   // Verify log is still enabled before attempting to write to it...
3874   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3875             __FUNCTION__, static_cast<void *>(this), GetID());
3876 
3877   // If we are a secondary thread, then the primary thread we are working for
3878   // will have already acquired the public_run_lock, and isn't done with what
3879   // it was doing yet, so don't try to change it on the way out.
3880   if (!is_secondary_thread)
3881     m_public_run_lock.SetStopped();
3882   return {};
3883 }
3884 
3885 // Process Event Data
3886 
3887 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3888 
3889 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3890                                             StateType state)
3891     : EventData(), m_process_wp(), m_state(state), m_restarted(false),
3892       m_update_state(0), m_interrupted(false) {
3893   if (process_sp)
3894     m_process_wp = process_sp;
3895 }
3896 
3897 Process::ProcessEventData::~ProcessEventData() = default;
3898 
3899 ConstString Process::ProcessEventData::GetFlavorString() {
3900   static ConstString g_flavor("Process::ProcessEventData");
3901   return g_flavor;
3902 }
3903 
3904 ConstString Process::ProcessEventData::GetFlavor() const {
3905   return ProcessEventData::GetFlavorString();
3906 }
3907 
3908 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3909                                            bool &found_valid_stopinfo) {
3910   found_valid_stopinfo = false;
3911 
3912   ProcessSP process_sp(m_process_wp.lock());
3913   if (!process_sp)
3914     return false;
3915 
3916   ThreadList &curr_thread_list = process_sp->GetThreadList();
3917   uint32_t num_threads = curr_thread_list.GetSize();
3918   uint32_t idx;
3919 
3920   // The actions might change one of the thread's stop_info's opinions about
3921   // whether we should stop the process, so we need to query that as we go.
3922 
3923   // One other complication here, is that we try to catch any case where the
3924   // target has run (except for expressions) and immediately exit, but if we
3925   // get that wrong (which is possible) then the thread list might have
3926   // changed, and that would cause our iteration here to crash.  We could
3927   // make a copy of the thread list, but we'd really like to also know if it
3928   // has changed at all, so we make up a vector of the thread ID's and check
3929   // what we get back against this list & bag out if anything differs.
3930   ThreadList not_suspended_thread_list(process_sp.get());
3931   std::vector<uint32_t> thread_index_array(num_threads);
3932   uint32_t not_suspended_idx = 0;
3933   for (idx = 0; idx < num_threads; ++idx) {
3934     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3935 
3936     /*
3937      Filter out all suspended threads, they could not be the reason
3938      of stop and no need to perform any actions on them.
3939      */
3940     if (thread_sp->GetResumeState() != eStateSuspended) {
3941       not_suspended_thread_list.AddThread(thread_sp);
3942       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3943       not_suspended_idx++;
3944     }
3945   }
3946 
3947   // Use this to track whether we should continue from here.  We will only
3948   // continue the target running if no thread says we should stop.  Of course
3949   // if some thread's PerformAction actually sets the target running, then it
3950   // doesn't matter what the other threads say...
3951 
3952   bool still_should_stop = false;
3953 
3954   // Sometimes - for instance if we have a bug in the stub we are talking to,
3955   // we stop but no thread has a valid stop reason.  In that case we should
3956   // just stop, because we have no way of telling what the right thing to do
3957   // is, and it's better to let the user decide than continue behind their
3958   // backs.
3959 
3960   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3961     curr_thread_list = process_sp->GetThreadList();
3962     if (curr_thread_list.GetSize() != num_threads) {
3963       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3964                                                       LIBLLDB_LOG_PROCESS));
3965       LLDB_LOGF(
3966           log,
3967           "Number of threads changed from %u to %u while processing event.",
3968           num_threads, curr_thread_list.GetSize());
3969       break;
3970     }
3971 
3972     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3973 
3974     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3975       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3976                                                       LIBLLDB_LOG_PROCESS));
3977       LLDB_LOGF(log,
3978                 "The thread at position %u changed from %u to %u while "
3979                 "processing event.",
3980                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3981       break;
3982     }
3983 
3984     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3985     if (stop_info_sp && stop_info_sp->IsValid()) {
3986       found_valid_stopinfo = true;
3987       bool this_thread_wants_to_stop;
3988       if (stop_info_sp->GetOverrideShouldStop()) {
3989         this_thread_wants_to_stop =
3990             stop_info_sp->GetOverriddenShouldStopValue();
3991       } else {
3992         stop_info_sp->PerformAction(event_ptr);
3993         // The stop action might restart the target.  If it does, then we
3994         // want to mark that in the event so that whoever is receiving it
3995         // will know to wait for the running event and reflect that state
3996         // appropriately. We also need to stop processing actions, since they
3997         // aren't expecting the target to be running.
3998 
3999         // FIXME: we might have run.
4000         if (stop_info_sp->HasTargetRunSinceMe()) {
4001           SetRestarted(true);
4002           break;
4003         }
4004 
4005         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4006       }
4007 
4008       if (!still_should_stop)
4009         still_should_stop = this_thread_wants_to_stop;
4010     }
4011   }
4012 
4013   return still_should_stop;
4014 }
4015 
4016 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4017   ProcessSP process_sp(m_process_wp.lock());
4018 
4019   if (!process_sp)
4020     return;
4021 
4022   // This function gets called twice for each event, once when the event gets
4023   // pulled off of the private process event queue, and then any number of
4024   // times, first when it gets pulled off of the public event queue, then other
4025   // times when we're pretending that this is where we stopped at the end of
4026   // expression evaluation.  m_update_state is used to distinguish these three
4027   // cases; it is 0 when we're just pulling it off for private handling, and >
4028   // 1 for expression evaluation, and we don't want to do the breakpoint
4029   // command handling then.
4030   if (m_update_state != 1)
4031     return;
4032 
4033   process_sp->SetPublicState(
4034       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4035 
4036   if (m_state == eStateStopped && !m_restarted) {
4037     // Let process subclasses know we are about to do a public stop and do
4038     // anything they might need to in order to speed up register and memory
4039     // accesses.
4040     process_sp->WillPublicStop();
4041   }
4042 
4043   // If this is a halt event, even if the halt stopped with some reason other
4044   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4045   // the halt request came through) don't do the StopInfo actions, as they may
4046   // end up restarting the process.
4047   if (m_interrupted)
4048     return;
4049 
4050   // If we're not stopped or have restarted, then skip the StopInfo actions:
4051   if (m_state != eStateStopped || m_restarted) {
4052     return;
4053   }
4054 
4055   bool does_anybody_have_an_opinion = false;
4056   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4057 
4058   if (GetRestarted()) {
4059     return;
4060   }
4061 
4062   if (!still_should_stop && does_anybody_have_an_opinion) {
4063     // We've been asked to continue, so do that here.
4064     SetRestarted(true);
4065     // Use the public resume method here, since this is just extending a
4066     // public resume.
4067     process_sp->PrivateResume();
4068   } else {
4069     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4070                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4071 
4072     if (!hijacked) {
4073       // If we didn't restart, run the Stop Hooks here.
4074       // Don't do that if state changed events aren't hooked up to the
4075       // public (or SyncResume) broadcasters.  StopHooks are just for
4076       // real public stops.  They might also restart the target,
4077       // so watch for that.
4078       if (process_sp->GetTarget().RunStopHooks())
4079         SetRestarted(true);
4080     }
4081   }
4082 }
4083 
4084 void Process::ProcessEventData::Dump(Stream *s) const {
4085   ProcessSP process_sp(m_process_wp.lock());
4086 
4087   if (process_sp)
4088     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4089               static_cast<void *>(process_sp.get()), process_sp->GetID());
4090   else
4091     s->PutCString(" process = NULL, ");
4092 
4093   s->Printf("state = %s", StateAsCString(GetState()));
4094 }
4095 
4096 const Process::ProcessEventData *
4097 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4098   if (event_ptr) {
4099     const EventData *event_data = event_ptr->GetData();
4100     if (event_data &&
4101         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4102       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4103   }
4104   return nullptr;
4105 }
4106 
4107 ProcessSP
4108 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4109   ProcessSP process_sp;
4110   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4111   if (data)
4112     process_sp = data->GetProcessSP();
4113   return process_sp;
4114 }
4115 
4116 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4117   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4118   if (data == nullptr)
4119     return eStateInvalid;
4120   else
4121     return data->GetState();
4122 }
4123 
4124 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4125   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4126   if (data == nullptr)
4127     return false;
4128   else
4129     return data->GetRestarted();
4130 }
4131 
4132 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4133                                                     bool new_value) {
4134   ProcessEventData *data =
4135       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4136   if (data != nullptr)
4137     data->SetRestarted(new_value);
4138 }
4139 
4140 size_t
4141 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4142   ProcessEventData *data =
4143       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4144   if (data != nullptr)
4145     return data->GetNumRestartedReasons();
4146   else
4147     return 0;
4148 }
4149 
4150 const char *
4151 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4152                                                      size_t idx) {
4153   ProcessEventData *data =
4154       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4155   if (data != nullptr)
4156     return data->GetRestartedReasonAtIndex(idx);
4157   else
4158     return nullptr;
4159 }
4160 
4161 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4162                                                    const char *reason) {
4163   ProcessEventData *data =
4164       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4165   if (data != nullptr)
4166     data->AddRestartedReason(reason);
4167 }
4168 
4169 bool Process::ProcessEventData::GetInterruptedFromEvent(
4170     const Event *event_ptr) {
4171   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4172   if (data == nullptr)
4173     return false;
4174   else
4175     return data->GetInterrupted();
4176 }
4177 
4178 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4179                                                       bool new_value) {
4180   ProcessEventData *data =
4181       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4182   if (data != nullptr)
4183     data->SetInterrupted(new_value);
4184 }
4185 
4186 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4187   ProcessEventData *data =
4188       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4189   if (data) {
4190     data->SetUpdateStateOnRemoval();
4191     return true;
4192   }
4193   return false;
4194 }
4195 
4196 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4197 
4198 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4199   exe_ctx.SetTargetPtr(&GetTarget());
4200   exe_ctx.SetProcessPtr(this);
4201   exe_ctx.SetThreadPtr(nullptr);
4202   exe_ctx.SetFramePtr(nullptr);
4203 }
4204 
4205 // uint32_t
4206 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4207 // std::vector<lldb::pid_t> &pids)
4208 //{
4209 //    return 0;
4210 //}
4211 //
4212 // ArchSpec
4213 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4214 //{
4215 //    return Host::GetArchSpecForExistingProcess (pid);
4216 //}
4217 //
4218 // ArchSpec
4219 // Process::GetArchSpecForExistingProcess (const char *process_name)
4220 //{
4221 //    return Host::GetArchSpecForExistingProcess (process_name);
4222 //}
4223 
4224 void Process::AppendSTDOUT(const char *s, size_t len) {
4225   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4226   m_stdout_data.append(s, len);
4227   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4228                          new ProcessEventData(shared_from_this(), GetState()));
4229 }
4230 
4231 void Process::AppendSTDERR(const char *s, size_t len) {
4232   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4233   m_stderr_data.append(s, len);
4234   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4235                          new ProcessEventData(shared_from_this(), GetState()));
4236 }
4237 
4238 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4239   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4240   m_profile_data.push_back(one_profile_data);
4241   BroadcastEventIfUnique(eBroadcastBitProfileData,
4242                          new ProcessEventData(shared_from_this(), GetState()));
4243 }
4244 
4245 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4246                                       const StructuredDataPluginSP &plugin_sp) {
4247   BroadcastEvent(
4248       eBroadcastBitStructuredData,
4249       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4250 }
4251 
4252 StructuredDataPluginSP
4253 Process::GetStructuredDataPlugin(ConstString type_name) const {
4254   auto find_it = m_structured_data_plugin_map.find(type_name);
4255   if (find_it != m_structured_data_plugin_map.end())
4256     return find_it->second;
4257   else
4258     return StructuredDataPluginSP();
4259 }
4260 
4261 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4262   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4263   if (m_profile_data.empty())
4264     return 0;
4265 
4266   std::string &one_profile_data = m_profile_data.front();
4267   size_t bytes_available = one_profile_data.size();
4268   if (bytes_available > 0) {
4269     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4270     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4271               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4272     if (bytes_available > buf_size) {
4273       memcpy(buf, one_profile_data.c_str(), buf_size);
4274       one_profile_data.erase(0, buf_size);
4275       bytes_available = buf_size;
4276     } else {
4277       memcpy(buf, one_profile_data.c_str(), bytes_available);
4278       m_profile_data.erase(m_profile_data.begin());
4279     }
4280   }
4281   return bytes_available;
4282 }
4283 
4284 // Process STDIO
4285 
4286 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4287   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4288   size_t bytes_available = m_stdout_data.size();
4289   if (bytes_available > 0) {
4290     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4291     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4292               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4293     if (bytes_available > buf_size) {
4294       memcpy(buf, m_stdout_data.c_str(), buf_size);
4295       m_stdout_data.erase(0, buf_size);
4296       bytes_available = buf_size;
4297     } else {
4298       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4299       m_stdout_data.clear();
4300     }
4301   }
4302   return bytes_available;
4303 }
4304 
4305 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4306   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4307   size_t bytes_available = m_stderr_data.size();
4308   if (bytes_available > 0) {
4309     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4310     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4311               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4312     if (bytes_available > buf_size) {
4313       memcpy(buf, m_stderr_data.c_str(), buf_size);
4314       m_stderr_data.erase(0, buf_size);
4315       bytes_available = buf_size;
4316     } else {
4317       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4318       m_stderr_data.clear();
4319     }
4320   }
4321   return bytes_available;
4322 }
4323 
4324 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4325                                            size_t src_len) {
4326   Process *process = (Process *)baton;
4327   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4328 }
4329 
4330 class IOHandlerProcessSTDIO : public IOHandler {
4331 public:
4332   IOHandlerProcessSTDIO(Process *process, int write_fd)
4333       : IOHandler(process->GetTarget().GetDebugger(),
4334                   IOHandler::Type::ProcessIO),
4335         m_process(process),
4336         m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4337         m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4338     m_pipe.CreateNew(false);
4339   }
4340 
4341   ~IOHandlerProcessSTDIO() override = default;
4342 
4343   // Each IOHandler gets to run until it is done. It should read data from the
4344   // "in" and place output into "out" and "err and return when done.
4345   void Run() override {
4346     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4347         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4348       SetIsDone(true);
4349       return;
4350     }
4351 
4352     SetIsDone(false);
4353     const int read_fd = m_read_file.GetDescriptor();
4354     TerminalState terminal_state;
4355     terminal_state.Save(read_fd, false);
4356     Terminal terminal(read_fd);
4357     terminal.SetCanonical(false);
4358     terminal.SetEcho(false);
4359 // FD_ZERO, FD_SET are not supported on windows
4360 #ifndef _WIN32
4361     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4362     m_is_running = true;
4363     while (!GetIsDone()) {
4364       SelectHelper select_helper;
4365       select_helper.FDSetRead(read_fd);
4366       select_helper.FDSetRead(pipe_read_fd);
4367       Status error = select_helper.Select();
4368 
4369       if (error.Fail()) {
4370         SetIsDone(true);
4371       } else {
4372         char ch = 0;
4373         size_t n;
4374         if (select_helper.FDIsSetRead(read_fd)) {
4375           n = 1;
4376           if (m_read_file.Read(&ch, n).Success() && n == 1) {
4377             if (m_write_file.Write(&ch, n).Fail() || n != 1)
4378               SetIsDone(true);
4379           } else
4380             SetIsDone(true);
4381         }
4382         if (select_helper.FDIsSetRead(pipe_read_fd)) {
4383           size_t bytes_read;
4384           // Consume the interrupt byte
4385           Status error = m_pipe.Read(&ch, 1, bytes_read);
4386           if (error.Success()) {
4387             switch (ch) {
4388             case 'q':
4389               SetIsDone(true);
4390               break;
4391             case 'i':
4392               if (StateIsRunningState(m_process->GetState()))
4393                 m_process->SendAsyncInterrupt();
4394               break;
4395             }
4396           }
4397         }
4398       }
4399     }
4400     m_is_running = false;
4401 #endif
4402     terminal_state.Restore();
4403   }
4404 
4405   void Cancel() override {
4406     SetIsDone(true);
4407     // Only write to our pipe to cancel if we are in
4408     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4409     // is being run from the command interpreter:
4410     //
4411     // (lldb) step_process_thousands_of_times
4412     //
4413     // In this case the command interpreter will be in the middle of handling
4414     // the command and if the process pushes and pops the IOHandler thousands
4415     // of times, we can end up writing to m_pipe without ever consuming the
4416     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4417     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4418     if (m_is_running) {
4419       char ch = 'q'; // Send 'q' for quit
4420       size_t bytes_written = 0;
4421       m_pipe.Write(&ch, 1, bytes_written);
4422     }
4423   }
4424 
4425   bool Interrupt() override {
4426     // Do only things that are safe to do in an interrupt context (like in a
4427     // SIGINT handler), like write 1 byte to a file descriptor. This will
4428     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4429     // that was written to the pipe and then call
4430     // m_process->SendAsyncInterrupt() from a much safer location in code.
4431     if (m_active) {
4432       char ch = 'i'; // Send 'i' for interrupt
4433       size_t bytes_written = 0;
4434       Status result = m_pipe.Write(&ch, 1, bytes_written);
4435       return result.Success();
4436     } else {
4437       // This IOHandler might be pushed on the stack, but not being run
4438       // currently so do the right thing if we aren't actively watching for
4439       // STDIN by sending the interrupt to the process. Otherwise the write to
4440       // the pipe above would do nothing. This can happen when the command
4441       // interpreter is running and gets a "expression ...". It will be on the
4442       // IOHandler thread and sending the input is complete to the delegate
4443       // which will cause the expression to run, which will push the process IO
4444       // handler, but not run it.
4445 
4446       if (StateIsRunningState(m_process->GetState())) {
4447         m_process->SendAsyncInterrupt();
4448         return true;
4449       }
4450     }
4451     return false;
4452   }
4453 
4454   void GotEOF() override {}
4455 
4456 protected:
4457   Process *m_process;
4458   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4459   NativeFile m_write_file; // Write to this file (usually the master pty for
4460                            // getting io to debuggee)
4461   Pipe m_pipe;
4462   std::atomic<bool> m_is_running{false};
4463 };
4464 
4465 void Process::SetSTDIOFileDescriptor(int fd) {
4466   // First set up the Read Thread for reading/handling process I/O
4467   m_stdio_communication.SetConnection(
4468       std::make_unique<ConnectionFileDescriptor>(fd, true));
4469   if (m_stdio_communication.IsConnected()) {
4470     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4471         STDIOReadThreadBytesReceived, this);
4472     m_stdio_communication.StartReadThread();
4473 
4474     // Now read thread is set up, set up input reader.
4475 
4476     if (!m_process_input_reader)
4477       m_process_input_reader =
4478           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4479   }
4480 }
4481 
4482 bool Process::ProcessIOHandlerIsActive() {
4483   IOHandlerSP io_handler_sp(m_process_input_reader);
4484   if (io_handler_sp)
4485     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4486   return false;
4487 }
4488 bool Process::PushProcessIOHandler() {
4489   IOHandlerSP io_handler_sp(m_process_input_reader);
4490   if (io_handler_sp) {
4491     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4492     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4493 
4494     io_handler_sp->SetIsDone(false);
4495     // If we evaluate an utility function, then we don't cancel the current
4496     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4497     // existing IOHandler that potentially provides the user interface (e.g.
4498     // the IOHandler for Editline).
4499     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4500     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4501                                                 cancel_top_handler);
4502     return true;
4503   }
4504   return false;
4505 }
4506 
4507 bool Process::PopProcessIOHandler() {
4508   IOHandlerSP io_handler_sp(m_process_input_reader);
4509   if (io_handler_sp)
4510     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4511   return false;
4512 }
4513 
4514 // The process needs to know about installed plug-ins
4515 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4516 
4517 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4518 
4519 namespace {
4520 // RestorePlanState is used to record the "is private", "is master" and "okay
4521 // to discard" fields of the plan we are running, and reset it on Clean or on
4522 // destruction. It will only reset the state once, so you can call Clean and
4523 // then monkey with the state and it won't get reset on you again.
4524 
4525 class RestorePlanState {
4526 public:
4527   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4528       : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) {
4529     if (m_thread_plan_sp) {
4530       m_private = m_thread_plan_sp->GetPrivate();
4531       m_is_master = m_thread_plan_sp->IsMasterPlan();
4532       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4533     }
4534   }
4535 
4536   ~RestorePlanState() { Clean(); }
4537 
4538   void Clean() {
4539     if (!m_already_reset && m_thread_plan_sp) {
4540       m_already_reset = true;
4541       m_thread_plan_sp->SetPrivate(m_private);
4542       m_thread_plan_sp->SetIsMasterPlan(m_is_master);
4543       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4544     }
4545   }
4546 
4547 private:
4548   lldb::ThreadPlanSP m_thread_plan_sp;
4549   bool m_already_reset;
4550   bool m_private;
4551   bool m_is_master;
4552   bool m_okay_to_discard;
4553 };
4554 } // anonymous namespace
4555 
4556 static microseconds
4557 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4558   const milliseconds default_one_thread_timeout(250);
4559 
4560   // If the overall wait is forever, then we don't need to worry about it.
4561   if (!options.GetTimeout()) {
4562     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4563                                          : default_one_thread_timeout;
4564   }
4565 
4566   // If the one thread timeout is set, use it.
4567   if (options.GetOneThreadTimeout())
4568     return *options.GetOneThreadTimeout();
4569 
4570   // Otherwise use half the total timeout, bounded by the
4571   // default_one_thread_timeout.
4572   return std::min<microseconds>(default_one_thread_timeout,
4573                                 *options.GetTimeout() / 2);
4574 }
4575 
4576 static Timeout<std::micro>
4577 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4578                      bool before_first_timeout) {
4579   // If we are going to run all threads the whole time, or if we are only going
4580   // to run one thread, we can just return the overall timeout.
4581   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4582     return options.GetTimeout();
4583 
4584   if (before_first_timeout)
4585     return GetOneThreadExpressionTimeout(options);
4586 
4587   if (!options.GetTimeout())
4588     return llvm::None;
4589   else
4590     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4591 }
4592 
4593 static llvm::Optional<ExpressionResults>
4594 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4595                    RestorePlanState &restorer, const EventSP &event_sp,
4596                    EventSP &event_to_broadcast_sp,
4597                    const EvaluateExpressionOptions &options,
4598                    bool handle_interrupts) {
4599   Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS);
4600 
4601   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4602                            .GetProcessSP()
4603                            ->GetThreadList()
4604                            .FindThreadByID(thread_id);
4605   if (!thread_sp) {
4606     LLDB_LOG(log,
4607              "The thread on which we were running the "
4608              "expression: tid = {0}, exited while "
4609              "the expression was running.",
4610              thread_id);
4611     return eExpressionThreadVanished;
4612   }
4613 
4614   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4615   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4616     LLDB_LOG(log, "execution completed successfully");
4617 
4618     // Restore the plan state so it will get reported as intended when we are
4619     // done.
4620     restorer.Clean();
4621     return eExpressionCompleted;
4622   }
4623 
4624   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4625   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4626       stop_info_sp->ShouldNotify(event_sp.get())) {
4627     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4628     if (!options.DoesIgnoreBreakpoints()) {
4629       // Restore the plan state and then force Private to false.  We are going
4630       // to stop because of this plan so we need it to become a public plan or
4631       // it won't report correctly when we continue to its termination later
4632       // on.
4633       restorer.Clean();
4634       thread_plan_sp->SetPrivate(false);
4635       event_to_broadcast_sp = event_sp;
4636     }
4637     return eExpressionHitBreakpoint;
4638   }
4639 
4640   if (!handle_interrupts &&
4641       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4642     return llvm::None;
4643 
4644   LLDB_LOG(log, "thread plan did not successfully complete");
4645   if (!options.DoesUnwindOnError())
4646     event_to_broadcast_sp = event_sp;
4647   return eExpressionInterrupted;
4648 }
4649 
4650 ExpressionResults
4651 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4652                        lldb::ThreadPlanSP &thread_plan_sp,
4653                        const EvaluateExpressionOptions &options,
4654                        DiagnosticManager &diagnostic_manager) {
4655   ExpressionResults return_value = eExpressionSetupError;
4656 
4657   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4658 
4659   if (!thread_plan_sp) {
4660     diagnostic_manager.PutString(
4661         eDiagnosticSeverityError,
4662         "RunThreadPlan called with empty thread plan.");
4663     return eExpressionSetupError;
4664   }
4665 
4666   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4667     diagnostic_manager.PutString(
4668         eDiagnosticSeverityError,
4669         "RunThreadPlan called with an invalid thread plan.");
4670     return eExpressionSetupError;
4671   }
4672 
4673   if (exe_ctx.GetProcessPtr() != this) {
4674     diagnostic_manager.PutString(eDiagnosticSeverityError,
4675                                  "RunThreadPlan called on wrong process.");
4676     return eExpressionSetupError;
4677   }
4678 
4679   Thread *thread = exe_ctx.GetThreadPtr();
4680   if (thread == nullptr) {
4681     diagnostic_manager.PutString(eDiagnosticSeverityError,
4682                                  "RunThreadPlan called with invalid thread.");
4683     return eExpressionSetupError;
4684   }
4685 
4686   // Record the thread's id so we can tell when a thread we were using
4687   // to run the expression exits during the expression evaluation.
4688   lldb::tid_t expr_thread_id = thread->GetID();
4689 
4690   // We need to change some of the thread plan attributes for the thread plan
4691   // runner.  This will restore them when we are done:
4692 
4693   RestorePlanState thread_plan_restorer(thread_plan_sp);
4694 
4695   // We rely on the thread plan we are running returning "PlanCompleted" if
4696   // when it successfully completes. For that to be true the plan can't be
4697   // private - since private plans suppress themselves in the GetCompletedPlan
4698   // call.
4699 
4700   thread_plan_sp->SetPrivate(false);
4701 
4702   // The plans run with RunThreadPlan also need to be terminal master plans or
4703   // when they are done we will end up asking the plan above us whether we
4704   // should stop, which may give the wrong answer.
4705 
4706   thread_plan_sp->SetIsMasterPlan(true);
4707   thread_plan_sp->SetOkayToDiscard(false);
4708 
4709   // If we are running some utility expression for LLDB, we now have to mark
4710   // this in the ProcesModID of this process. This RAII takes care of marking
4711   // and reverting the mark it once we are done running the expression.
4712   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4713 
4714   if (m_private_state.GetValue() != eStateStopped) {
4715     diagnostic_manager.PutString(
4716         eDiagnosticSeverityError,
4717         "RunThreadPlan called while the private state was not stopped.");
4718     return eExpressionSetupError;
4719   }
4720 
4721   // Save the thread & frame from the exe_ctx for restoration after we run
4722   const uint32_t thread_idx_id = thread->GetIndexID();
4723   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4724   if (!selected_frame_sp) {
4725     thread->SetSelectedFrame(nullptr);
4726     selected_frame_sp = thread->GetSelectedFrame();
4727     if (!selected_frame_sp) {
4728       diagnostic_manager.Printf(
4729           eDiagnosticSeverityError,
4730           "RunThreadPlan called without a selected frame on thread %d",
4731           thread_idx_id);
4732       return eExpressionSetupError;
4733     }
4734   }
4735 
4736   // Make sure the timeout values make sense. The one thread timeout needs to
4737   // be smaller than the overall timeout.
4738   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4739       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4740     diagnostic_manager.PutString(eDiagnosticSeverityError,
4741                                  "RunThreadPlan called with one thread "
4742                                  "timeout greater than total timeout");
4743     return eExpressionSetupError;
4744   }
4745 
4746   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4747 
4748   // N.B. Running the target may unset the currently selected thread and frame.
4749   // We don't want to do that either, so we should arrange to reset them as
4750   // well.
4751 
4752   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4753 
4754   uint32_t selected_tid;
4755   StackID selected_stack_id;
4756   if (selected_thread_sp) {
4757     selected_tid = selected_thread_sp->GetIndexID();
4758     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4759   } else {
4760     selected_tid = LLDB_INVALID_THREAD_ID;
4761   }
4762 
4763   HostThread backup_private_state_thread;
4764   lldb::StateType old_state = eStateInvalid;
4765   lldb::ThreadPlanSP stopper_base_plan_sp;
4766 
4767   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
4768                                                   LIBLLDB_LOG_PROCESS));
4769   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4770     // Yikes, we are running on the private state thread!  So we can't wait for
4771     // public events on this thread, since we are the thread that is generating
4772     // public events. The simplest thing to do is to spin up a temporary thread
4773     // to handle private state thread events while we are fielding public
4774     // events here.
4775     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4776                    "another state thread to handle the events.");
4777 
4778     backup_private_state_thread = m_private_state_thread;
4779 
4780     // One other bit of business: we want to run just this thread plan and
4781     // anything it pushes, and then stop, returning control here. But in the
4782     // normal course of things, the plan above us on the stack would be given a
4783     // shot at the stop event before deciding to stop, and we don't want that.
4784     // So we insert a "stopper" base plan on the stack before the plan we want
4785     // to run.  Since base plans always stop and return control to the user,
4786     // that will do just what we want.
4787     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4788     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4789     // Have to make sure our public state is stopped, since otherwise the
4790     // reporting logic below doesn't work correctly.
4791     old_state = m_public_state.GetValue();
4792     m_public_state.SetValueNoLock(eStateStopped);
4793 
4794     // Now spin up the private state thread:
4795     StartPrivateStateThread(true);
4796   }
4797 
4798   thread->QueueThreadPlan(
4799       thread_plan_sp, false); // This used to pass "true" does that make sense?
4800 
4801   if (options.GetDebug()) {
4802     // In this case, we aren't actually going to run, we just want to stop
4803     // right away. Flush this thread so we will refetch the stacks and show the
4804     // correct backtrace.
4805     // FIXME: To make this prettier we should invent some stop reason for this,
4806     // but that
4807     // is only cosmetic, and this functionality is only of use to lldb
4808     // developers who can live with not pretty...
4809     thread->Flush();
4810     return eExpressionStoppedForDebug;
4811   }
4812 
4813   ListenerSP listener_sp(
4814       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4815 
4816   lldb::EventSP event_to_broadcast_sp;
4817 
4818   {
4819     // This process event hijacker Hijacks the Public events and its destructor
4820     // makes sure that the process events get restored on exit to the function.
4821     //
4822     // If the event needs to propagate beyond the hijacker (e.g., the process
4823     // exits during execution), then the event is put into
4824     // event_to_broadcast_sp for rebroadcasting.
4825 
4826     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4827 
4828     if (log) {
4829       StreamString s;
4830       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4831       LLDB_LOGF(log,
4832                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4833                 " to run thread plan \"%s\".",
4834                 thread_idx_id, expr_thread_id, s.GetData());
4835     }
4836 
4837     bool got_event;
4838     lldb::EventSP event_sp;
4839     lldb::StateType stop_state = lldb::eStateInvalid;
4840 
4841     bool before_first_timeout = true; // This is set to false the first time
4842                                       // that we have to halt the target.
4843     bool do_resume = true;
4844     bool handle_running_event = true;
4845 
4846     // This is just for accounting:
4847     uint32_t num_resumes = 0;
4848 
4849     // If we are going to run all threads the whole time, or if we are only
4850     // going to run one thread, then we don't need the first timeout.  So we
4851     // pretend we are after the first timeout already.
4852     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4853       before_first_timeout = false;
4854 
4855     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4856               options.GetStopOthers(), options.GetTryAllThreads(),
4857               before_first_timeout);
4858 
4859     // This isn't going to work if there are unfetched events on the queue. Are
4860     // there cases where we might want to run the remaining events here, and
4861     // then try to call the function?  That's probably being too tricky for our
4862     // own good.
4863 
4864     Event *other_events = listener_sp->PeekAtNextEvent();
4865     if (other_events != nullptr) {
4866       diagnostic_manager.PutString(
4867           eDiagnosticSeverityError,
4868           "RunThreadPlan called with pending events on the queue.");
4869       return eExpressionSetupError;
4870     }
4871 
4872     // We also need to make sure that the next event is delivered.  We might be
4873     // calling a function as part of a thread plan, in which case the last
4874     // delivered event could be the running event, and we don't want event
4875     // coalescing to cause us to lose OUR running event...
4876     ForceNextEventDelivery();
4877 
4878 // This while loop must exit out the bottom, there's cleanup that we need to do
4879 // when we are done. So don't call return anywhere within it.
4880 
4881 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4882     // It's pretty much impossible to write test cases for things like: One
4883     // thread timeout expires, I go to halt, but the process already stopped on
4884     // the function call stop breakpoint.  Turning on this define will make us
4885     // not fetch the first event till after the halt.  So if you run a quick
4886     // function, it will have completed, and the completion event will be
4887     // waiting, when you interrupt for halt. The expression evaluation should
4888     // still succeed.
4889     bool miss_first_event = true;
4890 #endif
4891     while (true) {
4892       // We usually want to resume the process if we get to the top of the
4893       // loop. The only exception is if we get two running events with no
4894       // intervening stop, which can happen, we will just wait for then next
4895       // stop event.
4896       LLDB_LOGF(log,
4897                 "Top of while loop: do_resume: %i handle_running_event: %i "
4898                 "before_first_timeout: %i.",
4899                 do_resume, handle_running_event, before_first_timeout);
4900 
4901       if (do_resume || handle_running_event) {
4902         // Do the initial resume and wait for the running event before going
4903         // further.
4904 
4905         if (do_resume) {
4906           num_resumes++;
4907           Status resume_error = PrivateResume();
4908           if (!resume_error.Success()) {
4909             diagnostic_manager.Printf(
4910                 eDiagnosticSeverityError,
4911                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4912                 resume_error.AsCString());
4913             return_value = eExpressionSetupError;
4914             break;
4915           }
4916         }
4917 
4918         got_event =
4919             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4920         if (!got_event) {
4921           LLDB_LOGF(log,
4922                     "Process::RunThreadPlan(): didn't get any event after "
4923                     "resume %" PRIu32 ", exiting.",
4924                     num_resumes);
4925 
4926           diagnostic_manager.Printf(eDiagnosticSeverityError,
4927                                     "didn't get any event after resume %" PRIu32
4928                                     ", exiting.",
4929                                     num_resumes);
4930           return_value = eExpressionSetupError;
4931           break;
4932         }
4933 
4934         stop_state =
4935             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4936 
4937         if (stop_state != eStateRunning) {
4938           bool restarted = false;
4939 
4940           if (stop_state == eStateStopped) {
4941             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4942                 event_sp.get());
4943             LLDB_LOGF(
4944                 log,
4945                 "Process::RunThreadPlan(): didn't get running event after "
4946                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4947                 "handle_running_event: %i).",
4948                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4949                 handle_running_event);
4950           }
4951 
4952           if (restarted) {
4953             // This is probably an overabundance of caution, I don't think I
4954             // should ever get a stopped & restarted event here.  But if I do,
4955             // the best thing is to Halt and then get out of here.
4956             const bool clear_thread_plans = false;
4957             const bool use_run_lock = false;
4958             Halt(clear_thread_plans, use_run_lock);
4959           }
4960 
4961           diagnostic_manager.Printf(
4962               eDiagnosticSeverityError,
4963               "didn't get running event after initial resume, got %s instead.",
4964               StateAsCString(stop_state));
4965           return_value = eExpressionSetupError;
4966           break;
4967         }
4968 
4969         if (log)
4970           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4971         // We need to call the function synchronously, so spin waiting for it
4972         // to return. If we get interrupted while executing, we're going to
4973         // lose our context, and won't be able to gather the result at this
4974         // point. We set the timeout AFTER the resume, since the resume takes
4975         // some time and we don't want to charge that to the timeout.
4976       } else {
4977         if (log)
4978           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4979       }
4980 
4981       do_resume = true;
4982       handle_running_event = true;
4983 
4984       // Now wait for the process to stop again:
4985       event_sp.reset();
4986 
4987       Timeout<std::micro> timeout =
4988           GetExpressionTimeout(options, before_first_timeout);
4989       if (log) {
4990         if (timeout) {
4991           auto now = system_clock::now();
4992           LLDB_LOGF(log,
4993                     "Process::RunThreadPlan(): about to wait - now is %s - "
4994                     "endpoint is %s",
4995                     llvm::to_string(now).c_str(),
4996                     llvm::to_string(now + *timeout).c_str());
4997         } else {
4998           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
4999         }
5000       }
5001 
5002 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5003       // See comment above...
5004       if (miss_first_event) {
5005         std::this_thread::sleep_for(std::chrono::milliseconds(1));
5006         miss_first_event = false;
5007         got_event = false;
5008       } else
5009 #endif
5010         got_event = listener_sp->GetEvent(event_sp, timeout);
5011 
5012       if (got_event) {
5013         if (event_sp) {
5014           bool keep_going = false;
5015           if (event_sp->GetType() == eBroadcastBitInterrupt) {
5016             const bool clear_thread_plans = false;
5017             const bool use_run_lock = false;
5018             Halt(clear_thread_plans, use_run_lock);
5019             return_value = eExpressionInterrupted;
5020             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
5021                                          "execution halted by user interrupt.");
5022             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
5023                            "eBroadcastBitInterrupted, exiting.");
5024             break;
5025           } else {
5026             stop_state =
5027                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5028             LLDB_LOGF(log,
5029                       "Process::RunThreadPlan(): in while loop, got event: %s.",
5030                       StateAsCString(stop_state));
5031 
5032             switch (stop_state) {
5033             case lldb::eStateStopped: {
5034               if (Process::ProcessEventData::GetRestartedFromEvent(
5035                       event_sp.get())) {
5036                 // If we were restarted, we just need to go back up to fetch
5037                 // another event.
5038                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5039                                "restart, so we'll continue waiting.");
5040                 keep_going = true;
5041                 do_resume = false;
5042                 handle_running_event = true;
5043               } else {
5044                 const bool handle_interrupts = true;
5045                 return_value = *HandleStoppedEvent(
5046                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5047                     event_sp, event_to_broadcast_sp, options,
5048                     handle_interrupts);
5049                 if (return_value == eExpressionThreadVanished)
5050                   keep_going = false;
5051               }
5052             } break;
5053 
5054             case lldb::eStateRunning:
5055               // This shouldn't really happen, but sometimes we do get two
5056               // running events without an intervening stop, and in that case
5057               // we should just go back to waiting for the stop.
5058               do_resume = false;
5059               keep_going = true;
5060               handle_running_event = false;
5061               break;
5062 
5063             default:
5064               LLDB_LOGF(log,
5065                         "Process::RunThreadPlan(): execution stopped with "
5066                         "unexpected state: %s.",
5067                         StateAsCString(stop_state));
5068 
5069               if (stop_state == eStateExited)
5070                 event_to_broadcast_sp = event_sp;
5071 
5072               diagnostic_manager.PutString(
5073                   eDiagnosticSeverityError,
5074                   "execution stopped with unexpected state.");
5075               return_value = eExpressionInterrupted;
5076               break;
5077             }
5078           }
5079 
5080           if (keep_going)
5081             continue;
5082           else
5083             break;
5084         } else {
5085           if (log)
5086             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5087                             "the event pointer was null.  How odd...");
5088           return_value = eExpressionInterrupted;
5089           break;
5090         }
5091       } else {
5092         // If we didn't get an event that means we've timed out... We will
5093         // interrupt the process here.  Depending on what we were asked to do
5094         // we will either exit, or try with all threads running for the same
5095         // timeout.
5096 
5097         if (log) {
5098           if (options.GetTryAllThreads()) {
5099             if (before_first_timeout) {
5100               LLDB_LOG(log,
5101                        "Running function with one thread timeout timed out.");
5102             } else
5103               LLDB_LOG(log, "Restarting function with all threads enabled and "
5104                             "timeout: {0} timed out, abandoning execution.",
5105                        timeout);
5106           } else
5107             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5108                           "abandoning execution.",
5109                      timeout);
5110         }
5111 
5112         // It is possible that between the time we issued the Halt, and we get
5113         // around to calling Halt the target could have stopped.  That's fine,
5114         // Halt will figure that out and send the appropriate Stopped event.
5115         // BUT it is also possible that we stopped & restarted (e.g. hit a
5116         // signal with "stop" set to false.)  In
5117         // that case, we'll get the stopped & restarted event, and we should go
5118         // back to waiting for the Halt's stopped event.  That's what this
5119         // while loop does.
5120 
5121         bool back_to_top = true;
5122         uint32_t try_halt_again = 0;
5123         bool do_halt = true;
5124         const uint32_t num_retries = 5;
5125         while (try_halt_again < num_retries) {
5126           Status halt_error;
5127           if (do_halt) {
5128             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5129             const bool clear_thread_plans = false;
5130             const bool use_run_lock = false;
5131             Halt(clear_thread_plans, use_run_lock);
5132           }
5133           if (halt_error.Success()) {
5134             if (log)
5135               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5136 
5137             got_event =
5138                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5139 
5140             if (got_event) {
5141               stop_state =
5142                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5143               if (log) {
5144                 LLDB_LOGF(log,
5145                           "Process::RunThreadPlan(): Stopped with event: %s",
5146                           StateAsCString(stop_state));
5147                 if (stop_state == lldb::eStateStopped &&
5148                     Process::ProcessEventData::GetInterruptedFromEvent(
5149                         event_sp.get()))
5150                   log->PutCString("    Event was the Halt interruption event.");
5151               }
5152 
5153               if (stop_state == lldb::eStateStopped) {
5154                 if (Process::ProcessEventData::GetRestartedFromEvent(
5155                         event_sp.get())) {
5156                   if (log)
5157                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5158                                     "but got a restarted event, there must be "
5159                                     "an un-restarted stopped event so try "
5160                                     "again...  "
5161                                     "Exiting wait loop.");
5162                   try_halt_again++;
5163                   do_halt = false;
5164                   continue;
5165                 }
5166 
5167                 // Between the time we initiated the Halt and the time we
5168                 // delivered it, the process could have already finished its
5169                 // job.  Check that here:
5170                 const bool handle_interrupts = false;
5171                 if (auto result = HandleStoppedEvent(
5172                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5173                         event_sp, event_to_broadcast_sp, options,
5174                         handle_interrupts)) {
5175                   return_value = *result;
5176                   back_to_top = false;
5177                   break;
5178                 }
5179 
5180                 if (!options.GetTryAllThreads()) {
5181                   if (log)
5182                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5183                                     "was false, we stopped so now we're "
5184                                     "quitting.");
5185                   return_value = eExpressionInterrupted;
5186                   back_to_top = false;
5187                   break;
5188                 }
5189 
5190                 if (before_first_timeout) {
5191                   // Set all the other threads to run, and return to the top of
5192                   // the loop, which will continue;
5193                   before_first_timeout = false;
5194                   thread_plan_sp->SetStopOthers(false);
5195                   if (log)
5196                     log->PutCString(
5197                         "Process::RunThreadPlan(): about to resume.");
5198 
5199                   back_to_top = true;
5200                   break;
5201                 } else {
5202                   // Running all threads failed, so return Interrupted.
5203                   if (log)
5204                     log->PutCString("Process::RunThreadPlan(): running all "
5205                                     "threads timed out.");
5206                   return_value = eExpressionInterrupted;
5207                   back_to_top = false;
5208                   break;
5209                 }
5210               }
5211             } else {
5212               if (log)
5213                 log->PutCString("Process::RunThreadPlan(): halt said it "
5214                                 "succeeded, but I got no event.  "
5215                                 "I'm getting out of here passing Interrupted.");
5216               return_value = eExpressionInterrupted;
5217               back_to_top = false;
5218               break;
5219             }
5220           } else {
5221             try_halt_again++;
5222             continue;
5223           }
5224         }
5225 
5226         if (!back_to_top || try_halt_again > num_retries)
5227           break;
5228         else
5229           continue;
5230       }
5231     } // END WAIT LOOP
5232 
5233     // If we had to start up a temporary private state thread to run this
5234     // thread plan, shut it down now.
5235     if (backup_private_state_thread.IsJoinable()) {
5236       StopPrivateStateThread();
5237       Status error;
5238       m_private_state_thread = backup_private_state_thread;
5239       if (stopper_base_plan_sp) {
5240         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5241       }
5242       if (old_state != eStateInvalid)
5243         m_public_state.SetValueNoLock(old_state);
5244     }
5245 
5246     // If our thread went away on us, we need to get out of here without
5247     // doing any more work.  We don't have to clean up the thread plan, that
5248     // will have happened when the Thread was destroyed.
5249     if (return_value == eExpressionThreadVanished) {
5250       return return_value;
5251     }
5252 
5253     if (return_value != eExpressionCompleted && log) {
5254       // Print a backtrace into the log so we can figure out where we are:
5255       StreamString s;
5256       s.PutCString("Thread state after unsuccessful completion: \n");
5257       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5258       log->PutString(s.GetString());
5259     }
5260     // Restore the thread state if we are going to discard the plan execution.
5261     // There are three cases where this could happen: 1) The execution
5262     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5263     // was true 3) We got some other error, and discard_on_error was true
5264     bool should_unwind = (return_value == eExpressionInterrupted &&
5265                           options.DoesUnwindOnError()) ||
5266                          (return_value == eExpressionHitBreakpoint &&
5267                           options.DoesIgnoreBreakpoints());
5268 
5269     if (return_value == eExpressionCompleted || should_unwind) {
5270       thread_plan_sp->RestoreThreadState();
5271     }
5272 
5273     // Now do some processing on the results of the run:
5274     if (return_value == eExpressionInterrupted ||
5275         return_value == eExpressionHitBreakpoint) {
5276       if (log) {
5277         StreamString s;
5278         if (event_sp)
5279           event_sp->Dump(&s);
5280         else {
5281           log->PutCString("Process::RunThreadPlan(): Stop event that "
5282                           "interrupted us is NULL.");
5283         }
5284 
5285         StreamString ts;
5286 
5287         const char *event_explanation = nullptr;
5288 
5289         do {
5290           if (!event_sp) {
5291             event_explanation = "<no event>";
5292             break;
5293           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5294             event_explanation = "<user interrupt>";
5295             break;
5296           } else {
5297             const Process::ProcessEventData *event_data =
5298                 Process::ProcessEventData::GetEventDataFromEvent(
5299                     event_sp.get());
5300 
5301             if (!event_data) {
5302               event_explanation = "<no event data>";
5303               break;
5304             }
5305 
5306             Process *process = event_data->GetProcessSP().get();
5307 
5308             if (!process) {
5309               event_explanation = "<no process>";
5310               break;
5311             }
5312 
5313             ThreadList &thread_list = process->GetThreadList();
5314 
5315             uint32_t num_threads = thread_list.GetSize();
5316             uint32_t thread_index;
5317 
5318             ts.Printf("<%u threads> ", num_threads);
5319 
5320             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5321               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5322 
5323               if (!thread) {
5324                 ts.Printf("<?> ");
5325                 continue;
5326               }
5327 
5328               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5329               RegisterContext *register_context =
5330                   thread->GetRegisterContext().get();
5331 
5332               if (register_context)
5333                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5334               else
5335                 ts.Printf("[ip unknown] ");
5336 
5337               // Show the private stop info here, the public stop info will be
5338               // from the last natural stop.
5339               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5340               if (stop_info_sp) {
5341                 const char *stop_desc = stop_info_sp->GetDescription();
5342                 if (stop_desc)
5343                   ts.PutCString(stop_desc);
5344               }
5345               ts.Printf(">");
5346             }
5347 
5348             event_explanation = ts.GetData();
5349           }
5350         } while (false);
5351 
5352         if (event_explanation)
5353           LLDB_LOGF(log,
5354                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5355                     s.GetData(), event_explanation);
5356         else
5357           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5358                     s.GetData());
5359       }
5360 
5361       if (should_unwind) {
5362         LLDB_LOGF(log,
5363                   "Process::RunThreadPlan: ExecutionInterrupted - "
5364                   "discarding thread plans up to %p.",
5365                   static_cast<void *>(thread_plan_sp.get()));
5366         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5367       } else {
5368         LLDB_LOGF(log,
5369                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5370                   "plan: %p not discarding.",
5371                   static_cast<void *>(thread_plan_sp.get()));
5372       }
5373     } else if (return_value == eExpressionSetupError) {
5374       if (log)
5375         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5376 
5377       if (options.DoesUnwindOnError()) {
5378         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5379       }
5380     } else {
5381       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5382         if (log)
5383           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5384         return_value = eExpressionCompleted;
5385       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5386         if (log)
5387           log->PutCString(
5388               "Process::RunThreadPlan(): thread plan was discarded");
5389         return_value = eExpressionDiscarded;
5390       } else {
5391         if (log)
5392           log->PutCString(
5393               "Process::RunThreadPlan(): thread plan stopped in mid course");
5394         if (options.DoesUnwindOnError() && thread_plan_sp) {
5395           if (log)
5396             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5397                             "'cause unwind_on_error is set.");
5398           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5399         }
5400       }
5401     }
5402 
5403     // Thread we ran the function in may have gone away because we ran the
5404     // target Check that it's still there, and if it is put it back in the
5405     // context. Also restore the frame in the context if it is still present.
5406     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5407     if (thread) {
5408       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5409     }
5410 
5411     // Also restore the current process'es selected frame & thread, since this
5412     // function calling may be done behind the user's back.
5413 
5414     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5415       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5416           selected_stack_id.IsValid()) {
5417         // We were able to restore the selected thread, now restore the frame:
5418         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5419         StackFrameSP old_frame_sp =
5420             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5421                 selected_stack_id);
5422         if (old_frame_sp)
5423           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5424               old_frame_sp.get());
5425       }
5426     }
5427   }
5428 
5429   // If the process exited during the run of the thread plan, notify everyone.
5430 
5431   if (event_to_broadcast_sp) {
5432     if (log)
5433       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5434     BroadcastEvent(event_to_broadcast_sp);
5435   }
5436 
5437   return return_value;
5438 }
5439 
5440 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5441   const char *result_name = "<unknown>";
5442 
5443   switch (result) {
5444   case eExpressionCompleted:
5445     result_name = "eExpressionCompleted";
5446     break;
5447   case eExpressionDiscarded:
5448     result_name = "eExpressionDiscarded";
5449     break;
5450   case eExpressionInterrupted:
5451     result_name = "eExpressionInterrupted";
5452     break;
5453   case eExpressionHitBreakpoint:
5454     result_name = "eExpressionHitBreakpoint";
5455     break;
5456   case eExpressionSetupError:
5457     result_name = "eExpressionSetupError";
5458     break;
5459   case eExpressionParseError:
5460     result_name = "eExpressionParseError";
5461     break;
5462   case eExpressionResultUnavailable:
5463     result_name = "eExpressionResultUnavailable";
5464     break;
5465   case eExpressionTimedOut:
5466     result_name = "eExpressionTimedOut";
5467     break;
5468   case eExpressionStoppedForDebug:
5469     result_name = "eExpressionStoppedForDebug";
5470     break;
5471   case eExpressionThreadVanished:
5472     result_name = "eExpressionThreadVanished";
5473   }
5474   return result_name;
5475 }
5476 
5477 void Process::GetStatus(Stream &strm) {
5478   const StateType state = GetState();
5479   if (StateIsStoppedState(state, false)) {
5480     if (state == eStateExited) {
5481       int exit_status = GetExitStatus();
5482       const char *exit_description = GetExitDescription();
5483       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5484                   GetID(), exit_status, exit_status,
5485                   exit_description ? exit_description : "");
5486     } else {
5487       if (state == eStateConnected)
5488         strm.Printf("Connected to remote target.\n");
5489       else
5490         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5491     }
5492   } else {
5493     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5494   }
5495 }
5496 
5497 size_t Process::GetThreadStatus(Stream &strm,
5498                                 bool only_threads_with_stop_reason,
5499                                 uint32_t start_frame, uint32_t num_frames,
5500                                 uint32_t num_frames_with_source,
5501                                 bool stop_format) {
5502   size_t num_thread_infos_dumped = 0;
5503 
5504   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5505   // very well might run code (e.g. if we need it to get return values or
5506   // arguments.)  For that to work the process has to be able to acquire it.
5507   // So instead copy the thread ID's, and look them up one by one:
5508 
5509   uint32_t num_threads;
5510   std::vector<lldb::tid_t> thread_id_array;
5511   // Scope for thread list locker;
5512   {
5513     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5514     ThreadList &curr_thread_list = GetThreadList();
5515     num_threads = curr_thread_list.GetSize();
5516     uint32_t idx;
5517     thread_id_array.resize(num_threads);
5518     for (idx = 0; idx < num_threads; ++idx)
5519       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5520   }
5521 
5522   for (uint32_t i = 0; i < num_threads; i++) {
5523     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5524     if (thread_sp) {
5525       if (only_threads_with_stop_reason) {
5526         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5527         if (!stop_info_sp || !stop_info_sp->IsValid())
5528           continue;
5529       }
5530       thread_sp->GetStatus(strm, start_frame, num_frames,
5531                            num_frames_with_source,
5532                            stop_format);
5533       ++num_thread_infos_dumped;
5534     } else {
5535       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5536       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5537                      " vanished while running Thread::GetStatus.");
5538     }
5539   }
5540   return num_thread_infos_dumped;
5541 }
5542 
5543 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5544   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5545 }
5546 
5547 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5548   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5549                                            region.GetByteSize());
5550 }
5551 
5552 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5553                                  void *baton) {
5554   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5555 }
5556 
5557 bool Process::RunPreResumeActions() {
5558   bool result = true;
5559   while (!m_pre_resume_actions.empty()) {
5560     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5561     m_pre_resume_actions.pop_back();
5562     bool this_result = action.callback(action.baton);
5563     if (result)
5564       result = this_result;
5565   }
5566   return result;
5567 }
5568 
5569 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5570 
5571 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5572 {
5573     PreResumeCallbackAndBaton element(callback, baton);
5574     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5575     if (found_iter != m_pre_resume_actions.end())
5576     {
5577         m_pre_resume_actions.erase(found_iter);
5578     }
5579 }
5580 
5581 ProcessRunLock &Process::GetRunLock() {
5582   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5583     return m_private_run_lock;
5584   else
5585     return m_public_run_lock;
5586 }
5587 
5588 bool Process::CurrentThreadIsPrivateStateThread()
5589 {
5590   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5591 }
5592 
5593 
5594 void Process::Flush() {
5595   m_thread_list.Flush();
5596   m_extended_thread_list.Flush();
5597   m_extended_thread_stop_id = 0;
5598   m_queue_list.Clear();
5599   m_queue_list_stop_id = 0;
5600 }
5601 
5602 lldb::addr_t Process::GetCodeAddressMask() {
5603   if (m_code_address_mask == 0) {
5604     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5605       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5606       SetCodeAddressMask(address_mask);
5607     }
5608   }
5609   return m_code_address_mask;
5610 }
5611 
5612 lldb::addr_t Process::GetDataAddressMask() {
5613   if (m_data_address_mask == 0) {
5614     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5615       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5616       SetDataAddressMask(address_mask);
5617     }
5618   }
5619   return m_data_address_mask;
5620 }
5621 
5622 void Process::DidExec() {
5623   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
5624   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5625 
5626   Target &target = GetTarget();
5627   target.CleanupProcess();
5628   target.ClearModules(false);
5629   m_dynamic_checkers_up.reset();
5630   m_abi_sp.reset();
5631   m_system_runtime_up.reset();
5632   m_os_up.reset();
5633   m_dyld_up.reset();
5634   m_jit_loaders_up.reset();
5635   m_image_tokens.clear();
5636   m_allocated_memory_cache.Clear();
5637   {
5638     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5639     m_language_runtimes.clear();
5640   }
5641   m_instrumentation_runtimes.clear();
5642   m_thread_list.DiscardThreadPlans();
5643   m_memory_cache.Clear(true);
5644   DoDidExec();
5645   CompleteAttach();
5646   // Flush the process (threads and all stack frames) after running
5647   // CompleteAttach() in case the dynamic loader loaded things in new
5648   // locations.
5649   Flush();
5650 
5651   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5652   // let the target know so it can do any cleanup it needs to.
5653   target.DidExec();
5654 }
5655 
5656 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5657   if (address == nullptr) {
5658     error.SetErrorString("Invalid address argument");
5659     return LLDB_INVALID_ADDRESS;
5660   }
5661 
5662   addr_t function_addr = LLDB_INVALID_ADDRESS;
5663 
5664   addr_t addr = address->GetLoadAddress(&GetTarget());
5665   std::map<addr_t, addr_t>::const_iterator iter =
5666       m_resolved_indirect_addresses.find(addr);
5667   if (iter != m_resolved_indirect_addresses.end()) {
5668     function_addr = (*iter).second;
5669   } else {
5670     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5671       Symbol *symbol = address->CalculateSymbolContextSymbol();
5672       error.SetErrorStringWithFormat(
5673           "Unable to call resolver for indirect function %s",
5674           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5675       function_addr = LLDB_INVALID_ADDRESS;
5676     } else {
5677       if (ABISP abi_sp = GetABI())
5678         function_addr = abi_sp->FixCodeAddress(function_addr);
5679       m_resolved_indirect_addresses.insert(
5680           std::pair<addr_t, addr_t>(addr, function_addr));
5681     }
5682   }
5683   return function_addr;
5684 }
5685 
5686 void Process::ModulesDidLoad(ModuleList &module_list) {
5687   // Inform the system runtime of the modified modules.
5688   SystemRuntime *sys_runtime = GetSystemRuntime();
5689   if (sys_runtime)
5690     sys_runtime->ModulesDidLoad(module_list);
5691 
5692   GetJITLoaders().ModulesDidLoad(module_list);
5693 
5694   // Give the instrumentation runtimes a chance to be created before informing
5695   // them of the modified modules.
5696   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5697                                          m_instrumentation_runtimes);
5698   for (auto &runtime : m_instrumentation_runtimes)
5699     runtime.second->ModulesDidLoad(module_list);
5700 
5701   // Give the language runtimes a chance to be created before informing them of
5702   // the modified modules.
5703   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5704     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5705       runtime->ModulesDidLoad(module_list);
5706   }
5707 
5708   // If we don't have an operating system plug-in, try to load one since
5709   // loading shared libraries might cause a new one to try and load
5710   if (!m_os_up)
5711     LoadOperatingSystemPlugin(false);
5712 
5713   // Inform the structured-data plugins of the modified modules.
5714   for (auto pair : m_structured_data_plugin_map) {
5715     if (pair.second)
5716       pair.second->ModulesDidLoad(*this, module_list);
5717   }
5718 }
5719 
5720 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key,
5721                            const char *fmt, ...) {
5722   bool print_warning = true;
5723 
5724   StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream();
5725   if (!stream_sp)
5726     return;
5727 
5728   if (repeat_key != nullptr) {
5729     WarningsCollection::iterator it = m_warnings_issued.find(warning_type);
5730     if (it == m_warnings_issued.end()) {
5731       m_warnings_issued[warning_type] = WarningsPointerSet();
5732       m_warnings_issued[warning_type].insert(repeat_key);
5733     } else {
5734       if (it->second.find(repeat_key) != it->second.end()) {
5735         print_warning = false;
5736       } else {
5737         it->second.insert(repeat_key);
5738       }
5739     }
5740   }
5741 
5742   if (print_warning) {
5743     va_list args;
5744     va_start(args, fmt);
5745     stream_sp->PrintfVarArg(fmt, args);
5746     va_end(args);
5747   }
5748 }
5749 
5750 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5751   if (!GetWarningsOptimization())
5752     return;
5753   if (!sc.module_sp)
5754     return;
5755   if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function &&
5756       sc.function->GetIsOptimized()) {
5757     PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(),
5758                  "%s was compiled with optimization - stepping may behave "
5759                  "oddly; variables may not be available.\n",
5760                  sc.module_sp->GetFileSpec().GetFilename().GetCString());
5761   }
5762 }
5763 
5764 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5765   if (!GetWarningsUnsupportedLanguage())
5766     return;
5767   if (!sc.module_sp)
5768     return;
5769   LanguageType language = sc.GetLanguage();
5770   if (language == eLanguageTypeUnknown)
5771     return;
5772   LanguageSet plugins =
5773       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5774   if (!plugins[language]) {
5775     PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage,
5776                  sc.module_sp.get(),
5777                  "This version of LLDB has no plugin for the language \"%s\". "
5778                  "Inspection of frame variables will be limited.\n",
5779                  Language::GetNameForLanguageType(language));
5780   }
5781 }
5782 
5783 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5784   info.Clear();
5785 
5786   PlatformSP platform_sp = GetTarget().GetPlatform();
5787   if (!platform_sp)
5788     return false;
5789 
5790   return platform_sp->GetProcessInfo(GetID(), info);
5791 }
5792 
5793 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5794   ThreadCollectionSP threads;
5795 
5796   const MemoryHistorySP &memory_history =
5797       MemoryHistory::FindPlugin(shared_from_this());
5798 
5799   if (!memory_history) {
5800     return threads;
5801   }
5802 
5803   threads = std::make_shared<ThreadCollection>(
5804       memory_history->GetHistoryThreads(addr));
5805 
5806   return threads;
5807 }
5808 
5809 InstrumentationRuntimeSP
5810 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5811   InstrumentationRuntimeCollection::iterator pos;
5812   pos = m_instrumentation_runtimes.find(type);
5813   if (pos == m_instrumentation_runtimes.end()) {
5814     return InstrumentationRuntimeSP();
5815   } else
5816     return (*pos).second;
5817 }
5818 
5819 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5820                             const ArchSpec &arch, ModuleSpec &module_spec) {
5821   module_spec.Clear();
5822   return false;
5823 }
5824 
5825 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5826   m_image_tokens.push_back(image_ptr);
5827   return m_image_tokens.size() - 1;
5828 }
5829 
5830 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5831   if (token < m_image_tokens.size())
5832     return m_image_tokens[token];
5833   return LLDB_INVALID_ADDRESS;
5834 }
5835 
5836 void Process::ResetImageToken(size_t token) {
5837   if (token < m_image_tokens.size())
5838     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5839 }
5840 
5841 Address
5842 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5843                                                AddressRange range_bounds) {
5844   Target &target = GetTarget();
5845   DisassemblerSP disassembler_sp;
5846   InstructionList *insn_list = nullptr;
5847 
5848   Address retval = default_stop_addr;
5849 
5850   if (!target.GetUseFastStepping())
5851     return retval;
5852   if (!default_stop_addr.IsValid())
5853     return retval;
5854 
5855   const char *plugin_name = nullptr;
5856   const char *flavor = nullptr;
5857   disassembler_sp = Disassembler::DisassembleRange(
5858       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5859   if (disassembler_sp)
5860     insn_list = &disassembler_sp->GetInstructionList();
5861 
5862   if (insn_list == nullptr) {
5863     return retval;
5864   }
5865 
5866   size_t insn_offset =
5867       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5868   if (insn_offset == UINT32_MAX) {
5869     return retval;
5870   }
5871 
5872   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5873       insn_offset, false /* ignore_calls*/, nullptr);
5874   if (branch_index == UINT32_MAX) {
5875     return retval;
5876   }
5877 
5878   if (branch_index > insn_offset) {
5879     Address next_branch_insn_address =
5880         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5881     if (next_branch_insn_address.IsValid() &&
5882         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5883       retval = next_branch_insn_address;
5884     }
5885   }
5886 
5887   return retval;
5888 }
5889 
5890 Status
5891 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5892 
5893   Status error;
5894 
5895   lldb::addr_t range_end = 0;
5896 
5897   region_list.clear();
5898   do {
5899     lldb_private::MemoryRegionInfo region_info;
5900     error = GetMemoryRegionInfo(range_end, region_info);
5901     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5902     if (error.Fail()) {
5903       region_list.clear();
5904       break;
5905     }
5906 
5907     range_end = region_info.GetRange().GetRangeEnd();
5908     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5909       region_list.push_back(std::move(region_info));
5910     }
5911   } while (range_end != LLDB_INVALID_ADDRESS);
5912 
5913   return error;
5914 }
5915 
5916 Status
5917 Process::ConfigureStructuredData(ConstString type_name,
5918                                  const StructuredData::ObjectSP &config_sp) {
5919   // If you get this, the Process-derived class needs to implement a method to
5920   // enable an already-reported asynchronous structured data feature. See
5921   // ProcessGDBRemote for an example implementation over gdb-remote.
5922   return Status("unimplemented");
5923 }
5924 
5925 void Process::MapSupportedStructuredDataPlugins(
5926     const StructuredData::Array &supported_type_names) {
5927   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5928 
5929   // Bail out early if there are no type names to map.
5930   if (supported_type_names.GetSize() == 0) {
5931     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5932               __FUNCTION__);
5933     return;
5934   }
5935 
5936   // Convert StructuredData type names to ConstString instances.
5937   std::set<ConstString> const_type_names;
5938 
5939   LLDB_LOGF(log,
5940             "Process::%s(): the process supports the following async "
5941             "structured data types:",
5942             __FUNCTION__);
5943 
5944   supported_type_names.ForEach(
5945       [&const_type_names, &log](StructuredData::Object *object) {
5946         if (!object) {
5947           // Invalid - shouldn't be null objects in the array.
5948           return false;
5949         }
5950 
5951         auto type_name = object->GetAsString();
5952         if (!type_name) {
5953           // Invalid format - all type names should be strings.
5954           return false;
5955         }
5956 
5957         const_type_names.insert(ConstString(type_name->GetValue()));
5958         LLDB_LOG(log, "- {0}", type_name->GetValue());
5959         return true;
5960       });
5961 
5962   // For each StructuredDataPlugin, if the plugin handles any of the types in
5963   // the supported_type_names, map that type name to that plugin. Stop when
5964   // we've consumed all the type names.
5965   // FIXME: should we return an error if there are type names nobody
5966   // supports?
5967   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5968     auto create_instance =
5969            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5970                plugin_index);
5971     if (!create_instance)
5972       break;
5973 
5974     // Create the plugin.
5975     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5976     if (!plugin_sp) {
5977       // This plugin doesn't think it can work with the process. Move on to the
5978       // next.
5979       continue;
5980     }
5981 
5982     // For any of the remaining type names, map any that this plugin supports.
5983     std::vector<ConstString> names_to_remove;
5984     for (auto &type_name : const_type_names) {
5985       if (plugin_sp->SupportsStructuredDataType(type_name)) {
5986         m_structured_data_plugin_map.insert(
5987             std::make_pair(type_name, plugin_sp));
5988         names_to_remove.push_back(type_name);
5989         LLDB_LOGF(log,
5990                   "Process::%s(): using plugin %s for type name "
5991                   "%s",
5992                   __FUNCTION__, plugin_sp->GetPluginName().GetCString(),
5993                   type_name.GetCString());
5994       }
5995     }
5996 
5997     // Remove the type names that were consumed by this plugin.
5998     for (auto &type_name : names_to_remove)
5999       const_type_names.erase(type_name);
6000   }
6001 }
6002 
6003 bool Process::RouteAsyncStructuredData(
6004     const StructuredData::ObjectSP object_sp) {
6005   // Nothing to do if there's no data.
6006   if (!object_sp)
6007     return false;
6008 
6009   // The contract is this must be a dictionary, so we can look up the routing
6010   // key via the top-level 'type' string value within the dictionary.
6011   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
6012   if (!dictionary)
6013     return false;
6014 
6015   // Grab the async structured type name (i.e. the feature/plugin name).
6016   ConstString type_name;
6017   if (!dictionary->GetValueForKeyAsString("type", type_name))
6018     return false;
6019 
6020   // Check if there's a plugin registered for this type name.
6021   auto find_it = m_structured_data_plugin_map.find(type_name);
6022   if (find_it == m_structured_data_plugin_map.end()) {
6023     // We don't have a mapping for this structured data type.
6024     return false;
6025   }
6026 
6027   // Route the structured data to the plugin.
6028   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6029   return true;
6030 }
6031 
6032 Status Process::UpdateAutomaticSignalFiltering() {
6033   // Default implementation does nothign.
6034   // No automatic signal filtering to speak of.
6035   return Status();
6036 }
6037 
6038 UtilityFunction *Process::GetLoadImageUtilityFunction(
6039     Platform *platform,
6040     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6041   if (platform != GetTarget().GetPlatform().get())
6042     return nullptr;
6043   llvm::call_once(m_dlopen_utility_func_flag_once,
6044                   [&] { m_dlopen_utility_func_up = factory(); });
6045   return m_dlopen_utility_func_up.get();
6046 }
6047 
6048 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6049   if (!IsLiveDebugSession())
6050     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6051                                    "Can't trace a non-live process.");
6052   return llvm::make_error<UnimplementedError>();
6053 }
6054 
6055 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6056                                        addr_t &returned_func,
6057                                        bool trap_exceptions) {
6058   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6059   if (thread == nullptr || address == nullptr)
6060     return false;
6061 
6062   EvaluateExpressionOptions options;
6063   options.SetStopOthers(true);
6064   options.SetUnwindOnError(true);
6065   options.SetIgnoreBreakpoints(true);
6066   options.SetTryAllThreads(true);
6067   options.SetDebug(false);
6068   options.SetTimeout(GetUtilityExpressionTimeout());
6069   options.SetTrapExceptions(trap_exceptions);
6070 
6071   auto type_system_or_err =
6072       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6073   if (!type_system_or_err) {
6074     llvm::consumeError(type_system_or_err.takeError());
6075     return false;
6076   }
6077   CompilerType void_ptr_type =
6078       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6079   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6080       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6081   if (call_plan_sp) {
6082     DiagnosticManager diagnostics;
6083 
6084     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6085     if (frame) {
6086       ExecutionContext exe_ctx;
6087       frame->CalculateExecutionContext(exe_ctx);
6088       ExpressionResults result =
6089           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6090       if (result == eExpressionCompleted) {
6091         returned_func =
6092             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6093                 LLDB_INVALID_ADDRESS);
6094 
6095         if (GetAddressByteSize() == 4) {
6096           if (returned_func == UINT32_MAX)
6097             return false;
6098         } else if (GetAddressByteSize() == 8) {
6099           if (returned_func == UINT64_MAX)
6100             return false;
6101         }
6102         return true;
6103       }
6104     }
6105   }
6106 
6107   return false;
6108 }
6109 
6110 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6111   Architecture *arch = GetTarget().GetArchitecturePlugin();
6112   const MemoryTagManager *tag_manager =
6113       arch ? arch->GetMemoryTagManager() : nullptr;
6114   if (!arch || !tag_manager) {
6115     return llvm::createStringError(
6116         llvm::inconvertibleErrorCode(),
6117         "This architecture does not support memory tagging",
6118         GetPluginName().GetCString());
6119   }
6120 
6121   if (!SupportsMemoryTagging()) {
6122     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6123                                    "Process does not support memory tagging");
6124   }
6125 
6126   return tag_manager;
6127 }
6128 
6129 llvm::Expected<std::vector<lldb::addr_t>>
6130 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6131   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6132       GetMemoryTagManager();
6133   if (!tag_manager_or_err)
6134     return tag_manager_or_err.takeError();
6135 
6136   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6137   llvm::Expected<std::vector<uint8_t>> tag_data =
6138       DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6139   if (!tag_data)
6140     return tag_data.takeError();
6141 
6142   return tag_manager->UnpackTagsData(*tag_data,
6143                                      len / tag_manager->GetGranuleSize());
6144 }
6145 
6146 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6147                                 const std::vector<lldb::addr_t> &tags) {
6148   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6149       GetMemoryTagManager();
6150   if (!tag_manager_or_err)
6151     return Status(tag_manager_or_err.takeError());
6152 
6153   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6154   llvm::Expected<std::vector<uint8_t>> packed_tags =
6155       tag_manager->PackTags(tags);
6156   if (!packed_tags) {
6157     return Status(packed_tags.takeError());
6158   }
6159 
6160   return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6161                            *packed_tags);
6162 }
6163