1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
17 #include "lldb/Breakpoint/BreakpointLocation.h"
18 #include "lldb/Breakpoint/StoppointCallbackContext.h"
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Expression/DiagnosticManager.h"
25 #include "lldb/Expression/DynamicCheckerFunctions.h"
26 #include "lldb/Expression/UserExpression.h"
27 #include "lldb/Expression/UtilityFunction.h"
28 #include "lldb/Host/ConnectionFileDescriptor.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Interpreter/CommandInterpreter.h"
37 #include "lldb/Interpreter/OptionArgParser.h"
38 #include "lldb/Interpreter/OptionValueProperties.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
42 #include "lldb/Target/AssertFrameRecognizer.h"
43 #include "lldb/Target/DynamicLoader.h"
44 #include "lldb/Target/InstrumentationRuntime.h"
45 #include "lldb/Target/JITLoader.h"
46 #include "lldb/Target/JITLoaderList.h"
47 #include "lldb/Target/Language.h"
48 #include "lldb/Target/LanguageRuntime.h"
49 #include "lldb/Target/MemoryHistory.h"
50 #include "lldb/Target/MemoryRegionInfo.h"
51 #include "lldb/Target/OperatingSystem.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
54 #include "lldb/Target/RegisterContext.h"
55 #include "lldb/Target/StopInfo.h"
56 #include "lldb/Target/StructuredDataPlugin.h"
57 #include "lldb/Target/SystemRuntime.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
62 #include "lldb/Target/ThreadPlanBase.h"
63 #include "lldb/Target/ThreadPlanCallFunction.h"
64 #include "lldb/Target/ThreadPlanStack.h"
65 #include "lldb/Target/UnixSignals.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/Log.h"
68 #include "lldb/Utility/NameMatches.h"
69 #include "lldb/Utility/ProcessInfo.h"
70 #include "lldb/Utility/SelectHelper.h"
71 #include "lldb/Utility/State.h"
72 #include "lldb/Utility/Timer.h"
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace std::chrono;
77 
78 // Comment out line below to disable memory caching, overriding the process
79 // setting target.process.disable-memory-cache
80 #define ENABLE_MEMORY_CACHING
81 
82 #ifdef ENABLE_MEMORY_CACHING
83 #define DISABLE_MEM_CACHE_DEFAULT false
84 #else
85 #define DISABLE_MEM_CACHE_DEFAULT true
86 #endif
87 
88 class ProcessOptionValueProperties
89     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
90 public:
91   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
92 
93   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
94                                      bool will_modify,
95                                      uint32_t idx) const override {
96     // When getting the value for a key from the process options, we will
97     // always try and grab the setting from the current process if there is
98     // one. Else we just use the one from this instance.
99     if (exe_ctx) {
100       Process *process = exe_ctx->GetProcessPtr();
101       if (process) {
102         ProcessOptionValueProperties *instance_properties =
103             static_cast<ProcessOptionValueProperties *>(
104                 process->GetValueProperties().get());
105         if (this != instance_properties)
106           return instance_properties->ProtectedGetPropertyAtIndex(idx);
107       }
108     }
109     return ProtectedGetPropertyAtIndex(idx);
110   }
111 };
112 
113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
114     {
115         eFollowParent,
116         "parent",
117         "Continue tracing the parent process and detach the child.",
118     },
119     {
120         eFollowChild,
121         "child",
122         "Trace the child process and detach the parent.",
123     },
124 };
125 
126 #define LLDB_PROPERTIES_process
127 #include "TargetProperties.inc"
128 
129 enum {
130 #define LLDB_PROPERTIES_process
131 #include "TargetPropertiesEnum.inc"
132   ePropertyExperimental,
133 };
134 
135 #define LLDB_PROPERTIES_process_experimental
136 #include "TargetProperties.inc"
137 
138 enum {
139 #define LLDB_PROPERTIES_process_experimental
140 #include "TargetPropertiesEnum.inc"
141 };
142 
143 class ProcessExperimentalOptionValueProperties
144     : public Cloneable<ProcessExperimentalOptionValueProperties,
145                        OptionValueProperties> {
146 public:
147   ProcessExperimentalOptionValueProperties()
148       : Cloneable(
149             ConstString(Properties::GetExperimentalSettingsName())) {}
150 };
151 
152 ProcessExperimentalProperties::ProcessExperimentalProperties()
153     : Properties(OptionValuePropertiesSP(
154           new ProcessExperimentalOptionValueProperties())) {
155   m_collection_sp->Initialize(g_process_experimental_properties);
156 }
157 
158 ProcessProperties::ProcessProperties(lldb_private::Process *process)
159     : Properties(),
160       m_process(process) // Can be nullptr for global ProcessProperties
161 {
162   if (process == nullptr) {
163     // Global process properties, set them up one time
164     m_collection_sp =
165         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
166     m_collection_sp->Initialize(g_process_properties);
167     m_collection_sp->AppendProperty(
168         ConstString("thread"), ConstString("Settings specific to threads."),
169         true, Thread::GetGlobalProperties().GetValueProperties());
170   } else {
171     m_collection_sp =
172         OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
173     m_collection_sp->SetValueChangedCallback(
174         ePropertyPythonOSPluginPath,
175         [this] { m_process->LoadOperatingSystemPlugin(true); });
176   }
177 
178   m_experimental_properties_up =
179       std::make_unique<ProcessExperimentalProperties>();
180   m_collection_sp->AppendProperty(
181       ConstString(Properties::GetExperimentalSettingsName()),
182       ConstString("Experimental settings - setting these won't produce "
183                   "errors if the setting is not present."),
184       true, m_experimental_properties_up->GetValueProperties());
185 }
186 
187 ProcessProperties::~ProcessProperties() = default;
188 
189 bool ProcessProperties::GetDisableMemoryCache() const {
190   const uint32_t idx = ePropertyDisableMemCache;
191   return m_collection_sp->GetPropertyAtIndexAsBoolean(
192       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
193 }
194 
195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
196   const uint32_t idx = ePropertyMemCacheLineSize;
197   return m_collection_sp->GetPropertyAtIndexAsUInt64(
198       nullptr, idx, g_process_properties[idx].default_uint_value);
199 }
200 
201 Args ProcessProperties::GetExtraStartupCommands() const {
202   Args args;
203   const uint32_t idx = ePropertyExtraStartCommand;
204   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
205   return args;
206 }
207 
208 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
209   const uint32_t idx = ePropertyExtraStartCommand;
210   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
211 }
212 
213 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
214   const uint32_t idx = ePropertyPythonOSPluginPath;
215   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
216 }
217 
218 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
219   const uint32_t idx = ePropertyVirtualAddressableBits;
220   return m_collection_sp->GetPropertyAtIndexAsUInt64(
221       nullptr, idx, g_process_properties[idx].default_uint_value);
222 }
223 
224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
225   const uint32_t idx = ePropertyVirtualAddressableBits;
226   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
227 }
228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
229   const uint32_t idx = ePropertyPythonOSPluginPath;
230   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
231 }
232 
233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
234   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
235   return m_collection_sp->GetPropertyAtIndexAsBoolean(
236       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
237 }
238 
239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
240   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
241   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
242 }
243 
244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
245   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
246   return m_collection_sp->GetPropertyAtIndexAsBoolean(
247       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
248 }
249 
250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
251   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
252   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
253 }
254 
255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
256   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
257   return m_collection_sp->GetPropertyAtIndexAsBoolean(
258       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
259 }
260 
261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
262   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
263   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
264 }
265 
266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
267   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
268   return m_collection_sp->GetPropertyAtIndexAsBoolean(
269       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
270 }
271 
272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
273   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
274   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
275   m_process->Flush();
276 }
277 
278 bool ProcessProperties::GetDetachKeepsStopped() const {
279   const uint32_t idx = ePropertyDetachKeepsStopped;
280   return m_collection_sp->GetPropertyAtIndexAsBoolean(
281       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
282 }
283 
284 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
285   const uint32_t idx = ePropertyDetachKeepsStopped;
286   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
287 }
288 
289 bool ProcessProperties::GetWarningsOptimization() const {
290   const uint32_t idx = ePropertyWarningOptimization;
291   return m_collection_sp->GetPropertyAtIndexAsBoolean(
292       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
293 }
294 
295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
296   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
297   return m_collection_sp->GetPropertyAtIndexAsBoolean(
298       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
299 }
300 
301 bool ProcessProperties::GetStopOnExec() const {
302   const uint32_t idx = ePropertyStopOnExec;
303   return m_collection_sp->GetPropertyAtIndexAsBoolean(
304       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
305 }
306 
307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
308   const uint32_t idx = ePropertyUtilityExpressionTimeout;
309   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
310       nullptr, idx, g_process_properties[idx].default_uint_value);
311   return std::chrono::seconds(value);
312 }
313 
314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
315   const uint32_t idx = ePropertyInterruptTimeout;
316   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
317       nullptr, idx, g_process_properties[idx].default_uint_value);
318   return std::chrono::seconds(value);
319 }
320 
321 bool ProcessProperties::GetSteppingRunsAllThreads() const {
322   const uint32_t idx = ePropertySteppingRunsAllThreads;
323   return m_collection_sp->GetPropertyAtIndexAsBoolean(
324       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
325 }
326 
327 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
328   const bool fail_value = true;
329   const Property *exp_property =
330       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
331   OptionValueProperties *exp_values =
332       exp_property->GetValue()->GetAsProperties();
333   if (!exp_values)
334     return fail_value;
335 
336   return exp_values->GetPropertyAtIndexAsBoolean(
337       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
338 }
339 
340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
341   const Property *exp_property =
342       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
343   OptionValueProperties *exp_values =
344       exp_property->GetValue()->GetAsProperties();
345   if (exp_values)
346     exp_values->SetPropertyAtIndexAsBoolean(
347         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
348 }
349 
350 FollowForkMode ProcessProperties::GetFollowForkMode() const {
351   const uint32_t idx = ePropertyFollowForkMode;
352   return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration(
353       nullptr, idx, g_process_properties[idx].default_uint_value);
354 }
355 
356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
357                               llvm::StringRef plugin_name,
358                               ListenerSP listener_sp,
359                               const FileSpec *crash_file_path,
360                               bool can_connect) {
361   static uint32_t g_process_unique_id = 0;
362 
363   ProcessSP process_sp;
364   ProcessCreateInstance create_callback = nullptr;
365   if (!plugin_name.empty()) {
366     create_callback =
367         PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
368     if (create_callback) {
369       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
370                                    can_connect);
371       if (process_sp) {
372         if (process_sp->CanDebug(target_sp, true)) {
373           process_sp->m_process_unique_id = ++g_process_unique_id;
374         } else
375           process_sp.reset();
376       }
377     }
378   } else {
379     for (uint32_t idx = 0;
380          (create_callback =
381               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
382          ++idx) {
383       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
384                                    can_connect);
385       if (process_sp) {
386         if (process_sp->CanDebug(target_sp, false)) {
387           process_sp->m_process_unique_id = ++g_process_unique_id;
388           break;
389         } else
390           process_sp.reset();
391       }
392     }
393   }
394   return process_sp;
395 }
396 
397 ConstString &Process::GetStaticBroadcasterClass() {
398   static ConstString class_name("lldb.process");
399   return class_name;
400 }
401 
402 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
403     : Process(target_sp, listener_sp,
404               UnixSignals::Create(HostInfo::GetArchitecture())) {
405   // This constructor just delegates to the full Process constructor,
406   // defaulting to using the Host's UnixSignals.
407 }
408 
409 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
410                  const UnixSignalsSP &unix_signals_sp)
411     : ProcessProperties(this),
412       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
413                   Process::GetStaticBroadcasterClass().AsCString()),
414       m_target_wp(target_sp), m_public_state(eStateUnloaded),
415       m_private_state(eStateUnloaded),
416       m_private_state_broadcaster(nullptr,
417                                   "lldb.process.internal_state_broadcaster"),
418       m_private_state_control_broadcaster(
419           nullptr, "lldb.process.internal_state_control_broadcaster"),
420       m_private_state_listener_sp(
421           Listener::MakeListener("lldb.process.internal_state_listener")),
422       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
423       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
424       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
425       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
426       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
427       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
428       m_breakpoint_site_list(), m_dynamic_checkers_up(),
429       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
430       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
431       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
432       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
433       m_memory_cache(*this), m_allocated_memory_cache(*this),
434       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
435       m_private_run_lock(), m_finalizing(false),
436       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
437       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
438       m_can_interpret_function_calls(false), m_warnings_issued(),
439       m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
440   CheckInWithManager();
441 
442   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
443   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
444 
445   if (!m_unix_signals_sp)
446     m_unix_signals_sp = std::make_shared<UnixSignals>();
447 
448   SetEventName(eBroadcastBitStateChanged, "state-changed");
449   SetEventName(eBroadcastBitInterrupt, "interrupt");
450   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
451   SetEventName(eBroadcastBitSTDERR, "stderr-available");
452   SetEventName(eBroadcastBitProfileData, "profile-data-available");
453   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
454 
455   m_private_state_control_broadcaster.SetEventName(
456       eBroadcastInternalStateControlStop, "control-stop");
457   m_private_state_control_broadcaster.SetEventName(
458       eBroadcastInternalStateControlPause, "control-pause");
459   m_private_state_control_broadcaster.SetEventName(
460       eBroadcastInternalStateControlResume, "control-resume");
461 
462   m_listener_sp->StartListeningForEvents(
463       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
464                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
465                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
466 
467   m_private_state_listener_sp->StartListeningForEvents(
468       &m_private_state_broadcaster,
469       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
470 
471   m_private_state_listener_sp->StartListeningForEvents(
472       &m_private_state_control_broadcaster,
473       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
474           eBroadcastInternalStateControlResume);
475   // We need something valid here, even if just the default UnixSignalsSP.
476   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
477 
478   // Allow the platform to override the default cache line size
479   OptionValueSP value_sp =
480       m_collection_sp
481           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
482           ->GetValue();
483   uint32_t platform_cache_line_size =
484       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
485   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
486     value_sp->SetUInt64Value(platform_cache_line_size);
487 
488   RegisterAssertFrameRecognizer(this);
489 }
490 
491 Process::~Process() {
492   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
493   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
494   StopPrivateStateThread();
495 
496   // ThreadList::Clear() will try to acquire this process's mutex, so
497   // explicitly clear the thread list here to ensure that the mutex is not
498   // destroyed before the thread list.
499   m_thread_list.Clear();
500 }
501 
502 ProcessProperties &Process::GetGlobalProperties() {
503   // NOTE: intentional leak so we don't crash if global destructor chain gets
504   // called as other threads still use the result of this function
505   static ProcessProperties *g_settings_ptr =
506       new ProcessProperties(nullptr);
507   return *g_settings_ptr;
508 }
509 
510 void Process::Finalize() {
511   if (m_finalizing.exchange(true))
512     return;
513 
514   // Destroy the process. This will call the virtual function DoDestroy under
515   // the hood, giving our derived class a chance to do the ncessary tear down.
516   DestroyImpl(false);
517 
518   // Clear our broadcaster before we proceed with destroying
519   Broadcaster::Clear();
520 
521   // Do any cleanup needed prior to being destructed... Subclasses that
522   // override this method should call this superclass method as well.
523 
524   // We need to destroy the loader before the derived Process class gets
525   // destroyed since it is very likely that undoing the loader will require
526   // access to the real process.
527   m_dynamic_checkers_up.reset();
528   m_abi_sp.reset();
529   m_os_up.reset();
530   m_system_runtime_up.reset();
531   m_dyld_up.reset();
532   m_jit_loaders_up.reset();
533   m_thread_plans.Clear();
534   m_thread_list_real.Destroy();
535   m_thread_list.Destroy();
536   m_extended_thread_list.Destroy();
537   m_queue_list.Clear();
538   m_queue_list_stop_id = 0;
539   std::vector<Notifications> empty_notifications;
540   m_notifications.swap(empty_notifications);
541   m_image_tokens.clear();
542   m_memory_cache.Clear();
543   m_allocated_memory_cache.Clear();
544   {
545     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
546     m_language_runtimes.clear();
547   }
548   m_instrumentation_runtimes.clear();
549   m_next_event_action_up.reset();
550   // Clear the last natural stop ID since it has a strong reference to this
551   // process
552   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
553   //#ifdef LLDB_CONFIGURATION_DEBUG
554   //    StreamFile s(stdout, false);
555   //    EventSP event_sp;
556   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
557   //    {
558   //        event_sp->Dump (&s);
559   //        s.EOL();
560   //    }
561   //#endif
562   // We have to be very careful here as the m_private_state_listener might
563   // contain events that have ProcessSP values in them which can keep this
564   // process around forever. These events need to be cleared out.
565   m_private_state_listener_sp->Clear();
566   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
567   m_public_run_lock.SetStopped();
568   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
569   m_private_run_lock.SetStopped();
570   m_structured_data_plugin_map.clear();
571 }
572 
573 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
574   m_notifications.push_back(callbacks);
575   if (callbacks.initialize != nullptr)
576     callbacks.initialize(callbacks.baton, this);
577 }
578 
579 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
580   std::vector<Notifications>::iterator pos, end = m_notifications.end();
581   for (pos = m_notifications.begin(); pos != end; ++pos) {
582     if (pos->baton == callbacks.baton &&
583         pos->initialize == callbacks.initialize &&
584         pos->process_state_changed == callbacks.process_state_changed) {
585       m_notifications.erase(pos);
586       return true;
587     }
588   }
589   return false;
590 }
591 
592 void Process::SynchronouslyNotifyStateChanged(StateType state) {
593   std::vector<Notifications>::iterator notification_pos,
594       notification_end = m_notifications.end();
595   for (notification_pos = m_notifications.begin();
596        notification_pos != notification_end; ++notification_pos) {
597     if (notification_pos->process_state_changed)
598       notification_pos->process_state_changed(notification_pos->baton, this,
599                                               state);
600   }
601 }
602 
603 // FIXME: We need to do some work on events before the general Listener sees
604 // them.
605 // For instance if we are continuing from a breakpoint, we need to ensure that
606 // we do the little "insert real insn, step & stop" trick.  But we can't do
607 // that when the event is delivered by the broadcaster - since that is done on
608 // the thread that is waiting for new events, so if we needed more than one
609 // event for our handling, we would stall.  So instead we do it when we fetch
610 // the event off of the queue.
611 //
612 
613 StateType Process::GetNextEvent(EventSP &event_sp) {
614   StateType state = eStateInvalid;
615 
616   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
617                                             std::chrono::seconds(0)) &&
618       event_sp)
619     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
620 
621   return state;
622 }
623 
624 void Process::SyncIOHandler(uint32_t iohandler_id,
625                             const Timeout<std::micro> &timeout) {
626   // don't sync (potentially context switch) in case where there is no process
627   // IO
628   if (!m_process_input_reader)
629     return;
630 
631   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
632 
633   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
634   if (Result) {
635     LLDB_LOG(
636         log,
637         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
638         iohandler_id, *Result);
639   } else {
640     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
641              iohandler_id);
642   }
643 }
644 
645 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
646                                         EventSP *event_sp_ptr, bool wait_always,
647                                         ListenerSP hijack_listener_sp,
648                                         Stream *stream, bool use_run_lock) {
649   // We can't just wait for a "stopped" event, because the stopped event may
650   // have restarted the target. We have to actually check each event, and in
651   // the case of a stopped event check the restarted flag on the event.
652   if (event_sp_ptr)
653     event_sp_ptr->reset();
654   StateType state = GetState();
655   // If we are exited or detached, we won't ever get back to any other valid
656   // state...
657   if (state == eStateDetached || state == eStateExited)
658     return state;
659 
660   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
661   LLDB_LOG(log, "timeout = {0}", timeout);
662 
663   if (!wait_always && StateIsStoppedState(state, true) &&
664       StateIsStoppedState(GetPrivateState(), true)) {
665     LLDB_LOGF(log,
666               "Process::%s returning without waiting for events; process "
667               "private and public states are already 'stopped'.",
668               __FUNCTION__);
669     // We need to toggle the run lock as this won't get done in
670     // SetPublicState() if the process is hijacked.
671     if (hijack_listener_sp && use_run_lock)
672       m_public_run_lock.SetStopped();
673     return state;
674   }
675 
676   while (state != eStateInvalid) {
677     EventSP event_sp;
678     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
679     if (event_sp_ptr && event_sp)
680       *event_sp_ptr = event_sp;
681 
682     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
683     Process::HandleProcessStateChangedEvent(event_sp, stream,
684                                             pop_process_io_handler);
685 
686     switch (state) {
687     case eStateCrashed:
688     case eStateDetached:
689     case eStateExited:
690     case eStateUnloaded:
691       // We need to toggle the run lock as this won't get done in
692       // SetPublicState() if the process is hijacked.
693       if (hijack_listener_sp && use_run_lock)
694         m_public_run_lock.SetStopped();
695       return state;
696     case eStateStopped:
697       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
698         continue;
699       else {
700         // We need to toggle the run lock as this won't get done in
701         // SetPublicState() if the process is hijacked.
702         if (hijack_listener_sp && use_run_lock)
703           m_public_run_lock.SetStopped();
704         return state;
705       }
706     default:
707       continue;
708     }
709   }
710   return state;
711 }
712 
713 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
714                                              Stream *stream,
715                                              bool &pop_process_io_handler) {
716   const bool handle_pop = pop_process_io_handler;
717 
718   pop_process_io_handler = false;
719   ProcessSP process_sp =
720       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
721 
722   if (!process_sp)
723     return false;
724 
725   StateType event_state =
726       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
727   if (event_state == eStateInvalid)
728     return false;
729 
730   switch (event_state) {
731   case eStateInvalid:
732   case eStateUnloaded:
733   case eStateAttaching:
734   case eStateLaunching:
735   case eStateStepping:
736   case eStateDetached:
737     if (stream)
738       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
739                      StateAsCString(event_state));
740     if (event_state == eStateDetached)
741       pop_process_io_handler = true;
742     break;
743 
744   case eStateConnected:
745   case eStateRunning:
746     // Don't be chatty when we run...
747     break;
748 
749   case eStateExited:
750     if (stream)
751       process_sp->GetStatus(*stream);
752     pop_process_io_handler = true;
753     break;
754 
755   case eStateStopped:
756   case eStateCrashed:
757   case eStateSuspended:
758     // Make sure the program hasn't been auto-restarted:
759     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
760       if (stream) {
761         size_t num_reasons =
762             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
763         if (num_reasons > 0) {
764           // FIXME: Do we want to report this, or would that just be annoyingly
765           // chatty?
766           if (num_reasons == 1) {
767             const char *reason =
768                 Process::ProcessEventData::GetRestartedReasonAtIndex(
769                     event_sp.get(), 0);
770             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
771                            process_sp->GetID(),
772                            reason ? reason : "<UNKNOWN REASON>");
773           } else {
774             stream->Printf("Process %" PRIu64
775                            " stopped and restarted, reasons:\n",
776                            process_sp->GetID());
777 
778             for (size_t i = 0; i < num_reasons; i++) {
779               const char *reason =
780                   Process::ProcessEventData::GetRestartedReasonAtIndex(
781                       event_sp.get(), i);
782               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
783             }
784           }
785         }
786       }
787     } else {
788       StopInfoSP curr_thread_stop_info_sp;
789       // Lock the thread list so it doesn't change on us, this is the scope for
790       // the locker:
791       {
792         ThreadList &thread_list = process_sp->GetThreadList();
793         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
794 
795         ThreadSP curr_thread(thread_list.GetSelectedThread());
796         ThreadSP thread;
797         StopReason curr_thread_stop_reason = eStopReasonInvalid;
798         bool prefer_curr_thread = false;
799         if (curr_thread && curr_thread->IsValid()) {
800           curr_thread_stop_reason = curr_thread->GetStopReason();
801           switch (curr_thread_stop_reason) {
802           case eStopReasonNone:
803           case eStopReasonInvalid:
804             // Don't prefer the current thread if it didn't stop for a reason.
805             break;
806           case eStopReasonSignal: {
807             // We need to do the same computation we do for other threads
808             // below in case the current thread happens to be the one that
809             // stopped for the no-stop signal.
810             uint64_t signo = curr_thread->GetStopInfo()->GetValue();
811             if (process_sp->GetUnixSignals()->GetShouldStop(signo))
812               prefer_curr_thread = true;
813           } break;
814           default:
815             prefer_curr_thread = true;
816             break;
817           }
818           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
819         }
820 
821         if (!prefer_curr_thread) {
822           // Prefer a thread that has just completed its plan over another
823           // thread as current thread.
824           ThreadSP plan_thread;
825           ThreadSP other_thread;
826 
827           const size_t num_threads = thread_list.GetSize();
828           size_t i;
829           for (i = 0; i < num_threads; ++i) {
830             thread = thread_list.GetThreadAtIndex(i);
831             StopReason thread_stop_reason = thread->GetStopReason();
832             switch (thread_stop_reason) {
833             case eStopReasonInvalid:
834             case eStopReasonNone:
835               break;
836 
837             case eStopReasonSignal: {
838               // Don't select a signal thread if we weren't going to stop at
839               // that signal.  We have to have had another reason for stopping
840               // here, and the user doesn't want to see this thread.
841               uint64_t signo = thread->GetStopInfo()->GetValue();
842               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
843                 if (!other_thread)
844                   other_thread = thread;
845               }
846               break;
847             }
848             case eStopReasonTrace:
849             case eStopReasonBreakpoint:
850             case eStopReasonWatchpoint:
851             case eStopReasonException:
852             case eStopReasonExec:
853             case eStopReasonFork:
854             case eStopReasonVFork:
855             case eStopReasonVForkDone:
856             case eStopReasonThreadExiting:
857             case eStopReasonInstrumentation:
858             case eStopReasonProcessorTrace:
859               if (!other_thread)
860                 other_thread = thread;
861               break;
862             case eStopReasonPlanComplete:
863               if (!plan_thread)
864                 plan_thread = thread;
865               break;
866             }
867           }
868           if (plan_thread)
869             thread_list.SetSelectedThreadByID(plan_thread->GetID());
870           else if (other_thread)
871             thread_list.SetSelectedThreadByID(other_thread->GetID());
872           else {
873             if (curr_thread && curr_thread->IsValid())
874               thread = curr_thread;
875             else
876               thread = thread_list.GetThreadAtIndex(0);
877 
878             if (thread)
879               thread_list.SetSelectedThreadByID(thread->GetID());
880           }
881         }
882       }
883       // Drop the ThreadList mutex by here, since GetThreadStatus below might
884       // have to run code, e.g. for Data formatters, and if we hold the
885       // ThreadList mutex, then the process is going to have a hard time
886       // restarting the process.
887       if (stream) {
888         Debugger &debugger = process_sp->GetTarget().GetDebugger();
889         if (debugger.GetTargetList().GetSelectedTarget().get() ==
890             &process_sp->GetTarget()) {
891           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
892 
893           if (!thread_sp || !thread_sp->IsValid())
894             return false;
895 
896           const bool only_threads_with_stop_reason = true;
897           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
898           const uint32_t num_frames = 1;
899           const uint32_t num_frames_with_source = 1;
900           const bool stop_format = true;
901 
902           process_sp->GetStatus(*stream);
903           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
904                                       start_frame, num_frames,
905                                       num_frames_with_source,
906                                       stop_format);
907           if (curr_thread_stop_info_sp) {
908             lldb::addr_t crashing_address;
909             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
910                 curr_thread_stop_info_sp, &crashing_address);
911             if (valobj_sp) {
912               const ValueObject::GetExpressionPathFormat format =
913                   ValueObject::GetExpressionPathFormat::
914                       eGetExpressionPathFormatHonorPointers;
915               stream->PutCString("Likely cause: ");
916               valobj_sp->GetExpressionPath(*stream, format);
917               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
918             }
919           }
920         } else {
921           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
922               process_sp->GetTarget().shared_from_this());
923           if (target_idx != UINT32_MAX)
924             stream->Printf("Target %d: (", target_idx);
925           else
926             stream->Printf("Target <unknown index>: (");
927           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
928           stream->Printf(") stopped.\n");
929         }
930       }
931 
932       // Pop the process IO handler
933       pop_process_io_handler = true;
934     }
935     break;
936   }
937 
938   if (handle_pop && pop_process_io_handler)
939     process_sp->PopProcessIOHandler();
940 
941   return true;
942 }
943 
944 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
945   if (listener_sp) {
946     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
947                                               eBroadcastBitInterrupt);
948   } else
949     return false;
950 }
951 
952 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
953 
954 StateType Process::GetStateChangedEvents(EventSP &event_sp,
955                                          const Timeout<std::micro> &timeout,
956                                          ListenerSP hijack_listener_sp) {
957   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
958   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
959 
960   ListenerSP listener_sp = hijack_listener_sp;
961   if (!listener_sp)
962     listener_sp = m_listener_sp;
963 
964   StateType state = eStateInvalid;
965   if (listener_sp->GetEventForBroadcasterWithType(
966           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
967           timeout)) {
968     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
969       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
970     else
971       LLDB_LOG(log, "got no event or was interrupted.");
972   }
973 
974   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
975   return state;
976 }
977 
978 Event *Process::PeekAtStateChangedEvents() {
979   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
980 
981   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
982 
983   Event *event_ptr;
984   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
985       this, eBroadcastBitStateChanged);
986   if (log) {
987     if (event_ptr) {
988       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
989                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
990     } else {
991       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
992     }
993   }
994   return event_ptr;
995 }
996 
997 StateType
998 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
999                                       const Timeout<std::micro> &timeout) {
1000   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1001   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1002 
1003   StateType state = eStateInvalid;
1004   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1005           &m_private_state_broadcaster,
1006           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1007           timeout))
1008     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1009       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1010 
1011   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1012            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1013   return state;
1014 }
1015 
1016 bool Process::GetEventsPrivate(EventSP &event_sp,
1017                                const Timeout<std::micro> &timeout,
1018                                bool control_only) {
1019   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1020   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1021 
1022   if (control_only)
1023     return m_private_state_listener_sp->GetEventForBroadcaster(
1024         &m_private_state_control_broadcaster, event_sp, timeout);
1025   else
1026     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1027 }
1028 
1029 bool Process::IsRunning() const {
1030   return StateIsRunningState(m_public_state.GetValue());
1031 }
1032 
1033 int Process::GetExitStatus() {
1034   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1035 
1036   if (m_public_state.GetValue() == eStateExited)
1037     return m_exit_status;
1038   return -1;
1039 }
1040 
1041 const char *Process::GetExitDescription() {
1042   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1043 
1044   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1045     return m_exit_string.c_str();
1046   return nullptr;
1047 }
1048 
1049 bool Process::SetExitStatus(int status, const char *cstr) {
1050   // Use a mutex to protect setting the exit status.
1051   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1052 
1053   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1054                                                   LIBLLDB_LOG_PROCESS));
1055   LLDB_LOGF(
1056       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1057       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1058 
1059   // We were already in the exited state
1060   if (m_private_state.GetValue() == eStateExited) {
1061     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1062                    "state was already set to eStateExited");
1063     return false;
1064   }
1065 
1066   m_exit_status = status;
1067   if (cstr)
1068     m_exit_string = cstr;
1069   else
1070     m_exit_string.clear();
1071 
1072   // Clear the last natural stop ID since it has a strong reference to this
1073   // process
1074   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1075 
1076   SetPrivateState(eStateExited);
1077 
1078   // Allow subclasses to do some cleanup
1079   DidExit();
1080 
1081   return true;
1082 }
1083 
1084 bool Process::IsAlive() {
1085   switch (m_private_state.GetValue()) {
1086   case eStateConnected:
1087   case eStateAttaching:
1088   case eStateLaunching:
1089   case eStateStopped:
1090   case eStateRunning:
1091   case eStateStepping:
1092   case eStateCrashed:
1093   case eStateSuspended:
1094     return true;
1095   default:
1096     return false;
1097   }
1098 }
1099 
1100 // This static callback can be used to watch for local child processes on the
1101 // current host. The child process exits, the process will be found in the
1102 // global target list (we want to be completely sure that the
1103 // lldb_private::Process doesn't go away before we can deliver the signal.
1104 bool Process::SetProcessExitStatus(
1105     lldb::pid_t pid, bool exited,
1106     int signo,      // Zero for no signal
1107     int exit_status // Exit value of process if signal is zero
1108     ) {
1109   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
1110   LLDB_LOGF(log,
1111             "Process::SetProcessExitStatus (pid=%" PRIu64
1112             ", exited=%i, signal=%i, exit_status=%i)\n",
1113             pid, exited, signo, exit_status);
1114 
1115   if (exited) {
1116     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1117     if (target_sp) {
1118       ProcessSP process_sp(target_sp->GetProcessSP());
1119       if (process_sp) {
1120         const char *signal_cstr = nullptr;
1121         if (signo)
1122           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1123 
1124         process_sp->SetExitStatus(exit_status, signal_cstr);
1125       }
1126     }
1127     return true;
1128   }
1129   return false;
1130 }
1131 
1132 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1133                                ThreadList &new_thread_list) {
1134   m_thread_plans.ClearThreadCache();
1135   return DoUpdateThreadList(old_thread_list, new_thread_list);
1136 }
1137 
1138 void Process::UpdateThreadListIfNeeded() {
1139   const uint32_t stop_id = GetStopID();
1140   if (m_thread_list.GetSize(false) == 0 ||
1141       stop_id != m_thread_list.GetStopID()) {
1142     bool clear_unused_threads = true;
1143     const StateType state = GetPrivateState();
1144     if (StateIsStoppedState(state, true)) {
1145       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1146       m_thread_list.SetStopID(stop_id);
1147 
1148       // m_thread_list does have its own mutex, but we need to hold onto the
1149       // mutex between the call to UpdateThreadList(...) and the
1150       // os->UpdateThreadList(...) so it doesn't change on us
1151       ThreadList &old_thread_list = m_thread_list;
1152       ThreadList real_thread_list(this);
1153       ThreadList new_thread_list(this);
1154       // Always update the thread list with the protocol specific thread list,
1155       // but only update if "true" is returned
1156       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1157         // Don't call into the OperatingSystem to update the thread list if we
1158         // are shutting down, since that may call back into the SBAPI's,
1159         // requiring the API lock which is already held by whoever is shutting
1160         // us down, causing a deadlock.
1161         OperatingSystem *os = GetOperatingSystem();
1162         if (os && !m_destroy_in_process) {
1163           // Clear any old backing threads where memory threads might have been
1164           // backed by actual threads from the lldb_private::Process subclass
1165           size_t num_old_threads = old_thread_list.GetSize(false);
1166           for (size_t i = 0; i < num_old_threads; ++i)
1167             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1168           // See if the OS plugin reports all threads.  If it does, then
1169           // it is safe to clear unseen thread's plans here.  Otherwise we
1170           // should preserve them in case they show up again:
1171           clear_unused_threads = GetOSPluginReportsAllThreads();
1172 
1173           // Turn off dynamic types to ensure we don't run any expressions.
1174           // Objective-C can run an expression to determine if a SBValue is a
1175           // dynamic type or not and we need to avoid this. OperatingSystem
1176           // plug-ins can't run expressions that require running code...
1177 
1178           Target &target = GetTarget();
1179           const lldb::DynamicValueType saved_prefer_dynamic =
1180               target.GetPreferDynamicValue();
1181           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1182             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1183 
1184           // Now let the OperatingSystem plug-in update the thread list
1185 
1186           os->UpdateThreadList(
1187               old_thread_list, // Old list full of threads created by OS plug-in
1188               real_thread_list, // The actual thread list full of threads
1189                                 // created by each lldb_private::Process
1190                                 // subclass
1191               new_thread_list); // The new thread list that we will show to the
1192                                 // user that gets filled in
1193 
1194           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1195             target.SetPreferDynamicValue(saved_prefer_dynamic);
1196         } else {
1197           // No OS plug-in, the new thread list is the same as the real thread
1198           // list.
1199           new_thread_list = real_thread_list;
1200         }
1201 
1202         m_thread_list_real.Update(real_thread_list);
1203         m_thread_list.Update(new_thread_list);
1204         m_thread_list.SetStopID(stop_id);
1205 
1206         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1207           // Clear any extended threads that we may have accumulated previously
1208           m_extended_thread_list.Clear();
1209           m_extended_thread_stop_id = GetLastNaturalStopID();
1210 
1211           m_queue_list.Clear();
1212           m_queue_list_stop_id = GetLastNaturalStopID();
1213         }
1214       }
1215       // Now update the plan stack map.
1216       // If we do have an OS plugin, any absent real threads in the
1217       // m_thread_list have already been removed from the ThreadPlanStackMap.
1218       // So any remaining threads are OS Plugin threads, and those we want to
1219       // preserve in case they show up again.
1220       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1221     }
1222   }
1223 }
1224 
1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1226   return m_thread_plans.Find(tid);
1227 }
1228 
1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1230   return m_thread_plans.PrunePlansForTID(tid);
1231 }
1232 
1233 void Process::PruneThreadPlans() {
1234   m_thread_plans.Update(GetThreadList(), true, false);
1235 }
1236 
1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1238                                     lldb::DescriptionLevel desc_level,
1239                                     bool internal, bool condense_trivial,
1240                                     bool skip_unreported_plans) {
1241   return m_thread_plans.DumpPlansForTID(
1242       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1243 }
1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1245                               bool internal, bool condense_trivial,
1246                               bool skip_unreported_plans) {
1247   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1248                            skip_unreported_plans);
1249 }
1250 
1251 void Process::UpdateQueueListIfNeeded() {
1252   if (m_system_runtime_up) {
1253     if (m_queue_list.GetSize() == 0 ||
1254         m_queue_list_stop_id != GetLastNaturalStopID()) {
1255       const StateType state = GetPrivateState();
1256       if (StateIsStoppedState(state, true)) {
1257         m_system_runtime_up->PopulateQueueList(m_queue_list);
1258         m_queue_list_stop_id = GetLastNaturalStopID();
1259       }
1260     }
1261   }
1262 }
1263 
1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1265   OperatingSystem *os = GetOperatingSystem();
1266   if (os)
1267     return os->CreateThread(tid, context);
1268   return ThreadSP();
1269 }
1270 
1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1272   return AssignIndexIDToThread(thread_id);
1273 }
1274 
1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1276   return (m_thread_id_to_index_id_map.find(thread_id) !=
1277           m_thread_id_to_index_id_map.end());
1278 }
1279 
1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1281   uint32_t result = 0;
1282   std::map<uint64_t, uint32_t>::iterator iterator =
1283       m_thread_id_to_index_id_map.find(thread_id);
1284   if (iterator == m_thread_id_to_index_id_map.end()) {
1285     result = ++m_thread_index_id;
1286     m_thread_id_to_index_id_map[thread_id] = result;
1287   } else {
1288     result = iterator->second;
1289   }
1290 
1291   return result;
1292 }
1293 
1294 StateType Process::GetState() {
1295   return m_public_state.GetValue();
1296 }
1297 
1298 void Process::SetPublicState(StateType new_state, bool restarted) {
1299   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1300   if (new_state_is_stopped) {
1301     // This will only set the time if the public stop time has no value, so
1302     // it is ok to call this multiple times. With a public stop we can't look
1303     // at the stop ID because many private stops might have happened, so we
1304     // can't check for a stop ID of zero. This allows the "statistics" command
1305     // to dump the time it takes to reach somewhere in your code, like a
1306     // breakpoint you set.
1307     GetTarget().GetStatistics().SetFirstPublicStopTime();
1308   }
1309 
1310   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1311                                                   LIBLLDB_LOG_PROCESS));
1312   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1313             StateAsCString(new_state), restarted);
1314   const StateType old_state = m_public_state.GetValue();
1315   m_public_state.SetValue(new_state);
1316 
1317   // On the transition from Run to Stopped, we unlock the writer end of the run
1318   // lock.  The lock gets locked in Resume, which is the public API to tell the
1319   // program to run.
1320   if (!StateChangedIsExternallyHijacked()) {
1321     if (new_state == eStateDetached) {
1322       LLDB_LOGF(log,
1323                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1324                 StateAsCString(new_state));
1325       m_public_run_lock.SetStopped();
1326     } else {
1327       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1328       if ((old_state_is_stopped != new_state_is_stopped)) {
1329         if (new_state_is_stopped && !restarted) {
1330           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1331                     StateAsCString(new_state));
1332           m_public_run_lock.SetStopped();
1333         }
1334       }
1335     }
1336   }
1337 }
1338 
1339 Status Process::Resume() {
1340   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1341                                                   LIBLLDB_LOG_PROCESS));
1342   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1343   if (!m_public_run_lock.TrySetRunning()) {
1344     Status error("Resume request failed - process still running.");
1345     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1346     return error;
1347   }
1348   Status error = PrivateResume();
1349   if (!error.Success()) {
1350     // Undo running state change
1351     m_public_run_lock.SetStopped();
1352   }
1353   return error;
1354 }
1355 
1356 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1357 
1358 Status Process::ResumeSynchronous(Stream *stream) {
1359   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1360                                                   LIBLLDB_LOG_PROCESS));
1361   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1362   if (!m_public_run_lock.TrySetRunning()) {
1363     Status error("Resume request failed - process still running.");
1364     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1365     return error;
1366   }
1367 
1368   ListenerSP listener_sp(
1369       Listener::MakeListener(g_resume_sync_name));
1370   HijackProcessEvents(listener_sp);
1371 
1372   Status error = PrivateResume();
1373   if (error.Success()) {
1374     StateType state = WaitForProcessToStop(llvm::None, nullptr, true,
1375                                            listener_sp, stream);
1376     const bool must_be_alive =
1377         false; // eStateExited is ok, so this must be false
1378     if (!StateIsStoppedState(state, must_be_alive))
1379       error.SetErrorStringWithFormat(
1380           "process not in stopped state after synchronous resume: %s",
1381           StateAsCString(state));
1382   } else {
1383     // Undo running state change
1384     m_public_run_lock.SetStopped();
1385   }
1386 
1387   // Undo the hijacking of process events...
1388   RestoreProcessEvents();
1389 
1390   return error;
1391 }
1392 
1393 bool Process::StateChangedIsExternallyHijacked() {
1394   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1395     const char *hijacking_name = GetHijackingListenerName();
1396     if (hijacking_name &&
1397         strcmp(hijacking_name, g_resume_sync_name))
1398       return true;
1399   }
1400   return false;
1401 }
1402 
1403 bool Process::StateChangedIsHijackedForSynchronousResume() {
1404   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1405     const char *hijacking_name = GetHijackingListenerName();
1406     if (hijacking_name &&
1407         strcmp(hijacking_name, g_resume_sync_name) == 0)
1408       return true;
1409   }
1410   return false;
1411 }
1412 
1413 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1414 
1415 void Process::SetPrivateState(StateType new_state) {
1416   if (m_finalizing)
1417     return;
1418 
1419   Log *log(lldb_private::GetLogIfAnyCategoriesSet(
1420       LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND));
1421   bool state_changed = false;
1422 
1423   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1424 
1425   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1426   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1427 
1428   const StateType old_state = m_private_state.GetValueNoLock();
1429   state_changed = old_state != new_state;
1430 
1431   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1432   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1433   if (old_state_is_stopped != new_state_is_stopped) {
1434     if (new_state_is_stopped)
1435       m_private_run_lock.SetStopped();
1436     else
1437       m_private_run_lock.SetRunning();
1438   }
1439 
1440   if (state_changed) {
1441     m_private_state.SetValueNoLock(new_state);
1442     EventSP event_sp(
1443         new Event(eBroadcastBitStateChanged,
1444                   new ProcessEventData(shared_from_this(), new_state)));
1445     if (StateIsStoppedState(new_state, false)) {
1446       // Note, this currently assumes that all threads in the list stop when
1447       // the process stops.  In the future we will want to support a debugging
1448       // model where some threads continue to run while others are stopped.
1449       // When that happens we will either need a way for the thread list to
1450       // identify which threads are stopping or create a special thread list
1451       // containing only threads which actually stopped.
1452       //
1453       // The process plugin is responsible for managing the actual behavior of
1454       // the threads and should have stopped any threads that are going to stop
1455       // before we get here.
1456       m_thread_list.DidStop();
1457 
1458       if (m_mod_id.BumpStopID() == 0)
1459         GetTarget().GetStatistics().SetFirstPrivateStopTime();
1460 
1461       if (!m_mod_id.IsLastResumeForUserExpression())
1462         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1463       m_memory_cache.Clear();
1464       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1465                 StateAsCString(new_state), m_mod_id.GetStopID());
1466     }
1467 
1468     m_private_state_broadcaster.BroadcastEvent(event_sp);
1469   } else {
1470     LLDB_LOGF(log,
1471               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1472               StateAsCString(new_state));
1473   }
1474 }
1475 
1476 void Process::SetRunningUserExpression(bool on) {
1477   m_mod_id.SetRunningUserExpression(on);
1478 }
1479 
1480 void Process::SetRunningUtilityFunction(bool on) {
1481   m_mod_id.SetRunningUtilityFunction(on);
1482 }
1483 
1484 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1485 
1486 const lldb::ABISP &Process::GetABI() {
1487   if (!m_abi_sp)
1488     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1489   return m_abi_sp;
1490 }
1491 
1492 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1493   std::vector<LanguageRuntime *> language_runtimes;
1494 
1495   if (m_finalizing)
1496     return language_runtimes;
1497 
1498   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1499   // Before we pass off a copy of the language runtimes, we must make sure that
1500   // our collection is properly populated. It's possible that some of the
1501   // language runtimes were not loaded yet, either because nobody requested it
1502   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1503   // hadn't been loaded).
1504   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1505     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1506       language_runtimes.emplace_back(runtime);
1507   }
1508 
1509   return language_runtimes;
1510 }
1511 
1512 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1513   if (m_finalizing)
1514     return nullptr;
1515 
1516   LanguageRuntime *runtime = nullptr;
1517 
1518   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1519   LanguageRuntimeCollection::iterator pos;
1520   pos = m_language_runtimes.find(language);
1521   if (pos == m_language_runtimes.end() || !pos->second) {
1522     lldb::LanguageRuntimeSP runtime_sp(
1523         LanguageRuntime::FindPlugin(this, language));
1524 
1525     m_language_runtimes[language] = runtime_sp;
1526     runtime = runtime_sp.get();
1527   } else
1528     runtime = pos->second.get();
1529 
1530   if (runtime)
1531     // It's possible that a language runtime can support multiple LanguageTypes,
1532     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1533     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1534     // primary language type and make sure that our runtime supports it.
1535     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1536 
1537   return runtime;
1538 }
1539 
1540 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1541   if (m_finalizing)
1542     return false;
1543 
1544   if (in_value.IsDynamic())
1545     return false;
1546   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1547 
1548   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1549     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1550     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1551   }
1552 
1553   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1554     if (runtime->CouldHaveDynamicValue(in_value))
1555       return true;
1556   }
1557 
1558   return false;
1559 }
1560 
1561 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1562   m_dynamic_checkers_up.reset(dynamic_checkers);
1563 }
1564 
1565 BreakpointSiteList &Process::GetBreakpointSiteList() {
1566   return m_breakpoint_site_list;
1567 }
1568 
1569 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1570   return m_breakpoint_site_list;
1571 }
1572 
1573 void Process::DisableAllBreakpointSites() {
1574   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1575     //        bp_site->SetEnabled(true);
1576     DisableBreakpointSite(bp_site);
1577   });
1578 }
1579 
1580 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1581   Status error(DisableBreakpointSiteByID(break_id));
1582 
1583   if (error.Success())
1584     m_breakpoint_site_list.Remove(break_id);
1585 
1586   return error;
1587 }
1588 
1589 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1590   Status error;
1591   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1592   if (bp_site_sp) {
1593     if (bp_site_sp->IsEnabled())
1594       error = DisableBreakpointSite(bp_site_sp.get());
1595   } else {
1596     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1597                                    break_id);
1598   }
1599 
1600   return error;
1601 }
1602 
1603 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1604   Status error;
1605   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1606   if (bp_site_sp) {
1607     if (!bp_site_sp->IsEnabled())
1608       error = EnableBreakpointSite(bp_site_sp.get());
1609   } else {
1610     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1611                                    break_id);
1612   }
1613   return error;
1614 }
1615 
1616 lldb::break_id_t
1617 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1618                               bool use_hardware) {
1619   addr_t load_addr = LLDB_INVALID_ADDRESS;
1620 
1621   bool show_error = true;
1622   switch (GetState()) {
1623   case eStateInvalid:
1624   case eStateUnloaded:
1625   case eStateConnected:
1626   case eStateAttaching:
1627   case eStateLaunching:
1628   case eStateDetached:
1629   case eStateExited:
1630     show_error = false;
1631     break;
1632 
1633   case eStateStopped:
1634   case eStateRunning:
1635   case eStateStepping:
1636   case eStateCrashed:
1637   case eStateSuspended:
1638     show_error = IsAlive();
1639     break;
1640   }
1641 
1642   // Reset the IsIndirect flag here, in case the location changes from pointing
1643   // to a indirect symbol to a regular symbol.
1644   owner->SetIsIndirect(false);
1645 
1646   if (owner->ShouldResolveIndirectFunctions()) {
1647     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1648     if (symbol && symbol->IsIndirect()) {
1649       Status error;
1650       Address symbol_address = symbol->GetAddress();
1651       load_addr = ResolveIndirectFunction(&symbol_address, error);
1652       if (!error.Success() && show_error) {
1653         GetTarget().GetDebugger().GetErrorStream().Printf(
1654             "warning: failed to resolve indirect function at 0x%" PRIx64
1655             " for breakpoint %i.%i: %s\n",
1656             symbol->GetLoadAddress(&GetTarget()),
1657             owner->GetBreakpoint().GetID(), owner->GetID(),
1658             error.AsCString() ? error.AsCString() : "unknown error");
1659         return LLDB_INVALID_BREAK_ID;
1660       }
1661       Address resolved_address(load_addr);
1662       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1663       owner->SetIsIndirect(true);
1664     } else
1665       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1666   } else
1667     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1668 
1669   if (load_addr != LLDB_INVALID_ADDRESS) {
1670     BreakpointSiteSP bp_site_sp;
1671 
1672     // Look up this breakpoint site.  If it exists, then add this new owner,
1673     // otherwise create a new breakpoint site and add it.
1674 
1675     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1676 
1677     if (bp_site_sp) {
1678       bp_site_sp->AddOwner(owner);
1679       owner->SetBreakpointSite(bp_site_sp);
1680       return bp_site_sp->GetID();
1681     } else {
1682       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1683                                           load_addr, use_hardware));
1684       if (bp_site_sp) {
1685         Status error = EnableBreakpointSite(bp_site_sp.get());
1686         if (error.Success()) {
1687           owner->SetBreakpointSite(bp_site_sp);
1688           return m_breakpoint_site_list.Add(bp_site_sp);
1689         } else {
1690           if (show_error || use_hardware) {
1691             // Report error for setting breakpoint...
1692             GetTarget().GetDebugger().GetErrorStream().Printf(
1693                 "warning: failed to set breakpoint site at 0x%" PRIx64
1694                 " for breakpoint %i.%i: %s\n",
1695                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1696                 error.AsCString() ? error.AsCString() : "unknown error");
1697           }
1698         }
1699       }
1700     }
1701   }
1702   // We failed to enable the breakpoint
1703   return LLDB_INVALID_BREAK_ID;
1704 }
1705 
1706 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1707                                             lldb::user_id_t owner_loc_id,
1708                                             BreakpointSiteSP &bp_site_sp) {
1709   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1710   if (num_owners == 0) {
1711     // Don't try to disable the site if we don't have a live process anymore.
1712     if (IsAlive())
1713       DisableBreakpointSite(bp_site_sp.get());
1714     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1715   }
1716 }
1717 
1718 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1719                                                   uint8_t *buf) const {
1720   size_t bytes_removed = 0;
1721   BreakpointSiteList bp_sites_in_range;
1722 
1723   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1724                                          bp_sites_in_range)) {
1725     bp_sites_in_range.ForEach([bp_addr, size,
1726                                buf](BreakpointSite *bp_site) -> void {
1727       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1728         addr_t intersect_addr;
1729         size_t intersect_size;
1730         size_t opcode_offset;
1731         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1732                                      &intersect_size, &opcode_offset)) {
1733           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1734           assert(bp_addr < intersect_addr + intersect_size &&
1735                  intersect_addr + intersect_size <= bp_addr + size);
1736           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1737           size_t buf_offset = intersect_addr - bp_addr;
1738           ::memcpy(buf + buf_offset,
1739                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1740                    intersect_size);
1741         }
1742       }
1743     });
1744   }
1745   return bytes_removed;
1746 }
1747 
1748 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1749   PlatformSP platform_sp(GetTarget().GetPlatform());
1750   if (platform_sp)
1751     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1752   return 0;
1753 }
1754 
1755 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1756   Status error;
1757   assert(bp_site != nullptr);
1758   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1759   const addr_t bp_addr = bp_site->GetLoadAddress();
1760   LLDB_LOGF(
1761       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1762       bp_site->GetID(), (uint64_t)bp_addr);
1763   if (bp_site->IsEnabled()) {
1764     LLDB_LOGF(
1765         log,
1766         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1767         " -- already enabled",
1768         bp_site->GetID(), (uint64_t)bp_addr);
1769     return error;
1770   }
1771 
1772   if (bp_addr == LLDB_INVALID_ADDRESS) {
1773     error.SetErrorString("BreakpointSite contains an invalid load address.");
1774     return error;
1775   }
1776   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1777   // trap for the breakpoint site
1778   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1779 
1780   if (bp_opcode_size == 0) {
1781     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1782                                    "returned zero, unable to get breakpoint "
1783                                    "trap for address 0x%" PRIx64,
1784                                    bp_addr);
1785   } else {
1786     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1787 
1788     if (bp_opcode_bytes == nullptr) {
1789       error.SetErrorString(
1790           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1791       return error;
1792     }
1793 
1794     // Save the original opcode by reading it
1795     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1796                      error) == bp_opcode_size) {
1797       // Write a software breakpoint in place of the original opcode
1798       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1799           bp_opcode_size) {
1800         uint8_t verify_bp_opcode_bytes[64];
1801         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1802                          error) == bp_opcode_size) {
1803           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1804                        bp_opcode_size) == 0) {
1805             bp_site->SetEnabled(true);
1806             bp_site->SetType(BreakpointSite::eSoftware);
1807             LLDB_LOGF(log,
1808                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1809                       "addr = 0x%" PRIx64 " -- SUCCESS",
1810                       bp_site->GetID(), (uint64_t)bp_addr);
1811           } else
1812             error.SetErrorString(
1813                 "failed to verify the breakpoint trap in memory.");
1814         } else
1815           error.SetErrorString(
1816               "Unable to read memory to verify breakpoint trap.");
1817       } else
1818         error.SetErrorString("Unable to write breakpoint trap to memory.");
1819     } else
1820       error.SetErrorString("Unable to read memory at breakpoint address.");
1821   }
1822   if (log && error.Fail())
1823     LLDB_LOGF(
1824         log,
1825         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1826         " -- FAILED: %s",
1827         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1828   return error;
1829 }
1830 
1831 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1832   Status error;
1833   assert(bp_site != nullptr);
1834   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1835   addr_t bp_addr = bp_site->GetLoadAddress();
1836   lldb::user_id_t breakID = bp_site->GetID();
1837   LLDB_LOGF(log,
1838             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1839             ") addr = 0x%" PRIx64,
1840             breakID, (uint64_t)bp_addr);
1841 
1842   if (bp_site->IsHardware()) {
1843     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1844   } else if (bp_site->IsEnabled()) {
1845     const size_t break_op_size = bp_site->GetByteSize();
1846     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1847     if (break_op_size > 0) {
1848       // Clear a software breakpoint instruction
1849       uint8_t curr_break_op[8];
1850       assert(break_op_size <= sizeof(curr_break_op));
1851       bool break_op_found = false;
1852 
1853       // Read the breakpoint opcode
1854       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1855           break_op_size) {
1856         bool verify = false;
1857         // Make sure the breakpoint opcode exists at this address
1858         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1859           break_op_found = true;
1860           // We found a valid breakpoint opcode at this address, now restore
1861           // the saved opcode.
1862           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1863                             break_op_size, error) == break_op_size) {
1864             verify = true;
1865           } else
1866             error.SetErrorString(
1867                 "Memory write failed when restoring original opcode.");
1868         } else {
1869           error.SetErrorString(
1870               "Original breakpoint trap is no longer in memory.");
1871           // Set verify to true and so we can check if the original opcode has
1872           // already been restored
1873           verify = true;
1874         }
1875 
1876         if (verify) {
1877           uint8_t verify_opcode[8];
1878           assert(break_op_size < sizeof(verify_opcode));
1879           // Verify that our original opcode made it back to the inferior
1880           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1881               break_op_size) {
1882             // compare the memory we just read with the original opcode
1883             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1884                          break_op_size) == 0) {
1885               // SUCCESS
1886               bp_site->SetEnabled(false);
1887               LLDB_LOGF(log,
1888                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1889                         "addr = 0x%" PRIx64 " -- SUCCESS",
1890                         bp_site->GetID(), (uint64_t)bp_addr);
1891               return error;
1892             } else {
1893               if (break_op_found)
1894                 error.SetErrorString("Failed to restore original opcode.");
1895             }
1896           } else
1897             error.SetErrorString("Failed to read memory to verify that "
1898                                  "breakpoint trap was restored.");
1899         }
1900       } else
1901         error.SetErrorString(
1902             "Unable to read memory that should contain the breakpoint trap.");
1903     }
1904   } else {
1905     LLDB_LOGF(
1906         log,
1907         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1908         " -- already disabled",
1909         bp_site->GetID(), (uint64_t)bp_addr);
1910     return error;
1911   }
1912 
1913   LLDB_LOGF(
1914       log,
1915       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1916       " -- FAILED: %s",
1917       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1918   return error;
1919 }
1920 
1921 // Uncomment to verify memory caching works after making changes to caching
1922 // code
1923 //#define VERIFY_MEMORY_READS
1924 
1925 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1926   error.Clear();
1927   if (!GetDisableMemoryCache()) {
1928 #if defined(VERIFY_MEMORY_READS)
1929     // Memory caching is enabled, with debug verification
1930 
1931     if (buf && size) {
1932       // Uncomment the line below to make sure memory caching is working.
1933       // I ran this through the test suite and got no assertions, so I am
1934       // pretty confident this is working well. If any changes are made to
1935       // memory caching, uncomment the line below and test your changes!
1936 
1937       // Verify all memory reads by using the cache first, then redundantly
1938       // reading the same memory from the inferior and comparing to make sure
1939       // everything is exactly the same.
1940       std::string verify_buf(size, '\0');
1941       assert(verify_buf.size() == size);
1942       const size_t cache_bytes_read =
1943           m_memory_cache.Read(this, addr, buf, size, error);
1944       Status verify_error;
1945       const size_t verify_bytes_read =
1946           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1947                                  verify_buf.size(), verify_error);
1948       assert(cache_bytes_read == verify_bytes_read);
1949       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1950       assert(verify_error.Success() == error.Success());
1951       return cache_bytes_read;
1952     }
1953     return 0;
1954 #else  // !defined(VERIFY_MEMORY_READS)
1955     // Memory caching is enabled, without debug verification
1956 
1957     return m_memory_cache.Read(addr, buf, size, error);
1958 #endif // defined (VERIFY_MEMORY_READS)
1959   } else {
1960     // Memory caching is disabled
1961 
1962     return ReadMemoryFromInferior(addr, buf, size, error);
1963   }
1964 }
1965 
1966 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1967                                       Status &error) {
1968   char buf[256];
1969   out_str.clear();
1970   addr_t curr_addr = addr;
1971   while (true) {
1972     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1973     if (length == 0)
1974       break;
1975     out_str.append(buf, length);
1976     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1977     // to read some more characters
1978     if (length == sizeof(buf) - 1)
1979       curr_addr += length;
1980     else
1981       break;
1982   }
1983   return out_str.size();
1984 }
1985 
1986 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes,
1987                                      Status &error, size_t type_width) {
1988   size_t total_bytes_read = 0;
1989   if (dst && max_bytes && type_width && max_bytes >= type_width) {
1990     // Ensure a null terminator independent of the number of bytes that is
1991     // read.
1992     memset(dst, 0, max_bytes);
1993     size_t bytes_left = max_bytes - type_width;
1994 
1995     const char terminator[4] = {'\0', '\0', '\0', '\0'};
1996     assert(sizeof(terminator) >= type_width && "Attempting to validate a "
1997                                                "string with more than 4 bytes "
1998                                                "per character!");
1999 
2000     addr_t curr_addr = addr;
2001     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2002     char *curr_dst = dst;
2003 
2004     error.Clear();
2005     while (bytes_left > 0 && error.Success()) {
2006       addr_t cache_line_bytes_left =
2007           cache_line_size - (curr_addr % cache_line_size);
2008       addr_t bytes_to_read =
2009           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2010       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2011 
2012       if (bytes_read == 0)
2013         break;
2014 
2015       // Search for a null terminator of correct size and alignment in
2016       // bytes_read
2017       size_t aligned_start = total_bytes_read - total_bytes_read % type_width;
2018       for (size_t i = aligned_start;
2019            i + type_width <= total_bytes_read + bytes_read; i += type_width)
2020         if (::memcmp(&dst[i], terminator, type_width) == 0) {
2021           error.Clear();
2022           return i;
2023         }
2024 
2025       total_bytes_read += bytes_read;
2026       curr_dst += bytes_read;
2027       curr_addr += bytes_read;
2028       bytes_left -= bytes_read;
2029     }
2030   } else {
2031     if (max_bytes)
2032       error.SetErrorString("invalid arguments");
2033   }
2034   return total_bytes_read;
2035 }
2036 
2037 // Deprecated in favor of ReadStringFromMemory which has wchar support and
2038 // correct code to find null terminators.
2039 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2040                                       size_t dst_max_len,
2041                                       Status &result_error) {
2042   size_t total_cstr_len = 0;
2043   if (dst && dst_max_len) {
2044     result_error.Clear();
2045     // NULL out everything just to be safe
2046     memset(dst, 0, dst_max_len);
2047     Status error;
2048     addr_t curr_addr = addr;
2049     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2050     size_t bytes_left = dst_max_len - 1;
2051     char *curr_dst = dst;
2052 
2053     while (bytes_left > 0) {
2054       addr_t cache_line_bytes_left =
2055           cache_line_size - (curr_addr % cache_line_size);
2056       addr_t bytes_to_read =
2057           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2058       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2059 
2060       if (bytes_read == 0) {
2061         result_error = error;
2062         dst[total_cstr_len] = '\0';
2063         break;
2064       }
2065       const size_t len = strlen(curr_dst);
2066 
2067       total_cstr_len += len;
2068 
2069       if (len < bytes_to_read)
2070         break;
2071 
2072       curr_dst += bytes_read;
2073       curr_addr += bytes_read;
2074       bytes_left -= bytes_read;
2075     }
2076   } else {
2077     if (dst == nullptr)
2078       result_error.SetErrorString("invalid arguments");
2079     else
2080       result_error.Clear();
2081   }
2082   return total_cstr_len;
2083 }
2084 
2085 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2086                                        Status &error) {
2087   LLDB_SCOPED_TIMER();
2088 
2089   if (buf == nullptr || size == 0)
2090     return 0;
2091 
2092   size_t bytes_read = 0;
2093   uint8_t *bytes = (uint8_t *)buf;
2094 
2095   while (bytes_read < size) {
2096     const size_t curr_size = size - bytes_read;
2097     const size_t curr_bytes_read =
2098         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2099     bytes_read += curr_bytes_read;
2100     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2101       break;
2102   }
2103 
2104   // Replace any software breakpoint opcodes that fall into this range back
2105   // into "buf" before we return
2106   if (bytes_read > 0)
2107     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2108   return bytes_read;
2109 }
2110 
2111 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2112                                                 size_t integer_byte_size,
2113                                                 uint64_t fail_value,
2114                                                 Status &error) {
2115   Scalar scalar;
2116   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2117                                   error))
2118     return scalar.ULongLong(fail_value);
2119   return fail_value;
2120 }
2121 
2122 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2123                                              size_t integer_byte_size,
2124                                              int64_t fail_value,
2125                                              Status &error) {
2126   Scalar scalar;
2127   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2128                                   error))
2129     return scalar.SLongLong(fail_value);
2130   return fail_value;
2131 }
2132 
2133 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2134   Scalar scalar;
2135   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2136                                   error))
2137     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2138   return LLDB_INVALID_ADDRESS;
2139 }
2140 
2141 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2142                                    Status &error) {
2143   Scalar scalar;
2144   const uint32_t addr_byte_size = GetAddressByteSize();
2145   if (addr_byte_size <= 4)
2146     scalar = (uint32_t)ptr_value;
2147   else
2148     scalar = ptr_value;
2149   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2150          addr_byte_size;
2151 }
2152 
2153 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2154                                    Status &error) {
2155   size_t bytes_written = 0;
2156   const uint8_t *bytes = (const uint8_t *)buf;
2157 
2158   while (bytes_written < size) {
2159     const size_t curr_size = size - bytes_written;
2160     const size_t curr_bytes_written = DoWriteMemory(
2161         addr + bytes_written, bytes + bytes_written, curr_size, error);
2162     bytes_written += curr_bytes_written;
2163     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2164       break;
2165   }
2166   return bytes_written;
2167 }
2168 
2169 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2170                             Status &error) {
2171 #if defined(ENABLE_MEMORY_CACHING)
2172   m_memory_cache.Flush(addr, size);
2173 #endif
2174 
2175   if (buf == nullptr || size == 0)
2176     return 0;
2177 
2178   m_mod_id.BumpMemoryID();
2179 
2180   // We need to write any data that would go where any current software traps
2181   // (enabled software breakpoints) any software traps (breakpoints) that we
2182   // may have placed in our tasks memory.
2183 
2184   BreakpointSiteList bp_sites_in_range;
2185   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2186     return WriteMemoryPrivate(addr, buf, size, error);
2187 
2188   // No breakpoint sites overlap
2189   if (bp_sites_in_range.IsEmpty())
2190     return WriteMemoryPrivate(addr, buf, size, error);
2191 
2192   const uint8_t *ubuf = (const uint8_t *)buf;
2193   uint64_t bytes_written = 0;
2194 
2195   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2196                              &error](BreakpointSite *bp) -> void {
2197     if (error.Fail())
2198       return;
2199 
2200     if (bp->GetType() != BreakpointSite::eSoftware)
2201       return;
2202 
2203     addr_t intersect_addr;
2204     size_t intersect_size;
2205     size_t opcode_offset;
2206     const bool intersects = bp->IntersectsRange(
2207         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2208     UNUSED_IF_ASSERT_DISABLED(intersects);
2209     assert(intersects);
2210     assert(addr <= intersect_addr && intersect_addr < addr + size);
2211     assert(addr < intersect_addr + intersect_size &&
2212            intersect_addr + intersect_size <= addr + size);
2213     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2214 
2215     // Check for bytes before this breakpoint
2216     const addr_t curr_addr = addr + bytes_written;
2217     if (intersect_addr > curr_addr) {
2218       // There are some bytes before this breakpoint that we need to just
2219       // write to memory
2220       size_t curr_size = intersect_addr - curr_addr;
2221       size_t curr_bytes_written =
2222           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2223       bytes_written += curr_bytes_written;
2224       if (curr_bytes_written != curr_size) {
2225         // We weren't able to write all of the requested bytes, we are
2226         // done looping and will return the number of bytes that we have
2227         // written so far.
2228         if (error.Success())
2229           error.SetErrorToGenericError();
2230       }
2231     }
2232     // Now write any bytes that would cover up any software breakpoints
2233     // directly into the breakpoint opcode buffer
2234     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2235              intersect_size);
2236     bytes_written += intersect_size;
2237   });
2238 
2239   // Write any remaining bytes after the last breakpoint if we have any left
2240   if (bytes_written < size)
2241     bytes_written +=
2242         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2243                            size - bytes_written, error);
2244 
2245   return bytes_written;
2246 }
2247 
2248 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2249                                     size_t byte_size, Status &error) {
2250   if (byte_size == UINT32_MAX)
2251     byte_size = scalar.GetByteSize();
2252   if (byte_size > 0) {
2253     uint8_t buf[32];
2254     const size_t mem_size =
2255         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2256     if (mem_size > 0)
2257       return WriteMemory(addr, buf, mem_size, error);
2258     else
2259       error.SetErrorString("failed to get scalar as memory data");
2260   } else {
2261     error.SetErrorString("invalid scalar value");
2262   }
2263   return 0;
2264 }
2265 
2266 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2267                                             bool is_signed, Scalar &scalar,
2268                                             Status &error) {
2269   uint64_t uval = 0;
2270   if (byte_size == 0) {
2271     error.SetErrorString("byte size is zero");
2272   } else if (byte_size & (byte_size - 1)) {
2273     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2274                                    byte_size);
2275   } else if (byte_size <= sizeof(uval)) {
2276     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2277     if (bytes_read == byte_size) {
2278       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2279                          GetAddressByteSize());
2280       lldb::offset_t offset = 0;
2281       if (byte_size <= 4)
2282         scalar = data.GetMaxU32(&offset, byte_size);
2283       else
2284         scalar = data.GetMaxU64(&offset, byte_size);
2285       if (is_signed)
2286         scalar.SignExtend(byte_size * 8);
2287       return bytes_read;
2288     }
2289   } else {
2290     error.SetErrorStringWithFormat(
2291         "byte size of %u is too large for integer scalar type", byte_size);
2292   }
2293   return 0;
2294 }
2295 
2296 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2297   Status error;
2298   for (const auto &Entry : entries) {
2299     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2300                 error);
2301     if (!error.Success())
2302       break;
2303   }
2304   return error;
2305 }
2306 
2307 #define USE_ALLOCATE_MEMORY_CACHE 1
2308 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2309                                Status &error) {
2310   if (GetPrivateState() != eStateStopped) {
2311     error.SetErrorToGenericError();
2312     return LLDB_INVALID_ADDRESS;
2313   }
2314 
2315 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2316   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2317 #else
2318   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2319   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2320   LLDB_LOGF(log,
2321             "Process::AllocateMemory(size=%" PRIu64
2322             ", permissions=%s) => 0x%16.16" PRIx64
2323             " (m_stop_id = %u m_memory_id = %u)",
2324             (uint64_t)size, GetPermissionsAsCString(permissions),
2325             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2326             m_mod_id.GetMemoryID());
2327   return allocated_addr;
2328 #endif
2329 }
2330 
2331 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2332                                 Status &error) {
2333   addr_t return_addr = AllocateMemory(size, permissions, error);
2334   if (error.Success()) {
2335     std::string buffer(size, 0);
2336     WriteMemory(return_addr, buffer.c_str(), size, error);
2337   }
2338   return return_addr;
2339 }
2340 
2341 bool Process::CanJIT() {
2342   if (m_can_jit == eCanJITDontKnow) {
2343     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2344     Status err;
2345 
2346     uint64_t allocated_memory = AllocateMemory(
2347         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2348         err);
2349 
2350     if (err.Success()) {
2351       m_can_jit = eCanJITYes;
2352       LLDB_LOGF(log,
2353                 "Process::%s pid %" PRIu64
2354                 " allocation test passed, CanJIT () is true",
2355                 __FUNCTION__, GetID());
2356     } else {
2357       m_can_jit = eCanJITNo;
2358       LLDB_LOGF(log,
2359                 "Process::%s pid %" PRIu64
2360                 " allocation test failed, CanJIT () is false: %s",
2361                 __FUNCTION__, GetID(), err.AsCString());
2362     }
2363 
2364     DeallocateMemory(allocated_memory);
2365   }
2366 
2367   return m_can_jit == eCanJITYes;
2368 }
2369 
2370 void Process::SetCanJIT(bool can_jit) {
2371   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2372 }
2373 
2374 void Process::SetCanRunCode(bool can_run_code) {
2375   SetCanJIT(can_run_code);
2376   m_can_interpret_function_calls = can_run_code;
2377 }
2378 
2379 Status Process::DeallocateMemory(addr_t ptr) {
2380   Status error;
2381 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2382   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2383     error.SetErrorStringWithFormat(
2384         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2385   }
2386 #else
2387   error = DoDeallocateMemory(ptr);
2388 
2389   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2390   LLDB_LOGF(log,
2391             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2392             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2393             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2394             m_mod_id.GetMemoryID());
2395 #endif
2396   return error;
2397 }
2398 
2399 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2400                                        lldb::addr_t header_addr,
2401                                        size_t size_to_read) {
2402   Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
2403   if (log) {
2404     LLDB_LOGF(log,
2405               "Process::ReadModuleFromMemory reading %s binary from memory",
2406               file_spec.GetPath().c_str());
2407   }
2408   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2409   if (module_sp) {
2410     Status error;
2411     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2412         shared_from_this(), header_addr, error, size_to_read);
2413     if (objfile)
2414       return module_sp;
2415   }
2416   return ModuleSP();
2417 }
2418 
2419 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2420                                         uint32_t &permissions) {
2421   MemoryRegionInfo range_info;
2422   permissions = 0;
2423   Status error(GetMemoryRegionInfo(load_addr, range_info));
2424   if (!error.Success())
2425     return false;
2426   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2427       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2428       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2429     return false;
2430   }
2431 
2432   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2433     permissions |= lldb::ePermissionsReadable;
2434 
2435   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2436     permissions |= lldb::ePermissionsWritable;
2437 
2438   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2439     permissions |= lldb::ePermissionsExecutable;
2440 
2441   return true;
2442 }
2443 
2444 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2445   Status error;
2446   error.SetErrorString("watchpoints are not supported");
2447   return error;
2448 }
2449 
2450 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2451   Status error;
2452   error.SetErrorString("watchpoints are not supported");
2453   return error;
2454 }
2455 
2456 StateType
2457 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2458                                    const Timeout<std::micro> &timeout) {
2459   StateType state;
2460 
2461   while (true) {
2462     event_sp.reset();
2463     state = GetStateChangedEventsPrivate(event_sp, timeout);
2464 
2465     if (StateIsStoppedState(state, false))
2466       break;
2467 
2468     // If state is invalid, then we timed out
2469     if (state == eStateInvalid)
2470       break;
2471 
2472     if (event_sp)
2473       HandlePrivateEvent(event_sp);
2474   }
2475   return state;
2476 }
2477 
2478 void Process::LoadOperatingSystemPlugin(bool flush) {
2479   if (flush)
2480     m_thread_list.Clear();
2481   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2482   if (flush)
2483     Flush();
2484 }
2485 
2486 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2487   Status error;
2488   m_abi_sp.reset();
2489   m_dyld_up.reset();
2490   m_jit_loaders_up.reset();
2491   m_system_runtime_up.reset();
2492   m_os_up.reset();
2493   m_process_input_reader.reset();
2494 
2495   Module *exe_module = GetTarget().GetExecutableModulePointer();
2496 
2497   // The "remote executable path" is hooked up to the local Executable
2498   // module.  But we should be able to debug a remote process even if the
2499   // executable module only exists on the remote.  However, there needs to
2500   // be a way to express this path, without actually having a module.
2501   // The way to do that is to set the ExecutableFile in the LaunchInfo.
2502   // Figure that out here:
2503 
2504   FileSpec exe_spec_to_use;
2505   if (!exe_module) {
2506     if (!launch_info.GetExecutableFile()) {
2507       error.SetErrorString("executable module does not exist");
2508       return error;
2509     }
2510     exe_spec_to_use = launch_info.GetExecutableFile();
2511   } else
2512     exe_spec_to_use = exe_module->GetFileSpec();
2513 
2514   if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2515     // Install anything that might need to be installed prior to launching.
2516     // For host systems, this will do nothing, but if we are connected to a
2517     // remote platform it will install any needed binaries
2518     error = GetTarget().Install(&launch_info);
2519     if (error.Fail())
2520       return error;
2521   }
2522   // Listen and queue events that are broadcasted during the process launch.
2523   ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2524   HijackProcessEvents(listener_sp);
2525   auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2526 
2527   if (PrivateStateThreadIsValid())
2528     PausePrivateStateThread();
2529 
2530   error = WillLaunch(exe_module);
2531   if (error.Success()) {
2532     const bool restarted = false;
2533     SetPublicState(eStateLaunching, restarted);
2534     m_should_detach = false;
2535 
2536     if (m_public_run_lock.TrySetRunning()) {
2537       // Now launch using these arguments.
2538       error = DoLaunch(exe_module, launch_info);
2539     } else {
2540       // This shouldn't happen
2541       error.SetErrorString("failed to acquire process run lock");
2542     }
2543 
2544     if (error.Fail()) {
2545       if (GetID() != LLDB_INVALID_PROCESS_ID) {
2546         SetID(LLDB_INVALID_PROCESS_ID);
2547         const char *error_string = error.AsCString();
2548         if (error_string == nullptr)
2549           error_string = "launch failed";
2550         SetExitStatus(-1, error_string);
2551       }
2552     } else {
2553       EventSP event_sp;
2554 
2555       // Now wait for the process to launch and return control to us, and then
2556       // call DidLaunch:
2557       StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
2558 
2559       if (state == eStateInvalid || !event_sp) {
2560         // We were able to launch the process, but we failed to catch the
2561         // initial stop.
2562         error.SetErrorString("failed to catch stop after launch");
2563         SetExitStatus(0, "failed to catch stop after launch");
2564         Destroy(false);
2565       } else if (state == eStateStopped || state == eStateCrashed) {
2566         DidLaunch();
2567 
2568         DynamicLoader *dyld = GetDynamicLoader();
2569         if (dyld)
2570           dyld->DidLaunch();
2571 
2572         GetJITLoaders().DidLaunch();
2573 
2574         SystemRuntime *system_runtime = GetSystemRuntime();
2575         if (system_runtime)
2576           system_runtime->DidLaunch();
2577 
2578         if (!m_os_up)
2579           LoadOperatingSystemPlugin(false);
2580 
2581         // We successfully launched the process and stopped, now it the
2582         // right time to set up signal filters before resuming.
2583         UpdateAutomaticSignalFiltering();
2584 
2585         // Note, the stop event was consumed above, but not handled. This
2586         // was done to give DidLaunch a chance to run. The target is either
2587         // stopped or crashed. Directly set the state.  This is done to
2588         // prevent a stop message with a bunch of spurious output on thread
2589         // status, as well as not pop a ProcessIOHandler.
2590         // We are done with the launch hijack listener, and this stop should
2591         // go to the public state listener:
2592         RestoreProcessEvents();
2593         SetPublicState(state, false);
2594 
2595         if (PrivateStateThreadIsValid())
2596           ResumePrivateStateThread();
2597         else
2598           StartPrivateStateThread();
2599 
2600         // Target was stopped at entry as was intended. Need to notify the
2601         // listeners about it.
2602         if (state == eStateStopped &&
2603             launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2604           HandlePrivateEvent(event_sp);
2605       } else if (state == eStateExited) {
2606         // We exited while trying to launch somehow.  Don't call DidLaunch
2607         // as that's not likely to work, and return an invalid pid.
2608         HandlePrivateEvent(event_sp);
2609       }
2610     }
2611   } else {
2612     std::string local_exec_file_path = exe_spec_to_use.GetPath();
2613     error.SetErrorStringWithFormat("file doesn't exist: '%s'",
2614                                    local_exec_file_path.c_str());
2615   }
2616 
2617   return error;
2618 }
2619 
2620 Status Process::LoadCore() {
2621   Status error = DoLoadCore();
2622   if (error.Success()) {
2623     ListenerSP listener_sp(
2624         Listener::MakeListener("lldb.process.load_core_listener"));
2625     HijackProcessEvents(listener_sp);
2626 
2627     if (PrivateStateThreadIsValid())
2628       ResumePrivateStateThread();
2629     else
2630       StartPrivateStateThread();
2631 
2632     DynamicLoader *dyld = GetDynamicLoader();
2633     if (dyld)
2634       dyld->DidAttach();
2635 
2636     GetJITLoaders().DidAttach();
2637 
2638     SystemRuntime *system_runtime = GetSystemRuntime();
2639     if (system_runtime)
2640       system_runtime->DidAttach();
2641 
2642     if (!m_os_up)
2643       LoadOperatingSystemPlugin(false);
2644 
2645     // We successfully loaded a core file, now pretend we stopped so we can
2646     // show all of the threads in the core file and explore the crashed state.
2647     SetPrivateState(eStateStopped);
2648 
2649     // Wait for a stopped event since we just posted one above...
2650     lldb::EventSP event_sp;
2651     StateType state =
2652         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2653 
2654     if (!StateIsStoppedState(state, false)) {
2655       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2656       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2657                 StateAsCString(state));
2658       error.SetErrorString(
2659           "Did not get stopped event after loading the core file.");
2660     }
2661     RestoreProcessEvents();
2662   }
2663   return error;
2664 }
2665 
2666 DynamicLoader *Process::GetDynamicLoader() {
2667   if (!m_dyld_up)
2668     m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2669   return m_dyld_up.get();
2670 }
2671 
2672 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2673 
2674 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2675   return false;
2676 }
2677 
2678 JITLoaderList &Process::GetJITLoaders() {
2679   if (!m_jit_loaders_up) {
2680     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2681     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2682   }
2683   return *m_jit_loaders_up;
2684 }
2685 
2686 SystemRuntime *Process::GetSystemRuntime() {
2687   if (!m_system_runtime_up)
2688     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2689   return m_system_runtime_up.get();
2690 }
2691 
2692 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2693                                                           uint32_t exec_count)
2694     : NextEventAction(process), m_exec_count(exec_count) {
2695   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2696   LLDB_LOGF(
2697       log,
2698       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2699       __FUNCTION__, static_cast<void *>(process), exec_count);
2700 }
2701 
2702 Process::NextEventAction::EventActionResult
2703 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2704   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2705 
2706   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2707   LLDB_LOGF(log,
2708             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2709             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2710 
2711   switch (state) {
2712   case eStateAttaching:
2713     return eEventActionSuccess;
2714 
2715   case eStateRunning:
2716   case eStateConnected:
2717     return eEventActionRetry;
2718 
2719   case eStateStopped:
2720   case eStateCrashed:
2721     // During attach, prior to sending the eStateStopped event,
2722     // lldb_private::Process subclasses must set the new process ID.
2723     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2724     // We don't want these events to be reported, so go set the
2725     // ShouldReportStop here:
2726     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2727 
2728     if (m_exec_count > 0) {
2729       --m_exec_count;
2730 
2731       LLDB_LOGF(log,
2732                 "Process::AttachCompletionHandler::%s state %s: reduced "
2733                 "remaining exec count to %" PRIu32 ", requesting resume",
2734                 __FUNCTION__, StateAsCString(state), m_exec_count);
2735 
2736       RequestResume();
2737       return eEventActionRetry;
2738     } else {
2739       LLDB_LOGF(log,
2740                 "Process::AttachCompletionHandler::%s state %s: no more "
2741                 "execs expected to start, continuing with attach",
2742                 __FUNCTION__, StateAsCString(state));
2743 
2744       m_process->CompleteAttach();
2745       return eEventActionSuccess;
2746     }
2747     break;
2748 
2749   default:
2750   case eStateExited:
2751   case eStateInvalid:
2752     break;
2753   }
2754 
2755   m_exit_string.assign("No valid Process");
2756   return eEventActionExit;
2757 }
2758 
2759 Process::NextEventAction::EventActionResult
2760 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2761   return eEventActionSuccess;
2762 }
2763 
2764 const char *Process::AttachCompletionHandler::GetExitString() {
2765   return m_exit_string.c_str();
2766 }
2767 
2768 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2769   if (m_listener_sp)
2770     return m_listener_sp;
2771   else
2772     return debugger.GetListener();
2773 }
2774 
2775 Status Process::Attach(ProcessAttachInfo &attach_info) {
2776   m_abi_sp.reset();
2777   m_process_input_reader.reset();
2778   m_dyld_up.reset();
2779   m_jit_loaders_up.reset();
2780   m_system_runtime_up.reset();
2781   m_os_up.reset();
2782 
2783   lldb::pid_t attach_pid = attach_info.GetProcessID();
2784   Status error;
2785   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2786     char process_name[PATH_MAX];
2787 
2788     if (attach_info.GetExecutableFile().GetPath(process_name,
2789                                                 sizeof(process_name))) {
2790       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2791 
2792       if (wait_for_launch) {
2793         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2794         if (error.Success()) {
2795           if (m_public_run_lock.TrySetRunning()) {
2796             m_should_detach = true;
2797             const bool restarted = false;
2798             SetPublicState(eStateAttaching, restarted);
2799             // Now attach using these arguments.
2800             error = DoAttachToProcessWithName(process_name, attach_info);
2801           } else {
2802             // This shouldn't happen
2803             error.SetErrorString("failed to acquire process run lock");
2804           }
2805 
2806           if (error.Fail()) {
2807             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2808               SetID(LLDB_INVALID_PROCESS_ID);
2809               if (error.AsCString() == nullptr)
2810                 error.SetErrorString("attach failed");
2811 
2812               SetExitStatus(-1, error.AsCString());
2813             }
2814           } else {
2815             SetNextEventAction(new Process::AttachCompletionHandler(
2816                 this, attach_info.GetResumeCount()));
2817             StartPrivateStateThread();
2818           }
2819           return error;
2820         }
2821       } else {
2822         ProcessInstanceInfoList process_infos;
2823         PlatformSP platform_sp(GetTarget().GetPlatform());
2824 
2825         if (platform_sp) {
2826           ProcessInstanceInfoMatch match_info;
2827           match_info.GetProcessInfo() = attach_info;
2828           match_info.SetNameMatchType(NameMatch::Equals);
2829           platform_sp->FindProcesses(match_info, process_infos);
2830           const uint32_t num_matches = process_infos.size();
2831           if (num_matches == 1) {
2832             attach_pid = process_infos[0].GetProcessID();
2833             // Fall through and attach using the above process ID
2834           } else {
2835             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2836                 process_name, sizeof(process_name));
2837             if (num_matches > 1) {
2838               StreamString s;
2839               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2840               for (size_t i = 0; i < num_matches; i++) {
2841                 process_infos[i].DumpAsTableRow(
2842                     s, platform_sp->GetUserIDResolver(), true, false);
2843               }
2844               error.SetErrorStringWithFormat(
2845                   "more than one process named %s:\n%s", process_name,
2846                   s.GetData());
2847             } else
2848               error.SetErrorStringWithFormat(
2849                   "could not find a process named %s", process_name);
2850           }
2851         } else {
2852           error.SetErrorString(
2853               "invalid platform, can't find processes by name");
2854           return error;
2855         }
2856       }
2857     } else {
2858       error.SetErrorString("invalid process name");
2859     }
2860   }
2861 
2862   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2863     error = WillAttachToProcessWithID(attach_pid);
2864     if (error.Success()) {
2865 
2866       if (m_public_run_lock.TrySetRunning()) {
2867         // Now attach using these arguments.
2868         m_should_detach = true;
2869         const bool restarted = false;
2870         SetPublicState(eStateAttaching, restarted);
2871         error = DoAttachToProcessWithID(attach_pid, attach_info);
2872       } else {
2873         // This shouldn't happen
2874         error.SetErrorString("failed to acquire process run lock");
2875       }
2876 
2877       if (error.Success()) {
2878         SetNextEventAction(new Process::AttachCompletionHandler(
2879             this, attach_info.GetResumeCount()));
2880         StartPrivateStateThread();
2881       } else {
2882         if (GetID() != LLDB_INVALID_PROCESS_ID)
2883           SetID(LLDB_INVALID_PROCESS_ID);
2884 
2885         const char *error_string = error.AsCString();
2886         if (error_string == nullptr)
2887           error_string = "attach failed";
2888 
2889         SetExitStatus(-1, error_string);
2890       }
2891     }
2892   }
2893   return error;
2894 }
2895 
2896 void Process::CompleteAttach() {
2897   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
2898                                                   LIBLLDB_LOG_TARGET));
2899   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2900 
2901   // Let the process subclass figure out at much as it can about the process
2902   // before we go looking for a dynamic loader plug-in.
2903   ArchSpec process_arch;
2904   DidAttach(process_arch);
2905 
2906   if (process_arch.IsValid()) {
2907     GetTarget().SetArchitecture(process_arch);
2908     if (log) {
2909       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2910       LLDB_LOGF(log,
2911                 "Process::%s replacing process architecture with DidAttach() "
2912                 "architecture: %s",
2913                 __FUNCTION__, triple_str ? triple_str : "<null>");
2914     }
2915   }
2916 
2917   // We just attached.  If we have a platform, ask it for the process
2918   // architecture, and if it isn't the same as the one we've already set,
2919   // switch architectures.
2920   PlatformSP platform_sp(GetTarget().GetPlatform());
2921   assert(platform_sp);
2922   if (platform_sp) {
2923     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2924     if (target_arch.IsValid() &&
2925         !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) {
2926       ArchSpec platform_arch;
2927       platform_sp =
2928           platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch);
2929       if (platform_sp) {
2930         GetTarget().SetPlatform(platform_sp);
2931         GetTarget().SetArchitecture(platform_arch);
2932         LLDB_LOGF(log,
2933                   "Process::%s switching platform to %s and architecture "
2934                   "to %s based on info from attach",
2935                   __FUNCTION__, platform_sp->GetName().AsCString(""),
2936                   platform_arch.GetTriple().getTriple().c_str());
2937       }
2938     } else if (!process_arch.IsValid()) {
2939       ProcessInstanceInfo process_info;
2940       GetProcessInfo(process_info);
2941       const ArchSpec &process_arch = process_info.GetArchitecture();
2942       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2943       if (process_arch.IsValid() &&
2944           target_arch.IsCompatibleMatch(process_arch) &&
2945           !target_arch.IsExactMatch(process_arch)) {
2946         GetTarget().SetArchitecture(process_arch);
2947         LLDB_LOGF(log,
2948                   "Process::%s switching architecture to %s based on info "
2949                   "the platform retrieved for pid %" PRIu64,
2950                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2951                   GetID());
2952       }
2953     }
2954   }
2955 
2956   // We have completed the attach, now it is time to find the dynamic loader
2957   // plug-in
2958   DynamicLoader *dyld = GetDynamicLoader();
2959   if (dyld) {
2960     dyld->DidAttach();
2961     if (log) {
2962       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2963       LLDB_LOG(log,
2964                "after DynamicLoader::DidAttach(), target "
2965                "executable is {0} (using {1} plugin)",
2966                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2967                dyld->GetPluginName());
2968     }
2969   }
2970 
2971   GetJITLoaders().DidAttach();
2972 
2973   SystemRuntime *system_runtime = GetSystemRuntime();
2974   if (system_runtime) {
2975     system_runtime->DidAttach();
2976     if (log) {
2977       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2978       LLDB_LOG(log,
2979                "after SystemRuntime::DidAttach(), target "
2980                "executable is {0} (using {1} plugin)",
2981                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2982                system_runtime->GetPluginName());
2983     }
2984   }
2985 
2986   if (!m_os_up) {
2987     LoadOperatingSystemPlugin(false);
2988     if (m_os_up) {
2989       // Somebody might have gotten threads before now, but we need to force the
2990       // update after we've loaded the OperatingSystem plugin or it won't get a
2991       // chance to process the threads.
2992       m_thread_list.Clear();
2993       UpdateThreadListIfNeeded();
2994     }
2995   }
2996   // Figure out which one is the executable, and set that in our target:
2997   ModuleSP new_executable_module_sp;
2998   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2999     if (module_sp && module_sp->IsExecutable()) {
3000       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
3001         new_executable_module_sp = module_sp;
3002       break;
3003     }
3004   }
3005   if (new_executable_module_sp) {
3006     GetTarget().SetExecutableModule(new_executable_module_sp,
3007                                     eLoadDependentsNo);
3008     if (log) {
3009       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3010       LLDB_LOGF(
3011           log,
3012           "Process::%s after looping through modules, target executable is %s",
3013           __FUNCTION__,
3014           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3015                         : "<none>");
3016     }
3017   }
3018 }
3019 
3020 Status Process::ConnectRemote(llvm::StringRef remote_url) {
3021   m_abi_sp.reset();
3022   m_process_input_reader.reset();
3023 
3024   // Find the process and its architecture.  Make sure it matches the
3025   // architecture of the current Target, and if not adjust it.
3026 
3027   Status error(DoConnectRemote(remote_url));
3028   if (error.Success()) {
3029     if (GetID() != LLDB_INVALID_PROCESS_ID) {
3030       EventSP event_sp;
3031       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
3032 
3033       if (state == eStateStopped || state == eStateCrashed) {
3034         // If we attached and actually have a process on the other end, then
3035         // this ended up being the equivalent of an attach.
3036         CompleteAttach();
3037 
3038         // This delays passing the stopped event to listeners till
3039         // CompleteAttach gets a chance to complete...
3040         HandlePrivateEvent(event_sp);
3041       }
3042     }
3043 
3044     if (PrivateStateThreadIsValid())
3045       ResumePrivateStateThread();
3046     else
3047       StartPrivateStateThread();
3048   }
3049   return error;
3050 }
3051 
3052 Status Process::PrivateResume() {
3053   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
3054                                                   LIBLLDB_LOG_STEP));
3055   LLDB_LOGF(log,
3056             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3057             "private state: %s",
3058             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3059             StateAsCString(m_private_state.GetValue()));
3060 
3061   // If signals handing status changed we might want to update our signal
3062   // filters before resuming.
3063   UpdateAutomaticSignalFiltering();
3064 
3065   Status error(WillResume());
3066   // Tell the process it is about to resume before the thread list
3067   if (error.Success()) {
3068     // Now let the thread list know we are about to resume so it can let all of
3069     // our threads know that they are about to be resumed. Threads will each be
3070     // called with Thread::WillResume(StateType) where StateType contains the
3071     // state that they are supposed to have when the process is resumed
3072     // (suspended/running/stepping). Threads should also check their resume
3073     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3074     // start back up with a signal.
3075     if (m_thread_list.WillResume()) {
3076       // Last thing, do the PreResumeActions.
3077       if (!RunPreResumeActions()) {
3078         error.SetErrorString(
3079             "Process::PrivateResume PreResumeActions failed, not resuming.");
3080       } else {
3081         m_mod_id.BumpResumeID();
3082         error = DoResume();
3083         if (error.Success()) {
3084           DidResume();
3085           m_thread_list.DidResume();
3086           LLDB_LOGF(log, "Process thinks the process has resumed.");
3087         } else {
3088           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3089           return error;
3090         }
3091       }
3092     } else {
3093       // Somebody wanted to run without running (e.g. we were faking a step
3094       // from one frame of a set of inlined frames that share the same PC to
3095       // another.)  So generate a continue & a stopped event, and let the world
3096       // handle them.
3097       LLDB_LOGF(log,
3098                 "Process::PrivateResume() asked to simulate a start & stop.");
3099 
3100       SetPrivateState(eStateRunning);
3101       SetPrivateState(eStateStopped);
3102     }
3103   } else
3104     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3105               error.AsCString("<unknown error>"));
3106   return error;
3107 }
3108 
3109 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3110   if (!StateIsRunningState(m_public_state.GetValue()))
3111     return Status("Process is not running.");
3112 
3113   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3114   // case it was already set and some thread plan logic calls halt on its own.
3115   m_clear_thread_plans_on_stop |= clear_thread_plans;
3116 
3117   ListenerSP halt_listener_sp(
3118       Listener::MakeListener("lldb.process.halt_listener"));
3119   HijackProcessEvents(halt_listener_sp);
3120 
3121   EventSP event_sp;
3122 
3123   SendAsyncInterrupt();
3124 
3125   if (m_public_state.GetValue() == eStateAttaching) {
3126     // Don't hijack and eat the eStateExited as the code that was doing the
3127     // attach will be waiting for this event...
3128     RestoreProcessEvents();
3129     SetExitStatus(SIGKILL, "Cancelled async attach.");
3130     Destroy(false);
3131     return Status();
3132   }
3133 
3134   // Wait for the process halt timeout seconds for the process to stop.
3135   StateType state =
3136       WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3137                            halt_listener_sp, nullptr, use_run_lock);
3138   RestoreProcessEvents();
3139 
3140   if (state == eStateInvalid || !event_sp) {
3141     // We timed out and didn't get a stop event...
3142     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3143   }
3144 
3145   BroadcastEvent(event_sp);
3146 
3147   return Status();
3148 }
3149 
3150 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3151   Status error;
3152 
3153   // Check both the public & private states here.  If we're hung evaluating an
3154   // expression, for instance, then the public state will be stopped, but we
3155   // still need to interrupt.
3156   if (m_public_state.GetValue() == eStateRunning ||
3157       m_private_state.GetValue() == eStateRunning) {
3158     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3159     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3160 
3161     ListenerSP listener_sp(
3162         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3163     HijackProcessEvents(listener_sp);
3164 
3165     SendAsyncInterrupt();
3166 
3167     // Consume the interrupt event.
3168     StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3169                                            &exit_event_sp, true, listener_sp);
3170 
3171     RestoreProcessEvents();
3172 
3173     // If the process exited while we were waiting for it to stop, put the
3174     // exited event into the shared pointer passed in and return.  Our caller
3175     // doesn't need to do anything else, since they don't have a process
3176     // anymore...
3177 
3178     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3179       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3180                 __FUNCTION__);
3181       return error;
3182     } else
3183       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3184 
3185     if (state != eStateStopped) {
3186       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3187                 StateAsCString(state));
3188       // If we really couldn't stop the process then we should just error out
3189       // here, but if the lower levels just bobbled sending the event and we
3190       // really are stopped, then continue on.
3191       StateType private_state = m_private_state.GetValue();
3192       if (private_state != eStateStopped) {
3193         return Status(
3194             "Attempt to stop the target in order to detach timed out. "
3195             "State = %s",
3196             StateAsCString(GetState()));
3197       }
3198     }
3199   }
3200   return error;
3201 }
3202 
3203 Status Process::Detach(bool keep_stopped) {
3204   EventSP exit_event_sp;
3205   Status error;
3206   m_destroy_in_process = true;
3207 
3208   error = WillDetach();
3209 
3210   if (error.Success()) {
3211     if (DetachRequiresHalt()) {
3212       error = StopForDestroyOrDetach(exit_event_sp);
3213       if (!error.Success()) {
3214         m_destroy_in_process = false;
3215         return error;
3216       } else if (exit_event_sp) {
3217         // We shouldn't need to do anything else here.  There's no process left
3218         // to detach from...
3219         StopPrivateStateThread();
3220         m_destroy_in_process = false;
3221         return error;
3222       }
3223     }
3224 
3225     m_thread_list.DiscardThreadPlans();
3226     DisableAllBreakpointSites();
3227 
3228     error = DoDetach(keep_stopped);
3229     if (error.Success()) {
3230       DidDetach();
3231       StopPrivateStateThread();
3232     } else {
3233       return error;
3234     }
3235   }
3236   m_destroy_in_process = false;
3237 
3238   // If we exited when we were waiting for a process to stop, then forward the
3239   // event here so we don't lose the event
3240   if (exit_event_sp) {
3241     // Directly broadcast our exited event because we shut down our private
3242     // state thread above
3243     BroadcastEvent(exit_event_sp);
3244   }
3245 
3246   // If we have been interrupted (to kill us) in the middle of running, we may
3247   // not end up propagating the last events through the event system, in which
3248   // case we might strand the write lock.  Unlock it here so when we do to tear
3249   // down the process we don't get an error destroying the lock.
3250 
3251   m_public_run_lock.SetStopped();
3252   return error;
3253 }
3254 
3255 Status Process::Destroy(bool force_kill) {
3256   // If we've already called Process::Finalize then there's nothing useful to
3257   // be done here.  Finalize has actually called Destroy already.
3258   if (m_finalizing)
3259     return {};
3260   return DestroyImpl(force_kill);
3261 }
3262 
3263 Status Process::DestroyImpl(bool force_kill) {
3264   // Tell ourselves we are in the process of destroying the process, so that we
3265   // don't do any unnecessary work that might hinder the destruction.  Remember
3266   // to set this back to false when we are done.  That way if the attempt
3267   // failed and the process stays around for some reason it won't be in a
3268   // confused state.
3269 
3270   if (force_kill)
3271     m_should_detach = false;
3272 
3273   if (GetShouldDetach()) {
3274     // FIXME: This will have to be a process setting:
3275     bool keep_stopped = false;
3276     Detach(keep_stopped);
3277   }
3278 
3279   m_destroy_in_process = true;
3280 
3281   Status error(WillDestroy());
3282   if (error.Success()) {
3283     EventSP exit_event_sp;
3284     if (DestroyRequiresHalt()) {
3285       error = StopForDestroyOrDetach(exit_event_sp);
3286     }
3287 
3288     if (m_public_state.GetValue() == eStateStopped) {
3289       // Ditch all thread plans, and remove all our breakpoints: in case we
3290       // have to restart the target to kill it, we don't want it hitting a
3291       // breakpoint... Only do this if we've stopped, however, since if we
3292       // didn't manage to halt it above, then we're not going to have much luck
3293       // doing this now.
3294       m_thread_list.DiscardThreadPlans();
3295       DisableAllBreakpointSites();
3296     }
3297 
3298     error = DoDestroy();
3299     if (error.Success()) {
3300       DidDestroy();
3301       StopPrivateStateThread();
3302     }
3303     m_stdio_communication.StopReadThread();
3304     m_stdio_communication.Disconnect();
3305     m_stdin_forward = false;
3306 
3307     if (m_process_input_reader) {
3308       m_process_input_reader->SetIsDone(true);
3309       m_process_input_reader->Cancel();
3310       m_process_input_reader.reset();
3311     }
3312 
3313     // If we exited when we were waiting for a process to stop, then forward
3314     // the event here so we don't lose the event
3315     if (exit_event_sp) {
3316       // Directly broadcast our exited event because we shut down our private
3317       // state thread above
3318       BroadcastEvent(exit_event_sp);
3319     }
3320 
3321     // If we have been interrupted (to kill us) in the middle of running, we
3322     // may not end up propagating the last events through the event system, in
3323     // which case we might strand the write lock.  Unlock it here so when we do
3324     // to tear down the process we don't get an error destroying the lock.
3325     m_public_run_lock.SetStopped();
3326   }
3327 
3328   m_destroy_in_process = false;
3329 
3330   return error;
3331 }
3332 
3333 Status Process::Signal(int signal) {
3334   Status error(WillSignal());
3335   if (error.Success()) {
3336     error = DoSignal(signal);
3337     if (error.Success())
3338       DidSignal();
3339   }
3340   return error;
3341 }
3342 
3343 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3344   assert(signals_sp && "null signals_sp");
3345   m_unix_signals_sp = signals_sp;
3346 }
3347 
3348 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3349   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3350   return m_unix_signals_sp;
3351 }
3352 
3353 lldb::ByteOrder Process::GetByteOrder() const {
3354   return GetTarget().GetArchitecture().GetByteOrder();
3355 }
3356 
3357 uint32_t Process::GetAddressByteSize() const {
3358   return GetTarget().GetArchitecture().GetAddressByteSize();
3359 }
3360 
3361 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3362   const StateType state =
3363       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3364   bool return_value = true;
3365   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS |
3366                                                   LIBLLDB_LOG_PROCESS));
3367 
3368   switch (state) {
3369   case eStateDetached:
3370   case eStateExited:
3371   case eStateUnloaded:
3372     m_stdio_communication.SynchronizeWithReadThread();
3373     m_stdio_communication.StopReadThread();
3374     m_stdio_communication.Disconnect();
3375     m_stdin_forward = false;
3376 
3377     LLVM_FALLTHROUGH;
3378   case eStateConnected:
3379   case eStateAttaching:
3380   case eStateLaunching:
3381     // These events indicate changes in the state of the debugging session,
3382     // always report them.
3383     return_value = true;
3384     break;
3385   case eStateInvalid:
3386     // We stopped for no apparent reason, don't report it.
3387     return_value = false;
3388     break;
3389   case eStateRunning:
3390   case eStateStepping:
3391     // If we've started the target running, we handle the cases where we are
3392     // already running and where there is a transition from stopped to running
3393     // differently. running -> running: Automatically suppress extra running
3394     // events stopped -> running: Report except when there is one or more no
3395     // votes
3396     //     and no yes votes.
3397     SynchronouslyNotifyStateChanged(state);
3398     if (m_force_next_event_delivery)
3399       return_value = true;
3400     else {
3401       switch (m_last_broadcast_state) {
3402       case eStateRunning:
3403       case eStateStepping:
3404         // We always suppress multiple runnings with no PUBLIC stop in between.
3405         return_value = false;
3406         break;
3407       default:
3408         // TODO: make this work correctly. For now always report
3409         // run if we aren't running so we don't miss any running events. If I
3410         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3411         // and hit the breakpoints on multiple threads, then somehow during the
3412         // stepping over of all breakpoints no run gets reported.
3413 
3414         // This is a transition from stop to run.
3415         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3416         case eVoteYes:
3417         case eVoteNoOpinion:
3418           return_value = true;
3419           break;
3420         case eVoteNo:
3421           return_value = false;
3422           break;
3423         }
3424         break;
3425       }
3426     }
3427     break;
3428   case eStateStopped:
3429   case eStateCrashed:
3430   case eStateSuspended:
3431     // We've stopped.  First see if we're going to restart the target. If we
3432     // are going to stop, then we always broadcast the event. If we aren't
3433     // going to stop, let the thread plans decide if we're going to report this
3434     // event. If no thread has an opinion, we don't report it.
3435 
3436     m_stdio_communication.SynchronizeWithReadThread();
3437     RefreshStateAfterStop();
3438     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3439       LLDB_LOGF(log,
3440                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3441                 "interrupt, state: %s",
3442                 static_cast<void *>(event_ptr), StateAsCString(state));
3443       // Even though we know we are going to stop, we should let the threads
3444       // have a look at the stop, so they can properly set their state.
3445       m_thread_list.ShouldStop(event_ptr);
3446       return_value = true;
3447     } else {
3448       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3449       bool should_resume = false;
3450 
3451       // It makes no sense to ask "ShouldStop" if we've already been
3452       // restarted... Asking the thread list is also not likely to go well,
3453       // since we are running again. So in that case just report the event.
3454 
3455       if (!was_restarted)
3456         should_resume = !m_thread_list.ShouldStop(event_ptr);
3457 
3458       if (was_restarted || should_resume || m_resume_requested) {
3459         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3460         LLDB_LOGF(log,
3461                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3462                   "%s was_restarted: %i report_stop_vote: %d.",
3463                   should_resume, StateAsCString(state), was_restarted,
3464                   report_stop_vote);
3465 
3466         switch (report_stop_vote) {
3467         case eVoteYes:
3468           return_value = true;
3469           break;
3470         case eVoteNoOpinion:
3471         case eVoteNo:
3472           return_value = false;
3473           break;
3474         }
3475 
3476         if (!was_restarted) {
3477           LLDB_LOGF(log,
3478                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3479                     "from state: %s",
3480                     static_cast<void *>(event_ptr), StateAsCString(state));
3481           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3482           PrivateResume();
3483         }
3484       } else {
3485         return_value = true;
3486         SynchronouslyNotifyStateChanged(state);
3487       }
3488     }
3489     break;
3490   }
3491 
3492   // Forcing the next event delivery is a one shot deal.  So reset it here.
3493   m_force_next_event_delivery = false;
3494 
3495   // We do some coalescing of events (for instance two consecutive running
3496   // events get coalesced.) But we only coalesce against events we actually
3497   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3498   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3499   // done, because the PublicState reflects the last event pulled off the
3500   // queue, and there may be several events stacked up on the queue unserviced.
3501   // So the PublicState may not reflect the last broadcasted event yet.
3502   // m_last_broadcast_state gets updated here.
3503 
3504   if (return_value)
3505     m_last_broadcast_state = state;
3506 
3507   LLDB_LOGF(log,
3508             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3509             "broadcast state: %s - %s",
3510             static_cast<void *>(event_ptr), StateAsCString(state),
3511             StateAsCString(m_last_broadcast_state),
3512             return_value ? "YES" : "NO");
3513   return return_value;
3514 }
3515 
3516 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3517   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
3518 
3519   bool already_running = PrivateStateThreadIsValid();
3520   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3521             already_running ? " already running"
3522                             : " starting private state thread");
3523 
3524   if (!is_secondary_thread && already_running)
3525     return true;
3526 
3527   // Create a thread that watches our internal state and controls which events
3528   // make it to clients (into the DCProcess event queue).
3529   char thread_name[1024];
3530   uint32_t max_len = llvm::get_max_thread_name_length();
3531   if (max_len > 0 && max_len <= 30) {
3532     // On platforms with abbreviated thread name lengths, choose thread names
3533     // that fit within the limit.
3534     if (already_running)
3535       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3536     else
3537       snprintf(thread_name, sizeof(thread_name), "intern-state");
3538   } else {
3539     if (already_running)
3540       snprintf(thread_name, sizeof(thread_name),
3541                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3542                GetID());
3543     else
3544       snprintf(thread_name, sizeof(thread_name),
3545                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3546   }
3547 
3548   // Create the private state thread, and start it running.
3549   PrivateStateThreadArgs *args_ptr =
3550       new PrivateStateThreadArgs(this, is_secondary_thread);
3551   llvm::Expected<HostThread> private_state_thread =
3552       ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread,
3553                                    (void *)args_ptr, 8 * 1024 * 1024);
3554   if (!private_state_thread) {
3555     LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST),
3556              "failed to launch host thread: {}",
3557              llvm::toString(private_state_thread.takeError()));
3558     return false;
3559   }
3560 
3561   assert(private_state_thread->IsJoinable());
3562   m_private_state_thread = *private_state_thread;
3563   ResumePrivateStateThread();
3564   return true;
3565 }
3566 
3567 void Process::PausePrivateStateThread() {
3568   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3569 }
3570 
3571 void Process::ResumePrivateStateThread() {
3572   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3573 }
3574 
3575 void Process::StopPrivateStateThread() {
3576   if (m_private_state_thread.IsJoinable())
3577     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3578   else {
3579     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3580     LLDB_LOGF(
3581         log,
3582         "Went to stop the private state thread, but it was already invalid.");
3583   }
3584 }
3585 
3586 void Process::ControlPrivateStateThread(uint32_t signal) {
3587   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3588 
3589   assert(signal == eBroadcastInternalStateControlStop ||
3590          signal == eBroadcastInternalStateControlPause ||
3591          signal == eBroadcastInternalStateControlResume);
3592 
3593   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3594 
3595   // Signal the private state thread
3596   if (m_private_state_thread.IsJoinable()) {
3597     // Broadcast the event.
3598     // It is important to do this outside of the if below, because it's
3599     // possible that the thread state is invalid but that the thread is waiting
3600     // on a control event instead of simply being on its way out (this should
3601     // not happen, but it apparently can).
3602     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3603     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3604     m_private_state_control_broadcaster.BroadcastEvent(signal,
3605                                                        event_receipt_sp);
3606 
3607     // Wait for the event receipt or for the private state thread to exit
3608     bool receipt_received = false;
3609     if (PrivateStateThreadIsValid()) {
3610       while (!receipt_received) {
3611         // Check for a receipt for n seconds and then check if the private
3612         // state thread is still around.
3613         receipt_received =
3614           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3615         if (!receipt_received) {
3616           // Check if the private state thread is still around. If it isn't
3617           // then we are done waiting
3618           if (!PrivateStateThreadIsValid())
3619             break; // Private state thread exited or is exiting, we are done
3620         }
3621       }
3622     }
3623 
3624     if (signal == eBroadcastInternalStateControlStop) {
3625       thread_result_t result = {};
3626       m_private_state_thread.Join(&result);
3627       m_private_state_thread.Reset();
3628     }
3629   } else {
3630     LLDB_LOGF(
3631         log,
3632         "Private state thread already dead, no need to signal it to stop.");
3633   }
3634 }
3635 
3636 void Process::SendAsyncInterrupt() {
3637   if (PrivateStateThreadIsValid())
3638     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3639                                                nullptr);
3640   else
3641     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3642 }
3643 
3644 void Process::HandlePrivateEvent(EventSP &event_sp) {
3645   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3646   m_resume_requested = false;
3647 
3648   const StateType new_state =
3649       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3650 
3651   // First check to see if anybody wants a shot at this event:
3652   if (m_next_event_action_up) {
3653     NextEventAction::EventActionResult action_result =
3654         m_next_event_action_up->PerformAction(event_sp);
3655     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3656 
3657     switch (action_result) {
3658     case NextEventAction::eEventActionSuccess:
3659       SetNextEventAction(nullptr);
3660       break;
3661 
3662     case NextEventAction::eEventActionRetry:
3663       break;
3664 
3665     case NextEventAction::eEventActionExit:
3666       // Handle Exiting Here.  If we already got an exited event, we should
3667       // just propagate it.  Otherwise, swallow this event, and set our state
3668       // to exit so the next event will kill us.
3669       if (new_state != eStateExited) {
3670         // FIXME: should cons up an exited event, and discard this one.
3671         SetExitStatus(0, m_next_event_action_up->GetExitString());
3672         SetNextEventAction(nullptr);
3673         return;
3674       }
3675       SetNextEventAction(nullptr);
3676       break;
3677     }
3678   }
3679 
3680   // See if we should broadcast this state to external clients?
3681   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3682 
3683   if (should_broadcast) {
3684     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3685     if (log) {
3686       LLDB_LOGF(log,
3687                 "Process::%s (pid = %" PRIu64
3688                 ") broadcasting new state %s (old state %s) to %s",
3689                 __FUNCTION__, GetID(), StateAsCString(new_state),
3690                 StateAsCString(GetState()),
3691                 is_hijacked ? "hijacked" : "public");
3692     }
3693     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3694     if (StateIsRunningState(new_state)) {
3695       // Only push the input handler if we aren't fowarding events, as this
3696       // means the curses GUI is in use... Or don't push it if we are launching
3697       // since it will come up stopped.
3698       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3699           new_state != eStateLaunching && new_state != eStateAttaching) {
3700         PushProcessIOHandler();
3701         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3702                                   eBroadcastAlways);
3703         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3704                   __FUNCTION__, m_iohandler_sync.GetValue());
3705       }
3706     } else if (StateIsStoppedState(new_state, false)) {
3707       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3708         // If the lldb_private::Debugger is handling the events, we don't want
3709         // to pop the process IOHandler here, we want to do it when we receive
3710         // the stopped event so we can carefully control when the process
3711         // IOHandler is popped because when we stop we want to display some
3712         // text stating how and why we stopped, then maybe some
3713         // process/thread/frame info, and then we want the "(lldb) " prompt to
3714         // show up. If we pop the process IOHandler here, then we will cause
3715         // the command interpreter to become the top IOHandler after the
3716         // process pops off and it will update its prompt right away... See the
3717         // Debugger.cpp file where it calls the function as
3718         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3719         // Otherwise we end up getting overlapping "(lldb) " prompts and
3720         // garbled output.
3721         //
3722         // If we aren't handling the events in the debugger (which is indicated
3723         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3724         // we are hijacked, then we always pop the process IO handler manually.
3725         // Hijacking happens when the internal process state thread is running
3726         // thread plans, or when commands want to run in synchronous mode and
3727         // they call "process->WaitForProcessToStop()". An example of something
3728         // that will hijack the events is a simple expression:
3729         //
3730         //  (lldb) expr (int)puts("hello")
3731         //
3732         // This will cause the internal process state thread to resume and halt
3733         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3734         // events) and we do need the IO handler to be pushed and popped
3735         // correctly.
3736 
3737         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3738           PopProcessIOHandler();
3739       }
3740     }
3741 
3742     BroadcastEvent(event_sp);
3743   } else {
3744     if (log) {
3745       LLDB_LOGF(
3746           log,
3747           "Process::%s (pid = %" PRIu64
3748           ") suppressing state %s (old state %s): should_broadcast == false",
3749           __FUNCTION__, GetID(), StateAsCString(new_state),
3750           StateAsCString(GetState()));
3751     }
3752   }
3753 }
3754 
3755 Status Process::HaltPrivate() {
3756   EventSP event_sp;
3757   Status error(WillHalt());
3758   if (error.Fail())
3759     return error;
3760 
3761   // Ask the process subclass to actually halt our process
3762   bool caused_stop;
3763   error = DoHalt(caused_stop);
3764 
3765   DidHalt();
3766   return error;
3767 }
3768 
3769 thread_result_t Process::PrivateStateThread(void *arg) {
3770   std::unique_ptr<PrivateStateThreadArgs> args_up(
3771       static_cast<PrivateStateThreadArgs *>(arg));
3772   thread_result_t result =
3773       args_up->process->RunPrivateStateThread(args_up->is_secondary_thread);
3774   return result;
3775 }
3776 
3777 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3778   bool control_only = true;
3779 
3780   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3781   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3782             __FUNCTION__, static_cast<void *>(this), GetID());
3783 
3784   bool exit_now = false;
3785   bool interrupt_requested = false;
3786   while (!exit_now) {
3787     EventSP event_sp;
3788     GetEventsPrivate(event_sp, llvm::None, control_only);
3789     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3790       LLDB_LOGF(log,
3791                 "Process::%s (arg = %p, pid = %" PRIu64
3792                 ") got a control event: %d",
3793                 __FUNCTION__, static_cast<void *>(this), GetID(),
3794                 event_sp->GetType());
3795 
3796       switch (event_sp->GetType()) {
3797       case eBroadcastInternalStateControlStop:
3798         exit_now = true;
3799         break; // doing any internal state management below
3800 
3801       case eBroadcastInternalStateControlPause:
3802         control_only = true;
3803         break;
3804 
3805       case eBroadcastInternalStateControlResume:
3806         control_only = false;
3807         break;
3808       }
3809 
3810       continue;
3811     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3812       if (m_public_state.GetValue() == eStateAttaching) {
3813         LLDB_LOGF(log,
3814                   "Process::%s (arg = %p, pid = %" PRIu64
3815                   ") woke up with an interrupt while attaching - "
3816                   "forwarding interrupt.",
3817                   __FUNCTION__, static_cast<void *>(this), GetID());
3818         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3819       } else if (StateIsRunningState(m_last_broadcast_state)) {
3820         LLDB_LOGF(log,
3821                   "Process::%s (arg = %p, pid = %" PRIu64
3822                   ") woke up with an interrupt - Halting.",
3823                   __FUNCTION__, static_cast<void *>(this), GetID());
3824         Status error = HaltPrivate();
3825         if (error.Fail() && log)
3826           LLDB_LOGF(log,
3827                     "Process::%s (arg = %p, pid = %" PRIu64
3828                     ") failed to halt the process: %s",
3829                     __FUNCTION__, static_cast<void *>(this), GetID(),
3830                     error.AsCString());
3831         // Halt should generate a stopped event. Make a note of the fact that
3832         // we were doing the interrupt, so we can set the interrupted flag
3833         // after we receive the event. We deliberately set this to true even if
3834         // HaltPrivate failed, so that we can interrupt on the next natural
3835         // stop.
3836         interrupt_requested = true;
3837       } else {
3838         // This can happen when someone (e.g. Process::Halt) sees that we are
3839         // running and sends an interrupt request, but the process actually
3840         // stops before we receive it. In that case, we can just ignore the
3841         // request. We use m_last_broadcast_state, because the Stopped event
3842         // may not have been popped of the event queue yet, which is when the
3843         // public state gets updated.
3844         LLDB_LOGF(log,
3845                   "Process::%s ignoring interrupt as we have already stopped.",
3846                   __FUNCTION__);
3847       }
3848       continue;
3849     }
3850 
3851     const StateType internal_state =
3852         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3853 
3854     if (internal_state != eStateInvalid) {
3855       if (m_clear_thread_plans_on_stop &&
3856           StateIsStoppedState(internal_state, true)) {
3857         m_clear_thread_plans_on_stop = false;
3858         m_thread_list.DiscardThreadPlans();
3859       }
3860 
3861       if (interrupt_requested) {
3862         if (StateIsStoppedState(internal_state, true)) {
3863           // We requested the interrupt, so mark this as such in the stop event
3864           // so clients can tell an interrupted process from a natural stop
3865           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3866           interrupt_requested = false;
3867         } else if (log) {
3868           LLDB_LOGF(log,
3869                     "Process::%s interrupt_requested, but a non-stopped "
3870                     "state '%s' received.",
3871                     __FUNCTION__, StateAsCString(internal_state));
3872         }
3873       }
3874 
3875       HandlePrivateEvent(event_sp);
3876     }
3877 
3878     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3879         internal_state == eStateDetached) {
3880       LLDB_LOGF(log,
3881                 "Process::%s (arg = %p, pid = %" PRIu64
3882                 ") about to exit with internal state %s...",
3883                 __FUNCTION__, static_cast<void *>(this), GetID(),
3884                 StateAsCString(internal_state));
3885 
3886       break;
3887     }
3888   }
3889 
3890   // Verify log is still enabled before attempting to write to it...
3891   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3892             __FUNCTION__, static_cast<void *>(this), GetID());
3893 
3894   // If we are a secondary thread, then the primary thread we are working for
3895   // will have already acquired the public_run_lock, and isn't done with what
3896   // it was doing yet, so don't try to change it on the way out.
3897   if (!is_secondary_thread)
3898     m_public_run_lock.SetStopped();
3899   return {};
3900 }
3901 
3902 // Process Event Data
3903 
3904 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3905 
3906 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3907                                             StateType state)
3908     : EventData(), m_process_wp(), m_state(state), m_restarted(false),
3909       m_update_state(0), m_interrupted(false) {
3910   if (process_sp)
3911     m_process_wp = process_sp;
3912 }
3913 
3914 Process::ProcessEventData::~ProcessEventData() = default;
3915 
3916 ConstString Process::ProcessEventData::GetFlavorString() {
3917   static ConstString g_flavor("Process::ProcessEventData");
3918   return g_flavor;
3919 }
3920 
3921 ConstString Process::ProcessEventData::GetFlavor() const {
3922   return ProcessEventData::GetFlavorString();
3923 }
3924 
3925 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3926                                            bool &found_valid_stopinfo) {
3927   found_valid_stopinfo = false;
3928 
3929   ProcessSP process_sp(m_process_wp.lock());
3930   if (!process_sp)
3931     return false;
3932 
3933   ThreadList &curr_thread_list = process_sp->GetThreadList();
3934   uint32_t num_threads = curr_thread_list.GetSize();
3935   uint32_t idx;
3936 
3937   // The actions might change one of the thread's stop_info's opinions about
3938   // whether we should stop the process, so we need to query that as we go.
3939 
3940   // One other complication here, is that we try to catch any case where the
3941   // target has run (except for expressions) and immediately exit, but if we
3942   // get that wrong (which is possible) then the thread list might have
3943   // changed, and that would cause our iteration here to crash.  We could
3944   // make a copy of the thread list, but we'd really like to also know if it
3945   // has changed at all, so we make up a vector of the thread ID's and check
3946   // what we get back against this list & bag out if anything differs.
3947   ThreadList not_suspended_thread_list(process_sp.get());
3948   std::vector<uint32_t> thread_index_array(num_threads);
3949   uint32_t not_suspended_idx = 0;
3950   for (idx = 0; idx < num_threads; ++idx) {
3951     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3952 
3953     /*
3954      Filter out all suspended threads, they could not be the reason
3955      of stop and no need to perform any actions on them.
3956      */
3957     if (thread_sp->GetResumeState() != eStateSuspended) {
3958       not_suspended_thread_list.AddThread(thread_sp);
3959       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3960       not_suspended_idx++;
3961     }
3962   }
3963 
3964   // Use this to track whether we should continue from here.  We will only
3965   // continue the target running if no thread says we should stop.  Of course
3966   // if some thread's PerformAction actually sets the target running, then it
3967   // doesn't matter what the other threads say...
3968 
3969   bool still_should_stop = false;
3970 
3971   // Sometimes - for instance if we have a bug in the stub we are talking to,
3972   // we stop but no thread has a valid stop reason.  In that case we should
3973   // just stop, because we have no way of telling what the right thing to do
3974   // is, and it's better to let the user decide than continue behind their
3975   // backs.
3976 
3977   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3978     curr_thread_list = process_sp->GetThreadList();
3979     if (curr_thread_list.GetSize() != num_threads) {
3980       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3981                                                       LIBLLDB_LOG_PROCESS));
3982       LLDB_LOGF(
3983           log,
3984           "Number of threads changed from %u to %u while processing event.",
3985           num_threads, curr_thread_list.GetSize());
3986       break;
3987     }
3988 
3989     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3990 
3991     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3992       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3993                                                       LIBLLDB_LOG_PROCESS));
3994       LLDB_LOGF(log,
3995                 "The thread at position %u changed from %u to %u while "
3996                 "processing event.",
3997                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3998       break;
3999     }
4000 
4001     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4002     if (stop_info_sp && stop_info_sp->IsValid()) {
4003       found_valid_stopinfo = true;
4004       bool this_thread_wants_to_stop;
4005       if (stop_info_sp->GetOverrideShouldStop()) {
4006         this_thread_wants_to_stop =
4007             stop_info_sp->GetOverriddenShouldStopValue();
4008       } else {
4009         stop_info_sp->PerformAction(event_ptr);
4010         // The stop action might restart the target.  If it does, then we
4011         // want to mark that in the event so that whoever is receiving it
4012         // will know to wait for the running event and reflect that state
4013         // appropriately. We also need to stop processing actions, since they
4014         // aren't expecting the target to be running.
4015 
4016         // FIXME: we might have run.
4017         if (stop_info_sp->HasTargetRunSinceMe()) {
4018           SetRestarted(true);
4019           break;
4020         }
4021 
4022         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4023       }
4024 
4025       if (!still_should_stop)
4026         still_should_stop = this_thread_wants_to_stop;
4027     }
4028   }
4029 
4030   return still_should_stop;
4031 }
4032 
4033 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4034   ProcessSP process_sp(m_process_wp.lock());
4035 
4036   if (!process_sp)
4037     return;
4038 
4039   // This function gets called twice for each event, once when the event gets
4040   // pulled off of the private process event queue, and then any number of
4041   // times, first when it gets pulled off of the public event queue, then other
4042   // times when we're pretending that this is where we stopped at the end of
4043   // expression evaluation.  m_update_state is used to distinguish these three
4044   // cases; it is 0 when we're just pulling it off for private handling, and >
4045   // 1 for expression evaluation, and we don't want to do the breakpoint
4046   // command handling then.
4047   if (m_update_state != 1)
4048     return;
4049 
4050   process_sp->SetPublicState(
4051       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4052 
4053   if (m_state == eStateStopped && !m_restarted) {
4054     // Let process subclasses know we are about to do a public stop and do
4055     // anything they might need to in order to speed up register and memory
4056     // accesses.
4057     process_sp->WillPublicStop();
4058   }
4059 
4060   // If this is a halt event, even if the halt stopped with some reason other
4061   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4062   // the halt request came through) don't do the StopInfo actions, as they may
4063   // end up restarting the process.
4064   if (m_interrupted)
4065     return;
4066 
4067   // If we're not stopped or have restarted, then skip the StopInfo actions:
4068   if (m_state != eStateStopped || m_restarted) {
4069     return;
4070   }
4071 
4072   bool does_anybody_have_an_opinion = false;
4073   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4074 
4075   if (GetRestarted()) {
4076     return;
4077   }
4078 
4079   if (!still_should_stop && does_anybody_have_an_opinion) {
4080     // We've been asked to continue, so do that here.
4081     SetRestarted(true);
4082     // Use the public resume method here, since this is just extending a
4083     // public resume.
4084     process_sp->PrivateResume();
4085   } else {
4086     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4087                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4088 
4089     if (!hijacked) {
4090       // If we didn't restart, run the Stop Hooks here.
4091       // Don't do that if state changed events aren't hooked up to the
4092       // public (or SyncResume) broadcasters.  StopHooks are just for
4093       // real public stops.  They might also restart the target,
4094       // so watch for that.
4095       if (process_sp->GetTarget().RunStopHooks())
4096         SetRestarted(true);
4097     }
4098   }
4099 }
4100 
4101 void Process::ProcessEventData::Dump(Stream *s) const {
4102   ProcessSP process_sp(m_process_wp.lock());
4103 
4104   if (process_sp)
4105     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4106               static_cast<void *>(process_sp.get()), process_sp->GetID());
4107   else
4108     s->PutCString(" process = NULL, ");
4109 
4110   s->Printf("state = %s", StateAsCString(GetState()));
4111 }
4112 
4113 const Process::ProcessEventData *
4114 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4115   if (event_ptr) {
4116     const EventData *event_data = event_ptr->GetData();
4117     if (event_data &&
4118         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4119       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4120   }
4121   return nullptr;
4122 }
4123 
4124 ProcessSP
4125 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4126   ProcessSP process_sp;
4127   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4128   if (data)
4129     process_sp = data->GetProcessSP();
4130   return process_sp;
4131 }
4132 
4133 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4134   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4135   if (data == nullptr)
4136     return eStateInvalid;
4137   else
4138     return data->GetState();
4139 }
4140 
4141 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4142   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4143   if (data == nullptr)
4144     return false;
4145   else
4146     return data->GetRestarted();
4147 }
4148 
4149 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4150                                                     bool new_value) {
4151   ProcessEventData *data =
4152       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4153   if (data != nullptr)
4154     data->SetRestarted(new_value);
4155 }
4156 
4157 size_t
4158 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4159   ProcessEventData *data =
4160       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4161   if (data != nullptr)
4162     return data->GetNumRestartedReasons();
4163   else
4164     return 0;
4165 }
4166 
4167 const char *
4168 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4169                                                      size_t idx) {
4170   ProcessEventData *data =
4171       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4172   if (data != nullptr)
4173     return data->GetRestartedReasonAtIndex(idx);
4174   else
4175     return nullptr;
4176 }
4177 
4178 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4179                                                    const char *reason) {
4180   ProcessEventData *data =
4181       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4182   if (data != nullptr)
4183     data->AddRestartedReason(reason);
4184 }
4185 
4186 bool Process::ProcessEventData::GetInterruptedFromEvent(
4187     const Event *event_ptr) {
4188   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4189   if (data == nullptr)
4190     return false;
4191   else
4192     return data->GetInterrupted();
4193 }
4194 
4195 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4196                                                       bool new_value) {
4197   ProcessEventData *data =
4198       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4199   if (data != nullptr)
4200     data->SetInterrupted(new_value);
4201 }
4202 
4203 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4204   ProcessEventData *data =
4205       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4206   if (data) {
4207     data->SetUpdateStateOnRemoval();
4208     return true;
4209   }
4210   return false;
4211 }
4212 
4213 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4214 
4215 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4216   exe_ctx.SetTargetPtr(&GetTarget());
4217   exe_ctx.SetProcessPtr(this);
4218   exe_ctx.SetThreadPtr(nullptr);
4219   exe_ctx.SetFramePtr(nullptr);
4220 }
4221 
4222 // uint32_t
4223 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4224 // std::vector<lldb::pid_t> &pids)
4225 //{
4226 //    return 0;
4227 //}
4228 //
4229 // ArchSpec
4230 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4231 //{
4232 //    return Host::GetArchSpecForExistingProcess (pid);
4233 //}
4234 //
4235 // ArchSpec
4236 // Process::GetArchSpecForExistingProcess (const char *process_name)
4237 //{
4238 //    return Host::GetArchSpecForExistingProcess (process_name);
4239 //}
4240 
4241 void Process::AppendSTDOUT(const char *s, size_t len) {
4242   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4243   m_stdout_data.append(s, len);
4244   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4245                          new ProcessEventData(shared_from_this(), GetState()));
4246 }
4247 
4248 void Process::AppendSTDERR(const char *s, size_t len) {
4249   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4250   m_stderr_data.append(s, len);
4251   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4252                          new ProcessEventData(shared_from_this(), GetState()));
4253 }
4254 
4255 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4256   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4257   m_profile_data.push_back(one_profile_data);
4258   BroadcastEventIfUnique(eBroadcastBitProfileData,
4259                          new ProcessEventData(shared_from_this(), GetState()));
4260 }
4261 
4262 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4263                                       const StructuredDataPluginSP &plugin_sp) {
4264   BroadcastEvent(
4265       eBroadcastBitStructuredData,
4266       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4267 }
4268 
4269 StructuredDataPluginSP
4270 Process::GetStructuredDataPlugin(ConstString type_name) const {
4271   auto find_it = m_structured_data_plugin_map.find(type_name);
4272   if (find_it != m_structured_data_plugin_map.end())
4273     return find_it->second;
4274   else
4275     return StructuredDataPluginSP();
4276 }
4277 
4278 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4279   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4280   if (m_profile_data.empty())
4281     return 0;
4282 
4283   std::string &one_profile_data = m_profile_data.front();
4284   size_t bytes_available = one_profile_data.size();
4285   if (bytes_available > 0) {
4286     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4287     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4288               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4289     if (bytes_available > buf_size) {
4290       memcpy(buf, one_profile_data.c_str(), buf_size);
4291       one_profile_data.erase(0, buf_size);
4292       bytes_available = buf_size;
4293     } else {
4294       memcpy(buf, one_profile_data.c_str(), bytes_available);
4295       m_profile_data.erase(m_profile_data.begin());
4296     }
4297   }
4298   return bytes_available;
4299 }
4300 
4301 // Process STDIO
4302 
4303 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4304   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4305   size_t bytes_available = m_stdout_data.size();
4306   if (bytes_available > 0) {
4307     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4308     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4309               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4310     if (bytes_available > buf_size) {
4311       memcpy(buf, m_stdout_data.c_str(), buf_size);
4312       m_stdout_data.erase(0, buf_size);
4313       bytes_available = buf_size;
4314     } else {
4315       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4316       m_stdout_data.clear();
4317     }
4318   }
4319   return bytes_available;
4320 }
4321 
4322 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4323   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4324   size_t bytes_available = m_stderr_data.size();
4325   if (bytes_available > 0) {
4326     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4327     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4328               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4329     if (bytes_available > buf_size) {
4330       memcpy(buf, m_stderr_data.c_str(), buf_size);
4331       m_stderr_data.erase(0, buf_size);
4332       bytes_available = buf_size;
4333     } else {
4334       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4335       m_stderr_data.clear();
4336     }
4337   }
4338   return bytes_available;
4339 }
4340 
4341 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4342                                            size_t src_len) {
4343   Process *process = (Process *)baton;
4344   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4345 }
4346 
4347 class IOHandlerProcessSTDIO : public IOHandler {
4348 public:
4349   IOHandlerProcessSTDIO(Process *process, int write_fd)
4350       : IOHandler(process->GetTarget().GetDebugger(),
4351                   IOHandler::Type::ProcessIO),
4352         m_process(process),
4353         m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4354         m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4355     m_pipe.CreateNew(false);
4356   }
4357 
4358   ~IOHandlerProcessSTDIO() override = default;
4359 
4360   // Each IOHandler gets to run until it is done. It should read data from the
4361   // "in" and place output into "out" and "err and return when done.
4362   void Run() override {
4363     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4364         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4365       SetIsDone(true);
4366       return;
4367     }
4368 
4369     SetIsDone(false);
4370     const int read_fd = m_read_file.GetDescriptor();
4371     Terminal terminal(read_fd);
4372     TerminalState terminal_state(terminal, false);
4373     // FIXME: error handling?
4374     llvm::consumeError(terminal.SetCanonical(false));
4375     llvm::consumeError(terminal.SetEcho(false));
4376 // FD_ZERO, FD_SET are not supported on windows
4377 #ifndef _WIN32
4378     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4379     m_is_running = true;
4380     while (!GetIsDone()) {
4381       SelectHelper select_helper;
4382       select_helper.FDSetRead(read_fd);
4383       select_helper.FDSetRead(pipe_read_fd);
4384       Status error = select_helper.Select();
4385 
4386       if (error.Fail()) {
4387         SetIsDone(true);
4388       } else {
4389         char ch = 0;
4390         size_t n;
4391         if (select_helper.FDIsSetRead(read_fd)) {
4392           n = 1;
4393           if (m_read_file.Read(&ch, n).Success() && n == 1) {
4394             if (m_write_file.Write(&ch, n).Fail() || n != 1)
4395               SetIsDone(true);
4396           } else
4397             SetIsDone(true);
4398         }
4399         if (select_helper.FDIsSetRead(pipe_read_fd)) {
4400           size_t bytes_read;
4401           // Consume the interrupt byte
4402           Status error = m_pipe.Read(&ch, 1, bytes_read);
4403           if (error.Success()) {
4404             switch (ch) {
4405             case 'q':
4406               SetIsDone(true);
4407               break;
4408             case 'i':
4409               if (StateIsRunningState(m_process->GetState()))
4410                 m_process->SendAsyncInterrupt();
4411               break;
4412             }
4413           }
4414         }
4415       }
4416     }
4417     m_is_running = false;
4418 #endif
4419   }
4420 
4421   void Cancel() override {
4422     SetIsDone(true);
4423     // Only write to our pipe to cancel if we are in
4424     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4425     // is being run from the command interpreter:
4426     //
4427     // (lldb) step_process_thousands_of_times
4428     //
4429     // In this case the command interpreter will be in the middle of handling
4430     // the command and if the process pushes and pops the IOHandler thousands
4431     // of times, we can end up writing to m_pipe without ever consuming the
4432     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4433     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4434     if (m_is_running) {
4435       char ch = 'q'; // Send 'q' for quit
4436       size_t bytes_written = 0;
4437       m_pipe.Write(&ch, 1, bytes_written);
4438     }
4439   }
4440 
4441   bool Interrupt() override {
4442     // Do only things that are safe to do in an interrupt context (like in a
4443     // SIGINT handler), like write 1 byte to a file descriptor. This will
4444     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4445     // that was written to the pipe and then call
4446     // m_process->SendAsyncInterrupt() from a much safer location in code.
4447     if (m_active) {
4448       char ch = 'i'; // Send 'i' for interrupt
4449       size_t bytes_written = 0;
4450       Status result = m_pipe.Write(&ch, 1, bytes_written);
4451       return result.Success();
4452     } else {
4453       // This IOHandler might be pushed on the stack, but not being run
4454       // currently so do the right thing if we aren't actively watching for
4455       // STDIN by sending the interrupt to the process. Otherwise the write to
4456       // the pipe above would do nothing. This can happen when the command
4457       // interpreter is running and gets a "expression ...". It will be on the
4458       // IOHandler thread and sending the input is complete to the delegate
4459       // which will cause the expression to run, which will push the process IO
4460       // handler, but not run it.
4461 
4462       if (StateIsRunningState(m_process->GetState())) {
4463         m_process->SendAsyncInterrupt();
4464         return true;
4465       }
4466     }
4467     return false;
4468   }
4469 
4470   void GotEOF() override {}
4471 
4472 protected:
4473   Process *m_process;
4474   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4475   NativeFile m_write_file; // Write to this file (usually the primary pty for
4476                            // getting io to debuggee)
4477   Pipe m_pipe;
4478   std::atomic<bool> m_is_running{false};
4479 };
4480 
4481 void Process::SetSTDIOFileDescriptor(int fd) {
4482   // First set up the Read Thread for reading/handling process I/O
4483   m_stdio_communication.SetConnection(
4484       std::make_unique<ConnectionFileDescriptor>(fd, true));
4485   if (m_stdio_communication.IsConnected()) {
4486     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4487         STDIOReadThreadBytesReceived, this);
4488     m_stdio_communication.StartReadThread();
4489 
4490     // Now read thread is set up, set up input reader.
4491 
4492     if (!m_process_input_reader)
4493       m_process_input_reader =
4494           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4495   }
4496 }
4497 
4498 bool Process::ProcessIOHandlerIsActive() {
4499   IOHandlerSP io_handler_sp(m_process_input_reader);
4500   if (io_handler_sp)
4501     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4502   return false;
4503 }
4504 bool Process::PushProcessIOHandler() {
4505   IOHandlerSP io_handler_sp(m_process_input_reader);
4506   if (io_handler_sp) {
4507     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4508     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4509 
4510     io_handler_sp->SetIsDone(false);
4511     // If we evaluate an utility function, then we don't cancel the current
4512     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4513     // existing IOHandler that potentially provides the user interface (e.g.
4514     // the IOHandler for Editline).
4515     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4516     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4517                                                 cancel_top_handler);
4518     return true;
4519   }
4520   return false;
4521 }
4522 
4523 bool Process::PopProcessIOHandler() {
4524   IOHandlerSP io_handler_sp(m_process_input_reader);
4525   if (io_handler_sp)
4526     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4527   return false;
4528 }
4529 
4530 // The process needs to know about installed plug-ins
4531 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4532 
4533 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4534 
4535 namespace {
4536 // RestorePlanState is used to record the "is private", "is controlling" and
4537 // "okay
4538 // to discard" fields of the plan we are running, and reset it on Clean or on
4539 // destruction. It will only reset the state once, so you can call Clean and
4540 // then monkey with the state and it won't get reset on you again.
4541 
4542 class RestorePlanState {
4543 public:
4544   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4545       : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) {
4546     if (m_thread_plan_sp) {
4547       m_private = m_thread_plan_sp->GetPrivate();
4548       m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4549       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4550     }
4551   }
4552 
4553   ~RestorePlanState() { Clean(); }
4554 
4555   void Clean() {
4556     if (!m_already_reset && m_thread_plan_sp) {
4557       m_already_reset = true;
4558       m_thread_plan_sp->SetPrivate(m_private);
4559       m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4560       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4561     }
4562   }
4563 
4564 private:
4565   lldb::ThreadPlanSP m_thread_plan_sp;
4566   bool m_already_reset;
4567   bool m_private;
4568   bool m_is_controlling;
4569   bool m_okay_to_discard;
4570 };
4571 } // anonymous namespace
4572 
4573 static microseconds
4574 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4575   const milliseconds default_one_thread_timeout(250);
4576 
4577   // If the overall wait is forever, then we don't need to worry about it.
4578   if (!options.GetTimeout()) {
4579     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4580                                          : default_one_thread_timeout;
4581   }
4582 
4583   // If the one thread timeout is set, use it.
4584   if (options.GetOneThreadTimeout())
4585     return *options.GetOneThreadTimeout();
4586 
4587   // Otherwise use half the total timeout, bounded by the
4588   // default_one_thread_timeout.
4589   return std::min<microseconds>(default_one_thread_timeout,
4590                                 *options.GetTimeout() / 2);
4591 }
4592 
4593 static Timeout<std::micro>
4594 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4595                      bool before_first_timeout) {
4596   // If we are going to run all threads the whole time, or if we are only going
4597   // to run one thread, we can just return the overall timeout.
4598   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4599     return options.GetTimeout();
4600 
4601   if (before_first_timeout)
4602     return GetOneThreadExpressionTimeout(options);
4603 
4604   if (!options.GetTimeout())
4605     return llvm::None;
4606   else
4607     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4608 }
4609 
4610 static llvm::Optional<ExpressionResults>
4611 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4612                    RestorePlanState &restorer, const EventSP &event_sp,
4613                    EventSP &event_to_broadcast_sp,
4614                    const EvaluateExpressionOptions &options,
4615                    bool handle_interrupts) {
4616   Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS);
4617 
4618   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4619                            .GetProcessSP()
4620                            ->GetThreadList()
4621                            .FindThreadByID(thread_id);
4622   if (!thread_sp) {
4623     LLDB_LOG(log,
4624              "The thread on which we were running the "
4625              "expression: tid = {0}, exited while "
4626              "the expression was running.",
4627              thread_id);
4628     return eExpressionThreadVanished;
4629   }
4630 
4631   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4632   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4633     LLDB_LOG(log, "execution completed successfully");
4634 
4635     // Restore the plan state so it will get reported as intended when we are
4636     // done.
4637     restorer.Clean();
4638     return eExpressionCompleted;
4639   }
4640 
4641   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4642   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4643       stop_info_sp->ShouldNotify(event_sp.get())) {
4644     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4645     if (!options.DoesIgnoreBreakpoints()) {
4646       // Restore the plan state and then force Private to false.  We are going
4647       // to stop because of this plan so we need it to become a public plan or
4648       // it won't report correctly when we continue to its termination later
4649       // on.
4650       restorer.Clean();
4651       thread_plan_sp->SetPrivate(false);
4652       event_to_broadcast_sp = event_sp;
4653     }
4654     return eExpressionHitBreakpoint;
4655   }
4656 
4657   if (!handle_interrupts &&
4658       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4659     return llvm::None;
4660 
4661   LLDB_LOG(log, "thread plan did not successfully complete");
4662   if (!options.DoesUnwindOnError())
4663     event_to_broadcast_sp = event_sp;
4664   return eExpressionInterrupted;
4665 }
4666 
4667 ExpressionResults
4668 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4669                        lldb::ThreadPlanSP &thread_plan_sp,
4670                        const EvaluateExpressionOptions &options,
4671                        DiagnosticManager &diagnostic_manager) {
4672   ExpressionResults return_value = eExpressionSetupError;
4673 
4674   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4675 
4676   if (!thread_plan_sp) {
4677     diagnostic_manager.PutString(
4678         eDiagnosticSeverityError,
4679         "RunThreadPlan called with empty thread plan.");
4680     return eExpressionSetupError;
4681   }
4682 
4683   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4684     diagnostic_manager.PutString(
4685         eDiagnosticSeverityError,
4686         "RunThreadPlan called with an invalid thread plan.");
4687     return eExpressionSetupError;
4688   }
4689 
4690   if (exe_ctx.GetProcessPtr() != this) {
4691     diagnostic_manager.PutString(eDiagnosticSeverityError,
4692                                  "RunThreadPlan called on wrong process.");
4693     return eExpressionSetupError;
4694   }
4695 
4696   Thread *thread = exe_ctx.GetThreadPtr();
4697   if (thread == nullptr) {
4698     diagnostic_manager.PutString(eDiagnosticSeverityError,
4699                                  "RunThreadPlan called with invalid thread.");
4700     return eExpressionSetupError;
4701   }
4702 
4703   // Record the thread's id so we can tell when a thread we were using
4704   // to run the expression exits during the expression evaluation.
4705   lldb::tid_t expr_thread_id = thread->GetID();
4706 
4707   // We need to change some of the thread plan attributes for the thread plan
4708   // runner.  This will restore them when we are done:
4709 
4710   RestorePlanState thread_plan_restorer(thread_plan_sp);
4711 
4712   // We rely on the thread plan we are running returning "PlanCompleted" if
4713   // when it successfully completes. For that to be true the plan can't be
4714   // private - since private plans suppress themselves in the GetCompletedPlan
4715   // call.
4716 
4717   thread_plan_sp->SetPrivate(false);
4718 
4719   // The plans run with RunThreadPlan also need to be terminal controlling plans
4720   // or when they are done we will end up asking the plan above us whether we
4721   // should stop, which may give the wrong answer.
4722 
4723   thread_plan_sp->SetIsControllingPlan(true);
4724   thread_plan_sp->SetOkayToDiscard(false);
4725 
4726   // If we are running some utility expression for LLDB, we now have to mark
4727   // this in the ProcesModID of this process. This RAII takes care of marking
4728   // and reverting the mark it once we are done running the expression.
4729   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4730 
4731   if (m_private_state.GetValue() != eStateStopped) {
4732     diagnostic_manager.PutString(
4733         eDiagnosticSeverityError,
4734         "RunThreadPlan called while the private state was not stopped.");
4735     return eExpressionSetupError;
4736   }
4737 
4738   // Save the thread & frame from the exe_ctx for restoration after we run
4739   const uint32_t thread_idx_id = thread->GetIndexID();
4740   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4741   if (!selected_frame_sp) {
4742     thread->SetSelectedFrame(nullptr);
4743     selected_frame_sp = thread->GetSelectedFrame();
4744     if (!selected_frame_sp) {
4745       diagnostic_manager.Printf(
4746           eDiagnosticSeverityError,
4747           "RunThreadPlan called without a selected frame on thread %d",
4748           thread_idx_id);
4749       return eExpressionSetupError;
4750     }
4751   }
4752 
4753   // Make sure the timeout values make sense. The one thread timeout needs to
4754   // be smaller than the overall timeout.
4755   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4756       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4757     diagnostic_manager.PutString(eDiagnosticSeverityError,
4758                                  "RunThreadPlan called with one thread "
4759                                  "timeout greater than total timeout");
4760     return eExpressionSetupError;
4761   }
4762 
4763   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4764 
4765   // N.B. Running the target may unset the currently selected thread and frame.
4766   // We don't want to do that either, so we should arrange to reset them as
4767   // well.
4768 
4769   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4770 
4771   uint32_t selected_tid;
4772   StackID selected_stack_id;
4773   if (selected_thread_sp) {
4774     selected_tid = selected_thread_sp->GetIndexID();
4775     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4776   } else {
4777     selected_tid = LLDB_INVALID_THREAD_ID;
4778   }
4779 
4780   HostThread backup_private_state_thread;
4781   lldb::StateType old_state = eStateInvalid;
4782   lldb::ThreadPlanSP stopper_base_plan_sp;
4783 
4784   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
4785                                                   LIBLLDB_LOG_PROCESS));
4786   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4787     // Yikes, we are running on the private state thread!  So we can't wait for
4788     // public events on this thread, since we are the thread that is generating
4789     // public events. The simplest thing to do is to spin up a temporary thread
4790     // to handle private state thread events while we are fielding public
4791     // events here.
4792     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4793                    "another state thread to handle the events.");
4794 
4795     backup_private_state_thread = m_private_state_thread;
4796 
4797     // One other bit of business: we want to run just this thread plan and
4798     // anything it pushes, and then stop, returning control here. But in the
4799     // normal course of things, the plan above us on the stack would be given a
4800     // shot at the stop event before deciding to stop, and we don't want that.
4801     // So we insert a "stopper" base plan on the stack before the plan we want
4802     // to run.  Since base plans always stop and return control to the user,
4803     // that will do just what we want.
4804     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4805     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4806     // Have to make sure our public state is stopped, since otherwise the
4807     // reporting logic below doesn't work correctly.
4808     old_state = m_public_state.GetValue();
4809     m_public_state.SetValueNoLock(eStateStopped);
4810 
4811     // Now spin up the private state thread:
4812     StartPrivateStateThread(true);
4813   }
4814 
4815   thread->QueueThreadPlan(
4816       thread_plan_sp, false); // This used to pass "true" does that make sense?
4817 
4818   if (options.GetDebug()) {
4819     // In this case, we aren't actually going to run, we just want to stop
4820     // right away. Flush this thread so we will refetch the stacks and show the
4821     // correct backtrace.
4822     // FIXME: To make this prettier we should invent some stop reason for this,
4823     // but that
4824     // is only cosmetic, and this functionality is only of use to lldb
4825     // developers who can live with not pretty...
4826     thread->Flush();
4827     return eExpressionStoppedForDebug;
4828   }
4829 
4830   ListenerSP listener_sp(
4831       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4832 
4833   lldb::EventSP event_to_broadcast_sp;
4834 
4835   {
4836     // This process event hijacker Hijacks the Public events and its destructor
4837     // makes sure that the process events get restored on exit to the function.
4838     //
4839     // If the event needs to propagate beyond the hijacker (e.g., the process
4840     // exits during execution), then the event is put into
4841     // event_to_broadcast_sp for rebroadcasting.
4842 
4843     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4844 
4845     if (log) {
4846       StreamString s;
4847       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4848       LLDB_LOGF(log,
4849                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4850                 " to run thread plan \"%s\".",
4851                 thread_idx_id, expr_thread_id, s.GetData());
4852     }
4853 
4854     bool got_event;
4855     lldb::EventSP event_sp;
4856     lldb::StateType stop_state = lldb::eStateInvalid;
4857 
4858     bool before_first_timeout = true; // This is set to false the first time
4859                                       // that we have to halt the target.
4860     bool do_resume = true;
4861     bool handle_running_event = true;
4862 
4863     // This is just for accounting:
4864     uint32_t num_resumes = 0;
4865 
4866     // If we are going to run all threads the whole time, or if we are only
4867     // going to run one thread, then we don't need the first timeout.  So we
4868     // pretend we are after the first timeout already.
4869     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4870       before_first_timeout = false;
4871 
4872     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4873               options.GetStopOthers(), options.GetTryAllThreads(),
4874               before_first_timeout);
4875 
4876     // This isn't going to work if there are unfetched events on the queue. Are
4877     // there cases where we might want to run the remaining events here, and
4878     // then try to call the function?  That's probably being too tricky for our
4879     // own good.
4880 
4881     Event *other_events = listener_sp->PeekAtNextEvent();
4882     if (other_events != nullptr) {
4883       diagnostic_manager.PutString(
4884           eDiagnosticSeverityError,
4885           "RunThreadPlan called with pending events on the queue.");
4886       return eExpressionSetupError;
4887     }
4888 
4889     // We also need to make sure that the next event is delivered.  We might be
4890     // calling a function as part of a thread plan, in which case the last
4891     // delivered event could be the running event, and we don't want event
4892     // coalescing to cause us to lose OUR running event...
4893     ForceNextEventDelivery();
4894 
4895 // This while loop must exit out the bottom, there's cleanup that we need to do
4896 // when we are done. So don't call return anywhere within it.
4897 
4898 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4899     // It's pretty much impossible to write test cases for things like: One
4900     // thread timeout expires, I go to halt, but the process already stopped on
4901     // the function call stop breakpoint.  Turning on this define will make us
4902     // not fetch the first event till after the halt.  So if you run a quick
4903     // function, it will have completed, and the completion event will be
4904     // waiting, when you interrupt for halt. The expression evaluation should
4905     // still succeed.
4906     bool miss_first_event = true;
4907 #endif
4908     while (true) {
4909       // We usually want to resume the process if we get to the top of the
4910       // loop. The only exception is if we get two running events with no
4911       // intervening stop, which can happen, we will just wait for then next
4912       // stop event.
4913       LLDB_LOGF(log,
4914                 "Top of while loop: do_resume: %i handle_running_event: %i "
4915                 "before_first_timeout: %i.",
4916                 do_resume, handle_running_event, before_first_timeout);
4917 
4918       if (do_resume || handle_running_event) {
4919         // Do the initial resume and wait for the running event before going
4920         // further.
4921 
4922         if (do_resume) {
4923           num_resumes++;
4924           Status resume_error = PrivateResume();
4925           if (!resume_error.Success()) {
4926             diagnostic_manager.Printf(
4927                 eDiagnosticSeverityError,
4928                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4929                 resume_error.AsCString());
4930             return_value = eExpressionSetupError;
4931             break;
4932           }
4933         }
4934 
4935         got_event =
4936             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4937         if (!got_event) {
4938           LLDB_LOGF(log,
4939                     "Process::RunThreadPlan(): didn't get any event after "
4940                     "resume %" PRIu32 ", exiting.",
4941                     num_resumes);
4942 
4943           diagnostic_manager.Printf(eDiagnosticSeverityError,
4944                                     "didn't get any event after resume %" PRIu32
4945                                     ", exiting.",
4946                                     num_resumes);
4947           return_value = eExpressionSetupError;
4948           break;
4949         }
4950 
4951         stop_state =
4952             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4953 
4954         if (stop_state != eStateRunning) {
4955           bool restarted = false;
4956 
4957           if (stop_state == eStateStopped) {
4958             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4959                 event_sp.get());
4960             LLDB_LOGF(
4961                 log,
4962                 "Process::RunThreadPlan(): didn't get running event after "
4963                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4964                 "handle_running_event: %i).",
4965                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4966                 handle_running_event);
4967           }
4968 
4969           if (restarted) {
4970             // This is probably an overabundance of caution, I don't think I
4971             // should ever get a stopped & restarted event here.  But if I do,
4972             // the best thing is to Halt and then get out of here.
4973             const bool clear_thread_plans = false;
4974             const bool use_run_lock = false;
4975             Halt(clear_thread_plans, use_run_lock);
4976           }
4977 
4978           diagnostic_manager.Printf(
4979               eDiagnosticSeverityError,
4980               "didn't get running event after initial resume, got %s instead.",
4981               StateAsCString(stop_state));
4982           return_value = eExpressionSetupError;
4983           break;
4984         }
4985 
4986         if (log)
4987           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4988         // We need to call the function synchronously, so spin waiting for it
4989         // to return. If we get interrupted while executing, we're going to
4990         // lose our context, and won't be able to gather the result at this
4991         // point. We set the timeout AFTER the resume, since the resume takes
4992         // some time and we don't want to charge that to the timeout.
4993       } else {
4994         if (log)
4995           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4996       }
4997 
4998       do_resume = true;
4999       handle_running_event = true;
5000 
5001       // Now wait for the process to stop again:
5002       event_sp.reset();
5003 
5004       Timeout<std::micro> timeout =
5005           GetExpressionTimeout(options, before_first_timeout);
5006       if (log) {
5007         if (timeout) {
5008           auto now = system_clock::now();
5009           LLDB_LOGF(log,
5010                     "Process::RunThreadPlan(): about to wait - now is %s - "
5011                     "endpoint is %s",
5012                     llvm::to_string(now).c_str(),
5013                     llvm::to_string(now + *timeout).c_str());
5014         } else {
5015           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
5016         }
5017       }
5018 
5019 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5020       // See comment above...
5021       if (miss_first_event) {
5022         std::this_thread::sleep_for(std::chrono::milliseconds(1));
5023         miss_first_event = false;
5024         got_event = false;
5025       } else
5026 #endif
5027         got_event = listener_sp->GetEvent(event_sp, timeout);
5028 
5029       if (got_event) {
5030         if (event_sp) {
5031           bool keep_going = false;
5032           if (event_sp->GetType() == eBroadcastBitInterrupt) {
5033             const bool clear_thread_plans = false;
5034             const bool use_run_lock = false;
5035             Halt(clear_thread_plans, use_run_lock);
5036             return_value = eExpressionInterrupted;
5037             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
5038                                          "execution halted by user interrupt.");
5039             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
5040                            "eBroadcastBitInterrupted, exiting.");
5041             break;
5042           } else {
5043             stop_state =
5044                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5045             LLDB_LOGF(log,
5046                       "Process::RunThreadPlan(): in while loop, got event: %s.",
5047                       StateAsCString(stop_state));
5048 
5049             switch (stop_state) {
5050             case lldb::eStateStopped: {
5051               if (Process::ProcessEventData::GetRestartedFromEvent(
5052                       event_sp.get())) {
5053                 // If we were restarted, we just need to go back up to fetch
5054                 // another event.
5055                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5056                                "restart, so we'll continue waiting.");
5057                 keep_going = true;
5058                 do_resume = false;
5059                 handle_running_event = true;
5060               } else {
5061                 const bool handle_interrupts = true;
5062                 return_value = *HandleStoppedEvent(
5063                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5064                     event_sp, event_to_broadcast_sp, options,
5065                     handle_interrupts);
5066                 if (return_value == eExpressionThreadVanished)
5067                   keep_going = false;
5068               }
5069             } break;
5070 
5071             case lldb::eStateRunning:
5072               // This shouldn't really happen, but sometimes we do get two
5073               // running events without an intervening stop, and in that case
5074               // we should just go back to waiting for the stop.
5075               do_resume = false;
5076               keep_going = true;
5077               handle_running_event = false;
5078               break;
5079 
5080             default:
5081               LLDB_LOGF(log,
5082                         "Process::RunThreadPlan(): execution stopped with "
5083                         "unexpected state: %s.",
5084                         StateAsCString(stop_state));
5085 
5086               if (stop_state == eStateExited)
5087                 event_to_broadcast_sp = event_sp;
5088 
5089               diagnostic_manager.PutString(
5090                   eDiagnosticSeverityError,
5091                   "execution stopped with unexpected state.");
5092               return_value = eExpressionInterrupted;
5093               break;
5094             }
5095           }
5096 
5097           if (keep_going)
5098             continue;
5099           else
5100             break;
5101         } else {
5102           if (log)
5103             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5104                             "the event pointer was null.  How odd...");
5105           return_value = eExpressionInterrupted;
5106           break;
5107         }
5108       } else {
5109         // If we didn't get an event that means we've timed out... We will
5110         // interrupt the process here.  Depending on what we were asked to do
5111         // we will either exit, or try with all threads running for the same
5112         // timeout.
5113 
5114         if (log) {
5115           if (options.GetTryAllThreads()) {
5116             if (before_first_timeout) {
5117               LLDB_LOG(log,
5118                        "Running function with one thread timeout timed out.");
5119             } else
5120               LLDB_LOG(log, "Restarting function with all threads enabled and "
5121                             "timeout: {0} timed out, abandoning execution.",
5122                        timeout);
5123           } else
5124             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5125                           "abandoning execution.",
5126                      timeout);
5127         }
5128 
5129         // It is possible that between the time we issued the Halt, and we get
5130         // around to calling Halt the target could have stopped.  That's fine,
5131         // Halt will figure that out and send the appropriate Stopped event.
5132         // BUT it is also possible that we stopped & restarted (e.g. hit a
5133         // signal with "stop" set to false.)  In
5134         // that case, we'll get the stopped & restarted event, and we should go
5135         // back to waiting for the Halt's stopped event.  That's what this
5136         // while loop does.
5137 
5138         bool back_to_top = true;
5139         uint32_t try_halt_again = 0;
5140         bool do_halt = true;
5141         const uint32_t num_retries = 5;
5142         while (try_halt_again < num_retries) {
5143           Status halt_error;
5144           if (do_halt) {
5145             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5146             const bool clear_thread_plans = false;
5147             const bool use_run_lock = false;
5148             Halt(clear_thread_plans, use_run_lock);
5149           }
5150           if (halt_error.Success()) {
5151             if (log)
5152               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5153 
5154             got_event =
5155                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5156 
5157             if (got_event) {
5158               stop_state =
5159                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5160               if (log) {
5161                 LLDB_LOGF(log,
5162                           "Process::RunThreadPlan(): Stopped with event: %s",
5163                           StateAsCString(stop_state));
5164                 if (stop_state == lldb::eStateStopped &&
5165                     Process::ProcessEventData::GetInterruptedFromEvent(
5166                         event_sp.get()))
5167                   log->PutCString("    Event was the Halt interruption event.");
5168               }
5169 
5170               if (stop_state == lldb::eStateStopped) {
5171                 if (Process::ProcessEventData::GetRestartedFromEvent(
5172                         event_sp.get())) {
5173                   if (log)
5174                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5175                                     "but got a restarted event, there must be "
5176                                     "an un-restarted stopped event so try "
5177                                     "again...  "
5178                                     "Exiting wait loop.");
5179                   try_halt_again++;
5180                   do_halt = false;
5181                   continue;
5182                 }
5183 
5184                 // Between the time we initiated the Halt and the time we
5185                 // delivered it, the process could have already finished its
5186                 // job.  Check that here:
5187                 const bool handle_interrupts = false;
5188                 if (auto result = HandleStoppedEvent(
5189                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5190                         event_sp, event_to_broadcast_sp, options,
5191                         handle_interrupts)) {
5192                   return_value = *result;
5193                   back_to_top = false;
5194                   break;
5195                 }
5196 
5197                 if (!options.GetTryAllThreads()) {
5198                   if (log)
5199                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5200                                     "was false, we stopped so now we're "
5201                                     "quitting.");
5202                   return_value = eExpressionInterrupted;
5203                   back_to_top = false;
5204                   break;
5205                 }
5206 
5207                 if (before_first_timeout) {
5208                   // Set all the other threads to run, and return to the top of
5209                   // the loop, which will continue;
5210                   before_first_timeout = false;
5211                   thread_plan_sp->SetStopOthers(false);
5212                   if (log)
5213                     log->PutCString(
5214                         "Process::RunThreadPlan(): about to resume.");
5215 
5216                   back_to_top = true;
5217                   break;
5218                 } else {
5219                   // Running all threads failed, so return Interrupted.
5220                   if (log)
5221                     log->PutCString("Process::RunThreadPlan(): running all "
5222                                     "threads timed out.");
5223                   return_value = eExpressionInterrupted;
5224                   back_to_top = false;
5225                   break;
5226                 }
5227               }
5228             } else {
5229               if (log)
5230                 log->PutCString("Process::RunThreadPlan(): halt said it "
5231                                 "succeeded, but I got no event.  "
5232                                 "I'm getting out of here passing Interrupted.");
5233               return_value = eExpressionInterrupted;
5234               back_to_top = false;
5235               break;
5236             }
5237           } else {
5238             try_halt_again++;
5239             continue;
5240           }
5241         }
5242 
5243         if (!back_to_top || try_halt_again > num_retries)
5244           break;
5245         else
5246           continue;
5247       }
5248     } // END WAIT LOOP
5249 
5250     // If we had to start up a temporary private state thread to run this
5251     // thread plan, shut it down now.
5252     if (backup_private_state_thread.IsJoinable()) {
5253       StopPrivateStateThread();
5254       Status error;
5255       m_private_state_thread = backup_private_state_thread;
5256       if (stopper_base_plan_sp) {
5257         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5258       }
5259       if (old_state != eStateInvalid)
5260         m_public_state.SetValueNoLock(old_state);
5261     }
5262 
5263     // If our thread went away on us, we need to get out of here without
5264     // doing any more work.  We don't have to clean up the thread plan, that
5265     // will have happened when the Thread was destroyed.
5266     if (return_value == eExpressionThreadVanished) {
5267       return return_value;
5268     }
5269 
5270     if (return_value != eExpressionCompleted && log) {
5271       // Print a backtrace into the log so we can figure out where we are:
5272       StreamString s;
5273       s.PutCString("Thread state after unsuccessful completion: \n");
5274       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5275       log->PutString(s.GetString());
5276     }
5277     // Restore the thread state if we are going to discard the plan execution.
5278     // There are three cases where this could happen: 1) The execution
5279     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5280     // was true 3) We got some other error, and discard_on_error was true
5281     bool should_unwind = (return_value == eExpressionInterrupted &&
5282                           options.DoesUnwindOnError()) ||
5283                          (return_value == eExpressionHitBreakpoint &&
5284                           options.DoesIgnoreBreakpoints());
5285 
5286     if (return_value == eExpressionCompleted || should_unwind) {
5287       thread_plan_sp->RestoreThreadState();
5288     }
5289 
5290     // Now do some processing on the results of the run:
5291     if (return_value == eExpressionInterrupted ||
5292         return_value == eExpressionHitBreakpoint) {
5293       if (log) {
5294         StreamString s;
5295         if (event_sp)
5296           event_sp->Dump(&s);
5297         else {
5298           log->PutCString("Process::RunThreadPlan(): Stop event that "
5299                           "interrupted us is NULL.");
5300         }
5301 
5302         StreamString ts;
5303 
5304         const char *event_explanation = nullptr;
5305 
5306         do {
5307           if (!event_sp) {
5308             event_explanation = "<no event>";
5309             break;
5310           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5311             event_explanation = "<user interrupt>";
5312             break;
5313           } else {
5314             const Process::ProcessEventData *event_data =
5315                 Process::ProcessEventData::GetEventDataFromEvent(
5316                     event_sp.get());
5317 
5318             if (!event_data) {
5319               event_explanation = "<no event data>";
5320               break;
5321             }
5322 
5323             Process *process = event_data->GetProcessSP().get();
5324 
5325             if (!process) {
5326               event_explanation = "<no process>";
5327               break;
5328             }
5329 
5330             ThreadList &thread_list = process->GetThreadList();
5331 
5332             uint32_t num_threads = thread_list.GetSize();
5333             uint32_t thread_index;
5334 
5335             ts.Printf("<%u threads> ", num_threads);
5336 
5337             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5338               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5339 
5340               if (!thread) {
5341                 ts.Printf("<?> ");
5342                 continue;
5343               }
5344 
5345               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5346               RegisterContext *register_context =
5347                   thread->GetRegisterContext().get();
5348 
5349               if (register_context)
5350                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5351               else
5352                 ts.Printf("[ip unknown] ");
5353 
5354               // Show the private stop info here, the public stop info will be
5355               // from the last natural stop.
5356               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5357               if (stop_info_sp) {
5358                 const char *stop_desc = stop_info_sp->GetDescription();
5359                 if (stop_desc)
5360                   ts.PutCString(stop_desc);
5361               }
5362               ts.Printf(">");
5363             }
5364 
5365             event_explanation = ts.GetData();
5366           }
5367         } while (false);
5368 
5369         if (event_explanation)
5370           LLDB_LOGF(log,
5371                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5372                     s.GetData(), event_explanation);
5373         else
5374           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5375                     s.GetData());
5376       }
5377 
5378       if (should_unwind) {
5379         LLDB_LOGF(log,
5380                   "Process::RunThreadPlan: ExecutionInterrupted - "
5381                   "discarding thread plans up to %p.",
5382                   static_cast<void *>(thread_plan_sp.get()));
5383         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5384       } else {
5385         LLDB_LOGF(log,
5386                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5387                   "plan: %p not discarding.",
5388                   static_cast<void *>(thread_plan_sp.get()));
5389       }
5390     } else if (return_value == eExpressionSetupError) {
5391       if (log)
5392         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5393 
5394       if (options.DoesUnwindOnError()) {
5395         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5396       }
5397     } else {
5398       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5399         if (log)
5400           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5401         return_value = eExpressionCompleted;
5402       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5403         if (log)
5404           log->PutCString(
5405               "Process::RunThreadPlan(): thread plan was discarded");
5406         return_value = eExpressionDiscarded;
5407       } else {
5408         if (log)
5409           log->PutCString(
5410               "Process::RunThreadPlan(): thread plan stopped in mid course");
5411         if (options.DoesUnwindOnError() && thread_plan_sp) {
5412           if (log)
5413             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5414                             "'cause unwind_on_error is set.");
5415           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5416         }
5417       }
5418     }
5419 
5420     // Thread we ran the function in may have gone away because we ran the
5421     // target Check that it's still there, and if it is put it back in the
5422     // context. Also restore the frame in the context if it is still present.
5423     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5424     if (thread) {
5425       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5426     }
5427 
5428     // Also restore the current process'es selected frame & thread, since this
5429     // function calling may be done behind the user's back.
5430 
5431     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5432       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5433           selected_stack_id.IsValid()) {
5434         // We were able to restore the selected thread, now restore the frame:
5435         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5436         StackFrameSP old_frame_sp =
5437             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5438                 selected_stack_id);
5439         if (old_frame_sp)
5440           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5441               old_frame_sp.get());
5442       }
5443     }
5444   }
5445 
5446   // If the process exited during the run of the thread plan, notify everyone.
5447 
5448   if (event_to_broadcast_sp) {
5449     if (log)
5450       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5451     BroadcastEvent(event_to_broadcast_sp);
5452   }
5453 
5454   return return_value;
5455 }
5456 
5457 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5458   const char *result_name = "<unknown>";
5459 
5460   switch (result) {
5461   case eExpressionCompleted:
5462     result_name = "eExpressionCompleted";
5463     break;
5464   case eExpressionDiscarded:
5465     result_name = "eExpressionDiscarded";
5466     break;
5467   case eExpressionInterrupted:
5468     result_name = "eExpressionInterrupted";
5469     break;
5470   case eExpressionHitBreakpoint:
5471     result_name = "eExpressionHitBreakpoint";
5472     break;
5473   case eExpressionSetupError:
5474     result_name = "eExpressionSetupError";
5475     break;
5476   case eExpressionParseError:
5477     result_name = "eExpressionParseError";
5478     break;
5479   case eExpressionResultUnavailable:
5480     result_name = "eExpressionResultUnavailable";
5481     break;
5482   case eExpressionTimedOut:
5483     result_name = "eExpressionTimedOut";
5484     break;
5485   case eExpressionStoppedForDebug:
5486     result_name = "eExpressionStoppedForDebug";
5487     break;
5488   case eExpressionThreadVanished:
5489     result_name = "eExpressionThreadVanished";
5490   }
5491   return result_name;
5492 }
5493 
5494 void Process::GetStatus(Stream &strm) {
5495   const StateType state = GetState();
5496   if (StateIsStoppedState(state, false)) {
5497     if (state == eStateExited) {
5498       int exit_status = GetExitStatus();
5499       const char *exit_description = GetExitDescription();
5500       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5501                   GetID(), exit_status, exit_status,
5502                   exit_description ? exit_description : "");
5503     } else {
5504       if (state == eStateConnected)
5505         strm.Printf("Connected to remote target.\n");
5506       else
5507         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5508     }
5509   } else {
5510     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5511   }
5512 }
5513 
5514 size_t Process::GetThreadStatus(Stream &strm,
5515                                 bool only_threads_with_stop_reason,
5516                                 uint32_t start_frame, uint32_t num_frames,
5517                                 uint32_t num_frames_with_source,
5518                                 bool stop_format) {
5519   size_t num_thread_infos_dumped = 0;
5520 
5521   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5522   // very well might run code (e.g. if we need it to get return values or
5523   // arguments.)  For that to work the process has to be able to acquire it.
5524   // So instead copy the thread ID's, and look them up one by one:
5525 
5526   uint32_t num_threads;
5527   std::vector<lldb::tid_t> thread_id_array;
5528   // Scope for thread list locker;
5529   {
5530     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5531     ThreadList &curr_thread_list = GetThreadList();
5532     num_threads = curr_thread_list.GetSize();
5533     uint32_t idx;
5534     thread_id_array.resize(num_threads);
5535     for (idx = 0; idx < num_threads; ++idx)
5536       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5537   }
5538 
5539   for (uint32_t i = 0; i < num_threads; i++) {
5540     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5541     if (thread_sp) {
5542       if (only_threads_with_stop_reason) {
5543         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5544         if (!stop_info_sp || !stop_info_sp->IsValid())
5545           continue;
5546       }
5547       thread_sp->GetStatus(strm, start_frame, num_frames,
5548                            num_frames_with_source,
5549                            stop_format);
5550       ++num_thread_infos_dumped;
5551     } else {
5552       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5553       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5554                      " vanished while running Thread::GetStatus.");
5555     }
5556   }
5557   return num_thread_infos_dumped;
5558 }
5559 
5560 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5561   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5562 }
5563 
5564 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5565   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5566                                            region.GetByteSize());
5567 }
5568 
5569 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5570                                  void *baton) {
5571   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5572 }
5573 
5574 bool Process::RunPreResumeActions() {
5575   bool result = true;
5576   while (!m_pre_resume_actions.empty()) {
5577     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5578     m_pre_resume_actions.pop_back();
5579     bool this_result = action.callback(action.baton);
5580     if (result)
5581       result = this_result;
5582   }
5583   return result;
5584 }
5585 
5586 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5587 
5588 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5589 {
5590     PreResumeCallbackAndBaton element(callback, baton);
5591     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5592     if (found_iter != m_pre_resume_actions.end())
5593     {
5594         m_pre_resume_actions.erase(found_iter);
5595     }
5596 }
5597 
5598 ProcessRunLock &Process::GetRunLock() {
5599   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5600     return m_private_run_lock;
5601   else
5602     return m_public_run_lock;
5603 }
5604 
5605 bool Process::CurrentThreadIsPrivateStateThread()
5606 {
5607   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5608 }
5609 
5610 
5611 void Process::Flush() {
5612   m_thread_list.Flush();
5613   m_extended_thread_list.Flush();
5614   m_extended_thread_stop_id = 0;
5615   m_queue_list.Clear();
5616   m_queue_list_stop_id = 0;
5617 }
5618 
5619 lldb::addr_t Process::GetCodeAddressMask() {
5620   if (m_code_address_mask == 0) {
5621     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5622       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5623       SetCodeAddressMask(address_mask);
5624     }
5625   }
5626   return m_code_address_mask;
5627 }
5628 
5629 lldb::addr_t Process::GetDataAddressMask() {
5630   if (m_data_address_mask == 0) {
5631     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5632       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5633       SetDataAddressMask(address_mask);
5634     }
5635   }
5636   return m_data_address_mask;
5637 }
5638 
5639 void Process::DidExec() {
5640   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
5641   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5642 
5643   Target &target = GetTarget();
5644   target.CleanupProcess();
5645   target.ClearModules(false);
5646   m_dynamic_checkers_up.reset();
5647   m_abi_sp.reset();
5648   m_system_runtime_up.reset();
5649   m_os_up.reset();
5650   m_dyld_up.reset();
5651   m_jit_loaders_up.reset();
5652   m_image_tokens.clear();
5653   m_allocated_memory_cache.Clear();
5654   {
5655     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5656     m_language_runtimes.clear();
5657   }
5658   m_instrumentation_runtimes.clear();
5659   m_thread_list.DiscardThreadPlans();
5660   m_memory_cache.Clear(true);
5661   DoDidExec();
5662   CompleteAttach();
5663   // Flush the process (threads and all stack frames) after running
5664   // CompleteAttach() in case the dynamic loader loaded things in new
5665   // locations.
5666   Flush();
5667 
5668   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5669   // let the target know so it can do any cleanup it needs to.
5670   target.DidExec();
5671 }
5672 
5673 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5674   if (address == nullptr) {
5675     error.SetErrorString("Invalid address argument");
5676     return LLDB_INVALID_ADDRESS;
5677   }
5678 
5679   addr_t function_addr = LLDB_INVALID_ADDRESS;
5680 
5681   addr_t addr = address->GetLoadAddress(&GetTarget());
5682   std::map<addr_t, addr_t>::const_iterator iter =
5683       m_resolved_indirect_addresses.find(addr);
5684   if (iter != m_resolved_indirect_addresses.end()) {
5685     function_addr = (*iter).second;
5686   } else {
5687     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5688       Symbol *symbol = address->CalculateSymbolContextSymbol();
5689       error.SetErrorStringWithFormat(
5690           "Unable to call resolver for indirect function %s",
5691           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5692       function_addr = LLDB_INVALID_ADDRESS;
5693     } else {
5694       if (ABISP abi_sp = GetABI())
5695         function_addr = abi_sp->FixCodeAddress(function_addr);
5696       m_resolved_indirect_addresses.insert(
5697           std::pair<addr_t, addr_t>(addr, function_addr));
5698     }
5699   }
5700   return function_addr;
5701 }
5702 
5703 void Process::ModulesDidLoad(ModuleList &module_list) {
5704   // Inform the system runtime of the modified modules.
5705   SystemRuntime *sys_runtime = GetSystemRuntime();
5706   if (sys_runtime)
5707     sys_runtime->ModulesDidLoad(module_list);
5708 
5709   GetJITLoaders().ModulesDidLoad(module_list);
5710 
5711   // Give the instrumentation runtimes a chance to be created before informing
5712   // them of the modified modules.
5713   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5714                                          m_instrumentation_runtimes);
5715   for (auto &runtime : m_instrumentation_runtimes)
5716     runtime.second->ModulesDidLoad(module_list);
5717 
5718   // Give the language runtimes a chance to be created before informing them of
5719   // the modified modules.
5720   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5721     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5722       runtime->ModulesDidLoad(module_list);
5723   }
5724 
5725   // If we don't have an operating system plug-in, try to load one since
5726   // loading shared libraries might cause a new one to try and load
5727   if (!m_os_up)
5728     LoadOperatingSystemPlugin(false);
5729 
5730   // Inform the structured-data plugins of the modified modules.
5731   for (auto pair : m_structured_data_plugin_map) {
5732     if (pair.second)
5733       pair.second->ModulesDidLoad(*this, module_list);
5734   }
5735 }
5736 
5737 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key,
5738                            const char *fmt, ...) {
5739   bool print_warning = true;
5740 
5741   StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream();
5742   if (!stream_sp)
5743     return;
5744 
5745   if (repeat_key != nullptr) {
5746     WarningsCollection::iterator it = m_warnings_issued.find(warning_type);
5747     if (it == m_warnings_issued.end()) {
5748       m_warnings_issued[warning_type] = WarningsPointerSet();
5749       m_warnings_issued[warning_type].insert(repeat_key);
5750     } else {
5751       if (it->second.find(repeat_key) != it->second.end()) {
5752         print_warning = false;
5753       } else {
5754         it->second.insert(repeat_key);
5755       }
5756     }
5757   }
5758 
5759   if (print_warning) {
5760     va_list args;
5761     va_start(args, fmt);
5762     stream_sp->PrintfVarArg(fmt, args);
5763     va_end(args);
5764   }
5765 }
5766 
5767 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5768   if (!GetWarningsOptimization())
5769     return;
5770   if (!sc.module_sp)
5771     return;
5772   if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function &&
5773       sc.function->GetIsOptimized()) {
5774     PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(),
5775                  "%s was compiled with optimization - stepping may behave "
5776                  "oddly; variables may not be available.\n",
5777                  sc.module_sp->GetFileSpec().GetFilename().GetCString());
5778   }
5779 }
5780 
5781 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5782   if (!GetWarningsUnsupportedLanguage())
5783     return;
5784   if (!sc.module_sp)
5785     return;
5786   LanguageType language = sc.GetLanguage();
5787   if (language == eLanguageTypeUnknown)
5788     return;
5789   LanguageSet plugins =
5790       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5791   if (!plugins[language]) {
5792     PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage,
5793                  sc.module_sp.get(),
5794                  "This version of LLDB has no plugin for the language \"%s\". "
5795                  "Inspection of frame variables will be limited.\n",
5796                  Language::GetNameForLanguageType(language));
5797   }
5798 }
5799 
5800 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5801   info.Clear();
5802 
5803   PlatformSP platform_sp = GetTarget().GetPlatform();
5804   if (!platform_sp)
5805     return false;
5806 
5807   return platform_sp->GetProcessInfo(GetID(), info);
5808 }
5809 
5810 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5811   ThreadCollectionSP threads;
5812 
5813   const MemoryHistorySP &memory_history =
5814       MemoryHistory::FindPlugin(shared_from_this());
5815 
5816   if (!memory_history) {
5817     return threads;
5818   }
5819 
5820   threads = std::make_shared<ThreadCollection>(
5821       memory_history->GetHistoryThreads(addr));
5822 
5823   return threads;
5824 }
5825 
5826 InstrumentationRuntimeSP
5827 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5828   InstrumentationRuntimeCollection::iterator pos;
5829   pos = m_instrumentation_runtimes.find(type);
5830   if (pos == m_instrumentation_runtimes.end()) {
5831     return InstrumentationRuntimeSP();
5832   } else
5833     return (*pos).second;
5834 }
5835 
5836 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5837                             const ArchSpec &arch, ModuleSpec &module_spec) {
5838   module_spec.Clear();
5839   return false;
5840 }
5841 
5842 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5843   m_image_tokens.push_back(image_ptr);
5844   return m_image_tokens.size() - 1;
5845 }
5846 
5847 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5848   if (token < m_image_tokens.size())
5849     return m_image_tokens[token];
5850   return LLDB_INVALID_ADDRESS;
5851 }
5852 
5853 void Process::ResetImageToken(size_t token) {
5854   if (token < m_image_tokens.size())
5855     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5856 }
5857 
5858 Address
5859 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5860                                                AddressRange range_bounds) {
5861   Target &target = GetTarget();
5862   DisassemblerSP disassembler_sp;
5863   InstructionList *insn_list = nullptr;
5864 
5865   Address retval = default_stop_addr;
5866 
5867   if (!target.GetUseFastStepping())
5868     return retval;
5869   if (!default_stop_addr.IsValid())
5870     return retval;
5871 
5872   const char *plugin_name = nullptr;
5873   const char *flavor = nullptr;
5874   disassembler_sp = Disassembler::DisassembleRange(
5875       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5876   if (disassembler_sp)
5877     insn_list = &disassembler_sp->GetInstructionList();
5878 
5879   if (insn_list == nullptr) {
5880     return retval;
5881   }
5882 
5883   size_t insn_offset =
5884       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5885   if (insn_offset == UINT32_MAX) {
5886     return retval;
5887   }
5888 
5889   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5890       insn_offset, false /* ignore_calls*/, nullptr);
5891   if (branch_index == UINT32_MAX) {
5892     return retval;
5893   }
5894 
5895   if (branch_index > insn_offset) {
5896     Address next_branch_insn_address =
5897         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5898     if (next_branch_insn_address.IsValid() &&
5899         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5900       retval = next_branch_insn_address;
5901     }
5902   }
5903 
5904   return retval;
5905 }
5906 
5907 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
5908                                     MemoryRegionInfo &range_info) {
5909   if (auto abi = GetABI())
5910     load_addr = abi->FixDataAddress(load_addr);
5911   return DoGetMemoryRegionInfo(load_addr, range_info);
5912 }
5913 
5914 Status
5915 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5916 
5917   Status error;
5918 
5919   lldb::addr_t range_end = 0;
5920 
5921   region_list.clear();
5922   do {
5923     lldb_private::MemoryRegionInfo region_info;
5924     error = GetMemoryRegionInfo(range_end, region_info);
5925     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5926     if (error.Fail()) {
5927       region_list.clear();
5928       break;
5929     }
5930 
5931     range_end = region_info.GetRange().GetRangeEnd();
5932     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5933       region_list.push_back(std::move(region_info));
5934     }
5935   } while (range_end != LLDB_INVALID_ADDRESS);
5936 
5937   return error;
5938 }
5939 
5940 Status
5941 Process::ConfigureStructuredData(ConstString type_name,
5942                                  const StructuredData::ObjectSP &config_sp) {
5943   // If you get this, the Process-derived class needs to implement a method to
5944   // enable an already-reported asynchronous structured data feature. See
5945   // ProcessGDBRemote for an example implementation over gdb-remote.
5946   return Status("unimplemented");
5947 }
5948 
5949 void Process::MapSupportedStructuredDataPlugins(
5950     const StructuredData::Array &supported_type_names) {
5951   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5952 
5953   // Bail out early if there are no type names to map.
5954   if (supported_type_names.GetSize() == 0) {
5955     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5956               __FUNCTION__);
5957     return;
5958   }
5959 
5960   // Convert StructuredData type names to ConstString instances.
5961   std::set<ConstString> const_type_names;
5962 
5963   LLDB_LOGF(log,
5964             "Process::%s(): the process supports the following async "
5965             "structured data types:",
5966             __FUNCTION__);
5967 
5968   supported_type_names.ForEach(
5969       [&const_type_names, &log](StructuredData::Object *object) {
5970         if (!object) {
5971           // Invalid - shouldn't be null objects in the array.
5972           return false;
5973         }
5974 
5975         auto type_name = object->GetAsString();
5976         if (!type_name) {
5977           // Invalid format - all type names should be strings.
5978           return false;
5979         }
5980 
5981         const_type_names.insert(ConstString(type_name->GetValue()));
5982         LLDB_LOG(log, "- {0}", type_name->GetValue());
5983         return true;
5984       });
5985 
5986   // For each StructuredDataPlugin, if the plugin handles any of the types in
5987   // the supported_type_names, map that type name to that plugin. Stop when
5988   // we've consumed all the type names.
5989   // FIXME: should we return an error if there are type names nobody
5990   // supports?
5991   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5992     auto create_instance =
5993            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5994                plugin_index);
5995     if (!create_instance)
5996       break;
5997 
5998     // Create the plugin.
5999     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
6000     if (!plugin_sp) {
6001       // This plugin doesn't think it can work with the process. Move on to the
6002       // next.
6003       continue;
6004     }
6005 
6006     // For any of the remaining type names, map any that this plugin supports.
6007     std::vector<ConstString> names_to_remove;
6008     for (auto &type_name : const_type_names) {
6009       if (plugin_sp->SupportsStructuredDataType(type_name)) {
6010         m_structured_data_plugin_map.insert(
6011             std::make_pair(type_name, plugin_sp));
6012         names_to_remove.push_back(type_name);
6013         LLDB_LOG(log, "using plugin {0} for type name {1}",
6014                  plugin_sp->GetPluginName(), type_name);
6015       }
6016     }
6017 
6018     // Remove the type names that were consumed by this plugin.
6019     for (auto &type_name : names_to_remove)
6020       const_type_names.erase(type_name);
6021   }
6022 }
6023 
6024 bool Process::RouteAsyncStructuredData(
6025     const StructuredData::ObjectSP object_sp) {
6026   // Nothing to do if there's no data.
6027   if (!object_sp)
6028     return false;
6029 
6030   // The contract is this must be a dictionary, so we can look up the routing
6031   // key via the top-level 'type' string value within the dictionary.
6032   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
6033   if (!dictionary)
6034     return false;
6035 
6036   // Grab the async structured type name (i.e. the feature/plugin name).
6037   ConstString type_name;
6038   if (!dictionary->GetValueForKeyAsString("type", type_name))
6039     return false;
6040 
6041   // Check if there's a plugin registered for this type name.
6042   auto find_it = m_structured_data_plugin_map.find(type_name);
6043   if (find_it == m_structured_data_plugin_map.end()) {
6044     // We don't have a mapping for this structured data type.
6045     return false;
6046   }
6047 
6048   // Route the structured data to the plugin.
6049   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6050   return true;
6051 }
6052 
6053 Status Process::UpdateAutomaticSignalFiltering() {
6054   // Default implementation does nothign.
6055   // No automatic signal filtering to speak of.
6056   return Status();
6057 }
6058 
6059 UtilityFunction *Process::GetLoadImageUtilityFunction(
6060     Platform *platform,
6061     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6062   if (platform != GetTarget().GetPlatform().get())
6063     return nullptr;
6064   llvm::call_once(m_dlopen_utility_func_flag_once,
6065                   [&] { m_dlopen_utility_func_up = factory(); });
6066   return m_dlopen_utility_func_up.get();
6067 }
6068 
6069 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6070   if (!IsLiveDebugSession())
6071     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6072                                    "Can't trace a non-live process.");
6073   return llvm::make_error<UnimplementedError>();
6074 }
6075 
6076 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6077                                        addr_t &returned_func,
6078                                        bool trap_exceptions) {
6079   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6080   if (thread == nullptr || address == nullptr)
6081     return false;
6082 
6083   EvaluateExpressionOptions options;
6084   options.SetStopOthers(true);
6085   options.SetUnwindOnError(true);
6086   options.SetIgnoreBreakpoints(true);
6087   options.SetTryAllThreads(true);
6088   options.SetDebug(false);
6089   options.SetTimeout(GetUtilityExpressionTimeout());
6090   options.SetTrapExceptions(trap_exceptions);
6091 
6092   auto type_system_or_err =
6093       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6094   if (!type_system_or_err) {
6095     llvm::consumeError(type_system_or_err.takeError());
6096     return false;
6097   }
6098   CompilerType void_ptr_type =
6099       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6100   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6101       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6102   if (call_plan_sp) {
6103     DiagnosticManager diagnostics;
6104 
6105     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6106     if (frame) {
6107       ExecutionContext exe_ctx;
6108       frame->CalculateExecutionContext(exe_ctx);
6109       ExpressionResults result =
6110           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6111       if (result == eExpressionCompleted) {
6112         returned_func =
6113             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6114                 LLDB_INVALID_ADDRESS);
6115 
6116         if (GetAddressByteSize() == 4) {
6117           if (returned_func == UINT32_MAX)
6118             return false;
6119         } else if (GetAddressByteSize() == 8) {
6120           if (returned_func == UINT64_MAX)
6121             return false;
6122         }
6123         return true;
6124       }
6125     }
6126   }
6127 
6128   return false;
6129 }
6130 
6131 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6132   Architecture *arch = GetTarget().GetArchitecturePlugin();
6133   const MemoryTagManager *tag_manager =
6134       arch ? arch->GetMemoryTagManager() : nullptr;
6135   if (!arch || !tag_manager) {
6136     return llvm::createStringError(
6137         llvm::inconvertibleErrorCode(),
6138         "This architecture does not support memory tagging");
6139   }
6140 
6141   if (!SupportsMemoryTagging()) {
6142     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6143                                    "Process does not support memory tagging");
6144   }
6145 
6146   return tag_manager;
6147 }
6148 
6149 llvm::Expected<std::vector<lldb::addr_t>>
6150 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6151   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6152       GetMemoryTagManager();
6153   if (!tag_manager_or_err)
6154     return tag_manager_or_err.takeError();
6155 
6156   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6157   llvm::Expected<std::vector<uint8_t>> tag_data =
6158       DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6159   if (!tag_data)
6160     return tag_data.takeError();
6161 
6162   return tag_manager->UnpackTagsData(*tag_data,
6163                                      len / tag_manager->GetGranuleSize());
6164 }
6165 
6166 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6167                                 const std::vector<lldb::addr_t> &tags) {
6168   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6169       GetMemoryTagManager();
6170   if (!tag_manager_or_err)
6171     return Status(tag_manager_or_err.takeError());
6172 
6173   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6174   llvm::Expected<std::vector<uint8_t>> packed_tags =
6175       tag_manager->PackTags(tags);
6176   if (!packed_tags) {
6177     return Status(packed_tags.takeError());
6178   }
6179 
6180   return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6181                            *packed_tags);
6182 }
6183