1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 // Project includes 17 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 18 #include "lldb/Breakpoint/BreakpointLocation.h" 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/Event.h" 22 #include "lldb/Core/Log.h" 23 #include "lldb/Core/Module.h" 24 #include "lldb/Core/ModuleSpec.h" 25 #include "lldb/Core/PluginManager.h" 26 #include "lldb/Core/State.h" 27 #include "lldb/Core/StreamFile.h" 28 #include "lldb/Expression/DiagnosticManager.h" 29 #include "lldb/Expression/IRDynamicChecks.h" 30 #include "lldb/Expression/UserExpression.h" 31 #include "lldb/Host/ConnectionFileDescriptor.h" 32 #include "lldb/Host/FileSystem.h" 33 #include "lldb/Host/Host.h" 34 #include "lldb/Host/HostInfo.h" 35 #include "lldb/Host/Pipe.h" 36 #include "lldb/Host/Terminal.h" 37 #include "lldb/Host/ThreadLauncher.h" 38 #include "lldb/Interpreter/CommandInterpreter.h" 39 #include "lldb/Interpreter/OptionValueProperties.h" 40 #include "lldb/Symbol/Function.h" 41 #include "lldb/Symbol/Symbol.h" 42 #include "lldb/Target/ABI.h" 43 #include "lldb/Target/CPPLanguageRuntime.h" 44 #include "lldb/Target/DynamicLoader.h" 45 #include "lldb/Target/InstrumentationRuntime.h" 46 #include "lldb/Target/JITLoader.h" 47 #include "lldb/Target/JITLoaderList.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/ObjCLanguageRuntime.h" 52 #include "lldb/Target/OperatingSystem.h" 53 #include "lldb/Target/Platform.h" 54 #include "lldb/Target/Process.h" 55 #include "lldb/Target/RegisterContext.h" 56 #include "lldb/Target/StopInfo.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/UnixSignals.h" 64 #include "lldb/Utility/NameMatches.h" 65 #include "lldb/Utility/SelectHelper.h" 66 67 using namespace lldb; 68 using namespace lldb_private; 69 70 // Comment out line below to disable memory caching, overriding the process setting 71 // target.process.disable-memory-cache 72 #define ENABLE_MEMORY_CACHING 73 74 #ifdef ENABLE_MEMORY_CACHING 75 #define DISABLE_MEM_CACHE_DEFAULT false 76 #else 77 #define DISABLE_MEM_CACHE_DEFAULT true 78 #endif 79 80 class ProcessOptionValueProperties : public OptionValueProperties 81 { 82 public: 83 ProcessOptionValueProperties (const ConstString &name) : 84 OptionValueProperties (name) 85 { 86 } 87 88 // This constructor is used when creating ProcessOptionValueProperties when it 89 // is part of a new lldb_private::Process instance. It will copy all current 90 // global property values as needed 91 ProcessOptionValueProperties (ProcessProperties *global_properties) : 92 OptionValueProperties(*global_properties->GetValueProperties()) 93 { 94 } 95 96 const Property * 97 GetPropertyAtIndex(const ExecutionContext *exe_ctx, bool will_modify, uint32_t idx) const override 98 { 99 // When getting the value for a key from the process options, we will always 100 // try and grab the setting from the current process if there is one. Else we just 101 // use the one from this instance. 102 if (exe_ctx) 103 { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) 106 { 107 ProcessOptionValueProperties *instance_properties = static_cast<ProcessOptionValueProperties *>(process->GetValueProperties().get()); 108 if (this != instance_properties) 109 return instance_properties->ProtectedGetPropertyAtIndex (idx); 110 } 111 } 112 return ProtectedGetPropertyAtIndex (idx); 113 } 114 }; 115 116 static PropertyDefinition 117 g_properties[] = 118 { 119 { "disable-memory-cache" , OptionValue::eTypeBoolean, false, DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, "Disable reading and caching of memory in fixed-size units." }, 120 { "extra-startup-command", OptionValue::eTypeArray , false, OptionValue::eTypeString, nullptr, nullptr, "A list containing extra commands understood by the particular process plugin used. " 121 "For instance, to turn on debugserver logging set this to \"QSetLogging:bitmask=LOG_DEFAULT;\"" }, 122 { "ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, nullptr, nullptr, "If true, breakpoints will be ignored during expression evaluation." }, 123 { "unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, nullptr, nullptr, "If true, errors in expression evaluation will unwind the stack back to the state before the call." }, 124 { "python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, nullptr, "A path to a python OS plug-in module file that contains a OperatingSystemPlugIn class." }, 125 { "stop-on-sharedlibrary-events" , OptionValue::eTypeBoolean, true, false, nullptr, nullptr, "If true, stop when a shared library is loaded or unloaded." }, 126 { "detach-keeps-stopped" , OptionValue::eTypeBoolean, true, false, nullptr, nullptr, "If true, detach will attempt to keep the process stopped." }, 127 { "memory-cache-line-size" , OptionValue::eTypeUInt64, false, 512, nullptr, nullptr, "The memory cache line size" }, 128 { "optimization-warnings" , OptionValue::eTypeBoolean, false, true, nullptr, nullptr, "If true, warn when stopped in code that is optimized where stepping and variable availability may not behave as expected." }, 129 { nullptr , OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr } 130 }; 131 132 enum { 133 ePropertyDisableMemCache, 134 ePropertyExtraStartCommand, 135 ePropertyIgnoreBreakpointsInExpressions, 136 ePropertyUnwindOnErrorInExpressions, 137 ePropertyPythonOSPluginPath, 138 ePropertyStopOnSharedLibraryEvents, 139 ePropertyDetachKeepsStopped, 140 ePropertyMemCacheLineSize, 141 ePropertyWarningOptimization 142 }; 143 144 ProcessProperties::ProcessProperties (lldb_private::Process *process) : 145 Properties(), 146 m_process(process) // Can be nullptr for global ProcessProperties 147 { 148 if (process == nullptr) 149 { 150 // Global process properties, set them up one time 151 m_collection_sp.reset (new ProcessOptionValueProperties(ConstString("process"))); 152 m_collection_sp->Initialize(g_properties); 153 m_collection_sp->AppendProperty(ConstString("thread"), 154 ConstString("Settings specific to threads."), 155 true, 156 Thread::GetGlobalProperties()->GetValueProperties()); 157 } 158 else 159 { 160 m_collection_sp.reset (new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 161 m_collection_sp->SetValueChangedCallback(ePropertyPythonOSPluginPath, ProcessProperties::OptionValueChangedCallback, this); 162 } 163 } 164 165 ProcessProperties::~ProcessProperties() = default; 166 167 void 168 ProcessProperties::OptionValueChangedCallback (void *baton, OptionValue *option_value) 169 { 170 ProcessProperties *properties = (ProcessProperties *)baton; 171 if (properties->m_process) 172 properties->m_process->LoadOperatingSystemPlugin(true); 173 } 174 175 bool 176 ProcessProperties::GetDisableMemoryCache() const 177 { 178 const uint32_t idx = ePropertyDisableMemCache; 179 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 180 } 181 182 uint64_t 183 ProcessProperties::GetMemoryCacheLineSize() const 184 { 185 const uint32_t idx = ePropertyMemCacheLineSize; 186 return m_collection_sp->GetPropertyAtIndexAsUInt64(nullptr, idx, g_properties[idx].default_uint_value); 187 } 188 189 Args 190 ProcessProperties::GetExtraStartupCommands () const 191 { 192 Args args; 193 const uint32_t idx = ePropertyExtraStartCommand; 194 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 195 return args; 196 } 197 198 void 199 ProcessProperties::SetExtraStartupCommands (const Args &args) 200 { 201 const uint32_t idx = ePropertyExtraStartCommand; 202 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 203 } 204 205 FileSpec 206 ProcessProperties::GetPythonOSPluginPath () const 207 { 208 const uint32_t idx = ePropertyPythonOSPluginPath; 209 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 210 } 211 212 void 213 ProcessProperties::SetPythonOSPluginPath (const FileSpec &file) 214 { 215 const uint32_t idx = ePropertyPythonOSPluginPath; 216 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 217 } 218 219 bool 220 ProcessProperties::GetIgnoreBreakpointsInExpressions () const 221 { 222 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 223 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 224 } 225 226 void 227 ProcessProperties::SetIgnoreBreakpointsInExpressions (bool ignore) 228 { 229 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 230 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 231 } 232 233 bool 234 ProcessProperties::GetUnwindOnErrorInExpressions () const 235 { 236 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 237 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 238 } 239 240 void 241 ProcessProperties::SetUnwindOnErrorInExpressions (bool ignore) 242 { 243 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 244 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 245 } 246 247 bool 248 ProcessProperties::GetStopOnSharedLibraryEvents () const 249 { 250 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 251 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 252 } 253 254 void 255 ProcessProperties::SetStopOnSharedLibraryEvents (bool stop) 256 { 257 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 258 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 259 } 260 261 bool 262 ProcessProperties::GetDetachKeepsStopped () const 263 { 264 const uint32_t idx = ePropertyDetachKeepsStopped; 265 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 266 } 267 268 void 269 ProcessProperties::SetDetachKeepsStopped (bool stop) 270 { 271 const uint32_t idx = ePropertyDetachKeepsStopped; 272 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 273 } 274 275 bool 276 ProcessProperties::GetWarningsOptimization () const 277 { 278 const uint32_t idx = ePropertyWarningOptimization; 279 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 280 } 281 282 void 283 ProcessInstanceInfo::Dump (Stream &s, Platform *platform) const 284 { 285 const char *cstr; 286 if (m_pid != LLDB_INVALID_PROCESS_ID) 287 s.Printf (" pid = %" PRIu64 "\n", m_pid); 288 289 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 290 s.Printf (" parent = %" PRIu64 "\n", m_parent_pid); 291 292 if (m_executable) 293 { 294 s.Printf (" name = %s\n", m_executable.GetFilename().GetCString()); 295 s.PutCString (" file = "); 296 m_executable.Dump(&s); 297 s.EOL(); 298 } 299 const uint32_t argc = m_arguments.GetArgumentCount(); 300 if (argc > 0) 301 { 302 for (uint32_t i = 0; i < argc; i++) 303 { 304 const char *arg = m_arguments.GetArgumentAtIndex(i); 305 if (i < 10) 306 s.Printf (" arg[%u] = %s\n", i, arg); 307 else 308 s.Printf ("arg[%u] = %s\n", i, arg); 309 } 310 } 311 312 const uint32_t envc = m_environment.GetArgumentCount(); 313 if (envc > 0) 314 { 315 for (uint32_t i = 0; i < envc; i++) 316 { 317 const char *env = m_environment.GetArgumentAtIndex(i); 318 if (i < 10) 319 s.Printf (" env[%u] = %s\n", i, env); 320 else 321 s.Printf ("env[%u] = %s\n", i, env); 322 } 323 } 324 325 if (m_arch.IsValid()) 326 { 327 s.Printf (" arch = "); 328 m_arch.DumpTriple(s); 329 s.EOL(); 330 } 331 332 if (m_uid != UINT32_MAX) 333 { 334 cstr = platform->GetUserName (m_uid); 335 s.Printf (" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 336 } 337 if (m_gid != UINT32_MAX) 338 { 339 cstr = platform->GetGroupName (m_gid); 340 s.Printf (" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 341 } 342 if (m_euid != UINT32_MAX) 343 { 344 cstr = platform->GetUserName (m_euid); 345 s.Printf (" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 346 } 347 if (m_egid != UINT32_MAX) 348 { 349 cstr = platform->GetGroupName (m_egid); 350 s.Printf (" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 351 } 352 } 353 354 void 355 ProcessInstanceInfo::DumpTableHeader (Stream &s, Platform *platform, bool show_args, bool verbose) 356 { 357 const char *label; 358 if (show_args || verbose) 359 label = "ARGUMENTS"; 360 else 361 label = "NAME"; 362 363 if (verbose) 364 { 365 s.Printf ("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE %s\n", label); 366 s.PutCString ("====== ====== ========== ========== ========== ========== ======================== ============================\n"); 367 } 368 else 369 { 370 s.Printf ("PID PARENT USER TRIPLE %s\n", label); 371 s.PutCString ("====== ====== ========== ======================== ============================\n"); 372 } 373 } 374 375 void 376 ProcessInstanceInfo::DumpAsTableRow (Stream &s, Platform *platform, bool show_args, bool verbose) const 377 { 378 if (m_pid != LLDB_INVALID_PROCESS_ID) 379 { 380 const char *cstr; 381 s.Printf ("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 382 383 StreamString arch_strm; 384 if (m_arch.IsValid()) 385 m_arch.DumpTriple(arch_strm); 386 387 if (verbose) 388 { 389 cstr = platform->GetUserName (m_uid); 390 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 391 s.Printf ("%-10s ", cstr); 392 else 393 s.Printf ("%-10u ", m_uid); 394 395 cstr = platform->GetGroupName (m_gid); 396 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 397 s.Printf ("%-10s ", cstr); 398 else 399 s.Printf ("%-10u ", m_gid); 400 401 cstr = platform->GetUserName (m_euid); 402 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 403 s.Printf ("%-10s ", cstr); 404 else 405 s.Printf ("%-10u ", m_euid); 406 407 cstr = platform->GetGroupName (m_egid); 408 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 409 s.Printf ("%-10s ", cstr); 410 else 411 s.Printf ("%-10u ", m_egid); 412 413 s.Printf ("%-24s ", arch_strm.GetString().c_str()); 414 } 415 else 416 { 417 s.Printf ("%-10s %-24s ", 418 platform->GetUserName (m_euid), 419 arch_strm.GetString().c_str()); 420 } 421 422 if (verbose || show_args) 423 { 424 const uint32_t argc = m_arguments.GetArgumentCount(); 425 if (argc > 0) 426 { 427 for (uint32_t i = 0; i < argc; i++) 428 { 429 if (i > 0) 430 s.PutChar (' '); 431 s.PutCString (m_arguments.GetArgumentAtIndex(i)); 432 } 433 } 434 } 435 else 436 { 437 s.PutCString (GetName()); 438 } 439 440 s.EOL(); 441 } 442 } 443 444 Error 445 ProcessLaunchCommandOptions::SetOptionValue(uint32_t option_idx, 446 const char *option_arg, 447 ExecutionContext *execution_context) 448 { 449 Error error; 450 const int short_option = m_getopt_table[option_idx].val; 451 452 switch (short_option) 453 { 454 case 's': // Stop at program entry point 455 launch_info.GetFlags().Set (eLaunchFlagStopAtEntry); 456 break; 457 458 case 'i': // STDIN for read only 459 { 460 FileAction action; 461 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 462 launch_info.AppendFileAction (action); 463 break; 464 } 465 466 case 'o': // Open STDOUT for write only 467 { 468 FileAction action; 469 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 470 launch_info.AppendFileAction (action); 471 break; 472 } 473 474 case 'e': // STDERR for write only 475 { 476 FileAction action; 477 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 478 launch_info.AppendFileAction (action); 479 break; 480 } 481 482 case 'p': // Process plug-in name 483 launch_info.SetProcessPluginName (option_arg); 484 break; 485 486 case 'n': // Disable STDIO 487 { 488 FileAction action; 489 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 490 if (action.Open(STDIN_FILENO, dev_null, true, false)) 491 launch_info.AppendFileAction (action); 492 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 493 launch_info.AppendFileAction (action); 494 if (action.Open(STDERR_FILENO, dev_null, false, true)) 495 launch_info.AppendFileAction (action); 496 break; 497 } 498 499 case 'w': 500 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 501 break; 502 503 case 't': // Open process in new terminal window 504 launch_info.GetFlags().Set (eLaunchFlagLaunchInTTY); 505 break; 506 507 case 'a': 508 { 509 TargetSP target_sp = execution_context ? 510 execution_context->GetTargetSP() : TargetSP(); 511 PlatformSP platform_sp = target_sp ? 512 target_sp->GetPlatform() : PlatformSP(); 513 if (!launch_info.GetArchitecture().SetTriple (option_arg, platform_sp.get())) 514 launch_info.GetArchitecture().SetTriple (option_arg); 515 } 516 break; 517 518 case 'A': // Disable ASLR. 519 { 520 bool success; 521 const bool disable_aslr_arg = Args::StringToBoolean (option_arg, true, &success); 522 if (success) 523 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 524 else 525 error.SetErrorStringWithFormat ("Invalid boolean value for disable-aslr option: '%s'", option_arg ? option_arg : "<null>"); 526 break; 527 } 528 529 case 'X': // shell expand args. 530 { 531 bool success; 532 const bool expand_args = Args::StringToBoolean (option_arg, true, &success); 533 if (success) 534 launch_info.SetShellExpandArguments(expand_args); 535 else 536 error.SetErrorStringWithFormat ("Invalid boolean value for shell-expand-args option: '%s'", option_arg ? option_arg : "<null>"); 537 break; 538 } 539 540 case 'c': 541 if (option_arg && option_arg[0]) 542 launch_info.SetShell (FileSpec(option_arg, false)); 543 else 544 launch_info.SetShell (HostInfo::GetDefaultShell()); 545 break; 546 547 case 'v': 548 launch_info.GetEnvironmentEntries().AppendArgument(option_arg); 549 break; 550 551 default: 552 error.SetErrorStringWithFormat("unrecognized short option character '%c'", short_option); 553 break; 554 } 555 return error; 556 } 557 558 OptionDefinition 559 ProcessLaunchCommandOptions::g_option_table[] = 560 { 561 { LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Stop at the entry point of the program when launching a process." }, 562 { LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, "Set whether to disable address space layout randomization when launching a process." }, 563 { LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypePlugin, "Name of the process plugin you want to use." }, 564 { LLDB_OPT_SET_ALL, false, "working-dir", 'w', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeDirectoryName, "Set the current working directory to <path> when running the inferior." }, 565 { LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeArchitecture, "Set the architecture for the process to launch when ambiguous." }, 566 { LLDB_OPT_SET_ALL, false, "environment", 'v', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, "Specify an environment variable name/value string (--environment NAME=VALUE). Can be specified multiple times for subsequent environment entries." }, 567 { LLDB_OPT_SET_1|LLDB_OPT_SET_2|LLDB_OPT_SET_3, false, "shell", 'c', OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, "Run the process in a shell (not supported on all platforms)." }, 568 569 { LLDB_OPT_SET_1 , false, "stdin", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stdin for the process to <filename>." }, 570 { LLDB_OPT_SET_1 , false, "stdout", 'o', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stdout for the process to <filename>." }, 571 { LLDB_OPT_SET_1 , false, "stderr", 'e', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stderr for the process to <filename>." }, 572 573 { LLDB_OPT_SET_2 , false, "tty", 't', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Start the process in a terminal (not supported on all platforms)." }, 574 575 { LLDB_OPT_SET_3 , false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Do not set up for terminal I/O to go to running process." }, 576 { LLDB_OPT_SET_4, false, "shell-expand-args", 'X', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, "Set whether to shell expand arguments to the process when launching." }, 577 { 0 , false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr } 578 }; 579 580 bool 581 ProcessInstanceInfoMatch::NameMatches (const char *process_name) const 582 { 583 if (m_name_match_type == eNameMatchIgnore || process_name == nullptr) 584 return true; 585 const char *match_name = m_match_info.GetName(); 586 if (!match_name) 587 return true; 588 589 return lldb_private::NameMatches (process_name, m_name_match_type, match_name); 590 } 591 592 bool 593 ProcessInstanceInfoMatch::Matches (const ProcessInstanceInfo &proc_info) const 594 { 595 if (!NameMatches (proc_info.GetName())) 596 return false; 597 598 if (m_match_info.ProcessIDIsValid() && 599 m_match_info.GetProcessID() != proc_info.GetProcessID()) 600 return false; 601 602 if (m_match_info.ParentProcessIDIsValid() && 603 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 604 return false; 605 606 if (m_match_info.UserIDIsValid () && 607 m_match_info.GetUserID() != proc_info.GetUserID()) 608 return false; 609 610 if (m_match_info.GroupIDIsValid () && 611 m_match_info.GetGroupID() != proc_info.GetGroupID()) 612 return false; 613 614 if (m_match_info.EffectiveUserIDIsValid () && 615 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 616 return false; 617 618 if (m_match_info.EffectiveGroupIDIsValid () && 619 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 620 return false; 621 622 if (m_match_info.GetArchitecture().IsValid() && 623 !m_match_info.GetArchitecture().IsCompatibleMatch(proc_info.GetArchitecture())) 624 return false; 625 return true; 626 } 627 628 bool 629 ProcessInstanceInfoMatch::MatchAllProcesses () const 630 { 631 if (m_name_match_type != eNameMatchIgnore) 632 return false; 633 634 if (m_match_info.ProcessIDIsValid()) 635 return false; 636 637 if (m_match_info.ParentProcessIDIsValid()) 638 return false; 639 640 if (m_match_info.UserIDIsValid ()) 641 return false; 642 643 if (m_match_info.GroupIDIsValid ()) 644 return false; 645 646 if (m_match_info.EffectiveUserIDIsValid ()) 647 return false; 648 649 if (m_match_info.EffectiveGroupIDIsValid ()) 650 return false; 651 652 if (m_match_info.GetArchitecture().IsValid()) 653 return false; 654 655 if (m_match_all_users) 656 return false; 657 658 return true; 659 } 660 661 void 662 ProcessInstanceInfoMatch::Clear() 663 { 664 m_match_info.Clear(); 665 m_name_match_type = eNameMatchIgnore; 666 m_match_all_users = false; 667 } 668 669 ProcessSP 670 Process::FindPlugin (lldb::TargetSP target_sp, const char *plugin_name, ListenerSP listener_sp, const FileSpec *crash_file_path) 671 { 672 static uint32_t g_process_unique_id = 0; 673 674 ProcessSP process_sp; 675 ProcessCreateInstance create_callback = nullptr; 676 if (plugin_name) 677 { 678 ConstString const_plugin_name(plugin_name); 679 create_callback = PluginManager::GetProcessCreateCallbackForPluginName (const_plugin_name); 680 if (create_callback) 681 { 682 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 683 if (process_sp) 684 { 685 if (process_sp->CanDebug(target_sp, true)) 686 { 687 process_sp->m_process_unique_id = ++g_process_unique_id; 688 } 689 else 690 process_sp.reset(); 691 } 692 } 693 } 694 else 695 { 696 for (uint32_t idx = 0; (create_callback = PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; ++idx) 697 { 698 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 699 if (process_sp) 700 { 701 if (process_sp->CanDebug(target_sp, false)) 702 { 703 process_sp->m_process_unique_id = ++g_process_unique_id; 704 break; 705 } 706 else 707 process_sp.reset(); 708 } 709 } 710 } 711 return process_sp; 712 } 713 714 ConstString & 715 Process::GetStaticBroadcasterClass () 716 { 717 static ConstString class_name ("lldb.process"); 718 return class_name; 719 } 720 721 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) : 722 Process(target_sp, listener_sp, UnixSignals::Create(HostInfo::GetArchitecture())) 723 { 724 // This constructor just delegates to the full Process constructor, 725 // defaulting to using the Host's UnixSignals. 726 } 727 728 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, const UnixSignalsSP &unix_signals_sp) 729 : ProcessProperties(this), 730 UserID(LLDB_INVALID_PROCESS_ID), 731 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), Process::GetStaticBroadcasterClass().AsCString()), 732 m_target_sp(target_sp), 733 m_public_state(eStateUnloaded), 734 m_private_state(eStateUnloaded), 735 m_private_state_broadcaster(nullptr, "lldb.process.internal_state_broadcaster"), 736 m_private_state_control_broadcaster(nullptr, "lldb.process.internal_state_control_broadcaster"), 737 m_private_state_listener_sp(Listener::MakeListener("lldb.process.internal_state_listener")), 738 m_mod_id(), 739 m_process_unique_id(0), 740 m_thread_index_id(0), 741 m_thread_id_to_index_id_map(), 742 m_exit_status(-1), 743 m_exit_string(), 744 m_exit_status_mutex(), 745 m_thread_mutex(), 746 m_thread_list_real(this), 747 m_thread_list(this), 748 m_extended_thread_list(this), 749 m_extended_thread_stop_id(0), 750 m_queue_list(this), 751 m_queue_list_stop_id(0), 752 m_notifications(), 753 m_image_tokens(), 754 m_listener_sp(listener_sp), 755 m_breakpoint_site_list(), 756 m_dynamic_checkers_ap(), 757 m_unix_signals_sp(unix_signals_sp), 758 m_abi_sp(), 759 m_process_input_reader(), 760 m_stdio_communication("process.stdio"), 761 m_stdio_communication_mutex(), 762 m_stdin_forward(false), 763 m_stdout_data(), 764 m_stderr_data(), 765 m_profile_data_comm_mutex(), 766 m_profile_data(), 767 m_iohandler_sync(0), 768 m_memory_cache(*this), 769 m_allocated_memory_cache(*this), 770 m_should_detach(false), 771 m_next_event_action_ap(), 772 m_public_run_lock(), 773 m_private_run_lock(), 774 m_stop_info_override_callback(nullptr), 775 m_finalizing(false), 776 m_finalize_called(false), 777 m_clear_thread_plans_on_stop(false), 778 m_force_next_event_delivery(false), 779 m_last_broadcast_state(eStateInvalid), 780 m_destroy_in_process(false), 781 m_can_interpret_function_calls(false), 782 m_warnings_issued(), 783 m_run_thread_plan_lock(), 784 m_can_jit(eCanJITDontKnow) 785 { 786 CheckInWithManager(); 787 788 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 789 if (log) 790 log->Printf("%p Process::Process()", static_cast<void *>(this)); 791 792 if (!m_unix_signals_sp) 793 m_unix_signals_sp = std::make_shared<UnixSignals>(); 794 795 SetEventName(eBroadcastBitStateChanged, "state-changed"); 796 SetEventName(eBroadcastBitInterrupt, "interrupt"); 797 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 798 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 799 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 800 801 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlStop, "control-stop"); 802 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlPause, "control-pause"); 803 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlResume, "control-resume"); 804 805 m_listener_sp->StartListeningForEvents(this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 806 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 807 eBroadcastBitProfileData); 808 809 m_private_state_listener_sp->StartListeningForEvents(&m_private_state_broadcaster, 810 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 811 812 m_private_state_listener_sp->StartListeningForEvents( 813 &m_private_state_control_broadcaster, eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 814 eBroadcastInternalStateControlResume); 815 // We need something valid here, even if just the default UnixSignalsSP. 816 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 817 818 // Allow the platform to override the default cache line size 819 OptionValueSP value_sp = m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)->GetValue(); 820 uint32_t platform_cache_line_size = target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 821 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 822 value_sp->SetUInt64Value(platform_cache_line_size); 823 } 824 825 Process::~Process() 826 { 827 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT)); 828 if (log) 829 log->Printf ("%p Process::~Process()", static_cast<void*>(this)); 830 StopPrivateStateThread(); 831 832 // ThreadList::Clear() will try to acquire this process's mutex, so 833 // explicitly clear the thread list here to ensure that the mutex 834 // is not destroyed before the thread list. 835 m_thread_list.Clear(); 836 } 837 838 const ProcessPropertiesSP & 839 Process::GetGlobalProperties() 840 { 841 // NOTE: intentional leak so we don't crash if global destructor chain gets 842 // called as other threads still use the result of this function 843 static ProcessPropertiesSP *g_settings_sp_ptr = nullptr; 844 static std::once_flag g_once_flag; 845 std::call_once(g_once_flag, []() { 846 g_settings_sp_ptr = new ProcessPropertiesSP(new ProcessProperties(nullptr)); 847 }); 848 return *g_settings_sp_ptr; 849 } 850 851 void 852 Process::Finalize() 853 { 854 m_finalizing = true; 855 856 // Destroy this process if needed 857 switch (GetPrivateState()) 858 { 859 case eStateConnected: 860 case eStateAttaching: 861 case eStateLaunching: 862 case eStateStopped: 863 case eStateRunning: 864 case eStateStepping: 865 case eStateCrashed: 866 case eStateSuspended: 867 Destroy(false); 868 break; 869 870 case eStateInvalid: 871 case eStateUnloaded: 872 case eStateDetached: 873 case eStateExited: 874 break; 875 } 876 877 // Clear our broadcaster before we proceed with destroying 878 Broadcaster::Clear(); 879 880 // Do any cleanup needed prior to being destructed... Subclasses 881 // that override this method should call this superclass method as well. 882 883 // We need to destroy the loader before the derived Process class gets destroyed 884 // since it is very likely that undoing the loader will require access to the real process. 885 m_dynamic_checkers_ap.reset(); 886 m_abi_sp.reset(); 887 m_os_ap.reset(); 888 m_system_runtime_ap.reset(); 889 m_dyld_ap.reset(); 890 m_jit_loaders_ap.reset(); 891 m_thread_list_real.Destroy(); 892 m_thread_list.Destroy(); 893 m_extended_thread_list.Destroy(); 894 m_queue_list.Clear(); 895 m_queue_list_stop_id = 0; 896 std::vector<Notifications> empty_notifications; 897 m_notifications.swap(empty_notifications); 898 m_image_tokens.clear(); 899 m_memory_cache.Clear(); 900 m_allocated_memory_cache.Clear(); 901 m_language_runtimes.clear(); 902 m_instrumentation_runtimes.clear(); 903 m_next_event_action_ap.reset(); 904 m_stop_info_override_callback = nullptr; 905 // Clear the last natural stop ID since it has a strong 906 // reference to this process 907 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 908 //#ifdef LLDB_CONFIGURATION_DEBUG 909 // StreamFile s(stdout, false); 910 // EventSP event_sp; 911 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 912 // { 913 // event_sp->Dump (&s); 914 // s.EOL(); 915 // } 916 //#endif 917 // We have to be very careful here as the m_private_state_listener might 918 // contain events that have ProcessSP values in them which can keep this 919 // process around forever. These events need to be cleared out. 920 m_private_state_listener_sp->Clear(); 921 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 922 m_public_run_lock.SetStopped(); 923 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 924 m_private_run_lock.SetStopped(); 925 m_finalize_called = true; 926 } 927 928 void 929 Process::RegisterNotificationCallbacks (const Notifications& callbacks) 930 { 931 m_notifications.push_back(callbacks); 932 if (callbacks.initialize != nullptr) 933 callbacks.initialize (callbacks.baton, this); 934 } 935 936 bool 937 Process::UnregisterNotificationCallbacks(const Notifications& callbacks) 938 { 939 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 940 for (pos = m_notifications.begin(); pos != end; ++pos) 941 { 942 if (pos->baton == callbacks.baton && 943 pos->initialize == callbacks.initialize && 944 pos->process_state_changed == callbacks.process_state_changed) 945 { 946 m_notifications.erase(pos); 947 return true; 948 } 949 } 950 return false; 951 } 952 953 void 954 Process::SynchronouslyNotifyStateChanged (StateType state) 955 { 956 std::vector<Notifications>::iterator notification_pos, notification_end = m_notifications.end(); 957 for (notification_pos = m_notifications.begin(); notification_pos != notification_end; ++notification_pos) 958 { 959 if (notification_pos->process_state_changed) 960 notification_pos->process_state_changed (notification_pos->baton, this, state); 961 } 962 } 963 964 // FIXME: We need to do some work on events before the general Listener sees them. 965 // For instance if we are continuing from a breakpoint, we need to ensure that we do 966 // the little "insert real insn, step & stop" trick. But we can't do that when the 967 // event is delivered by the broadcaster - since that is done on the thread that is 968 // waiting for new events, so if we needed more than one event for our handling, we would 969 // stall. So instead we do it when we fetch the event off of the queue. 970 // 971 972 StateType 973 Process::GetNextEvent (EventSP &event_sp) 974 { 975 StateType state = eStateInvalid; 976 977 if (m_listener_sp->GetNextEventForBroadcaster (this, event_sp) && event_sp) 978 state = Process::ProcessEventData::GetStateFromEvent (event_sp.get()); 979 980 return state; 981 } 982 983 void 984 Process::SyncIOHandler (uint32_t iohandler_id, uint64_t timeout_msec) 985 { 986 // don't sync (potentially context switch) in case where there is no process IO 987 if (!m_process_input_reader) 988 return; 989 990 uint32_t new_iohandler_id = 0; 991 m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, new_iohandler_id, std::chrono::milliseconds(timeout_msec)); 992 993 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 994 if (log) 995 log->Printf("Process::%s waited for m_iohandler_sync to change from %u, new value is %u", __FUNCTION__, iohandler_id, new_iohandler_id); 996 } 997 998 StateType 999 Process::WaitForProcessToStop(const std::chrono::microseconds &timeout, EventSP *event_sp_ptr, bool wait_always, 1000 ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock) 1001 { 1002 // We can't just wait for a "stopped" event, because the stopped event may have restarted the target. 1003 // We have to actually check each event, and in the case of a stopped event check the restarted flag 1004 // on the event. 1005 if (event_sp_ptr) 1006 event_sp_ptr->reset(); 1007 StateType state = GetState(); 1008 // If we are exited or detached, we won't ever get back to any 1009 // other valid state... 1010 if (state == eStateDetached || state == eStateExited) 1011 return state; 1012 1013 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1014 if (log) 1015 log->Printf("Process::%s (timeout = %llu)", __FUNCTION__, static_cast<unsigned long long>(timeout.count())); 1016 1017 if (!wait_always && 1018 StateIsStoppedState(state, true) && 1019 StateIsStoppedState(GetPrivateState(), true)) 1020 { 1021 if (log) 1022 log->Printf("Process::%s returning without waiting for events; process private and public states are already 'stopped'.", 1023 __FUNCTION__); 1024 // We need to toggle the run lock as this won't get done in 1025 // SetPublicState() if the process is hijacked. 1026 if (hijack_listener_sp && use_run_lock) 1027 m_public_run_lock.SetStopped(); 1028 return state; 1029 } 1030 1031 while (state != eStateInvalid) 1032 { 1033 EventSP event_sp; 1034 state = WaitForStateChangedEvents(timeout, event_sp, hijack_listener_sp); 1035 if (event_sp_ptr && event_sp) 1036 *event_sp_ptr = event_sp; 1037 1038 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1039 Process::HandleProcessStateChangedEvent (event_sp, stream, pop_process_io_handler); 1040 1041 switch (state) 1042 { 1043 case eStateCrashed: 1044 case eStateDetached: 1045 case eStateExited: 1046 case eStateUnloaded: 1047 // We need to toggle the run lock as this won't get done in 1048 // SetPublicState() if the process is hijacked. 1049 if (hijack_listener_sp && use_run_lock) 1050 m_public_run_lock.SetStopped(); 1051 return state; 1052 case eStateStopped: 1053 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1054 continue; 1055 else 1056 { 1057 // We need to toggle the run lock as this won't get done in 1058 // SetPublicState() if the process is hijacked. 1059 if (hijack_listener_sp && use_run_lock) 1060 m_public_run_lock.SetStopped(); 1061 return state; 1062 } 1063 default: 1064 continue; 1065 } 1066 } 1067 return state; 1068 } 1069 1070 bool 1071 Process::HandleProcessStateChangedEvent (const EventSP &event_sp, 1072 Stream *stream, 1073 bool &pop_process_io_handler) 1074 { 1075 const bool handle_pop = pop_process_io_handler; 1076 1077 pop_process_io_handler = false; 1078 ProcessSP process_sp = Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1079 1080 if (!process_sp) 1081 return false; 1082 1083 StateType event_state = Process::ProcessEventData::GetStateFromEvent (event_sp.get()); 1084 if (event_state == eStateInvalid) 1085 return false; 1086 1087 switch (event_state) 1088 { 1089 case eStateInvalid: 1090 case eStateUnloaded: 1091 case eStateAttaching: 1092 case eStateLaunching: 1093 case eStateStepping: 1094 case eStateDetached: 1095 if (stream) 1096 stream->Printf("Process %" PRIu64 " %s\n", 1097 process_sp->GetID(), 1098 StateAsCString (event_state)); 1099 if (event_state == eStateDetached) 1100 pop_process_io_handler = true; 1101 break; 1102 1103 case eStateConnected: 1104 case eStateRunning: 1105 // Don't be chatty when we run... 1106 break; 1107 1108 case eStateExited: 1109 if (stream) 1110 process_sp->GetStatus(*stream); 1111 pop_process_io_handler = true; 1112 break; 1113 1114 case eStateStopped: 1115 case eStateCrashed: 1116 case eStateSuspended: 1117 // Make sure the program hasn't been auto-restarted: 1118 if (Process::ProcessEventData::GetRestartedFromEvent (event_sp.get())) 1119 { 1120 if (stream) 1121 { 1122 size_t num_reasons = Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1123 if (num_reasons > 0) 1124 { 1125 // FIXME: Do we want to report this, or would that just be annoyingly chatty? 1126 if (num_reasons == 1) 1127 { 1128 const char *reason = Process::ProcessEventData::GetRestartedReasonAtIndex (event_sp.get(), 0); 1129 stream->Printf ("Process %" PRIu64 " stopped and restarted: %s\n", 1130 process_sp->GetID(), 1131 reason ? reason : "<UNKNOWN REASON>"); 1132 } 1133 else 1134 { 1135 stream->Printf ("Process %" PRIu64 " stopped and restarted, reasons:\n", 1136 process_sp->GetID()); 1137 1138 1139 for (size_t i = 0; i < num_reasons; i++) 1140 { 1141 const char *reason = Process::ProcessEventData::GetRestartedReasonAtIndex (event_sp.get(), i); 1142 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1143 } 1144 } 1145 } 1146 } 1147 } 1148 else 1149 { 1150 // Lock the thread list so it doesn't change on us, this is the scope for the locker: 1151 { 1152 ThreadList &thread_list = process_sp->GetThreadList(); 1153 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1154 1155 ThreadSP curr_thread (thread_list.GetSelectedThread()); 1156 ThreadSP thread; 1157 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1158 if (curr_thread) 1159 curr_thread_stop_reason = curr_thread->GetStopReason(); 1160 if (!curr_thread || 1161 !curr_thread->IsValid() || 1162 curr_thread_stop_reason == eStopReasonInvalid || 1163 curr_thread_stop_reason == eStopReasonNone) 1164 { 1165 // Prefer a thread that has just completed its plan over another thread as current thread. 1166 ThreadSP plan_thread; 1167 ThreadSP other_thread; 1168 1169 const size_t num_threads = thread_list.GetSize(); 1170 size_t i; 1171 for (i = 0; i < num_threads; ++i) 1172 { 1173 thread = thread_list.GetThreadAtIndex(i); 1174 StopReason thread_stop_reason = thread->GetStopReason(); 1175 switch (thread_stop_reason) 1176 { 1177 case eStopReasonInvalid: 1178 case eStopReasonNone: 1179 break; 1180 1181 case eStopReasonSignal: 1182 { 1183 // Don't select a signal thread if we weren't going to stop at that 1184 // signal. We have to have had another reason for stopping here, and 1185 // the user doesn't want to see this thread. 1186 uint64_t signo = thread->GetStopInfo()->GetValue(); 1187 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 1188 { 1189 if (!other_thread) 1190 other_thread = thread; 1191 } 1192 break; 1193 } 1194 case eStopReasonTrace: 1195 case eStopReasonBreakpoint: 1196 case eStopReasonWatchpoint: 1197 case eStopReasonException: 1198 case eStopReasonExec: 1199 case eStopReasonThreadExiting: 1200 case eStopReasonInstrumentation: 1201 if (!other_thread) 1202 other_thread = thread; 1203 break; 1204 case eStopReasonPlanComplete: 1205 if (!plan_thread) 1206 plan_thread = thread; 1207 break; 1208 } 1209 } 1210 if (plan_thread) 1211 thread_list.SetSelectedThreadByID (plan_thread->GetID()); 1212 else if (other_thread) 1213 thread_list.SetSelectedThreadByID (other_thread->GetID()); 1214 else 1215 { 1216 if (curr_thread && curr_thread->IsValid()) 1217 thread = curr_thread; 1218 else 1219 thread = thread_list.GetThreadAtIndex(0); 1220 1221 if (thread) 1222 thread_list.SetSelectedThreadByID (thread->GetID()); 1223 } 1224 } 1225 } 1226 // Drop the ThreadList mutex by here, since GetThreadStatus below might have to run code, 1227 // e.g. for Data formatters, and if we hold the ThreadList mutex, then the process is going to 1228 // have a hard time restarting the process. 1229 if (stream) 1230 { 1231 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1232 if (debugger.GetTargetList().GetSelectedTarget().get() == &process_sp->GetTarget()) 1233 { 1234 const bool only_threads_with_stop_reason = true; 1235 const uint32_t start_frame = 0; 1236 const uint32_t num_frames = 1; 1237 const uint32_t num_frames_with_source = 1; 1238 process_sp->GetStatus(*stream); 1239 process_sp->GetThreadStatus (*stream, 1240 only_threads_with_stop_reason, 1241 start_frame, 1242 num_frames, 1243 num_frames_with_source); 1244 } 1245 else 1246 { 1247 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(process_sp->GetTarget().shared_from_this()); 1248 if (target_idx != UINT32_MAX) 1249 stream->Printf ("Target %d: (", target_idx); 1250 else 1251 stream->Printf ("Target <unknown index>: ("); 1252 process_sp->GetTarget().Dump (stream, eDescriptionLevelBrief); 1253 stream->Printf (") stopped.\n"); 1254 } 1255 } 1256 1257 // Pop the process IO handler 1258 pop_process_io_handler = true; 1259 } 1260 break; 1261 } 1262 1263 if (handle_pop && pop_process_io_handler) 1264 process_sp->PopProcessIOHandler(); 1265 1266 return true; 1267 } 1268 1269 StateType 1270 Process::WaitForState(const std::chrono::microseconds &timeout, const StateType *match_states, 1271 const uint32_t num_match_states) 1272 { 1273 EventSP event_sp; 1274 StateType state = GetState(); 1275 while (state != eStateInvalid) 1276 { 1277 // If we are exited or detached, we won't ever get back to any 1278 // other valid state... 1279 if (state == eStateDetached || state == eStateExited) 1280 return state; 1281 1282 state = WaitForStateChangedEvents(timeout, event_sp, nullptr); 1283 1284 for (uint32_t i = 0; i < num_match_states; ++i) 1285 { 1286 if (match_states[i] == state) 1287 return state; 1288 } 1289 } 1290 return state; 1291 } 1292 1293 bool 1294 Process::HijackProcessEvents (ListenerSP listener_sp) 1295 { 1296 if (listener_sp) 1297 { 1298 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | eBroadcastBitInterrupt); 1299 } 1300 else 1301 return false; 1302 } 1303 1304 void 1305 Process::RestoreProcessEvents () 1306 { 1307 RestoreBroadcaster(); 1308 } 1309 1310 StateType 1311 Process::WaitForStateChangedEvents(const std::chrono::microseconds &timeout, EventSP &event_sp, 1312 ListenerSP hijack_listener_sp) 1313 { 1314 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1315 1316 if (log) 1317 log->Printf("Process::%s (timeout = %llu, event_sp)...", __FUNCTION__, 1318 static_cast<unsigned long long>(timeout.count())); 1319 1320 ListenerSP listener_sp = hijack_listener_sp; 1321 if (!listener_sp) 1322 listener_sp = m_listener_sp; 1323 1324 StateType state = eStateInvalid; 1325 if (listener_sp->WaitForEventForBroadcasterWithType (timeout, 1326 this, 1327 eBroadcastBitStateChanged | eBroadcastBitInterrupt, 1328 event_sp)) 1329 { 1330 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1331 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1332 else if (log) 1333 log->Printf ("Process::%s got no event or was interrupted.", __FUNCTION__); 1334 } 1335 1336 if (log) 1337 log->Printf("Process::%s (timeout = %llu, event_sp) => %s", __FUNCTION__, 1338 static_cast<unsigned long long>(timeout.count()), StateAsCString(state)); 1339 return state; 1340 } 1341 1342 Event * 1343 Process::PeekAtStateChangedEvents () 1344 { 1345 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1346 1347 if (log) 1348 log->Printf ("Process::%s...", __FUNCTION__); 1349 1350 Event *event_ptr; 1351 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType (this, 1352 eBroadcastBitStateChanged); 1353 if (log) 1354 { 1355 if (event_ptr) 1356 { 1357 log->Printf ("Process::%s (event_ptr) => %s", 1358 __FUNCTION__, 1359 StateAsCString(ProcessEventData::GetStateFromEvent (event_ptr))); 1360 } 1361 else 1362 { 1363 log->Printf ("Process::%s no events found", 1364 __FUNCTION__); 1365 } 1366 } 1367 return event_ptr; 1368 } 1369 1370 StateType 1371 Process::WaitForStateChangedEventsPrivate(const std::chrono::microseconds &timeout, EventSP &event_sp) 1372 { 1373 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1374 1375 if (log) 1376 log->Printf("Process::%s (timeout = %llu, event_sp)...", __FUNCTION__, 1377 static_cast<unsigned long long>(timeout.count())); 1378 1379 StateType state = eStateInvalid; 1380 if (m_private_state_listener_sp->WaitForEventForBroadcasterWithType (timeout, 1381 &m_private_state_broadcaster, 1382 eBroadcastBitStateChanged | eBroadcastBitInterrupt, 1383 event_sp)) 1384 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1385 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1386 1387 // This is a bit of a hack, but when we wait here we could very well return 1388 // to the command-line, and that could disable the log, which would render the 1389 // log we got above invalid. 1390 if (log) 1391 log->Printf("Process::%s (timeout = %llu, event_sp) => %s", __FUNCTION__, 1392 static_cast<unsigned long long>(timeout.count()), 1393 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1394 return state; 1395 } 1396 1397 bool 1398 Process::WaitForEventsPrivate(const std::chrono::microseconds &timeout, EventSP &event_sp, bool control_only) 1399 { 1400 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1401 1402 if (log) 1403 log->Printf("Process::%s (timeout = %llu, event_sp)...", __FUNCTION__, 1404 static_cast<unsigned long long>(timeout.count())); 1405 1406 if (control_only) 1407 return m_private_state_listener_sp->WaitForEventForBroadcaster(timeout, &m_private_state_control_broadcaster, event_sp); 1408 else 1409 return m_private_state_listener_sp->WaitForEvent(timeout, event_sp); 1410 } 1411 1412 bool 1413 Process::IsRunning () const 1414 { 1415 return StateIsRunningState (m_public_state.GetValue()); 1416 } 1417 1418 int 1419 Process::GetExitStatus () 1420 { 1421 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1422 1423 if (m_public_state.GetValue() == eStateExited) 1424 return m_exit_status; 1425 return -1; 1426 } 1427 1428 const char * 1429 Process::GetExitDescription () 1430 { 1431 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1432 1433 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1434 return m_exit_string.c_str(); 1435 return nullptr; 1436 } 1437 1438 bool 1439 Process::SetExitStatus (int status, const char *cstr) 1440 { 1441 // Use a mutex to protect setting the exit status. 1442 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1443 1444 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1445 if (log) 1446 log->Printf("Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1447 status, status, 1448 cstr ? "\"" : "", 1449 cstr ? cstr : "NULL", 1450 cstr ? "\"" : ""); 1451 1452 // We were already in the exited state 1453 if (m_private_state.GetValue() == eStateExited) 1454 { 1455 if (log) 1456 log->Printf("Process::SetExitStatus () ignoring exit status because state was already set to eStateExited"); 1457 return false; 1458 } 1459 1460 m_exit_status = status; 1461 if (cstr) 1462 m_exit_string = cstr; 1463 else 1464 m_exit_string.clear(); 1465 1466 // Clear the last natural stop ID since it has a strong 1467 // reference to this process 1468 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1469 1470 SetPrivateState (eStateExited); 1471 1472 // Allow subclasses to do some cleanup 1473 DidExit (); 1474 1475 return true; 1476 } 1477 1478 bool 1479 Process::IsAlive () 1480 { 1481 switch (m_private_state.GetValue()) 1482 { 1483 case eStateConnected: 1484 case eStateAttaching: 1485 case eStateLaunching: 1486 case eStateStopped: 1487 case eStateRunning: 1488 case eStateStepping: 1489 case eStateCrashed: 1490 case eStateSuspended: 1491 return true; 1492 default: 1493 return false; 1494 } 1495 } 1496 1497 // This static callback can be used to watch for local child processes on 1498 // the current host. The child process exits, the process will be 1499 // found in the global target list (we want to be completely sure that the 1500 // lldb_private::Process doesn't go away before we can deliver the signal. 1501 bool 1502 Process::SetProcessExitStatus(lldb::pid_t pid, bool exited, 1503 int signo, // Zero for no signal 1504 int exit_status // Exit value of process if signal is zero 1505 ) 1506 { 1507 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1508 if (log) 1509 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 ", exited=%i, signal=%i, exit_status=%i)\n", pid, 1510 exited, signo, exit_status); 1511 1512 if (exited) 1513 { 1514 TargetSP target_sp(Debugger::FindTargetWithProcessID (pid)); 1515 if (target_sp) 1516 { 1517 ProcessSP process_sp (target_sp->GetProcessSP()); 1518 if (process_sp) 1519 { 1520 const char *signal_cstr = nullptr; 1521 if (signo) 1522 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1523 1524 process_sp->SetExitStatus (exit_status, signal_cstr); 1525 } 1526 } 1527 return true; 1528 } 1529 return false; 1530 } 1531 1532 void 1533 Process::UpdateThreadListIfNeeded () 1534 { 1535 const uint32_t stop_id = GetStopID(); 1536 if (m_thread_list.GetSize(false) == 0 || stop_id != m_thread_list.GetStopID()) 1537 { 1538 const StateType state = GetPrivateState(); 1539 if (StateIsStoppedState (state, true)) 1540 { 1541 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1542 // m_thread_list does have its own mutex, but we need to 1543 // hold onto the mutex between the call to UpdateThreadList(...) 1544 // and the os->UpdateThreadList(...) so it doesn't change on us 1545 ThreadList &old_thread_list = m_thread_list; 1546 ThreadList real_thread_list(this); 1547 ThreadList new_thread_list(this); 1548 // Always update the thread list with the protocol specific 1549 // thread list, but only update if "true" is returned 1550 if (UpdateThreadList (m_thread_list_real, real_thread_list)) 1551 { 1552 // Don't call into the OperatingSystem to update the thread list if we are shutting down, since 1553 // that may call back into the SBAPI's, requiring the API lock which is already held by whoever is 1554 // shutting us down, causing a deadlock. 1555 OperatingSystem *os = GetOperatingSystem (); 1556 if (os && !m_destroy_in_process) 1557 { 1558 // Clear any old backing threads where memory threads might have been 1559 // backed by actual threads from the lldb_private::Process subclass 1560 size_t num_old_threads = old_thread_list.GetSize(false); 1561 for (size_t i = 0; i < num_old_threads; ++i) 1562 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1563 1564 // Turn off dynamic types to ensure we don't run any expressions. Objective C 1565 // can run an expression to determine if a SBValue is a dynamic type or not 1566 // and we need to avoid this. OperatingSystem plug-ins can't run expressions 1567 // that require running code... 1568 1569 Target &target = GetTarget(); 1570 const lldb::DynamicValueType saved_prefer_dynamic = target.GetPreferDynamicValue (); 1571 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1572 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1573 1574 // Now let the OperatingSystem plug-in update the thread list 1575 1576 os->UpdateThreadList (old_thread_list, // Old list full of threads created by OS plug-in 1577 real_thread_list, // The actual thread list full of threads created by each lldb_private::Process subclass 1578 new_thread_list); // The new thread list that we will show to the user that gets filled in 1579 1580 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1581 target.SetPreferDynamicValue(saved_prefer_dynamic); 1582 } 1583 else 1584 { 1585 // No OS plug-in, the new thread list is the same as the real thread list 1586 new_thread_list = real_thread_list; 1587 } 1588 1589 m_thread_list_real.Update(real_thread_list); 1590 m_thread_list.Update (new_thread_list); 1591 m_thread_list.SetStopID (stop_id); 1592 1593 if (GetLastNaturalStopID () != m_extended_thread_stop_id) 1594 { 1595 // Clear any extended threads that we may have accumulated previously 1596 m_extended_thread_list.Clear(); 1597 m_extended_thread_stop_id = GetLastNaturalStopID (); 1598 1599 m_queue_list.Clear(); 1600 m_queue_list_stop_id = GetLastNaturalStopID (); 1601 } 1602 } 1603 } 1604 } 1605 } 1606 1607 void 1608 Process::UpdateQueueListIfNeeded () 1609 { 1610 if (m_system_runtime_ap) 1611 { 1612 if (m_queue_list.GetSize() == 0 || m_queue_list_stop_id != GetLastNaturalStopID()) 1613 { 1614 const StateType state = GetPrivateState(); 1615 if (StateIsStoppedState (state, true)) 1616 { 1617 m_system_runtime_ap->PopulateQueueList (m_queue_list); 1618 m_queue_list_stop_id = GetLastNaturalStopID(); 1619 } 1620 } 1621 } 1622 } 1623 1624 ThreadSP 1625 Process::CreateOSPluginThread (lldb::tid_t tid, lldb::addr_t context) 1626 { 1627 OperatingSystem *os = GetOperatingSystem (); 1628 if (os) 1629 return os->CreateThread(tid, context); 1630 return ThreadSP(); 1631 } 1632 1633 uint32_t 1634 Process::GetNextThreadIndexID (uint64_t thread_id) 1635 { 1636 return AssignIndexIDToThread(thread_id); 1637 } 1638 1639 bool 1640 Process::HasAssignedIndexIDToThread(uint64_t thread_id) 1641 { 1642 return (m_thread_id_to_index_id_map.find(thread_id) != m_thread_id_to_index_id_map.end()); 1643 } 1644 1645 uint32_t 1646 Process::AssignIndexIDToThread(uint64_t thread_id) 1647 { 1648 uint32_t result = 0; 1649 std::map<uint64_t, uint32_t>::iterator iterator = m_thread_id_to_index_id_map.find(thread_id); 1650 if (iterator == m_thread_id_to_index_id_map.end()) 1651 { 1652 result = ++m_thread_index_id; 1653 m_thread_id_to_index_id_map[thread_id] = result; 1654 } 1655 else 1656 { 1657 result = iterator->second; 1658 } 1659 1660 return result; 1661 } 1662 1663 StateType 1664 Process::GetState() 1665 { 1666 // If any other threads access this we will need a mutex for it 1667 return m_public_state.GetValue (); 1668 } 1669 1670 bool 1671 Process::StateChangedIsExternallyHijacked() 1672 { 1673 if (IsHijackedForEvent(eBroadcastBitStateChanged)) 1674 { 1675 const char *hijacking_name = GetHijackingListenerName(); 1676 if (hijacking_name && strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1677 return true; 1678 } 1679 return false; 1680 } 1681 1682 void 1683 Process::SetPublicState (StateType new_state, bool restarted) 1684 { 1685 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1686 if (log) 1687 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", StateAsCString(new_state), restarted); 1688 const StateType old_state = m_public_state.GetValue(); 1689 m_public_state.SetValue (new_state); 1690 1691 // On the transition from Run to Stopped, we unlock the writer end of the 1692 // run lock. The lock gets locked in Resume, which is the public API 1693 // to tell the program to run. 1694 if (!StateChangedIsExternallyHijacked()) 1695 { 1696 if (new_state == eStateDetached) 1697 { 1698 if (log) 1699 log->Printf("Process::SetPublicState (%s) -- unlocking run lock for detach", StateAsCString(new_state)); 1700 m_public_run_lock.SetStopped(); 1701 } 1702 else 1703 { 1704 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1705 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1706 if ((old_state_is_stopped != new_state_is_stopped)) 1707 { 1708 if (new_state_is_stopped && !restarted) 1709 { 1710 if (log) 1711 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", StateAsCString(new_state)); 1712 m_public_run_lock.SetStopped(); 1713 } 1714 } 1715 } 1716 } 1717 } 1718 1719 Error 1720 Process::Resume () 1721 { 1722 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1723 if (log) 1724 log->Printf("Process::Resume -- locking run lock"); 1725 if (!m_public_run_lock.TrySetRunning()) 1726 { 1727 Error error("Resume request failed - process still running."); 1728 if (log) 1729 log->Printf ("Process::Resume: -- TrySetRunning failed, not resuming."); 1730 return error; 1731 } 1732 return PrivateResume(); 1733 } 1734 1735 Error 1736 Process::ResumeSynchronous (Stream *stream) 1737 { 1738 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1739 if (log) 1740 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1741 if (!m_public_run_lock.TrySetRunning()) 1742 { 1743 Error error("Resume request failed - process still running."); 1744 if (log) 1745 log->Printf ("Process::Resume: -- TrySetRunning failed, not resuming."); 1746 return error; 1747 } 1748 1749 ListenerSP listener_sp (Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1750 HijackProcessEvents(listener_sp); 1751 1752 Error error = PrivateResume(); 1753 if (error.Success()) 1754 { 1755 StateType state = WaitForProcessToStop(std::chrono::microseconds(0), NULL, true, listener_sp, stream); 1756 const bool must_be_alive = false; // eStateExited is ok, so this must be false 1757 if (!StateIsStoppedState(state, must_be_alive)) 1758 error.SetErrorStringWithFormat("process not in stopped state after synchronous resume: %s", StateAsCString(state)); 1759 } 1760 1761 // Undo the hijacking of process events... 1762 RestoreProcessEvents(); 1763 1764 return error; 1765 } 1766 1767 StateType 1768 Process::GetPrivateState () 1769 { 1770 return m_private_state.GetValue(); 1771 } 1772 1773 void 1774 Process::SetPrivateState (StateType new_state) 1775 { 1776 if (m_finalize_called) 1777 return; 1778 1779 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1780 bool state_changed = false; 1781 1782 if (log) 1783 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1784 1785 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1786 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1787 1788 const StateType old_state = m_private_state.GetValueNoLock (); 1789 state_changed = old_state != new_state; 1790 1791 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1792 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1793 if (old_state_is_stopped != new_state_is_stopped) 1794 { 1795 if (new_state_is_stopped) 1796 m_private_run_lock.SetStopped(); 1797 else 1798 m_private_run_lock.SetRunning(); 1799 } 1800 1801 if (state_changed) 1802 { 1803 m_private_state.SetValueNoLock (new_state); 1804 EventSP event_sp (new Event (eBroadcastBitStateChanged, new ProcessEventData (shared_from_this(), new_state))); 1805 if (StateIsStoppedState(new_state, false)) 1806 { 1807 // Note, this currently assumes that all threads in the list 1808 // stop when the process stops. In the future we will want to 1809 // support a debugging model where some threads continue to run 1810 // while others are stopped. When that happens we will either need 1811 // a way for the thread list to identify which threads are stopping 1812 // or create a special thread list containing only threads which 1813 // actually stopped. 1814 // 1815 // The process plugin is responsible for managing the actual 1816 // behavior of the threads and should have stopped any threads 1817 // that are going to stop before we get here. 1818 m_thread_list.DidStop(); 1819 1820 m_mod_id.BumpStopID(); 1821 if (!m_mod_id.IsLastResumeForUserExpression()) 1822 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1823 m_memory_cache.Clear(); 1824 if (log) 1825 log->Printf("Process::SetPrivateState (%s) stop_id = %u", StateAsCString(new_state), m_mod_id.GetStopID()); 1826 } 1827 1828 // Use our target to get a shared pointer to ourselves... 1829 if (m_finalize_called && !PrivateStateThreadIsValid()) 1830 BroadcastEvent (event_sp); 1831 else 1832 m_private_state_broadcaster.BroadcastEvent (event_sp); 1833 } 1834 else 1835 { 1836 if (log) 1837 log->Printf("Process::SetPrivateState (%s) state didn't change. Ignoring...", StateAsCString(new_state)); 1838 } 1839 } 1840 1841 void 1842 Process::SetRunningUserExpression (bool on) 1843 { 1844 m_mod_id.SetRunningUserExpression (on); 1845 } 1846 1847 addr_t 1848 Process::GetImageInfoAddress() 1849 { 1850 return LLDB_INVALID_ADDRESS; 1851 } 1852 1853 const lldb::ABISP & 1854 Process::GetABI() 1855 { 1856 if (!m_abi_sp) 1857 m_abi_sp = ABI::FindPlugin(GetTarget().GetArchitecture()); 1858 return m_abi_sp; 1859 } 1860 1861 LanguageRuntime * 1862 Process::GetLanguageRuntime(lldb::LanguageType language, bool retry_if_null) 1863 { 1864 if (m_finalizing) 1865 return nullptr; 1866 1867 LanguageRuntimeCollection::iterator pos; 1868 pos = m_language_runtimes.find (language); 1869 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) 1870 { 1871 lldb::LanguageRuntimeSP runtime_sp(LanguageRuntime::FindPlugin(this, language)); 1872 1873 m_language_runtimes[language] = runtime_sp; 1874 return runtime_sp.get(); 1875 } 1876 else 1877 return (*pos).second.get(); 1878 } 1879 1880 CPPLanguageRuntime * 1881 Process::GetCPPLanguageRuntime (bool retry_if_null) 1882 { 1883 LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1884 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1885 return static_cast<CPPLanguageRuntime *> (runtime); 1886 return nullptr; 1887 } 1888 1889 ObjCLanguageRuntime * 1890 Process::GetObjCLanguageRuntime (bool retry_if_null) 1891 { 1892 LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1893 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1894 return static_cast<ObjCLanguageRuntime *> (runtime); 1895 return nullptr; 1896 } 1897 1898 bool 1899 Process::IsPossibleDynamicValue (ValueObject& in_value) 1900 { 1901 if (m_finalizing) 1902 return false; 1903 1904 if (in_value.IsDynamic()) 1905 return false; 1906 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1907 1908 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) 1909 { 1910 LanguageRuntime *runtime = GetLanguageRuntime (known_type); 1911 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1912 } 1913 1914 LanguageRuntime *cpp_runtime = GetLanguageRuntime (eLanguageTypeC_plus_plus); 1915 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1916 return true; 1917 1918 LanguageRuntime *objc_runtime = GetLanguageRuntime (eLanguageTypeObjC); 1919 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1920 } 1921 1922 void 1923 Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) 1924 { 1925 m_dynamic_checkers_ap.reset(dynamic_checkers); 1926 } 1927 1928 BreakpointSiteList & 1929 Process::GetBreakpointSiteList() 1930 { 1931 return m_breakpoint_site_list; 1932 } 1933 1934 const BreakpointSiteList & 1935 Process::GetBreakpointSiteList() const 1936 { 1937 return m_breakpoint_site_list; 1938 } 1939 1940 void 1941 Process::DisableAllBreakpointSites () 1942 { 1943 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1944 // bp_site->SetEnabled(true); 1945 DisableBreakpointSite(bp_site); 1946 }); 1947 } 1948 1949 Error 1950 Process::ClearBreakpointSiteByID (lldb::user_id_t break_id) 1951 { 1952 Error error (DisableBreakpointSiteByID (break_id)); 1953 1954 if (error.Success()) 1955 m_breakpoint_site_list.Remove(break_id); 1956 1957 return error; 1958 } 1959 1960 Error 1961 Process::DisableBreakpointSiteByID (lldb::user_id_t break_id) 1962 { 1963 Error error; 1964 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id); 1965 if (bp_site_sp) 1966 { 1967 if (bp_site_sp->IsEnabled()) 1968 error = DisableBreakpointSite (bp_site_sp.get()); 1969 } 1970 else 1971 { 1972 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); 1973 } 1974 1975 return error; 1976 } 1977 1978 Error 1979 Process::EnableBreakpointSiteByID (lldb::user_id_t break_id) 1980 { 1981 Error error; 1982 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id); 1983 if (bp_site_sp) 1984 { 1985 if (!bp_site_sp->IsEnabled()) 1986 error = EnableBreakpointSite (bp_site_sp.get()); 1987 } 1988 else 1989 { 1990 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); 1991 } 1992 return error; 1993 } 1994 1995 lldb::break_id_t 1996 Process::CreateBreakpointSite (const BreakpointLocationSP &owner, bool use_hardware) 1997 { 1998 addr_t load_addr = LLDB_INVALID_ADDRESS; 1999 2000 bool show_error = true; 2001 switch (GetState()) 2002 { 2003 case eStateInvalid: 2004 case eStateUnloaded: 2005 case eStateConnected: 2006 case eStateAttaching: 2007 case eStateLaunching: 2008 case eStateDetached: 2009 case eStateExited: 2010 show_error = false; 2011 break; 2012 2013 case eStateStopped: 2014 case eStateRunning: 2015 case eStateStepping: 2016 case eStateCrashed: 2017 case eStateSuspended: 2018 show_error = IsAlive(); 2019 break; 2020 } 2021 2022 // Reset the IsIndirect flag here, in case the location changes from 2023 // pointing to a indirect symbol to a regular symbol. 2024 owner->SetIsIndirect (false); 2025 2026 if (owner->ShouldResolveIndirectFunctions()) 2027 { 2028 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 2029 if (symbol && symbol->IsIndirect()) 2030 { 2031 Error error; 2032 Address symbol_address = symbol->GetAddress(); 2033 load_addr = ResolveIndirectFunction (&symbol_address, error); 2034 if (!error.Success() && show_error) 2035 { 2036 GetTarget().GetDebugger().GetErrorFile()->Printf ("warning: failed to resolve indirect function at 0x%" PRIx64 " for breakpoint %i.%i: %s\n", 2037 symbol->GetLoadAddress(&GetTarget()), 2038 owner->GetBreakpoint().GetID(), 2039 owner->GetID(), 2040 error.AsCString() ? error.AsCString() : "unknown error"); 2041 return LLDB_INVALID_BREAK_ID; 2042 } 2043 Address resolved_address(load_addr); 2044 load_addr = resolved_address.GetOpcodeLoadAddress (&GetTarget()); 2045 owner->SetIsIndirect(true); 2046 } 2047 else 2048 load_addr = owner->GetAddress().GetOpcodeLoadAddress (&GetTarget()); 2049 } 2050 else 2051 load_addr = owner->GetAddress().GetOpcodeLoadAddress (&GetTarget()); 2052 2053 if (load_addr != LLDB_INVALID_ADDRESS) 2054 { 2055 BreakpointSiteSP bp_site_sp; 2056 2057 // Look up this breakpoint site. If it exists, then add this new owner, otherwise 2058 // create a new breakpoint site and add it. 2059 2060 bp_site_sp = m_breakpoint_site_list.FindByAddress (load_addr); 2061 2062 if (bp_site_sp) 2063 { 2064 bp_site_sp->AddOwner (owner); 2065 owner->SetBreakpointSite (bp_site_sp); 2066 return bp_site_sp->GetID(); 2067 } 2068 else 2069 { 2070 bp_site_sp.reset (new BreakpointSite (&m_breakpoint_site_list, owner, load_addr, use_hardware)); 2071 if (bp_site_sp) 2072 { 2073 Error error = EnableBreakpointSite (bp_site_sp.get()); 2074 if (error.Success()) 2075 { 2076 owner->SetBreakpointSite (bp_site_sp); 2077 return m_breakpoint_site_list.Add (bp_site_sp); 2078 } 2079 else 2080 { 2081 if (show_error) 2082 { 2083 // Report error for setting breakpoint... 2084 GetTarget().GetDebugger().GetErrorFile()->Printf ("warning: failed to set breakpoint site at 0x%" PRIx64 " for breakpoint %i.%i: %s\n", 2085 load_addr, 2086 owner->GetBreakpoint().GetID(), 2087 owner->GetID(), 2088 error.AsCString() ? error.AsCString() : "unknown error"); 2089 } 2090 } 2091 } 2092 } 2093 } 2094 // We failed to enable the breakpoint 2095 return LLDB_INVALID_BREAK_ID; 2096 } 2097 2098 void 2099 Process::RemoveOwnerFromBreakpointSite (lldb::user_id_t owner_id, lldb::user_id_t owner_loc_id, BreakpointSiteSP &bp_site_sp) 2100 { 2101 uint32_t num_owners = bp_site_sp->RemoveOwner (owner_id, owner_loc_id); 2102 if (num_owners == 0) 2103 { 2104 // Don't try to disable the site if we don't have a live process anymore. 2105 if (IsAlive()) 2106 DisableBreakpointSite (bp_site_sp.get()); 2107 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 2108 } 2109 } 2110 2111 size_t 2112 Process::RemoveBreakpointOpcodesFromBuffer (addr_t bp_addr, size_t size, uint8_t *buf) const 2113 { 2114 size_t bytes_removed = 0; 2115 BreakpointSiteList bp_sites_in_range; 2116 2117 if (m_breakpoint_site_list.FindInRange (bp_addr, bp_addr + size, bp_sites_in_range)) 2118 { 2119 bp_sites_in_range.ForEach([bp_addr, size, buf, &bytes_removed](BreakpointSite *bp_site) -> void { 2120 if (bp_site->GetType() == BreakpointSite::eSoftware) 2121 { 2122 addr_t intersect_addr; 2123 size_t intersect_size; 2124 size_t opcode_offset; 2125 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, &intersect_size, &opcode_offset)) 2126 { 2127 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 2128 assert(bp_addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= bp_addr + size); 2129 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 2130 size_t buf_offset = intersect_addr - bp_addr; 2131 ::memcpy(buf + buf_offset, bp_site->GetSavedOpcodeBytes() + opcode_offset, intersect_size); 2132 } 2133 } 2134 }); 2135 } 2136 return bytes_removed; 2137 } 2138 2139 size_t 2140 Process::GetSoftwareBreakpointTrapOpcode (BreakpointSite* bp_site) 2141 { 2142 PlatformSP platform_sp (GetTarget().GetPlatform()); 2143 if (platform_sp) 2144 return platform_sp->GetSoftwareBreakpointTrapOpcode (GetTarget(), bp_site); 2145 return 0; 2146 } 2147 2148 Error 2149 Process::EnableSoftwareBreakpoint (BreakpointSite *bp_site) 2150 { 2151 Error error; 2152 assert(bp_site != nullptr); 2153 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2154 const addr_t bp_addr = bp_site->GetLoadAddress(); 2155 if (log) 2156 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, bp_site->GetID(), (uint64_t)bp_addr); 2157 if (bp_site->IsEnabled()) 2158 { 2159 if (log) 2160 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already enabled", bp_site->GetID(), (uint64_t)bp_addr); 2161 return error; 2162 } 2163 2164 if (bp_addr == LLDB_INVALID_ADDRESS) 2165 { 2166 error.SetErrorString("BreakpointSite contains an invalid load address."); 2167 return error; 2168 } 2169 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2170 // trap for the breakpoint site 2171 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2172 2173 if (bp_opcode_size == 0) 2174 { 2175 error.SetErrorStringWithFormat ("Process::GetSoftwareBreakpointTrapOpcode() returned zero, unable to get breakpoint trap for address 0x%" PRIx64, bp_addr); 2176 } 2177 else 2178 { 2179 const uint8_t * const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2180 2181 if (bp_opcode_bytes == nullptr) 2182 { 2183 error.SetErrorString ("BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2184 return error; 2185 } 2186 2187 // Save the original opcode by reading it 2188 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, error) == bp_opcode_size) 2189 { 2190 // Write a software breakpoint in place of the original opcode 2191 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) 2192 { 2193 uint8_t verify_bp_opcode_bytes[64]; 2194 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) 2195 { 2196 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, bp_opcode_size) == 0) 2197 { 2198 bp_site->SetEnabled(true); 2199 bp_site->SetType (BreakpointSite::eSoftware); 2200 if (log) 2201 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", 2202 bp_site->GetID(), 2203 (uint64_t)bp_addr); 2204 } 2205 else 2206 error.SetErrorString("failed to verify the breakpoint trap in memory."); 2207 } 2208 else 2209 error.SetErrorString("Unable to read memory to verify breakpoint trap."); 2210 } 2211 else 2212 error.SetErrorString("Unable to write breakpoint trap to memory."); 2213 } 2214 else 2215 error.SetErrorString("Unable to read memory at breakpoint address."); 2216 } 2217 if (log && error.Fail()) 2218 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", 2219 bp_site->GetID(), 2220 (uint64_t)bp_addr, 2221 error.AsCString()); 2222 return error; 2223 } 2224 2225 Error 2226 Process::DisableSoftwareBreakpoint (BreakpointSite *bp_site) 2227 { 2228 Error error; 2229 assert(bp_site != nullptr); 2230 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2231 addr_t bp_addr = bp_site->GetLoadAddress(); 2232 lldb::user_id_t breakID = bp_site->GetID(); 2233 if (log) 2234 log->Printf ("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 ") addr = 0x%" PRIx64, breakID, (uint64_t)bp_addr); 2235 2236 if (bp_site->IsHardware()) 2237 { 2238 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2239 } 2240 else if (bp_site->IsEnabled()) 2241 { 2242 const size_t break_op_size = bp_site->GetByteSize(); 2243 const uint8_t * const break_op = bp_site->GetTrapOpcodeBytes(); 2244 if (break_op_size > 0) 2245 { 2246 // Clear a software breakpoint instruction 2247 uint8_t curr_break_op[8]; 2248 assert (break_op_size <= sizeof(curr_break_op)); 2249 bool break_op_found = false; 2250 2251 // Read the breakpoint opcode 2252 if (DoReadMemory (bp_addr, curr_break_op, break_op_size, error) == break_op_size) 2253 { 2254 bool verify = false; 2255 // Make sure the breakpoint opcode exists at this address 2256 if (::memcmp (curr_break_op, break_op, break_op_size) == 0) 2257 { 2258 break_op_found = true; 2259 // We found a valid breakpoint opcode at this address, now restore 2260 // the saved opcode. 2261 if (DoWriteMemory (bp_addr, bp_site->GetSavedOpcodeBytes(), break_op_size, error) == break_op_size) 2262 { 2263 verify = true; 2264 } 2265 else 2266 error.SetErrorString("Memory write failed when restoring original opcode."); 2267 } 2268 else 2269 { 2270 error.SetErrorString("Original breakpoint trap is no longer in memory."); 2271 // Set verify to true and so we can check if the original opcode has already been restored 2272 verify = true; 2273 } 2274 2275 if (verify) 2276 { 2277 uint8_t verify_opcode[8]; 2278 assert (break_op_size < sizeof(verify_opcode)); 2279 // Verify that our original opcode made it back to the inferior 2280 if (DoReadMemory (bp_addr, verify_opcode, break_op_size, error) == break_op_size) 2281 { 2282 // compare the memory we just read with the original opcode 2283 if (::memcmp (bp_site->GetSavedOpcodeBytes(), verify_opcode, break_op_size) == 0) 2284 { 2285 // SUCCESS 2286 bp_site->SetEnabled(false); 2287 if (log) 2288 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", bp_site->GetID(), (uint64_t)bp_addr); 2289 return error; 2290 } 2291 else 2292 { 2293 if (break_op_found) 2294 error.SetErrorString("Failed to restore original opcode."); 2295 } 2296 } 2297 else 2298 error.SetErrorString("Failed to read memory to verify that breakpoint trap was restored."); 2299 } 2300 } 2301 else 2302 error.SetErrorString("Unable to read memory that should contain the breakpoint trap."); 2303 } 2304 } 2305 else 2306 { 2307 if (log) 2308 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already disabled", bp_site->GetID(), (uint64_t)bp_addr); 2309 return error; 2310 } 2311 2312 if (log) 2313 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", 2314 bp_site->GetID(), 2315 (uint64_t)bp_addr, 2316 error.AsCString()); 2317 return error; 2318 } 2319 2320 // Uncomment to verify memory caching works after making changes to caching code 2321 //#define VERIFY_MEMORY_READS 2322 2323 size_t 2324 Process::ReadMemory (addr_t addr, void *buf, size_t size, Error &error) 2325 { 2326 error.Clear(); 2327 if (!GetDisableMemoryCache()) 2328 { 2329 #if defined (VERIFY_MEMORY_READS) 2330 // Memory caching is enabled, with debug verification 2331 2332 if (buf && size) 2333 { 2334 // Uncomment the line below to make sure memory caching is working. 2335 // I ran this through the test suite and got no assertions, so I am 2336 // pretty confident this is working well. If any changes are made to 2337 // memory caching, uncomment the line below and test your changes! 2338 2339 // Verify all memory reads by using the cache first, then redundantly 2340 // reading the same memory from the inferior and comparing to make sure 2341 // everything is exactly the same. 2342 std::string verify_buf (size, '\0'); 2343 assert (verify_buf.size() == size); 2344 const size_t cache_bytes_read = m_memory_cache.Read (this, addr, buf, size, error); 2345 Error verify_error; 2346 const size_t verify_bytes_read = ReadMemoryFromInferior (addr, const_cast<char *>(verify_buf.data()), verify_buf.size(), verify_error); 2347 assert (cache_bytes_read == verify_bytes_read); 2348 assert (memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2349 assert (verify_error.Success() == error.Success()); 2350 return cache_bytes_read; 2351 } 2352 return 0; 2353 #else // !defined(VERIFY_MEMORY_READS) 2354 // Memory caching is enabled, without debug verification 2355 2356 return m_memory_cache.Read (addr, buf, size, error); 2357 #endif // defined (VERIFY_MEMORY_READS) 2358 } 2359 else 2360 { 2361 // Memory caching is disabled 2362 2363 return ReadMemoryFromInferior (addr, buf, size, error); 2364 } 2365 } 2366 2367 size_t 2368 Process::ReadCStringFromMemory (addr_t addr, std::string &out_str, Error &error) 2369 { 2370 char buf[256]; 2371 out_str.clear(); 2372 addr_t curr_addr = addr; 2373 while (true) 2374 { 2375 size_t length = ReadCStringFromMemory (curr_addr, buf, sizeof(buf), error); 2376 if (length == 0) 2377 break; 2378 out_str.append(buf, length); 2379 // If we got "length - 1" bytes, we didn't get the whole C string, we 2380 // need to read some more characters 2381 if (length == sizeof(buf) - 1) 2382 curr_addr += length; 2383 else 2384 break; 2385 } 2386 return out_str.size(); 2387 } 2388 2389 size_t 2390 Process::ReadStringFromMemory (addr_t addr, char *dst, size_t max_bytes, Error &error, 2391 size_t type_width) 2392 { 2393 size_t total_bytes_read = 0; 2394 if (dst && max_bytes && type_width && max_bytes >= type_width) 2395 { 2396 // Ensure a null terminator independent of the number of bytes that is read. 2397 memset (dst, 0, max_bytes); 2398 size_t bytes_left = max_bytes - type_width; 2399 2400 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2401 assert(sizeof(terminator) >= type_width && 2402 "Attempting to validate a string with more than 4 bytes per character!"); 2403 2404 addr_t curr_addr = addr; 2405 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2406 char *curr_dst = dst; 2407 2408 error.Clear(); 2409 while (bytes_left > 0 && error.Success()) 2410 { 2411 addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); 2412 addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left); 2413 size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error); 2414 2415 if (bytes_read == 0) 2416 break; 2417 2418 // Search for a null terminator of correct size and alignment in bytes_read 2419 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2420 for (size_t i = aligned_start; i + type_width <= total_bytes_read + bytes_read; i += type_width) 2421 if (::memcmp(&dst[i], terminator, type_width) == 0) 2422 { 2423 error.Clear(); 2424 return i; 2425 } 2426 2427 total_bytes_read += bytes_read; 2428 curr_dst += bytes_read; 2429 curr_addr += bytes_read; 2430 bytes_left -= bytes_read; 2431 } 2432 } 2433 else 2434 { 2435 if (max_bytes) 2436 error.SetErrorString("invalid arguments"); 2437 } 2438 return total_bytes_read; 2439 } 2440 2441 // Deprecated in favor of ReadStringFromMemory which has wchar support and correct code to find 2442 // null terminators. 2443 size_t 2444 Process::ReadCStringFromMemory (addr_t addr, char *dst, size_t dst_max_len, Error &result_error) 2445 { 2446 size_t total_cstr_len = 0; 2447 if (dst && dst_max_len) 2448 { 2449 result_error.Clear(); 2450 // NULL out everything just to be safe 2451 memset (dst, 0, dst_max_len); 2452 Error error; 2453 addr_t curr_addr = addr; 2454 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2455 size_t bytes_left = dst_max_len - 1; 2456 char *curr_dst = dst; 2457 2458 while (bytes_left > 0) 2459 { 2460 addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); 2461 addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left); 2462 size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error); 2463 2464 if (bytes_read == 0) 2465 { 2466 result_error = error; 2467 dst[total_cstr_len] = '\0'; 2468 break; 2469 } 2470 const size_t len = strlen(curr_dst); 2471 2472 total_cstr_len += len; 2473 2474 if (len < bytes_to_read) 2475 break; 2476 2477 curr_dst += bytes_read; 2478 curr_addr += bytes_read; 2479 bytes_left -= bytes_read; 2480 } 2481 } 2482 else 2483 { 2484 if (dst == nullptr) 2485 result_error.SetErrorString("invalid arguments"); 2486 else 2487 result_error.Clear(); 2488 } 2489 return total_cstr_len; 2490 } 2491 2492 size_t 2493 Process::ReadMemoryFromInferior (addr_t addr, void *buf, size_t size, Error &error) 2494 { 2495 if (buf == nullptr || size == 0) 2496 return 0; 2497 2498 size_t bytes_read = 0; 2499 uint8_t *bytes = (uint8_t *)buf; 2500 2501 while (bytes_read < size) 2502 { 2503 const size_t curr_size = size - bytes_read; 2504 const size_t curr_bytes_read = DoReadMemory (addr + bytes_read, 2505 bytes + bytes_read, 2506 curr_size, 2507 error); 2508 bytes_read += curr_bytes_read; 2509 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2510 break; 2511 } 2512 2513 // Replace any software breakpoint opcodes that fall into this range back 2514 // into "buf" before we return 2515 if (bytes_read > 0) 2516 RemoveBreakpointOpcodesFromBuffer (addr, bytes_read, (uint8_t *)buf); 2517 return bytes_read; 2518 } 2519 2520 uint64_t 2521 Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, size_t integer_byte_size, uint64_t fail_value, 2522 Error &error) 2523 { 2524 Scalar scalar; 2525 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, error)) 2526 return scalar.ULongLong(fail_value); 2527 return fail_value; 2528 } 2529 2530 int64_t 2531 Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, size_t integer_byte_size, int64_t fail_value, Error &error) 2532 { 2533 Scalar scalar; 2534 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, error)) 2535 return scalar.SLongLong(fail_value); 2536 return fail_value; 2537 } 2538 2539 addr_t 2540 Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error) 2541 { 2542 Scalar scalar; 2543 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, error)) 2544 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2545 return LLDB_INVALID_ADDRESS; 2546 } 2547 2548 bool 2549 Process::WritePointerToMemory (lldb::addr_t vm_addr, 2550 lldb::addr_t ptr_value, 2551 Error &error) 2552 { 2553 Scalar scalar; 2554 const uint32_t addr_byte_size = GetAddressByteSize(); 2555 if (addr_byte_size <= 4) 2556 scalar = (uint32_t)ptr_value; 2557 else 2558 scalar = ptr_value; 2559 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == addr_byte_size; 2560 } 2561 2562 size_t 2563 Process::WriteMemoryPrivate (addr_t addr, const void *buf, size_t size, Error &error) 2564 { 2565 size_t bytes_written = 0; 2566 const uint8_t *bytes = (const uint8_t *)buf; 2567 2568 while (bytes_written < size) 2569 { 2570 const size_t curr_size = size - bytes_written; 2571 const size_t curr_bytes_written = DoWriteMemory (addr + bytes_written, 2572 bytes + bytes_written, 2573 curr_size, 2574 error); 2575 bytes_written += curr_bytes_written; 2576 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2577 break; 2578 } 2579 return bytes_written; 2580 } 2581 2582 size_t 2583 Process::WriteMemory (addr_t addr, const void *buf, size_t size, Error &error) 2584 { 2585 #if defined (ENABLE_MEMORY_CACHING) 2586 m_memory_cache.Flush (addr, size); 2587 #endif 2588 2589 if (buf == nullptr || size == 0) 2590 return 0; 2591 2592 m_mod_id.BumpMemoryID(); 2593 2594 // We need to write any data that would go where any current software traps 2595 // (enabled software breakpoints) any software traps (breakpoints) that we 2596 // may have placed in our tasks memory. 2597 2598 BreakpointSiteList bp_sites_in_range; 2599 2600 if (m_breakpoint_site_list.FindInRange (addr, addr + size, bp_sites_in_range)) 2601 { 2602 // No breakpoint sites overlap 2603 if (bp_sites_in_range.IsEmpty()) 2604 return WriteMemoryPrivate (addr, buf, size, error); 2605 else 2606 { 2607 const uint8_t *ubuf = (const uint8_t *)buf; 2608 uint64_t bytes_written = 0; 2609 2610 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, &error](BreakpointSite *bp) -> void { 2611 2612 if (error.Success()) 2613 { 2614 addr_t intersect_addr; 2615 size_t intersect_size; 2616 size_t opcode_offset; 2617 const bool intersects = bp->IntersectsRange(addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2618 UNUSED_IF_ASSERT_DISABLED(intersects); 2619 assert(intersects); 2620 assert(addr <= intersect_addr && intersect_addr < addr + size); 2621 assert(addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= addr + size); 2622 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2623 2624 // Check for bytes before this breakpoint 2625 const addr_t curr_addr = addr + bytes_written; 2626 if (intersect_addr > curr_addr) 2627 { 2628 // There are some bytes before this breakpoint that we need to 2629 // just write to memory 2630 size_t curr_size = intersect_addr - curr_addr; 2631 size_t curr_bytes_written = WriteMemoryPrivate (curr_addr, 2632 ubuf + bytes_written, 2633 curr_size, 2634 error); 2635 bytes_written += curr_bytes_written; 2636 if (curr_bytes_written != curr_size) 2637 { 2638 // We weren't able to write all of the requested bytes, we 2639 // are done looping and will return the number of bytes that 2640 // we have written so far. 2641 if (error.Success()) 2642 error.SetErrorToGenericError(); 2643 } 2644 } 2645 // Now write any bytes that would cover up any software breakpoints 2646 // directly into the breakpoint opcode buffer 2647 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, intersect_size); 2648 bytes_written += intersect_size; 2649 } 2650 }); 2651 2652 if (bytes_written < size) 2653 WriteMemoryPrivate (addr + bytes_written, 2654 ubuf + bytes_written, 2655 size - bytes_written, 2656 error); 2657 } 2658 } 2659 else 2660 { 2661 return WriteMemoryPrivate (addr, buf, size, error); 2662 } 2663 2664 // Write any remaining bytes after the last breakpoint if we have any left 2665 return 0; //bytes_written; 2666 } 2667 2668 size_t 2669 Process::WriteScalarToMemory (addr_t addr, const Scalar &scalar, size_t byte_size, Error &error) 2670 { 2671 if (byte_size == UINT32_MAX) 2672 byte_size = scalar.GetByteSize(); 2673 if (byte_size > 0) 2674 { 2675 uint8_t buf[32]; 2676 const size_t mem_size = scalar.GetAsMemoryData (buf, byte_size, GetByteOrder(), error); 2677 if (mem_size > 0) 2678 return WriteMemory(addr, buf, mem_size, error); 2679 else 2680 error.SetErrorString ("failed to get scalar as memory data"); 2681 } 2682 else 2683 { 2684 error.SetErrorString ("invalid scalar value"); 2685 } 2686 return 0; 2687 } 2688 2689 size_t 2690 Process::ReadScalarIntegerFromMemory (addr_t addr, 2691 uint32_t byte_size, 2692 bool is_signed, 2693 Scalar &scalar, 2694 Error &error) 2695 { 2696 uint64_t uval = 0; 2697 if (byte_size == 0) 2698 { 2699 error.SetErrorString ("byte size is zero"); 2700 } 2701 else if (byte_size & (byte_size - 1)) 2702 { 2703 error.SetErrorStringWithFormat ("byte size %u is not a power of 2", byte_size); 2704 } 2705 else if (byte_size <= sizeof(uval)) 2706 { 2707 const size_t bytes_read = ReadMemory (addr, &uval, byte_size, error); 2708 if (bytes_read == byte_size) 2709 { 2710 DataExtractor data (&uval, sizeof(uval), GetByteOrder(), GetAddressByteSize()); 2711 lldb::offset_t offset = 0; 2712 if (byte_size <= 4) 2713 scalar = data.GetMaxU32 (&offset, byte_size); 2714 else 2715 scalar = data.GetMaxU64 (&offset, byte_size); 2716 if (is_signed) 2717 scalar.SignExtend(byte_size * 8); 2718 return bytes_read; 2719 } 2720 } 2721 else 2722 { 2723 error.SetErrorStringWithFormat ("byte size of %u is too large for integer scalar type", byte_size); 2724 } 2725 return 0; 2726 } 2727 2728 #define USE_ALLOCATE_MEMORY_CACHE 1 2729 addr_t 2730 Process::AllocateMemory(size_t size, uint32_t permissions, Error &error) 2731 { 2732 if (GetPrivateState() != eStateStopped) 2733 return LLDB_INVALID_ADDRESS; 2734 2735 #if defined (USE_ALLOCATE_MEMORY_CACHE) 2736 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2737 #else 2738 addr_t allocated_addr = DoAllocateMemory (size, permissions, error); 2739 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2740 if (log) 2741 log->Printf("Process::AllocateMemory(size=%" PRIu64 ", permissions=%s) => 0x%16.16" PRIx64 " (m_stop_id = %u m_memory_id = %u)", 2742 (uint64_t)size, 2743 GetPermissionsAsCString (permissions), 2744 (uint64_t)allocated_addr, 2745 m_mod_id.GetStopID(), 2746 m_mod_id.GetMemoryID()); 2747 return allocated_addr; 2748 #endif 2749 } 2750 2751 addr_t 2752 Process::CallocateMemory(size_t size, uint32_t permissions, Error &error) 2753 { 2754 addr_t return_addr = AllocateMemory(size, permissions, error); 2755 if (error.Success()) 2756 { 2757 std::string buffer(size, 0); 2758 WriteMemory(return_addr, buffer.c_str(), size, error); 2759 } 2760 return return_addr; 2761 } 2762 2763 bool 2764 Process::CanJIT () 2765 { 2766 if (m_can_jit == eCanJITDontKnow) 2767 { 2768 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2769 Error err; 2770 2771 uint64_t allocated_memory = AllocateMemory(8, 2772 ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2773 err); 2774 2775 if (err.Success()) 2776 { 2777 m_can_jit = eCanJITYes; 2778 if (log) 2779 log->Printf ("Process::%s pid %" PRIu64 " allocation test passed, CanJIT () is true", __FUNCTION__, GetID ()); 2780 } 2781 else 2782 { 2783 m_can_jit = eCanJITNo; 2784 if (log) 2785 log->Printf ("Process::%s pid %" PRIu64 " allocation test failed, CanJIT () is false: %s", __FUNCTION__, GetID (), err.AsCString ()); 2786 } 2787 2788 DeallocateMemory (allocated_memory); 2789 } 2790 2791 return m_can_jit == eCanJITYes; 2792 } 2793 2794 void 2795 Process::SetCanJIT (bool can_jit) 2796 { 2797 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2798 } 2799 2800 void 2801 Process::SetCanRunCode (bool can_run_code) 2802 { 2803 SetCanJIT(can_run_code); 2804 m_can_interpret_function_calls = can_run_code; 2805 } 2806 2807 Error 2808 Process::DeallocateMemory (addr_t ptr) 2809 { 2810 Error error; 2811 #if defined (USE_ALLOCATE_MEMORY_CACHE) 2812 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) 2813 { 2814 error.SetErrorStringWithFormat ("deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2815 } 2816 #else 2817 error = DoDeallocateMemory (ptr); 2818 2819 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2820 if (log) 2821 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2822 ptr, 2823 error.AsCString("SUCCESS"), 2824 m_mod_id.GetStopID(), 2825 m_mod_id.GetMemoryID()); 2826 #endif 2827 return error; 2828 } 2829 2830 ModuleSP 2831 Process::ReadModuleFromMemory (const FileSpec& file_spec, 2832 lldb::addr_t header_addr, 2833 size_t size_to_read) 2834 { 2835 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2836 if (log) 2837 { 2838 log->Printf ("Process::ReadModuleFromMemory reading %s binary from memory", file_spec.GetPath().c_str()); 2839 } 2840 ModuleSP module_sp (new Module (file_spec, ArchSpec())); 2841 if (module_sp) 2842 { 2843 Error error; 2844 ObjectFile *objfile = module_sp->GetMemoryObjectFile (shared_from_this(), header_addr, error, size_to_read); 2845 if (objfile) 2846 return module_sp; 2847 } 2848 return ModuleSP(); 2849 } 2850 2851 bool 2852 Process::GetLoadAddressPermissions (lldb::addr_t load_addr, uint32_t &permissions) 2853 { 2854 MemoryRegionInfo range_info; 2855 permissions = 0; 2856 Error error (GetMemoryRegionInfo (load_addr, range_info)); 2857 if (!error.Success()) 2858 return false; 2859 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow 2860 || range_info.GetWritable() == MemoryRegionInfo::eDontKnow 2861 || range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) 2862 { 2863 return false; 2864 } 2865 2866 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2867 permissions |= lldb::ePermissionsReadable; 2868 2869 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2870 permissions |= lldb::ePermissionsWritable; 2871 2872 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2873 permissions |= lldb::ePermissionsExecutable; 2874 2875 return true; 2876 } 2877 2878 Error 2879 Process::EnableWatchpoint (Watchpoint *watchpoint, bool notify) 2880 { 2881 Error error; 2882 error.SetErrorString("watchpoints are not supported"); 2883 return error; 2884 } 2885 2886 Error 2887 Process::DisableWatchpoint (Watchpoint *watchpoint, bool notify) 2888 { 2889 Error error; 2890 error.SetErrorString("watchpoints are not supported"); 2891 return error; 2892 } 2893 2894 StateType 2895 Process::WaitForProcessStopPrivate(const std::chrono::microseconds &timeout, EventSP &event_sp) 2896 { 2897 StateType state; 2898 // Now wait for the process to launch and return control to us, and then 2899 // call DidLaunch: 2900 while (true) 2901 { 2902 event_sp.reset(); 2903 state = WaitForStateChangedEventsPrivate (timeout, event_sp); 2904 2905 if (StateIsStoppedState(state, false)) 2906 break; 2907 2908 // If state is invalid, then we timed out 2909 if (state == eStateInvalid) 2910 break; 2911 2912 if (event_sp) 2913 HandlePrivateEvent (event_sp); 2914 } 2915 return state; 2916 } 2917 2918 void 2919 Process::LoadOperatingSystemPlugin(bool flush) 2920 { 2921 if (flush) 2922 m_thread_list.Clear(); 2923 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2924 if (flush) 2925 Flush(); 2926 } 2927 2928 Error 2929 Process::Launch (ProcessLaunchInfo &launch_info) 2930 { 2931 Error error; 2932 m_abi_sp.reset(); 2933 m_dyld_ap.reset(); 2934 m_jit_loaders_ap.reset(); 2935 m_system_runtime_ap.reset(); 2936 m_os_ap.reset(); 2937 m_process_input_reader.reset(); 2938 m_stop_info_override_callback = nullptr; 2939 2940 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2941 if (exe_module) 2942 { 2943 char local_exec_file_path[PATH_MAX]; 2944 char platform_exec_file_path[PATH_MAX]; 2945 exe_module->GetFileSpec().GetPath(local_exec_file_path, sizeof(local_exec_file_path)); 2946 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, sizeof(platform_exec_file_path)); 2947 if (exe_module->GetFileSpec().Exists()) 2948 { 2949 // Install anything that might need to be installed prior to launching. 2950 // For host systems, this will do nothing, but if we are connected to a 2951 // remote platform it will install any needed binaries 2952 error = GetTarget().Install(&launch_info); 2953 if (error.Fail()) 2954 return error; 2955 2956 if (PrivateStateThreadIsValid ()) 2957 PausePrivateStateThread (); 2958 2959 error = WillLaunch (exe_module); 2960 if (error.Success()) 2961 { 2962 const bool restarted = false; 2963 SetPublicState (eStateLaunching, restarted); 2964 m_should_detach = false; 2965 2966 if (m_public_run_lock.TrySetRunning()) 2967 { 2968 // Now launch using these arguments. 2969 error = DoLaunch (exe_module, launch_info); 2970 } 2971 else 2972 { 2973 // This shouldn't happen 2974 error.SetErrorString("failed to acquire process run lock"); 2975 } 2976 2977 if (error.Fail()) 2978 { 2979 if (GetID() != LLDB_INVALID_PROCESS_ID) 2980 { 2981 SetID (LLDB_INVALID_PROCESS_ID); 2982 const char *error_string = error.AsCString(); 2983 if (error_string == nullptr) 2984 error_string = "launch failed"; 2985 SetExitStatus (-1, error_string); 2986 } 2987 } 2988 else 2989 { 2990 EventSP event_sp; 2991 StateType state = WaitForProcessStopPrivate(std::chrono::seconds(10), event_sp); 2992 2993 if (state == eStateInvalid || !event_sp) 2994 { 2995 // We were able to launch the process, but we failed to 2996 // catch the initial stop. 2997 error.SetErrorString ("failed to catch stop after launch"); 2998 SetExitStatus (0, "failed to catch stop after launch"); 2999 Destroy(false); 3000 } 3001 else if (state == eStateStopped || state == eStateCrashed) 3002 { 3003 DidLaunch (); 3004 3005 DynamicLoader *dyld = GetDynamicLoader (); 3006 if (dyld) 3007 dyld->DidLaunch(); 3008 3009 GetJITLoaders().DidLaunch(); 3010 3011 SystemRuntime *system_runtime = GetSystemRuntime (); 3012 if (system_runtime) 3013 system_runtime->DidLaunch(); 3014 3015 LoadOperatingSystemPlugin(false); 3016 3017 // Note, the stop event was consumed above, but not handled. This was done 3018 // to give DidLaunch a chance to run. The target is either stopped or crashed. 3019 // Directly set the state. This is done to prevent a stop message with a bunch 3020 // of spurious output on thread status, as well as not pop a ProcessIOHandler. 3021 SetPublicState(state, false); 3022 3023 if (PrivateStateThreadIsValid ()) 3024 ResumePrivateStateThread (); 3025 else 3026 StartPrivateStateThread (); 3027 3028 m_stop_info_override_callback = GetTarget().GetArchitecture().GetStopInfoOverrideCallback(); 3029 3030 // Target was stopped at entry as was intended. Need to notify the listeners 3031 // about it. 3032 if (state == eStateStopped && launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 3033 HandlePrivateEvent(event_sp); 3034 } 3035 else if (state == eStateExited) 3036 { 3037 // We exited while trying to launch somehow. Don't call DidLaunch as that's 3038 // not likely to work, and return an invalid pid. 3039 HandlePrivateEvent (event_sp); 3040 } 3041 } 3042 } 3043 } 3044 else 3045 { 3046 error.SetErrorStringWithFormat("file doesn't exist: '%s'", local_exec_file_path); 3047 } 3048 } 3049 return error; 3050 } 3051 3052 Error 3053 Process::LoadCore () 3054 { 3055 Error error = DoLoadCore(); 3056 if (error.Success()) 3057 { 3058 ListenerSP listener_sp (Listener::MakeListener("lldb.process.load_core_listener")); 3059 HijackProcessEvents(listener_sp); 3060 3061 if (PrivateStateThreadIsValid ()) 3062 ResumePrivateStateThread (); 3063 else 3064 StartPrivateStateThread (); 3065 3066 DynamicLoader *dyld = GetDynamicLoader (); 3067 if (dyld) 3068 dyld->DidAttach(); 3069 3070 GetJITLoaders().DidAttach(); 3071 3072 SystemRuntime *system_runtime = GetSystemRuntime (); 3073 if (system_runtime) 3074 system_runtime->DidAttach(); 3075 3076 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 3077 // We successfully loaded a core file, now pretend we stopped so we can 3078 // show all of the threads in the core file and explore the crashed 3079 // state. 3080 SetPrivateState (eStateStopped); 3081 3082 // Wait indefinitely for a stopped event since we just posted one above... 3083 lldb::EventSP event_sp; 3084 listener_sp->WaitForEvent(std::chrono::microseconds(0), event_sp); 3085 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 3086 3087 if (!StateIsStoppedState (state, false)) 3088 { 3089 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3090 if (log) 3091 log->Printf("Process::Halt() failed to stop, state is: %s", StateAsCString(state)); 3092 error.SetErrorString ("Did not get stopped event after loading the core file."); 3093 } 3094 RestoreProcessEvents (); 3095 } 3096 return error; 3097 } 3098 3099 DynamicLoader * 3100 Process::GetDynamicLoader () 3101 { 3102 if (!m_dyld_ap) 3103 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 3104 return m_dyld_ap.get(); 3105 } 3106 3107 const lldb::DataBufferSP 3108 Process::GetAuxvData() 3109 { 3110 return DataBufferSP (); 3111 } 3112 3113 JITLoaderList & 3114 Process::GetJITLoaders () 3115 { 3116 if (!m_jit_loaders_ap) 3117 { 3118 m_jit_loaders_ap.reset(new JITLoaderList()); 3119 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 3120 } 3121 return *m_jit_loaders_ap; 3122 } 3123 3124 SystemRuntime * 3125 Process::GetSystemRuntime () 3126 { 3127 if (!m_system_runtime_ap) 3128 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 3129 return m_system_runtime_ap.get(); 3130 } 3131 3132 Process::AttachCompletionHandler::AttachCompletionHandler (Process *process, uint32_t exec_count) : 3133 NextEventAction (process), 3134 m_exec_count (exec_count) 3135 { 3136 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3137 if (log) 3138 log->Printf ("Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, __FUNCTION__, static_cast<void*>(process), exec_count); 3139 } 3140 3141 Process::NextEventAction::EventActionResult 3142 Process::AttachCompletionHandler::PerformAction (lldb::EventSP &event_sp) 3143 { 3144 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3145 3146 StateType state = ProcessEventData::GetStateFromEvent (event_sp.get()); 3147 if (log) 3148 log->Printf ("Process::AttachCompletionHandler::%s called with state %s (%d)", __FUNCTION__, StateAsCString(state), static_cast<int> (state)); 3149 3150 switch (state) 3151 { 3152 case eStateAttaching: 3153 return eEventActionSuccess; 3154 3155 case eStateRunning: 3156 case eStateConnected: 3157 return eEventActionRetry; 3158 3159 case eStateStopped: 3160 case eStateCrashed: 3161 // During attach, prior to sending the eStateStopped event, 3162 // lldb_private::Process subclasses must set the new process ID. 3163 assert (m_process->GetID() != LLDB_INVALID_PROCESS_ID); 3164 // We don't want these events to be reported, so go set the ShouldReportStop here: 3165 m_process->GetThreadList().SetShouldReportStop (eVoteNo); 3166 3167 if (m_exec_count > 0) 3168 { 3169 --m_exec_count; 3170 3171 if (log) 3172 log->Printf ("Process::AttachCompletionHandler::%s state %s: reduced remaining exec count to %" PRIu32 ", requesting resume", __FUNCTION__, StateAsCString(state), m_exec_count); 3173 3174 RequestResume(); 3175 return eEventActionRetry; 3176 } 3177 else 3178 { 3179 if (log) 3180 log->Printf ("Process::AttachCompletionHandler::%s state %s: no more execs expected to start, continuing with attach", __FUNCTION__, StateAsCString(state)); 3181 3182 m_process->CompleteAttach (); 3183 return eEventActionSuccess; 3184 } 3185 break; 3186 3187 default: 3188 case eStateExited: 3189 case eStateInvalid: 3190 break; 3191 } 3192 3193 m_exit_string.assign ("No valid Process"); 3194 return eEventActionExit; 3195 } 3196 3197 Process::NextEventAction::EventActionResult 3198 Process::AttachCompletionHandler::HandleBeingInterrupted() 3199 { 3200 return eEventActionSuccess; 3201 } 3202 3203 const char * 3204 Process::AttachCompletionHandler::GetExitString () 3205 { 3206 return m_exit_string.c_str(); 3207 } 3208 3209 ListenerSP 3210 ProcessAttachInfo::GetListenerForProcess (Debugger &debugger) 3211 { 3212 if (m_listener_sp) 3213 return m_listener_sp; 3214 else 3215 return debugger.GetListener(); 3216 } 3217 3218 Error 3219 Process::Attach (ProcessAttachInfo &attach_info) 3220 { 3221 m_abi_sp.reset(); 3222 m_process_input_reader.reset(); 3223 m_dyld_ap.reset(); 3224 m_jit_loaders_ap.reset(); 3225 m_system_runtime_ap.reset(); 3226 m_os_ap.reset(); 3227 m_stop_info_override_callback = nullptr; 3228 3229 lldb::pid_t attach_pid = attach_info.GetProcessID(); 3230 Error error; 3231 if (attach_pid == LLDB_INVALID_PROCESS_ID) 3232 { 3233 char process_name[PATH_MAX]; 3234 3235 if (attach_info.GetExecutableFile().GetPath (process_name, sizeof(process_name))) 3236 { 3237 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 3238 3239 if (wait_for_launch) 3240 { 3241 error = WillAttachToProcessWithName(process_name, wait_for_launch); 3242 if (error.Success()) 3243 { 3244 if (m_public_run_lock.TrySetRunning()) 3245 { 3246 m_should_detach = true; 3247 const bool restarted = false; 3248 SetPublicState (eStateAttaching, restarted); 3249 // Now attach using these arguments. 3250 error = DoAttachToProcessWithName (process_name, attach_info); 3251 } 3252 else 3253 { 3254 // This shouldn't happen 3255 error.SetErrorString("failed to acquire process run lock"); 3256 } 3257 3258 if (error.Fail()) 3259 { 3260 if (GetID() != LLDB_INVALID_PROCESS_ID) 3261 { 3262 SetID (LLDB_INVALID_PROCESS_ID); 3263 if (error.AsCString() == nullptr) 3264 error.SetErrorString("attach failed"); 3265 3266 SetExitStatus(-1, error.AsCString()); 3267 } 3268 } 3269 else 3270 { 3271 SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount())); 3272 StartPrivateStateThread(); 3273 } 3274 return error; 3275 } 3276 } 3277 else 3278 { 3279 ProcessInstanceInfoList process_infos; 3280 PlatformSP platform_sp (GetTarget().GetPlatform ()); 3281 3282 if (platform_sp) 3283 { 3284 ProcessInstanceInfoMatch match_info; 3285 match_info.GetProcessInfo() = attach_info; 3286 match_info.SetNameMatchType (eNameMatchEquals); 3287 platform_sp->FindProcesses (match_info, process_infos); 3288 const uint32_t num_matches = process_infos.GetSize(); 3289 if (num_matches == 1) 3290 { 3291 attach_pid = process_infos.GetProcessIDAtIndex(0); 3292 // Fall through and attach using the above process ID 3293 } 3294 else 3295 { 3296 match_info.GetProcessInfo().GetExecutableFile().GetPath (process_name, sizeof(process_name)); 3297 if (num_matches > 1) 3298 { 3299 StreamString s; 3300 ProcessInstanceInfo::DumpTableHeader (s, platform_sp.get(), true, false); 3301 for (size_t i = 0; i < num_matches; i++) 3302 { 3303 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow(s, platform_sp.get(), true, false); 3304 } 3305 error.SetErrorStringWithFormat ("more than one process named %s:\n%s", 3306 process_name, 3307 s.GetData()); 3308 } 3309 else 3310 error.SetErrorStringWithFormat ("could not find a process named %s", process_name); 3311 } 3312 } 3313 else 3314 { 3315 error.SetErrorString ("invalid platform, can't find processes by name"); 3316 return error; 3317 } 3318 } 3319 } 3320 else 3321 { 3322 error.SetErrorString ("invalid process name"); 3323 } 3324 } 3325 3326 if (attach_pid != LLDB_INVALID_PROCESS_ID) 3327 { 3328 error = WillAttachToProcessWithID(attach_pid); 3329 if (error.Success()) 3330 { 3331 3332 if (m_public_run_lock.TrySetRunning()) 3333 { 3334 // Now attach using these arguments. 3335 m_should_detach = true; 3336 const bool restarted = false; 3337 SetPublicState (eStateAttaching, restarted); 3338 error = DoAttachToProcessWithID (attach_pid, attach_info); 3339 } 3340 else 3341 { 3342 // This shouldn't happen 3343 error.SetErrorString("failed to acquire process run lock"); 3344 } 3345 3346 if (error.Success()) 3347 { 3348 SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount())); 3349 StartPrivateStateThread(); 3350 } 3351 else 3352 { 3353 if (GetID() != LLDB_INVALID_PROCESS_ID) 3354 SetID (LLDB_INVALID_PROCESS_ID); 3355 3356 const char *error_string = error.AsCString(); 3357 if (error_string == nullptr) 3358 error_string = "attach failed"; 3359 3360 SetExitStatus(-1, error_string); 3361 } 3362 } 3363 } 3364 return error; 3365 } 3366 3367 void 3368 Process::CompleteAttach () 3369 { 3370 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_TARGET)); 3371 if (log) 3372 log->Printf ("Process::%s()", __FUNCTION__); 3373 3374 // Let the process subclass figure out at much as it can about the process 3375 // before we go looking for a dynamic loader plug-in. 3376 ArchSpec process_arch; 3377 DidAttach(process_arch); 3378 3379 if (process_arch.IsValid()) 3380 { 3381 GetTarget().SetArchitecture(process_arch); 3382 if (log) 3383 { 3384 const char *triple_str = process_arch.GetTriple().getTriple().c_str (); 3385 log->Printf ("Process::%s replacing process architecture with DidAttach() architecture: %s", 3386 __FUNCTION__, 3387 triple_str ? triple_str : "<null>"); 3388 } 3389 } 3390 3391 // We just attached. If we have a platform, ask it for the process architecture, and if it isn't 3392 // the same as the one we've already set, switch architectures. 3393 PlatformSP platform_sp (GetTarget().GetPlatform ()); 3394 assert(platform_sp); 3395 if (platform_sp) 3396 { 3397 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3398 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) 3399 { 3400 ArchSpec platform_arch; 3401 platform_sp = platform_sp->GetPlatformForArchitecture (target_arch, &platform_arch); 3402 if (platform_sp) 3403 { 3404 GetTarget().SetPlatform (platform_sp); 3405 GetTarget().SetArchitecture(platform_arch); 3406 if (log) 3407 log->Printf ("Process::%s switching platform to %s and architecture to %s based on info from attach", __FUNCTION__, platform_sp->GetName().AsCString (""), platform_arch.GetTriple().getTriple().c_str ()); 3408 } 3409 } 3410 else if (!process_arch.IsValid()) 3411 { 3412 ProcessInstanceInfo process_info; 3413 GetProcessInfo(process_info); 3414 const ArchSpec &process_arch = process_info.GetArchitecture(); 3415 if (process_arch.IsValid() && !GetTarget().GetArchitecture().IsExactMatch(process_arch)) 3416 { 3417 GetTarget().SetArchitecture (process_arch); 3418 if (log) 3419 log->Printf ("Process::%s switching architecture to %s based on info the platform retrieved for pid %" PRIu64, __FUNCTION__, process_arch.GetTriple().getTriple().c_str (), GetID ()); 3420 } 3421 } 3422 } 3423 3424 // We have completed the attach, now it is time to find the dynamic loader 3425 // plug-in 3426 DynamicLoader *dyld = GetDynamicLoader (); 3427 if (dyld) 3428 { 3429 dyld->DidAttach(); 3430 if (log) 3431 { 3432 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3433 log->Printf ("Process::%s after DynamicLoader::DidAttach(), target executable is %s (using %s plugin)", 3434 __FUNCTION__, 3435 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>", 3436 dyld->GetPluginName().AsCString ("<unnamed>")); 3437 } 3438 } 3439 3440 GetJITLoaders().DidAttach(); 3441 3442 SystemRuntime *system_runtime = GetSystemRuntime (); 3443 if (system_runtime) 3444 { 3445 system_runtime->DidAttach(); 3446 if (log) 3447 { 3448 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3449 log->Printf ("Process::%s after SystemRuntime::DidAttach(), target executable is %s (using %s plugin)", 3450 __FUNCTION__, 3451 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>", 3452 system_runtime->GetPluginName().AsCString("<unnamed>")); 3453 } 3454 } 3455 3456 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 3457 // Figure out which one is the executable, and set that in our target: 3458 const ModuleList &target_modules = GetTarget().GetImages(); 3459 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3460 size_t num_modules = target_modules.GetSize(); 3461 ModuleSP new_executable_module_sp; 3462 3463 for (size_t i = 0; i < num_modules; i++) 3464 { 3465 ModuleSP module_sp (target_modules.GetModuleAtIndexUnlocked (i)); 3466 if (module_sp && module_sp->IsExecutable()) 3467 { 3468 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3469 new_executable_module_sp = module_sp; 3470 break; 3471 } 3472 } 3473 if (new_executable_module_sp) 3474 { 3475 GetTarget().SetExecutableModule (new_executable_module_sp, false); 3476 if (log) 3477 { 3478 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3479 log->Printf ("Process::%s after looping through modules, target executable is %s", 3480 __FUNCTION__, 3481 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>"); 3482 } 3483 } 3484 3485 m_stop_info_override_callback = process_arch.GetStopInfoOverrideCallback(); 3486 } 3487 3488 Error 3489 Process::ConnectRemote (Stream *strm, const char *remote_url) 3490 { 3491 m_abi_sp.reset(); 3492 m_process_input_reader.reset(); 3493 3494 // Find the process and its architecture. Make sure it matches the architecture 3495 // of the current Target, and if not adjust it. 3496 3497 Error error (DoConnectRemote (strm, remote_url)); 3498 if (error.Success()) 3499 { 3500 if (GetID() != LLDB_INVALID_PROCESS_ID) 3501 { 3502 EventSP event_sp; 3503 StateType state = WaitForProcessStopPrivate(std::chrono::microseconds(0), event_sp); 3504 3505 if (state == eStateStopped || state == eStateCrashed) 3506 { 3507 // If we attached and actually have a process on the other end, then 3508 // this ended up being the equivalent of an attach. 3509 CompleteAttach (); 3510 3511 // This delays passing the stopped event to listeners till 3512 // CompleteAttach gets a chance to complete... 3513 HandlePrivateEvent (event_sp); 3514 } 3515 } 3516 3517 if (PrivateStateThreadIsValid ()) 3518 ResumePrivateStateThread (); 3519 else 3520 StartPrivateStateThread (); 3521 } 3522 return error; 3523 } 3524 3525 Error 3526 Process::PrivateResume () 3527 { 3528 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS|LIBLLDB_LOG_STEP)); 3529 if (log) 3530 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s private state: %s", 3531 m_mod_id.GetStopID(), 3532 StateAsCString(m_public_state.GetValue()), 3533 StateAsCString(m_private_state.GetValue())); 3534 3535 Error error (WillResume()); 3536 // Tell the process it is about to resume before the thread list 3537 if (error.Success()) 3538 { 3539 // Now let the thread list know we are about to resume so it 3540 // can let all of our threads know that they are about to be 3541 // resumed. Threads will each be called with 3542 // Thread::WillResume(StateType) where StateType contains the state 3543 // that they are supposed to have when the process is resumed 3544 // (suspended/running/stepping). Threads should also check 3545 // their resume signal in lldb::Thread::GetResumeSignal() 3546 // to see if they are supposed to start back up with a signal. 3547 if (m_thread_list.WillResume()) 3548 { 3549 // Last thing, do the PreResumeActions. 3550 if (!RunPreResumeActions()) 3551 { 3552 error.SetErrorStringWithFormat ("Process::PrivateResume PreResumeActions failed, not resuming."); 3553 } 3554 else 3555 { 3556 m_mod_id.BumpResumeID(); 3557 error = DoResume(); 3558 if (error.Success()) 3559 { 3560 DidResume(); 3561 m_thread_list.DidResume(); 3562 if (log) 3563 log->Printf ("Process thinks the process has resumed."); 3564 } 3565 } 3566 } 3567 else 3568 { 3569 // Somebody wanted to run without running (e.g. we were faking a step from one frame of a set of inlined 3570 // frames that share the same PC to another.) So generate a continue & a stopped event, 3571 // and let the world handle them. 3572 if (log) 3573 log->Printf ("Process::PrivateResume() asked to simulate a start & stop."); 3574 3575 SetPrivateState(eStateRunning); 3576 SetPrivateState(eStateStopped); 3577 } 3578 } 3579 else if (log) 3580 log->Printf ("Process::PrivateResume() got an error \"%s\".", error.AsCString("<unknown error>")); 3581 return error; 3582 } 3583 3584 Error 3585 Process::Halt (bool clear_thread_plans, bool use_run_lock) 3586 { 3587 if (! StateIsRunningState(m_public_state.GetValue())) 3588 return Error("Process is not running."); 3589 3590 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if 3591 // in case it was already set and some thread plan logic calls halt on its 3592 // own. 3593 m_clear_thread_plans_on_stop |= clear_thread_plans; 3594 3595 ListenerSP halt_listener_sp (Listener::MakeListener("lldb.process.halt_listener")); 3596 HijackProcessEvents(halt_listener_sp); 3597 3598 EventSP event_sp; 3599 3600 SendAsyncInterrupt(); 3601 3602 if (m_public_state.GetValue() == eStateAttaching) 3603 { 3604 // Don't hijack and eat the eStateExited as the code that was doing 3605 // the attach will be waiting for this event... 3606 RestoreProcessEvents(); 3607 SetExitStatus(SIGKILL, "Cancelled async attach."); 3608 Destroy (false); 3609 return Error(); 3610 } 3611 3612 // Wait for 10 second for the process to stop. 3613 StateType state = 3614 WaitForProcessToStop(std::chrono::seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3615 RestoreProcessEvents(); 3616 3617 if (state == eStateInvalid || ! event_sp) 3618 { 3619 // We timed out and didn't get a stop event... 3620 return Error("Halt timed out. State = %s", StateAsCString(GetState())); 3621 } 3622 3623 BroadcastEvent(event_sp); 3624 3625 return Error(); 3626 } 3627 3628 Error 3629 Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) 3630 { 3631 Error error; 3632 3633 // Check both the public & private states here. If we're hung evaluating an expression, for instance, then 3634 // the public state will be stopped, but we still need to interrupt. 3635 if (m_public_state.GetValue() == eStateRunning || m_private_state.GetValue() == eStateRunning) 3636 { 3637 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3638 if (log) 3639 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3640 3641 ListenerSP listener_sp (Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3642 HijackProcessEvents(listener_sp); 3643 3644 SendAsyncInterrupt(); 3645 3646 // Consume the interrupt event. 3647 StateType state = WaitForProcessToStop(std::chrono::seconds(10), &exit_event_sp, true, listener_sp); 3648 3649 RestoreProcessEvents(); 3650 3651 // If the process exited while we were waiting for it to stop, put the exited event into 3652 // the shared pointer passed in and return. Our caller doesn't need to do anything else, since 3653 // they don't have a process anymore... 3654 3655 if (state == eStateExited || m_private_state.GetValue() == eStateExited) 3656 { 3657 if (log) 3658 log->Printf("Process::%s() Process exited while waiting to stop.", __FUNCTION__); 3659 return error; 3660 } 3661 else 3662 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3663 3664 if (state != eStateStopped) 3665 { 3666 if (log) 3667 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, StateAsCString(state)); 3668 // If we really couldn't stop the process then we should just error out here, but if the 3669 // lower levels just bobbled sending the event and we really are stopped, then continue on. 3670 StateType private_state = m_private_state.GetValue(); 3671 if (private_state != eStateStopped) 3672 { 3673 return Error("Attempt to stop the target in order to detach timed out. State = %s", StateAsCString(GetState())); 3674 } 3675 } 3676 } 3677 return error; 3678 } 3679 3680 Error 3681 Process::Detach (bool keep_stopped) 3682 { 3683 EventSP exit_event_sp; 3684 Error error; 3685 m_destroy_in_process = true; 3686 3687 error = WillDetach(); 3688 3689 if (error.Success()) 3690 { 3691 if (DetachRequiresHalt()) 3692 { 3693 error = StopForDestroyOrDetach (exit_event_sp); 3694 if (!error.Success()) 3695 { 3696 m_destroy_in_process = false; 3697 return error; 3698 } 3699 else if (exit_event_sp) 3700 { 3701 // We shouldn't need to do anything else here. There's no process left to detach from... 3702 StopPrivateStateThread(); 3703 m_destroy_in_process = false; 3704 return error; 3705 } 3706 } 3707 3708 m_thread_list.DiscardThreadPlans(); 3709 DisableAllBreakpointSites(); 3710 3711 error = DoDetach(keep_stopped); 3712 if (error.Success()) 3713 { 3714 DidDetach(); 3715 StopPrivateStateThread(); 3716 } 3717 else 3718 { 3719 return error; 3720 } 3721 } 3722 m_destroy_in_process = false; 3723 3724 // If we exited when we were waiting for a process to stop, then 3725 // forward the event here so we don't lose the event 3726 if (exit_event_sp) 3727 { 3728 // Directly broadcast our exited event because we shut down our 3729 // private state thread above 3730 BroadcastEvent(exit_event_sp); 3731 } 3732 3733 // If we have been interrupted (to kill us) in the middle of running, we may not end up propagating 3734 // the last events through the event system, in which case we might strand the write lock. Unlock 3735 // it here so when we do to tear down the process we don't get an error destroying the lock. 3736 3737 m_public_run_lock.SetStopped(); 3738 return error; 3739 } 3740 3741 Error 3742 Process::Destroy (bool force_kill) 3743 { 3744 3745 // Tell ourselves we are in the process of destroying the process, so that we don't do any unnecessary work 3746 // that might hinder the destruction. Remember to set this back to false when we are done. That way if the attempt 3747 // failed and the process stays around for some reason it won't be in a confused state. 3748 3749 if (force_kill) 3750 m_should_detach = false; 3751 3752 if (GetShouldDetach()) 3753 { 3754 // FIXME: This will have to be a process setting: 3755 bool keep_stopped = false; 3756 Detach(keep_stopped); 3757 } 3758 3759 m_destroy_in_process = true; 3760 3761 Error error (WillDestroy()); 3762 if (error.Success()) 3763 { 3764 EventSP exit_event_sp; 3765 if (DestroyRequiresHalt()) 3766 { 3767 error = StopForDestroyOrDetach(exit_event_sp); 3768 } 3769 3770 if (m_public_state.GetValue() != eStateRunning) 3771 { 3772 // Ditch all thread plans, and remove all our breakpoints: in case we have to restart the target to 3773 // kill it, we don't want it hitting a breakpoint... 3774 // Only do this if we've stopped, however, since if we didn't manage to halt it above, then 3775 // we're not going to have much luck doing this now. 3776 m_thread_list.DiscardThreadPlans(); 3777 DisableAllBreakpointSites(); 3778 } 3779 3780 error = DoDestroy(); 3781 if (error.Success()) 3782 { 3783 DidDestroy(); 3784 StopPrivateStateThread(); 3785 } 3786 m_stdio_communication.Disconnect(); 3787 m_stdio_communication.StopReadThread(); 3788 m_stdin_forward = false; 3789 3790 if (m_process_input_reader) 3791 { 3792 m_process_input_reader->SetIsDone(true); 3793 m_process_input_reader->Cancel(); 3794 m_process_input_reader.reset(); 3795 } 3796 3797 // If we exited when we were waiting for a process to stop, then 3798 // forward the event here so we don't lose the event 3799 if (exit_event_sp) 3800 { 3801 // Directly broadcast our exited event because we shut down our 3802 // private state thread above 3803 BroadcastEvent(exit_event_sp); 3804 } 3805 3806 // If we have been interrupted (to kill us) in the middle of running, we may not end up propagating 3807 // the last events through the event system, in which case we might strand the write lock. Unlock 3808 // it here so when we do to tear down the process we don't get an error destroying the lock. 3809 m_public_run_lock.SetStopped(); 3810 } 3811 3812 m_destroy_in_process = false; 3813 3814 return error; 3815 } 3816 3817 Error 3818 Process::Signal (int signal) 3819 { 3820 Error error (WillSignal()); 3821 if (error.Success()) 3822 { 3823 error = DoSignal(signal); 3824 if (error.Success()) 3825 DidSignal(); 3826 } 3827 return error; 3828 } 3829 3830 void 3831 Process::SetUnixSignals(UnixSignalsSP &&signals_sp) 3832 { 3833 assert (signals_sp && "null signals_sp"); 3834 m_unix_signals_sp = signals_sp; 3835 } 3836 3837 const lldb::UnixSignalsSP & 3838 Process::GetUnixSignals () 3839 { 3840 assert (m_unix_signals_sp && "null m_unix_signals_sp"); 3841 return m_unix_signals_sp; 3842 } 3843 3844 lldb::ByteOrder 3845 Process::GetByteOrder () const 3846 { 3847 return GetTarget().GetArchitecture().GetByteOrder(); 3848 } 3849 3850 uint32_t 3851 Process::GetAddressByteSize () const 3852 { 3853 return GetTarget().GetArchitecture().GetAddressByteSize(); 3854 } 3855 3856 bool 3857 Process::ShouldBroadcastEvent (Event *event_ptr) 3858 { 3859 const StateType state = Process::ProcessEventData::GetStateFromEvent (event_ptr); 3860 bool return_value = true; 3861 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | LIBLLDB_LOG_PROCESS)); 3862 3863 switch (state) 3864 { 3865 case eStateDetached: 3866 case eStateExited: 3867 case eStateUnloaded: 3868 m_stdio_communication.SynchronizeWithReadThread(); 3869 m_stdio_communication.Disconnect(); 3870 m_stdio_communication.StopReadThread(); 3871 m_stdin_forward = false; 3872 3873 LLVM_FALLTHROUGH; 3874 case eStateConnected: 3875 case eStateAttaching: 3876 case eStateLaunching: 3877 // These events indicate changes in the state of the debugging session, always report them. 3878 return_value = true; 3879 break; 3880 case eStateInvalid: 3881 // We stopped for no apparent reason, don't report it. 3882 return_value = false; 3883 break; 3884 case eStateRunning: 3885 case eStateStepping: 3886 // If we've started the target running, we handle the cases where we 3887 // are already running and where there is a transition from stopped to 3888 // running differently. 3889 // running -> running: Automatically suppress extra running events 3890 // stopped -> running: Report except when there is one or more no votes 3891 // and no yes votes. 3892 SynchronouslyNotifyStateChanged (state); 3893 if (m_force_next_event_delivery) 3894 return_value = true; 3895 else 3896 { 3897 switch (m_last_broadcast_state) 3898 { 3899 case eStateRunning: 3900 case eStateStepping: 3901 // We always suppress multiple runnings with no PUBLIC stop in between. 3902 return_value = false; 3903 break; 3904 default: 3905 // TODO: make this work correctly. For now always report 3906 // run if we aren't running so we don't miss any running 3907 // events. If I run the lldb/test/thread/a.out file and 3908 // break at main.cpp:58, run and hit the breakpoints on 3909 // multiple threads, then somehow during the stepping over 3910 // of all breakpoints no run gets reported. 3911 3912 // This is a transition from stop to run. 3913 switch (m_thread_list.ShouldReportRun (event_ptr)) 3914 { 3915 case eVoteYes: 3916 case eVoteNoOpinion: 3917 return_value = true; 3918 break; 3919 case eVoteNo: 3920 return_value = false; 3921 break; 3922 } 3923 break; 3924 } 3925 } 3926 break; 3927 case eStateStopped: 3928 case eStateCrashed: 3929 case eStateSuspended: 3930 // We've stopped. First see if we're going to restart the target. 3931 // If we are going to stop, then we always broadcast the event. 3932 // If we aren't going to stop, let the thread plans decide if we're going to report this event. 3933 // If no thread has an opinion, we don't report it. 3934 3935 m_stdio_communication.SynchronizeWithReadThread(); 3936 RefreshStateAfterStop (); 3937 if (ProcessEventData::GetInterruptedFromEvent (event_ptr)) 3938 { 3939 if (log) 3940 log->Printf ("Process::ShouldBroadcastEvent (%p) stopped due to an interrupt, state: %s", 3941 static_cast<void*>(event_ptr), 3942 StateAsCString(state)); 3943 // Even though we know we are going to stop, we should let the threads have a look at the stop, 3944 // so they can properly set their state. 3945 m_thread_list.ShouldStop (event_ptr); 3946 return_value = true; 3947 } 3948 else 3949 { 3950 bool was_restarted = ProcessEventData::GetRestartedFromEvent (event_ptr); 3951 bool should_resume = false; 3952 3953 // It makes no sense to ask "ShouldStop" if we've already been restarted... 3954 // Asking the thread list is also not likely to go well, since we are running again. 3955 // So in that case just report the event. 3956 3957 if (!was_restarted) 3958 should_resume = !m_thread_list.ShouldStop(event_ptr); 3959 3960 if (was_restarted || should_resume || m_resume_requested) 3961 { 3962 Vote stop_vote = m_thread_list.ShouldReportStop (event_ptr); 3963 if (log) 3964 log->Printf ("Process::ShouldBroadcastEvent: should_resume: %i state: %s was_restarted: %i stop_vote: %d.", 3965 should_resume, StateAsCString(state), 3966 was_restarted, stop_vote); 3967 3968 switch (stop_vote) 3969 { 3970 case eVoteYes: 3971 return_value = true; 3972 break; 3973 case eVoteNoOpinion: 3974 case eVoteNo: 3975 return_value = false; 3976 break; 3977 } 3978 3979 if (!was_restarted) 3980 { 3981 if (log) 3982 log->Printf ("Process::ShouldBroadcastEvent (%p) Restarting process from state: %s", 3983 static_cast<void*>(event_ptr), 3984 StateAsCString(state)); 3985 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3986 PrivateResume (); 3987 } 3988 } 3989 else 3990 { 3991 return_value = true; 3992 SynchronouslyNotifyStateChanged (state); 3993 } 3994 } 3995 break; 3996 } 3997 3998 // Forcing the next event delivery is a one shot deal. So reset it here. 3999 m_force_next_event_delivery = false; 4000 4001 // We do some coalescing of events (for instance two consecutive running events get coalesced.) 4002 // But we only coalesce against events we actually broadcast. So we use m_last_broadcast_state 4003 // to track that. NB - you can't use "m_public_state.GetValue()" for that purpose, as was originally done, 4004 // because the PublicState reflects the last event pulled off the queue, and there may be several 4005 // events stacked up on the queue unserviced. So the PublicState may not reflect the last broadcasted event 4006 // yet. m_last_broadcast_state gets updated here. 4007 4008 if (return_value) 4009 m_last_broadcast_state = state; 4010 4011 if (log) 4012 log->Printf ("Process::ShouldBroadcastEvent (%p) => new state: %s, last broadcast state: %s - %s", 4013 static_cast<void*>(event_ptr), StateAsCString(state), 4014 StateAsCString(m_last_broadcast_state), 4015 return_value ? "YES" : "NO"); 4016 return return_value; 4017 } 4018 4019 bool 4020 Process::StartPrivateStateThread (bool is_secondary_thread) 4021 { 4022 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 4023 4024 bool already_running = PrivateStateThreadIsValid (); 4025 if (log) 4026 log->Printf ("Process::%s()%s ", __FUNCTION__, already_running ? " already running" : " starting private state thread"); 4027 4028 if (!is_secondary_thread && already_running) 4029 return true; 4030 4031 // Create a thread that watches our internal state and controls which 4032 // events make it to clients (into the DCProcess event queue). 4033 char thread_name[1024]; 4034 4035 if (HostInfo::GetMaxThreadNameLength() <= 30) 4036 { 4037 // On platforms with abbreviated thread name lengths, choose thread names that fit within the limit. 4038 if (already_running) 4039 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 4040 else 4041 snprintf(thread_name, sizeof(thread_name), "intern-state"); 4042 } 4043 else 4044 { 4045 if (already_running) 4046 snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", GetID()); 4047 else 4048 snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 4049 } 4050 4051 // Create the private state thread, and start it running. 4052 PrivateStateThreadArgs *args_ptr = new PrivateStateThreadArgs(this, is_secondary_thread); 4053 m_private_state_thread = ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, (void *) args_ptr, nullptr, 8 * 1024 * 1024); 4054 if (m_private_state_thread.IsJoinable()) 4055 { 4056 ResumePrivateStateThread(); 4057 return true; 4058 } 4059 else 4060 return false; 4061 } 4062 4063 void 4064 Process::PausePrivateStateThread () 4065 { 4066 ControlPrivateStateThread (eBroadcastInternalStateControlPause); 4067 } 4068 4069 void 4070 Process::ResumePrivateStateThread () 4071 { 4072 ControlPrivateStateThread (eBroadcastInternalStateControlResume); 4073 } 4074 4075 void 4076 Process::StopPrivateStateThread () 4077 { 4078 if (m_private_state_thread.IsJoinable ()) 4079 ControlPrivateStateThread (eBroadcastInternalStateControlStop); 4080 else 4081 { 4082 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4083 if (log) 4084 log->Printf ("Went to stop the private state thread, but it was already invalid."); 4085 } 4086 } 4087 4088 void 4089 Process::ControlPrivateStateThread (uint32_t signal) 4090 { 4091 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4092 4093 assert (signal == eBroadcastInternalStateControlStop || 4094 signal == eBroadcastInternalStateControlPause || 4095 signal == eBroadcastInternalStateControlResume); 4096 4097 if (log) 4098 log->Printf ("Process::%s (signal = %d)", __FUNCTION__, signal); 4099 4100 // Signal the private state thread 4101 if (m_private_state_thread.IsJoinable()) 4102 { 4103 // Broadcast the event. 4104 // It is important to do this outside of the if below, because 4105 // it's possible that the thread state is invalid but that the 4106 // thread is waiting on a control event instead of simply being 4107 // on its way out (this should not happen, but it apparently can). 4108 if (log) 4109 log->Printf ("Sending control event of type: %d.", signal); 4110 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 4111 m_private_state_control_broadcaster.BroadcastEvent(signal, event_receipt_sp); 4112 4113 // Wait for the event receipt or for the private state thread to exit 4114 bool receipt_received = false; 4115 if (PrivateStateThreadIsValid()) 4116 { 4117 while (!receipt_received) 4118 { 4119 bool timed_out = false; 4120 // Check for a receipt for 2 seconds and then check if the private state 4121 // thread is still around. 4122 receipt_received = event_receipt_sp->WaitForEventReceived(std::chrono::seconds(2), &timed_out); 4123 if (!receipt_received) 4124 { 4125 // Check if the private state thread is still around. If it isn't then we are done waiting 4126 if (!PrivateStateThreadIsValid()) 4127 break; // Private state thread exited or is exiting, we are done 4128 } 4129 } 4130 } 4131 4132 if (signal == eBroadcastInternalStateControlStop) 4133 { 4134 thread_result_t result = NULL; 4135 m_private_state_thread.Join(&result); 4136 m_private_state_thread.Reset(); 4137 } 4138 } 4139 else 4140 { 4141 if (log) 4142 log->Printf("Private state thread already dead, no need to signal it to stop."); 4143 } 4144 } 4145 4146 void 4147 Process::SendAsyncInterrupt () 4148 { 4149 if (PrivateStateThreadIsValid()) 4150 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 4151 else 4152 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 4153 } 4154 4155 void 4156 Process::HandlePrivateEvent (EventSP &event_sp) 4157 { 4158 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4159 m_resume_requested = false; 4160 4161 const StateType new_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4162 4163 // First check to see if anybody wants a shot at this event: 4164 if (m_next_event_action_ap) 4165 { 4166 NextEventAction::EventActionResult action_result = m_next_event_action_ap->PerformAction(event_sp); 4167 if (log) 4168 log->Printf ("Ran next event action, result was %d.", action_result); 4169 4170 switch (action_result) 4171 { 4172 case NextEventAction::eEventActionSuccess: 4173 SetNextEventAction(nullptr); 4174 break; 4175 4176 case NextEventAction::eEventActionRetry: 4177 break; 4178 4179 case NextEventAction::eEventActionExit: 4180 // Handle Exiting Here. If we already got an exited event, 4181 // we should just propagate it. Otherwise, swallow this event, 4182 // and set our state to exit so the next event will kill us. 4183 if (new_state != eStateExited) 4184 { 4185 // FIXME: should cons up an exited event, and discard this one. 4186 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 4187 SetNextEventAction(nullptr); 4188 return; 4189 } 4190 SetNextEventAction(nullptr); 4191 break; 4192 } 4193 } 4194 4195 // See if we should broadcast this state to external clients? 4196 const bool should_broadcast = ShouldBroadcastEvent (event_sp.get()); 4197 4198 if (should_broadcast) 4199 { 4200 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 4201 if (log) 4202 { 4203 log->Printf ("Process::%s (pid = %" PRIu64 ") broadcasting new state %s (old state %s) to %s", 4204 __FUNCTION__, 4205 GetID(), 4206 StateAsCString(new_state), 4207 StateAsCString (GetState ()), 4208 is_hijacked ? "hijacked" : "public"); 4209 } 4210 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 4211 if (StateIsRunningState (new_state)) 4212 { 4213 // Only push the input handler if we aren't fowarding events, 4214 // as this means the curses GUI is in use... 4215 // Or don't push it if we are launching since it will come up stopped. 4216 if (!GetTarget().GetDebugger().IsForwardingEvents() && new_state != eStateLaunching && 4217 new_state != eStateAttaching) 4218 { 4219 PushProcessIOHandler (); 4220 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue()+1, eBroadcastAlways); 4221 if (log) 4222 log->Printf("Process::%s updated m_iohandler_sync to %d", __FUNCTION__, m_iohandler_sync.GetValue()); 4223 } 4224 } 4225 else if (StateIsStoppedState(new_state, false)) 4226 { 4227 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 4228 { 4229 // If the lldb_private::Debugger is handling the events, we don't 4230 // want to pop the process IOHandler here, we want to do it when 4231 // we receive the stopped event so we can carefully control when 4232 // the process IOHandler is popped because when we stop we want to 4233 // display some text stating how and why we stopped, then maybe some 4234 // process/thread/frame info, and then we want the "(lldb) " prompt 4235 // to show up. If we pop the process IOHandler here, then we will 4236 // cause the command interpreter to become the top IOHandler after 4237 // the process pops off and it will update its prompt right away... 4238 // See the Debugger.cpp file where it calls the function as 4239 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 4240 // Otherwise we end up getting overlapping "(lldb) " prompts and 4241 // garbled output. 4242 // 4243 // If we aren't handling the events in the debugger (which is indicated 4244 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or we 4245 // are hijacked, then we always pop the process IO handler manually. 4246 // Hijacking happens when the internal process state thread is running 4247 // thread plans, or when commands want to run in synchronous mode 4248 // and they call "process->WaitForProcessToStop()". An example of something 4249 // that will hijack the events is a simple expression: 4250 // 4251 // (lldb) expr (int)puts("hello") 4252 // 4253 // This will cause the internal process state thread to resume and halt 4254 // the process (and _it_ will hijack the eBroadcastBitStateChanged 4255 // events) and we do need the IO handler to be pushed and popped 4256 // correctly. 4257 4258 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 4259 PopProcessIOHandler (); 4260 } 4261 } 4262 4263 BroadcastEvent (event_sp); 4264 } 4265 else 4266 { 4267 if (log) 4268 { 4269 log->Printf ("Process::%s (pid = %" PRIu64 ") suppressing state %s (old state %s): should_broadcast == false", 4270 __FUNCTION__, 4271 GetID(), 4272 StateAsCString(new_state), 4273 StateAsCString (GetState ())); 4274 } 4275 } 4276 } 4277 4278 Error 4279 Process::HaltPrivate() 4280 { 4281 EventSP event_sp; 4282 Error error (WillHalt()); 4283 if (error.Fail()) 4284 return error; 4285 4286 // Ask the process subclass to actually halt our process 4287 bool caused_stop; 4288 error = DoHalt(caused_stop); 4289 4290 DidHalt(); 4291 return error; 4292 } 4293 4294 thread_result_t 4295 Process::PrivateStateThread (void *arg) 4296 { 4297 PrivateStateThreadArgs real_args = *static_cast<PrivateStateThreadArgs *> (arg); 4298 free (arg); 4299 thread_result_t result = real_args.process->RunPrivateStateThread(real_args.is_secondary_thread); 4300 return result; 4301 } 4302 4303 thread_result_t 4304 Process::RunPrivateStateThread (bool is_secondary_thread) 4305 { 4306 bool control_only = true; 4307 4308 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4309 if (log) 4310 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 4311 __FUNCTION__, static_cast<void*>(this), GetID()); 4312 4313 bool exit_now = false; 4314 bool interrupt_requested = false; 4315 while (!exit_now) 4316 { 4317 EventSP event_sp; 4318 WaitForEventsPrivate(std::chrono::microseconds(0), event_sp, control_only); 4319 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) 4320 { 4321 if (log) 4322 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") got a control event: %d", 4323 __FUNCTION__, static_cast<void*>(this), GetID(), 4324 event_sp->GetType()); 4325 4326 switch (event_sp->GetType()) 4327 { 4328 case eBroadcastInternalStateControlStop: 4329 exit_now = true; 4330 break; // doing any internal state management below 4331 4332 case eBroadcastInternalStateControlPause: 4333 control_only = true; 4334 break; 4335 4336 case eBroadcastInternalStateControlResume: 4337 control_only = false; 4338 break; 4339 } 4340 4341 continue; 4342 } 4343 else if (event_sp->GetType() == eBroadcastBitInterrupt) 4344 { 4345 if (m_public_state.GetValue() == eStateAttaching) 4346 { 4347 if (log) 4348 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt while attaching - forwarding interrupt.", 4349 __FUNCTION__, static_cast<void*>(this), 4350 GetID()); 4351 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4352 } 4353 else if(StateIsRunningState(m_last_broadcast_state)) 4354 { 4355 if (log) 4356 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt - Halting.", 4357 __FUNCTION__, static_cast<void*>(this), 4358 GetID()); 4359 Error error = HaltPrivate(); 4360 if (error.Fail() && log) 4361 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") failed to halt the process: %s", 4362 __FUNCTION__, static_cast<void*>(this), 4363 GetID(), error.AsCString()); 4364 // Halt should generate a stopped event. Make a note of the fact that we were 4365 // doing the interrupt, so we can set the interrupted flag after we receive the 4366 // event. We deliberately set this to true even if HaltPrivate failed, so that we 4367 // can interrupt on the next natural stop. 4368 interrupt_requested = true; 4369 } 4370 else 4371 { 4372 // This can happen when someone (e.g. Process::Halt) sees that we are running and 4373 // sends an interrupt request, but the process actually stops before we receive 4374 // it. In that case, we can just ignore the request. We use 4375 // m_last_broadcast_state, because the Stopped event may not have been popped of 4376 // the event queue yet, which is when the public state gets updated. 4377 if (log) 4378 log->Printf("Process::%s ignoring interrupt as we have already stopped.", __FUNCTION__); 4379 } 4380 continue; 4381 } 4382 4383 const StateType internal_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4384 4385 if (internal_state != eStateInvalid) 4386 { 4387 if (m_clear_thread_plans_on_stop && 4388 StateIsStoppedState(internal_state, true)) 4389 { 4390 m_clear_thread_plans_on_stop = false; 4391 m_thread_list.DiscardThreadPlans(); 4392 } 4393 4394 if (interrupt_requested) 4395 { 4396 if (StateIsStoppedState (internal_state, true)) 4397 { 4398 // We requested the interrupt, so mark this as such in the stop event so 4399 // clients can tell an interrupted process from a natural stop 4400 ProcessEventData::SetInterruptedInEvent (event_sp.get(), true); 4401 interrupt_requested = false; 4402 } 4403 else if (log) 4404 { 4405 log->Printf("Process::%s interrupt_requested, but a non-stopped state '%s' received.", 4406 __FUNCTION__, StateAsCString(internal_state)); 4407 } 4408 } 4409 4410 HandlePrivateEvent (event_sp); 4411 } 4412 4413 if (internal_state == eStateInvalid || 4414 internal_state == eStateExited || 4415 internal_state == eStateDetached ) 4416 { 4417 if (log) 4418 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") about to exit with internal state %s...", 4419 __FUNCTION__, static_cast<void*>(this), GetID(), 4420 StateAsCString(internal_state)); 4421 4422 break; 4423 } 4424 } 4425 4426 // Verify log is still enabled before attempting to write to it... 4427 if (log) 4428 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4429 __FUNCTION__, static_cast<void*>(this), GetID()); 4430 4431 // If we are a secondary thread, then the primary thread we are working for will have already 4432 // acquired the public_run_lock, and isn't done with what it was doing yet, so don't 4433 // try to change it on the way out. 4434 if (!is_secondary_thread) 4435 m_public_run_lock.SetStopped(); 4436 return NULL; 4437 } 4438 4439 //------------------------------------------------------------------ 4440 // Process Event Data 4441 //------------------------------------------------------------------ 4442 4443 Process::ProcessEventData::ProcessEventData () : 4444 EventData (), 4445 m_process_wp (), 4446 m_state (eStateInvalid), 4447 m_restarted (false), 4448 m_update_state (0), 4449 m_interrupted (false) 4450 { 4451 } 4452 4453 Process::ProcessEventData::ProcessEventData (const ProcessSP &process_sp, StateType state) : 4454 EventData (), 4455 m_process_wp (), 4456 m_state (state), 4457 m_restarted (false), 4458 m_update_state (0), 4459 m_interrupted (false) 4460 { 4461 if (process_sp) 4462 m_process_wp = process_sp; 4463 } 4464 4465 Process::ProcessEventData::~ProcessEventData() = default; 4466 4467 const ConstString & 4468 Process::ProcessEventData::GetFlavorString () 4469 { 4470 static ConstString g_flavor ("Process::ProcessEventData"); 4471 return g_flavor; 4472 } 4473 4474 const ConstString & 4475 Process::ProcessEventData::GetFlavor () const 4476 { 4477 return ProcessEventData::GetFlavorString (); 4478 } 4479 4480 void 4481 Process::ProcessEventData::DoOnRemoval (Event *event_ptr) 4482 { 4483 ProcessSP process_sp(m_process_wp.lock()); 4484 4485 if (!process_sp) 4486 return; 4487 4488 // This function gets called twice for each event, once when the event gets pulled 4489 // off of the private process event queue, and then any number of times, first when it gets pulled off of 4490 // the public event queue, then other times when we're pretending that this is where we stopped at the 4491 // end of expression evaluation. m_update_state is used to distinguish these 4492 // three cases; it is 0 when we're just pulling it off for private handling, 4493 // and > 1 for expression evaluation, and we don't want to do the breakpoint command handling then. 4494 if (m_update_state != 1) 4495 return; 4496 4497 process_sp->SetPublicState (m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4498 4499 // If this is a halt event, even if the halt stopped with some reason other than a plain interrupt (e.g. we had 4500 // already stopped for a breakpoint when the halt request came through) don't do the StopInfo actions, as they may 4501 // end up restarting the process. 4502 if (m_interrupted) 4503 return; 4504 4505 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4506 if (m_state == eStateStopped && ! m_restarted) 4507 { 4508 // Let process subclasses know we are about to do a public stop and 4509 // do anything they might need to in order to speed up register and 4510 // memory accesses. 4511 process_sp->WillPublicStop(); 4512 4513 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4514 uint32_t num_threads = curr_thread_list.GetSize(); 4515 uint32_t idx; 4516 4517 // The actions might change one of the thread's stop_info's opinions about whether we should 4518 // stop the process, so we need to query that as we go. 4519 4520 // One other complication here, is that we try to catch any case where the target has run (except for expressions) 4521 // and immediately exit, but if we get that wrong (which is possible) then the thread list might have changed, and 4522 // that would cause our iteration here to crash. We could make a copy of the thread list, but we'd really like 4523 // to also know if it has changed at all, so we make up a vector of the thread ID's and check what we get back 4524 // against this list & bag out if anything differs. 4525 std::vector<uint32_t> thread_index_array(num_threads); 4526 for (idx = 0; idx < num_threads; ++idx) 4527 thread_index_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4528 4529 // Use this to track whether we should continue from here. We will only continue the target running if 4530 // no thread says we should stop. Of course if some thread's PerformAction actually sets the target running, 4531 // then it doesn't matter what the other threads say... 4532 4533 bool still_should_stop = false; 4534 4535 // Sometimes - for instance if we have a bug in the stub we are talking to, we stop but no thread has a 4536 // valid stop reason. In that case we should just stop, because we have no way of telling what the right 4537 // thing to do is, and it's better to let the user decide than continue behind their backs. 4538 4539 bool does_anybody_have_an_opinion = false; 4540 4541 for (idx = 0; idx < num_threads; ++idx) 4542 { 4543 curr_thread_list = process_sp->GetThreadList(); 4544 if (curr_thread_list.GetSize() != num_threads) 4545 { 4546 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 4547 if (log) 4548 log->Printf("Number of threads changed from %u to %u while processing event.", num_threads, curr_thread_list.GetSize()); 4549 break; 4550 } 4551 4552 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4553 4554 if (thread_sp->GetIndexID() != thread_index_array[idx]) 4555 { 4556 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 4557 if (log) 4558 log->Printf("The thread at position %u changed from %u to %u while processing event.", 4559 idx, 4560 thread_index_array[idx], 4561 thread_sp->GetIndexID()); 4562 break; 4563 } 4564 4565 StopInfoSP stop_info_sp = thread_sp->GetStopInfo (); 4566 if (stop_info_sp && stop_info_sp->IsValid()) 4567 { 4568 does_anybody_have_an_opinion = true; 4569 bool this_thread_wants_to_stop; 4570 if (stop_info_sp->GetOverrideShouldStop()) 4571 { 4572 this_thread_wants_to_stop = stop_info_sp->GetOverriddenShouldStopValue(); 4573 } 4574 else 4575 { 4576 stop_info_sp->PerformAction(event_ptr); 4577 // The stop action might restart the target. If it does, then we want to mark that in the 4578 // event so that whoever is receiving it will know to wait for the running event and reflect 4579 // that state appropriately. 4580 // We also need to stop processing actions, since they aren't expecting the target to be running. 4581 4582 // FIXME: we might have run. 4583 if (stop_info_sp->HasTargetRunSinceMe()) 4584 { 4585 SetRestarted (true); 4586 break; 4587 } 4588 4589 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4590 } 4591 4592 if (!still_should_stop) 4593 still_should_stop = this_thread_wants_to_stop; 4594 } 4595 } 4596 4597 if (!GetRestarted()) 4598 { 4599 if (!still_should_stop && does_anybody_have_an_opinion) 4600 { 4601 // We've been asked to continue, so do that here. 4602 SetRestarted(true); 4603 // Use the public resume method here, since this is just 4604 // extending a public resume. 4605 process_sp->PrivateResume(); 4606 } 4607 else 4608 { 4609 // If we didn't restart, run the Stop Hooks here: 4610 // They might also restart the target, so watch for that. 4611 process_sp->GetTarget().RunStopHooks(); 4612 if (process_sp->GetPrivateState() == eStateRunning) 4613 SetRestarted(true); 4614 } 4615 } 4616 } 4617 } 4618 4619 void 4620 Process::ProcessEventData::Dump (Stream *s) const 4621 { 4622 ProcessSP process_sp(m_process_wp.lock()); 4623 4624 if (process_sp) 4625 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4626 static_cast<void*>(process_sp.get()), process_sp->GetID()); 4627 else 4628 s->PutCString(" process = NULL, "); 4629 4630 s->Printf("state = %s", StateAsCString(GetState())); 4631 } 4632 4633 const Process::ProcessEventData * 4634 Process::ProcessEventData::GetEventDataFromEvent (const Event *event_ptr) 4635 { 4636 if (event_ptr) 4637 { 4638 const EventData *event_data = event_ptr->GetData(); 4639 if (event_data && event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4640 return static_cast <const ProcessEventData *> (event_ptr->GetData()); 4641 } 4642 return nullptr; 4643 } 4644 4645 ProcessSP 4646 Process::ProcessEventData::GetProcessFromEvent (const Event *event_ptr) 4647 { 4648 ProcessSP process_sp; 4649 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4650 if (data) 4651 process_sp = data->GetProcessSP(); 4652 return process_sp; 4653 } 4654 4655 StateType 4656 Process::ProcessEventData::GetStateFromEvent (const Event *event_ptr) 4657 { 4658 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4659 if (data == nullptr) 4660 return eStateInvalid; 4661 else 4662 return data->GetState(); 4663 } 4664 4665 bool 4666 Process::ProcessEventData::GetRestartedFromEvent (const Event *event_ptr) 4667 { 4668 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4669 if (data == nullptr) 4670 return false; 4671 else 4672 return data->GetRestarted(); 4673 } 4674 4675 void 4676 Process::ProcessEventData::SetRestartedInEvent (Event *event_ptr, bool new_value) 4677 { 4678 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4679 if (data != nullptr) 4680 data->SetRestarted(new_value); 4681 } 4682 4683 size_t 4684 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) 4685 { 4686 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4687 if (data != nullptr) 4688 return data->GetNumRestartedReasons(); 4689 else 4690 return 0; 4691 } 4692 4693 const char * 4694 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, size_t idx) 4695 { 4696 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4697 if (data != nullptr) 4698 return data->GetRestartedReasonAtIndex(idx); 4699 else 4700 return nullptr; 4701 } 4702 4703 void 4704 Process::ProcessEventData::AddRestartedReason (Event *event_ptr, const char *reason) 4705 { 4706 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4707 if (data != nullptr) 4708 data->AddRestartedReason(reason); 4709 } 4710 4711 bool 4712 Process::ProcessEventData::GetInterruptedFromEvent (const Event *event_ptr) 4713 { 4714 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4715 if (data == nullptr) 4716 return false; 4717 else 4718 return data->GetInterrupted (); 4719 } 4720 4721 void 4722 Process::ProcessEventData::SetInterruptedInEvent (Event *event_ptr, bool new_value) 4723 { 4724 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4725 if (data != nullptr) 4726 data->SetInterrupted(new_value); 4727 } 4728 4729 bool 4730 Process::ProcessEventData::SetUpdateStateOnRemoval (Event *event_ptr) 4731 { 4732 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4733 if (data) 4734 { 4735 data->SetUpdateStateOnRemoval(); 4736 return true; 4737 } 4738 return false; 4739 } 4740 4741 lldb::TargetSP 4742 Process::CalculateTarget () 4743 { 4744 return m_target_sp.lock(); 4745 } 4746 4747 void 4748 Process::CalculateExecutionContext (ExecutionContext &exe_ctx) 4749 { 4750 exe_ctx.SetTargetPtr (&GetTarget()); 4751 exe_ctx.SetProcessPtr (this); 4752 exe_ctx.SetThreadPtr(nullptr); 4753 exe_ctx.SetFramePtr(nullptr); 4754 } 4755 4756 //uint32_t 4757 //Process::ListProcessesMatchingName (const char *name, StringList &matches, std::vector<lldb::pid_t> &pids) 4758 //{ 4759 // return 0; 4760 //} 4761 // 4762 //ArchSpec 4763 //Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4764 //{ 4765 // return Host::GetArchSpecForExistingProcess (pid); 4766 //} 4767 // 4768 //ArchSpec 4769 //Process::GetArchSpecForExistingProcess (const char *process_name) 4770 //{ 4771 // return Host::GetArchSpecForExistingProcess (process_name); 4772 //} 4773 4774 void 4775 Process::AppendSTDOUT (const char * s, size_t len) 4776 { 4777 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4778 m_stdout_data.append (s, len); 4779 BroadcastEventIfUnique (eBroadcastBitSTDOUT, new ProcessEventData (shared_from_this(), GetState())); 4780 } 4781 4782 void 4783 Process::AppendSTDERR (const char * s, size_t len) 4784 { 4785 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4786 m_stderr_data.append (s, len); 4787 BroadcastEventIfUnique (eBroadcastBitSTDERR, new ProcessEventData (shared_from_this(), GetState())); 4788 } 4789 4790 void 4791 Process::BroadcastAsyncProfileData(const std::string &one_profile_data) 4792 { 4793 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4794 m_profile_data.push_back(one_profile_data); 4795 BroadcastEventIfUnique (eBroadcastBitProfileData, new ProcessEventData (shared_from_this(), GetState())); 4796 } 4797 4798 size_t 4799 Process::GetAsyncProfileData (char *buf, size_t buf_size, Error &error) 4800 { 4801 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4802 if (m_profile_data.empty()) 4803 return 0; 4804 4805 std::string &one_profile_data = m_profile_data.front(); 4806 size_t bytes_available = one_profile_data.size(); 4807 if (bytes_available > 0) 4808 { 4809 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4810 if (log) 4811 log->Printf ("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4812 static_cast<void*>(buf), 4813 static_cast<uint64_t>(buf_size)); 4814 if (bytes_available > buf_size) 4815 { 4816 memcpy(buf, one_profile_data.c_str(), buf_size); 4817 one_profile_data.erase(0, buf_size); 4818 bytes_available = buf_size; 4819 } 4820 else 4821 { 4822 memcpy(buf, one_profile_data.c_str(), bytes_available); 4823 m_profile_data.erase(m_profile_data.begin()); 4824 } 4825 } 4826 return bytes_available; 4827 } 4828 4829 //------------------------------------------------------------------ 4830 // Process STDIO 4831 //------------------------------------------------------------------ 4832 4833 size_t 4834 Process::GetSTDOUT (char *buf, size_t buf_size, Error &error) 4835 { 4836 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4837 size_t bytes_available = m_stdout_data.size(); 4838 if (bytes_available > 0) 4839 { 4840 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4841 if (log) 4842 log->Printf ("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4843 static_cast<void*>(buf), 4844 static_cast<uint64_t>(buf_size)); 4845 if (bytes_available > buf_size) 4846 { 4847 memcpy(buf, m_stdout_data.c_str(), buf_size); 4848 m_stdout_data.erase(0, buf_size); 4849 bytes_available = buf_size; 4850 } 4851 else 4852 { 4853 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4854 m_stdout_data.clear(); 4855 } 4856 } 4857 return bytes_available; 4858 } 4859 4860 size_t 4861 Process::GetSTDERR (char *buf, size_t buf_size, Error &error) 4862 { 4863 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4864 size_t bytes_available = m_stderr_data.size(); 4865 if (bytes_available > 0) 4866 { 4867 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4868 if (log) 4869 log->Printf ("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4870 static_cast<void*>(buf), 4871 static_cast<uint64_t>(buf_size)); 4872 if (bytes_available > buf_size) 4873 { 4874 memcpy(buf, m_stderr_data.c_str(), buf_size); 4875 m_stderr_data.erase(0, buf_size); 4876 bytes_available = buf_size; 4877 } 4878 else 4879 { 4880 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4881 m_stderr_data.clear(); 4882 } 4883 } 4884 return bytes_available; 4885 } 4886 4887 void 4888 Process::STDIOReadThreadBytesReceived (void *baton, const void *src, size_t src_len) 4889 { 4890 Process *process = (Process *) baton; 4891 process->AppendSTDOUT (static_cast<const char *>(src), src_len); 4892 } 4893 4894 class IOHandlerProcessSTDIO : 4895 public IOHandler 4896 { 4897 public: 4898 IOHandlerProcessSTDIO (Process *process, 4899 int write_fd) : 4900 IOHandler(process->GetTarget().GetDebugger(), IOHandler::Type::ProcessIO), 4901 m_process (process), 4902 m_read_file (), 4903 m_write_file (write_fd, false), 4904 m_pipe () 4905 { 4906 m_pipe.CreateNew(false); 4907 m_read_file.SetDescriptor(GetInputFD(), false); 4908 } 4909 4910 ~IOHandlerProcessSTDIO() override = default; 4911 4912 // Each IOHandler gets to run until it is done. It should read data 4913 // from the "in" and place output into "out" and "err and return 4914 // when done. 4915 void 4916 Run () override 4917 { 4918 if (!m_read_file.IsValid() || !m_write_file.IsValid() || !m_pipe.CanRead() || !m_pipe.CanWrite()) 4919 { 4920 SetIsDone(true); 4921 return; 4922 } 4923 4924 SetIsDone(false); 4925 const int read_fd = m_read_file.GetDescriptor(); 4926 TerminalState terminal_state; 4927 terminal_state.Save (read_fd, false); 4928 Terminal terminal(read_fd); 4929 terminal.SetCanonical(false); 4930 terminal.SetEcho(false); 4931 // FD_ZERO, FD_SET are not supported on windows 4932 #ifndef _WIN32 4933 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4934 m_is_running = true; 4935 while (!GetIsDone()) 4936 { 4937 SelectHelper select_helper; 4938 select_helper.FDSetRead(read_fd); 4939 select_helper.FDSetRead(pipe_read_fd); 4940 Error error = select_helper.Select(); 4941 4942 if (error.Fail()) 4943 { 4944 SetIsDone(true); 4945 } 4946 else 4947 { 4948 char ch = 0; 4949 size_t n; 4950 if (select_helper.FDIsSetRead(read_fd)) 4951 { 4952 n = 1; 4953 if (m_read_file.Read(&ch, n).Success() && n == 1) 4954 { 4955 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4956 SetIsDone(true); 4957 } 4958 else 4959 SetIsDone(true); 4960 } 4961 if (select_helper.FDIsSetRead(pipe_read_fd)) 4962 { 4963 size_t bytes_read; 4964 // Consume the interrupt byte 4965 Error error = m_pipe.Read(&ch, 1, bytes_read); 4966 if (error.Success()) 4967 { 4968 switch (ch) 4969 { 4970 case 'q': 4971 SetIsDone(true); 4972 break; 4973 case 'i': 4974 if (StateIsRunningState(m_process->GetState())) 4975 m_process->SendAsyncInterrupt(); 4976 break; 4977 } 4978 } 4979 } 4980 } 4981 } 4982 m_is_running = false; 4983 #endif 4984 terminal_state.Restore(); 4985 } 4986 4987 void 4988 Cancel () override 4989 { 4990 SetIsDone(true); 4991 // Only write to our pipe to cancel if we are in IOHandlerProcessSTDIO::Run(). 4992 // We can end up with a python command that is being run from the command 4993 // interpreter: 4994 // 4995 // (lldb) step_process_thousands_of_times 4996 // 4997 // In this case the command interpreter will be in the middle of handling 4998 // the command and if the process pushes and pops the IOHandler thousands 4999 // of times, we can end up writing to m_pipe without ever consuming the 5000 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 5001 // deadlocking when the pipe gets fed up and blocks until data is consumed. 5002 if (m_is_running) 5003 { 5004 char ch = 'q'; // Send 'q' for quit 5005 size_t bytes_written = 0; 5006 m_pipe.Write(&ch, 1, bytes_written); 5007 } 5008 } 5009 5010 bool 5011 Interrupt () override 5012 { 5013 // Do only things that are safe to do in an interrupt context (like in 5014 // a SIGINT handler), like write 1 byte to a file descriptor. This will 5015 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 5016 // that was written to the pipe and then call m_process->SendAsyncInterrupt() 5017 // from a much safer location in code. 5018 if (m_active) 5019 { 5020 char ch = 'i'; // Send 'i' for interrupt 5021 size_t bytes_written = 0; 5022 Error result = m_pipe.Write(&ch, 1, bytes_written); 5023 return result.Success(); 5024 } 5025 else 5026 { 5027 // This IOHandler might be pushed on the stack, but not being run currently 5028 // so do the right thing if we aren't actively watching for STDIN by sending 5029 // the interrupt to the process. Otherwise the write to the pipe above would 5030 // do nothing. This can happen when the command interpreter is running and 5031 // gets a "expression ...". It will be on the IOHandler thread and sending 5032 // the input is complete to the delegate which will cause the expression to 5033 // run, which will push the process IO handler, but not run it. 5034 5035 if (StateIsRunningState(m_process->GetState())) 5036 { 5037 m_process->SendAsyncInterrupt(); 5038 return true; 5039 } 5040 } 5041 return false; 5042 } 5043 5044 void 5045 GotEOF() override 5046 { 5047 } 5048 5049 protected: 5050 Process *m_process; 5051 File m_read_file; // Read from this file (usually actual STDIN for LLDB 5052 File m_write_file; // Write to this file (usually the master pty for getting io to debuggee) 5053 Pipe m_pipe; 5054 std::atomic<bool> m_is_running; 5055 }; 5056 5057 void 5058 Process::SetSTDIOFileDescriptor (int fd) 5059 { 5060 // First set up the Read Thread for reading/handling process I/O 5061 5062 std::unique_ptr<ConnectionFileDescriptor> conn_ap (new ConnectionFileDescriptor (fd, true)); 5063 5064 if (conn_ap) 5065 { 5066 m_stdio_communication.SetConnection (conn_ap.release()); 5067 if (m_stdio_communication.IsConnected()) 5068 { 5069 m_stdio_communication.SetReadThreadBytesReceivedCallback (STDIOReadThreadBytesReceived, this); 5070 m_stdio_communication.StartReadThread(); 5071 5072 // Now read thread is set up, set up input reader. 5073 5074 if (!m_process_input_reader) 5075 m_process_input_reader.reset (new IOHandlerProcessSTDIO (this, fd)); 5076 } 5077 } 5078 } 5079 5080 bool 5081 Process::ProcessIOHandlerIsActive () 5082 { 5083 IOHandlerSP io_handler_sp (m_process_input_reader); 5084 if (io_handler_sp) 5085 return GetTarget().GetDebugger().IsTopIOHandler (io_handler_sp); 5086 return false; 5087 } 5088 bool 5089 Process::PushProcessIOHandler () 5090 { 5091 IOHandlerSP io_handler_sp (m_process_input_reader); 5092 if (io_handler_sp) 5093 { 5094 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 5095 if (log) 5096 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 5097 5098 io_handler_sp->SetIsDone(false); 5099 GetTarget().GetDebugger().PushIOHandler (io_handler_sp); 5100 return true; 5101 } 5102 return false; 5103 } 5104 5105 bool 5106 Process::PopProcessIOHandler () 5107 { 5108 IOHandlerSP io_handler_sp (m_process_input_reader); 5109 if (io_handler_sp) 5110 return GetTarget().GetDebugger().PopIOHandler (io_handler_sp); 5111 return false; 5112 } 5113 5114 // The process needs to know about installed plug-ins 5115 void 5116 Process::SettingsInitialize () 5117 { 5118 Thread::SettingsInitialize (); 5119 } 5120 5121 void 5122 Process::SettingsTerminate () 5123 { 5124 Thread::SettingsTerminate (); 5125 } 5126 5127 namespace 5128 { 5129 // RestorePlanState is used to record the "is private", "is master" and "okay to discard" fields of 5130 // the plan we are running, and reset it on Clean or on destruction. 5131 // It will only reset the state once, so you can call Clean and then monkey with the state and it 5132 // won't get reset on you again. 5133 5134 class RestorePlanState 5135 { 5136 public: 5137 RestorePlanState (lldb::ThreadPlanSP thread_plan_sp) : 5138 m_thread_plan_sp(thread_plan_sp), 5139 m_already_reset(false) 5140 { 5141 if (m_thread_plan_sp) 5142 { 5143 m_private = m_thread_plan_sp->GetPrivate(); 5144 m_is_master = m_thread_plan_sp->IsMasterPlan(); 5145 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 5146 } 5147 } 5148 5149 ~RestorePlanState() 5150 { 5151 Clean(); 5152 } 5153 5154 void 5155 Clean () 5156 { 5157 if (!m_already_reset && m_thread_plan_sp) 5158 { 5159 m_already_reset = true; 5160 m_thread_plan_sp->SetPrivate(m_private); 5161 m_thread_plan_sp->SetIsMasterPlan (m_is_master); 5162 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 5163 } 5164 } 5165 5166 private: 5167 lldb::ThreadPlanSP m_thread_plan_sp; 5168 bool m_already_reset; 5169 bool m_private; 5170 bool m_is_master; 5171 bool m_okay_to_discard; 5172 }; 5173 } // anonymous namespace 5174 5175 ExpressionResults 5176 Process::RunThreadPlan(ExecutionContext &exe_ctx, lldb::ThreadPlanSP &thread_plan_sp, 5177 const EvaluateExpressionOptions &options, DiagnosticManager &diagnostic_manager) 5178 { 5179 ExpressionResults return_value = eExpressionSetupError; 5180 5181 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 5182 5183 if (!thread_plan_sp) 5184 { 5185 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with empty thread plan."); 5186 return eExpressionSetupError; 5187 } 5188 5189 if (!thread_plan_sp->ValidatePlan(nullptr)) 5190 { 5191 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with an invalid thread plan."); 5192 return eExpressionSetupError; 5193 } 5194 5195 if (exe_ctx.GetProcessPtr() != this) 5196 { 5197 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called on wrong process."); 5198 return eExpressionSetupError; 5199 } 5200 5201 Thread *thread = exe_ctx.GetThreadPtr(); 5202 if (thread == nullptr) 5203 { 5204 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with invalid thread."); 5205 return eExpressionSetupError; 5206 } 5207 5208 // We need to change some of the thread plan attributes for the thread plan runner. This will restore them 5209 // when we are done: 5210 5211 RestorePlanState thread_plan_restorer(thread_plan_sp); 5212 5213 // We rely on the thread plan we are running returning "PlanCompleted" if when it successfully completes. 5214 // For that to be true the plan can't be private - since private plans suppress themselves in the 5215 // GetCompletedPlan call. 5216 5217 thread_plan_sp->SetPrivate(false); 5218 5219 // The plans run with RunThreadPlan also need to be terminal master plans or when they are done we will end 5220 // up asking the plan above us whether we should stop, which may give the wrong answer. 5221 5222 thread_plan_sp->SetIsMasterPlan (true); 5223 thread_plan_sp->SetOkayToDiscard(false); 5224 5225 if (m_private_state.GetValue() != eStateStopped) 5226 { 5227 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5228 "RunThreadPlan called while the private state was not stopped."); 5229 return eExpressionSetupError; 5230 } 5231 5232 // Save the thread & frame from the exe_ctx for restoration after we run 5233 const uint32_t thread_idx_id = thread->GetIndexID(); 5234 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 5235 if (!selected_frame_sp) 5236 { 5237 thread->SetSelectedFrame(nullptr); 5238 selected_frame_sp = thread->GetSelectedFrame(); 5239 if (!selected_frame_sp) 5240 { 5241 diagnostic_manager.Printf(eDiagnosticSeverityError, 5242 "RunThreadPlan called without a selected frame on thread %d", thread_idx_id); 5243 return eExpressionSetupError; 5244 } 5245 } 5246 5247 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 5248 5249 // N.B. Running the target may unset the currently selected thread and frame. We don't want to do that either, 5250 // so we should arrange to reset them as well. 5251 5252 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 5253 5254 uint32_t selected_tid; 5255 StackID selected_stack_id; 5256 if (selected_thread_sp) 5257 { 5258 selected_tid = selected_thread_sp->GetIndexID(); 5259 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 5260 } 5261 else 5262 { 5263 selected_tid = LLDB_INVALID_THREAD_ID; 5264 } 5265 5266 HostThread backup_private_state_thread; 5267 lldb::StateType old_state = eStateInvalid; 5268 lldb::ThreadPlanSP stopper_base_plan_sp; 5269 5270 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 5271 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5272 { 5273 // Yikes, we are running on the private state thread! So we can't wait for public events on this thread, since 5274 // we are the thread that is generating public events. 5275 // The simplest thing to do is to spin up a temporary thread to handle private state thread events while 5276 // we are fielding public events here. 5277 if (log) 5278 log->Printf ("Running thread plan on private state thread, spinning up another state thread to handle the events."); 5279 5280 backup_private_state_thread = m_private_state_thread; 5281 5282 // One other bit of business: we want to run just this thread plan and anything it pushes, and then stop, 5283 // returning control here. 5284 // But in the normal course of things, the plan above us on the stack would be given a shot at the stop 5285 // event before deciding to stop, and we don't want that. So we insert a "stopper" base plan on the stack 5286 // before the plan we want to run. Since base plans always stop and return control to the user, that will 5287 // do just what we want. 5288 stopper_base_plan_sp.reset(new ThreadPlanBase (*thread)); 5289 thread->QueueThreadPlan (stopper_base_plan_sp, false); 5290 // Have to make sure our public state is stopped, since otherwise the reporting logic below doesn't work correctly. 5291 old_state = m_public_state.GetValue(); 5292 m_public_state.SetValueNoLock(eStateStopped); 5293 5294 // Now spin up the private state thread: 5295 StartPrivateStateThread(true); 5296 } 5297 5298 thread->QueueThreadPlan(thread_plan_sp, false); // This used to pass "true" does that make sense? 5299 5300 if (options.GetDebug()) 5301 { 5302 // In this case, we aren't actually going to run, we just want to stop right away. 5303 // Flush this thread so we will refetch the stacks and show the correct backtrace. 5304 // FIXME: To make this prettier we should invent some stop reason for this, but that 5305 // is only cosmetic, and this functionality is only of use to lldb developers who can 5306 // live with not pretty... 5307 thread->Flush(); 5308 return eExpressionStoppedForDebug; 5309 } 5310 5311 ListenerSP listener_sp(Listener::MakeListener("lldb.process.listener.run-thread-plan")); 5312 5313 lldb::EventSP event_to_broadcast_sp; 5314 5315 { 5316 // This process event hijacker Hijacks the Public events and its destructor makes sure that the process events get 5317 // restored on exit to the function. 5318 // 5319 // If the event needs to propagate beyond the hijacker (e.g., the process exits during execution), then the event 5320 // is put into event_to_broadcast_sp for rebroadcasting. 5321 5322 ProcessEventHijacker run_thread_plan_hijacker (*this, listener_sp); 5323 5324 if (log) 5325 { 5326 StreamString s; 5327 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5328 log->Printf ("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 " to run thread plan \"%s\".", 5329 thread->GetIndexID(), 5330 thread->GetID(), 5331 s.GetData()); 5332 } 5333 5334 bool got_event; 5335 lldb::EventSP event_sp; 5336 lldb::StateType stop_state = lldb::eStateInvalid; 5337 5338 bool before_first_timeout = true; // This is set to false the first time that we have to halt the target. 5339 bool do_resume = true; 5340 bool handle_running_event = true; 5341 const uint64_t default_one_thread_timeout_usec = 250000; 5342 5343 // This is just for accounting: 5344 uint32_t num_resumes = 0; 5345 5346 uint32_t timeout_usec = options.GetTimeoutUsec(); 5347 uint32_t one_thread_timeout_usec; 5348 uint32_t all_threads_timeout_usec = 0; 5349 5350 // If we are going to run all threads the whole time, or if we are only going to run one thread, 5351 // then we don't need the first timeout. So we set the final timeout, and pretend we are after the 5352 // first timeout already. 5353 5354 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5355 { 5356 before_first_timeout = false; 5357 one_thread_timeout_usec = 0; 5358 all_threads_timeout_usec = timeout_usec; 5359 } 5360 else 5361 { 5362 uint32_t option_one_thread_timeout = options.GetOneThreadTimeoutUsec(); 5363 5364 // If the overall wait is forever, then we only need to set the one thread timeout: 5365 if (timeout_usec == 0) 5366 { 5367 if (option_one_thread_timeout != 0) 5368 one_thread_timeout_usec = option_one_thread_timeout; 5369 else 5370 one_thread_timeout_usec = default_one_thread_timeout_usec; 5371 } 5372 else 5373 { 5374 // Otherwise, if the one thread timeout is set, make sure it isn't longer than the overall timeout, 5375 // and use it, otherwise use half the total timeout, bounded by the default_one_thread_timeout_usec. 5376 uint64_t computed_one_thread_timeout; 5377 if (option_one_thread_timeout != 0) 5378 { 5379 if (timeout_usec < option_one_thread_timeout) 5380 { 5381 diagnostic_manager.PutCString( 5382 eDiagnosticSeverityError, 5383 "RunThreadPlan called without one thread timeout greater than total timeout"); 5384 return eExpressionSetupError; 5385 } 5386 computed_one_thread_timeout = option_one_thread_timeout; 5387 } 5388 else 5389 { 5390 computed_one_thread_timeout = timeout_usec / 2; 5391 if (computed_one_thread_timeout > default_one_thread_timeout_usec) 5392 computed_one_thread_timeout = default_one_thread_timeout_usec; 5393 } 5394 one_thread_timeout_usec = computed_one_thread_timeout; 5395 all_threads_timeout_usec = timeout_usec - one_thread_timeout_usec; 5396 } 5397 } 5398 5399 if (log) 5400 log->Printf ("Stop others: %u, try all: %u, before_first: %u, one thread: %" PRIu32 " - all threads: %" PRIu32 ".\n", 5401 options.GetStopOthers(), 5402 options.GetTryAllThreads(), 5403 before_first_timeout, 5404 one_thread_timeout_usec, 5405 all_threads_timeout_usec); 5406 5407 // This isn't going to work if there are unfetched events on the queue. 5408 // Are there cases where we might want to run the remaining events here, and then try to 5409 // call the function? That's probably being too tricky for our own good. 5410 5411 Event *other_events = listener_sp->PeekAtNextEvent(); 5412 if (other_events != nullptr) 5413 { 5414 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5415 "RunThreadPlan called with pending events on the queue."); 5416 return eExpressionSetupError; 5417 } 5418 5419 // We also need to make sure that the next event is delivered. We might be calling a function as part of 5420 // a thread plan, in which case the last delivered event could be the running event, and we don't want 5421 // event coalescing to cause us to lose OUR running event... 5422 ForceNextEventDelivery(); 5423 5424 // This while loop must exit out the bottom, there's cleanup that we need to do when we are done. 5425 // So don't call return anywhere within it. 5426 5427 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5428 // It's pretty much impossible to write test cases for things like: 5429 // One thread timeout expires, I go to halt, but the process already stopped 5430 // on the function call stop breakpoint. Turning on this define will make us not 5431 // fetch the first event till after the halt. So if you run a quick function, it will have 5432 // completed, and the completion event will be waiting, when you interrupt for halt. 5433 // The expression evaluation should still succeed. 5434 bool miss_first_event = true; 5435 #endif 5436 TimeValue one_thread_timeout; 5437 TimeValue final_timeout; 5438 std::chrono::microseconds timeout = std::chrono::microseconds(0); 5439 5440 while (true) 5441 { 5442 // We usually want to resume the process if we get to the top of the loop. 5443 // The only exception is if we get two running events with no intervening 5444 // stop, which can happen, we will just wait for then next stop event. 5445 if (log) 5446 log->Printf ("Top of while loop: do_resume: %i handle_running_event: %i before_first_timeout: %i.", 5447 do_resume, 5448 handle_running_event, 5449 before_first_timeout); 5450 5451 if (do_resume || handle_running_event) 5452 { 5453 // Do the initial resume and wait for the running event before going further. 5454 5455 if (do_resume) 5456 { 5457 num_resumes++; 5458 Error resume_error = PrivateResume(); 5459 if (!resume_error.Success()) 5460 { 5461 diagnostic_manager.Printf(eDiagnosticSeverityError, 5462 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5463 resume_error.AsCString()); 5464 return_value = eExpressionSetupError; 5465 break; 5466 } 5467 } 5468 5469 got_event = listener_sp->WaitForEvent(std::chrono::microseconds(500000), event_sp); 5470 if (!got_event) 5471 { 5472 if (log) 5473 log->Printf("Process::RunThreadPlan(): didn't get any event after resume %" PRIu32 ", exiting.", 5474 num_resumes); 5475 5476 diagnostic_manager.Printf(eDiagnosticSeverityError, 5477 "didn't get any event after resume %" PRIu32 ", exiting.", num_resumes); 5478 return_value = eExpressionSetupError; 5479 break; 5480 } 5481 5482 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5483 5484 if (stop_state != eStateRunning) 5485 { 5486 bool restarted = false; 5487 5488 if (stop_state == eStateStopped) 5489 { 5490 restarted = Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()); 5491 if (log) 5492 log->Printf("Process::RunThreadPlan(): didn't get running event after " 5493 "resume %d, got %s instead (restarted: %i, do_resume: %i, handle_running_event: %i).", 5494 num_resumes, 5495 StateAsCString(stop_state), 5496 restarted, 5497 do_resume, 5498 handle_running_event); 5499 } 5500 5501 if (restarted) 5502 { 5503 // This is probably an overabundance of caution, I don't think I should ever get a stopped & restarted 5504 // event here. But if I do, the best thing is to Halt and then get out of here. 5505 const bool clear_thread_plans = false; 5506 const bool use_run_lock = false; 5507 Halt(clear_thread_plans, use_run_lock); 5508 } 5509 5510 diagnostic_manager.Printf(eDiagnosticSeverityError, 5511 "didn't get running event after initial resume, got %s instead.", 5512 StateAsCString(stop_state)); 5513 return_value = eExpressionSetupError; 5514 break; 5515 } 5516 5517 if (log) 5518 log->PutCString ("Process::RunThreadPlan(): resuming succeeded."); 5519 // We need to call the function synchronously, so spin waiting for it to return. 5520 // If we get interrupted while executing, we're going to lose our context, and 5521 // won't be able to gather the result at this point. 5522 // We set the timeout AFTER the resume, since the resume takes some time and we 5523 // don't want to charge that to the timeout. 5524 } 5525 else 5526 { 5527 if (log) 5528 log->PutCString ("Process::RunThreadPlan(): waiting for next event."); 5529 } 5530 5531 if (before_first_timeout) 5532 { 5533 if (options.GetTryAllThreads()) 5534 timeout = std::chrono::microseconds(one_thread_timeout_usec); 5535 else 5536 timeout = std::chrono::microseconds(timeout_usec); 5537 } 5538 else 5539 { 5540 if (timeout_usec == 0) 5541 timeout = std::chrono::microseconds(0); 5542 else 5543 timeout = std::chrono::microseconds(all_threads_timeout_usec); 5544 } 5545 5546 do_resume = true; 5547 handle_running_event = true; 5548 5549 // Now wait for the process to stop again: 5550 event_sp.reset(); 5551 5552 if (log) 5553 { 5554 if (timeout.count()) 5555 { 5556 log->Printf( 5557 "Process::RunThreadPlan(): about to wait - now is %llu - endpoint is %llu", 5558 static_cast<unsigned long long>(std::chrono::system_clock::now().time_since_epoch().count()), 5559 static_cast<unsigned long long>( 5560 std::chrono::time_point<std::chrono::system_clock, std::chrono::microseconds>(timeout) 5561 .time_since_epoch() 5562 .count())); 5563 } 5564 else 5565 { 5566 log->Printf ("Process::RunThreadPlan(): about to wait forever."); 5567 } 5568 } 5569 5570 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5571 // See comment above... 5572 if (miss_first_event) 5573 { 5574 usleep(1000); 5575 miss_first_event = false; 5576 got_event = false; 5577 } 5578 else 5579 #endif 5580 got_event = listener_sp->WaitForEvent(timeout, event_sp); 5581 5582 if (got_event) 5583 { 5584 if (event_sp) 5585 { 5586 bool keep_going = false; 5587 if (event_sp->GetType() == eBroadcastBitInterrupt) 5588 { 5589 const bool clear_thread_plans = false; 5590 const bool use_run_lock = false; 5591 Halt(clear_thread_plans, use_run_lock); 5592 return_value = eExpressionInterrupted; 5593 diagnostic_manager.PutCString(eDiagnosticSeverityRemark, "execution halted by user interrupt."); 5594 if (log) 5595 log->Printf( 5596 "Process::RunThreadPlan(): Got interrupted by eBroadcastBitInterrupted, exiting."); 5597 break; 5598 } 5599 else 5600 { 5601 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5602 if (log) 5603 log->Printf("Process::RunThreadPlan(): in while loop, got event: %s.", StateAsCString(stop_state)); 5604 5605 switch (stop_state) 5606 { 5607 case lldb::eStateStopped: 5608 { 5609 // We stopped, figure out what we are going to do now. 5610 ThreadSP thread_sp = GetThreadList().FindThreadByIndexID (thread_idx_id); 5611 if (!thread_sp) 5612 { 5613 // Ooh, our thread has vanished. Unlikely that this was successful execution... 5614 if (log) 5615 log->Printf ("Process::RunThreadPlan(): execution completed but our thread (index-id=%u) has vanished.", thread_idx_id); 5616 return_value = eExpressionInterrupted; 5617 } 5618 else 5619 { 5620 // If we were restarted, we just need to go back up to fetch another event. 5621 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 5622 { 5623 if (log) 5624 { 5625 log->Printf ("Process::RunThreadPlan(): Got a stop and restart, so we'll continue waiting."); 5626 } 5627 keep_going = true; 5628 do_resume = false; 5629 handle_running_event = true; 5630 } 5631 else 5632 { 5633 StopInfoSP stop_info_sp (thread_sp->GetStopInfo ()); 5634 StopReason stop_reason = eStopReasonInvalid; 5635 if (stop_info_sp) 5636 stop_reason = stop_info_sp->GetStopReason(); 5637 5638 // FIXME: We only check if the stop reason is plan complete, should we make sure that 5639 // it is OUR plan that is complete? 5640 if (stop_reason == eStopReasonPlanComplete) 5641 { 5642 if (log) 5643 log->PutCString ("Process::RunThreadPlan(): execution completed successfully."); 5644 5645 // Restore the plan state so it will get reported as intended when we are done. 5646 thread_plan_restorer.Clean(); 5647 5648 return_value = eExpressionCompleted; 5649 } 5650 else 5651 { 5652 // Something restarted the target, so just wait for it to stop for real. 5653 if (stop_reason == eStopReasonBreakpoint) 5654 { 5655 if (log) 5656 log->Printf ("Process::RunThreadPlan() stopped for breakpoint: %s.", stop_info_sp->GetDescription()); 5657 return_value = eExpressionHitBreakpoint; 5658 if (!options.DoesIgnoreBreakpoints()) 5659 { 5660 // Restore the plan state and then force Private to false. We are 5661 // going to stop because of this plan so we need it to become a public 5662 // plan or it won't report correctly when we continue to its termination 5663 // later on. 5664 thread_plan_restorer.Clean(); 5665 if (thread_plan_sp) 5666 thread_plan_sp->SetPrivate(false); 5667 event_to_broadcast_sp = event_sp; 5668 } 5669 } 5670 else 5671 { 5672 if (log) 5673 log->PutCString ("Process::RunThreadPlan(): thread plan didn't successfully complete."); 5674 if (!options.DoesUnwindOnError()) 5675 event_to_broadcast_sp = event_sp; 5676 return_value = eExpressionInterrupted; 5677 } 5678 } 5679 } 5680 } 5681 } 5682 break; 5683 5684 case lldb::eStateRunning: 5685 // This shouldn't really happen, but sometimes we do get two running events without an 5686 // intervening stop, and in that case we should just go back to waiting for the stop. 5687 do_resume = false; 5688 keep_going = true; 5689 handle_running_event = false; 5690 break; 5691 5692 default: 5693 if (log) 5694 log->Printf("Process::RunThreadPlan(): execution stopped with unexpected state: %s.", StateAsCString(stop_state)); 5695 5696 if (stop_state == eStateExited) 5697 event_to_broadcast_sp = event_sp; 5698 5699 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5700 "execution stopped with unexpected state."); 5701 return_value = eExpressionInterrupted; 5702 break; 5703 } 5704 } 5705 5706 if (keep_going) 5707 continue; 5708 else 5709 break; 5710 } 5711 else 5712 { 5713 if (log) 5714 log->PutCString ("Process::RunThreadPlan(): got_event was true, but the event pointer was null. How odd..."); 5715 return_value = eExpressionInterrupted; 5716 break; 5717 } 5718 } 5719 else 5720 { 5721 // If we didn't get an event that means we've timed out... 5722 // We will interrupt the process here. Depending on what we were asked to do we will 5723 // either exit, or try with all threads running for the same timeout. 5724 5725 if (log) { 5726 if (options.GetTryAllThreads()) 5727 { 5728 if (before_first_timeout) 5729 { 5730 if (timeout_usec != 0) 5731 { 5732 log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, " 5733 "running for %" PRIu32 " usec with all threads enabled.", 5734 all_threads_timeout_usec); 5735 } 5736 else 5737 { 5738 log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, " 5739 "running forever with all threads enabled."); 5740 } 5741 } 5742 else 5743 log->Printf ("Process::RunThreadPlan(): Restarting function with all threads enabled " 5744 "and timeout: %u timed out, abandoning execution.", 5745 timeout_usec); 5746 } 5747 else 5748 log->Printf ("Process::RunThreadPlan(): Running function with timeout: %u timed out, " 5749 "abandoning execution.", 5750 timeout_usec); 5751 } 5752 5753 // It is possible that between the time we issued the Halt, and we get around to calling Halt the target 5754 // could have stopped. That's fine, Halt will figure that out and send the appropriate Stopped event. 5755 // BUT it is also possible that we stopped & restarted (e.g. hit a signal with "stop" set to false.) In 5756 // that case, we'll get the stopped & restarted event, and we should go back to waiting for the Halt's 5757 // stopped event. That's what this while loop does. 5758 5759 bool back_to_top = true; 5760 uint32_t try_halt_again = 0; 5761 bool do_halt = true; 5762 const uint32_t num_retries = 5; 5763 while (try_halt_again < num_retries) 5764 { 5765 Error halt_error; 5766 if (do_halt) 5767 { 5768 if (log) 5769 log->Printf ("Process::RunThreadPlan(): Running Halt."); 5770 const bool clear_thread_plans = false; 5771 const bool use_run_lock = false; 5772 Halt(clear_thread_plans, use_run_lock); 5773 } 5774 if (halt_error.Success()) 5775 { 5776 if (log) 5777 log->PutCString ("Process::RunThreadPlan(): Halt succeeded."); 5778 5779 got_event = listener_sp->WaitForEvent(std::chrono::microseconds(500000), event_sp); 5780 5781 if (got_event) 5782 { 5783 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5784 if (log) 5785 { 5786 log->Printf ("Process::RunThreadPlan(): Stopped with event: %s", StateAsCString(stop_state)); 5787 if (stop_state == lldb::eStateStopped 5788 && Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 5789 log->PutCString (" Event was the Halt interruption event."); 5790 } 5791 5792 if (stop_state == lldb::eStateStopped) 5793 { 5794 // Between the time we initiated the Halt and the time we delivered it, the process could have 5795 // already finished its job. Check that here: 5796 5797 if (thread->IsThreadPlanDone (thread_plan_sp.get())) 5798 { 5799 if (log) 5800 log->PutCString ("Process::RunThreadPlan(): Even though we timed out, the call plan was done. " 5801 "Exiting wait loop."); 5802 return_value = eExpressionCompleted; 5803 back_to_top = false; 5804 break; 5805 } 5806 5807 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 5808 { 5809 if (log) 5810 log->PutCString ("Process::RunThreadPlan(): Went to halt but got a restarted event, there must be an un-restarted stopped event so try again... " 5811 "Exiting wait loop."); 5812 try_halt_again++; 5813 do_halt = false; 5814 continue; 5815 } 5816 5817 if (!options.GetTryAllThreads()) 5818 { 5819 if (log) 5820 log->PutCString ("Process::RunThreadPlan(): try_all_threads was false, we stopped so now we're quitting."); 5821 return_value = eExpressionInterrupted; 5822 back_to_top = false; 5823 break; 5824 } 5825 5826 if (before_first_timeout) 5827 { 5828 // Set all the other threads to run, and return to the top of the loop, which will continue; 5829 before_first_timeout = false; 5830 thread_plan_sp->SetStopOthers (false); 5831 if (log) 5832 log->PutCString ("Process::RunThreadPlan(): about to resume."); 5833 5834 back_to_top = true; 5835 break; 5836 } 5837 else 5838 { 5839 // Running all threads failed, so return Interrupted. 5840 if (log) 5841 log->PutCString("Process::RunThreadPlan(): running all threads timed out."); 5842 return_value = eExpressionInterrupted; 5843 back_to_top = false; 5844 break; 5845 } 5846 } 5847 } 5848 else 5849 { if (log) 5850 log->PutCString("Process::RunThreadPlan(): halt said it succeeded, but I got no event. " 5851 "I'm getting out of here passing Interrupted."); 5852 return_value = eExpressionInterrupted; 5853 back_to_top = false; 5854 break; 5855 } 5856 } 5857 else 5858 { 5859 try_halt_again++; 5860 continue; 5861 } 5862 } 5863 5864 if (!back_to_top || try_halt_again > num_retries) 5865 break; 5866 else 5867 continue; 5868 } 5869 } // END WAIT LOOP 5870 5871 // If we had to start up a temporary private state thread to run this thread plan, shut it down now. 5872 if (backup_private_state_thread.IsJoinable()) 5873 { 5874 StopPrivateStateThread(); 5875 Error error; 5876 m_private_state_thread = backup_private_state_thread; 5877 if (stopper_base_plan_sp) 5878 { 5879 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5880 } 5881 if (old_state != eStateInvalid) 5882 m_public_state.SetValueNoLock(old_state); 5883 } 5884 5885 if (return_value != eExpressionCompleted && log) 5886 { 5887 // Print a backtrace into the log so we can figure out where we are: 5888 StreamString s; 5889 s.PutCString("Thread state after unsuccessful completion: \n"); 5890 thread->GetStackFrameStatus (s, 5891 0, 5892 UINT32_MAX, 5893 true, 5894 UINT32_MAX); 5895 log->PutCString(s.GetData()); 5896 5897 } 5898 // Restore the thread state if we are going to discard the plan execution. There are three cases where this 5899 // could happen: 5900 // 1) The execution successfully completed 5901 // 2) We hit a breakpoint, and ignore_breakpoints was true 5902 // 3) We got some other error, and discard_on_error was true 5903 bool should_unwind = (return_value == eExpressionInterrupted && options.DoesUnwindOnError()) 5904 || (return_value == eExpressionHitBreakpoint && options.DoesIgnoreBreakpoints()); 5905 5906 if (return_value == eExpressionCompleted 5907 || should_unwind) 5908 { 5909 thread_plan_sp->RestoreThreadState(); 5910 } 5911 5912 // Now do some processing on the results of the run: 5913 if (return_value == eExpressionInterrupted || return_value == eExpressionHitBreakpoint) 5914 { 5915 if (log) 5916 { 5917 StreamString s; 5918 if (event_sp) 5919 event_sp->Dump (&s); 5920 else 5921 { 5922 log->PutCString ("Process::RunThreadPlan(): Stop event that interrupted us is NULL."); 5923 } 5924 5925 StreamString ts; 5926 5927 const char *event_explanation = nullptr; 5928 5929 do 5930 { 5931 if (!event_sp) 5932 { 5933 event_explanation = "<no event>"; 5934 break; 5935 } 5936 else if (event_sp->GetType() == eBroadcastBitInterrupt) 5937 { 5938 event_explanation = "<user interrupt>"; 5939 break; 5940 } 5941 else 5942 { 5943 const Process::ProcessEventData *event_data = Process::ProcessEventData::GetEventDataFromEvent (event_sp.get()); 5944 5945 if (!event_data) 5946 { 5947 event_explanation = "<no event data>"; 5948 break; 5949 } 5950 5951 Process *process = event_data->GetProcessSP().get(); 5952 5953 if (!process) 5954 { 5955 event_explanation = "<no process>"; 5956 break; 5957 } 5958 5959 ThreadList &thread_list = process->GetThreadList(); 5960 5961 uint32_t num_threads = thread_list.GetSize(); 5962 uint32_t thread_index; 5963 5964 ts.Printf("<%u threads> ", num_threads); 5965 5966 for (thread_index = 0; 5967 thread_index < num_threads; 5968 ++thread_index) 5969 { 5970 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5971 5972 if (!thread) 5973 { 5974 ts.Printf("<?> "); 5975 continue; 5976 } 5977 5978 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5979 RegisterContext *register_context = thread->GetRegisterContext().get(); 5980 5981 if (register_context) 5982 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5983 else 5984 ts.Printf("[ip unknown] "); 5985 5986 // Show the private stop info here, the public stop info will be from the last natural stop. 5987 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5988 if (stop_info_sp) 5989 { 5990 const char *stop_desc = stop_info_sp->GetDescription(); 5991 if (stop_desc) 5992 ts.PutCString (stop_desc); 5993 } 5994 ts.Printf(">"); 5995 } 5996 5997 event_explanation = ts.GetData(); 5998 } 5999 } while (0); 6000 6001 if (event_explanation) 6002 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", s.GetData(), event_explanation); 6003 else 6004 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", s.GetData()); 6005 } 6006 6007 if (should_unwind) 6008 { 6009 if (log) 6010 log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - discarding thread plans up to %p.", 6011 static_cast<void*>(thread_plan_sp.get())); 6012 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6013 } 6014 else 6015 { 6016 if (log) 6017 log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - for plan: %p not discarding.", 6018 static_cast<void*>(thread_plan_sp.get())); 6019 } 6020 } 6021 else if (return_value == eExpressionSetupError) 6022 { 6023 if (log) 6024 log->PutCString("Process::RunThreadPlan(): execution set up error."); 6025 6026 if (options.DoesUnwindOnError()) 6027 { 6028 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6029 } 6030 } 6031 else 6032 { 6033 if (thread->IsThreadPlanDone (thread_plan_sp.get())) 6034 { 6035 if (log) 6036 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 6037 return_value = eExpressionCompleted; 6038 } 6039 else if (thread->WasThreadPlanDiscarded (thread_plan_sp.get())) 6040 { 6041 if (log) 6042 log->PutCString("Process::RunThreadPlan(): thread plan was discarded"); 6043 return_value = eExpressionDiscarded; 6044 } 6045 else 6046 { 6047 if (log) 6048 log->PutCString("Process::RunThreadPlan(): thread plan stopped in mid course"); 6049 if (options.DoesUnwindOnError() && thread_plan_sp) 6050 { 6051 if (log) 6052 log->PutCString("Process::RunThreadPlan(): discarding thread plan 'cause unwind_on_error is set."); 6053 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6054 } 6055 } 6056 } 6057 6058 // Thread we ran the function in may have gone away because we ran the target 6059 // Check that it's still there, and if it is put it back in the context. Also restore the 6060 // frame in the context if it is still present. 6061 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 6062 if (thread) 6063 { 6064 exe_ctx.SetFrameSP (thread->GetFrameWithStackID (ctx_frame_id)); 6065 } 6066 6067 // Also restore the current process'es selected frame & thread, since this function calling may 6068 // be done behind the user's back. 6069 6070 if (selected_tid != LLDB_INVALID_THREAD_ID) 6071 { 6072 if (GetThreadList().SetSelectedThreadByIndexID (selected_tid) && selected_stack_id.IsValid()) 6073 { 6074 // We were able to restore the selected thread, now restore the frame: 6075 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 6076 StackFrameSP old_frame_sp = GetThreadList().GetSelectedThread()->GetFrameWithStackID(selected_stack_id); 6077 if (old_frame_sp) 6078 GetThreadList().GetSelectedThread()->SetSelectedFrame(old_frame_sp.get()); 6079 } 6080 } 6081 } 6082 6083 // If the process exited during the run of the thread plan, notify everyone. 6084 6085 if (event_to_broadcast_sp) 6086 { 6087 if (log) 6088 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 6089 BroadcastEvent(event_to_broadcast_sp); 6090 } 6091 6092 return return_value; 6093 } 6094 6095 const char * 6096 Process::ExecutionResultAsCString (ExpressionResults result) 6097 { 6098 const char *result_name; 6099 6100 switch (result) 6101 { 6102 case eExpressionCompleted: 6103 result_name = "eExpressionCompleted"; 6104 break; 6105 case eExpressionDiscarded: 6106 result_name = "eExpressionDiscarded"; 6107 break; 6108 case eExpressionInterrupted: 6109 result_name = "eExpressionInterrupted"; 6110 break; 6111 case eExpressionHitBreakpoint: 6112 result_name = "eExpressionHitBreakpoint"; 6113 break; 6114 case eExpressionSetupError: 6115 result_name = "eExpressionSetupError"; 6116 break; 6117 case eExpressionParseError: 6118 result_name = "eExpressionParseError"; 6119 break; 6120 case eExpressionResultUnavailable: 6121 result_name = "eExpressionResultUnavailable"; 6122 break; 6123 case eExpressionTimedOut: 6124 result_name = "eExpressionTimedOut"; 6125 break; 6126 case eExpressionStoppedForDebug: 6127 result_name = "eExpressionStoppedForDebug"; 6128 break; 6129 } 6130 return result_name; 6131 } 6132 6133 void 6134 Process::GetStatus (Stream &strm) 6135 { 6136 const StateType state = GetState(); 6137 if (StateIsStoppedState(state, false)) 6138 { 6139 if (state == eStateExited) 6140 { 6141 int exit_status = GetExitStatus(); 6142 const char *exit_description = GetExitDescription(); 6143 strm.Printf ("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 6144 GetID(), 6145 exit_status, 6146 exit_status, 6147 exit_description ? exit_description : ""); 6148 } 6149 else 6150 { 6151 if (state == eStateConnected) 6152 strm.Printf ("Connected to remote target.\n"); 6153 else 6154 strm.Printf ("Process %" PRIu64 " %s\n", GetID(), StateAsCString (state)); 6155 } 6156 } 6157 else 6158 { 6159 strm.Printf ("Process %" PRIu64 " is running.\n", GetID()); 6160 } 6161 } 6162 6163 size_t 6164 Process::GetThreadStatus (Stream &strm, 6165 bool only_threads_with_stop_reason, 6166 uint32_t start_frame, 6167 uint32_t num_frames, 6168 uint32_t num_frames_with_source) 6169 { 6170 size_t num_thread_infos_dumped = 0; 6171 6172 // You can't hold the thread list lock while calling Thread::GetStatus. That very well might run code (e.g. if we need it 6173 // to get return values or arguments.) For that to work the process has to be able to acquire it. So instead copy the thread 6174 // ID's, and look them up one by one: 6175 6176 uint32_t num_threads; 6177 std::vector<lldb::tid_t> thread_id_array; 6178 //Scope for thread list locker; 6179 { 6180 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 6181 ThreadList &curr_thread_list = GetThreadList(); 6182 num_threads = curr_thread_list.GetSize(); 6183 uint32_t idx; 6184 thread_id_array.resize(num_threads); 6185 for (idx = 0; idx < num_threads; ++idx) 6186 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 6187 } 6188 6189 for (uint32_t i = 0; i < num_threads; i++) 6190 { 6191 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 6192 if (thread_sp) 6193 { 6194 if (only_threads_with_stop_reason) 6195 { 6196 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 6197 if (!stop_info_sp || !stop_info_sp->IsValid()) 6198 continue; 6199 } 6200 thread_sp->GetStatus (strm, 6201 start_frame, 6202 num_frames, 6203 num_frames_with_source); 6204 ++num_thread_infos_dumped; 6205 } 6206 else 6207 { 6208 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 6209 if (log) 6210 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 " vanished while running Thread::GetStatus."); 6211 } 6212 } 6213 return num_thread_infos_dumped; 6214 } 6215 6216 void 6217 Process::AddInvalidMemoryRegion (const LoadRange ®ion) 6218 { 6219 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 6220 } 6221 6222 bool 6223 Process::RemoveInvalidMemoryRange (const LoadRange ®ion) 6224 { 6225 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), region.GetByteSize()); 6226 } 6227 6228 void 6229 Process::AddPreResumeAction (PreResumeActionCallback callback, void *baton) 6230 { 6231 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton (callback, baton)); 6232 } 6233 6234 bool 6235 Process::RunPreResumeActions () 6236 { 6237 bool result = true; 6238 while (!m_pre_resume_actions.empty()) 6239 { 6240 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 6241 m_pre_resume_actions.pop_back(); 6242 bool this_result = action.callback (action.baton); 6243 if (result) 6244 result = this_result; 6245 } 6246 return result; 6247 } 6248 6249 void 6250 Process::ClearPreResumeActions () 6251 { 6252 m_pre_resume_actions.clear(); 6253 } 6254 6255 ProcessRunLock & 6256 Process::GetRunLock() 6257 { 6258 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 6259 return m_private_run_lock; 6260 else 6261 return m_public_run_lock; 6262 } 6263 6264 void 6265 Process::Flush () 6266 { 6267 m_thread_list.Flush(); 6268 m_extended_thread_list.Flush(); 6269 m_extended_thread_stop_id = 0; 6270 m_queue_list.Clear(); 6271 m_queue_list_stop_id = 0; 6272 } 6273 6274 void 6275 Process::DidExec () 6276 { 6277 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 6278 if (log) 6279 log->Printf ("Process::%s()", __FUNCTION__); 6280 6281 Target &target = GetTarget(); 6282 target.CleanupProcess (); 6283 target.ClearModules(false); 6284 m_dynamic_checkers_ap.reset(); 6285 m_abi_sp.reset(); 6286 m_system_runtime_ap.reset(); 6287 m_os_ap.reset(); 6288 m_dyld_ap.reset(); 6289 m_jit_loaders_ap.reset(); 6290 m_image_tokens.clear(); 6291 m_allocated_memory_cache.Clear(); 6292 m_language_runtimes.clear(); 6293 m_instrumentation_runtimes.clear(); 6294 m_thread_list.DiscardThreadPlans(); 6295 m_memory_cache.Clear(true); 6296 m_stop_info_override_callback = nullptr; 6297 DoDidExec(); 6298 CompleteAttach (); 6299 // Flush the process (threads and all stack frames) after running CompleteAttach() 6300 // in case the dynamic loader loaded things in new locations. 6301 Flush(); 6302 6303 // After we figure out what was loaded/unloaded in CompleteAttach, 6304 // we need to let the target know so it can do any cleanup it needs to. 6305 target.DidExec(); 6306 } 6307 6308 addr_t 6309 Process::ResolveIndirectFunction(const Address *address, Error &error) 6310 { 6311 if (address == nullptr) 6312 { 6313 error.SetErrorString("Invalid address argument"); 6314 return LLDB_INVALID_ADDRESS; 6315 } 6316 6317 addr_t function_addr = LLDB_INVALID_ADDRESS; 6318 6319 addr_t addr = address->GetLoadAddress(&GetTarget()); 6320 std::map<addr_t,addr_t>::const_iterator iter = m_resolved_indirect_addresses.find(addr); 6321 if (iter != m_resolved_indirect_addresses.end()) 6322 { 6323 function_addr = (*iter).second; 6324 } 6325 else 6326 { 6327 if (!InferiorCall(this, address, function_addr)) 6328 { 6329 Symbol *symbol = address->CalculateSymbolContextSymbol(); 6330 error.SetErrorStringWithFormat ("Unable to call resolver for indirect function %s", 6331 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 6332 function_addr = LLDB_INVALID_ADDRESS; 6333 } 6334 else 6335 { 6336 m_resolved_indirect_addresses.insert(std::pair<addr_t, addr_t>(addr, function_addr)); 6337 } 6338 } 6339 return function_addr; 6340 } 6341 6342 void 6343 Process::ModulesDidLoad (ModuleList &module_list) 6344 { 6345 SystemRuntime *sys_runtime = GetSystemRuntime(); 6346 if (sys_runtime) 6347 { 6348 sys_runtime->ModulesDidLoad (module_list); 6349 } 6350 6351 GetJITLoaders().ModulesDidLoad (module_list); 6352 6353 // Give runtimes a chance to be created. 6354 InstrumentationRuntime::ModulesDidLoad(module_list, this, m_instrumentation_runtimes); 6355 6356 // Tell runtimes about new modules. 6357 for (auto pos = m_instrumentation_runtimes.begin(); pos != m_instrumentation_runtimes.end(); ++pos) 6358 { 6359 InstrumentationRuntimeSP runtime = pos->second; 6360 runtime->ModulesDidLoad(module_list); 6361 } 6362 6363 // Let any language runtimes we have already created know 6364 // about the modules that loaded. 6365 6366 // Iterate over a copy of this language runtime list in case 6367 // the language runtime ModulesDidLoad somehow causes the language 6368 // riuntime to be unloaded. 6369 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 6370 for (const auto &pair: language_runtimes) 6371 { 6372 // We must check language_runtime_sp to make sure it is not 6373 // nullptr as we might cache the fact that we didn't have a 6374 // language runtime for a language. 6375 LanguageRuntimeSP language_runtime_sp = pair.second; 6376 if (language_runtime_sp) 6377 language_runtime_sp->ModulesDidLoad(module_list); 6378 } 6379 6380 // If we don't have an operating system plug-in, try to load one since 6381 // loading shared libraries might cause a new one to try and load 6382 if (!m_os_ap) 6383 LoadOperatingSystemPlugin(false); 6384 } 6385 6386 void 6387 Process::PrintWarning (uint64_t warning_type, const void *repeat_key, const char *fmt, ...) 6388 { 6389 bool print_warning = true; 6390 6391 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 6392 if (!stream_sp) 6393 return; 6394 if (warning_type == eWarningsOptimization 6395 && !GetWarningsOptimization()) 6396 { 6397 return; 6398 } 6399 6400 if (repeat_key != nullptr) 6401 { 6402 WarningsCollection::iterator it = m_warnings_issued.find (warning_type); 6403 if (it == m_warnings_issued.end()) 6404 { 6405 m_warnings_issued[warning_type] = WarningsPointerSet(); 6406 m_warnings_issued[warning_type].insert (repeat_key); 6407 } 6408 else 6409 { 6410 if (it->second.find (repeat_key) != it->second.end()) 6411 { 6412 print_warning = false; 6413 } 6414 else 6415 { 6416 it->second.insert (repeat_key); 6417 } 6418 } 6419 } 6420 6421 if (print_warning) 6422 { 6423 va_list args; 6424 va_start (args, fmt); 6425 stream_sp->PrintfVarArg (fmt, args); 6426 va_end (args); 6427 } 6428 } 6429 6430 void 6431 Process::PrintWarningOptimization (const SymbolContext &sc) 6432 { 6433 if (GetWarningsOptimization() 6434 && sc.module_sp 6435 && !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() 6436 && sc.function 6437 && sc.function->GetIsOptimized()) 6438 { 6439 PrintWarning (Process::Warnings::eWarningsOptimization, sc.module_sp.get(), "%s was compiled with optimization - stepping may behave oddly; variables may not be available.\n", sc.module_sp->GetFileSpec().GetFilename().GetCString()); 6440 } 6441 } 6442 6443 bool 6444 Process::GetProcessInfo(ProcessInstanceInfo &info) 6445 { 6446 info.Clear(); 6447 6448 PlatformSP platform_sp = GetTarget().GetPlatform(); 6449 if (! platform_sp) 6450 return false; 6451 6452 return platform_sp->GetProcessInfo(GetID(), info); 6453 } 6454 6455 ThreadCollectionSP 6456 Process::GetHistoryThreads(lldb::addr_t addr) 6457 { 6458 ThreadCollectionSP threads; 6459 6460 const MemoryHistorySP &memory_history = MemoryHistory::FindPlugin(shared_from_this()); 6461 6462 if (!memory_history) { 6463 return threads; 6464 } 6465 6466 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 6467 6468 return threads; 6469 } 6470 6471 InstrumentationRuntimeSP 6472 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) 6473 { 6474 InstrumentationRuntimeCollection::iterator pos; 6475 pos = m_instrumentation_runtimes.find (type); 6476 if (pos == m_instrumentation_runtimes.end()) 6477 { 6478 return InstrumentationRuntimeSP(); 6479 } 6480 else 6481 return (*pos).second; 6482 } 6483 6484 bool 6485 Process::GetModuleSpec(const FileSpec& module_file_spec, 6486 const ArchSpec& arch, 6487 ModuleSpec& module_spec) 6488 { 6489 module_spec.Clear(); 6490 return false; 6491 } 6492 6493 size_t 6494 Process::AddImageToken(lldb::addr_t image_ptr) 6495 { 6496 m_image_tokens.push_back(image_ptr); 6497 return m_image_tokens.size() - 1; 6498 } 6499 6500 lldb::addr_t 6501 Process::GetImagePtrFromToken(size_t token) const 6502 { 6503 if (token < m_image_tokens.size()) 6504 return m_image_tokens[token]; 6505 return LLDB_INVALID_IMAGE_TOKEN; 6506 } 6507 6508 void 6509 Process::ResetImageToken(size_t token) 6510 { 6511 if (token < m_image_tokens.size()) 6512 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 6513 } 6514 6515 Address 6516 Process::AdvanceAddressToNextBranchInstruction (Address default_stop_addr, AddressRange range_bounds) 6517 { 6518 Target &target = GetTarget(); 6519 DisassemblerSP disassembler_sp; 6520 InstructionList *insn_list = nullptr; 6521 6522 Address retval = default_stop_addr; 6523 6524 if (!target.GetUseFastStepping()) 6525 return retval; 6526 if (!default_stop_addr.IsValid()) 6527 return retval; 6528 6529 ExecutionContext exe_ctx (this); 6530 const char *plugin_name = nullptr; 6531 const char *flavor = nullptr; 6532 const bool prefer_file_cache = true; 6533 disassembler_sp = Disassembler::DisassembleRange(target.GetArchitecture(), 6534 plugin_name, 6535 flavor, 6536 exe_ctx, 6537 range_bounds, 6538 prefer_file_cache); 6539 if (disassembler_sp) 6540 insn_list = &disassembler_sp->GetInstructionList(); 6541 6542 if (insn_list == nullptr) 6543 { 6544 return retval; 6545 } 6546 6547 size_t insn_offset = insn_list->GetIndexOfInstructionAtAddress (default_stop_addr); 6548 if (insn_offset == UINT32_MAX) 6549 { 6550 return retval; 6551 } 6552 6553 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction (insn_offset, target); 6554 if (branch_index == UINT32_MAX) 6555 { 6556 return retval; 6557 } 6558 6559 if (branch_index > insn_offset) 6560 { 6561 Address next_branch_insn_address = insn_list->GetInstructionAtIndex (branch_index)->GetAddress(); 6562 if (next_branch_insn_address.IsValid() && range_bounds.ContainsFileAddress (next_branch_insn_address)) 6563 { 6564 retval = next_branch_insn_address; 6565 } 6566 } 6567 6568 return retval; 6569 } 6570 6571 Error 6572 Process::GetMemoryRegions (std::vector<lldb::MemoryRegionInfoSP>& region_list) 6573 { 6574 6575 Error error; 6576 6577 lldb::addr_t range_base = 0; 6578 lldb::addr_t range_end = 0; 6579 6580 region_list.clear(); 6581 do 6582 { 6583 lldb::MemoryRegionInfoSP region_info( new lldb_private::MemoryRegionInfo() ); 6584 error = GetMemoryRegionInfo (range_end, *region_info); 6585 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6586 if (error.Fail()) 6587 { 6588 region_list.clear(); 6589 break; 6590 } 6591 6592 range_base = region_info->GetRange().GetRangeBase(); 6593 range_end = region_info->GetRange().GetRangeEnd(); 6594 if( region_info->GetMapped() == MemoryRegionInfo::eYes ) 6595 { 6596 region_list.push_back(region_info); 6597 } 6598 } while (range_end != LLDB_INVALID_ADDRESS); 6599 6600 return error; 6601 6602 } 6603