1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/UnixSignals.h" 64 #include "lldb/Utility/Event.h" 65 #include "lldb/Utility/Log.h" 66 #include "lldb/Utility/NameMatches.h" 67 #include "lldb/Utility/ProcessInfo.h" 68 #include "lldb/Utility/SelectHelper.h" 69 #include "lldb/Utility/State.h" 70 71 using namespace lldb; 72 using namespace lldb_private; 73 using namespace std::chrono; 74 75 // Comment out line below to disable memory caching, overriding the process 76 // setting target.process.disable-memory-cache 77 #define ENABLE_MEMORY_CACHING 78 79 #ifdef ENABLE_MEMORY_CACHING 80 #define DISABLE_MEM_CACHE_DEFAULT false 81 #else 82 #define DISABLE_MEM_CACHE_DEFAULT true 83 #endif 84 85 class ProcessOptionValueProperties : public OptionValueProperties { 86 public: 87 ProcessOptionValueProperties(ConstString name) 88 : OptionValueProperties(name) {} 89 90 // This constructor is used when creating ProcessOptionValueProperties when 91 // it is part of a new lldb_private::Process instance. It will copy all 92 // current global property values as needed 93 ProcessOptionValueProperties(ProcessProperties *global_properties) 94 : OptionValueProperties(*global_properties->GetValueProperties()) {} 95 96 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 97 bool will_modify, 98 uint32_t idx) const override { 99 // When getting the value for a key from the process options, we will 100 // always try and grab the setting from the current process if there is 101 // one. Else we just use the one from this instance. 102 if (exe_ctx) { 103 Process *process = exe_ctx->GetProcessPtr(); 104 if (process) { 105 ProcessOptionValueProperties *instance_properties = 106 static_cast<ProcessOptionValueProperties *>( 107 process->GetValueProperties().get()); 108 if (this != instance_properties) 109 return instance_properties->ProtectedGetPropertyAtIndex(idx); 110 } 111 } 112 return ProtectedGetPropertyAtIndex(idx); 113 } 114 }; 115 116 #define LLDB_PROPERTIES_process 117 #include "TargetProperties.inc" 118 119 enum { 120 #define LLDB_PROPERTIES_process 121 #include "TargetPropertiesEnum.inc" 122 }; 123 124 ProcessProperties::ProcessProperties(lldb_private::Process *process) 125 : Properties(), 126 m_process(process) // Can be nullptr for global ProcessProperties 127 { 128 if (process == nullptr) { 129 // Global process properties, set them up one time 130 m_collection_sp = 131 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 132 m_collection_sp->Initialize(g_process_properties); 133 m_collection_sp->AppendProperty( 134 ConstString("thread"), ConstString("Settings specific to threads."), 135 true, Thread::GetGlobalProperties()->GetValueProperties()); 136 } else { 137 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 138 Process::GetGlobalProperties().get()); 139 m_collection_sp->SetValueChangedCallback( 140 ePropertyPythonOSPluginPath, 141 [this] { m_process->LoadOperatingSystemPlugin(true); }); 142 } 143 } 144 145 ProcessProperties::~ProcessProperties() = default; 146 147 bool ProcessProperties::GetDisableMemoryCache() const { 148 const uint32_t idx = ePropertyDisableMemCache; 149 return m_collection_sp->GetPropertyAtIndexAsBoolean( 150 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 151 } 152 153 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 154 const uint32_t idx = ePropertyMemCacheLineSize; 155 return m_collection_sp->GetPropertyAtIndexAsUInt64( 156 nullptr, idx, g_process_properties[idx].default_uint_value); 157 } 158 159 Args ProcessProperties::GetExtraStartupCommands() const { 160 Args args; 161 const uint32_t idx = ePropertyExtraStartCommand; 162 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 163 return args; 164 } 165 166 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 167 const uint32_t idx = ePropertyExtraStartCommand; 168 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 169 } 170 171 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 172 const uint32_t idx = ePropertyPythonOSPluginPath; 173 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 174 } 175 176 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 177 const uint32_t idx = ePropertyPythonOSPluginPath; 178 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 179 } 180 181 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 182 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 183 return m_collection_sp->GetPropertyAtIndexAsBoolean( 184 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 185 } 186 187 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 188 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 189 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 190 } 191 192 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 193 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 194 return m_collection_sp->GetPropertyAtIndexAsBoolean( 195 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 196 } 197 198 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 199 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 200 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 201 } 202 203 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 204 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 205 return m_collection_sp->GetPropertyAtIndexAsBoolean( 206 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 207 } 208 209 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 210 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 211 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 212 } 213 214 bool ProcessProperties::GetDetachKeepsStopped() const { 215 const uint32_t idx = ePropertyDetachKeepsStopped; 216 return m_collection_sp->GetPropertyAtIndexAsBoolean( 217 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 218 } 219 220 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 221 const uint32_t idx = ePropertyDetachKeepsStopped; 222 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 223 } 224 225 bool ProcessProperties::GetWarningsOptimization() const { 226 const uint32_t idx = ePropertyWarningOptimization; 227 return m_collection_sp->GetPropertyAtIndexAsBoolean( 228 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 229 } 230 231 bool ProcessProperties::GetStopOnExec() const { 232 const uint32_t idx = ePropertyStopOnExec; 233 return m_collection_sp->GetPropertyAtIndexAsBoolean( 234 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 235 } 236 237 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 238 const uint32_t idx = ePropertyUtilityExpressionTimeout; 239 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 240 nullptr, idx, g_process_properties[idx].default_uint_value); 241 return std::chrono::seconds(value); 242 } 243 244 Status ProcessLaunchCommandOptions::SetOptionValue( 245 uint32_t option_idx, llvm::StringRef option_arg, 246 ExecutionContext *execution_context) { 247 Status error; 248 const int short_option = m_getopt_table[option_idx].val; 249 250 switch (short_option) { 251 case 's': // Stop at program entry point 252 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 253 break; 254 255 case 'i': // STDIN for read only 256 { 257 FileAction action; 258 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 259 launch_info.AppendFileAction(action); 260 break; 261 } 262 263 case 'o': // Open STDOUT for write only 264 { 265 FileAction action; 266 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 267 launch_info.AppendFileAction(action); 268 break; 269 } 270 271 case 'e': // STDERR for write only 272 { 273 FileAction action; 274 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 275 launch_info.AppendFileAction(action); 276 break; 277 } 278 279 case 'p': // Process plug-in name 280 launch_info.SetProcessPluginName(option_arg); 281 break; 282 283 case 'n': // Disable STDIO 284 { 285 FileAction action; 286 const FileSpec dev_null(FileSystem::DEV_NULL); 287 if (action.Open(STDIN_FILENO, dev_null, true, false)) 288 launch_info.AppendFileAction(action); 289 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 290 launch_info.AppendFileAction(action); 291 if (action.Open(STDERR_FILENO, dev_null, false, true)) 292 launch_info.AppendFileAction(action); 293 break; 294 } 295 296 case 'w': 297 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 298 break; 299 300 case 't': // Open process in new terminal window 301 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 302 break; 303 304 case 'a': { 305 TargetSP target_sp = 306 execution_context ? execution_context->GetTargetSP() : TargetSP(); 307 PlatformSP platform_sp = 308 target_sp ? target_sp->GetPlatform() : PlatformSP(); 309 launch_info.GetArchitecture() = 310 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 311 } break; 312 313 case 'A': // Disable ASLR. 314 { 315 bool success; 316 const bool disable_aslr_arg = 317 OptionArgParser::ToBoolean(option_arg, true, &success); 318 if (success) 319 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 320 else 321 error.SetErrorStringWithFormat( 322 "Invalid boolean value for disable-aslr option: '%s'", 323 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 324 break; 325 } 326 327 case 'X': // shell expand args. 328 { 329 bool success; 330 const bool expand_args = 331 OptionArgParser::ToBoolean(option_arg, true, &success); 332 if (success) 333 launch_info.SetShellExpandArguments(expand_args); 334 else 335 error.SetErrorStringWithFormat( 336 "Invalid boolean value for shell-expand-args option: '%s'", 337 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 338 break; 339 } 340 341 case 'c': 342 if (!option_arg.empty()) 343 launch_info.SetShell(FileSpec(option_arg)); 344 else 345 launch_info.SetShell(HostInfo::GetDefaultShell()); 346 break; 347 348 case 'v': 349 launch_info.GetEnvironment().insert(option_arg); 350 break; 351 352 default: 353 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 354 short_option); 355 break; 356 } 357 return error; 358 } 359 360 static constexpr OptionDefinition g_process_launch_options[] = { 361 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 362 nullptr, {}, 0, eArgTypeNone, 363 "Stop at the entry point of the program when launching a process."}, 364 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 365 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 366 "Set whether to disable address space layout randomization when launching " 367 "a process."}, 368 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 369 nullptr, {}, 0, eArgTypePlugin, 370 "Name of the process plugin you want to use."}, 371 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 372 OptionParser::eRequiredArgument, nullptr, {}, 0, 373 eArgTypeDirectoryName, 374 "Set the current working directory to <path> when running the inferior."}, 375 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 376 nullptr, {}, 0, eArgTypeArchitecture, 377 "Set the architecture for the process to launch when ambiguous."}, 378 {LLDB_OPT_SET_ALL, false, "environment", 'v', 379 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 380 "Specify an environment variable name/value string (--environment " 381 "NAME=VALUE). Can be specified multiple times for subsequent environment " 382 "entries."}, 383 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 384 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 385 "Run the process in a shell (not supported on all platforms)."}, 386 387 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 388 nullptr, {}, 0, eArgTypeFilename, 389 "Redirect stdin for the process to <filename>."}, 390 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 391 nullptr, {}, 0, eArgTypeFilename, 392 "Redirect stdout for the process to <filename>."}, 393 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 394 nullptr, {}, 0, eArgTypeFilename, 395 "Redirect stderr for the process to <filename>."}, 396 397 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 398 {}, 0, eArgTypeNone, 399 "Start the process in a terminal (not supported on all platforms)."}, 400 401 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 402 {}, 0, eArgTypeNone, 403 "Do not set up for terminal I/O to go to running process."}, 404 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 405 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 406 "Set whether to shell expand arguments to the process when launching."}, 407 }; 408 409 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 410 return llvm::makeArrayRef(g_process_launch_options); 411 } 412 413 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 414 llvm::StringRef plugin_name, 415 ListenerSP listener_sp, 416 const FileSpec *crash_file_path) { 417 static uint32_t g_process_unique_id = 0; 418 419 ProcessSP process_sp; 420 ProcessCreateInstance create_callback = nullptr; 421 if (!plugin_name.empty()) { 422 ConstString const_plugin_name(plugin_name); 423 create_callback = 424 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 425 if (create_callback) { 426 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 427 if (process_sp) { 428 if (process_sp->CanDebug(target_sp, true)) { 429 process_sp->m_process_unique_id = ++g_process_unique_id; 430 } else 431 process_sp.reset(); 432 } 433 } 434 } else { 435 for (uint32_t idx = 0; 436 (create_callback = 437 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 438 ++idx) { 439 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 440 if (process_sp) { 441 if (process_sp->CanDebug(target_sp, false)) { 442 process_sp->m_process_unique_id = ++g_process_unique_id; 443 break; 444 } else 445 process_sp.reset(); 446 } 447 } 448 } 449 return process_sp; 450 } 451 452 ConstString &Process::GetStaticBroadcasterClass() { 453 static ConstString class_name("lldb.process"); 454 return class_name; 455 } 456 457 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 458 : Process(target_sp, listener_sp, 459 UnixSignals::Create(HostInfo::GetArchitecture())) { 460 // This constructor just delegates to the full Process constructor, 461 // defaulting to using the Host's UnixSignals. 462 } 463 464 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 465 const UnixSignalsSP &unix_signals_sp) 466 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 467 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 468 Process::GetStaticBroadcasterClass().AsCString()), 469 m_target_wp(target_sp), m_public_state(eStateUnloaded), 470 m_private_state(eStateUnloaded), 471 m_private_state_broadcaster(nullptr, 472 "lldb.process.internal_state_broadcaster"), 473 m_private_state_control_broadcaster( 474 nullptr, "lldb.process.internal_state_control_broadcaster"), 475 m_private_state_listener_sp( 476 Listener::MakeListener("lldb.process.internal_state_listener")), 477 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 478 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 479 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 480 m_thread_list(this), m_extended_thread_list(this), 481 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 482 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 483 m_breakpoint_site_list(), m_dynamic_checkers_up(), 484 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 485 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 486 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 487 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 488 m_memory_cache(*this), m_allocated_memory_cache(*this), 489 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 490 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 491 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 492 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 493 m_can_interpret_function_calls(false), m_warnings_issued(), 494 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 495 CheckInWithManager(); 496 497 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 498 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 499 500 if (!m_unix_signals_sp) 501 m_unix_signals_sp = std::make_shared<UnixSignals>(); 502 503 SetEventName(eBroadcastBitStateChanged, "state-changed"); 504 SetEventName(eBroadcastBitInterrupt, "interrupt"); 505 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 506 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 507 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 508 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 509 510 m_private_state_control_broadcaster.SetEventName( 511 eBroadcastInternalStateControlStop, "control-stop"); 512 m_private_state_control_broadcaster.SetEventName( 513 eBroadcastInternalStateControlPause, "control-pause"); 514 m_private_state_control_broadcaster.SetEventName( 515 eBroadcastInternalStateControlResume, "control-resume"); 516 517 m_listener_sp->StartListeningForEvents( 518 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 519 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 520 eBroadcastBitProfileData | eBroadcastBitStructuredData); 521 522 m_private_state_listener_sp->StartListeningForEvents( 523 &m_private_state_broadcaster, 524 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 525 526 m_private_state_listener_sp->StartListeningForEvents( 527 &m_private_state_control_broadcaster, 528 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 529 eBroadcastInternalStateControlResume); 530 // We need something valid here, even if just the default UnixSignalsSP. 531 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 532 533 // Allow the platform to override the default cache line size 534 OptionValueSP value_sp = 535 m_collection_sp 536 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 537 ->GetValue(); 538 uint32_t platform_cache_line_size = 539 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 540 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 541 value_sp->SetUInt64Value(platform_cache_line_size); 542 543 RegisterAssertFrameRecognizer(this); 544 } 545 546 Process::~Process() { 547 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 548 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 549 StopPrivateStateThread(); 550 551 // ThreadList::Clear() will try to acquire this process's mutex, so 552 // explicitly clear the thread list here to ensure that the mutex is not 553 // destroyed before the thread list. 554 m_thread_list.Clear(); 555 } 556 557 const ProcessPropertiesSP &Process::GetGlobalProperties() { 558 // NOTE: intentional leak so we don't crash if global destructor chain gets 559 // called as other threads still use the result of this function 560 static ProcessPropertiesSP *g_settings_sp_ptr = 561 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 562 return *g_settings_sp_ptr; 563 } 564 565 void Process::Finalize() { 566 m_finalizing = true; 567 568 // Destroy this process if needed 569 switch (GetPrivateState()) { 570 case eStateConnected: 571 case eStateAttaching: 572 case eStateLaunching: 573 case eStateStopped: 574 case eStateRunning: 575 case eStateStepping: 576 case eStateCrashed: 577 case eStateSuspended: 578 Destroy(false); 579 break; 580 581 case eStateInvalid: 582 case eStateUnloaded: 583 case eStateDetached: 584 case eStateExited: 585 break; 586 } 587 588 // Clear our broadcaster before we proceed with destroying 589 Broadcaster::Clear(); 590 591 // Do any cleanup needed prior to being destructed... Subclasses that 592 // override this method should call this superclass method as well. 593 594 // We need to destroy the loader before the derived Process class gets 595 // destroyed since it is very likely that undoing the loader will require 596 // access to the real process. 597 m_dynamic_checkers_up.reset(); 598 m_abi_sp.reset(); 599 m_os_up.reset(); 600 m_system_runtime_up.reset(); 601 m_dyld_up.reset(); 602 m_jit_loaders_up.reset(); 603 m_thread_list_real.Destroy(); 604 m_thread_list.Destroy(); 605 m_extended_thread_list.Destroy(); 606 m_queue_list.Clear(); 607 m_queue_list_stop_id = 0; 608 std::vector<Notifications> empty_notifications; 609 m_notifications.swap(empty_notifications); 610 m_image_tokens.clear(); 611 m_memory_cache.Clear(); 612 m_allocated_memory_cache.Clear(); 613 { 614 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 615 m_language_runtimes.clear(); 616 } 617 m_instrumentation_runtimes.clear(); 618 m_next_event_action_up.reset(); 619 // Clear the last natural stop ID since it has a strong reference to this 620 // process 621 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 622 //#ifdef LLDB_CONFIGURATION_DEBUG 623 // StreamFile s(stdout, false); 624 // EventSP event_sp; 625 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 626 // { 627 // event_sp->Dump (&s); 628 // s.EOL(); 629 // } 630 //#endif 631 // We have to be very careful here as the m_private_state_listener might 632 // contain events that have ProcessSP values in them which can keep this 633 // process around forever. These events need to be cleared out. 634 m_private_state_listener_sp->Clear(); 635 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 636 m_public_run_lock.SetStopped(); 637 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 638 m_private_run_lock.SetStopped(); 639 m_structured_data_plugin_map.clear(); 640 m_finalize_called = true; 641 } 642 643 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 644 m_notifications.push_back(callbacks); 645 if (callbacks.initialize != nullptr) 646 callbacks.initialize(callbacks.baton, this); 647 } 648 649 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 650 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 651 for (pos = m_notifications.begin(); pos != end; ++pos) { 652 if (pos->baton == callbacks.baton && 653 pos->initialize == callbacks.initialize && 654 pos->process_state_changed == callbacks.process_state_changed) { 655 m_notifications.erase(pos); 656 return true; 657 } 658 } 659 return false; 660 } 661 662 void Process::SynchronouslyNotifyStateChanged(StateType state) { 663 std::vector<Notifications>::iterator notification_pos, 664 notification_end = m_notifications.end(); 665 for (notification_pos = m_notifications.begin(); 666 notification_pos != notification_end; ++notification_pos) { 667 if (notification_pos->process_state_changed) 668 notification_pos->process_state_changed(notification_pos->baton, this, 669 state); 670 } 671 } 672 673 // FIXME: We need to do some work on events before the general Listener sees 674 // them. 675 // For instance if we are continuing from a breakpoint, we need to ensure that 676 // we do the little "insert real insn, step & stop" trick. But we can't do 677 // that when the event is delivered by the broadcaster - since that is done on 678 // the thread that is waiting for new events, so if we needed more than one 679 // event for our handling, we would stall. So instead we do it when we fetch 680 // the event off of the queue. 681 // 682 683 StateType Process::GetNextEvent(EventSP &event_sp) { 684 StateType state = eStateInvalid; 685 686 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 687 std::chrono::seconds(0)) && 688 event_sp) 689 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 690 691 return state; 692 } 693 694 void Process::SyncIOHandler(uint32_t iohandler_id, 695 const Timeout<std::micro> &timeout) { 696 // don't sync (potentially context switch) in case where there is no process 697 // IO 698 if (!m_process_input_reader) 699 return; 700 701 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 702 703 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 704 if (Result) { 705 LLDB_LOG( 706 log, 707 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 708 iohandler_id, *Result); 709 } else { 710 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 711 iohandler_id); 712 } 713 } 714 715 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 716 EventSP *event_sp_ptr, bool wait_always, 717 ListenerSP hijack_listener_sp, 718 Stream *stream, bool use_run_lock) { 719 // We can't just wait for a "stopped" event, because the stopped event may 720 // have restarted the target. We have to actually check each event, and in 721 // the case of a stopped event check the restarted flag on the event. 722 if (event_sp_ptr) 723 event_sp_ptr->reset(); 724 StateType state = GetState(); 725 // If we are exited or detached, we won't ever get back to any other valid 726 // state... 727 if (state == eStateDetached || state == eStateExited) 728 return state; 729 730 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 731 LLDB_LOG(log, "timeout = {0}", timeout); 732 733 if (!wait_always && StateIsStoppedState(state, true) && 734 StateIsStoppedState(GetPrivateState(), true)) { 735 LLDB_LOGF(log, 736 "Process::%s returning without waiting for events; process " 737 "private and public states are already 'stopped'.", 738 __FUNCTION__); 739 // We need to toggle the run lock as this won't get done in 740 // SetPublicState() if the process is hijacked. 741 if (hijack_listener_sp && use_run_lock) 742 m_public_run_lock.SetStopped(); 743 return state; 744 } 745 746 while (state != eStateInvalid) { 747 EventSP event_sp; 748 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 749 if (event_sp_ptr && event_sp) 750 *event_sp_ptr = event_sp; 751 752 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 753 Process::HandleProcessStateChangedEvent(event_sp, stream, 754 pop_process_io_handler); 755 756 switch (state) { 757 case eStateCrashed: 758 case eStateDetached: 759 case eStateExited: 760 case eStateUnloaded: 761 // We need to toggle the run lock as this won't get done in 762 // SetPublicState() if the process is hijacked. 763 if (hijack_listener_sp && use_run_lock) 764 m_public_run_lock.SetStopped(); 765 return state; 766 case eStateStopped: 767 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 768 continue; 769 else { 770 // We need to toggle the run lock as this won't get done in 771 // SetPublicState() if the process is hijacked. 772 if (hijack_listener_sp && use_run_lock) 773 m_public_run_lock.SetStopped(); 774 return state; 775 } 776 default: 777 continue; 778 } 779 } 780 return state; 781 } 782 783 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 784 Stream *stream, 785 bool &pop_process_io_handler) { 786 const bool handle_pop = pop_process_io_handler; 787 788 pop_process_io_handler = false; 789 ProcessSP process_sp = 790 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 791 792 if (!process_sp) 793 return false; 794 795 StateType event_state = 796 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 797 if (event_state == eStateInvalid) 798 return false; 799 800 switch (event_state) { 801 case eStateInvalid: 802 case eStateUnloaded: 803 case eStateAttaching: 804 case eStateLaunching: 805 case eStateStepping: 806 case eStateDetached: 807 if (stream) 808 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 809 StateAsCString(event_state)); 810 if (event_state == eStateDetached) 811 pop_process_io_handler = true; 812 break; 813 814 case eStateConnected: 815 case eStateRunning: 816 // Don't be chatty when we run... 817 break; 818 819 case eStateExited: 820 if (stream) 821 process_sp->GetStatus(*stream); 822 pop_process_io_handler = true; 823 break; 824 825 case eStateStopped: 826 case eStateCrashed: 827 case eStateSuspended: 828 // Make sure the program hasn't been auto-restarted: 829 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 830 if (stream) { 831 size_t num_reasons = 832 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 833 if (num_reasons > 0) { 834 // FIXME: Do we want to report this, or would that just be annoyingly 835 // chatty? 836 if (num_reasons == 1) { 837 const char *reason = 838 Process::ProcessEventData::GetRestartedReasonAtIndex( 839 event_sp.get(), 0); 840 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 841 process_sp->GetID(), 842 reason ? reason : "<UNKNOWN REASON>"); 843 } else { 844 stream->Printf("Process %" PRIu64 845 " stopped and restarted, reasons:\n", 846 process_sp->GetID()); 847 848 for (size_t i = 0; i < num_reasons; i++) { 849 const char *reason = 850 Process::ProcessEventData::GetRestartedReasonAtIndex( 851 event_sp.get(), i); 852 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 853 } 854 } 855 } 856 } 857 } else { 858 StopInfoSP curr_thread_stop_info_sp; 859 // Lock the thread list so it doesn't change on us, this is the scope for 860 // the locker: 861 { 862 ThreadList &thread_list = process_sp->GetThreadList(); 863 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 864 865 ThreadSP curr_thread(thread_list.GetSelectedThread()); 866 ThreadSP thread; 867 StopReason curr_thread_stop_reason = eStopReasonInvalid; 868 if (curr_thread) { 869 curr_thread_stop_reason = curr_thread->GetStopReason(); 870 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 871 } 872 if (!curr_thread || !curr_thread->IsValid() || 873 curr_thread_stop_reason == eStopReasonInvalid || 874 curr_thread_stop_reason == eStopReasonNone) { 875 // Prefer a thread that has just completed its plan over another 876 // thread as current thread. 877 ThreadSP plan_thread; 878 ThreadSP other_thread; 879 880 const size_t num_threads = thread_list.GetSize(); 881 size_t i; 882 for (i = 0; i < num_threads; ++i) { 883 thread = thread_list.GetThreadAtIndex(i); 884 StopReason thread_stop_reason = thread->GetStopReason(); 885 switch (thread_stop_reason) { 886 case eStopReasonInvalid: 887 case eStopReasonNone: 888 break; 889 890 case eStopReasonSignal: { 891 // Don't select a signal thread if we weren't going to stop at 892 // that signal. We have to have had another reason for stopping 893 // here, and the user doesn't want to see this thread. 894 uint64_t signo = thread->GetStopInfo()->GetValue(); 895 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 896 if (!other_thread) 897 other_thread = thread; 898 } 899 break; 900 } 901 case eStopReasonTrace: 902 case eStopReasonBreakpoint: 903 case eStopReasonWatchpoint: 904 case eStopReasonException: 905 case eStopReasonExec: 906 case eStopReasonThreadExiting: 907 case eStopReasonInstrumentation: 908 if (!other_thread) 909 other_thread = thread; 910 break; 911 case eStopReasonPlanComplete: 912 if (!plan_thread) 913 plan_thread = thread; 914 break; 915 } 916 } 917 if (plan_thread) 918 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 919 else if (other_thread) 920 thread_list.SetSelectedThreadByID(other_thread->GetID()); 921 else { 922 if (curr_thread && curr_thread->IsValid()) 923 thread = curr_thread; 924 else 925 thread = thread_list.GetThreadAtIndex(0); 926 927 if (thread) 928 thread_list.SetSelectedThreadByID(thread->GetID()); 929 } 930 } 931 } 932 // Drop the ThreadList mutex by here, since GetThreadStatus below might 933 // have to run code, e.g. for Data formatters, and if we hold the 934 // ThreadList mutex, then the process is going to have a hard time 935 // restarting the process. 936 if (stream) { 937 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 938 if (debugger.GetTargetList().GetSelectedTarget().get() == 939 &process_sp->GetTarget()) { 940 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 941 942 if (!thread_sp || !thread_sp->IsValid()) 943 return false; 944 945 const bool only_threads_with_stop_reason = true; 946 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 947 const uint32_t num_frames = 1; 948 const uint32_t num_frames_with_source = 1; 949 const bool stop_format = true; 950 951 process_sp->GetStatus(*stream); 952 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 953 start_frame, num_frames, 954 num_frames_with_source, 955 stop_format); 956 if (curr_thread_stop_info_sp) { 957 lldb::addr_t crashing_address; 958 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 959 curr_thread_stop_info_sp, &crashing_address); 960 if (valobj_sp) { 961 const ValueObject::GetExpressionPathFormat format = 962 ValueObject::GetExpressionPathFormat:: 963 eGetExpressionPathFormatHonorPointers; 964 stream->PutCString("Likely cause: "); 965 valobj_sp->GetExpressionPath(*stream, format); 966 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 967 } 968 } 969 } else { 970 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 971 process_sp->GetTarget().shared_from_this()); 972 if (target_idx != UINT32_MAX) 973 stream->Printf("Target %d: (", target_idx); 974 else 975 stream->Printf("Target <unknown index>: ("); 976 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 977 stream->Printf(") stopped.\n"); 978 } 979 } 980 981 // Pop the process IO handler 982 pop_process_io_handler = true; 983 } 984 break; 985 } 986 987 if (handle_pop && pop_process_io_handler) 988 process_sp->PopProcessIOHandler(); 989 990 return true; 991 } 992 993 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 994 if (listener_sp) { 995 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 996 eBroadcastBitInterrupt); 997 } else 998 return false; 999 } 1000 1001 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1002 1003 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1004 const Timeout<std::micro> &timeout, 1005 ListenerSP hijack_listener_sp) { 1006 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1007 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1008 1009 ListenerSP listener_sp = hijack_listener_sp; 1010 if (!listener_sp) 1011 listener_sp = m_listener_sp; 1012 1013 StateType state = eStateInvalid; 1014 if (listener_sp->GetEventForBroadcasterWithType( 1015 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1016 timeout)) { 1017 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1018 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1019 else 1020 LLDB_LOG(log, "got no event or was interrupted."); 1021 } 1022 1023 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1024 return state; 1025 } 1026 1027 Event *Process::PeekAtStateChangedEvents() { 1028 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1029 1030 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1031 1032 Event *event_ptr; 1033 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1034 this, eBroadcastBitStateChanged); 1035 if (log) { 1036 if (event_ptr) { 1037 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1038 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1039 } else { 1040 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1041 } 1042 } 1043 return event_ptr; 1044 } 1045 1046 StateType 1047 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1048 const Timeout<std::micro> &timeout) { 1049 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1050 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1051 1052 StateType state = eStateInvalid; 1053 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1054 &m_private_state_broadcaster, 1055 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1056 timeout)) 1057 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1058 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1059 1060 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1061 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1062 return state; 1063 } 1064 1065 bool Process::GetEventsPrivate(EventSP &event_sp, 1066 const Timeout<std::micro> &timeout, 1067 bool control_only) { 1068 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1069 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1070 1071 if (control_only) 1072 return m_private_state_listener_sp->GetEventForBroadcaster( 1073 &m_private_state_control_broadcaster, event_sp, timeout); 1074 else 1075 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1076 } 1077 1078 bool Process::IsRunning() const { 1079 return StateIsRunningState(m_public_state.GetValue()); 1080 } 1081 1082 int Process::GetExitStatus() { 1083 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1084 1085 if (m_public_state.GetValue() == eStateExited) 1086 return m_exit_status; 1087 return -1; 1088 } 1089 1090 const char *Process::GetExitDescription() { 1091 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1092 1093 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1094 return m_exit_string.c_str(); 1095 return nullptr; 1096 } 1097 1098 bool Process::SetExitStatus(int status, const char *cstr) { 1099 // Use a mutex to protect setting the exit status. 1100 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1101 1102 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1103 LIBLLDB_LOG_PROCESS)); 1104 LLDB_LOGF( 1105 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1106 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1107 1108 // We were already in the exited state 1109 if (m_private_state.GetValue() == eStateExited) { 1110 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1111 "state was already set to eStateExited"); 1112 return false; 1113 } 1114 1115 m_exit_status = status; 1116 if (cstr) 1117 m_exit_string = cstr; 1118 else 1119 m_exit_string.clear(); 1120 1121 // Clear the last natural stop ID since it has a strong reference to this 1122 // process 1123 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1124 1125 SetPrivateState(eStateExited); 1126 1127 // Allow subclasses to do some cleanup 1128 DidExit(); 1129 1130 return true; 1131 } 1132 1133 bool Process::IsAlive() { 1134 switch (m_private_state.GetValue()) { 1135 case eStateConnected: 1136 case eStateAttaching: 1137 case eStateLaunching: 1138 case eStateStopped: 1139 case eStateRunning: 1140 case eStateStepping: 1141 case eStateCrashed: 1142 case eStateSuspended: 1143 return true; 1144 default: 1145 return false; 1146 } 1147 } 1148 1149 // This static callback can be used to watch for local child processes on the 1150 // current host. The child process exits, the process will be found in the 1151 // global target list (we want to be completely sure that the 1152 // lldb_private::Process doesn't go away before we can deliver the signal. 1153 bool Process::SetProcessExitStatus( 1154 lldb::pid_t pid, bool exited, 1155 int signo, // Zero for no signal 1156 int exit_status // Exit value of process if signal is zero 1157 ) { 1158 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1159 LLDB_LOGF(log, 1160 "Process::SetProcessExitStatus (pid=%" PRIu64 1161 ", exited=%i, signal=%i, exit_status=%i)\n", 1162 pid, exited, signo, exit_status); 1163 1164 if (exited) { 1165 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1166 if (target_sp) { 1167 ProcessSP process_sp(target_sp->GetProcessSP()); 1168 if (process_sp) { 1169 const char *signal_cstr = nullptr; 1170 if (signo) 1171 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1172 1173 process_sp->SetExitStatus(exit_status, signal_cstr); 1174 } 1175 } 1176 return true; 1177 } 1178 return false; 1179 } 1180 1181 void Process::UpdateThreadListIfNeeded() { 1182 const uint32_t stop_id = GetStopID(); 1183 if (m_thread_list.GetSize(false) == 0 || 1184 stop_id != m_thread_list.GetStopID()) { 1185 const StateType state = GetPrivateState(); 1186 if (StateIsStoppedState(state, true)) { 1187 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1188 // m_thread_list does have its own mutex, but we need to hold onto the 1189 // mutex between the call to UpdateThreadList(...) and the 1190 // os->UpdateThreadList(...) so it doesn't change on us 1191 ThreadList &old_thread_list = m_thread_list; 1192 ThreadList real_thread_list(this); 1193 ThreadList new_thread_list(this); 1194 // Always update the thread list with the protocol specific thread list, 1195 // but only update if "true" is returned 1196 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1197 // Don't call into the OperatingSystem to update the thread list if we 1198 // are shutting down, since that may call back into the SBAPI's, 1199 // requiring the API lock which is already held by whoever is shutting 1200 // us down, causing a deadlock. 1201 OperatingSystem *os = GetOperatingSystem(); 1202 if (os && !m_destroy_in_process) { 1203 // Clear any old backing threads where memory threads might have been 1204 // backed by actual threads from the lldb_private::Process subclass 1205 size_t num_old_threads = old_thread_list.GetSize(false); 1206 for (size_t i = 0; i < num_old_threads; ++i) 1207 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1208 1209 // Turn off dynamic types to ensure we don't run any expressions. 1210 // Objective-C can run an expression to determine if a SBValue is a 1211 // dynamic type or not and we need to avoid this. OperatingSystem 1212 // plug-ins can't run expressions that require running code... 1213 1214 Target &target = GetTarget(); 1215 const lldb::DynamicValueType saved_prefer_dynamic = 1216 target.GetPreferDynamicValue(); 1217 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1218 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1219 1220 // Now let the OperatingSystem plug-in update the thread list 1221 1222 os->UpdateThreadList( 1223 old_thread_list, // Old list full of threads created by OS plug-in 1224 real_thread_list, // The actual thread list full of threads 1225 // created by each lldb_private::Process 1226 // subclass 1227 new_thread_list); // The new thread list that we will show to the 1228 // user that gets filled in 1229 1230 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1231 target.SetPreferDynamicValue(saved_prefer_dynamic); 1232 } else { 1233 // No OS plug-in, the new thread list is the same as the real thread 1234 // list 1235 new_thread_list = real_thread_list; 1236 } 1237 1238 m_thread_list_real.Update(real_thread_list); 1239 m_thread_list.Update(new_thread_list); 1240 m_thread_list.SetStopID(stop_id); 1241 1242 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1243 // Clear any extended threads that we may have accumulated previously 1244 m_extended_thread_list.Clear(); 1245 m_extended_thread_stop_id = GetLastNaturalStopID(); 1246 1247 m_queue_list.Clear(); 1248 m_queue_list_stop_id = GetLastNaturalStopID(); 1249 } 1250 } 1251 } 1252 } 1253 } 1254 1255 void Process::UpdateQueueListIfNeeded() { 1256 if (m_system_runtime_up) { 1257 if (m_queue_list.GetSize() == 0 || 1258 m_queue_list_stop_id != GetLastNaturalStopID()) { 1259 const StateType state = GetPrivateState(); 1260 if (StateIsStoppedState(state, true)) { 1261 m_system_runtime_up->PopulateQueueList(m_queue_list); 1262 m_queue_list_stop_id = GetLastNaturalStopID(); 1263 } 1264 } 1265 } 1266 } 1267 1268 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1269 OperatingSystem *os = GetOperatingSystem(); 1270 if (os) 1271 return os->CreateThread(tid, context); 1272 return ThreadSP(); 1273 } 1274 1275 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1276 return AssignIndexIDToThread(thread_id); 1277 } 1278 1279 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1280 return (m_thread_id_to_index_id_map.find(thread_id) != 1281 m_thread_id_to_index_id_map.end()); 1282 } 1283 1284 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1285 uint32_t result = 0; 1286 std::map<uint64_t, uint32_t>::iterator iterator = 1287 m_thread_id_to_index_id_map.find(thread_id); 1288 if (iterator == m_thread_id_to_index_id_map.end()) { 1289 result = ++m_thread_index_id; 1290 m_thread_id_to_index_id_map[thread_id] = result; 1291 } else { 1292 result = iterator->second; 1293 } 1294 1295 return result; 1296 } 1297 1298 StateType Process::GetState() { 1299 return m_public_state.GetValue(); 1300 } 1301 1302 void Process::SetPublicState(StateType new_state, bool restarted) { 1303 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1304 LIBLLDB_LOG_PROCESS)); 1305 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1306 StateAsCString(new_state), restarted); 1307 const StateType old_state = m_public_state.GetValue(); 1308 m_public_state.SetValue(new_state); 1309 1310 // On the transition from Run to Stopped, we unlock the writer end of the run 1311 // lock. The lock gets locked in Resume, which is the public API to tell the 1312 // program to run. 1313 if (!StateChangedIsExternallyHijacked()) { 1314 if (new_state == eStateDetached) { 1315 LLDB_LOGF(log, 1316 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1317 StateAsCString(new_state)); 1318 m_public_run_lock.SetStopped(); 1319 } else { 1320 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1321 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1322 if ((old_state_is_stopped != new_state_is_stopped)) { 1323 if (new_state_is_stopped && !restarted) { 1324 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1325 StateAsCString(new_state)); 1326 m_public_run_lock.SetStopped(); 1327 } 1328 } 1329 } 1330 } 1331 } 1332 1333 Status Process::Resume() { 1334 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1335 LIBLLDB_LOG_PROCESS)); 1336 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1337 if (!m_public_run_lock.TrySetRunning()) { 1338 Status error("Resume request failed - process still running."); 1339 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1340 return error; 1341 } 1342 Status error = PrivateResume(); 1343 if (!error.Success()) { 1344 // Undo running state change 1345 m_public_run_lock.SetStopped(); 1346 } 1347 return error; 1348 } 1349 1350 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1351 1352 Status Process::ResumeSynchronous(Stream *stream) { 1353 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1354 LIBLLDB_LOG_PROCESS)); 1355 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1356 if (!m_public_run_lock.TrySetRunning()) { 1357 Status error("Resume request failed - process still running."); 1358 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1359 return error; 1360 } 1361 1362 ListenerSP listener_sp( 1363 Listener::MakeListener(g_resume_sync_name)); 1364 HijackProcessEvents(listener_sp); 1365 1366 Status error = PrivateResume(); 1367 if (error.Success()) { 1368 StateType state = 1369 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1370 const bool must_be_alive = 1371 false; // eStateExited is ok, so this must be false 1372 if (!StateIsStoppedState(state, must_be_alive)) 1373 error.SetErrorStringWithFormat( 1374 "process not in stopped state after synchronous resume: %s", 1375 StateAsCString(state)); 1376 } else { 1377 // Undo running state change 1378 m_public_run_lock.SetStopped(); 1379 } 1380 1381 // Undo the hijacking of process events... 1382 RestoreProcessEvents(); 1383 1384 return error; 1385 } 1386 1387 bool Process::StateChangedIsExternallyHijacked() { 1388 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1389 const char *hijacking_name = GetHijackingListenerName(); 1390 if (hijacking_name && 1391 strcmp(hijacking_name, g_resume_sync_name)) 1392 return true; 1393 } 1394 return false; 1395 } 1396 1397 bool Process::StateChangedIsHijackedForSynchronousResume() { 1398 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1399 const char *hijacking_name = GetHijackingListenerName(); 1400 if (hijacking_name && 1401 strcmp(hijacking_name, g_resume_sync_name) == 0) 1402 return true; 1403 } 1404 return false; 1405 } 1406 1407 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1408 1409 void Process::SetPrivateState(StateType new_state) { 1410 if (m_finalize_called) 1411 return; 1412 1413 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1414 LIBLLDB_LOG_PROCESS)); 1415 bool state_changed = false; 1416 1417 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1418 1419 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1420 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1421 1422 const StateType old_state = m_private_state.GetValueNoLock(); 1423 state_changed = old_state != new_state; 1424 1425 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1426 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1427 if (old_state_is_stopped != new_state_is_stopped) { 1428 if (new_state_is_stopped) 1429 m_private_run_lock.SetStopped(); 1430 else 1431 m_private_run_lock.SetRunning(); 1432 } 1433 1434 if (state_changed) { 1435 m_private_state.SetValueNoLock(new_state); 1436 EventSP event_sp( 1437 new Event(eBroadcastBitStateChanged, 1438 new ProcessEventData(shared_from_this(), new_state))); 1439 if (StateIsStoppedState(new_state, false)) { 1440 // Note, this currently assumes that all threads in the list stop when 1441 // the process stops. In the future we will want to support a debugging 1442 // model where some threads continue to run while others are stopped. 1443 // When that happens we will either need a way for the thread list to 1444 // identify which threads are stopping or create a special thread list 1445 // containing only threads which actually stopped. 1446 // 1447 // The process plugin is responsible for managing the actual behavior of 1448 // the threads and should have stopped any threads that are going to stop 1449 // before we get here. 1450 m_thread_list.DidStop(); 1451 1452 m_mod_id.BumpStopID(); 1453 if (!m_mod_id.IsLastResumeForUserExpression()) 1454 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1455 m_memory_cache.Clear(); 1456 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1457 StateAsCString(new_state), m_mod_id.GetStopID()); 1458 } 1459 1460 // Use our target to get a shared pointer to ourselves... 1461 if (m_finalize_called && !PrivateStateThreadIsValid()) 1462 BroadcastEvent(event_sp); 1463 else 1464 m_private_state_broadcaster.BroadcastEvent(event_sp); 1465 } else { 1466 LLDB_LOGF(log, 1467 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1468 StateAsCString(new_state)); 1469 } 1470 } 1471 1472 void Process::SetRunningUserExpression(bool on) { 1473 m_mod_id.SetRunningUserExpression(on); 1474 } 1475 1476 void Process::SetRunningUtilityFunction(bool on) { 1477 m_mod_id.SetRunningUtilityFunction(on); 1478 } 1479 1480 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1481 1482 const lldb::ABISP &Process::GetABI() { 1483 if (!m_abi_sp) 1484 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1485 return m_abi_sp; 1486 } 1487 1488 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1489 std::vector<LanguageRuntime *> language_runtimes; 1490 1491 if (m_finalizing) 1492 return language_runtimes; 1493 1494 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1495 // Before we pass off a copy of the language runtimes, we must make sure that 1496 // our collection is properly populated. It's possible that some of the 1497 // language runtimes were not loaded yet, either because nobody requested it 1498 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1499 // hadn't been loaded). 1500 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1501 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1502 language_runtimes.emplace_back(runtime); 1503 } 1504 1505 return language_runtimes; 1506 } 1507 1508 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1509 if (m_finalizing) 1510 return nullptr; 1511 1512 LanguageRuntime *runtime = nullptr; 1513 1514 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1515 LanguageRuntimeCollection::iterator pos; 1516 pos = m_language_runtimes.find(language); 1517 if (pos == m_language_runtimes.end() || !pos->second) { 1518 lldb::LanguageRuntimeSP runtime_sp( 1519 LanguageRuntime::FindPlugin(this, language)); 1520 1521 m_language_runtimes[language] = runtime_sp; 1522 runtime = runtime_sp.get(); 1523 } else 1524 runtime = pos->second.get(); 1525 1526 if (runtime) 1527 // It's possible that a language runtime can support multiple LanguageTypes, 1528 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1529 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1530 // primary language type and make sure that our runtime supports it. 1531 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1532 1533 return runtime; 1534 } 1535 1536 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1537 if (m_finalizing) 1538 return false; 1539 1540 if (in_value.IsDynamic()) 1541 return false; 1542 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1543 1544 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1545 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1546 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1547 } 1548 1549 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1550 if (runtime->CouldHaveDynamicValue(in_value)) 1551 return true; 1552 } 1553 1554 return false; 1555 } 1556 1557 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1558 m_dynamic_checkers_up.reset(dynamic_checkers); 1559 } 1560 1561 BreakpointSiteList &Process::GetBreakpointSiteList() { 1562 return m_breakpoint_site_list; 1563 } 1564 1565 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1566 return m_breakpoint_site_list; 1567 } 1568 1569 void Process::DisableAllBreakpointSites() { 1570 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1571 // bp_site->SetEnabled(true); 1572 DisableBreakpointSite(bp_site); 1573 }); 1574 } 1575 1576 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1577 Status error(DisableBreakpointSiteByID(break_id)); 1578 1579 if (error.Success()) 1580 m_breakpoint_site_list.Remove(break_id); 1581 1582 return error; 1583 } 1584 1585 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1586 Status error; 1587 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1588 if (bp_site_sp) { 1589 if (bp_site_sp->IsEnabled()) 1590 error = DisableBreakpointSite(bp_site_sp.get()); 1591 } else { 1592 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1593 break_id); 1594 } 1595 1596 return error; 1597 } 1598 1599 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1600 Status error; 1601 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1602 if (bp_site_sp) { 1603 if (!bp_site_sp->IsEnabled()) 1604 error = EnableBreakpointSite(bp_site_sp.get()); 1605 } else { 1606 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1607 break_id); 1608 } 1609 return error; 1610 } 1611 1612 lldb::break_id_t 1613 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1614 bool use_hardware) { 1615 addr_t load_addr = LLDB_INVALID_ADDRESS; 1616 1617 bool show_error = true; 1618 switch (GetState()) { 1619 case eStateInvalid: 1620 case eStateUnloaded: 1621 case eStateConnected: 1622 case eStateAttaching: 1623 case eStateLaunching: 1624 case eStateDetached: 1625 case eStateExited: 1626 show_error = false; 1627 break; 1628 1629 case eStateStopped: 1630 case eStateRunning: 1631 case eStateStepping: 1632 case eStateCrashed: 1633 case eStateSuspended: 1634 show_error = IsAlive(); 1635 break; 1636 } 1637 1638 // Reset the IsIndirect flag here, in case the location changes from pointing 1639 // to a indirect symbol to a regular symbol. 1640 owner->SetIsIndirect(false); 1641 1642 if (owner->ShouldResolveIndirectFunctions()) { 1643 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1644 if (symbol && symbol->IsIndirect()) { 1645 Status error; 1646 Address symbol_address = symbol->GetAddress(); 1647 load_addr = ResolveIndirectFunction(&symbol_address, error); 1648 if (!error.Success() && show_error) { 1649 GetTarget().GetDebugger().GetErrorStream().Printf( 1650 "warning: failed to resolve indirect function at 0x%" PRIx64 1651 " for breakpoint %i.%i: %s\n", 1652 symbol->GetLoadAddress(&GetTarget()), 1653 owner->GetBreakpoint().GetID(), owner->GetID(), 1654 error.AsCString() ? error.AsCString() : "unknown error"); 1655 return LLDB_INVALID_BREAK_ID; 1656 } 1657 Address resolved_address(load_addr); 1658 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1659 owner->SetIsIndirect(true); 1660 } else 1661 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1662 } else 1663 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1664 1665 if (load_addr != LLDB_INVALID_ADDRESS) { 1666 BreakpointSiteSP bp_site_sp; 1667 1668 // Look up this breakpoint site. If it exists, then add this new owner, 1669 // otherwise create a new breakpoint site and add it. 1670 1671 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1672 1673 if (bp_site_sp) { 1674 bp_site_sp->AddOwner(owner); 1675 owner->SetBreakpointSite(bp_site_sp); 1676 return bp_site_sp->GetID(); 1677 } else { 1678 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1679 load_addr, use_hardware)); 1680 if (bp_site_sp) { 1681 Status error = EnableBreakpointSite(bp_site_sp.get()); 1682 if (error.Success()) { 1683 owner->SetBreakpointSite(bp_site_sp); 1684 return m_breakpoint_site_list.Add(bp_site_sp); 1685 } else { 1686 if (show_error || use_hardware) { 1687 // Report error for setting breakpoint... 1688 GetTarget().GetDebugger().GetErrorStream().Printf( 1689 "warning: failed to set breakpoint site at 0x%" PRIx64 1690 " for breakpoint %i.%i: %s\n", 1691 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1692 error.AsCString() ? error.AsCString() : "unknown error"); 1693 } 1694 } 1695 } 1696 } 1697 } 1698 // We failed to enable the breakpoint 1699 return LLDB_INVALID_BREAK_ID; 1700 } 1701 1702 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1703 lldb::user_id_t owner_loc_id, 1704 BreakpointSiteSP &bp_site_sp) { 1705 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1706 if (num_owners == 0) { 1707 // Don't try to disable the site if we don't have a live process anymore. 1708 if (IsAlive()) 1709 DisableBreakpointSite(bp_site_sp.get()); 1710 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1711 } 1712 } 1713 1714 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1715 uint8_t *buf) const { 1716 size_t bytes_removed = 0; 1717 BreakpointSiteList bp_sites_in_range; 1718 1719 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1720 bp_sites_in_range)) { 1721 bp_sites_in_range.ForEach([bp_addr, size, 1722 buf](BreakpointSite *bp_site) -> void { 1723 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1724 addr_t intersect_addr; 1725 size_t intersect_size; 1726 size_t opcode_offset; 1727 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1728 &intersect_size, &opcode_offset)) { 1729 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1730 assert(bp_addr < intersect_addr + intersect_size && 1731 intersect_addr + intersect_size <= bp_addr + size); 1732 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1733 size_t buf_offset = intersect_addr - bp_addr; 1734 ::memcpy(buf + buf_offset, 1735 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1736 intersect_size); 1737 } 1738 } 1739 }); 1740 } 1741 return bytes_removed; 1742 } 1743 1744 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1745 PlatformSP platform_sp(GetTarget().GetPlatform()); 1746 if (platform_sp) 1747 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1748 return 0; 1749 } 1750 1751 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1752 Status error; 1753 assert(bp_site != nullptr); 1754 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1755 const addr_t bp_addr = bp_site->GetLoadAddress(); 1756 LLDB_LOGF( 1757 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1758 bp_site->GetID(), (uint64_t)bp_addr); 1759 if (bp_site->IsEnabled()) { 1760 LLDB_LOGF( 1761 log, 1762 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1763 " -- already enabled", 1764 bp_site->GetID(), (uint64_t)bp_addr); 1765 return error; 1766 } 1767 1768 if (bp_addr == LLDB_INVALID_ADDRESS) { 1769 error.SetErrorString("BreakpointSite contains an invalid load address."); 1770 return error; 1771 } 1772 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1773 // trap for the breakpoint site 1774 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1775 1776 if (bp_opcode_size == 0) { 1777 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1778 "returned zero, unable to get breakpoint " 1779 "trap for address 0x%" PRIx64, 1780 bp_addr); 1781 } else { 1782 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1783 1784 if (bp_opcode_bytes == nullptr) { 1785 error.SetErrorString( 1786 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1787 return error; 1788 } 1789 1790 // Save the original opcode by reading it 1791 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1792 error) == bp_opcode_size) { 1793 // Write a software breakpoint in place of the original opcode 1794 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1795 bp_opcode_size) { 1796 uint8_t verify_bp_opcode_bytes[64]; 1797 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1798 error) == bp_opcode_size) { 1799 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1800 bp_opcode_size) == 0) { 1801 bp_site->SetEnabled(true); 1802 bp_site->SetType(BreakpointSite::eSoftware); 1803 LLDB_LOGF(log, 1804 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1805 "addr = 0x%" PRIx64 " -- SUCCESS", 1806 bp_site->GetID(), (uint64_t)bp_addr); 1807 } else 1808 error.SetErrorString( 1809 "failed to verify the breakpoint trap in memory."); 1810 } else 1811 error.SetErrorString( 1812 "Unable to read memory to verify breakpoint trap."); 1813 } else 1814 error.SetErrorString("Unable to write breakpoint trap to memory."); 1815 } else 1816 error.SetErrorString("Unable to read memory at breakpoint address."); 1817 } 1818 if (log && error.Fail()) 1819 LLDB_LOGF( 1820 log, 1821 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1822 " -- FAILED: %s", 1823 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1824 return error; 1825 } 1826 1827 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1828 Status error; 1829 assert(bp_site != nullptr); 1830 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1831 addr_t bp_addr = bp_site->GetLoadAddress(); 1832 lldb::user_id_t breakID = bp_site->GetID(); 1833 LLDB_LOGF(log, 1834 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1835 ") addr = 0x%" PRIx64, 1836 breakID, (uint64_t)bp_addr); 1837 1838 if (bp_site->IsHardware()) { 1839 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1840 } else if (bp_site->IsEnabled()) { 1841 const size_t break_op_size = bp_site->GetByteSize(); 1842 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1843 if (break_op_size > 0) { 1844 // Clear a software breakpoint instruction 1845 uint8_t curr_break_op[8]; 1846 assert(break_op_size <= sizeof(curr_break_op)); 1847 bool break_op_found = false; 1848 1849 // Read the breakpoint opcode 1850 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1851 break_op_size) { 1852 bool verify = false; 1853 // Make sure the breakpoint opcode exists at this address 1854 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1855 break_op_found = true; 1856 // We found a valid breakpoint opcode at this address, now restore 1857 // the saved opcode. 1858 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1859 break_op_size, error) == break_op_size) { 1860 verify = true; 1861 } else 1862 error.SetErrorString( 1863 "Memory write failed when restoring original opcode."); 1864 } else { 1865 error.SetErrorString( 1866 "Original breakpoint trap is no longer in memory."); 1867 // Set verify to true and so we can check if the original opcode has 1868 // already been restored 1869 verify = true; 1870 } 1871 1872 if (verify) { 1873 uint8_t verify_opcode[8]; 1874 assert(break_op_size < sizeof(verify_opcode)); 1875 // Verify that our original opcode made it back to the inferior 1876 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1877 break_op_size) { 1878 // compare the memory we just read with the original opcode 1879 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1880 break_op_size) == 0) { 1881 // SUCCESS 1882 bp_site->SetEnabled(false); 1883 LLDB_LOGF(log, 1884 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1885 "addr = 0x%" PRIx64 " -- SUCCESS", 1886 bp_site->GetID(), (uint64_t)bp_addr); 1887 return error; 1888 } else { 1889 if (break_op_found) 1890 error.SetErrorString("Failed to restore original opcode."); 1891 } 1892 } else 1893 error.SetErrorString("Failed to read memory to verify that " 1894 "breakpoint trap was restored."); 1895 } 1896 } else 1897 error.SetErrorString( 1898 "Unable to read memory that should contain the breakpoint trap."); 1899 } 1900 } else { 1901 LLDB_LOGF( 1902 log, 1903 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1904 " -- already disabled", 1905 bp_site->GetID(), (uint64_t)bp_addr); 1906 return error; 1907 } 1908 1909 LLDB_LOGF( 1910 log, 1911 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1912 " -- FAILED: %s", 1913 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1914 return error; 1915 } 1916 1917 // Uncomment to verify memory caching works after making changes to caching 1918 // code 1919 //#define VERIFY_MEMORY_READS 1920 1921 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1922 error.Clear(); 1923 if (!GetDisableMemoryCache()) { 1924 #if defined(VERIFY_MEMORY_READS) 1925 // Memory caching is enabled, with debug verification 1926 1927 if (buf && size) { 1928 // Uncomment the line below to make sure memory caching is working. 1929 // I ran this through the test suite and got no assertions, so I am 1930 // pretty confident this is working well. If any changes are made to 1931 // memory caching, uncomment the line below and test your changes! 1932 1933 // Verify all memory reads by using the cache first, then redundantly 1934 // reading the same memory from the inferior and comparing to make sure 1935 // everything is exactly the same. 1936 std::string verify_buf(size, '\0'); 1937 assert(verify_buf.size() == size); 1938 const size_t cache_bytes_read = 1939 m_memory_cache.Read(this, addr, buf, size, error); 1940 Status verify_error; 1941 const size_t verify_bytes_read = 1942 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1943 verify_buf.size(), verify_error); 1944 assert(cache_bytes_read == verify_bytes_read); 1945 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1946 assert(verify_error.Success() == error.Success()); 1947 return cache_bytes_read; 1948 } 1949 return 0; 1950 #else // !defined(VERIFY_MEMORY_READS) 1951 // Memory caching is enabled, without debug verification 1952 1953 return m_memory_cache.Read(addr, buf, size, error); 1954 #endif // defined (VERIFY_MEMORY_READS) 1955 } else { 1956 // Memory caching is disabled 1957 1958 return ReadMemoryFromInferior(addr, buf, size, error); 1959 } 1960 } 1961 1962 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1963 Status &error) { 1964 char buf[256]; 1965 out_str.clear(); 1966 addr_t curr_addr = addr; 1967 while (true) { 1968 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1969 if (length == 0) 1970 break; 1971 out_str.append(buf, length); 1972 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1973 // to read some more characters 1974 if (length == sizeof(buf) - 1) 1975 curr_addr += length; 1976 else 1977 break; 1978 } 1979 return out_str.size(); 1980 } 1981 1982 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1983 Status &error, size_t type_width) { 1984 size_t total_bytes_read = 0; 1985 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1986 // Ensure a null terminator independent of the number of bytes that is 1987 // read. 1988 memset(dst, 0, max_bytes); 1989 size_t bytes_left = max_bytes - type_width; 1990 1991 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1992 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1993 "string with more than 4 bytes " 1994 "per character!"); 1995 1996 addr_t curr_addr = addr; 1997 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1998 char *curr_dst = dst; 1999 2000 error.Clear(); 2001 while (bytes_left > 0 && error.Success()) { 2002 addr_t cache_line_bytes_left = 2003 cache_line_size - (curr_addr % cache_line_size); 2004 addr_t bytes_to_read = 2005 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2006 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2007 2008 if (bytes_read == 0) 2009 break; 2010 2011 // Search for a null terminator of correct size and alignment in 2012 // bytes_read 2013 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2014 for (size_t i = aligned_start; 2015 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2016 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2017 error.Clear(); 2018 return i; 2019 } 2020 2021 total_bytes_read += bytes_read; 2022 curr_dst += bytes_read; 2023 curr_addr += bytes_read; 2024 bytes_left -= bytes_read; 2025 } 2026 } else { 2027 if (max_bytes) 2028 error.SetErrorString("invalid arguments"); 2029 } 2030 return total_bytes_read; 2031 } 2032 2033 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2034 // correct code to find null terminators. 2035 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2036 size_t dst_max_len, 2037 Status &result_error) { 2038 size_t total_cstr_len = 0; 2039 if (dst && dst_max_len) { 2040 result_error.Clear(); 2041 // NULL out everything just to be safe 2042 memset(dst, 0, dst_max_len); 2043 Status error; 2044 addr_t curr_addr = addr; 2045 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2046 size_t bytes_left = dst_max_len - 1; 2047 char *curr_dst = dst; 2048 2049 while (bytes_left > 0) { 2050 addr_t cache_line_bytes_left = 2051 cache_line_size - (curr_addr % cache_line_size); 2052 addr_t bytes_to_read = 2053 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2054 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2055 2056 if (bytes_read == 0) { 2057 result_error = error; 2058 dst[total_cstr_len] = '\0'; 2059 break; 2060 } 2061 const size_t len = strlen(curr_dst); 2062 2063 total_cstr_len += len; 2064 2065 if (len < bytes_to_read) 2066 break; 2067 2068 curr_dst += bytes_read; 2069 curr_addr += bytes_read; 2070 bytes_left -= bytes_read; 2071 } 2072 } else { 2073 if (dst == nullptr) 2074 result_error.SetErrorString("invalid arguments"); 2075 else 2076 result_error.Clear(); 2077 } 2078 return total_cstr_len; 2079 } 2080 2081 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2082 Status &error) { 2083 if (buf == nullptr || size == 0) 2084 return 0; 2085 2086 size_t bytes_read = 0; 2087 uint8_t *bytes = (uint8_t *)buf; 2088 2089 while (bytes_read < size) { 2090 const size_t curr_size = size - bytes_read; 2091 const size_t curr_bytes_read = 2092 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2093 bytes_read += curr_bytes_read; 2094 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2095 break; 2096 } 2097 2098 // Replace any software breakpoint opcodes that fall into this range back 2099 // into "buf" before we return 2100 if (bytes_read > 0) 2101 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2102 return bytes_read; 2103 } 2104 2105 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2106 size_t integer_byte_size, 2107 uint64_t fail_value, 2108 Status &error) { 2109 Scalar scalar; 2110 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2111 error)) 2112 return scalar.ULongLong(fail_value); 2113 return fail_value; 2114 } 2115 2116 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2117 size_t integer_byte_size, 2118 int64_t fail_value, 2119 Status &error) { 2120 Scalar scalar; 2121 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2122 error)) 2123 return scalar.SLongLong(fail_value); 2124 return fail_value; 2125 } 2126 2127 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2128 Scalar scalar; 2129 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2130 error)) 2131 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2132 return LLDB_INVALID_ADDRESS; 2133 } 2134 2135 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2136 Status &error) { 2137 Scalar scalar; 2138 const uint32_t addr_byte_size = GetAddressByteSize(); 2139 if (addr_byte_size <= 4) 2140 scalar = (uint32_t)ptr_value; 2141 else 2142 scalar = ptr_value; 2143 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2144 addr_byte_size; 2145 } 2146 2147 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2148 Status &error) { 2149 size_t bytes_written = 0; 2150 const uint8_t *bytes = (const uint8_t *)buf; 2151 2152 while (bytes_written < size) { 2153 const size_t curr_size = size - bytes_written; 2154 const size_t curr_bytes_written = DoWriteMemory( 2155 addr + bytes_written, bytes + bytes_written, curr_size, error); 2156 bytes_written += curr_bytes_written; 2157 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2158 break; 2159 } 2160 return bytes_written; 2161 } 2162 2163 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2164 Status &error) { 2165 #if defined(ENABLE_MEMORY_CACHING) 2166 m_memory_cache.Flush(addr, size); 2167 #endif 2168 2169 if (buf == nullptr || size == 0) 2170 return 0; 2171 2172 m_mod_id.BumpMemoryID(); 2173 2174 // We need to write any data that would go where any current software traps 2175 // (enabled software breakpoints) any software traps (breakpoints) that we 2176 // may have placed in our tasks memory. 2177 2178 BreakpointSiteList bp_sites_in_range; 2179 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2180 return WriteMemoryPrivate(addr, buf, size, error); 2181 2182 // No breakpoint sites overlap 2183 if (bp_sites_in_range.IsEmpty()) 2184 return WriteMemoryPrivate(addr, buf, size, error); 2185 2186 const uint8_t *ubuf = (const uint8_t *)buf; 2187 uint64_t bytes_written = 0; 2188 2189 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2190 &error](BreakpointSite *bp) -> void { 2191 if (error.Fail()) 2192 return; 2193 2194 addr_t intersect_addr; 2195 size_t intersect_size; 2196 size_t opcode_offset; 2197 const bool intersects = bp->IntersectsRange( 2198 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2199 UNUSED_IF_ASSERT_DISABLED(intersects); 2200 assert(intersects); 2201 assert(addr <= intersect_addr && intersect_addr < addr + size); 2202 assert(addr < intersect_addr + intersect_size && 2203 intersect_addr + intersect_size <= addr + size); 2204 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2205 2206 // Check for bytes before this breakpoint 2207 const addr_t curr_addr = addr + bytes_written; 2208 if (intersect_addr > curr_addr) { 2209 // There are some bytes before this breakpoint that we need to just 2210 // write to memory 2211 size_t curr_size = intersect_addr - curr_addr; 2212 size_t curr_bytes_written = 2213 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2214 bytes_written += curr_bytes_written; 2215 if (curr_bytes_written != curr_size) { 2216 // We weren't able to write all of the requested bytes, we are 2217 // done looping and will return the number of bytes that we have 2218 // written so far. 2219 if (error.Success()) 2220 error.SetErrorToGenericError(); 2221 } 2222 } 2223 // Now write any bytes that would cover up any software breakpoints 2224 // directly into the breakpoint opcode buffer 2225 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2226 intersect_size); 2227 bytes_written += intersect_size; 2228 }); 2229 2230 // Write any remaining bytes after the last breakpoint if we have any left 2231 if (bytes_written < size) 2232 bytes_written += 2233 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2234 size - bytes_written, error); 2235 2236 return bytes_written; 2237 } 2238 2239 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2240 size_t byte_size, Status &error) { 2241 if (byte_size == UINT32_MAX) 2242 byte_size = scalar.GetByteSize(); 2243 if (byte_size > 0) { 2244 uint8_t buf[32]; 2245 const size_t mem_size = 2246 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2247 if (mem_size > 0) 2248 return WriteMemory(addr, buf, mem_size, error); 2249 else 2250 error.SetErrorString("failed to get scalar as memory data"); 2251 } else { 2252 error.SetErrorString("invalid scalar value"); 2253 } 2254 return 0; 2255 } 2256 2257 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2258 bool is_signed, Scalar &scalar, 2259 Status &error) { 2260 uint64_t uval = 0; 2261 if (byte_size == 0) { 2262 error.SetErrorString("byte size is zero"); 2263 } else if (byte_size & (byte_size - 1)) { 2264 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2265 byte_size); 2266 } else if (byte_size <= sizeof(uval)) { 2267 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2268 if (bytes_read == byte_size) { 2269 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2270 GetAddressByteSize()); 2271 lldb::offset_t offset = 0; 2272 if (byte_size <= 4) 2273 scalar = data.GetMaxU32(&offset, byte_size); 2274 else 2275 scalar = data.GetMaxU64(&offset, byte_size); 2276 if (is_signed) 2277 scalar.SignExtend(byte_size * 8); 2278 return bytes_read; 2279 } 2280 } else { 2281 error.SetErrorStringWithFormat( 2282 "byte size of %u is too large for integer scalar type", byte_size); 2283 } 2284 return 0; 2285 } 2286 2287 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2288 Status error; 2289 for (const auto &Entry : entries) { 2290 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2291 error); 2292 if (!error.Success()) 2293 break; 2294 } 2295 return error; 2296 } 2297 2298 #define USE_ALLOCATE_MEMORY_CACHE 1 2299 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2300 Status &error) { 2301 if (GetPrivateState() != eStateStopped) { 2302 error.SetErrorToGenericError(); 2303 return LLDB_INVALID_ADDRESS; 2304 } 2305 2306 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2307 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2308 #else 2309 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2310 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2311 LLDB_LOGF(log, 2312 "Process::AllocateMemory(size=%" PRIu64 2313 ", permissions=%s) => 0x%16.16" PRIx64 2314 " (m_stop_id = %u m_memory_id = %u)", 2315 (uint64_t)size, GetPermissionsAsCString(permissions), 2316 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2317 m_mod_id.GetMemoryID()); 2318 return allocated_addr; 2319 #endif 2320 } 2321 2322 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2323 Status &error) { 2324 addr_t return_addr = AllocateMemory(size, permissions, error); 2325 if (error.Success()) { 2326 std::string buffer(size, 0); 2327 WriteMemory(return_addr, buffer.c_str(), size, error); 2328 } 2329 return return_addr; 2330 } 2331 2332 bool Process::CanJIT() { 2333 if (m_can_jit == eCanJITDontKnow) { 2334 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2335 Status err; 2336 2337 uint64_t allocated_memory = AllocateMemory( 2338 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2339 err); 2340 2341 if (err.Success()) { 2342 m_can_jit = eCanJITYes; 2343 LLDB_LOGF(log, 2344 "Process::%s pid %" PRIu64 2345 " allocation test passed, CanJIT () is true", 2346 __FUNCTION__, GetID()); 2347 } else { 2348 m_can_jit = eCanJITNo; 2349 LLDB_LOGF(log, 2350 "Process::%s pid %" PRIu64 2351 " allocation test failed, CanJIT () is false: %s", 2352 __FUNCTION__, GetID(), err.AsCString()); 2353 } 2354 2355 DeallocateMemory(allocated_memory); 2356 } 2357 2358 return m_can_jit == eCanJITYes; 2359 } 2360 2361 void Process::SetCanJIT(bool can_jit) { 2362 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2363 } 2364 2365 void Process::SetCanRunCode(bool can_run_code) { 2366 SetCanJIT(can_run_code); 2367 m_can_interpret_function_calls = can_run_code; 2368 } 2369 2370 Status Process::DeallocateMemory(addr_t ptr) { 2371 Status error; 2372 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2373 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2374 error.SetErrorStringWithFormat( 2375 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2376 } 2377 #else 2378 error = DoDeallocateMemory(ptr); 2379 2380 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2381 LLDB_LOGF(log, 2382 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2383 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2384 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2385 m_mod_id.GetMemoryID()); 2386 #endif 2387 return error; 2388 } 2389 2390 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2391 lldb::addr_t header_addr, 2392 size_t size_to_read) { 2393 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2394 if (log) { 2395 LLDB_LOGF(log, 2396 "Process::ReadModuleFromMemory reading %s binary from memory", 2397 file_spec.GetPath().c_str()); 2398 } 2399 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2400 if (module_sp) { 2401 Status error; 2402 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2403 shared_from_this(), header_addr, error, size_to_read); 2404 if (objfile) 2405 return module_sp; 2406 } 2407 return ModuleSP(); 2408 } 2409 2410 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2411 uint32_t &permissions) { 2412 MemoryRegionInfo range_info; 2413 permissions = 0; 2414 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2415 if (!error.Success()) 2416 return false; 2417 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2418 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2419 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2420 return false; 2421 } 2422 2423 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2424 permissions |= lldb::ePermissionsReadable; 2425 2426 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2427 permissions |= lldb::ePermissionsWritable; 2428 2429 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2430 permissions |= lldb::ePermissionsExecutable; 2431 2432 return true; 2433 } 2434 2435 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2436 Status error; 2437 error.SetErrorString("watchpoints are not supported"); 2438 return error; 2439 } 2440 2441 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2442 Status error; 2443 error.SetErrorString("watchpoints are not supported"); 2444 return error; 2445 } 2446 2447 StateType 2448 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2449 const Timeout<std::micro> &timeout) { 2450 StateType state; 2451 2452 while (true) { 2453 event_sp.reset(); 2454 state = GetStateChangedEventsPrivate(event_sp, timeout); 2455 2456 if (StateIsStoppedState(state, false)) 2457 break; 2458 2459 // If state is invalid, then we timed out 2460 if (state == eStateInvalid) 2461 break; 2462 2463 if (event_sp) 2464 HandlePrivateEvent(event_sp); 2465 } 2466 return state; 2467 } 2468 2469 void Process::LoadOperatingSystemPlugin(bool flush) { 2470 if (flush) 2471 m_thread_list.Clear(); 2472 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2473 if (flush) 2474 Flush(); 2475 } 2476 2477 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2478 Status error; 2479 m_abi_sp.reset(); 2480 m_dyld_up.reset(); 2481 m_jit_loaders_up.reset(); 2482 m_system_runtime_up.reset(); 2483 m_os_up.reset(); 2484 m_process_input_reader.reset(); 2485 2486 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2487 if (!exe_module) { 2488 error.SetErrorString("executable module does not exist"); 2489 return error; 2490 } 2491 2492 char local_exec_file_path[PATH_MAX]; 2493 char platform_exec_file_path[PATH_MAX]; 2494 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2495 sizeof(local_exec_file_path)); 2496 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2497 sizeof(platform_exec_file_path)); 2498 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2499 // Install anything that might need to be installed prior to launching. 2500 // For host systems, this will do nothing, but if we are connected to a 2501 // remote platform it will install any needed binaries 2502 error = GetTarget().Install(&launch_info); 2503 if (error.Fail()) 2504 return error; 2505 2506 if (PrivateStateThreadIsValid()) 2507 PausePrivateStateThread(); 2508 2509 error = WillLaunch(exe_module); 2510 if (error.Success()) { 2511 const bool restarted = false; 2512 SetPublicState(eStateLaunching, restarted); 2513 m_should_detach = false; 2514 2515 if (m_public_run_lock.TrySetRunning()) { 2516 // Now launch using these arguments. 2517 error = DoLaunch(exe_module, launch_info); 2518 } else { 2519 // This shouldn't happen 2520 error.SetErrorString("failed to acquire process run lock"); 2521 } 2522 2523 if (error.Fail()) { 2524 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2525 SetID(LLDB_INVALID_PROCESS_ID); 2526 const char *error_string = error.AsCString(); 2527 if (error_string == nullptr) 2528 error_string = "launch failed"; 2529 SetExitStatus(-1, error_string); 2530 } 2531 } else { 2532 EventSP event_sp; 2533 2534 // Now wait for the process to launch and return control to us, and then 2535 // call DidLaunch: 2536 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2537 2538 if (state == eStateInvalid || !event_sp) { 2539 // We were able to launch the process, but we failed to catch the 2540 // initial stop. 2541 error.SetErrorString("failed to catch stop after launch"); 2542 SetExitStatus(0, "failed to catch stop after launch"); 2543 Destroy(false); 2544 } else if (state == eStateStopped || state == eStateCrashed) { 2545 DidLaunch(); 2546 2547 DynamicLoader *dyld = GetDynamicLoader(); 2548 if (dyld) 2549 dyld->DidLaunch(); 2550 2551 GetJITLoaders().DidLaunch(); 2552 2553 SystemRuntime *system_runtime = GetSystemRuntime(); 2554 if (system_runtime) 2555 system_runtime->DidLaunch(); 2556 2557 if (!m_os_up) 2558 LoadOperatingSystemPlugin(false); 2559 2560 // We successfully launched the process and stopped, now it the 2561 // right time to set up signal filters before resuming. 2562 UpdateAutomaticSignalFiltering(); 2563 2564 // Note, the stop event was consumed above, but not handled. This 2565 // was done to give DidLaunch a chance to run. The target is either 2566 // stopped or crashed. Directly set the state. This is done to 2567 // prevent a stop message with a bunch of spurious output on thread 2568 // status, as well as not pop a ProcessIOHandler. 2569 SetPublicState(state, false); 2570 2571 if (PrivateStateThreadIsValid()) 2572 ResumePrivateStateThread(); 2573 else 2574 StartPrivateStateThread(); 2575 2576 // Target was stopped at entry as was intended. Need to notify the 2577 // listeners about it. 2578 if (state == eStateStopped && 2579 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2580 HandlePrivateEvent(event_sp); 2581 } else if (state == eStateExited) { 2582 // We exited while trying to launch somehow. Don't call DidLaunch 2583 // as that's not likely to work, and return an invalid pid. 2584 HandlePrivateEvent(event_sp); 2585 } 2586 } 2587 } 2588 } else { 2589 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2590 local_exec_file_path); 2591 } 2592 2593 return error; 2594 } 2595 2596 Status Process::LoadCore() { 2597 Status error = DoLoadCore(); 2598 if (error.Success()) { 2599 ListenerSP listener_sp( 2600 Listener::MakeListener("lldb.process.load_core_listener")); 2601 HijackProcessEvents(listener_sp); 2602 2603 if (PrivateStateThreadIsValid()) 2604 ResumePrivateStateThread(); 2605 else 2606 StartPrivateStateThread(); 2607 2608 DynamicLoader *dyld = GetDynamicLoader(); 2609 if (dyld) 2610 dyld->DidAttach(); 2611 2612 GetJITLoaders().DidAttach(); 2613 2614 SystemRuntime *system_runtime = GetSystemRuntime(); 2615 if (system_runtime) 2616 system_runtime->DidAttach(); 2617 2618 if (!m_os_up) 2619 LoadOperatingSystemPlugin(false); 2620 2621 // We successfully loaded a core file, now pretend we stopped so we can 2622 // show all of the threads in the core file and explore the crashed state. 2623 SetPrivateState(eStateStopped); 2624 2625 // Wait for a stopped event since we just posted one above... 2626 lldb::EventSP event_sp; 2627 StateType state = 2628 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2629 2630 if (!StateIsStoppedState(state, false)) { 2631 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2632 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2633 StateAsCString(state)); 2634 error.SetErrorString( 2635 "Did not get stopped event after loading the core file."); 2636 } 2637 RestoreProcessEvents(); 2638 } 2639 return error; 2640 } 2641 2642 DynamicLoader *Process::GetDynamicLoader() { 2643 if (!m_dyld_up) 2644 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2645 return m_dyld_up.get(); 2646 } 2647 2648 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2649 2650 JITLoaderList &Process::GetJITLoaders() { 2651 if (!m_jit_loaders_up) { 2652 m_jit_loaders_up.reset(new JITLoaderList()); 2653 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2654 } 2655 return *m_jit_loaders_up; 2656 } 2657 2658 SystemRuntime *Process::GetSystemRuntime() { 2659 if (!m_system_runtime_up) 2660 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2661 return m_system_runtime_up.get(); 2662 } 2663 2664 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2665 uint32_t exec_count) 2666 : NextEventAction(process), m_exec_count(exec_count) { 2667 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2668 LLDB_LOGF( 2669 log, 2670 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2671 __FUNCTION__, static_cast<void *>(process), exec_count); 2672 } 2673 2674 Process::NextEventAction::EventActionResult 2675 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2676 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2677 2678 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2679 LLDB_LOGF(log, 2680 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2681 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2682 2683 switch (state) { 2684 case eStateAttaching: 2685 return eEventActionSuccess; 2686 2687 case eStateRunning: 2688 case eStateConnected: 2689 return eEventActionRetry; 2690 2691 case eStateStopped: 2692 case eStateCrashed: 2693 // During attach, prior to sending the eStateStopped event, 2694 // lldb_private::Process subclasses must set the new process ID. 2695 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2696 // We don't want these events to be reported, so go set the 2697 // ShouldReportStop here: 2698 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2699 2700 if (m_exec_count > 0) { 2701 --m_exec_count; 2702 2703 LLDB_LOGF(log, 2704 "Process::AttachCompletionHandler::%s state %s: reduced " 2705 "remaining exec count to %" PRIu32 ", requesting resume", 2706 __FUNCTION__, StateAsCString(state), m_exec_count); 2707 2708 RequestResume(); 2709 return eEventActionRetry; 2710 } else { 2711 LLDB_LOGF(log, 2712 "Process::AttachCompletionHandler::%s state %s: no more " 2713 "execs expected to start, continuing with attach", 2714 __FUNCTION__, StateAsCString(state)); 2715 2716 m_process->CompleteAttach(); 2717 return eEventActionSuccess; 2718 } 2719 break; 2720 2721 default: 2722 case eStateExited: 2723 case eStateInvalid: 2724 break; 2725 } 2726 2727 m_exit_string.assign("No valid Process"); 2728 return eEventActionExit; 2729 } 2730 2731 Process::NextEventAction::EventActionResult 2732 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2733 return eEventActionSuccess; 2734 } 2735 2736 const char *Process::AttachCompletionHandler::GetExitString() { 2737 return m_exit_string.c_str(); 2738 } 2739 2740 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2741 if (m_listener_sp) 2742 return m_listener_sp; 2743 else 2744 return debugger.GetListener(); 2745 } 2746 2747 Status Process::Attach(ProcessAttachInfo &attach_info) { 2748 m_abi_sp.reset(); 2749 m_process_input_reader.reset(); 2750 m_dyld_up.reset(); 2751 m_jit_loaders_up.reset(); 2752 m_system_runtime_up.reset(); 2753 m_os_up.reset(); 2754 2755 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2756 Status error; 2757 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2758 char process_name[PATH_MAX]; 2759 2760 if (attach_info.GetExecutableFile().GetPath(process_name, 2761 sizeof(process_name))) { 2762 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2763 2764 if (wait_for_launch) { 2765 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2766 if (error.Success()) { 2767 if (m_public_run_lock.TrySetRunning()) { 2768 m_should_detach = true; 2769 const bool restarted = false; 2770 SetPublicState(eStateAttaching, restarted); 2771 // Now attach using these arguments. 2772 error = DoAttachToProcessWithName(process_name, attach_info); 2773 } else { 2774 // This shouldn't happen 2775 error.SetErrorString("failed to acquire process run lock"); 2776 } 2777 2778 if (error.Fail()) { 2779 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2780 SetID(LLDB_INVALID_PROCESS_ID); 2781 if (error.AsCString() == nullptr) 2782 error.SetErrorString("attach failed"); 2783 2784 SetExitStatus(-1, error.AsCString()); 2785 } 2786 } else { 2787 SetNextEventAction(new Process::AttachCompletionHandler( 2788 this, attach_info.GetResumeCount())); 2789 StartPrivateStateThread(); 2790 } 2791 return error; 2792 } 2793 } else { 2794 ProcessInstanceInfoList process_infos; 2795 PlatformSP platform_sp(GetTarget().GetPlatform()); 2796 2797 if (platform_sp) { 2798 ProcessInstanceInfoMatch match_info; 2799 match_info.GetProcessInfo() = attach_info; 2800 match_info.SetNameMatchType(NameMatch::Equals); 2801 platform_sp->FindProcesses(match_info, process_infos); 2802 const uint32_t num_matches = process_infos.GetSize(); 2803 if (num_matches == 1) { 2804 attach_pid = process_infos.GetProcessIDAtIndex(0); 2805 // Fall through and attach using the above process ID 2806 } else { 2807 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2808 process_name, sizeof(process_name)); 2809 if (num_matches > 1) { 2810 StreamString s; 2811 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2812 for (size_t i = 0; i < num_matches; i++) { 2813 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 2814 s, platform_sp->GetUserIDResolver(), true, false); 2815 } 2816 error.SetErrorStringWithFormat( 2817 "more than one process named %s:\n%s", process_name, 2818 s.GetData()); 2819 } else 2820 error.SetErrorStringWithFormat( 2821 "could not find a process named %s", process_name); 2822 } 2823 } else { 2824 error.SetErrorString( 2825 "invalid platform, can't find processes by name"); 2826 return error; 2827 } 2828 } 2829 } else { 2830 error.SetErrorString("invalid process name"); 2831 } 2832 } 2833 2834 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2835 error = WillAttachToProcessWithID(attach_pid); 2836 if (error.Success()) { 2837 2838 if (m_public_run_lock.TrySetRunning()) { 2839 // Now attach using these arguments. 2840 m_should_detach = true; 2841 const bool restarted = false; 2842 SetPublicState(eStateAttaching, restarted); 2843 error = DoAttachToProcessWithID(attach_pid, attach_info); 2844 } else { 2845 // This shouldn't happen 2846 error.SetErrorString("failed to acquire process run lock"); 2847 } 2848 2849 if (error.Success()) { 2850 SetNextEventAction(new Process::AttachCompletionHandler( 2851 this, attach_info.GetResumeCount())); 2852 StartPrivateStateThread(); 2853 } else { 2854 if (GetID() != LLDB_INVALID_PROCESS_ID) 2855 SetID(LLDB_INVALID_PROCESS_ID); 2856 2857 const char *error_string = error.AsCString(); 2858 if (error_string == nullptr) 2859 error_string = "attach failed"; 2860 2861 SetExitStatus(-1, error_string); 2862 } 2863 } 2864 } 2865 return error; 2866 } 2867 2868 void Process::CompleteAttach() { 2869 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2870 LIBLLDB_LOG_TARGET)); 2871 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2872 2873 // Let the process subclass figure out at much as it can about the process 2874 // before we go looking for a dynamic loader plug-in. 2875 ArchSpec process_arch; 2876 DidAttach(process_arch); 2877 2878 if (process_arch.IsValid()) { 2879 GetTarget().SetArchitecture(process_arch); 2880 if (log) { 2881 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2882 LLDB_LOGF(log, 2883 "Process::%s replacing process architecture with DidAttach() " 2884 "architecture: %s", 2885 __FUNCTION__, triple_str ? triple_str : "<null>"); 2886 } 2887 } 2888 2889 // We just attached. If we have a platform, ask it for the process 2890 // architecture, and if it isn't the same as the one we've already set, 2891 // switch architectures. 2892 PlatformSP platform_sp(GetTarget().GetPlatform()); 2893 assert(platform_sp); 2894 if (platform_sp) { 2895 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2896 if (target_arch.IsValid() && 2897 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2898 ArchSpec platform_arch; 2899 platform_sp = 2900 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2901 if (platform_sp) { 2902 GetTarget().SetPlatform(platform_sp); 2903 GetTarget().SetArchitecture(platform_arch); 2904 LLDB_LOGF(log, 2905 "Process::%s switching platform to %s and architecture " 2906 "to %s based on info from attach", 2907 __FUNCTION__, platform_sp->GetName().AsCString(""), 2908 platform_arch.GetTriple().getTriple().c_str()); 2909 } 2910 } else if (!process_arch.IsValid()) { 2911 ProcessInstanceInfo process_info; 2912 GetProcessInfo(process_info); 2913 const ArchSpec &process_arch = process_info.GetArchitecture(); 2914 if (process_arch.IsValid() && 2915 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 2916 GetTarget().SetArchitecture(process_arch); 2917 LLDB_LOGF(log, 2918 "Process::%s switching architecture to %s based on info " 2919 "the platform retrieved for pid %" PRIu64, 2920 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2921 GetID()); 2922 } 2923 } 2924 } 2925 2926 // We have completed the attach, now it is time to find the dynamic loader 2927 // plug-in 2928 DynamicLoader *dyld = GetDynamicLoader(); 2929 if (dyld) { 2930 dyld->DidAttach(); 2931 if (log) { 2932 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2933 LLDB_LOGF(log, 2934 "Process::%s after DynamicLoader::DidAttach(), target " 2935 "executable is %s (using %s plugin)", 2936 __FUNCTION__, 2937 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2938 : "<none>", 2939 dyld->GetPluginName().AsCString("<unnamed>")); 2940 } 2941 } 2942 2943 GetJITLoaders().DidAttach(); 2944 2945 SystemRuntime *system_runtime = GetSystemRuntime(); 2946 if (system_runtime) { 2947 system_runtime->DidAttach(); 2948 if (log) { 2949 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2950 LLDB_LOGF(log, 2951 "Process::%s after SystemRuntime::DidAttach(), target " 2952 "executable is %s (using %s plugin)", 2953 __FUNCTION__, 2954 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2955 : "<none>", 2956 system_runtime->GetPluginName().AsCString("<unnamed>")); 2957 } 2958 } 2959 2960 if (!m_os_up) { 2961 LoadOperatingSystemPlugin(false); 2962 if (m_os_up) { 2963 // Somebody might have gotten threads before now, but we need to force the 2964 // update after we've loaded the OperatingSystem plugin or it won't get a 2965 // chance to process the threads. 2966 m_thread_list.Clear(); 2967 UpdateThreadListIfNeeded(); 2968 } 2969 } 2970 // Figure out which one is the executable, and set that in our target: 2971 const ModuleList &target_modules = GetTarget().GetImages(); 2972 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 2973 size_t num_modules = target_modules.GetSize(); 2974 ModuleSP new_executable_module_sp; 2975 2976 for (size_t i = 0; i < num_modules; i++) { 2977 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 2978 if (module_sp && module_sp->IsExecutable()) { 2979 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2980 new_executable_module_sp = module_sp; 2981 break; 2982 } 2983 } 2984 if (new_executable_module_sp) { 2985 GetTarget().SetExecutableModule(new_executable_module_sp, 2986 eLoadDependentsNo); 2987 if (log) { 2988 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2989 LLDB_LOGF( 2990 log, 2991 "Process::%s after looping through modules, target executable is %s", 2992 __FUNCTION__, 2993 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2994 : "<none>"); 2995 } 2996 } 2997 } 2998 2999 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3000 m_abi_sp.reset(); 3001 m_process_input_reader.reset(); 3002 3003 // Find the process and its architecture. Make sure it matches the 3004 // architecture of the current Target, and if not adjust it. 3005 3006 Status error(DoConnectRemote(strm, remote_url)); 3007 if (error.Success()) { 3008 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3009 EventSP event_sp; 3010 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3011 3012 if (state == eStateStopped || state == eStateCrashed) { 3013 // If we attached and actually have a process on the other end, then 3014 // this ended up being the equivalent of an attach. 3015 CompleteAttach(); 3016 3017 // This delays passing the stopped event to listeners till 3018 // CompleteAttach gets a chance to complete... 3019 HandlePrivateEvent(event_sp); 3020 } 3021 } 3022 3023 if (PrivateStateThreadIsValid()) 3024 ResumePrivateStateThread(); 3025 else 3026 StartPrivateStateThread(); 3027 } 3028 return error; 3029 } 3030 3031 Status Process::PrivateResume() { 3032 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3033 LIBLLDB_LOG_STEP)); 3034 LLDB_LOGF(log, 3035 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3036 "private state: %s", 3037 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3038 StateAsCString(m_private_state.GetValue())); 3039 3040 // If signals handing status changed we might want to update our signal 3041 // filters before resuming. 3042 UpdateAutomaticSignalFiltering(); 3043 3044 Status error(WillResume()); 3045 // Tell the process it is about to resume before the thread list 3046 if (error.Success()) { 3047 // Now let the thread list know we are about to resume so it can let all of 3048 // our threads know that they are about to be resumed. Threads will each be 3049 // called with Thread::WillResume(StateType) where StateType contains the 3050 // state that they are supposed to have when the process is resumed 3051 // (suspended/running/stepping). Threads should also check their resume 3052 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3053 // start back up with a signal. 3054 if (m_thread_list.WillResume()) { 3055 // Last thing, do the PreResumeActions. 3056 if (!RunPreResumeActions()) { 3057 error.SetErrorStringWithFormat( 3058 "Process::PrivateResume PreResumeActions failed, not resuming."); 3059 } else { 3060 m_mod_id.BumpResumeID(); 3061 error = DoResume(); 3062 if (error.Success()) { 3063 DidResume(); 3064 m_thread_list.DidResume(); 3065 LLDB_LOGF(log, "Process thinks the process has resumed."); 3066 } else { 3067 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3068 return error; 3069 } 3070 } 3071 } else { 3072 // Somebody wanted to run without running (e.g. we were faking a step 3073 // from one frame of a set of inlined frames that share the same PC to 3074 // another.) So generate a continue & a stopped event, and let the world 3075 // handle them. 3076 LLDB_LOGF(log, 3077 "Process::PrivateResume() asked to simulate a start & stop."); 3078 3079 SetPrivateState(eStateRunning); 3080 SetPrivateState(eStateStopped); 3081 } 3082 } else 3083 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3084 error.AsCString("<unknown error>")); 3085 return error; 3086 } 3087 3088 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3089 if (!StateIsRunningState(m_public_state.GetValue())) 3090 return Status("Process is not running."); 3091 3092 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3093 // case it was already set and some thread plan logic calls halt on its own. 3094 m_clear_thread_plans_on_stop |= clear_thread_plans; 3095 3096 ListenerSP halt_listener_sp( 3097 Listener::MakeListener("lldb.process.halt_listener")); 3098 HijackProcessEvents(halt_listener_sp); 3099 3100 EventSP event_sp; 3101 3102 SendAsyncInterrupt(); 3103 3104 if (m_public_state.GetValue() == eStateAttaching) { 3105 // Don't hijack and eat the eStateExited as the code that was doing the 3106 // attach will be waiting for this event... 3107 RestoreProcessEvents(); 3108 SetExitStatus(SIGKILL, "Cancelled async attach."); 3109 Destroy(false); 3110 return Status(); 3111 } 3112 3113 // Wait for 10 second for the process to stop. 3114 StateType state = WaitForProcessToStop( 3115 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3116 RestoreProcessEvents(); 3117 3118 if (state == eStateInvalid || !event_sp) { 3119 // We timed out and didn't get a stop event... 3120 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3121 } 3122 3123 BroadcastEvent(event_sp); 3124 3125 return Status(); 3126 } 3127 3128 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3129 Status error; 3130 3131 // Check both the public & private states here. If we're hung evaluating an 3132 // expression, for instance, then the public state will be stopped, but we 3133 // still need to interrupt. 3134 if (m_public_state.GetValue() == eStateRunning || 3135 m_private_state.GetValue() == eStateRunning) { 3136 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3137 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3138 3139 ListenerSP listener_sp( 3140 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3141 HijackProcessEvents(listener_sp); 3142 3143 SendAsyncInterrupt(); 3144 3145 // Consume the interrupt event. 3146 StateType state = 3147 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3148 3149 RestoreProcessEvents(); 3150 3151 // If the process exited while we were waiting for it to stop, put the 3152 // exited event into the shared pointer passed in and return. Our caller 3153 // doesn't need to do anything else, since they don't have a process 3154 // anymore... 3155 3156 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3157 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3158 __FUNCTION__); 3159 return error; 3160 } else 3161 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3162 3163 if (state != eStateStopped) { 3164 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3165 StateAsCString(state)); 3166 // If we really couldn't stop the process then we should just error out 3167 // here, but if the lower levels just bobbled sending the event and we 3168 // really are stopped, then continue on. 3169 StateType private_state = m_private_state.GetValue(); 3170 if (private_state != eStateStopped) { 3171 return Status( 3172 "Attempt to stop the target in order to detach timed out. " 3173 "State = %s", 3174 StateAsCString(GetState())); 3175 } 3176 } 3177 } 3178 return error; 3179 } 3180 3181 Status Process::Detach(bool keep_stopped) { 3182 EventSP exit_event_sp; 3183 Status error; 3184 m_destroy_in_process = true; 3185 3186 error = WillDetach(); 3187 3188 if (error.Success()) { 3189 if (DetachRequiresHalt()) { 3190 error = StopForDestroyOrDetach(exit_event_sp); 3191 if (!error.Success()) { 3192 m_destroy_in_process = false; 3193 return error; 3194 } else if (exit_event_sp) { 3195 // We shouldn't need to do anything else here. There's no process left 3196 // to detach from... 3197 StopPrivateStateThread(); 3198 m_destroy_in_process = false; 3199 return error; 3200 } 3201 } 3202 3203 m_thread_list.DiscardThreadPlans(); 3204 DisableAllBreakpointSites(); 3205 3206 error = DoDetach(keep_stopped); 3207 if (error.Success()) { 3208 DidDetach(); 3209 StopPrivateStateThread(); 3210 } else { 3211 return error; 3212 } 3213 } 3214 m_destroy_in_process = false; 3215 3216 // If we exited when we were waiting for a process to stop, then forward the 3217 // event here so we don't lose the event 3218 if (exit_event_sp) { 3219 // Directly broadcast our exited event because we shut down our private 3220 // state thread above 3221 BroadcastEvent(exit_event_sp); 3222 } 3223 3224 // If we have been interrupted (to kill us) in the middle of running, we may 3225 // not end up propagating the last events through the event system, in which 3226 // case we might strand the write lock. Unlock it here so when we do to tear 3227 // down the process we don't get an error destroying the lock. 3228 3229 m_public_run_lock.SetStopped(); 3230 return error; 3231 } 3232 3233 Status Process::Destroy(bool force_kill) { 3234 3235 // Tell ourselves we are in the process of destroying the process, so that we 3236 // don't do any unnecessary work that might hinder the destruction. Remember 3237 // to set this back to false when we are done. That way if the attempt 3238 // failed and the process stays around for some reason it won't be in a 3239 // confused state. 3240 3241 if (force_kill) 3242 m_should_detach = false; 3243 3244 if (GetShouldDetach()) { 3245 // FIXME: This will have to be a process setting: 3246 bool keep_stopped = false; 3247 Detach(keep_stopped); 3248 } 3249 3250 m_destroy_in_process = true; 3251 3252 Status error(WillDestroy()); 3253 if (error.Success()) { 3254 EventSP exit_event_sp; 3255 if (DestroyRequiresHalt()) { 3256 error = StopForDestroyOrDetach(exit_event_sp); 3257 } 3258 3259 if (m_public_state.GetValue() != eStateRunning) { 3260 // Ditch all thread plans, and remove all our breakpoints: in case we 3261 // have to restart the target to kill it, we don't want it hitting a 3262 // breakpoint... Only do this if we've stopped, however, since if we 3263 // didn't manage to halt it above, then we're not going to have much luck 3264 // doing this now. 3265 m_thread_list.DiscardThreadPlans(); 3266 DisableAllBreakpointSites(); 3267 } 3268 3269 error = DoDestroy(); 3270 if (error.Success()) { 3271 DidDestroy(); 3272 StopPrivateStateThread(); 3273 } 3274 m_stdio_communication.Disconnect(); 3275 m_stdio_communication.StopReadThread(); 3276 m_stdin_forward = false; 3277 3278 if (m_process_input_reader) { 3279 m_process_input_reader->SetIsDone(true); 3280 m_process_input_reader->Cancel(); 3281 m_process_input_reader.reset(); 3282 } 3283 3284 // If we exited when we were waiting for a process to stop, then forward 3285 // the event here so we don't lose the event 3286 if (exit_event_sp) { 3287 // Directly broadcast our exited event because we shut down our private 3288 // state thread above 3289 BroadcastEvent(exit_event_sp); 3290 } 3291 3292 // If we have been interrupted (to kill us) in the middle of running, we 3293 // may not end up propagating the last events through the event system, in 3294 // which case we might strand the write lock. Unlock it here so when we do 3295 // to tear down the process we don't get an error destroying the lock. 3296 m_public_run_lock.SetStopped(); 3297 } 3298 3299 m_destroy_in_process = false; 3300 3301 return error; 3302 } 3303 3304 Status Process::Signal(int signal) { 3305 Status error(WillSignal()); 3306 if (error.Success()) { 3307 error = DoSignal(signal); 3308 if (error.Success()) 3309 DidSignal(); 3310 } 3311 return error; 3312 } 3313 3314 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3315 assert(signals_sp && "null signals_sp"); 3316 m_unix_signals_sp = signals_sp; 3317 } 3318 3319 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3320 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3321 return m_unix_signals_sp; 3322 } 3323 3324 lldb::ByteOrder Process::GetByteOrder() const { 3325 return GetTarget().GetArchitecture().GetByteOrder(); 3326 } 3327 3328 uint32_t Process::GetAddressByteSize() const { 3329 return GetTarget().GetArchitecture().GetAddressByteSize(); 3330 } 3331 3332 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3333 const StateType state = 3334 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3335 bool return_value = true; 3336 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3337 LIBLLDB_LOG_PROCESS)); 3338 3339 switch (state) { 3340 case eStateDetached: 3341 case eStateExited: 3342 case eStateUnloaded: 3343 m_stdio_communication.SynchronizeWithReadThread(); 3344 m_stdio_communication.Disconnect(); 3345 m_stdio_communication.StopReadThread(); 3346 m_stdin_forward = false; 3347 3348 LLVM_FALLTHROUGH; 3349 case eStateConnected: 3350 case eStateAttaching: 3351 case eStateLaunching: 3352 // These events indicate changes in the state of the debugging session, 3353 // always report them. 3354 return_value = true; 3355 break; 3356 case eStateInvalid: 3357 // We stopped for no apparent reason, don't report it. 3358 return_value = false; 3359 break; 3360 case eStateRunning: 3361 case eStateStepping: 3362 // If we've started the target running, we handle the cases where we are 3363 // already running and where there is a transition from stopped to running 3364 // differently. running -> running: Automatically suppress extra running 3365 // events stopped -> running: Report except when there is one or more no 3366 // votes 3367 // and no yes votes. 3368 SynchronouslyNotifyStateChanged(state); 3369 if (m_force_next_event_delivery) 3370 return_value = true; 3371 else { 3372 switch (m_last_broadcast_state) { 3373 case eStateRunning: 3374 case eStateStepping: 3375 // We always suppress multiple runnings with no PUBLIC stop in between. 3376 return_value = false; 3377 break; 3378 default: 3379 // TODO: make this work correctly. For now always report 3380 // run if we aren't running so we don't miss any running events. If I 3381 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3382 // and hit the breakpoints on multiple threads, then somehow during the 3383 // stepping over of all breakpoints no run gets reported. 3384 3385 // This is a transition from stop to run. 3386 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3387 case eVoteYes: 3388 case eVoteNoOpinion: 3389 return_value = true; 3390 break; 3391 case eVoteNo: 3392 return_value = false; 3393 break; 3394 } 3395 break; 3396 } 3397 } 3398 break; 3399 case eStateStopped: 3400 case eStateCrashed: 3401 case eStateSuspended: 3402 // We've stopped. First see if we're going to restart the target. If we 3403 // are going to stop, then we always broadcast the event. If we aren't 3404 // going to stop, let the thread plans decide if we're going to report this 3405 // event. If no thread has an opinion, we don't report it. 3406 3407 m_stdio_communication.SynchronizeWithReadThread(); 3408 RefreshStateAfterStop(); 3409 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3410 LLDB_LOGF(log, 3411 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3412 "interrupt, state: %s", 3413 static_cast<void *>(event_ptr), StateAsCString(state)); 3414 // Even though we know we are going to stop, we should let the threads 3415 // have a look at the stop, so they can properly set their state. 3416 m_thread_list.ShouldStop(event_ptr); 3417 return_value = true; 3418 } else { 3419 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3420 bool should_resume = false; 3421 3422 // It makes no sense to ask "ShouldStop" if we've already been 3423 // restarted... Asking the thread list is also not likely to go well, 3424 // since we are running again. So in that case just report the event. 3425 3426 if (!was_restarted) 3427 should_resume = !m_thread_list.ShouldStop(event_ptr); 3428 3429 if (was_restarted || should_resume || m_resume_requested) { 3430 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3431 LLDB_LOGF(log, 3432 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3433 "%s was_restarted: %i stop_vote: %d.", 3434 should_resume, StateAsCString(state), was_restarted, 3435 stop_vote); 3436 3437 switch (stop_vote) { 3438 case eVoteYes: 3439 return_value = true; 3440 break; 3441 case eVoteNoOpinion: 3442 case eVoteNo: 3443 return_value = false; 3444 break; 3445 } 3446 3447 if (!was_restarted) { 3448 LLDB_LOGF(log, 3449 "Process::ShouldBroadcastEvent (%p) Restarting process " 3450 "from state: %s", 3451 static_cast<void *>(event_ptr), StateAsCString(state)); 3452 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3453 PrivateResume(); 3454 } 3455 } else { 3456 return_value = true; 3457 SynchronouslyNotifyStateChanged(state); 3458 } 3459 } 3460 break; 3461 } 3462 3463 // Forcing the next event delivery is a one shot deal. So reset it here. 3464 m_force_next_event_delivery = false; 3465 3466 // We do some coalescing of events (for instance two consecutive running 3467 // events get coalesced.) But we only coalesce against events we actually 3468 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3469 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3470 // done, because the PublicState reflects the last event pulled off the 3471 // queue, and there may be several events stacked up on the queue unserviced. 3472 // So the PublicState may not reflect the last broadcasted event yet. 3473 // m_last_broadcast_state gets updated here. 3474 3475 if (return_value) 3476 m_last_broadcast_state = state; 3477 3478 LLDB_LOGF(log, 3479 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3480 "broadcast state: %s - %s", 3481 static_cast<void *>(event_ptr), StateAsCString(state), 3482 StateAsCString(m_last_broadcast_state), 3483 return_value ? "YES" : "NO"); 3484 return return_value; 3485 } 3486 3487 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3488 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3489 3490 bool already_running = PrivateStateThreadIsValid(); 3491 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3492 already_running ? " already running" 3493 : " starting private state thread"); 3494 3495 if (!is_secondary_thread && already_running) 3496 return true; 3497 3498 // Create a thread that watches our internal state and controls which events 3499 // make it to clients (into the DCProcess event queue). 3500 char thread_name[1024]; 3501 uint32_t max_len = llvm::get_max_thread_name_length(); 3502 if (max_len > 0 && max_len <= 30) { 3503 // On platforms with abbreviated thread name lengths, choose thread names 3504 // that fit within the limit. 3505 if (already_running) 3506 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3507 else 3508 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3509 } else { 3510 if (already_running) 3511 snprintf(thread_name, sizeof(thread_name), 3512 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3513 GetID()); 3514 else 3515 snprintf(thread_name, sizeof(thread_name), 3516 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3517 } 3518 3519 // Create the private state thread, and start it running. 3520 PrivateStateThreadArgs *args_ptr = 3521 new PrivateStateThreadArgs(this, is_secondary_thread); 3522 llvm::Expected<HostThread> private_state_thread = 3523 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3524 (void *)args_ptr, 8 * 1024 * 1024); 3525 if (!private_state_thread) { 3526 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3527 "failed to launch host thread: {}", 3528 llvm::toString(private_state_thread.takeError())); 3529 return false; 3530 } 3531 3532 assert(private_state_thread->IsJoinable()); 3533 m_private_state_thread = *private_state_thread; 3534 ResumePrivateStateThread(); 3535 return true; 3536 } 3537 3538 void Process::PausePrivateStateThread() { 3539 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3540 } 3541 3542 void Process::ResumePrivateStateThread() { 3543 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3544 } 3545 3546 void Process::StopPrivateStateThread() { 3547 if (m_private_state_thread.IsJoinable()) 3548 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3549 else { 3550 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3551 LLDB_LOGF( 3552 log, 3553 "Went to stop the private state thread, but it was already invalid."); 3554 } 3555 } 3556 3557 void Process::ControlPrivateStateThread(uint32_t signal) { 3558 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3559 3560 assert(signal == eBroadcastInternalStateControlStop || 3561 signal == eBroadcastInternalStateControlPause || 3562 signal == eBroadcastInternalStateControlResume); 3563 3564 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3565 3566 // Signal the private state thread 3567 if (m_private_state_thread.IsJoinable()) { 3568 // Broadcast the event. 3569 // It is important to do this outside of the if below, because it's 3570 // possible that the thread state is invalid but that the thread is waiting 3571 // on a control event instead of simply being on its way out (this should 3572 // not happen, but it apparently can). 3573 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3574 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3575 m_private_state_control_broadcaster.BroadcastEvent(signal, 3576 event_receipt_sp); 3577 3578 // Wait for the event receipt or for the private state thread to exit 3579 bool receipt_received = false; 3580 if (PrivateStateThreadIsValid()) { 3581 while (!receipt_received) { 3582 // Check for a receipt for n seconds and then check if the private 3583 // state thread is still around. 3584 receipt_received = 3585 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3586 if (!receipt_received) { 3587 // Check if the private state thread is still around. If it isn't 3588 // then we are done waiting 3589 if (!PrivateStateThreadIsValid()) 3590 break; // Private state thread exited or is exiting, we are done 3591 } 3592 } 3593 } 3594 3595 if (signal == eBroadcastInternalStateControlStop) { 3596 thread_result_t result = {}; 3597 m_private_state_thread.Join(&result); 3598 m_private_state_thread.Reset(); 3599 } 3600 } else { 3601 LLDB_LOGF( 3602 log, 3603 "Private state thread already dead, no need to signal it to stop."); 3604 } 3605 } 3606 3607 void Process::SendAsyncInterrupt() { 3608 if (PrivateStateThreadIsValid()) 3609 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3610 nullptr); 3611 else 3612 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3613 } 3614 3615 void Process::HandlePrivateEvent(EventSP &event_sp) { 3616 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3617 m_resume_requested = false; 3618 3619 const StateType new_state = 3620 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3621 3622 // First check to see if anybody wants a shot at this event: 3623 if (m_next_event_action_up) { 3624 NextEventAction::EventActionResult action_result = 3625 m_next_event_action_up->PerformAction(event_sp); 3626 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3627 3628 switch (action_result) { 3629 case NextEventAction::eEventActionSuccess: 3630 SetNextEventAction(nullptr); 3631 break; 3632 3633 case NextEventAction::eEventActionRetry: 3634 break; 3635 3636 case NextEventAction::eEventActionExit: 3637 // Handle Exiting Here. If we already got an exited event, we should 3638 // just propagate it. Otherwise, swallow this event, and set our state 3639 // to exit so the next event will kill us. 3640 if (new_state != eStateExited) { 3641 // FIXME: should cons up an exited event, and discard this one. 3642 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3643 SetNextEventAction(nullptr); 3644 return; 3645 } 3646 SetNextEventAction(nullptr); 3647 break; 3648 } 3649 } 3650 3651 // See if we should broadcast this state to external clients? 3652 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3653 3654 if (should_broadcast) { 3655 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3656 if (log) { 3657 LLDB_LOGF(log, 3658 "Process::%s (pid = %" PRIu64 3659 ") broadcasting new state %s (old state %s) to %s", 3660 __FUNCTION__, GetID(), StateAsCString(new_state), 3661 StateAsCString(GetState()), 3662 is_hijacked ? "hijacked" : "public"); 3663 } 3664 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3665 if (StateIsRunningState(new_state)) { 3666 // Only push the input handler if we aren't fowarding events, as this 3667 // means the curses GUI is in use... Or don't push it if we are launching 3668 // since it will come up stopped. 3669 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3670 new_state != eStateLaunching && new_state != eStateAttaching) { 3671 PushProcessIOHandler(); 3672 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3673 eBroadcastAlways); 3674 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3675 __FUNCTION__, m_iohandler_sync.GetValue()); 3676 } 3677 } else if (StateIsStoppedState(new_state, false)) { 3678 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3679 // If the lldb_private::Debugger is handling the events, we don't want 3680 // to pop the process IOHandler here, we want to do it when we receive 3681 // the stopped event so we can carefully control when the process 3682 // IOHandler is popped because when we stop we want to display some 3683 // text stating how and why we stopped, then maybe some 3684 // process/thread/frame info, and then we want the "(lldb) " prompt to 3685 // show up. If we pop the process IOHandler here, then we will cause 3686 // the command interpreter to become the top IOHandler after the 3687 // process pops off and it will update its prompt right away... See the 3688 // Debugger.cpp file where it calls the function as 3689 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3690 // Otherwise we end up getting overlapping "(lldb) " prompts and 3691 // garbled output. 3692 // 3693 // If we aren't handling the events in the debugger (which is indicated 3694 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3695 // we are hijacked, then we always pop the process IO handler manually. 3696 // Hijacking happens when the internal process state thread is running 3697 // thread plans, or when commands want to run in synchronous mode and 3698 // they call "process->WaitForProcessToStop()". An example of something 3699 // that will hijack the events is a simple expression: 3700 // 3701 // (lldb) expr (int)puts("hello") 3702 // 3703 // This will cause the internal process state thread to resume and halt 3704 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3705 // events) and we do need the IO handler to be pushed and popped 3706 // correctly. 3707 3708 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3709 PopProcessIOHandler(); 3710 } 3711 } 3712 3713 BroadcastEvent(event_sp); 3714 } else { 3715 if (log) { 3716 LLDB_LOGF( 3717 log, 3718 "Process::%s (pid = %" PRIu64 3719 ") suppressing state %s (old state %s): should_broadcast == false", 3720 __FUNCTION__, GetID(), StateAsCString(new_state), 3721 StateAsCString(GetState())); 3722 } 3723 } 3724 } 3725 3726 Status Process::HaltPrivate() { 3727 EventSP event_sp; 3728 Status error(WillHalt()); 3729 if (error.Fail()) 3730 return error; 3731 3732 // Ask the process subclass to actually halt our process 3733 bool caused_stop; 3734 error = DoHalt(caused_stop); 3735 3736 DidHalt(); 3737 return error; 3738 } 3739 3740 thread_result_t Process::PrivateStateThread(void *arg) { 3741 std::unique_ptr<PrivateStateThreadArgs> args_up( 3742 static_cast<PrivateStateThreadArgs *>(arg)); 3743 thread_result_t result = 3744 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3745 return result; 3746 } 3747 3748 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3749 bool control_only = true; 3750 3751 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3752 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3753 __FUNCTION__, static_cast<void *>(this), GetID()); 3754 3755 bool exit_now = false; 3756 bool interrupt_requested = false; 3757 while (!exit_now) { 3758 EventSP event_sp; 3759 GetEventsPrivate(event_sp, llvm::None, control_only); 3760 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3761 LLDB_LOGF(log, 3762 "Process::%s (arg = %p, pid = %" PRIu64 3763 ") got a control event: %d", 3764 __FUNCTION__, static_cast<void *>(this), GetID(), 3765 event_sp->GetType()); 3766 3767 switch (event_sp->GetType()) { 3768 case eBroadcastInternalStateControlStop: 3769 exit_now = true; 3770 break; // doing any internal state management below 3771 3772 case eBroadcastInternalStateControlPause: 3773 control_only = true; 3774 break; 3775 3776 case eBroadcastInternalStateControlResume: 3777 control_only = false; 3778 break; 3779 } 3780 3781 continue; 3782 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3783 if (m_public_state.GetValue() == eStateAttaching) { 3784 LLDB_LOGF(log, 3785 "Process::%s (arg = %p, pid = %" PRIu64 3786 ") woke up with an interrupt while attaching - " 3787 "forwarding interrupt.", 3788 __FUNCTION__, static_cast<void *>(this), GetID()); 3789 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3790 } else if (StateIsRunningState(m_last_broadcast_state)) { 3791 LLDB_LOGF(log, 3792 "Process::%s (arg = %p, pid = %" PRIu64 3793 ") woke up with an interrupt - Halting.", 3794 __FUNCTION__, static_cast<void *>(this), GetID()); 3795 Status error = HaltPrivate(); 3796 if (error.Fail() && log) 3797 LLDB_LOGF(log, 3798 "Process::%s (arg = %p, pid = %" PRIu64 3799 ") failed to halt the process: %s", 3800 __FUNCTION__, static_cast<void *>(this), GetID(), 3801 error.AsCString()); 3802 // Halt should generate a stopped event. Make a note of the fact that 3803 // we were doing the interrupt, so we can set the interrupted flag 3804 // after we receive the event. We deliberately set this to true even if 3805 // HaltPrivate failed, so that we can interrupt on the next natural 3806 // stop. 3807 interrupt_requested = true; 3808 } else { 3809 // This can happen when someone (e.g. Process::Halt) sees that we are 3810 // running and sends an interrupt request, but the process actually 3811 // stops before we receive it. In that case, we can just ignore the 3812 // request. We use m_last_broadcast_state, because the Stopped event 3813 // may not have been popped of the event queue yet, which is when the 3814 // public state gets updated. 3815 LLDB_LOGF(log, 3816 "Process::%s ignoring interrupt as we have already stopped.", 3817 __FUNCTION__); 3818 } 3819 continue; 3820 } 3821 3822 const StateType internal_state = 3823 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3824 3825 if (internal_state != eStateInvalid) { 3826 if (m_clear_thread_plans_on_stop && 3827 StateIsStoppedState(internal_state, true)) { 3828 m_clear_thread_plans_on_stop = false; 3829 m_thread_list.DiscardThreadPlans(); 3830 } 3831 3832 if (interrupt_requested) { 3833 if (StateIsStoppedState(internal_state, true)) { 3834 // We requested the interrupt, so mark this as such in the stop event 3835 // so clients can tell an interrupted process from a natural stop 3836 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3837 interrupt_requested = false; 3838 } else if (log) { 3839 LLDB_LOGF(log, 3840 "Process::%s interrupt_requested, but a non-stopped " 3841 "state '%s' received.", 3842 __FUNCTION__, StateAsCString(internal_state)); 3843 } 3844 } 3845 3846 HandlePrivateEvent(event_sp); 3847 } 3848 3849 if (internal_state == eStateInvalid || internal_state == eStateExited || 3850 internal_state == eStateDetached) { 3851 LLDB_LOGF(log, 3852 "Process::%s (arg = %p, pid = %" PRIu64 3853 ") about to exit with internal state %s...", 3854 __FUNCTION__, static_cast<void *>(this), GetID(), 3855 StateAsCString(internal_state)); 3856 3857 break; 3858 } 3859 } 3860 3861 // Verify log is still enabled before attempting to write to it... 3862 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3863 __FUNCTION__, static_cast<void *>(this), GetID()); 3864 3865 // If we are a secondary thread, then the primary thread we are working for 3866 // will have already acquired the public_run_lock, and isn't done with what 3867 // it was doing yet, so don't try to change it on the way out. 3868 if (!is_secondary_thread) 3869 m_public_run_lock.SetStopped(); 3870 return {}; 3871 } 3872 3873 // Process Event Data 3874 3875 Process::ProcessEventData::ProcessEventData() 3876 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3877 m_update_state(0), m_interrupted(false) {} 3878 3879 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3880 StateType state) 3881 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3882 m_update_state(0), m_interrupted(false) { 3883 if (process_sp) 3884 m_process_wp = process_sp; 3885 } 3886 3887 Process::ProcessEventData::~ProcessEventData() = default; 3888 3889 ConstString Process::ProcessEventData::GetFlavorString() { 3890 static ConstString g_flavor("Process::ProcessEventData"); 3891 return g_flavor; 3892 } 3893 3894 ConstString Process::ProcessEventData::GetFlavor() const { 3895 return ProcessEventData::GetFlavorString(); 3896 } 3897 3898 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3899 ProcessSP process_sp(m_process_wp.lock()); 3900 3901 if (!process_sp) 3902 return; 3903 3904 // This function gets called twice for each event, once when the event gets 3905 // pulled off of the private process event queue, and then any number of 3906 // times, first when it gets pulled off of the public event queue, then other 3907 // times when we're pretending that this is where we stopped at the end of 3908 // expression evaluation. m_update_state is used to distinguish these three 3909 // cases; it is 0 when we're just pulling it off for private handling, and > 3910 // 1 for expression evaluation, and we don't want to do the breakpoint 3911 // command handling then. 3912 if (m_update_state != 1) 3913 return; 3914 3915 process_sp->SetPublicState( 3916 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 3917 3918 if (m_state == eStateStopped && !m_restarted) { 3919 // Let process subclasses know we are about to do a public stop and do 3920 // anything they might need to in order to speed up register and memory 3921 // accesses. 3922 process_sp->WillPublicStop(); 3923 } 3924 3925 // If this is a halt event, even if the halt stopped with some reason other 3926 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 3927 // the halt request came through) don't do the StopInfo actions, as they may 3928 // end up restarting the process. 3929 if (m_interrupted) 3930 return; 3931 3932 // If we're stopped and haven't restarted, then do the StopInfo actions here: 3933 if (m_state == eStateStopped && !m_restarted) { 3934 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3935 uint32_t num_threads = curr_thread_list.GetSize(); 3936 uint32_t idx; 3937 3938 // The actions might change one of the thread's stop_info's opinions about 3939 // whether we should stop the process, so we need to query that as we go. 3940 3941 // One other complication here, is that we try to catch any case where the 3942 // target has run (except for expressions) and immediately exit, but if we 3943 // get that wrong (which is possible) then the thread list might have 3944 // changed, and that would cause our iteration here to crash. We could 3945 // make a copy of the thread list, but we'd really like to also know if it 3946 // has changed at all, so we make up a vector of the thread ID's and check 3947 // what we get back against this list & bag out if anything differs. 3948 std::vector<uint32_t> thread_index_array(num_threads); 3949 for (idx = 0; idx < num_threads; ++idx) 3950 thread_index_array[idx] = 3951 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 3952 3953 // Use this to track whether we should continue from here. We will only 3954 // continue the target running if no thread says we should stop. Of course 3955 // if some thread's PerformAction actually sets the target running, then it 3956 // doesn't matter what the other threads say... 3957 3958 bool still_should_stop = false; 3959 3960 // Sometimes - for instance if we have a bug in the stub we are talking to, 3961 // we stop but no thread has a valid stop reason. In that case we should 3962 // just stop, because we have no way of telling what the right thing to do 3963 // is, and it's better to let the user decide than continue behind their 3964 // backs. 3965 3966 bool does_anybody_have_an_opinion = false; 3967 3968 for (idx = 0; idx < num_threads; ++idx) { 3969 curr_thread_list = process_sp->GetThreadList(); 3970 if (curr_thread_list.GetSize() != num_threads) { 3971 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3972 LIBLLDB_LOG_PROCESS)); 3973 LLDB_LOGF( 3974 log, 3975 "Number of threads changed from %u to %u while processing event.", 3976 num_threads, curr_thread_list.GetSize()); 3977 break; 3978 } 3979 3980 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3981 3982 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3983 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3984 LIBLLDB_LOG_PROCESS)); 3985 LLDB_LOGF(log, 3986 "The thread at position %u changed from %u to %u while " 3987 "processing event.", 3988 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3989 break; 3990 } 3991 3992 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3993 if (stop_info_sp && stop_info_sp->IsValid()) { 3994 does_anybody_have_an_opinion = true; 3995 bool this_thread_wants_to_stop; 3996 if (stop_info_sp->GetOverrideShouldStop()) { 3997 this_thread_wants_to_stop = 3998 stop_info_sp->GetOverriddenShouldStopValue(); 3999 } else { 4000 stop_info_sp->PerformAction(event_ptr); 4001 // The stop action might restart the target. If it does, then we 4002 // want to mark that in the event so that whoever is receiving it 4003 // will know to wait for the running event and reflect that state 4004 // appropriately. We also need to stop processing actions, since they 4005 // aren't expecting the target to be running. 4006 4007 // FIXME: we might have run. 4008 if (stop_info_sp->HasTargetRunSinceMe()) { 4009 SetRestarted(true); 4010 break; 4011 } 4012 4013 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4014 } 4015 4016 if (!still_should_stop) 4017 still_should_stop = this_thread_wants_to_stop; 4018 } 4019 } 4020 4021 if (!GetRestarted()) { 4022 if (!still_should_stop && does_anybody_have_an_opinion) { 4023 // We've been asked to continue, so do that here. 4024 SetRestarted(true); 4025 // Use the public resume method here, since this is just extending a 4026 // public resume. 4027 process_sp->PrivateResume(); 4028 } else { 4029 bool hijacked = 4030 process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4031 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4032 4033 if (!hijacked) { 4034 // If we didn't restart, run the Stop Hooks here. 4035 // Don't do that if state changed events aren't hooked up to the 4036 // public (or SyncResume) broadcasters. StopHooks are just for 4037 // real public stops. They might also restart the target, 4038 // so watch for that. 4039 process_sp->GetTarget().RunStopHooks(); 4040 if (process_sp->GetPrivateState() == eStateRunning) 4041 SetRestarted(true); 4042 } 4043 } 4044 } 4045 } 4046 } 4047 4048 void Process::ProcessEventData::Dump(Stream *s) const { 4049 ProcessSP process_sp(m_process_wp.lock()); 4050 4051 if (process_sp) 4052 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4053 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4054 else 4055 s->PutCString(" process = NULL, "); 4056 4057 s->Printf("state = %s", StateAsCString(GetState())); 4058 } 4059 4060 const Process::ProcessEventData * 4061 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4062 if (event_ptr) { 4063 const EventData *event_data = event_ptr->GetData(); 4064 if (event_data && 4065 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4066 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4067 } 4068 return nullptr; 4069 } 4070 4071 ProcessSP 4072 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4073 ProcessSP process_sp; 4074 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4075 if (data) 4076 process_sp = data->GetProcessSP(); 4077 return process_sp; 4078 } 4079 4080 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4081 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4082 if (data == nullptr) 4083 return eStateInvalid; 4084 else 4085 return data->GetState(); 4086 } 4087 4088 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4089 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4090 if (data == nullptr) 4091 return false; 4092 else 4093 return data->GetRestarted(); 4094 } 4095 4096 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4097 bool new_value) { 4098 ProcessEventData *data = 4099 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4100 if (data != nullptr) 4101 data->SetRestarted(new_value); 4102 } 4103 4104 size_t 4105 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4106 ProcessEventData *data = 4107 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4108 if (data != nullptr) 4109 return data->GetNumRestartedReasons(); 4110 else 4111 return 0; 4112 } 4113 4114 const char * 4115 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4116 size_t idx) { 4117 ProcessEventData *data = 4118 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4119 if (data != nullptr) 4120 return data->GetRestartedReasonAtIndex(idx); 4121 else 4122 return nullptr; 4123 } 4124 4125 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4126 const char *reason) { 4127 ProcessEventData *data = 4128 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4129 if (data != nullptr) 4130 data->AddRestartedReason(reason); 4131 } 4132 4133 bool Process::ProcessEventData::GetInterruptedFromEvent( 4134 const Event *event_ptr) { 4135 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4136 if (data == nullptr) 4137 return false; 4138 else 4139 return data->GetInterrupted(); 4140 } 4141 4142 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4143 bool new_value) { 4144 ProcessEventData *data = 4145 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4146 if (data != nullptr) 4147 data->SetInterrupted(new_value); 4148 } 4149 4150 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4151 ProcessEventData *data = 4152 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4153 if (data) { 4154 data->SetUpdateStateOnRemoval(); 4155 return true; 4156 } 4157 return false; 4158 } 4159 4160 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4161 4162 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4163 exe_ctx.SetTargetPtr(&GetTarget()); 4164 exe_ctx.SetProcessPtr(this); 4165 exe_ctx.SetThreadPtr(nullptr); 4166 exe_ctx.SetFramePtr(nullptr); 4167 } 4168 4169 // uint32_t 4170 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4171 // std::vector<lldb::pid_t> &pids) 4172 //{ 4173 // return 0; 4174 //} 4175 // 4176 // ArchSpec 4177 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4178 //{ 4179 // return Host::GetArchSpecForExistingProcess (pid); 4180 //} 4181 // 4182 // ArchSpec 4183 // Process::GetArchSpecForExistingProcess (const char *process_name) 4184 //{ 4185 // return Host::GetArchSpecForExistingProcess (process_name); 4186 //} 4187 4188 void Process::AppendSTDOUT(const char *s, size_t len) { 4189 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4190 m_stdout_data.append(s, len); 4191 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4192 new ProcessEventData(shared_from_this(), GetState())); 4193 } 4194 4195 void Process::AppendSTDERR(const char *s, size_t len) { 4196 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4197 m_stderr_data.append(s, len); 4198 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4199 new ProcessEventData(shared_from_this(), GetState())); 4200 } 4201 4202 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4203 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4204 m_profile_data.push_back(one_profile_data); 4205 BroadcastEventIfUnique(eBroadcastBitProfileData, 4206 new ProcessEventData(shared_from_this(), GetState())); 4207 } 4208 4209 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4210 const StructuredDataPluginSP &plugin_sp) { 4211 BroadcastEvent( 4212 eBroadcastBitStructuredData, 4213 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4214 } 4215 4216 StructuredDataPluginSP 4217 Process::GetStructuredDataPlugin(ConstString type_name) const { 4218 auto find_it = m_structured_data_plugin_map.find(type_name); 4219 if (find_it != m_structured_data_plugin_map.end()) 4220 return find_it->second; 4221 else 4222 return StructuredDataPluginSP(); 4223 } 4224 4225 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4226 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4227 if (m_profile_data.empty()) 4228 return 0; 4229 4230 std::string &one_profile_data = m_profile_data.front(); 4231 size_t bytes_available = one_profile_data.size(); 4232 if (bytes_available > 0) { 4233 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4234 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4235 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4236 if (bytes_available > buf_size) { 4237 memcpy(buf, one_profile_data.c_str(), buf_size); 4238 one_profile_data.erase(0, buf_size); 4239 bytes_available = buf_size; 4240 } else { 4241 memcpy(buf, one_profile_data.c_str(), bytes_available); 4242 m_profile_data.erase(m_profile_data.begin()); 4243 } 4244 } 4245 return bytes_available; 4246 } 4247 4248 // Process STDIO 4249 4250 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4251 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4252 size_t bytes_available = m_stdout_data.size(); 4253 if (bytes_available > 0) { 4254 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4255 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4256 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4257 if (bytes_available > buf_size) { 4258 memcpy(buf, m_stdout_data.c_str(), buf_size); 4259 m_stdout_data.erase(0, buf_size); 4260 bytes_available = buf_size; 4261 } else { 4262 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4263 m_stdout_data.clear(); 4264 } 4265 } 4266 return bytes_available; 4267 } 4268 4269 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4270 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4271 size_t bytes_available = m_stderr_data.size(); 4272 if (bytes_available > 0) { 4273 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4274 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4275 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4276 if (bytes_available > buf_size) { 4277 memcpy(buf, m_stderr_data.c_str(), buf_size); 4278 m_stderr_data.erase(0, buf_size); 4279 bytes_available = buf_size; 4280 } else { 4281 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4282 m_stderr_data.clear(); 4283 } 4284 } 4285 return bytes_available; 4286 } 4287 4288 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4289 size_t src_len) { 4290 Process *process = (Process *)baton; 4291 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4292 } 4293 4294 class IOHandlerProcessSTDIO : public IOHandler { 4295 public: 4296 IOHandlerProcessSTDIO(Process *process, int write_fd) 4297 : IOHandler(process->GetTarget().GetDebugger(), 4298 IOHandler::Type::ProcessIO), 4299 m_process(process), 4300 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4301 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4302 m_pipe.CreateNew(false); 4303 } 4304 4305 ~IOHandlerProcessSTDIO() override = default; 4306 4307 // Each IOHandler gets to run until it is done. It should read data from the 4308 // "in" and place output into "out" and "err and return when done. 4309 void Run() override { 4310 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4311 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4312 SetIsDone(true); 4313 return; 4314 } 4315 4316 SetIsDone(false); 4317 const int read_fd = m_read_file.GetDescriptor(); 4318 TerminalState terminal_state; 4319 terminal_state.Save(read_fd, false); 4320 Terminal terminal(read_fd); 4321 terminal.SetCanonical(false); 4322 terminal.SetEcho(false); 4323 // FD_ZERO, FD_SET are not supported on windows 4324 #ifndef _WIN32 4325 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4326 m_is_running = true; 4327 while (!GetIsDone()) { 4328 SelectHelper select_helper; 4329 select_helper.FDSetRead(read_fd); 4330 select_helper.FDSetRead(pipe_read_fd); 4331 Status error = select_helper.Select(); 4332 4333 if (error.Fail()) { 4334 SetIsDone(true); 4335 } else { 4336 char ch = 0; 4337 size_t n; 4338 if (select_helper.FDIsSetRead(read_fd)) { 4339 n = 1; 4340 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4341 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4342 SetIsDone(true); 4343 } else 4344 SetIsDone(true); 4345 } 4346 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4347 size_t bytes_read; 4348 // Consume the interrupt byte 4349 Status error = m_pipe.Read(&ch, 1, bytes_read); 4350 if (error.Success()) { 4351 switch (ch) { 4352 case 'q': 4353 SetIsDone(true); 4354 break; 4355 case 'i': 4356 if (StateIsRunningState(m_process->GetState())) 4357 m_process->SendAsyncInterrupt(); 4358 break; 4359 } 4360 } 4361 } 4362 } 4363 } 4364 m_is_running = false; 4365 #endif 4366 terminal_state.Restore(); 4367 } 4368 4369 void Cancel() override { 4370 SetIsDone(true); 4371 // Only write to our pipe to cancel if we are in 4372 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4373 // is being run from the command interpreter: 4374 // 4375 // (lldb) step_process_thousands_of_times 4376 // 4377 // In this case the command interpreter will be in the middle of handling 4378 // the command and if the process pushes and pops the IOHandler thousands 4379 // of times, we can end up writing to m_pipe without ever consuming the 4380 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4381 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4382 if (m_is_running) { 4383 char ch = 'q'; // Send 'q' for quit 4384 size_t bytes_written = 0; 4385 m_pipe.Write(&ch, 1, bytes_written); 4386 } 4387 } 4388 4389 bool Interrupt() override { 4390 // Do only things that are safe to do in an interrupt context (like in a 4391 // SIGINT handler), like write 1 byte to a file descriptor. This will 4392 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4393 // that was written to the pipe and then call 4394 // m_process->SendAsyncInterrupt() from a much safer location in code. 4395 if (m_active) { 4396 char ch = 'i'; // Send 'i' for interrupt 4397 size_t bytes_written = 0; 4398 Status result = m_pipe.Write(&ch, 1, bytes_written); 4399 return result.Success(); 4400 } else { 4401 // This IOHandler might be pushed on the stack, but not being run 4402 // currently so do the right thing if we aren't actively watching for 4403 // STDIN by sending the interrupt to the process. Otherwise the write to 4404 // the pipe above would do nothing. This can happen when the command 4405 // interpreter is running and gets a "expression ...". It will be on the 4406 // IOHandler thread and sending the input is complete to the delegate 4407 // which will cause the expression to run, which will push the process IO 4408 // handler, but not run it. 4409 4410 if (StateIsRunningState(m_process->GetState())) { 4411 m_process->SendAsyncInterrupt(); 4412 return true; 4413 } 4414 } 4415 return false; 4416 } 4417 4418 void GotEOF() override {} 4419 4420 protected: 4421 Process *m_process; 4422 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4423 NativeFile m_write_file; // Write to this file (usually the master pty for 4424 // getting io to debuggee) 4425 Pipe m_pipe; 4426 std::atomic<bool> m_is_running{false}; 4427 }; 4428 4429 void Process::SetSTDIOFileDescriptor(int fd) { 4430 // First set up the Read Thread for reading/handling process I/O 4431 4432 std::unique_ptr<ConnectionFileDescriptor> conn_up( 4433 new ConnectionFileDescriptor(fd, true)); 4434 4435 if (conn_up) { 4436 m_stdio_communication.SetConnection(conn_up.release()); 4437 if (m_stdio_communication.IsConnected()) { 4438 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4439 STDIOReadThreadBytesReceived, this); 4440 m_stdio_communication.StartReadThread(); 4441 4442 // Now read thread is set up, set up input reader. 4443 4444 if (!m_process_input_reader) 4445 m_process_input_reader = 4446 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4447 } 4448 } 4449 } 4450 4451 bool Process::ProcessIOHandlerIsActive() { 4452 IOHandlerSP io_handler_sp(m_process_input_reader); 4453 if (io_handler_sp) 4454 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4455 return false; 4456 } 4457 bool Process::PushProcessIOHandler() { 4458 IOHandlerSP io_handler_sp(m_process_input_reader); 4459 if (io_handler_sp) { 4460 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4461 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4462 4463 io_handler_sp->SetIsDone(false); 4464 // If we evaluate an utility function, then we don't cancel the current 4465 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4466 // existing IOHandler that potentially provides the user interface (e.g. 4467 // the IOHandler for Editline). 4468 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4469 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4470 cancel_top_handler); 4471 return true; 4472 } 4473 return false; 4474 } 4475 4476 bool Process::PopProcessIOHandler() { 4477 IOHandlerSP io_handler_sp(m_process_input_reader); 4478 if (io_handler_sp) 4479 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4480 return false; 4481 } 4482 4483 // The process needs to know about installed plug-ins 4484 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4485 4486 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4487 4488 namespace { 4489 // RestorePlanState is used to record the "is private", "is master" and "okay 4490 // to discard" fields of the plan we are running, and reset it on Clean or on 4491 // destruction. It will only reset the state once, so you can call Clean and 4492 // then monkey with the state and it won't get reset on you again. 4493 4494 class RestorePlanState { 4495 public: 4496 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4497 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4498 if (m_thread_plan_sp) { 4499 m_private = m_thread_plan_sp->GetPrivate(); 4500 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4501 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4502 } 4503 } 4504 4505 ~RestorePlanState() { Clean(); } 4506 4507 void Clean() { 4508 if (!m_already_reset && m_thread_plan_sp) { 4509 m_already_reset = true; 4510 m_thread_plan_sp->SetPrivate(m_private); 4511 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4512 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4513 } 4514 } 4515 4516 private: 4517 lldb::ThreadPlanSP m_thread_plan_sp; 4518 bool m_already_reset; 4519 bool m_private; 4520 bool m_is_master; 4521 bool m_okay_to_discard; 4522 }; 4523 } // anonymous namespace 4524 4525 static microseconds 4526 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4527 const milliseconds default_one_thread_timeout(250); 4528 4529 // If the overall wait is forever, then we don't need to worry about it. 4530 if (!options.GetTimeout()) { 4531 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4532 : default_one_thread_timeout; 4533 } 4534 4535 // If the one thread timeout is set, use it. 4536 if (options.GetOneThreadTimeout()) 4537 return *options.GetOneThreadTimeout(); 4538 4539 // Otherwise use half the total timeout, bounded by the 4540 // default_one_thread_timeout. 4541 return std::min<microseconds>(default_one_thread_timeout, 4542 *options.GetTimeout() / 2); 4543 } 4544 4545 static Timeout<std::micro> 4546 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4547 bool before_first_timeout) { 4548 // If we are going to run all threads the whole time, or if we are only going 4549 // to run one thread, we can just return the overall timeout. 4550 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4551 return options.GetTimeout(); 4552 4553 if (before_first_timeout) 4554 return GetOneThreadExpressionTimeout(options); 4555 4556 if (!options.GetTimeout()) 4557 return llvm::None; 4558 else 4559 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4560 } 4561 4562 static llvm::Optional<ExpressionResults> 4563 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4564 RestorePlanState &restorer, const EventSP &event_sp, 4565 EventSP &event_to_broadcast_sp, 4566 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4567 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4568 4569 ThreadPlanSP plan = thread.GetCompletedPlan(); 4570 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4571 LLDB_LOG(log, "execution completed successfully"); 4572 4573 // Restore the plan state so it will get reported as intended when we are 4574 // done. 4575 restorer.Clean(); 4576 return eExpressionCompleted; 4577 } 4578 4579 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4580 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4581 stop_info_sp->ShouldNotify(event_sp.get())) { 4582 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4583 if (!options.DoesIgnoreBreakpoints()) { 4584 // Restore the plan state and then force Private to false. We are going 4585 // to stop because of this plan so we need it to become a public plan or 4586 // it won't report correctly when we continue to its termination later 4587 // on. 4588 restorer.Clean(); 4589 thread_plan_sp->SetPrivate(false); 4590 event_to_broadcast_sp = event_sp; 4591 } 4592 return eExpressionHitBreakpoint; 4593 } 4594 4595 if (!handle_interrupts && 4596 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4597 return llvm::None; 4598 4599 LLDB_LOG(log, "thread plan did not successfully complete"); 4600 if (!options.DoesUnwindOnError()) 4601 event_to_broadcast_sp = event_sp; 4602 return eExpressionInterrupted; 4603 } 4604 4605 ExpressionResults 4606 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4607 lldb::ThreadPlanSP &thread_plan_sp, 4608 const EvaluateExpressionOptions &options, 4609 DiagnosticManager &diagnostic_manager) { 4610 ExpressionResults return_value = eExpressionSetupError; 4611 4612 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4613 4614 if (!thread_plan_sp) { 4615 diagnostic_manager.PutString( 4616 eDiagnosticSeverityError, 4617 "RunThreadPlan called with empty thread plan."); 4618 return eExpressionSetupError; 4619 } 4620 4621 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4622 diagnostic_manager.PutString( 4623 eDiagnosticSeverityError, 4624 "RunThreadPlan called with an invalid thread plan."); 4625 return eExpressionSetupError; 4626 } 4627 4628 if (exe_ctx.GetProcessPtr() != this) { 4629 diagnostic_manager.PutString(eDiagnosticSeverityError, 4630 "RunThreadPlan called on wrong process."); 4631 return eExpressionSetupError; 4632 } 4633 4634 Thread *thread = exe_ctx.GetThreadPtr(); 4635 if (thread == nullptr) { 4636 diagnostic_manager.PutString(eDiagnosticSeverityError, 4637 "RunThreadPlan called with invalid thread."); 4638 return eExpressionSetupError; 4639 } 4640 4641 // We need to change some of the thread plan attributes for the thread plan 4642 // runner. This will restore them when we are done: 4643 4644 RestorePlanState thread_plan_restorer(thread_plan_sp); 4645 4646 // We rely on the thread plan we are running returning "PlanCompleted" if 4647 // when it successfully completes. For that to be true the plan can't be 4648 // private - since private plans suppress themselves in the GetCompletedPlan 4649 // call. 4650 4651 thread_plan_sp->SetPrivate(false); 4652 4653 // The plans run with RunThreadPlan also need to be terminal master plans or 4654 // when they are done we will end up asking the plan above us whether we 4655 // should stop, which may give the wrong answer. 4656 4657 thread_plan_sp->SetIsMasterPlan(true); 4658 thread_plan_sp->SetOkayToDiscard(false); 4659 4660 // If we are running some utility expression for LLDB, we now have to mark 4661 // this in the ProcesModID of this process. This RAII takes care of marking 4662 // and reverting the mark it once we are done running the expression. 4663 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4664 4665 if (m_private_state.GetValue() != eStateStopped) { 4666 diagnostic_manager.PutString( 4667 eDiagnosticSeverityError, 4668 "RunThreadPlan called while the private state was not stopped."); 4669 return eExpressionSetupError; 4670 } 4671 4672 // Save the thread & frame from the exe_ctx for restoration after we run 4673 const uint32_t thread_idx_id = thread->GetIndexID(); 4674 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4675 if (!selected_frame_sp) { 4676 thread->SetSelectedFrame(nullptr); 4677 selected_frame_sp = thread->GetSelectedFrame(); 4678 if (!selected_frame_sp) { 4679 diagnostic_manager.Printf( 4680 eDiagnosticSeverityError, 4681 "RunThreadPlan called without a selected frame on thread %d", 4682 thread_idx_id); 4683 return eExpressionSetupError; 4684 } 4685 } 4686 4687 // Make sure the timeout values make sense. The one thread timeout needs to 4688 // be smaller than the overall timeout. 4689 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4690 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4691 diagnostic_manager.PutString(eDiagnosticSeverityError, 4692 "RunThreadPlan called with one thread " 4693 "timeout greater than total timeout"); 4694 return eExpressionSetupError; 4695 } 4696 4697 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4698 4699 // N.B. Running the target may unset the currently selected thread and frame. 4700 // We don't want to do that either, so we should arrange to reset them as 4701 // well. 4702 4703 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4704 4705 uint32_t selected_tid; 4706 StackID selected_stack_id; 4707 if (selected_thread_sp) { 4708 selected_tid = selected_thread_sp->GetIndexID(); 4709 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4710 } else { 4711 selected_tid = LLDB_INVALID_THREAD_ID; 4712 } 4713 4714 HostThread backup_private_state_thread; 4715 lldb::StateType old_state = eStateInvalid; 4716 lldb::ThreadPlanSP stopper_base_plan_sp; 4717 4718 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4719 LIBLLDB_LOG_PROCESS)); 4720 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4721 // Yikes, we are running on the private state thread! So we can't wait for 4722 // public events on this thread, since we are the thread that is generating 4723 // public events. The simplest thing to do is to spin up a temporary thread 4724 // to handle private state thread events while we are fielding public 4725 // events here. 4726 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4727 "another state thread to handle the events."); 4728 4729 backup_private_state_thread = m_private_state_thread; 4730 4731 // One other bit of business: we want to run just this thread plan and 4732 // anything it pushes, and then stop, returning control here. But in the 4733 // normal course of things, the plan above us on the stack would be given a 4734 // shot at the stop event before deciding to stop, and we don't want that. 4735 // So we insert a "stopper" base plan on the stack before the plan we want 4736 // to run. Since base plans always stop and return control to the user, 4737 // that will do just what we want. 4738 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4739 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4740 // Have to make sure our public state is stopped, since otherwise the 4741 // reporting logic below doesn't work correctly. 4742 old_state = m_public_state.GetValue(); 4743 m_public_state.SetValueNoLock(eStateStopped); 4744 4745 // Now spin up the private state thread: 4746 StartPrivateStateThread(true); 4747 } 4748 4749 thread->QueueThreadPlan( 4750 thread_plan_sp, false); // This used to pass "true" does that make sense? 4751 4752 if (options.GetDebug()) { 4753 // In this case, we aren't actually going to run, we just want to stop 4754 // right away. Flush this thread so we will refetch the stacks and show the 4755 // correct backtrace. 4756 // FIXME: To make this prettier we should invent some stop reason for this, 4757 // but that 4758 // is only cosmetic, and this functionality is only of use to lldb 4759 // developers who can live with not pretty... 4760 thread->Flush(); 4761 return eExpressionStoppedForDebug; 4762 } 4763 4764 ListenerSP listener_sp( 4765 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4766 4767 lldb::EventSP event_to_broadcast_sp; 4768 4769 { 4770 // This process event hijacker Hijacks the Public events and its destructor 4771 // makes sure that the process events get restored on exit to the function. 4772 // 4773 // If the event needs to propagate beyond the hijacker (e.g., the process 4774 // exits during execution), then the event is put into 4775 // event_to_broadcast_sp for rebroadcasting. 4776 4777 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4778 4779 if (log) { 4780 StreamString s; 4781 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4782 LLDB_LOGF(log, 4783 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4784 " to run thread plan \"%s\".", 4785 thread->GetIndexID(), thread->GetID(), s.GetData()); 4786 } 4787 4788 bool got_event; 4789 lldb::EventSP event_sp; 4790 lldb::StateType stop_state = lldb::eStateInvalid; 4791 4792 bool before_first_timeout = true; // This is set to false the first time 4793 // that we have to halt the target. 4794 bool do_resume = true; 4795 bool handle_running_event = true; 4796 4797 // This is just for accounting: 4798 uint32_t num_resumes = 0; 4799 4800 // If we are going to run all threads the whole time, or if we are only 4801 // going to run one thread, then we don't need the first timeout. So we 4802 // pretend we are after the first timeout already. 4803 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4804 before_first_timeout = false; 4805 4806 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4807 options.GetStopOthers(), options.GetTryAllThreads(), 4808 before_first_timeout); 4809 4810 // This isn't going to work if there are unfetched events on the queue. Are 4811 // there cases where we might want to run the remaining events here, and 4812 // then try to call the function? That's probably being too tricky for our 4813 // own good. 4814 4815 Event *other_events = listener_sp->PeekAtNextEvent(); 4816 if (other_events != nullptr) { 4817 diagnostic_manager.PutString( 4818 eDiagnosticSeverityError, 4819 "RunThreadPlan called with pending events on the queue."); 4820 return eExpressionSetupError; 4821 } 4822 4823 // We also need to make sure that the next event is delivered. We might be 4824 // calling a function as part of a thread plan, in which case the last 4825 // delivered event could be the running event, and we don't want event 4826 // coalescing to cause us to lose OUR running event... 4827 ForceNextEventDelivery(); 4828 4829 // This while loop must exit out the bottom, there's cleanup that we need to do 4830 // when we are done. So don't call return anywhere within it. 4831 4832 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4833 // It's pretty much impossible to write test cases for things like: One 4834 // thread timeout expires, I go to halt, but the process already stopped on 4835 // the function call stop breakpoint. Turning on this define will make us 4836 // not fetch the first event till after the halt. So if you run a quick 4837 // function, it will have completed, and the completion event will be 4838 // waiting, when you interrupt for halt. The expression evaluation should 4839 // still succeed. 4840 bool miss_first_event = true; 4841 #endif 4842 while (true) { 4843 // We usually want to resume the process if we get to the top of the 4844 // loop. The only exception is if we get two running events with no 4845 // intervening stop, which can happen, we will just wait for then next 4846 // stop event. 4847 LLDB_LOGF(log, 4848 "Top of while loop: do_resume: %i handle_running_event: %i " 4849 "before_first_timeout: %i.", 4850 do_resume, handle_running_event, before_first_timeout); 4851 4852 if (do_resume || handle_running_event) { 4853 // Do the initial resume and wait for the running event before going 4854 // further. 4855 4856 if (do_resume) { 4857 num_resumes++; 4858 Status resume_error = PrivateResume(); 4859 if (!resume_error.Success()) { 4860 diagnostic_manager.Printf( 4861 eDiagnosticSeverityError, 4862 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4863 resume_error.AsCString()); 4864 return_value = eExpressionSetupError; 4865 break; 4866 } 4867 } 4868 4869 got_event = 4870 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4871 if (!got_event) { 4872 LLDB_LOGF(log, 4873 "Process::RunThreadPlan(): didn't get any event after " 4874 "resume %" PRIu32 ", exiting.", 4875 num_resumes); 4876 4877 diagnostic_manager.Printf(eDiagnosticSeverityError, 4878 "didn't get any event after resume %" PRIu32 4879 ", exiting.", 4880 num_resumes); 4881 return_value = eExpressionSetupError; 4882 break; 4883 } 4884 4885 stop_state = 4886 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4887 4888 if (stop_state != eStateRunning) { 4889 bool restarted = false; 4890 4891 if (stop_state == eStateStopped) { 4892 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4893 event_sp.get()); 4894 LLDB_LOGF( 4895 log, 4896 "Process::RunThreadPlan(): didn't get running event after " 4897 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4898 "handle_running_event: %i).", 4899 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4900 handle_running_event); 4901 } 4902 4903 if (restarted) { 4904 // This is probably an overabundance of caution, I don't think I 4905 // should ever get a stopped & restarted event here. But if I do, 4906 // the best thing is to Halt and then get out of here. 4907 const bool clear_thread_plans = false; 4908 const bool use_run_lock = false; 4909 Halt(clear_thread_plans, use_run_lock); 4910 } 4911 4912 diagnostic_manager.Printf( 4913 eDiagnosticSeverityError, 4914 "didn't get running event after initial resume, got %s instead.", 4915 StateAsCString(stop_state)); 4916 return_value = eExpressionSetupError; 4917 break; 4918 } 4919 4920 if (log) 4921 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4922 // We need to call the function synchronously, so spin waiting for it 4923 // to return. If we get interrupted while executing, we're going to 4924 // lose our context, and won't be able to gather the result at this 4925 // point. We set the timeout AFTER the resume, since the resume takes 4926 // some time and we don't want to charge that to the timeout. 4927 } else { 4928 if (log) 4929 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4930 } 4931 4932 do_resume = true; 4933 handle_running_event = true; 4934 4935 // Now wait for the process to stop again: 4936 event_sp.reset(); 4937 4938 Timeout<std::micro> timeout = 4939 GetExpressionTimeout(options, before_first_timeout); 4940 if (log) { 4941 if (timeout) { 4942 auto now = system_clock::now(); 4943 LLDB_LOGF(log, 4944 "Process::RunThreadPlan(): about to wait - now is %s - " 4945 "endpoint is %s", 4946 llvm::to_string(now).c_str(), 4947 llvm::to_string(now + *timeout).c_str()); 4948 } else { 4949 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4950 } 4951 } 4952 4953 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4954 // See comment above... 4955 if (miss_first_event) { 4956 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4957 miss_first_event = false; 4958 got_event = false; 4959 } else 4960 #endif 4961 got_event = listener_sp->GetEvent(event_sp, timeout); 4962 4963 if (got_event) { 4964 if (event_sp) { 4965 bool keep_going = false; 4966 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4967 const bool clear_thread_plans = false; 4968 const bool use_run_lock = false; 4969 Halt(clear_thread_plans, use_run_lock); 4970 return_value = eExpressionInterrupted; 4971 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 4972 "execution halted by user interrupt."); 4973 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 4974 "eBroadcastBitInterrupted, exiting."); 4975 break; 4976 } else { 4977 stop_state = 4978 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4979 LLDB_LOGF(log, 4980 "Process::RunThreadPlan(): in while loop, got event: %s.", 4981 StateAsCString(stop_state)); 4982 4983 switch (stop_state) { 4984 case lldb::eStateStopped: { 4985 // We stopped, figure out what we are going to do now. 4986 ThreadSP thread_sp = 4987 GetThreadList().FindThreadByIndexID(thread_idx_id); 4988 if (!thread_sp) { 4989 // Ooh, our thread has vanished. Unlikely that this was 4990 // successful execution... 4991 LLDB_LOGF(log, 4992 "Process::RunThreadPlan(): execution completed " 4993 "but our thread (index-id=%u) has vanished.", 4994 thread_idx_id); 4995 return_value = eExpressionInterrupted; 4996 } else if (Process::ProcessEventData::GetRestartedFromEvent( 4997 event_sp.get())) { 4998 // If we were restarted, we just need to go back up to fetch 4999 // another event. 5000 if (log) { 5001 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5002 "restart, so we'll continue waiting."); 5003 } 5004 keep_going = true; 5005 do_resume = false; 5006 handle_running_event = true; 5007 } else { 5008 const bool handle_interrupts = true; 5009 return_value = *HandleStoppedEvent( 5010 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5011 event_to_broadcast_sp, options, handle_interrupts); 5012 } 5013 } break; 5014 5015 case lldb::eStateRunning: 5016 // This shouldn't really happen, but sometimes we do get two 5017 // running events without an intervening stop, and in that case 5018 // we should just go back to waiting for the stop. 5019 do_resume = false; 5020 keep_going = true; 5021 handle_running_event = false; 5022 break; 5023 5024 default: 5025 LLDB_LOGF(log, 5026 "Process::RunThreadPlan(): execution stopped with " 5027 "unexpected state: %s.", 5028 StateAsCString(stop_state)); 5029 5030 if (stop_state == eStateExited) 5031 event_to_broadcast_sp = event_sp; 5032 5033 diagnostic_manager.PutString( 5034 eDiagnosticSeverityError, 5035 "execution stopped with unexpected state."); 5036 return_value = eExpressionInterrupted; 5037 break; 5038 } 5039 } 5040 5041 if (keep_going) 5042 continue; 5043 else 5044 break; 5045 } else { 5046 if (log) 5047 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5048 "the event pointer was null. How odd..."); 5049 return_value = eExpressionInterrupted; 5050 break; 5051 } 5052 } else { 5053 // If we didn't get an event that means we've timed out... We will 5054 // interrupt the process here. Depending on what we were asked to do 5055 // we will either exit, or try with all threads running for the same 5056 // timeout. 5057 5058 if (log) { 5059 if (options.GetTryAllThreads()) { 5060 if (before_first_timeout) { 5061 LLDB_LOG(log, 5062 "Running function with one thread timeout timed out."); 5063 } else 5064 LLDB_LOG(log, "Restarting function with all threads enabled and " 5065 "timeout: {0} timed out, abandoning execution.", 5066 timeout); 5067 } else 5068 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5069 "abandoning execution.", 5070 timeout); 5071 } 5072 5073 // It is possible that between the time we issued the Halt, and we get 5074 // around to calling Halt the target could have stopped. That's fine, 5075 // Halt will figure that out and send the appropriate Stopped event. 5076 // BUT it is also possible that we stopped & restarted (e.g. hit a 5077 // signal with "stop" set to false.) In 5078 // that case, we'll get the stopped & restarted event, and we should go 5079 // back to waiting for the Halt's stopped event. That's what this 5080 // while loop does. 5081 5082 bool back_to_top = true; 5083 uint32_t try_halt_again = 0; 5084 bool do_halt = true; 5085 const uint32_t num_retries = 5; 5086 while (try_halt_again < num_retries) { 5087 Status halt_error; 5088 if (do_halt) { 5089 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5090 const bool clear_thread_plans = false; 5091 const bool use_run_lock = false; 5092 Halt(clear_thread_plans, use_run_lock); 5093 } 5094 if (halt_error.Success()) { 5095 if (log) 5096 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5097 5098 got_event = 5099 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5100 5101 if (got_event) { 5102 stop_state = 5103 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5104 if (log) { 5105 LLDB_LOGF(log, 5106 "Process::RunThreadPlan(): Stopped with event: %s", 5107 StateAsCString(stop_state)); 5108 if (stop_state == lldb::eStateStopped && 5109 Process::ProcessEventData::GetInterruptedFromEvent( 5110 event_sp.get())) 5111 log->PutCString(" Event was the Halt interruption event."); 5112 } 5113 5114 if (stop_state == lldb::eStateStopped) { 5115 if (Process::ProcessEventData::GetRestartedFromEvent( 5116 event_sp.get())) { 5117 if (log) 5118 log->PutCString("Process::RunThreadPlan(): Went to halt " 5119 "but got a restarted event, there must be " 5120 "an un-restarted stopped event so try " 5121 "again... " 5122 "Exiting wait loop."); 5123 try_halt_again++; 5124 do_halt = false; 5125 continue; 5126 } 5127 5128 // Between the time we initiated the Halt and the time we 5129 // delivered it, the process could have already finished its 5130 // job. Check that here: 5131 const bool handle_interrupts = false; 5132 if (auto result = HandleStoppedEvent( 5133 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5134 event_to_broadcast_sp, options, handle_interrupts)) { 5135 return_value = *result; 5136 back_to_top = false; 5137 break; 5138 } 5139 5140 if (!options.GetTryAllThreads()) { 5141 if (log) 5142 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5143 "was false, we stopped so now we're " 5144 "quitting."); 5145 return_value = eExpressionInterrupted; 5146 back_to_top = false; 5147 break; 5148 } 5149 5150 if (before_first_timeout) { 5151 // Set all the other threads to run, and return to the top of 5152 // the loop, which will continue; 5153 before_first_timeout = false; 5154 thread_plan_sp->SetStopOthers(false); 5155 if (log) 5156 log->PutCString( 5157 "Process::RunThreadPlan(): about to resume."); 5158 5159 back_to_top = true; 5160 break; 5161 } else { 5162 // Running all threads failed, so return Interrupted. 5163 if (log) 5164 log->PutCString("Process::RunThreadPlan(): running all " 5165 "threads timed out."); 5166 return_value = eExpressionInterrupted; 5167 back_to_top = false; 5168 break; 5169 } 5170 } 5171 } else { 5172 if (log) 5173 log->PutCString("Process::RunThreadPlan(): halt said it " 5174 "succeeded, but I got no event. " 5175 "I'm getting out of here passing Interrupted."); 5176 return_value = eExpressionInterrupted; 5177 back_to_top = false; 5178 break; 5179 } 5180 } else { 5181 try_halt_again++; 5182 continue; 5183 } 5184 } 5185 5186 if (!back_to_top || try_halt_again > num_retries) 5187 break; 5188 else 5189 continue; 5190 } 5191 } // END WAIT LOOP 5192 5193 // If we had to start up a temporary private state thread to run this 5194 // thread plan, shut it down now. 5195 if (backup_private_state_thread.IsJoinable()) { 5196 StopPrivateStateThread(); 5197 Status error; 5198 m_private_state_thread = backup_private_state_thread; 5199 if (stopper_base_plan_sp) { 5200 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5201 } 5202 if (old_state != eStateInvalid) 5203 m_public_state.SetValueNoLock(old_state); 5204 } 5205 5206 if (return_value != eExpressionCompleted && log) { 5207 // Print a backtrace into the log so we can figure out where we are: 5208 StreamString s; 5209 s.PutCString("Thread state after unsuccessful completion: \n"); 5210 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5211 log->PutString(s.GetString()); 5212 } 5213 // Restore the thread state if we are going to discard the plan execution. 5214 // There are three cases where this could happen: 1) The execution 5215 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5216 // was true 3) We got some other error, and discard_on_error was true 5217 bool should_unwind = (return_value == eExpressionInterrupted && 5218 options.DoesUnwindOnError()) || 5219 (return_value == eExpressionHitBreakpoint && 5220 options.DoesIgnoreBreakpoints()); 5221 5222 if (return_value == eExpressionCompleted || should_unwind) { 5223 thread_plan_sp->RestoreThreadState(); 5224 } 5225 5226 // Now do some processing on the results of the run: 5227 if (return_value == eExpressionInterrupted || 5228 return_value == eExpressionHitBreakpoint) { 5229 if (log) { 5230 StreamString s; 5231 if (event_sp) 5232 event_sp->Dump(&s); 5233 else { 5234 log->PutCString("Process::RunThreadPlan(): Stop event that " 5235 "interrupted us is NULL."); 5236 } 5237 5238 StreamString ts; 5239 5240 const char *event_explanation = nullptr; 5241 5242 do { 5243 if (!event_sp) { 5244 event_explanation = "<no event>"; 5245 break; 5246 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5247 event_explanation = "<user interrupt>"; 5248 break; 5249 } else { 5250 const Process::ProcessEventData *event_data = 5251 Process::ProcessEventData::GetEventDataFromEvent( 5252 event_sp.get()); 5253 5254 if (!event_data) { 5255 event_explanation = "<no event data>"; 5256 break; 5257 } 5258 5259 Process *process = event_data->GetProcessSP().get(); 5260 5261 if (!process) { 5262 event_explanation = "<no process>"; 5263 break; 5264 } 5265 5266 ThreadList &thread_list = process->GetThreadList(); 5267 5268 uint32_t num_threads = thread_list.GetSize(); 5269 uint32_t thread_index; 5270 5271 ts.Printf("<%u threads> ", num_threads); 5272 5273 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5274 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5275 5276 if (!thread) { 5277 ts.Printf("<?> "); 5278 continue; 5279 } 5280 5281 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5282 RegisterContext *register_context = 5283 thread->GetRegisterContext().get(); 5284 5285 if (register_context) 5286 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5287 else 5288 ts.Printf("[ip unknown] "); 5289 5290 // Show the private stop info here, the public stop info will be 5291 // from the last natural stop. 5292 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5293 if (stop_info_sp) { 5294 const char *stop_desc = stop_info_sp->GetDescription(); 5295 if (stop_desc) 5296 ts.PutCString(stop_desc); 5297 } 5298 ts.Printf(">"); 5299 } 5300 5301 event_explanation = ts.GetData(); 5302 } 5303 } while (false); 5304 5305 if (event_explanation) 5306 LLDB_LOGF(log, 5307 "Process::RunThreadPlan(): execution interrupted: %s %s", 5308 s.GetData(), event_explanation); 5309 else 5310 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5311 s.GetData()); 5312 } 5313 5314 if (should_unwind) { 5315 LLDB_LOGF(log, 5316 "Process::RunThreadPlan: ExecutionInterrupted - " 5317 "discarding thread plans up to %p.", 5318 static_cast<void *>(thread_plan_sp.get())); 5319 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5320 } else { 5321 LLDB_LOGF(log, 5322 "Process::RunThreadPlan: ExecutionInterrupted - for " 5323 "plan: %p not discarding.", 5324 static_cast<void *>(thread_plan_sp.get())); 5325 } 5326 } else if (return_value == eExpressionSetupError) { 5327 if (log) 5328 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5329 5330 if (options.DoesUnwindOnError()) { 5331 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5332 } 5333 } else { 5334 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5335 if (log) 5336 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5337 return_value = eExpressionCompleted; 5338 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5339 if (log) 5340 log->PutCString( 5341 "Process::RunThreadPlan(): thread plan was discarded"); 5342 return_value = eExpressionDiscarded; 5343 } else { 5344 if (log) 5345 log->PutCString( 5346 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5347 if (options.DoesUnwindOnError() && thread_plan_sp) { 5348 if (log) 5349 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5350 "'cause unwind_on_error is set."); 5351 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5352 } 5353 } 5354 } 5355 5356 // Thread we ran the function in may have gone away because we ran the 5357 // target Check that it's still there, and if it is put it back in the 5358 // context. Also restore the frame in the context if it is still present. 5359 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5360 if (thread) { 5361 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5362 } 5363 5364 // Also restore the current process'es selected frame & thread, since this 5365 // function calling may be done behind the user's back. 5366 5367 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5368 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5369 selected_stack_id.IsValid()) { 5370 // We were able to restore the selected thread, now restore the frame: 5371 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5372 StackFrameSP old_frame_sp = 5373 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5374 selected_stack_id); 5375 if (old_frame_sp) 5376 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5377 old_frame_sp.get()); 5378 } 5379 } 5380 } 5381 5382 // If the process exited during the run of the thread plan, notify everyone. 5383 5384 if (event_to_broadcast_sp) { 5385 if (log) 5386 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5387 BroadcastEvent(event_to_broadcast_sp); 5388 } 5389 5390 return return_value; 5391 } 5392 5393 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5394 const char *result_name; 5395 5396 switch (result) { 5397 case eExpressionCompleted: 5398 result_name = "eExpressionCompleted"; 5399 break; 5400 case eExpressionDiscarded: 5401 result_name = "eExpressionDiscarded"; 5402 break; 5403 case eExpressionInterrupted: 5404 result_name = "eExpressionInterrupted"; 5405 break; 5406 case eExpressionHitBreakpoint: 5407 result_name = "eExpressionHitBreakpoint"; 5408 break; 5409 case eExpressionSetupError: 5410 result_name = "eExpressionSetupError"; 5411 break; 5412 case eExpressionParseError: 5413 result_name = "eExpressionParseError"; 5414 break; 5415 case eExpressionResultUnavailable: 5416 result_name = "eExpressionResultUnavailable"; 5417 break; 5418 case eExpressionTimedOut: 5419 result_name = "eExpressionTimedOut"; 5420 break; 5421 case eExpressionStoppedForDebug: 5422 result_name = "eExpressionStoppedForDebug"; 5423 break; 5424 } 5425 return result_name; 5426 } 5427 5428 void Process::GetStatus(Stream &strm) { 5429 const StateType state = GetState(); 5430 if (StateIsStoppedState(state, false)) { 5431 if (state == eStateExited) { 5432 int exit_status = GetExitStatus(); 5433 const char *exit_description = GetExitDescription(); 5434 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5435 GetID(), exit_status, exit_status, 5436 exit_description ? exit_description : ""); 5437 } else { 5438 if (state == eStateConnected) 5439 strm.Printf("Connected to remote target.\n"); 5440 else 5441 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5442 } 5443 } else { 5444 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5445 } 5446 } 5447 5448 size_t Process::GetThreadStatus(Stream &strm, 5449 bool only_threads_with_stop_reason, 5450 uint32_t start_frame, uint32_t num_frames, 5451 uint32_t num_frames_with_source, 5452 bool stop_format) { 5453 size_t num_thread_infos_dumped = 0; 5454 5455 // You can't hold the thread list lock while calling Thread::GetStatus. That 5456 // very well might run code (e.g. if we need it to get return values or 5457 // arguments.) For that to work the process has to be able to acquire it. 5458 // So instead copy the thread ID's, and look them up one by one: 5459 5460 uint32_t num_threads; 5461 std::vector<lldb::tid_t> thread_id_array; 5462 // Scope for thread list locker; 5463 { 5464 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5465 ThreadList &curr_thread_list = GetThreadList(); 5466 num_threads = curr_thread_list.GetSize(); 5467 uint32_t idx; 5468 thread_id_array.resize(num_threads); 5469 for (idx = 0; idx < num_threads; ++idx) 5470 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5471 } 5472 5473 for (uint32_t i = 0; i < num_threads; i++) { 5474 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5475 if (thread_sp) { 5476 if (only_threads_with_stop_reason) { 5477 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5478 if (!stop_info_sp || !stop_info_sp->IsValid()) 5479 continue; 5480 } 5481 thread_sp->GetStatus(strm, start_frame, num_frames, 5482 num_frames_with_source, 5483 stop_format); 5484 ++num_thread_infos_dumped; 5485 } else { 5486 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5487 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5488 " vanished while running Thread::GetStatus."); 5489 } 5490 } 5491 return num_thread_infos_dumped; 5492 } 5493 5494 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5495 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5496 } 5497 5498 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5499 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5500 region.GetByteSize()); 5501 } 5502 5503 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5504 void *baton) { 5505 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5506 } 5507 5508 bool Process::RunPreResumeActions() { 5509 bool result = true; 5510 while (!m_pre_resume_actions.empty()) { 5511 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5512 m_pre_resume_actions.pop_back(); 5513 bool this_result = action.callback(action.baton); 5514 if (result) 5515 result = this_result; 5516 } 5517 return result; 5518 } 5519 5520 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5521 5522 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5523 { 5524 PreResumeCallbackAndBaton element(callback, baton); 5525 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5526 if (found_iter != m_pre_resume_actions.end()) 5527 { 5528 m_pre_resume_actions.erase(found_iter); 5529 } 5530 } 5531 5532 ProcessRunLock &Process::GetRunLock() { 5533 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5534 return m_private_run_lock; 5535 else 5536 return m_public_run_lock; 5537 } 5538 5539 bool Process::CurrentThreadIsPrivateStateThread() 5540 { 5541 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5542 } 5543 5544 5545 void Process::Flush() { 5546 m_thread_list.Flush(); 5547 m_extended_thread_list.Flush(); 5548 m_extended_thread_stop_id = 0; 5549 m_queue_list.Clear(); 5550 m_queue_list_stop_id = 0; 5551 } 5552 5553 void Process::DidExec() { 5554 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5555 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5556 5557 Target &target = GetTarget(); 5558 target.CleanupProcess(); 5559 target.ClearModules(false); 5560 m_dynamic_checkers_up.reset(); 5561 m_abi_sp.reset(); 5562 m_system_runtime_up.reset(); 5563 m_os_up.reset(); 5564 m_dyld_up.reset(); 5565 m_jit_loaders_up.reset(); 5566 m_image_tokens.clear(); 5567 m_allocated_memory_cache.Clear(); 5568 { 5569 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5570 m_language_runtimes.clear(); 5571 } 5572 m_instrumentation_runtimes.clear(); 5573 m_thread_list.DiscardThreadPlans(); 5574 m_memory_cache.Clear(true); 5575 DoDidExec(); 5576 CompleteAttach(); 5577 // Flush the process (threads and all stack frames) after running 5578 // CompleteAttach() in case the dynamic loader loaded things in new 5579 // locations. 5580 Flush(); 5581 5582 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5583 // let the target know so it can do any cleanup it needs to. 5584 target.DidExec(); 5585 } 5586 5587 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5588 if (address == nullptr) { 5589 error.SetErrorString("Invalid address argument"); 5590 return LLDB_INVALID_ADDRESS; 5591 } 5592 5593 addr_t function_addr = LLDB_INVALID_ADDRESS; 5594 5595 addr_t addr = address->GetLoadAddress(&GetTarget()); 5596 std::map<addr_t, addr_t>::const_iterator iter = 5597 m_resolved_indirect_addresses.find(addr); 5598 if (iter != m_resolved_indirect_addresses.end()) { 5599 function_addr = (*iter).second; 5600 } else { 5601 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5602 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5603 error.SetErrorStringWithFormat( 5604 "Unable to call resolver for indirect function %s", 5605 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5606 function_addr = LLDB_INVALID_ADDRESS; 5607 } else { 5608 m_resolved_indirect_addresses.insert( 5609 std::pair<addr_t, addr_t>(addr, function_addr)); 5610 } 5611 } 5612 return function_addr; 5613 } 5614 5615 void Process::ModulesDidLoad(ModuleList &module_list) { 5616 SystemRuntime *sys_runtime = GetSystemRuntime(); 5617 if (sys_runtime) { 5618 sys_runtime->ModulesDidLoad(module_list); 5619 } 5620 5621 GetJITLoaders().ModulesDidLoad(module_list); 5622 5623 // Give runtimes a chance to be created. 5624 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5625 m_instrumentation_runtimes); 5626 5627 // Tell runtimes about new modules. 5628 for (auto pos = m_instrumentation_runtimes.begin(); 5629 pos != m_instrumentation_runtimes.end(); ++pos) { 5630 InstrumentationRuntimeSP runtime = pos->second; 5631 runtime->ModulesDidLoad(module_list); 5632 } 5633 5634 // Let any language runtimes we have already created know about the modules 5635 // that loaded. 5636 5637 // Iterate over a copy of this language runtime list in case the language 5638 // runtime ModulesDidLoad somehow causes the language runtime to be 5639 // unloaded. 5640 { 5641 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5642 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5643 for (const auto &pair : language_runtimes) { 5644 // We must check language_runtime_sp to make sure it is not nullptr as we 5645 // might cache the fact that we didn't have a language runtime for a 5646 // language. 5647 LanguageRuntimeSP language_runtime_sp = pair.second; 5648 if (language_runtime_sp) 5649 language_runtime_sp->ModulesDidLoad(module_list); 5650 } 5651 } 5652 5653 // If we don't have an operating system plug-in, try to load one since 5654 // loading shared libraries might cause a new one to try and load 5655 if (!m_os_up) 5656 LoadOperatingSystemPlugin(false); 5657 5658 // Give structured-data plugins a chance to see the modified modules. 5659 for (auto pair : m_structured_data_plugin_map) { 5660 if (pair.second) 5661 pair.second->ModulesDidLoad(*this, module_list); 5662 } 5663 } 5664 5665 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5666 const char *fmt, ...) { 5667 bool print_warning = true; 5668 5669 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5670 if (!stream_sp) 5671 return; 5672 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5673 return; 5674 } 5675 5676 if (repeat_key != nullptr) { 5677 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5678 if (it == m_warnings_issued.end()) { 5679 m_warnings_issued[warning_type] = WarningsPointerSet(); 5680 m_warnings_issued[warning_type].insert(repeat_key); 5681 } else { 5682 if (it->second.find(repeat_key) != it->second.end()) { 5683 print_warning = false; 5684 } else { 5685 it->second.insert(repeat_key); 5686 } 5687 } 5688 } 5689 5690 if (print_warning) { 5691 va_list args; 5692 va_start(args, fmt); 5693 stream_sp->PrintfVarArg(fmt, args); 5694 va_end(args); 5695 } 5696 } 5697 5698 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5699 if (GetWarningsOptimization() && sc.module_sp && 5700 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5701 sc.function->GetIsOptimized()) { 5702 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5703 "%s was compiled with optimization - stepping may behave " 5704 "oddly; variables may not be available.\n", 5705 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5706 } 5707 } 5708 5709 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5710 info.Clear(); 5711 5712 PlatformSP platform_sp = GetTarget().GetPlatform(); 5713 if (!platform_sp) 5714 return false; 5715 5716 return platform_sp->GetProcessInfo(GetID(), info); 5717 } 5718 5719 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5720 ThreadCollectionSP threads; 5721 5722 const MemoryHistorySP &memory_history = 5723 MemoryHistory::FindPlugin(shared_from_this()); 5724 5725 if (!memory_history) { 5726 return threads; 5727 } 5728 5729 threads = std::make_shared<ThreadCollection>( 5730 memory_history->GetHistoryThreads(addr)); 5731 5732 return threads; 5733 } 5734 5735 InstrumentationRuntimeSP 5736 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5737 InstrumentationRuntimeCollection::iterator pos; 5738 pos = m_instrumentation_runtimes.find(type); 5739 if (pos == m_instrumentation_runtimes.end()) { 5740 return InstrumentationRuntimeSP(); 5741 } else 5742 return (*pos).second; 5743 } 5744 5745 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5746 const ArchSpec &arch, ModuleSpec &module_spec) { 5747 module_spec.Clear(); 5748 return false; 5749 } 5750 5751 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5752 m_image_tokens.push_back(image_ptr); 5753 return m_image_tokens.size() - 1; 5754 } 5755 5756 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5757 if (token < m_image_tokens.size()) 5758 return m_image_tokens[token]; 5759 return LLDB_INVALID_IMAGE_TOKEN; 5760 } 5761 5762 void Process::ResetImageToken(size_t token) { 5763 if (token < m_image_tokens.size()) 5764 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5765 } 5766 5767 Address 5768 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5769 AddressRange range_bounds) { 5770 Target &target = GetTarget(); 5771 DisassemblerSP disassembler_sp; 5772 InstructionList *insn_list = nullptr; 5773 5774 Address retval = default_stop_addr; 5775 5776 if (!target.GetUseFastStepping()) 5777 return retval; 5778 if (!default_stop_addr.IsValid()) 5779 return retval; 5780 5781 const char *plugin_name = nullptr; 5782 const char *flavor = nullptr; 5783 const bool prefer_file_cache = true; 5784 disassembler_sp = Disassembler::DisassembleRange( 5785 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds, 5786 prefer_file_cache); 5787 if (disassembler_sp) 5788 insn_list = &disassembler_sp->GetInstructionList(); 5789 5790 if (insn_list == nullptr) { 5791 return retval; 5792 } 5793 5794 size_t insn_offset = 5795 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5796 if (insn_offset == UINT32_MAX) { 5797 return retval; 5798 } 5799 5800 uint32_t branch_index = 5801 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target, 5802 false /* ignore_calls*/, 5803 nullptr); 5804 if (branch_index == UINT32_MAX) { 5805 return retval; 5806 } 5807 5808 if (branch_index > insn_offset) { 5809 Address next_branch_insn_address = 5810 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5811 if (next_branch_insn_address.IsValid() && 5812 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5813 retval = next_branch_insn_address; 5814 } 5815 } 5816 5817 return retval; 5818 } 5819 5820 Status 5821 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5822 5823 Status error; 5824 5825 lldb::addr_t range_end = 0; 5826 5827 region_list.clear(); 5828 do { 5829 lldb_private::MemoryRegionInfo region_info; 5830 error = GetMemoryRegionInfo(range_end, region_info); 5831 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5832 if (error.Fail()) { 5833 region_list.clear(); 5834 break; 5835 } 5836 5837 range_end = region_info.GetRange().GetRangeEnd(); 5838 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5839 region_list.push_back(std::move(region_info)); 5840 } 5841 } while (range_end != LLDB_INVALID_ADDRESS); 5842 5843 return error; 5844 } 5845 5846 Status 5847 Process::ConfigureStructuredData(ConstString type_name, 5848 const StructuredData::ObjectSP &config_sp) { 5849 // If you get this, the Process-derived class needs to implement a method to 5850 // enable an already-reported asynchronous structured data feature. See 5851 // ProcessGDBRemote for an example implementation over gdb-remote. 5852 return Status("unimplemented"); 5853 } 5854 5855 void Process::MapSupportedStructuredDataPlugins( 5856 const StructuredData::Array &supported_type_names) { 5857 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5858 5859 // Bail out early if there are no type names to map. 5860 if (supported_type_names.GetSize() == 0) { 5861 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5862 __FUNCTION__); 5863 return; 5864 } 5865 5866 // Convert StructuredData type names to ConstString instances. 5867 std::set<ConstString> const_type_names; 5868 5869 LLDB_LOGF(log, 5870 "Process::%s(): the process supports the following async " 5871 "structured data types:", 5872 __FUNCTION__); 5873 5874 supported_type_names.ForEach( 5875 [&const_type_names, &log](StructuredData::Object *object) { 5876 if (!object) { 5877 // Invalid - shouldn't be null objects in the array. 5878 return false; 5879 } 5880 5881 auto type_name = object->GetAsString(); 5882 if (!type_name) { 5883 // Invalid format - all type names should be strings. 5884 return false; 5885 } 5886 5887 const_type_names.insert(ConstString(type_name->GetValue())); 5888 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5889 return true; 5890 }); 5891 5892 // For each StructuredDataPlugin, if the plugin handles any of the types in 5893 // the supported_type_names, map that type name to that plugin. Stop when 5894 // we've consumed all the type names. 5895 // FIXME: should we return an error if there are type names nobody 5896 // supports? 5897 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5898 auto create_instance = 5899 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5900 plugin_index); 5901 if (!create_instance) 5902 break; 5903 5904 // Create the plugin. 5905 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5906 if (!plugin_sp) { 5907 // This plugin doesn't think it can work with the process. Move on to the 5908 // next. 5909 continue; 5910 } 5911 5912 // For any of the remaining type names, map any that this plugin supports. 5913 std::vector<ConstString> names_to_remove; 5914 for (auto &type_name : const_type_names) { 5915 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5916 m_structured_data_plugin_map.insert( 5917 std::make_pair(type_name, plugin_sp)); 5918 names_to_remove.push_back(type_name); 5919 LLDB_LOGF(log, 5920 "Process::%s(): using plugin %s for type name " 5921 "%s", 5922 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5923 type_name.GetCString()); 5924 } 5925 } 5926 5927 // Remove the type names that were consumed by this plugin. 5928 for (auto &type_name : names_to_remove) 5929 const_type_names.erase(type_name); 5930 } 5931 } 5932 5933 bool Process::RouteAsyncStructuredData( 5934 const StructuredData::ObjectSP object_sp) { 5935 // Nothing to do if there's no data. 5936 if (!object_sp) 5937 return false; 5938 5939 // The contract is this must be a dictionary, so we can look up the routing 5940 // key via the top-level 'type' string value within the dictionary. 5941 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5942 if (!dictionary) 5943 return false; 5944 5945 // Grab the async structured type name (i.e. the feature/plugin name). 5946 ConstString type_name; 5947 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5948 return false; 5949 5950 // Check if there's a plugin registered for this type name. 5951 auto find_it = m_structured_data_plugin_map.find(type_name); 5952 if (find_it == m_structured_data_plugin_map.end()) { 5953 // We don't have a mapping for this structured data type. 5954 return false; 5955 } 5956 5957 // Route the structured data to the plugin. 5958 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5959 return true; 5960 } 5961 5962 Status Process::UpdateAutomaticSignalFiltering() { 5963 // Default implementation does nothign. 5964 // No automatic signal filtering to speak of. 5965 return Status(); 5966 } 5967 5968 UtilityFunction *Process::GetLoadImageUtilityFunction( 5969 Platform *platform, 5970 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 5971 if (platform != GetTarget().GetPlatform().get()) 5972 return nullptr; 5973 llvm::call_once(m_dlopen_utility_func_flag_once, 5974 [&] { m_dlopen_utility_func_up = factory(); }); 5975 return m_dlopen_utility_func_up.get(); 5976 } 5977 5978 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 5979 addr_t &returned_func, 5980 bool trap_exceptions) { 5981 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 5982 if (thread == nullptr || address == nullptr) 5983 return false; 5984 5985 EvaluateExpressionOptions options; 5986 options.SetStopOthers(true); 5987 options.SetUnwindOnError(true); 5988 options.SetIgnoreBreakpoints(true); 5989 options.SetTryAllThreads(true); 5990 options.SetDebug(false); 5991 options.SetTimeout(GetUtilityExpressionTimeout()); 5992 options.SetTrapExceptions(trap_exceptions); 5993 5994 auto type_system_or_err = 5995 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 5996 if (!type_system_or_err) { 5997 llvm::consumeError(type_system_or_err.takeError()); 5998 return false; 5999 } 6000 CompilerType void_ptr_type = 6001 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6002 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6003 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6004 if (call_plan_sp) { 6005 DiagnosticManager diagnostics; 6006 6007 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6008 if (frame) { 6009 ExecutionContext exe_ctx; 6010 frame->CalculateExecutionContext(exe_ctx); 6011 ExpressionResults result = 6012 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6013 if (result == eExpressionCompleted) { 6014 returned_func = 6015 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6016 LLDB_INVALID_ADDRESS); 6017 6018 if (GetAddressByteSize() == 4) { 6019 if (returned_func == UINT32_MAX) 6020 return false; 6021 } else if (GetAddressByteSize() == 8) { 6022 if (returned_func == UINT64_MAX) 6023 return false; 6024 } 6025 return true; 6026 } 6027 } 6028 } 6029 6030 return false; 6031 } 6032