1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 #include "llvm/Support/ScopedPrinter.h" 17 #include "llvm/Support/Threading.h" 18 19 // Project includes 20 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 21 #include "lldb/Breakpoint/BreakpointLocation.h" 22 #include "lldb/Breakpoint/StoppointCallbackContext.h" 23 #include "lldb/Core/Debugger.h" 24 #include "lldb/Core/Event.h" 25 #include "lldb/Core/Module.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Core/PluginManager.h" 28 #include "lldb/Core/State.h" 29 #include "lldb/Core/StreamFile.h" 30 #include "lldb/Expression/DiagnosticManager.h" 31 #include "lldb/Expression/IRDynamicChecks.h" 32 #include "lldb/Expression/UserExpression.h" 33 #include "lldb/Expression/UtilityFunction.h" 34 #include "lldb/Host/ConnectionFileDescriptor.h" 35 #include "lldb/Host/FileSystem.h" 36 #include "lldb/Host/Host.h" 37 #include "lldb/Host/HostInfo.h" 38 #include "lldb/Host/OptionParser.h" 39 #include "lldb/Host/Pipe.h" 40 #include "lldb/Host/Terminal.h" 41 #include "lldb/Host/ThreadLauncher.h" 42 #include "lldb/Interpreter/CommandInterpreter.h" 43 #include "lldb/Interpreter/OptionArgParser.h" 44 #include "lldb/Interpreter/OptionValueProperties.h" 45 #include "lldb/Symbol/Function.h" 46 #include "lldb/Symbol/Symbol.h" 47 #include "lldb/Target/ABI.h" 48 #include "lldb/Target/CPPLanguageRuntime.h" 49 #include "lldb/Target/DynamicLoader.h" 50 #include "lldb/Target/InstrumentationRuntime.h" 51 #include "lldb/Target/JITLoader.h" 52 #include "lldb/Target/JITLoaderList.h" 53 #include "lldb/Target/LanguageRuntime.h" 54 #include "lldb/Target/MemoryHistory.h" 55 #include "lldb/Target/MemoryRegionInfo.h" 56 #include "lldb/Target/ObjCLanguageRuntime.h" 57 #include "lldb/Target/OperatingSystem.h" 58 #include "lldb/Target/Platform.h" 59 #include "lldb/Target/Process.h" 60 #include "lldb/Target/RegisterContext.h" 61 #include "lldb/Target/StopInfo.h" 62 #include "lldb/Target/StructuredDataPlugin.h" 63 #include "lldb/Target/SystemRuntime.h" 64 #include "lldb/Target/Target.h" 65 #include "lldb/Target/TargetList.h" 66 #include "lldb/Target/Thread.h" 67 #include "lldb/Target/ThreadPlan.h" 68 #include "lldb/Target/ThreadPlanBase.h" 69 #include "lldb/Target/UnixSignals.h" 70 #include "lldb/Utility/Log.h" 71 #include "lldb/Utility/NameMatches.h" 72 #include "lldb/Utility/SelectHelper.h" 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace std::chrono; 77 78 // Comment out line below to disable memory caching, overriding the process 79 // setting target.process.disable-memory-cache 80 #define ENABLE_MEMORY_CACHING 81 82 #ifdef ENABLE_MEMORY_CACHING 83 #define DISABLE_MEM_CACHE_DEFAULT false 84 #else 85 #define DISABLE_MEM_CACHE_DEFAULT true 86 #endif 87 88 class ProcessOptionValueProperties : public OptionValueProperties { 89 public: 90 ProcessOptionValueProperties(const ConstString &name) 91 : OptionValueProperties(name) {} 92 93 // This constructor is used when creating ProcessOptionValueProperties when 94 // it is part of a new lldb_private::Process instance. It will copy all 95 // current global property values as needed 96 ProcessOptionValueProperties(ProcessProperties *global_properties) 97 : OptionValueProperties(*global_properties->GetValueProperties()) {} 98 99 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 100 bool will_modify, 101 uint32_t idx) const override { 102 // When getting the value for a key from the process options, we will 103 // always try and grab the setting from the current process if there is 104 // one. Else we just use the one from this instance. 105 if (exe_ctx) { 106 Process *process = exe_ctx->GetProcessPtr(); 107 if (process) { 108 ProcessOptionValueProperties *instance_properties = 109 static_cast<ProcessOptionValueProperties *>( 110 process->GetValueProperties().get()); 111 if (this != instance_properties) 112 return instance_properties->ProtectedGetPropertyAtIndex(idx); 113 } 114 } 115 return ProtectedGetPropertyAtIndex(idx); 116 } 117 }; 118 119 static PropertyDefinition g_properties[] = { 120 {"disable-memory-cache", OptionValue::eTypeBoolean, false, 121 DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, 122 "Disable reading and caching of memory in fixed-size units."}, 123 {"extra-startup-command", OptionValue::eTypeArray, false, 124 OptionValue::eTypeString, nullptr, nullptr, 125 "A list containing extra commands understood by the particular process " 126 "plugin used. " 127 "For instance, to turn on debugserver logging set this to " 128 "\"QSetLogging:bitmask=LOG_DEFAULT;\""}, 129 {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, 130 nullptr, nullptr, 131 "If true, breakpoints will be ignored during expression evaluation."}, 132 {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, 133 nullptr, nullptr, "If true, errors in expression evaluation will unwind " 134 "the stack back to the state before the call."}, 135 {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, 136 nullptr, "A path to a python OS plug-in module file that contains a " 137 "OperatingSystemPlugIn class."}, 138 {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false, 139 nullptr, nullptr, 140 "If true, stop when a shared library is loaded or unloaded."}, 141 {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr, 142 nullptr, "If true, detach will attempt to keep the process stopped."}, 143 {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr, 144 nullptr, "The memory cache line size"}, 145 {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr, 146 nullptr, "If true, warn when stopped in code that is optimized where " 147 "stepping and variable availability may not behave as expected."}, 148 {"stop-on-exec", OptionValue::eTypeBoolean, true, true, 149 nullptr, nullptr, 150 "If true, stop when a shared library is loaded or unloaded."}, 151 {nullptr, OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr}}; 152 153 enum { 154 ePropertyDisableMemCache, 155 ePropertyExtraStartCommand, 156 ePropertyIgnoreBreakpointsInExpressions, 157 ePropertyUnwindOnErrorInExpressions, 158 ePropertyPythonOSPluginPath, 159 ePropertyStopOnSharedLibraryEvents, 160 ePropertyDetachKeepsStopped, 161 ePropertyMemCacheLineSize, 162 ePropertyWarningOptimization, 163 ePropertyStopOnExec 164 }; 165 166 ProcessProperties::ProcessProperties(lldb_private::Process *process) 167 : Properties(), 168 m_process(process) // Can be nullptr for global ProcessProperties 169 { 170 if (process == nullptr) { 171 // Global process properties, set them up one time 172 m_collection_sp.reset( 173 new ProcessOptionValueProperties(ConstString("process"))); 174 m_collection_sp->Initialize(g_properties); 175 m_collection_sp->AppendProperty( 176 ConstString("thread"), ConstString("Settings specific to threads."), 177 true, Thread::GetGlobalProperties()->GetValueProperties()); 178 } else { 179 m_collection_sp.reset( 180 new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 181 m_collection_sp->SetValueChangedCallback( 182 ePropertyPythonOSPluginPath, 183 ProcessProperties::OptionValueChangedCallback, this); 184 } 185 } 186 187 ProcessProperties::~ProcessProperties() = default; 188 189 void ProcessProperties::OptionValueChangedCallback(void *baton, 190 OptionValue *option_value) { 191 ProcessProperties *properties = (ProcessProperties *)baton; 192 if (properties->m_process) 193 properties->m_process->LoadOperatingSystemPlugin(true); 194 } 195 196 bool ProcessProperties::GetDisableMemoryCache() const { 197 const uint32_t idx = ePropertyDisableMemCache; 198 return m_collection_sp->GetPropertyAtIndexAsBoolean( 199 nullptr, idx, g_properties[idx].default_uint_value != 0); 200 } 201 202 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 203 const uint32_t idx = ePropertyMemCacheLineSize; 204 return m_collection_sp->GetPropertyAtIndexAsUInt64( 205 nullptr, idx, g_properties[idx].default_uint_value); 206 } 207 208 Args ProcessProperties::GetExtraStartupCommands() const { 209 Args args; 210 const uint32_t idx = ePropertyExtraStartCommand; 211 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 212 return args; 213 } 214 215 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 216 const uint32_t idx = ePropertyExtraStartCommand; 217 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 218 } 219 220 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 221 const uint32_t idx = ePropertyPythonOSPluginPath; 222 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 223 } 224 225 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 226 const uint32_t idx = ePropertyPythonOSPluginPath; 227 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 228 } 229 230 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 231 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 232 return m_collection_sp->GetPropertyAtIndexAsBoolean( 233 nullptr, idx, g_properties[idx].default_uint_value != 0); 234 } 235 236 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 237 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 238 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 239 } 240 241 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 242 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 243 return m_collection_sp->GetPropertyAtIndexAsBoolean( 244 nullptr, idx, g_properties[idx].default_uint_value != 0); 245 } 246 247 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 248 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 249 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 250 } 251 252 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 253 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 254 return m_collection_sp->GetPropertyAtIndexAsBoolean( 255 nullptr, idx, g_properties[idx].default_uint_value != 0); 256 } 257 258 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 259 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 260 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 261 } 262 263 bool ProcessProperties::GetDetachKeepsStopped() const { 264 const uint32_t idx = ePropertyDetachKeepsStopped; 265 return m_collection_sp->GetPropertyAtIndexAsBoolean( 266 nullptr, idx, g_properties[idx].default_uint_value != 0); 267 } 268 269 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 270 const uint32_t idx = ePropertyDetachKeepsStopped; 271 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 272 } 273 274 bool ProcessProperties::GetWarningsOptimization() const { 275 const uint32_t idx = ePropertyWarningOptimization; 276 return m_collection_sp->GetPropertyAtIndexAsBoolean( 277 nullptr, idx, g_properties[idx].default_uint_value != 0); 278 } 279 280 bool ProcessProperties::GetStopOnExec() const { 281 const uint32_t idx = ePropertyStopOnExec; 282 return m_collection_sp->GetPropertyAtIndexAsBoolean( 283 nullptr, idx, g_properties[idx].default_uint_value != 0); 284 } 285 286 void ProcessInstanceInfo::Dump(Stream &s, Platform *platform) const { 287 const char *cstr; 288 if (m_pid != LLDB_INVALID_PROCESS_ID) 289 s.Printf(" pid = %" PRIu64 "\n", m_pid); 290 291 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 292 s.Printf(" parent = %" PRIu64 "\n", m_parent_pid); 293 294 if (m_executable) { 295 s.Printf(" name = %s\n", m_executable.GetFilename().GetCString()); 296 s.PutCString(" file = "); 297 m_executable.Dump(&s); 298 s.EOL(); 299 } 300 const uint32_t argc = m_arguments.GetArgumentCount(); 301 if (argc > 0) { 302 for (uint32_t i = 0; i < argc; i++) { 303 const char *arg = m_arguments.GetArgumentAtIndex(i); 304 if (i < 10) 305 s.Printf(" arg[%u] = %s\n", i, arg); 306 else 307 s.Printf("arg[%u] = %s\n", i, arg); 308 } 309 } 310 311 s.Format("{0}", m_environment); 312 313 if (m_arch.IsValid()) { 314 s.Printf(" arch = "); 315 m_arch.DumpTriple(s); 316 s.EOL(); 317 } 318 319 if (m_uid != UINT32_MAX) { 320 cstr = platform->GetUserName(m_uid); 321 s.Printf(" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 322 } 323 if (m_gid != UINT32_MAX) { 324 cstr = platform->GetGroupName(m_gid); 325 s.Printf(" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 326 } 327 if (m_euid != UINT32_MAX) { 328 cstr = platform->GetUserName(m_euid); 329 s.Printf(" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 330 } 331 if (m_egid != UINT32_MAX) { 332 cstr = platform->GetGroupName(m_egid); 333 s.Printf(" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 334 } 335 } 336 337 void ProcessInstanceInfo::DumpTableHeader(Stream &s, Platform *platform, 338 bool show_args, bool verbose) { 339 const char *label; 340 if (show_args || verbose) 341 label = "ARGUMENTS"; 342 else 343 label = "NAME"; 344 345 if (verbose) { 346 s.Printf("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE " 347 " %s\n", 348 label); 349 s.PutCString("====== ====== ========== ========== ========== ========== " 350 "======================== ============================\n"); 351 } else { 352 s.Printf("PID PARENT USER TRIPLE %s\n", label); 353 s.PutCString("====== ====== ========== ======================== " 354 "============================\n"); 355 } 356 } 357 358 void ProcessInstanceInfo::DumpAsTableRow(Stream &s, Platform *platform, 359 bool show_args, bool verbose) const { 360 if (m_pid != LLDB_INVALID_PROCESS_ID) { 361 const char *cstr; 362 s.Printf("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 363 364 StreamString arch_strm; 365 if (m_arch.IsValid()) 366 m_arch.DumpTriple(arch_strm); 367 368 if (verbose) { 369 cstr = platform->GetUserName(m_uid); 370 if (cstr && 371 cstr[0]) // Watch for empty string that indicates lookup failed 372 s.Printf("%-10s ", cstr); 373 else 374 s.Printf("%-10u ", m_uid); 375 376 cstr = platform->GetGroupName(m_gid); 377 if (cstr && 378 cstr[0]) // Watch for empty string that indicates lookup failed 379 s.Printf("%-10s ", cstr); 380 else 381 s.Printf("%-10u ", m_gid); 382 383 cstr = platform->GetUserName(m_euid); 384 if (cstr && 385 cstr[0]) // Watch for empty string that indicates lookup failed 386 s.Printf("%-10s ", cstr); 387 else 388 s.Printf("%-10u ", m_euid); 389 390 cstr = platform->GetGroupName(m_egid); 391 if (cstr && 392 cstr[0]) // Watch for empty string that indicates lookup failed 393 s.Printf("%-10s ", cstr); 394 else 395 s.Printf("%-10u ", m_egid); 396 397 s.Printf("%-24s ", arch_strm.GetData()); 398 } else { 399 s.Printf("%-10s %-24s ", platform->GetUserName(m_euid), 400 arch_strm.GetData()); 401 } 402 403 if (verbose || show_args) { 404 const uint32_t argc = m_arguments.GetArgumentCount(); 405 if (argc > 0) { 406 for (uint32_t i = 0; i < argc; i++) { 407 if (i > 0) 408 s.PutChar(' '); 409 s.PutCString(m_arguments.GetArgumentAtIndex(i)); 410 } 411 } 412 } else { 413 s.PutCString(GetName()); 414 } 415 416 s.EOL(); 417 } 418 } 419 420 Status ProcessLaunchCommandOptions::SetOptionValue( 421 uint32_t option_idx, llvm::StringRef option_arg, 422 ExecutionContext *execution_context) { 423 Status error; 424 const int short_option = m_getopt_table[option_idx].val; 425 426 switch (short_option) { 427 case 's': // Stop at program entry point 428 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 429 break; 430 431 case 'i': // STDIN for read only 432 { 433 FileAction action; 434 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 435 launch_info.AppendFileAction(action); 436 break; 437 } 438 439 case 'o': // Open STDOUT for write only 440 { 441 FileAction action; 442 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 443 launch_info.AppendFileAction(action); 444 break; 445 } 446 447 case 'e': // STDERR for write only 448 { 449 FileAction action; 450 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 451 launch_info.AppendFileAction(action); 452 break; 453 } 454 455 case 'p': // Process plug-in name 456 launch_info.SetProcessPluginName(option_arg); 457 break; 458 459 case 'n': // Disable STDIO 460 { 461 FileAction action; 462 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 463 if (action.Open(STDIN_FILENO, dev_null, true, false)) 464 launch_info.AppendFileAction(action); 465 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 466 launch_info.AppendFileAction(action); 467 if (action.Open(STDERR_FILENO, dev_null, false, true)) 468 launch_info.AppendFileAction(action); 469 break; 470 } 471 472 case 'w': 473 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 474 break; 475 476 case 't': // Open process in new terminal window 477 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 478 break; 479 480 case 'a': { 481 TargetSP target_sp = 482 execution_context ? execution_context->GetTargetSP() : TargetSP(); 483 PlatformSP platform_sp = 484 target_sp ? target_sp->GetPlatform() : PlatformSP(); 485 launch_info.GetArchitecture() = 486 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 487 } break; 488 489 case 'A': // Disable ASLR. 490 { 491 bool success; 492 const bool disable_aslr_arg = 493 OptionArgParser::ToBoolean(option_arg, true, &success); 494 if (success) 495 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 496 else 497 error.SetErrorStringWithFormat( 498 "Invalid boolean value for disable-aslr option: '%s'", 499 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 500 break; 501 } 502 503 case 'X': // shell expand args. 504 { 505 bool success; 506 const bool expand_args = 507 OptionArgParser::ToBoolean(option_arg, true, &success); 508 if (success) 509 launch_info.SetShellExpandArguments(expand_args); 510 else 511 error.SetErrorStringWithFormat( 512 "Invalid boolean value for shell-expand-args option: '%s'", 513 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 514 break; 515 } 516 517 case 'c': 518 if (!option_arg.empty()) 519 launch_info.SetShell(FileSpec(option_arg, false)); 520 else 521 launch_info.SetShell(HostInfo::GetDefaultShell()); 522 break; 523 524 case 'v': 525 launch_info.GetEnvironment().insert(option_arg); 526 break; 527 528 default: 529 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 530 short_option); 531 break; 532 } 533 return error; 534 } 535 536 static OptionDefinition g_process_launch_options[] = { 537 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 538 nullptr, nullptr, 0, eArgTypeNone, 539 "Stop at the entry point of the program when launching a process."}, 540 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 541 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 542 "Set whether to disable address space layout randomization when launching " 543 "a process."}, 544 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 545 nullptr, nullptr, 0, eArgTypePlugin, 546 "Name of the process plugin you want to use."}, 547 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 548 OptionParser::eRequiredArgument, nullptr, nullptr, 0, 549 eArgTypeDirectoryName, 550 "Set the current working directory to <path> when running the inferior."}, 551 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 552 nullptr, nullptr, 0, eArgTypeArchitecture, 553 "Set the architecture for the process to launch when ambiguous."}, 554 {LLDB_OPT_SET_ALL, false, "environment", 'v', 555 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, 556 "Specify an environment variable name/value string (--environment " 557 "NAME=VALUE). Can be specified multiple times for subsequent environment " 558 "entries."}, 559 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 560 OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, 561 "Run the process in a shell (not supported on all platforms)."}, 562 563 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 564 nullptr, nullptr, 0, eArgTypeFilename, 565 "Redirect stdin for the process to <filename>."}, 566 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 567 nullptr, nullptr, 0, eArgTypeFilename, 568 "Redirect stdout for the process to <filename>."}, 569 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 570 nullptr, nullptr, 0, eArgTypeFilename, 571 "Redirect stderr for the process to <filename>."}, 572 573 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 574 nullptr, 0, eArgTypeNone, 575 "Start the process in a terminal (not supported on all platforms)."}, 576 577 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 578 nullptr, 0, eArgTypeNone, 579 "Do not set up for terminal I/O to go to running process."}, 580 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 581 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 582 "Set whether to shell expand arguments to the process when launching."}, 583 }; 584 585 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 586 return llvm::makeArrayRef(g_process_launch_options); 587 } 588 589 bool ProcessInstanceInfoMatch::NameMatches(const char *process_name) const { 590 if (m_name_match_type == NameMatch::Ignore || process_name == nullptr) 591 return true; 592 const char *match_name = m_match_info.GetName(); 593 if (!match_name) 594 return true; 595 596 return lldb_private::NameMatches(process_name, m_name_match_type, match_name); 597 } 598 599 bool ProcessInstanceInfoMatch::Matches( 600 const ProcessInstanceInfo &proc_info) const { 601 if (!NameMatches(proc_info.GetName())) 602 return false; 603 604 if (m_match_info.ProcessIDIsValid() && 605 m_match_info.GetProcessID() != proc_info.GetProcessID()) 606 return false; 607 608 if (m_match_info.ParentProcessIDIsValid() && 609 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 610 return false; 611 612 if (m_match_info.UserIDIsValid() && 613 m_match_info.GetUserID() != proc_info.GetUserID()) 614 return false; 615 616 if (m_match_info.GroupIDIsValid() && 617 m_match_info.GetGroupID() != proc_info.GetGroupID()) 618 return false; 619 620 if (m_match_info.EffectiveUserIDIsValid() && 621 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 622 return false; 623 624 if (m_match_info.EffectiveGroupIDIsValid() && 625 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 626 return false; 627 628 if (m_match_info.GetArchitecture().IsValid() && 629 !m_match_info.GetArchitecture().IsCompatibleMatch( 630 proc_info.GetArchitecture())) 631 return false; 632 return true; 633 } 634 635 bool ProcessInstanceInfoMatch::MatchAllProcesses() const { 636 if (m_name_match_type != NameMatch::Ignore) 637 return false; 638 639 if (m_match_info.ProcessIDIsValid()) 640 return false; 641 642 if (m_match_info.ParentProcessIDIsValid()) 643 return false; 644 645 if (m_match_info.UserIDIsValid()) 646 return false; 647 648 if (m_match_info.GroupIDIsValid()) 649 return false; 650 651 if (m_match_info.EffectiveUserIDIsValid()) 652 return false; 653 654 if (m_match_info.EffectiveGroupIDIsValid()) 655 return false; 656 657 if (m_match_info.GetArchitecture().IsValid()) 658 return false; 659 660 if (m_match_all_users) 661 return false; 662 663 return true; 664 } 665 666 void ProcessInstanceInfoMatch::Clear() { 667 m_match_info.Clear(); 668 m_name_match_type = NameMatch::Ignore; 669 m_match_all_users = false; 670 } 671 672 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 673 llvm::StringRef plugin_name, 674 ListenerSP listener_sp, 675 const FileSpec *crash_file_path) { 676 static uint32_t g_process_unique_id = 0; 677 678 ProcessSP process_sp; 679 ProcessCreateInstance create_callback = nullptr; 680 if (!plugin_name.empty()) { 681 ConstString const_plugin_name(plugin_name); 682 create_callback = 683 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 684 if (create_callback) { 685 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 686 if (process_sp) { 687 if (process_sp->CanDebug(target_sp, true)) { 688 process_sp->m_process_unique_id = ++g_process_unique_id; 689 } else 690 process_sp.reset(); 691 } 692 } 693 } else { 694 for (uint32_t idx = 0; 695 (create_callback = 696 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 697 ++idx) { 698 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 699 if (process_sp) { 700 if (process_sp->CanDebug(target_sp, false)) { 701 process_sp->m_process_unique_id = ++g_process_unique_id; 702 break; 703 } else 704 process_sp.reset(); 705 } 706 } 707 } 708 return process_sp; 709 } 710 711 ConstString &Process::GetStaticBroadcasterClass() { 712 static ConstString class_name("lldb.process"); 713 return class_name; 714 } 715 716 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 717 : Process(target_sp, listener_sp, 718 UnixSignals::Create(HostInfo::GetArchitecture())) { 719 // This constructor just delegates to the full Process constructor, 720 // defaulting to using the Host's UnixSignals. 721 } 722 723 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 724 const UnixSignalsSP &unix_signals_sp) 725 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 726 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 727 Process::GetStaticBroadcasterClass().AsCString()), 728 m_target_sp(target_sp), m_public_state(eStateUnloaded), 729 m_private_state(eStateUnloaded), 730 m_private_state_broadcaster(nullptr, 731 "lldb.process.internal_state_broadcaster"), 732 m_private_state_control_broadcaster( 733 nullptr, "lldb.process.internal_state_control_broadcaster"), 734 m_private_state_listener_sp( 735 Listener::MakeListener("lldb.process.internal_state_listener")), 736 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 737 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 738 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 739 m_thread_list(this), m_extended_thread_list(this), 740 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 741 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 742 m_breakpoint_site_list(), m_dynamic_checkers_ap(), 743 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 744 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 745 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 746 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 747 m_memory_cache(*this), m_allocated_memory_cache(*this), 748 m_should_detach(false), m_next_event_action_ap(), m_public_run_lock(), 749 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 750 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 751 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 752 m_can_interpret_function_calls(false), m_warnings_issued(), 753 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 754 CheckInWithManager(); 755 756 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 757 if (log) 758 log->Printf("%p Process::Process()", static_cast<void *>(this)); 759 760 if (!m_unix_signals_sp) 761 m_unix_signals_sp = std::make_shared<UnixSignals>(); 762 763 SetEventName(eBroadcastBitStateChanged, "state-changed"); 764 SetEventName(eBroadcastBitInterrupt, "interrupt"); 765 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 766 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 767 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 768 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 769 770 m_private_state_control_broadcaster.SetEventName( 771 eBroadcastInternalStateControlStop, "control-stop"); 772 m_private_state_control_broadcaster.SetEventName( 773 eBroadcastInternalStateControlPause, "control-pause"); 774 m_private_state_control_broadcaster.SetEventName( 775 eBroadcastInternalStateControlResume, "control-resume"); 776 777 m_listener_sp->StartListeningForEvents( 778 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 779 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 780 eBroadcastBitProfileData | eBroadcastBitStructuredData); 781 782 m_private_state_listener_sp->StartListeningForEvents( 783 &m_private_state_broadcaster, 784 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 785 786 m_private_state_listener_sp->StartListeningForEvents( 787 &m_private_state_control_broadcaster, 788 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 789 eBroadcastInternalStateControlResume); 790 // We need something valid here, even if just the default UnixSignalsSP. 791 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 792 793 // Allow the platform to override the default cache line size 794 OptionValueSP value_sp = 795 m_collection_sp 796 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 797 ->GetValue(); 798 uint32_t platform_cache_line_size = 799 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 800 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 801 value_sp->SetUInt64Value(platform_cache_line_size); 802 } 803 804 Process::~Process() { 805 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 806 if (log) 807 log->Printf("%p Process::~Process()", static_cast<void *>(this)); 808 StopPrivateStateThread(); 809 810 // ThreadList::Clear() will try to acquire this process's mutex, so 811 // explicitly clear the thread list here to ensure that the mutex is not 812 // destroyed before the thread list. 813 m_thread_list.Clear(); 814 } 815 816 const ProcessPropertiesSP &Process::GetGlobalProperties() { 817 // NOTE: intentional leak so we don't crash if global destructor chain gets 818 // called as other threads still use the result of this function 819 static ProcessPropertiesSP *g_settings_sp_ptr = 820 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 821 return *g_settings_sp_ptr; 822 } 823 824 void Process::Finalize() { 825 m_finalizing = true; 826 827 // Destroy this process if needed 828 switch (GetPrivateState()) { 829 case eStateConnected: 830 case eStateAttaching: 831 case eStateLaunching: 832 case eStateStopped: 833 case eStateRunning: 834 case eStateStepping: 835 case eStateCrashed: 836 case eStateSuspended: 837 Destroy(false); 838 break; 839 840 case eStateInvalid: 841 case eStateUnloaded: 842 case eStateDetached: 843 case eStateExited: 844 break; 845 } 846 847 // Clear our broadcaster before we proceed with destroying 848 Broadcaster::Clear(); 849 850 // Do any cleanup needed prior to being destructed... Subclasses that 851 // override this method should call this superclass method as well. 852 853 // We need to destroy the loader before the derived Process class gets 854 // destroyed since it is very likely that undoing the loader will require 855 // access to the real process. 856 m_dynamic_checkers_ap.reset(); 857 m_abi_sp.reset(); 858 m_os_ap.reset(); 859 m_system_runtime_ap.reset(); 860 m_dyld_ap.reset(); 861 m_jit_loaders_ap.reset(); 862 m_thread_list_real.Destroy(); 863 m_thread_list.Destroy(); 864 m_extended_thread_list.Destroy(); 865 m_queue_list.Clear(); 866 m_queue_list_stop_id = 0; 867 std::vector<Notifications> empty_notifications; 868 m_notifications.swap(empty_notifications); 869 m_image_tokens.clear(); 870 m_memory_cache.Clear(); 871 m_allocated_memory_cache.Clear(); 872 m_language_runtimes.clear(); 873 m_instrumentation_runtimes.clear(); 874 m_next_event_action_ap.reset(); 875 // Clear the last natural stop ID since it has a strong reference to this 876 // process 877 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 878 //#ifdef LLDB_CONFIGURATION_DEBUG 879 // StreamFile s(stdout, false); 880 // EventSP event_sp; 881 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 882 // { 883 // event_sp->Dump (&s); 884 // s.EOL(); 885 // } 886 //#endif 887 // We have to be very careful here as the m_private_state_listener might 888 // contain events that have ProcessSP values in them which can keep this 889 // process around forever. These events need to be cleared out. 890 m_private_state_listener_sp->Clear(); 891 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 892 m_public_run_lock.SetStopped(); 893 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 894 m_private_run_lock.SetStopped(); 895 m_structured_data_plugin_map.clear(); 896 m_finalize_called = true; 897 } 898 899 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 900 m_notifications.push_back(callbacks); 901 if (callbacks.initialize != nullptr) 902 callbacks.initialize(callbacks.baton, this); 903 } 904 905 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 906 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 907 for (pos = m_notifications.begin(); pos != end; ++pos) { 908 if (pos->baton == callbacks.baton && 909 pos->initialize == callbacks.initialize && 910 pos->process_state_changed == callbacks.process_state_changed) { 911 m_notifications.erase(pos); 912 return true; 913 } 914 } 915 return false; 916 } 917 918 void Process::SynchronouslyNotifyStateChanged(StateType state) { 919 std::vector<Notifications>::iterator notification_pos, 920 notification_end = m_notifications.end(); 921 for (notification_pos = m_notifications.begin(); 922 notification_pos != notification_end; ++notification_pos) { 923 if (notification_pos->process_state_changed) 924 notification_pos->process_state_changed(notification_pos->baton, this, 925 state); 926 } 927 } 928 929 // FIXME: We need to do some work on events before the general Listener sees 930 // them. 931 // For instance if we are continuing from a breakpoint, we need to ensure that 932 // we do the little "insert real insn, step & stop" trick. But we can't do 933 // that when the event is delivered by the broadcaster - since that is done on 934 // the thread that is waiting for new events, so if we needed more than one 935 // event for our handling, we would stall. So instead we do it when we fetch 936 // the event off of the queue. 937 // 938 939 StateType Process::GetNextEvent(EventSP &event_sp) { 940 StateType state = eStateInvalid; 941 942 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 943 std::chrono::seconds(0)) && 944 event_sp) 945 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 946 947 return state; 948 } 949 950 void Process::SyncIOHandler(uint32_t iohandler_id, 951 const Timeout<std::micro> &timeout) { 952 // don't sync (potentially context switch) in case where there is no process 953 // IO 954 if (!m_process_input_reader) 955 return; 956 957 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 958 959 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 960 if (Result) { 961 LLDB_LOG( 962 log, 963 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 964 iohandler_id, *Result); 965 } else { 966 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 967 iohandler_id); 968 } 969 } 970 971 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 972 EventSP *event_sp_ptr, bool wait_always, 973 ListenerSP hijack_listener_sp, 974 Stream *stream, bool use_run_lock) { 975 // We can't just wait for a "stopped" event, because the stopped event may 976 // have restarted the target. We have to actually check each event, and in 977 // the case of a stopped event check the restarted flag on the event. 978 if (event_sp_ptr) 979 event_sp_ptr->reset(); 980 StateType state = GetState(); 981 // If we are exited or detached, we won't ever get back to any other valid 982 // state... 983 if (state == eStateDetached || state == eStateExited) 984 return state; 985 986 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 987 LLDB_LOG(log, "timeout = {0}", timeout); 988 989 if (!wait_always && StateIsStoppedState(state, true) && 990 StateIsStoppedState(GetPrivateState(), true)) { 991 if (log) 992 log->Printf("Process::%s returning without waiting for events; process " 993 "private and public states are already 'stopped'.", 994 __FUNCTION__); 995 // We need to toggle the run lock as this won't get done in 996 // SetPublicState() if the process is hijacked. 997 if (hijack_listener_sp && use_run_lock) 998 m_public_run_lock.SetStopped(); 999 return state; 1000 } 1001 1002 while (state != eStateInvalid) { 1003 EventSP event_sp; 1004 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 1005 if (event_sp_ptr && event_sp) 1006 *event_sp_ptr = event_sp; 1007 1008 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1009 Process::HandleProcessStateChangedEvent(event_sp, stream, 1010 pop_process_io_handler); 1011 1012 switch (state) { 1013 case eStateCrashed: 1014 case eStateDetached: 1015 case eStateExited: 1016 case eStateUnloaded: 1017 // We need to toggle the run lock as this won't get done in 1018 // SetPublicState() if the process is hijacked. 1019 if (hijack_listener_sp && use_run_lock) 1020 m_public_run_lock.SetStopped(); 1021 return state; 1022 case eStateStopped: 1023 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1024 continue; 1025 else { 1026 // We need to toggle the run lock as this won't get done in 1027 // SetPublicState() if the process is hijacked. 1028 if (hijack_listener_sp && use_run_lock) 1029 m_public_run_lock.SetStopped(); 1030 return state; 1031 } 1032 default: 1033 continue; 1034 } 1035 } 1036 return state; 1037 } 1038 1039 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 1040 Stream *stream, 1041 bool &pop_process_io_handler) { 1042 const bool handle_pop = pop_process_io_handler; 1043 1044 pop_process_io_handler = false; 1045 ProcessSP process_sp = 1046 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1047 1048 if (!process_sp) 1049 return false; 1050 1051 StateType event_state = 1052 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1053 if (event_state == eStateInvalid) 1054 return false; 1055 1056 switch (event_state) { 1057 case eStateInvalid: 1058 case eStateUnloaded: 1059 case eStateAttaching: 1060 case eStateLaunching: 1061 case eStateStepping: 1062 case eStateDetached: 1063 if (stream) 1064 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 1065 StateAsCString(event_state)); 1066 if (event_state == eStateDetached) 1067 pop_process_io_handler = true; 1068 break; 1069 1070 case eStateConnected: 1071 case eStateRunning: 1072 // Don't be chatty when we run... 1073 break; 1074 1075 case eStateExited: 1076 if (stream) 1077 process_sp->GetStatus(*stream); 1078 pop_process_io_handler = true; 1079 break; 1080 1081 case eStateStopped: 1082 case eStateCrashed: 1083 case eStateSuspended: 1084 // Make sure the program hasn't been auto-restarted: 1085 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 1086 if (stream) { 1087 size_t num_reasons = 1088 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1089 if (num_reasons > 0) { 1090 // FIXME: Do we want to report this, or would that just be annoyingly 1091 // chatty? 1092 if (num_reasons == 1) { 1093 const char *reason = 1094 Process::ProcessEventData::GetRestartedReasonAtIndex( 1095 event_sp.get(), 0); 1096 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 1097 process_sp->GetID(), 1098 reason ? reason : "<UNKNOWN REASON>"); 1099 } else { 1100 stream->Printf("Process %" PRIu64 1101 " stopped and restarted, reasons:\n", 1102 process_sp->GetID()); 1103 1104 for (size_t i = 0; i < num_reasons; i++) { 1105 const char *reason = 1106 Process::ProcessEventData::GetRestartedReasonAtIndex( 1107 event_sp.get(), i); 1108 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1109 } 1110 } 1111 } 1112 } 1113 } else { 1114 StopInfoSP curr_thread_stop_info_sp; 1115 // Lock the thread list so it doesn't change on us, this is the scope for 1116 // the locker: 1117 { 1118 ThreadList &thread_list = process_sp->GetThreadList(); 1119 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1120 1121 ThreadSP curr_thread(thread_list.GetSelectedThread()); 1122 ThreadSP thread; 1123 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1124 if (curr_thread) { 1125 curr_thread_stop_reason = curr_thread->GetStopReason(); 1126 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 1127 } 1128 if (!curr_thread || !curr_thread->IsValid() || 1129 curr_thread_stop_reason == eStopReasonInvalid || 1130 curr_thread_stop_reason == eStopReasonNone) { 1131 // Prefer a thread that has just completed its plan over another 1132 // thread as current thread. 1133 ThreadSP plan_thread; 1134 ThreadSP other_thread; 1135 1136 const size_t num_threads = thread_list.GetSize(); 1137 size_t i; 1138 for (i = 0; i < num_threads; ++i) { 1139 thread = thread_list.GetThreadAtIndex(i); 1140 StopReason thread_stop_reason = thread->GetStopReason(); 1141 switch (thread_stop_reason) { 1142 case eStopReasonInvalid: 1143 case eStopReasonNone: 1144 break; 1145 1146 case eStopReasonSignal: { 1147 // Don't select a signal thread if we weren't going to stop at 1148 // that signal. We have to have had another reason for stopping 1149 // here, and the user doesn't want to see this thread. 1150 uint64_t signo = thread->GetStopInfo()->GetValue(); 1151 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 1152 if (!other_thread) 1153 other_thread = thread; 1154 } 1155 break; 1156 } 1157 case eStopReasonTrace: 1158 case eStopReasonBreakpoint: 1159 case eStopReasonWatchpoint: 1160 case eStopReasonException: 1161 case eStopReasonExec: 1162 case eStopReasonThreadExiting: 1163 case eStopReasonInstrumentation: 1164 if (!other_thread) 1165 other_thread = thread; 1166 break; 1167 case eStopReasonPlanComplete: 1168 if (!plan_thread) 1169 plan_thread = thread; 1170 break; 1171 } 1172 } 1173 if (plan_thread) 1174 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 1175 else if (other_thread) 1176 thread_list.SetSelectedThreadByID(other_thread->GetID()); 1177 else { 1178 if (curr_thread && curr_thread->IsValid()) 1179 thread = curr_thread; 1180 else 1181 thread = thread_list.GetThreadAtIndex(0); 1182 1183 if (thread) 1184 thread_list.SetSelectedThreadByID(thread->GetID()); 1185 } 1186 } 1187 } 1188 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1189 // have to run code, e.g. for Data formatters, and if we hold the 1190 // ThreadList mutex, then the process is going to have a hard time 1191 // restarting the process. 1192 if (stream) { 1193 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1194 if (debugger.GetTargetList().GetSelectedTarget().get() == 1195 &process_sp->GetTarget()) { 1196 const bool only_threads_with_stop_reason = true; 1197 const uint32_t start_frame = 0; 1198 const uint32_t num_frames = 1; 1199 const uint32_t num_frames_with_source = 1; 1200 const bool stop_format = true; 1201 process_sp->GetStatus(*stream); 1202 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1203 start_frame, num_frames, 1204 num_frames_with_source, 1205 stop_format); 1206 if (curr_thread_stop_info_sp) { 1207 lldb::addr_t crashing_address; 1208 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1209 curr_thread_stop_info_sp, &crashing_address); 1210 if (valobj_sp) { 1211 const bool qualify_cxx_base_classes = false; 1212 1213 const ValueObject::GetExpressionPathFormat format = 1214 ValueObject::GetExpressionPathFormat:: 1215 eGetExpressionPathFormatHonorPointers; 1216 stream->PutCString("Likely cause: "); 1217 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 1218 format); 1219 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1220 } 1221 } 1222 } else { 1223 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1224 process_sp->GetTarget().shared_from_this()); 1225 if (target_idx != UINT32_MAX) 1226 stream->Printf("Target %d: (", target_idx); 1227 else 1228 stream->Printf("Target <unknown index>: ("); 1229 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1230 stream->Printf(") stopped.\n"); 1231 } 1232 } 1233 1234 // Pop the process IO handler 1235 pop_process_io_handler = true; 1236 } 1237 break; 1238 } 1239 1240 if (handle_pop && pop_process_io_handler) 1241 process_sp->PopProcessIOHandler(); 1242 1243 return true; 1244 } 1245 1246 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1247 if (listener_sp) { 1248 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1249 eBroadcastBitInterrupt); 1250 } else 1251 return false; 1252 } 1253 1254 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1255 1256 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1257 const Timeout<std::micro> &timeout, 1258 ListenerSP hijack_listener_sp) { 1259 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1260 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1261 1262 ListenerSP listener_sp = hijack_listener_sp; 1263 if (!listener_sp) 1264 listener_sp = m_listener_sp; 1265 1266 StateType state = eStateInvalid; 1267 if (listener_sp->GetEventForBroadcasterWithType( 1268 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1269 timeout)) { 1270 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1271 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1272 else 1273 LLDB_LOG(log, "got no event or was interrupted."); 1274 } 1275 1276 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1277 return state; 1278 } 1279 1280 Event *Process::PeekAtStateChangedEvents() { 1281 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1282 1283 if (log) 1284 log->Printf("Process::%s...", __FUNCTION__); 1285 1286 Event *event_ptr; 1287 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1288 this, eBroadcastBitStateChanged); 1289 if (log) { 1290 if (event_ptr) { 1291 log->Printf( 1292 "Process::%s (event_ptr) => %s", __FUNCTION__, 1293 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1294 } else { 1295 log->Printf("Process::%s no events found", __FUNCTION__); 1296 } 1297 } 1298 return event_ptr; 1299 } 1300 1301 StateType 1302 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1303 const Timeout<std::micro> &timeout) { 1304 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1305 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1306 1307 StateType state = eStateInvalid; 1308 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1309 &m_private_state_broadcaster, 1310 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1311 timeout)) 1312 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1313 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1314 1315 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1316 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1317 return state; 1318 } 1319 1320 bool Process::GetEventsPrivate(EventSP &event_sp, 1321 const Timeout<std::micro> &timeout, 1322 bool control_only) { 1323 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1324 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1325 1326 if (control_only) 1327 return m_private_state_listener_sp->GetEventForBroadcaster( 1328 &m_private_state_control_broadcaster, event_sp, timeout); 1329 else 1330 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1331 } 1332 1333 bool Process::IsRunning() const { 1334 return StateIsRunningState(m_public_state.GetValue()); 1335 } 1336 1337 int Process::GetExitStatus() { 1338 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1339 1340 if (m_public_state.GetValue() == eStateExited) 1341 return m_exit_status; 1342 return -1; 1343 } 1344 1345 const char *Process::GetExitDescription() { 1346 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1347 1348 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1349 return m_exit_string.c_str(); 1350 return nullptr; 1351 } 1352 1353 bool Process::SetExitStatus(int status, const char *cstr) { 1354 // Use a mutex to protect setting the exit status. 1355 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1356 1357 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1358 LIBLLDB_LOG_PROCESS)); 1359 if (log) 1360 log->Printf( 1361 "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1362 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", 1363 cstr ? "\"" : ""); 1364 1365 // We were already in the exited state 1366 if (m_private_state.GetValue() == eStateExited) { 1367 if (log) 1368 log->Printf("Process::SetExitStatus () ignoring exit status because " 1369 "state was already set to eStateExited"); 1370 return false; 1371 } 1372 1373 m_exit_status = status; 1374 if (cstr) 1375 m_exit_string = cstr; 1376 else 1377 m_exit_string.clear(); 1378 1379 // Clear the last natural stop ID since it has a strong reference to this 1380 // process 1381 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1382 1383 SetPrivateState(eStateExited); 1384 1385 // Allow subclasses to do some cleanup 1386 DidExit(); 1387 1388 return true; 1389 } 1390 1391 bool Process::IsAlive() { 1392 switch (m_private_state.GetValue()) { 1393 case eStateConnected: 1394 case eStateAttaching: 1395 case eStateLaunching: 1396 case eStateStopped: 1397 case eStateRunning: 1398 case eStateStepping: 1399 case eStateCrashed: 1400 case eStateSuspended: 1401 return true; 1402 default: 1403 return false; 1404 } 1405 } 1406 1407 // This static callback can be used to watch for local child processes on the 1408 // current host. The child process exits, the process will be found in the 1409 // global target list (we want to be completely sure that the 1410 // lldb_private::Process doesn't go away before we can deliver the signal. 1411 bool Process::SetProcessExitStatus( 1412 lldb::pid_t pid, bool exited, 1413 int signo, // Zero for no signal 1414 int exit_status // Exit value of process if signal is zero 1415 ) { 1416 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1417 if (log) 1418 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 1419 ", exited=%i, signal=%i, exit_status=%i)\n", 1420 pid, exited, signo, exit_status); 1421 1422 if (exited) { 1423 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1424 if (target_sp) { 1425 ProcessSP process_sp(target_sp->GetProcessSP()); 1426 if (process_sp) { 1427 const char *signal_cstr = nullptr; 1428 if (signo) 1429 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1430 1431 process_sp->SetExitStatus(exit_status, signal_cstr); 1432 } 1433 } 1434 return true; 1435 } 1436 return false; 1437 } 1438 1439 void Process::UpdateThreadListIfNeeded() { 1440 const uint32_t stop_id = GetStopID(); 1441 if (m_thread_list.GetSize(false) == 0 || 1442 stop_id != m_thread_list.GetStopID()) { 1443 const StateType state = GetPrivateState(); 1444 if (StateIsStoppedState(state, true)) { 1445 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1446 // m_thread_list does have its own mutex, but we need to hold onto the 1447 // mutex between the call to UpdateThreadList(...) and the 1448 // os->UpdateThreadList(...) so it doesn't change on us 1449 ThreadList &old_thread_list = m_thread_list; 1450 ThreadList real_thread_list(this); 1451 ThreadList new_thread_list(this); 1452 // Always update the thread list with the protocol specific thread list, 1453 // but only update if "true" is returned 1454 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1455 // Don't call into the OperatingSystem to update the thread list if we 1456 // are shutting down, since that may call back into the SBAPI's, 1457 // requiring the API lock which is already held by whoever is shutting 1458 // us down, causing a deadlock. 1459 OperatingSystem *os = GetOperatingSystem(); 1460 if (os && !m_destroy_in_process) { 1461 // Clear any old backing threads where memory threads might have been 1462 // backed by actual threads from the lldb_private::Process subclass 1463 size_t num_old_threads = old_thread_list.GetSize(false); 1464 for (size_t i = 0; i < num_old_threads; ++i) 1465 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1466 1467 // Turn off dynamic types to ensure we don't run any expressions. 1468 // Objective C can run an expression to determine if a SBValue is a 1469 // dynamic type or not and we need to avoid this. OperatingSystem 1470 // plug-ins can't run expressions that require running code... 1471 1472 Target &target = GetTarget(); 1473 const lldb::DynamicValueType saved_prefer_dynamic = 1474 target.GetPreferDynamicValue(); 1475 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1476 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1477 1478 // Now let the OperatingSystem plug-in update the thread list 1479 1480 os->UpdateThreadList( 1481 old_thread_list, // Old list full of threads created by OS plug-in 1482 real_thread_list, // The actual thread list full of threads 1483 // created by each lldb_private::Process 1484 // subclass 1485 new_thread_list); // The new thread list that we will show to the 1486 // user that gets filled in 1487 1488 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1489 target.SetPreferDynamicValue(saved_prefer_dynamic); 1490 } else { 1491 // No OS plug-in, the new thread list is the same as the real thread 1492 // list 1493 new_thread_list = real_thread_list; 1494 } 1495 1496 m_thread_list_real.Update(real_thread_list); 1497 m_thread_list.Update(new_thread_list); 1498 m_thread_list.SetStopID(stop_id); 1499 1500 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1501 // Clear any extended threads that we may have accumulated previously 1502 m_extended_thread_list.Clear(); 1503 m_extended_thread_stop_id = GetLastNaturalStopID(); 1504 1505 m_queue_list.Clear(); 1506 m_queue_list_stop_id = GetLastNaturalStopID(); 1507 } 1508 } 1509 } 1510 } 1511 } 1512 1513 void Process::UpdateQueueListIfNeeded() { 1514 if (m_system_runtime_ap) { 1515 if (m_queue_list.GetSize() == 0 || 1516 m_queue_list_stop_id != GetLastNaturalStopID()) { 1517 const StateType state = GetPrivateState(); 1518 if (StateIsStoppedState(state, true)) { 1519 m_system_runtime_ap->PopulateQueueList(m_queue_list); 1520 m_queue_list_stop_id = GetLastNaturalStopID(); 1521 } 1522 } 1523 } 1524 } 1525 1526 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1527 OperatingSystem *os = GetOperatingSystem(); 1528 if (os) 1529 return os->CreateThread(tid, context); 1530 return ThreadSP(); 1531 } 1532 1533 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1534 return AssignIndexIDToThread(thread_id); 1535 } 1536 1537 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1538 return (m_thread_id_to_index_id_map.find(thread_id) != 1539 m_thread_id_to_index_id_map.end()); 1540 } 1541 1542 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1543 uint32_t result = 0; 1544 std::map<uint64_t, uint32_t>::iterator iterator = 1545 m_thread_id_to_index_id_map.find(thread_id); 1546 if (iterator == m_thread_id_to_index_id_map.end()) { 1547 result = ++m_thread_index_id; 1548 m_thread_id_to_index_id_map[thread_id] = result; 1549 } else { 1550 result = iterator->second; 1551 } 1552 1553 return result; 1554 } 1555 1556 StateType Process::GetState() { 1557 return m_public_state.GetValue(); 1558 } 1559 1560 bool Process::StateChangedIsExternallyHijacked() { 1561 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1562 const char *hijacking_name = GetHijackingListenerName(); 1563 if (hijacking_name && 1564 strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1565 return true; 1566 } 1567 return false; 1568 } 1569 1570 void Process::SetPublicState(StateType new_state, bool restarted) { 1571 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1572 LIBLLDB_LOG_PROCESS)); 1573 if (log) 1574 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", 1575 StateAsCString(new_state), restarted); 1576 const StateType old_state = m_public_state.GetValue(); 1577 m_public_state.SetValue(new_state); 1578 1579 // On the transition from Run to Stopped, we unlock the writer end of the run 1580 // lock. The lock gets locked in Resume, which is the public API to tell the 1581 // program to run. 1582 if (!StateChangedIsExternallyHijacked()) { 1583 if (new_state == eStateDetached) { 1584 if (log) 1585 log->Printf( 1586 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1587 StateAsCString(new_state)); 1588 m_public_run_lock.SetStopped(); 1589 } else { 1590 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1591 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1592 if ((old_state_is_stopped != new_state_is_stopped)) { 1593 if (new_state_is_stopped && !restarted) { 1594 if (log) 1595 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", 1596 StateAsCString(new_state)); 1597 m_public_run_lock.SetStopped(); 1598 } 1599 } 1600 } 1601 } 1602 } 1603 1604 Status Process::Resume() { 1605 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1606 LIBLLDB_LOG_PROCESS)); 1607 if (log) 1608 log->Printf("Process::Resume -- locking run lock"); 1609 if (!m_public_run_lock.TrySetRunning()) { 1610 Status error("Resume request failed - process still running."); 1611 if (log) 1612 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1613 return error; 1614 } 1615 Status error = PrivateResume(); 1616 if (!error.Success()) { 1617 // Undo running state change 1618 m_public_run_lock.SetStopped(); 1619 } 1620 return error; 1621 } 1622 1623 Status Process::ResumeSynchronous(Stream *stream) { 1624 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1625 LIBLLDB_LOG_PROCESS)); 1626 if (log) 1627 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1628 if (!m_public_run_lock.TrySetRunning()) { 1629 Status error("Resume request failed - process still running."); 1630 if (log) 1631 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1632 return error; 1633 } 1634 1635 ListenerSP listener_sp( 1636 Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1637 HijackProcessEvents(listener_sp); 1638 1639 Status error = PrivateResume(); 1640 if (error.Success()) { 1641 StateType state = 1642 WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream); 1643 const bool must_be_alive = 1644 false; // eStateExited is ok, so this must be false 1645 if (!StateIsStoppedState(state, must_be_alive)) 1646 error.SetErrorStringWithFormat( 1647 "process not in stopped state after synchronous resume: %s", 1648 StateAsCString(state)); 1649 } else { 1650 // Undo running state change 1651 m_public_run_lock.SetStopped(); 1652 } 1653 1654 // Undo the hijacking of process events... 1655 RestoreProcessEvents(); 1656 1657 return error; 1658 } 1659 1660 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1661 1662 void Process::SetPrivateState(StateType new_state) { 1663 if (m_finalize_called) 1664 return; 1665 1666 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1667 LIBLLDB_LOG_PROCESS)); 1668 bool state_changed = false; 1669 1670 if (log) 1671 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1672 1673 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1674 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1675 1676 const StateType old_state = m_private_state.GetValueNoLock(); 1677 state_changed = old_state != new_state; 1678 1679 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1680 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1681 if (old_state_is_stopped != new_state_is_stopped) { 1682 if (new_state_is_stopped) 1683 m_private_run_lock.SetStopped(); 1684 else 1685 m_private_run_lock.SetRunning(); 1686 } 1687 1688 if (state_changed) { 1689 m_private_state.SetValueNoLock(new_state); 1690 EventSP event_sp( 1691 new Event(eBroadcastBitStateChanged, 1692 new ProcessEventData(shared_from_this(), new_state))); 1693 if (StateIsStoppedState(new_state, false)) { 1694 // Note, this currently assumes that all threads in the list stop when 1695 // the process stops. In the future we will want to support a debugging 1696 // model where some threads continue to run while others are stopped. 1697 // When that happens we will either need a way for the thread list to 1698 // identify which threads are stopping or create a special thread list 1699 // containing only threads which actually stopped. 1700 // 1701 // The process plugin is responsible for managing the actual behavior of 1702 // the threads and should have stopped any threads that are going to stop 1703 // before we get here. 1704 m_thread_list.DidStop(); 1705 1706 m_mod_id.BumpStopID(); 1707 if (!m_mod_id.IsLastResumeForUserExpression()) 1708 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1709 m_memory_cache.Clear(); 1710 if (log) 1711 log->Printf("Process::SetPrivateState (%s) stop_id = %u", 1712 StateAsCString(new_state), m_mod_id.GetStopID()); 1713 } 1714 1715 // Use our target to get a shared pointer to ourselves... 1716 if (m_finalize_called && !PrivateStateThreadIsValid()) 1717 BroadcastEvent(event_sp); 1718 else 1719 m_private_state_broadcaster.BroadcastEvent(event_sp); 1720 } else { 1721 if (log) 1722 log->Printf( 1723 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1724 StateAsCString(new_state)); 1725 } 1726 } 1727 1728 void Process::SetRunningUserExpression(bool on) { 1729 m_mod_id.SetRunningUserExpression(on); 1730 } 1731 1732 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1733 1734 const lldb::ABISP &Process::GetABI() { 1735 if (!m_abi_sp) 1736 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1737 return m_abi_sp; 1738 } 1739 1740 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language, 1741 bool retry_if_null) { 1742 if (m_finalizing) 1743 return nullptr; 1744 1745 LanguageRuntimeCollection::iterator pos; 1746 pos = m_language_runtimes.find(language); 1747 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { 1748 lldb::LanguageRuntimeSP runtime_sp( 1749 LanguageRuntime::FindPlugin(this, language)); 1750 1751 m_language_runtimes[language] = runtime_sp; 1752 return runtime_sp.get(); 1753 } else 1754 return (*pos).second.get(); 1755 } 1756 1757 CPPLanguageRuntime *Process::GetCPPLanguageRuntime(bool retry_if_null) { 1758 LanguageRuntime *runtime = 1759 GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1760 if (runtime != nullptr && 1761 runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1762 return static_cast<CPPLanguageRuntime *>(runtime); 1763 return nullptr; 1764 } 1765 1766 ObjCLanguageRuntime *Process::GetObjCLanguageRuntime(bool retry_if_null) { 1767 LanguageRuntime *runtime = 1768 GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1769 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1770 return static_cast<ObjCLanguageRuntime *>(runtime); 1771 return nullptr; 1772 } 1773 1774 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1775 if (m_finalizing) 1776 return false; 1777 1778 if (in_value.IsDynamic()) 1779 return false; 1780 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1781 1782 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1783 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1784 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1785 } 1786 1787 LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus); 1788 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1789 return true; 1790 1791 LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC); 1792 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1793 } 1794 1795 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1796 m_dynamic_checkers_ap.reset(dynamic_checkers); 1797 } 1798 1799 BreakpointSiteList &Process::GetBreakpointSiteList() { 1800 return m_breakpoint_site_list; 1801 } 1802 1803 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1804 return m_breakpoint_site_list; 1805 } 1806 1807 void Process::DisableAllBreakpointSites() { 1808 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1809 // bp_site->SetEnabled(true); 1810 DisableBreakpointSite(bp_site); 1811 }); 1812 } 1813 1814 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1815 Status error(DisableBreakpointSiteByID(break_id)); 1816 1817 if (error.Success()) 1818 m_breakpoint_site_list.Remove(break_id); 1819 1820 return error; 1821 } 1822 1823 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1824 Status error; 1825 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1826 if (bp_site_sp) { 1827 if (bp_site_sp->IsEnabled()) 1828 error = DisableBreakpointSite(bp_site_sp.get()); 1829 } else { 1830 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1831 break_id); 1832 } 1833 1834 return error; 1835 } 1836 1837 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1838 Status error; 1839 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1840 if (bp_site_sp) { 1841 if (!bp_site_sp->IsEnabled()) 1842 error = EnableBreakpointSite(bp_site_sp.get()); 1843 } else { 1844 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1845 break_id); 1846 } 1847 return error; 1848 } 1849 1850 lldb::break_id_t 1851 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1852 bool use_hardware) { 1853 addr_t load_addr = LLDB_INVALID_ADDRESS; 1854 1855 bool show_error = true; 1856 switch (GetState()) { 1857 case eStateInvalid: 1858 case eStateUnloaded: 1859 case eStateConnected: 1860 case eStateAttaching: 1861 case eStateLaunching: 1862 case eStateDetached: 1863 case eStateExited: 1864 show_error = false; 1865 break; 1866 1867 case eStateStopped: 1868 case eStateRunning: 1869 case eStateStepping: 1870 case eStateCrashed: 1871 case eStateSuspended: 1872 show_error = IsAlive(); 1873 break; 1874 } 1875 1876 // Reset the IsIndirect flag here, in case the location changes from pointing 1877 // to a indirect symbol to a regular symbol. 1878 owner->SetIsIndirect(false); 1879 1880 if (owner->ShouldResolveIndirectFunctions()) { 1881 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1882 if (symbol && symbol->IsIndirect()) { 1883 Status error; 1884 Address symbol_address = symbol->GetAddress(); 1885 load_addr = ResolveIndirectFunction(&symbol_address, error); 1886 if (!error.Success() && show_error) { 1887 GetTarget().GetDebugger().GetErrorFile()->Printf( 1888 "warning: failed to resolve indirect function at 0x%" PRIx64 1889 " for breakpoint %i.%i: %s\n", 1890 symbol->GetLoadAddress(&GetTarget()), 1891 owner->GetBreakpoint().GetID(), owner->GetID(), 1892 error.AsCString() ? error.AsCString() : "unknown error"); 1893 return LLDB_INVALID_BREAK_ID; 1894 } 1895 Address resolved_address(load_addr); 1896 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1897 owner->SetIsIndirect(true); 1898 } else 1899 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1900 } else 1901 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1902 1903 if (load_addr != LLDB_INVALID_ADDRESS) { 1904 BreakpointSiteSP bp_site_sp; 1905 1906 // Look up this breakpoint site. If it exists, then add this new owner, 1907 // otherwise create a new breakpoint site and add it. 1908 1909 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1910 1911 if (bp_site_sp) { 1912 bp_site_sp->AddOwner(owner); 1913 owner->SetBreakpointSite(bp_site_sp); 1914 return bp_site_sp->GetID(); 1915 } else { 1916 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1917 load_addr, use_hardware)); 1918 if (bp_site_sp) { 1919 Status error = EnableBreakpointSite(bp_site_sp.get()); 1920 if (error.Success()) { 1921 owner->SetBreakpointSite(bp_site_sp); 1922 return m_breakpoint_site_list.Add(bp_site_sp); 1923 } else { 1924 if (show_error) { 1925 // Report error for setting breakpoint... 1926 GetTarget().GetDebugger().GetErrorFile()->Printf( 1927 "warning: failed to set breakpoint site at 0x%" PRIx64 1928 " for breakpoint %i.%i: %s\n", 1929 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1930 error.AsCString() ? error.AsCString() : "unknown error"); 1931 } 1932 } 1933 } 1934 } 1935 } 1936 // We failed to enable the breakpoint 1937 return LLDB_INVALID_BREAK_ID; 1938 } 1939 1940 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1941 lldb::user_id_t owner_loc_id, 1942 BreakpointSiteSP &bp_site_sp) { 1943 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1944 if (num_owners == 0) { 1945 // Don't try to disable the site if we don't have a live process anymore. 1946 if (IsAlive()) 1947 DisableBreakpointSite(bp_site_sp.get()); 1948 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1949 } 1950 } 1951 1952 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1953 uint8_t *buf) const { 1954 size_t bytes_removed = 0; 1955 BreakpointSiteList bp_sites_in_range; 1956 1957 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1958 bp_sites_in_range)) { 1959 bp_sites_in_range.ForEach([bp_addr, size, 1960 buf](BreakpointSite *bp_site) -> void { 1961 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1962 addr_t intersect_addr; 1963 size_t intersect_size; 1964 size_t opcode_offset; 1965 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1966 &intersect_size, &opcode_offset)) { 1967 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1968 assert(bp_addr < intersect_addr + intersect_size && 1969 intersect_addr + intersect_size <= bp_addr + size); 1970 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1971 size_t buf_offset = intersect_addr - bp_addr; 1972 ::memcpy(buf + buf_offset, 1973 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1974 intersect_size); 1975 } 1976 } 1977 }); 1978 } 1979 return bytes_removed; 1980 } 1981 1982 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1983 PlatformSP platform_sp(GetTarget().GetPlatform()); 1984 if (platform_sp) 1985 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1986 return 0; 1987 } 1988 1989 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1990 Status error; 1991 assert(bp_site != nullptr); 1992 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1993 const addr_t bp_addr = bp_site->GetLoadAddress(); 1994 if (log) 1995 log->Printf( 1996 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1997 bp_site->GetID(), (uint64_t)bp_addr); 1998 if (bp_site->IsEnabled()) { 1999 if (log) 2000 log->Printf( 2001 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2002 " -- already enabled", 2003 bp_site->GetID(), (uint64_t)bp_addr); 2004 return error; 2005 } 2006 2007 if (bp_addr == LLDB_INVALID_ADDRESS) { 2008 error.SetErrorString("BreakpointSite contains an invalid load address."); 2009 return error; 2010 } 2011 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2012 // trap for the breakpoint site 2013 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2014 2015 if (bp_opcode_size == 0) { 2016 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 2017 "returned zero, unable to get breakpoint " 2018 "trap for address 0x%" PRIx64, 2019 bp_addr); 2020 } else { 2021 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2022 2023 if (bp_opcode_bytes == nullptr) { 2024 error.SetErrorString( 2025 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2026 return error; 2027 } 2028 2029 // Save the original opcode by reading it 2030 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 2031 error) == bp_opcode_size) { 2032 // Write a software breakpoint in place of the original opcode 2033 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 2034 bp_opcode_size) { 2035 uint8_t verify_bp_opcode_bytes[64]; 2036 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 2037 error) == bp_opcode_size) { 2038 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 2039 bp_opcode_size) == 0) { 2040 bp_site->SetEnabled(true); 2041 bp_site->SetType(BreakpointSite::eSoftware); 2042 if (log) 2043 log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) " 2044 "addr = 0x%" PRIx64 " -- SUCCESS", 2045 bp_site->GetID(), (uint64_t)bp_addr); 2046 } else 2047 error.SetErrorString( 2048 "failed to verify the breakpoint trap in memory."); 2049 } else 2050 error.SetErrorString( 2051 "Unable to read memory to verify breakpoint trap."); 2052 } else 2053 error.SetErrorString("Unable to write breakpoint trap to memory."); 2054 } else 2055 error.SetErrorString("Unable to read memory at breakpoint address."); 2056 } 2057 if (log && error.Fail()) 2058 log->Printf( 2059 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2060 " -- FAILED: %s", 2061 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2062 return error; 2063 } 2064 2065 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 2066 Status error; 2067 assert(bp_site != nullptr); 2068 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 2069 addr_t bp_addr = bp_site->GetLoadAddress(); 2070 lldb::user_id_t breakID = bp_site->GetID(); 2071 if (log) 2072 log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 2073 ") addr = 0x%" PRIx64, 2074 breakID, (uint64_t)bp_addr); 2075 2076 if (bp_site->IsHardware()) { 2077 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2078 } else if (bp_site->IsEnabled()) { 2079 const size_t break_op_size = bp_site->GetByteSize(); 2080 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 2081 if (break_op_size > 0) { 2082 // Clear a software breakpoint instruction 2083 uint8_t curr_break_op[8]; 2084 assert(break_op_size <= sizeof(curr_break_op)); 2085 bool break_op_found = false; 2086 2087 // Read the breakpoint opcode 2088 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 2089 break_op_size) { 2090 bool verify = false; 2091 // Make sure the breakpoint opcode exists at this address 2092 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 2093 break_op_found = true; 2094 // We found a valid breakpoint opcode at this address, now restore 2095 // the saved opcode. 2096 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 2097 break_op_size, error) == break_op_size) { 2098 verify = true; 2099 } else 2100 error.SetErrorString( 2101 "Memory write failed when restoring original opcode."); 2102 } else { 2103 error.SetErrorString( 2104 "Original breakpoint trap is no longer in memory."); 2105 // Set verify to true and so we can check if the original opcode has 2106 // already been restored 2107 verify = true; 2108 } 2109 2110 if (verify) { 2111 uint8_t verify_opcode[8]; 2112 assert(break_op_size < sizeof(verify_opcode)); 2113 // Verify that our original opcode made it back to the inferior 2114 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 2115 break_op_size) { 2116 // compare the memory we just read with the original opcode 2117 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 2118 break_op_size) == 0) { 2119 // SUCCESS 2120 bp_site->SetEnabled(false); 2121 if (log) 2122 log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) " 2123 "addr = 0x%" PRIx64 " -- SUCCESS", 2124 bp_site->GetID(), (uint64_t)bp_addr); 2125 return error; 2126 } else { 2127 if (break_op_found) 2128 error.SetErrorString("Failed to restore original opcode."); 2129 } 2130 } else 2131 error.SetErrorString("Failed to read memory to verify that " 2132 "breakpoint trap was restored."); 2133 } 2134 } else 2135 error.SetErrorString( 2136 "Unable to read memory that should contain the breakpoint trap."); 2137 } 2138 } else { 2139 if (log) 2140 log->Printf( 2141 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2142 " -- already disabled", 2143 bp_site->GetID(), (uint64_t)bp_addr); 2144 return error; 2145 } 2146 2147 if (log) 2148 log->Printf( 2149 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2150 " -- FAILED: %s", 2151 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2152 return error; 2153 } 2154 2155 // Uncomment to verify memory caching works after making changes to caching 2156 // code 2157 //#define VERIFY_MEMORY_READS 2158 2159 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2160 error.Clear(); 2161 if (!GetDisableMemoryCache()) { 2162 #if defined(VERIFY_MEMORY_READS) 2163 // Memory caching is enabled, with debug verification 2164 2165 if (buf && size) { 2166 // Uncomment the line below to make sure memory caching is working. 2167 // I ran this through the test suite and got no assertions, so I am 2168 // pretty confident this is working well. If any changes are made to 2169 // memory caching, uncomment the line below and test your changes! 2170 2171 // Verify all memory reads by using the cache first, then redundantly 2172 // reading the same memory from the inferior and comparing to make sure 2173 // everything is exactly the same. 2174 std::string verify_buf(size, '\0'); 2175 assert(verify_buf.size() == size); 2176 const size_t cache_bytes_read = 2177 m_memory_cache.Read(this, addr, buf, size, error); 2178 Status verify_error; 2179 const size_t verify_bytes_read = 2180 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2181 verify_buf.size(), verify_error); 2182 assert(cache_bytes_read == verify_bytes_read); 2183 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2184 assert(verify_error.Success() == error.Success()); 2185 return cache_bytes_read; 2186 } 2187 return 0; 2188 #else // !defined(VERIFY_MEMORY_READS) 2189 // Memory caching is enabled, without debug verification 2190 2191 return m_memory_cache.Read(addr, buf, size, error); 2192 #endif // defined (VERIFY_MEMORY_READS) 2193 } else { 2194 // Memory caching is disabled 2195 2196 return ReadMemoryFromInferior(addr, buf, size, error); 2197 } 2198 } 2199 2200 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2201 Status &error) { 2202 char buf[256]; 2203 out_str.clear(); 2204 addr_t curr_addr = addr; 2205 while (true) { 2206 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2207 if (length == 0) 2208 break; 2209 out_str.append(buf, length); 2210 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2211 // to read some more characters 2212 if (length == sizeof(buf) - 1) 2213 curr_addr += length; 2214 else 2215 break; 2216 } 2217 return out_str.size(); 2218 } 2219 2220 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2221 Status &error, size_t type_width) { 2222 size_t total_bytes_read = 0; 2223 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2224 // Ensure a null terminator independent of the number of bytes that is 2225 // read. 2226 memset(dst, 0, max_bytes); 2227 size_t bytes_left = max_bytes - type_width; 2228 2229 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2230 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2231 "string with more than 4 bytes " 2232 "per character!"); 2233 2234 addr_t curr_addr = addr; 2235 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2236 char *curr_dst = dst; 2237 2238 error.Clear(); 2239 while (bytes_left > 0 && error.Success()) { 2240 addr_t cache_line_bytes_left = 2241 cache_line_size - (curr_addr % cache_line_size); 2242 addr_t bytes_to_read = 2243 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2244 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2245 2246 if (bytes_read == 0) 2247 break; 2248 2249 // Search for a null terminator of correct size and alignment in 2250 // bytes_read 2251 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2252 for (size_t i = aligned_start; 2253 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2254 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2255 error.Clear(); 2256 return i; 2257 } 2258 2259 total_bytes_read += bytes_read; 2260 curr_dst += bytes_read; 2261 curr_addr += bytes_read; 2262 bytes_left -= bytes_read; 2263 } 2264 } else { 2265 if (max_bytes) 2266 error.SetErrorString("invalid arguments"); 2267 } 2268 return total_bytes_read; 2269 } 2270 2271 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2272 // correct code to find null terminators. 2273 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2274 size_t dst_max_len, 2275 Status &result_error) { 2276 size_t total_cstr_len = 0; 2277 if (dst && dst_max_len) { 2278 result_error.Clear(); 2279 // NULL out everything just to be safe 2280 memset(dst, 0, dst_max_len); 2281 Status error; 2282 addr_t curr_addr = addr; 2283 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2284 size_t bytes_left = dst_max_len - 1; 2285 char *curr_dst = dst; 2286 2287 while (bytes_left > 0) { 2288 addr_t cache_line_bytes_left = 2289 cache_line_size - (curr_addr % cache_line_size); 2290 addr_t bytes_to_read = 2291 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2292 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2293 2294 if (bytes_read == 0) { 2295 result_error = error; 2296 dst[total_cstr_len] = '\0'; 2297 break; 2298 } 2299 const size_t len = strlen(curr_dst); 2300 2301 total_cstr_len += len; 2302 2303 if (len < bytes_to_read) 2304 break; 2305 2306 curr_dst += bytes_read; 2307 curr_addr += bytes_read; 2308 bytes_left -= bytes_read; 2309 } 2310 } else { 2311 if (dst == nullptr) 2312 result_error.SetErrorString("invalid arguments"); 2313 else 2314 result_error.Clear(); 2315 } 2316 return total_cstr_len; 2317 } 2318 2319 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2320 Status &error) { 2321 if (buf == nullptr || size == 0) 2322 return 0; 2323 2324 size_t bytes_read = 0; 2325 uint8_t *bytes = (uint8_t *)buf; 2326 2327 while (bytes_read < size) { 2328 const size_t curr_size = size - bytes_read; 2329 const size_t curr_bytes_read = 2330 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2331 bytes_read += curr_bytes_read; 2332 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2333 break; 2334 } 2335 2336 // Replace any software breakpoint opcodes that fall into this range back 2337 // into "buf" before we return 2338 if (bytes_read > 0) 2339 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2340 return bytes_read; 2341 } 2342 2343 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2344 size_t integer_byte_size, 2345 uint64_t fail_value, 2346 Status &error) { 2347 Scalar scalar; 2348 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2349 error)) 2350 return scalar.ULongLong(fail_value); 2351 return fail_value; 2352 } 2353 2354 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2355 size_t integer_byte_size, 2356 int64_t fail_value, 2357 Status &error) { 2358 Scalar scalar; 2359 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2360 error)) 2361 return scalar.SLongLong(fail_value); 2362 return fail_value; 2363 } 2364 2365 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2366 Scalar scalar; 2367 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2368 error)) 2369 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2370 return LLDB_INVALID_ADDRESS; 2371 } 2372 2373 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2374 Status &error) { 2375 Scalar scalar; 2376 const uint32_t addr_byte_size = GetAddressByteSize(); 2377 if (addr_byte_size <= 4) 2378 scalar = (uint32_t)ptr_value; 2379 else 2380 scalar = ptr_value; 2381 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2382 addr_byte_size; 2383 } 2384 2385 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2386 Status &error) { 2387 size_t bytes_written = 0; 2388 const uint8_t *bytes = (const uint8_t *)buf; 2389 2390 while (bytes_written < size) { 2391 const size_t curr_size = size - bytes_written; 2392 const size_t curr_bytes_written = DoWriteMemory( 2393 addr + bytes_written, bytes + bytes_written, curr_size, error); 2394 bytes_written += curr_bytes_written; 2395 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2396 break; 2397 } 2398 return bytes_written; 2399 } 2400 2401 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2402 Status &error) { 2403 #if defined(ENABLE_MEMORY_CACHING) 2404 m_memory_cache.Flush(addr, size); 2405 #endif 2406 2407 if (buf == nullptr || size == 0) 2408 return 0; 2409 2410 m_mod_id.BumpMemoryID(); 2411 2412 // We need to write any data that would go where any current software traps 2413 // (enabled software breakpoints) any software traps (breakpoints) that we 2414 // may have placed in our tasks memory. 2415 2416 BreakpointSiteList bp_sites_in_range; 2417 2418 if (m_breakpoint_site_list.FindInRange(addr, addr + size, 2419 bp_sites_in_range)) { 2420 // No breakpoint sites overlap 2421 if (bp_sites_in_range.IsEmpty()) 2422 return WriteMemoryPrivate(addr, buf, size, error); 2423 else { 2424 const uint8_t *ubuf = (const uint8_t *)buf; 2425 uint64_t bytes_written = 0; 2426 2427 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2428 &error](BreakpointSite *bp) -> void { 2429 2430 if (error.Success()) { 2431 addr_t intersect_addr; 2432 size_t intersect_size; 2433 size_t opcode_offset; 2434 const bool intersects = bp->IntersectsRange( 2435 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2436 UNUSED_IF_ASSERT_DISABLED(intersects); 2437 assert(intersects); 2438 assert(addr <= intersect_addr && intersect_addr < addr + size); 2439 assert(addr < intersect_addr + intersect_size && 2440 intersect_addr + intersect_size <= addr + size); 2441 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2442 2443 // Check for bytes before this breakpoint 2444 const addr_t curr_addr = addr + bytes_written; 2445 if (intersect_addr > curr_addr) { 2446 // There are some bytes before this breakpoint that we need to just 2447 // write to memory 2448 size_t curr_size = intersect_addr - curr_addr; 2449 size_t curr_bytes_written = WriteMemoryPrivate( 2450 curr_addr, ubuf + bytes_written, curr_size, error); 2451 bytes_written += curr_bytes_written; 2452 if (curr_bytes_written != curr_size) { 2453 // We weren't able to write all of the requested bytes, we are 2454 // done looping and will return the number of bytes that we have 2455 // written so far. 2456 if (error.Success()) 2457 error.SetErrorToGenericError(); 2458 } 2459 } 2460 // Now write any bytes that would cover up any software breakpoints 2461 // directly into the breakpoint opcode buffer 2462 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, 2463 ubuf + bytes_written, intersect_size); 2464 bytes_written += intersect_size; 2465 } 2466 }); 2467 2468 if (bytes_written < size) 2469 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2470 size - bytes_written, error); 2471 } 2472 } else { 2473 return WriteMemoryPrivate(addr, buf, size, error); 2474 } 2475 2476 // Write any remaining bytes after the last breakpoint if we have any left 2477 return 0; // bytes_written; 2478 } 2479 2480 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2481 size_t byte_size, Status &error) { 2482 if (byte_size == UINT32_MAX) 2483 byte_size = scalar.GetByteSize(); 2484 if (byte_size > 0) { 2485 uint8_t buf[32]; 2486 const size_t mem_size = 2487 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2488 if (mem_size > 0) 2489 return WriteMemory(addr, buf, mem_size, error); 2490 else 2491 error.SetErrorString("failed to get scalar as memory data"); 2492 } else { 2493 error.SetErrorString("invalid scalar value"); 2494 } 2495 return 0; 2496 } 2497 2498 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2499 bool is_signed, Scalar &scalar, 2500 Status &error) { 2501 uint64_t uval = 0; 2502 if (byte_size == 0) { 2503 error.SetErrorString("byte size is zero"); 2504 } else if (byte_size & (byte_size - 1)) { 2505 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2506 byte_size); 2507 } else if (byte_size <= sizeof(uval)) { 2508 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2509 if (bytes_read == byte_size) { 2510 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2511 GetAddressByteSize()); 2512 lldb::offset_t offset = 0; 2513 if (byte_size <= 4) 2514 scalar = data.GetMaxU32(&offset, byte_size); 2515 else 2516 scalar = data.GetMaxU64(&offset, byte_size); 2517 if (is_signed) 2518 scalar.SignExtend(byte_size * 8); 2519 return bytes_read; 2520 } 2521 } else { 2522 error.SetErrorStringWithFormat( 2523 "byte size of %u is too large for integer scalar type", byte_size); 2524 } 2525 return 0; 2526 } 2527 2528 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2529 Status error; 2530 for (const auto &Entry : entries) { 2531 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2532 error); 2533 if (!error.Success()) 2534 break; 2535 } 2536 return error; 2537 } 2538 2539 #define USE_ALLOCATE_MEMORY_CACHE 1 2540 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2541 Status &error) { 2542 if (GetPrivateState() != eStateStopped) { 2543 error.SetErrorToGenericError(); 2544 return LLDB_INVALID_ADDRESS; 2545 } 2546 2547 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2548 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2549 #else 2550 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2551 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2552 if (log) 2553 log->Printf("Process::AllocateMemory(size=%" PRIu64 2554 ", permissions=%s) => 0x%16.16" PRIx64 2555 " (m_stop_id = %u m_memory_id = %u)", 2556 (uint64_t)size, GetPermissionsAsCString(permissions), 2557 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2558 m_mod_id.GetMemoryID()); 2559 return allocated_addr; 2560 #endif 2561 } 2562 2563 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2564 Status &error) { 2565 addr_t return_addr = AllocateMemory(size, permissions, error); 2566 if (error.Success()) { 2567 std::string buffer(size, 0); 2568 WriteMemory(return_addr, buffer.c_str(), size, error); 2569 } 2570 return return_addr; 2571 } 2572 2573 bool Process::CanJIT() { 2574 if (m_can_jit == eCanJITDontKnow) { 2575 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2576 Status err; 2577 2578 uint64_t allocated_memory = AllocateMemory( 2579 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2580 err); 2581 2582 if (err.Success()) { 2583 m_can_jit = eCanJITYes; 2584 if (log) 2585 log->Printf("Process::%s pid %" PRIu64 2586 " allocation test passed, CanJIT () is true", 2587 __FUNCTION__, GetID()); 2588 } else { 2589 m_can_jit = eCanJITNo; 2590 if (log) 2591 log->Printf("Process::%s pid %" PRIu64 2592 " allocation test failed, CanJIT () is false: %s", 2593 __FUNCTION__, GetID(), err.AsCString()); 2594 } 2595 2596 DeallocateMemory(allocated_memory); 2597 } 2598 2599 return m_can_jit == eCanJITYes; 2600 } 2601 2602 void Process::SetCanJIT(bool can_jit) { 2603 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2604 } 2605 2606 void Process::SetCanRunCode(bool can_run_code) { 2607 SetCanJIT(can_run_code); 2608 m_can_interpret_function_calls = can_run_code; 2609 } 2610 2611 Status Process::DeallocateMemory(addr_t ptr) { 2612 Status error; 2613 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2614 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2615 error.SetErrorStringWithFormat( 2616 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2617 } 2618 #else 2619 error = DoDeallocateMemory(ptr); 2620 2621 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2622 if (log) 2623 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 2624 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2625 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2626 m_mod_id.GetMemoryID()); 2627 #endif 2628 return error; 2629 } 2630 2631 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2632 lldb::addr_t header_addr, 2633 size_t size_to_read) { 2634 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2635 if (log) { 2636 log->Printf("Process::ReadModuleFromMemory reading %s binary from memory", 2637 file_spec.GetPath().c_str()); 2638 } 2639 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2640 if (module_sp) { 2641 Status error; 2642 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2643 shared_from_this(), header_addr, error, size_to_read); 2644 if (objfile) 2645 return module_sp; 2646 } 2647 return ModuleSP(); 2648 } 2649 2650 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2651 uint32_t &permissions) { 2652 MemoryRegionInfo range_info; 2653 permissions = 0; 2654 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2655 if (!error.Success()) 2656 return false; 2657 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2658 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2659 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2660 return false; 2661 } 2662 2663 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2664 permissions |= lldb::ePermissionsReadable; 2665 2666 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2667 permissions |= lldb::ePermissionsWritable; 2668 2669 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2670 permissions |= lldb::ePermissionsExecutable; 2671 2672 return true; 2673 } 2674 2675 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2676 Status error; 2677 error.SetErrorString("watchpoints are not supported"); 2678 return error; 2679 } 2680 2681 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2682 Status error; 2683 error.SetErrorString("watchpoints are not supported"); 2684 return error; 2685 } 2686 2687 StateType 2688 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2689 const Timeout<std::micro> &timeout) { 2690 StateType state; 2691 // Now wait for the process to launch and return control to us, and then call 2692 // DidLaunch: 2693 while (true) { 2694 event_sp.reset(); 2695 state = GetStateChangedEventsPrivate(event_sp, timeout); 2696 2697 if (StateIsStoppedState(state, false)) 2698 break; 2699 2700 // If state is invalid, then we timed out 2701 if (state == eStateInvalid) 2702 break; 2703 2704 if (event_sp) 2705 HandlePrivateEvent(event_sp); 2706 } 2707 return state; 2708 } 2709 2710 void Process::LoadOperatingSystemPlugin(bool flush) { 2711 if (flush) 2712 m_thread_list.Clear(); 2713 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2714 if (flush) 2715 Flush(); 2716 } 2717 2718 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2719 Status error; 2720 m_abi_sp.reset(); 2721 m_dyld_ap.reset(); 2722 m_jit_loaders_ap.reset(); 2723 m_system_runtime_ap.reset(); 2724 m_os_ap.reset(); 2725 m_process_input_reader.reset(); 2726 2727 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2728 if (exe_module) { 2729 char local_exec_file_path[PATH_MAX]; 2730 char platform_exec_file_path[PATH_MAX]; 2731 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2732 sizeof(local_exec_file_path)); 2733 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2734 sizeof(platform_exec_file_path)); 2735 if (exe_module->GetFileSpec().Exists()) { 2736 // Install anything that might need to be installed prior to launching. 2737 // For host systems, this will do nothing, but if we are connected to a 2738 // remote platform it will install any needed binaries 2739 error = GetTarget().Install(&launch_info); 2740 if (error.Fail()) 2741 return error; 2742 2743 if (PrivateStateThreadIsValid()) 2744 PausePrivateStateThread(); 2745 2746 error = WillLaunch(exe_module); 2747 if (error.Success()) { 2748 const bool restarted = false; 2749 SetPublicState(eStateLaunching, restarted); 2750 m_should_detach = false; 2751 2752 if (m_public_run_lock.TrySetRunning()) { 2753 // Now launch using these arguments. 2754 error = DoLaunch(exe_module, launch_info); 2755 } else { 2756 // This shouldn't happen 2757 error.SetErrorString("failed to acquire process run lock"); 2758 } 2759 2760 if (error.Fail()) { 2761 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2762 SetID(LLDB_INVALID_PROCESS_ID); 2763 const char *error_string = error.AsCString(); 2764 if (error_string == nullptr) 2765 error_string = "launch failed"; 2766 SetExitStatus(-1, error_string); 2767 } 2768 } else { 2769 EventSP event_sp; 2770 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2771 2772 if (state == eStateInvalid || !event_sp) { 2773 // We were able to launch the process, but we failed to catch the 2774 // initial stop. 2775 error.SetErrorString("failed to catch stop after launch"); 2776 SetExitStatus(0, "failed to catch stop after launch"); 2777 Destroy(false); 2778 } else if (state == eStateStopped || state == eStateCrashed) { 2779 DidLaunch(); 2780 2781 DynamicLoader *dyld = GetDynamicLoader(); 2782 if (dyld) 2783 dyld->DidLaunch(); 2784 2785 GetJITLoaders().DidLaunch(); 2786 2787 SystemRuntime *system_runtime = GetSystemRuntime(); 2788 if (system_runtime) 2789 system_runtime->DidLaunch(); 2790 2791 if (!m_os_ap) 2792 LoadOperatingSystemPlugin(false); 2793 2794 // We successfully launched the process and stopped, now it the 2795 // right time to set up signal filters before resuming. 2796 UpdateAutomaticSignalFiltering(); 2797 2798 // Note, the stop event was consumed above, but not handled. This 2799 // was done to give DidLaunch a chance to run. The target is either 2800 // stopped or crashed. Directly set the state. This is done to 2801 // prevent a stop message with a bunch of spurious output on thread 2802 // status, as well as not pop a ProcessIOHandler. 2803 SetPublicState(state, false); 2804 2805 if (PrivateStateThreadIsValid()) 2806 ResumePrivateStateThread(); 2807 else 2808 StartPrivateStateThread(); 2809 2810 // Target was stopped at entry as was intended. Need to notify the 2811 // listeners about it. 2812 if (state == eStateStopped && 2813 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2814 HandlePrivateEvent(event_sp); 2815 } else if (state == eStateExited) { 2816 // We exited while trying to launch somehow. Don't call DidLaunch 2817 // as that's not likely to work, and return an invalid pid. 2818 HandlePrivateEvent(event_sp); 2819 } 2820 } 2821 } 2822 } else { 2823 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2824 local_exec_file_path); 2825 } 2826 } 2827 return error; 2828 } 2829 2830 Status Process::LoadCore() { 2831 Status error = DoLoadCore(); 2832 if (error.Success()) { 2833 ListenerSP listener_sp( 2834 Listener::MakeListener("lldb.process.load_core_listener")); 2835 HijackProcessEvents(listener_sp); 2836 2837 if (PrivateStateThreadIsValid()) 2838 ResumePrivateStateThread(); 2839 else 2840 StartPrivateStateThread(); 2841 2842 DynamicLoader *dyld = GetDynamicLoader(); 2843 if (dyld) 2844 dyld->DidAttach(); 2845 2846 GetJITLoaders().DidAttach(); 2847 2848 SystemRuntime *system_runtime = GetSystemRuntime(); 2849 if (system_runtime) 2850 system_runtime->DidAttach(); 2851 2852 if (!m_os_ap) 2853 LoadOperatingSystemPlugin(false); 2854 2855 // We successfully loaded a core file, now pretend we stopped so we can 2856 // show all of the threads in the core file and explore the crashed state. 2857 SetPrivateState(eStateStopped); 2858 2859 // Wait for a stopped event since we just posted one above... 2860 lldb::EventSP event_sp; 2861 StateType state = 2862 WaitForProcessToStop(seconds(10), &event_sp, true, listener_sp); 2863 2864 if (!StateIsStoppedState(state, false)) { 2865 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2866 if (log) 2867 log->Printf("Process::Halt() failed to stop, state is: %s", 2868 StateAsCString(state)); 2869 error.SetErrorString( 2870 "Did not get stopped event after loading the core file."); 2871 } 2872 RestoreProcessEvents(); 2873 } 2874 return error; 2875 } 2876 2877 DynamicLoader *Process::GetDynamicLoader() { 2878 if (!m_dyld_ap) 2879 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 2880 return m_dyld_ap.get(); 2881 } 2882 2883 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); } 2884 2885 JITLoaderList &Process::GetJITLoaders() { 2886 if (!m_jit_loaders_ap) { 2887 m_jit_loaders_ap.reset(new JITLoaderList()); 2888 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 2889 } 2890 return *m_jit_loaders_ap; 2891 } 2892 2893 SystemRuntime *Process::GetSystemRuntime() { 2894 if (!m_system_runtime_ap) 2895 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 2896 return m_system_runtime_ap.get(); 2897 } 2898 2899 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2900 uint32_t exec_count) 2901 : NextEventAction(process), m_exec_count(exec_count) { 2902 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2903 if (log) 2904 log->Printf( 2905 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2906 __FUNCTION__, static_cast<void *>(process), exec_count); 2907 } 2908 2909 Process::NextEventAction::EventActionResult 2910 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2911 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2912 2913 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2914 if (log) 2915 log->Printf( 2916 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2917 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2918 2919 switch (state) { 2920 case eStateAttaching: 2921 return eEventActionSuccess; 2922 2923 case eStateRunning: 2924 case eStateConnected: 2925 return eEventActionRetry; 2926 2927 case eStateStopped: 2928 case eStateCrashed: 2929 // During attach, prior to sending the eStateStopped event, 2930 // lldb_private::Process subclasses must set the new process ID. 2931 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2932 // We don't want these events to be reported, so go set the 2933 // ShouldReportStop here: 2934 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2935 2936 if (m_exec_count > 0) { 2937 --m_exec_count; 2938 2939 if (log) 2940 log->Printf("Process::AttachCompletionHandler::%s state %s: reduced " 2941 "remaining exec count to %" PRIu32 ", requesting resume", 2942 __FUNCTION__, StateAsCString(state), m_exec_count); 2943 2944 RequestResume(); 2945 return eEventActionRetry; 2946 } else { 2947 if (log) 2948 log->Printf("Process::AttachCompletionHandler::%s state %s: no more " 2949 "execs expected to start, continuing with attach", 2950 __FUNCTION__, StateAsCString(state)); 2951 2952 m_process->CompleteAttach(); 2953 return eEventActionSuccess; 2954 } 2955 break; 2956 2957 default: 2958 case eStateExited: 2959 case eStateInvalid: 2960 break; 2961 } 2962 2963 m_exit_string.assign("No valid Process"); 2964 return eEventActionExit; 2965 } 2966 2967 Process::NextEventAction::EventActionResult 2968 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2969 return eEventActionSuccess; 2970 } 2971 2972 const char *Process::AttachCompletionHandler::GetExitString() { 2973 return m_exit_string.c_str(); 2974 } 2975 2976 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2977 if (m_listener_sp) 2978 return m_listener_sp; 2979 else 2980 return debugger.GetListener(); 2981 } 2982 2983 Status Process::Attach(ProcessAttachInfo &attach_info) { 2984 m_abi_sp.reset(); 2985 m_process_input_reader.reset(); 2986 m_dyld_ap.reset(); 2987 m_jit_loaders_ap.reset(); 2988 m_system_runtime_ap.reset(); 2989 m_os_ap.reset(); 2990 2991 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2992 Status error; 2993 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2994 char process_name[PATH_MAX]; 2995 2996 if (attach_info.GetExecutableFile().GetPath(process_name, 2997 sizeof(process_name))) { 2998 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2999 3000 if (wait_for_launch) { 3001 error = WillAttachToProcessWithName(process_name, wait_for_launch); 3002 if (error.Success()) { 3003 if (m_public_run_lock.TrySetRunning()) { 3004 m_should_detach = true; 3005 const bool restarted = false; 3006 SetPublicState(eStateAttaching, restarted); 3007 // Now attach using these arguments. 3008 error = DoAttachToProcessWithName(process_name, attach_info); 3009 } else { 3010 // This shouldn't happen 3011 error.SetErrorString("failed to acquire process run lock"); 3012 } 3013 3014 if (error.Fail()) { 3015 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3016 SetID(LLDB_INVALID_PROCESS_ID); 3017 if (error.AsCString() == nullptr) 3018 error.SetErrorString("attach failed"); 3019 3020 SetExitStatus(-1, error.AsCString()); 3021 } 3022 } else { 3023 SetNextEventAction(new Process::AttachCompletionHandler( 3024 this, attach_info.GetResumeCount())); 3025 StartPrivateStateThread(); 3026 } 3027 return error; 3028 } 3029 } else { 3030 ProcessInstanceInfoList process_infos; 3031 PlatformSP platform_sp(GetTarget().GetPlatform()); 3032 3033 if (platform_sp) { 3034 ProcessInstanceInfoMatch match_info; 3035 match_info.GetProcessInfo() = attach_info; 3036 match_info.SetNameMatchType(NameMatch::Equals); 3037 platform_sp->FindProcesses(match_info, process_infos); 3038 const uint32_t num_matches = process_infos.GetSize(); 3039 if (num_matches == 1) { 3040 attach_pid = process_infos.GetProcessIDAtIndex(0); 3041 // Fall through and attach using the above process ID 3042 } else { 3043 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3044 process_name, sizeof(process_name)); 3045 if (num_matches > 1) { 3046 StreamString s; 3047 ProcessInstanceInfo::DumpTableHeader(s, platform_sp.get(), true, 3048 false); 3049 for (size_t i = 0; i < num_matches; i++) { 3050 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 3051 s, platform_sp.get(), true, false); 3052 } 3053 error.SetErrorStringWithFormat( 3054 "more than one process named %s:\n%s", process_name, 3055 s.GetData()); 3056 } else 3057 error.SetErrorStringWithFormat( 3058 "could not find a process named %s", process_name); 3059 } 3060 } else { 3061 error.SetErrorString( 3062 "invalid platform, can't find processes by name"); 3063 return error; 3064 } 3065 } 3066 } else { 3067 error.SetErrorString("invalid process name"); 3068 } 3069 } 3070 3071 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3072 error = WillAttachToProcessWithID(attach_pid); 3073 if (error.Success()) { 3074 3075 if (m_public_run_lock.TrySetRunning()) { 3076 // Now attach using these arguments. 3077 m_should_detach = true; 3078 const bool restarted = false; 3079 SetPublicState(eStateAttaching, restarted); 3080 error = DoAttachToProcessWithID(attach_pid, attach_info); 3081 } else { 3082 // This shouldn't happen 3083 error.SetErrorString("failed to acquire process run lock"); 3084 } 3085 3086 if (error.Success()) { 3087 SetNextEventAction(new Process::AttachCompletionHandler( 3088 this, attach_info.GetResumeCount())); 3089 StartPrivateStateThread(); 3090 } else { 3091 if (GetID() != LLDB_INVALID_PROCESS_ID) 3092 SetID(LLDB_INVALID_PROCESS_ID); 3093 3094 const char *error_string = error.AsCString(); 3095 if (error_string == nullptr) 3096 error_string = "attach failed"; 3097 3098 SetExitStatus(-1, error_string); 3099 } 3100 } 3101 } 3102 return error; 3103 } 3104 3105 void Process::CompleteAttach() { 3106 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3107 LIBLLDB_LOG_TARGET)); 3108 if (log) 3109 log->Printf("Process::%s()", __FUNCTION__); 3110 3111 // Let the process subclass figure out at much as it can about the process 3112 // before we go looking for a dynamic loader plug-in. 3113 ArchSpec process_arch; 3114 DidAttach(process_arch); 3115 3116 if (process_arch.IsValid()) { 3117 GetTarget().SetArchitecture(process_arch); 3118 if (log) { 3119 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 3120 log->Printf("Process::%s replacing process architecture with DidAttach() " 3121 "architecture: %s", 3122 __FUNCTION__, triple_str ? triple_str : "<null>"); 3123 } 3124 } 3125 3126 // We just attached. If we have a platform, ask it for the process 3127 // architecture, and if it isn't the same as the one we've already set, 3128 // switch architectures. 3129 PlatformSP platform_sp(GetTarget().GetPlatform()); 3130 assert(platform_sp); 3131 if (platform_sp) { 3132 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3133 if (target_arch.IsValid() && 3134 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3135 ArchSpec platform_arch; 3136 platform_sp = 3137 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3138 if (platform_sp) { 3139 GetTarget().SetPlatform(platform_sp); 3140 GetTarget().SetArchitecture(platform_arch); 3141 if (log) 3142 log->Printf("Process::%s switching platform to %s and architecture " 3143 "to %s based on info from attach", 3144 __FUNCTION__, platform_sp->GetName().AsCString(""), 3145 platform_arch.GetTriple().getTriple().c_str()); 3146 } 3147 } else if (!process_arch.IsValid()) { 3148 ProcessInstanceInfo process_info; 3149 GetProcessInfo(process_info); 3150 const ArchSpec &process_arch = process_info.GetArchitecture(); 3151 if (process_arch.IsValid() && 3152 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3153 GetTarget().SetArchitecture(process_arch); 3154 if (log) 3155 log->Printf("Process::%s switching architecture to %s based on info " 3156 "the platform retrieved for pid %" PRIu64, 3157 __FUNCTION__, 3158 process_arch.GetTriple().getTriple().c_str(), GetID()); 3159 } 3160 } 3161 } 3162 3163 // We have completed the attach, now it is time to find the dynamic loader 3164 // plug-in 3165 DynamicLoader *dyld = GetDynamicLoader(); 3166 if (dyld) { 3167 dyld->DidAttach(); 3168 if (log) { 3169 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3170 log->Printf("Process::%s after DynamicLoader::DidAttach(), target " 3171 "executable is %s (using %s plugin)", 3172 __FUNCTION__, 3173 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3174 : "<none>", 3175 dyld->GetPluginName().AsCString("<unnamed>")); 3176 } 3177 } 3178 3179 GetJITLoaders().DidAttach(); 3180 3181 SystemRuntime *system_runtime = GetSystemRuntime(); 3182 if (system_runtime) { 3183 system_runtime->DidAttach(); 3184 if (log) { 3185 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3186 log->Printf("Process::%s after SystemRuntime::DidAttach(), target " 3187 "executable is %s (using %s plugin)", 3188 __FUNCTION__, 3189 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3190 : "<none>", 3191 system_runtime->GetPluginName().AsCString("<unnamed>")); 3192 } 3193 } 3194 3195 if (!m_os_ap) 3196 LoadOperatingSystemPlugin(false); 3197 // Figure out which one is the executable, and set that in our target: 3198 const ModuleList &target_modules = GetTarget().GetImages(); 3199 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3200 size_t num_modules = target_modules.GetSize(); 3201 ModuleSP new_executable_module_sp; 3202 3203 for (size_t i = 0; i < num_modules; i++) { 3204 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3205 if (module_sp && module_sp->IsExecutable()) { 3206 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3207 new_executable_module_sp = module_sp; 3208 break; 3209 } 3210 } 3211 if (new_executable_module_sp) { 3212 GetTarget().SetExecutableModule(new_executable_module_sp, false); 3213 if (log) { 3214 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3215 log->Printf( 3216 "Process::%s after looping through modules, target executable is %s", 3217 __FUNCTION__, 3218 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3219 : "<none>"); 3220 } 3221 } 3222 } 3223 3224 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3225 m_abi_sp.reset(); 3226 m_process_input_reader.reset(); 3227 3228 // Find the process and its architecture. Make sure it matches the 3229 // architecture of the current Target, and if not adjust it. 3230 3231 Status error(DoConnectRemote(strm, remote_url)); 3232 if (error.Success()) { 3233 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3234 EventSP event_sp; 3235 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3236 3237 if (state == eStateStopped || state == eStateCrashed) { 3238 // If we attached and actually have a process on the other end, then 3239 // this ended up being the equivalent of an attach. 3240 CompleteAttach(); 3241 3242 // This delays passing the stopped event to listeners till 3243 // CompleteAttach gets a chance to complete... 3244 HandlePrivateEvent(event_sp); 3245 } 3246 } 3247 3248 if (PrivateStateThreadIsValid()) 3249 ResumePrivateStateThread(); 3250 else 3251 StartPrivateStateThread(); 3252 } 3253 return error; 3254 } 3255 3256 Status Process::PrivateResume() { 3257 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3258 LIBLLDB_LOG_STEP)); 3259 if (log) 3260 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s " 3261 "private state: %s", 3262 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3263 StateAsCString(m_private_state.GetValue())); 3264 3265 // If signals handing status changed we might want to update our signal 3266 // filters before resuming. 3267 UpdateAutomaticSignalFiltering(); 3268 3269 Status error(WillResume()); 3270 // Tell the process it is about to resume before the thread list 3271 if (error.Success()) { 3272 // Now let the thread list know we are about to resume so it can let all of 3273 // our threads know that they are about to be resumed. Threads will each be 3274 // called with Thread::WillResume(StateType) where StateType contains the 3275 // state that they are supposed to have when the process is resumed 3276 // (suspended/running/stepping). Threads should also check their resume 3277 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3278 // start back up with a signal. 3279 if (m_thread_list.WillResume()) { 3280 // Last thing, do the PreResumeActions. 3281 if (!RunPreResumeActions()) { 3282 error.SetErrorStringWithFormat( 3283 "Process::PrivateResume PreResumeActions failed, not resuming."); 3284 } else { 3285 m_mod_id.BumpResumeID(); 3286 error = DoResume(); 3287 if (error.Success()) { 3288 DidResume(); 3289 m_thread_list.DidResume(); 3290 if (log) 3291 log->Printf("Process thinks the process has resumed."); 3292 } 3293 } 3294 } else { 3295 // Somebody wanted to run without running (e.g. we were faking a step 3296 // from one frame of a set of inlined frames that share the same PC to 3297 // another.) So generate a continue & a stopped event, and let the world 3298 // handle them. 3299 if (log) 3300 log->Printf( 3301 "Process::PrivateResume() asked to simulate a start & stop."); 3302 3303 SetPrivateState(eStateRunning); 3304 SetPrivateState(eStateStopped); 3305 } 3306 } else if (log) 3307 log->Printf("Process::PrivateResume() got an error \"%s\".", 3308 error.AsCString("<unknown error>")); 3309 return error; 3310 } 3311 3312 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3313 if (!StateIsRunningState(m_public_state.GetValue())) 3314 return Status("Process is not running."); 3315 3316 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3317 // case it was already set and some thread plan logic calls halt on its own. 3318 m_clear_thread_plans_on_stop |= clear_thread_plans; 3319 3320 ListenerSP halt_listener_sp( 3321 Listener::MakeListener("lldb.process.halt_listener")); 3322 HijackProcessEvents(halt_listener_sp); 3323 3324 EventSP event_sp; 3325 3326 SendAsyncInterrupt(); 3327 3328 if (m_public_state.GetValue() == eStateAttaching) { 3329 // Don't hijack and eat the eStateExited as the code that was doing the 3330 // attach will be waiting for this event... 3331 RestoreProcessEvents(); 3332 SetExitStatus(SIGKILL, "Cancelled async attach."); 3333 Destroy(false); 3334 return Status(); 3335 } 3336 3337 // Wait for 10 second for the process to stop. 3338 StateType state = WaitForProcessToStop( 3339 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3340 RestoreProcessEvents(); 3341 3342 if (state == eStateInvalid || !event_sp) { 3343 // We timed out and didn't get a stop event... 3344 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3345 } 3346 3347 BroadcastEvent(event_sp); 3348 3349 return Status(); 3350 } 3351 3352 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3353 Status error; 3354 3355 // Check both the public & private states here. If we're hung evaluating an 3356 // expression, for instance, then the public state will be stopped, but we 3357 // still need to interrupt. 3358 if (m_public_state.GetValue() == eStateRunning || 3359 m_private_state.GetValue() == eStateRunning) { 3360 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3361 if (log) 3362 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3363 3364 ListenerSP listener_sp( 3365 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3366 HijackProcessEvents(listener_sp); 3367 3368 SendAsyncInterrupt(); 3369 3370 // Consume the interrupt event. 3371 StateType state = 3372 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3373 3374 RestoreProcessEvents(); 3375 3376 // If the process exited while we were waiting for it to stop, put the 3377 // exited event into the shared pointer passed in and return. Our caller 3378 // doesn't need to do anything else, since they don't have a process 3379 // anymore... 3380 3381 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3382 if (log) 3383 log->Printf("Process::%s() Process exited while waiting to stop.", 3384 __FUNCTION__); 3385 return error; 3386 } else 3387 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3388 3389 if (state != eStateStopped) { 3390 if (log) 3391 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, 3392 StateAsCString(state)); 3393 // If we really couldn't stop the process then we should just error out 3394 // here, but if the lower levels just bobbled sending the event and we 3395 // really are stopped, then continue on. 3396 StateType private_state = m_private_state.GetValue(); 3397 if (private_state != eStateStopped) { 3398 return Status( 3399 "Attempt to stop the target in order to detach timed out. " 3400 "State = %s", 3401 StateAsCString(GetState())); 3402 } 3403 } 3404 } 3405 return error; 3406 } 3407 3408 Status Process::Detach(bool keep_stopped) { 3409 EventSP exit_event_sp; 3410 Status error; 3411 m_destroy_in_process = true; 3412 3413 error = WillDetach(); 3414 3415 if (error.Success()) { 3416 if (DetachRequiresHalt()) { 3417 error = StopForDestroyOrDetach(exit_event_sp); 3418 if (!error.Success()) { 3419 m_destroy_in_process = false; 3420 return error; 3421 } else if (exit_event_sp) { 3422 // We shouldn't need to do anything else here. There's no process left 3423 // to detach from... 3424 StopPrivateStateThread(); 3425 m_destroy_in_process = false; 3426 return error; 3427 } 3428 } 3429 3430 m_thread_list.DiscardThreadPlans(); 3431 DisableAllBreakpointSites(); 3432 3433 error = DoDetach(keep_stopped); 3434 if (error.Success()) { 3435 DidDetach(); 3436 StopPrivateStateThread(); 3437 } else { 3438 return error; 3439 } 3440 } 3441 m_destroy_in_process = false; 3442 3443 // If we exited when we were waiting for a process to stop, then forward the 3444 // event here so we don't lose the event 3445 if (exit_event_sp) { 3446 // Directly broadcast our exited event because we shut down our private 3447 // state thread above 3448 BroadcastEvent(exit_event_sp); 3449 } 3450 3451 // If we have been interrupted (to kill us) in the middle of running, we may 3452 // not end up propagating the last events through the event system, in which 3453 // case we might strand the write lock. Unlock it here so when we do to tear 3454 // down the process we don't get an error destroying the lock. 3455 3456 m_public_run_lock.SetStopped(); 3457 return error; 3458 } 3459 3460 Status Process::Destroy(bool force_kill) { 3461 3462 // Tell ourselves we are in the process of destroying the process, so that we 3463 // don't do any unnecessary work that might hinder the destruction. Remember 3464 // to set this back to false when we are done. That way if the attempt 3465 // failed and the process stays around for some reason it won't be in a 3466 // confused state. 3467 3468 if (force_kill) 3469 m_should_detach = false; 3470 3471 if (GetShouldDetach()) { 3472 // FIXME: This will have to be a process setting: 3473 bool keep_stopped = false; 3474 Detach(keep_stopped); 3475 } 3476 3477 m_destroy_in_process = true; 3478 3479 Status error(WillDestroy()); 3480 if (error.Success()) { 3481 EventSP exit_event_sp; 3482 if (DestroyRequiresHalt()) { 3483 error = StopForDestroyOrDetach(exit_event_sp); 3484 } 3485 3486 if (m_public_state.GetValue() != eStateRunning) { 3487 // Ditch all thread plans, and remove all our breakpoints: in case we 3488 // have to restart the target to kill it, we don't want it hitting a 3489 // breakpoint... Only do this if we've stopped, however, since if we 3490 // didn't manage to halt it above, then we're not going to have much luck 3491 // doing this now. 3492 m_thread_list.DiscardThreadPlans(); 3493 DisableAllBreakpointSites(); 3494 } 3495 3496 error = DoDestroy(); 3497 if (error.Success()) { 3498 DidDestroy(); 3499 StopPrivateStateThread(); 3500 } 3501 m_stdio_communication.Disconnect(); 3502 m_stdio_communication.StopReadThread(); 3503 m_stdin_forward = false; 3504 3505 if (m_process_input_reader) { 3506 m_process_input_reader->SetIsDone(true); 3507 m_process_input_reader->Cancel(); 3508 m_process_input_reader.reset(); 3509 } 3510 3511 // If we exited when we were waiting for a process to stop, then forward 3512 // the event here so we don't lose the event 3513 if (exit_event_sp) { 3514 // Directly broadcast our exited event because we shut down our private 3515 // state thread above 3516 BroadcastEvent(exit_event_sp); 3517 } 3518 3519 // If we have been interrupted (to kill us) in the middle of running, we 3520 // may not end up propagating the last events through the event system, in 3521 // which case we might strand the write lock. Unlock it here so when we do 3522 // to tear down the process we don't get an error destroying the lock. 3523 m_public_run_lock.SetStopped(); 3524 } 3525 3526 m_destroy_in_process = false; 3527 3528 return error; 3529 } 3530 3531 Status Process::Signal(int signal) { 3532 Status error(WillSignal()); 3533 if (error.Success()) { 3534 error = DoSignal(signal); 3535 if (error.Success()) 3536 DidSignal(); 3537 } 3538 return error; 3539 } 3540 3541 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3542 assert(signals_sp && "null signals_sp"); 3543 m_unix_signals_sp = signals_sp; 3544 } 3545 3546 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3547 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3548 return m_unix_signals_sp; 3549 } 3550 3551 lldb::ByteOrder Process::GetByteOrder() const { 3552 return GetTarget().GetArchitecture().GetByteOrder(); 3553 } 3554 3555 uint32_t Process::GetAddressByteSize() const { 3556 return GetTarget().GetArchitecture().GetAddressByteSize(); 3557 } 3558 3559 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3560 const StateType state = 3561 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3562 bool return_value = true; 3563 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3564 LIBLLDB_LOG_PROCESS)); 3565 3566 switch (state) { 3567 case eStateDetached: 3568 case eStateExited: 3569 case eStateUnloaded: 3570 m_stdio_communication.SynchronizeWithReadThread(); 3571 m_stdio_communication.Disconnect(); 3572 m_stdio_communication.StopReadThread(); 3573 m_stdin_forward = false; 3574 3575 LLVM_FALLTHROUGH; 3576 case eStateConnected: 3577 case eStateAttaching: 3578 case eStateLaunching: 3579 // These events indicate changes in the state of the debugging session, 3580 // always report them. 3581 return_value = true; 3582 break; 3583 case eStateInvalid: 3584 // We stopped for no apparent reason, don't report it. 3585 return_value = false; 3586 break; 3587 case eStateRunning: 3588 case eStateStepping: 3589 // If we've started the target running, we handle the cases where we are 3590 // already running and where there is a transition from stopped to running 3591 // differently. running -> running: Automatically suppress extra running 3592 // events stopped -> running: Report except when there is one or more no 3593 // votes 3594 // and no yes votes. 3595 SynchronouslyNotifyStateChanged(state); 3596 if (m_force_next_event_delivery) 3597 return_value = true; 3598 else { 3599 switch (m_last_broadcast_state) { 3600 case eStateRunning: 3601 case eStateStepping: 3602 // We always suppress multiple runnings with no PUBLIC stop in between. 3603 return_value = false; 3604 break; 3605 default: 3606 // TODO: make this work correctly. For now always report 3607 // run if we aren't running so we don't miss any running events. If I 3608 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3609 // and hit the breakpoints on multiple threads, then somehow during the 3610 // stepping over of all breakpoints no run gets reported. 3611 3612 // This is a transition from stop to run. 3613 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3614 case eVoteYes: 3615 case eVoteNoOpinion: 3616 return_value = true; 3617 break; 3618 case eVoteNo: 3619 return_value = false; 3620 break; 3621 } 3622 break; 3623 } 3624 } 3625 break; 3626 case eStateStopped: 3627 case eStateCrashed: 3628 case eStateSuspended: 3629 // We've stopped. First see if we're going to restart the target. If we 3630 // are going to stop, then we always broadcast the event. If we aren't 3631 // going to stop, let the thread plans decide if we're going to report this 3632 // event. If no thread has an opinion, we don't report it. 3633 3634 m_stdio_communication.SynchronizeWithReadThread(); 3635 RefreshStateAfterStop(); 3636 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3637 if (log) 3638 log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an " 3639 "interrupt, state: %s", 3640 static_cast<void *>(event_ptr), StateAsCString(state)); 3641 // Even though we know we are going to stop, we should let the threads 3642 // have a look at the stop, so they can properly set their state. 3643 m_thread_list.ShouldStop(event_ptr); 3644 return_value = true; 3645 } else { 3646 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3647 bool should_resume = false; 3648 3649 // It makes no sense to ask "ShouldStop" if we've already been 3650 // restarted... Asking the thread list is also not likely to go well, 3651 // since we are running again. So in that case just report the event. 3652 3653 if (!was_restarted) 3654 should_resume = !m_thread_list.ShouldStop(event_ptr); 3655 3656 if (was_restarted || should_resume || m_resume_requested) { 3657 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3658 if (log) 3659 log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: " 3660 "%s was_restarted: %i stop_vote: %d.", 3661 should_resume, StateAsCString(state), was_restarted, 3662 stop_vote); 3663 3664 switch (stop_vote) { 3665 case eVoteYes: 3666 return_value = true; 3667 break; 3668 case eVoteNoOpinion: 3669 case eVoteNo: 3670 return_value = false; 3671 break; 3672 } 3673 3674 if (!was_restarted) { 3675 if (log) 3676 log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process " 3677 "from state: %s", 3678 static_cast<void *>(event_ptr), StateAsCString(state)); 3679 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3680 PrivateResume(); 3681 } 3682 } else { 3683 return_value = true; 3684 SynchronouslyNotifyStateChanged(state); 3685 } 3686 } 3687 break; 3688 } 3689 3690 // Forcing the next event delivery is a one shot deal. So reset it here. 3691 m_force_next_event_delivery = false; 3692 3693 // We do some coalescing of events (for instance two consecutive running 3694 // events get coalesced.) But we only coalesce against events we actually 3695 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3696 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3697 // done, because the PublicState reflects the last event pulled off the 3698 // queue, and there may be several events stacked up on the queue unserviced. 3699 // So the PublicState may not reflect the last broadcasted event yet. 3700 // m_last_broadcast_state gets updated here. 3701 3702 if (return_value) 3703 m_last_broadcast_state = state; 3704 3705 if (log) 3706 log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3707 "broadcast state: %s - %s", 3708 static_cast<void *>(event_ptr), StateAsCString(state), 3709 StateAsCString(m_last_broadcast_state), 3710 return_value ? "YES" : "NO"); 3711 return return_value; 3712 } 3713 3714 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3715 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3716 3717 bool already_running = PrivateStateThreadIsValid(); 3718 if (log) 3719 log->Printf("Process::%s()%s ", __FUNCTION__, 3720 already_running ? " already running" 3721 : " starting private state thread"); 3722 3723 if (!is_secondary_thread && already_running) 3724 return true; 3725 3726 // Create a thread that watches our internal state and controls which events 3727 // make it to clients (into the DCProcess event queue). 3728 char thread_name[1024]; 3729 uint32_t max_len = llvm::get_max_thread_name_length(); 3730 if (max_len > 0 && max_len <= 30) { 3731 // On platforms with abbreviated thread name lengths, choose thread names 3732 // that fit within the limit. 3733 if (already_running) 3734 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3735 else 3736 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3737 } else { 3738 if (already_running) 3739 snprintf(thread_name, sizeof(thread_name), 3740 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3741 GetID()); 3742 else 3743 snprintf(thread_name, sizeof(thread_name), 3744 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3745 } 3746 3747 // Create the private state thread, and start it running. 3748 PrivateStateThreadArgs *args_ptr = 3749 new PrivateStateThreadArgs(this, is_secondary_thread); 3750 m_private_state_thread = 3751 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3752 (void *)args_ptr, nullptr, 8 * 1024 * 1024); 3753 if (m_private_state_thread.IsJoinable()) { 3754 ResumePrivateStateThread(); 3755 return true; 3756 } else 3757 return false; 3758 } 3759 3760 void Process::PausePrivateStateThread() { 3761 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3762 } 3763 3764 void Process::ResumePrivateStateThread() { 3765 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3766 } 3767 3768 void Process::StopPrivateStateThread() { 3769 if (m_private_state_thread.IsJoinable()) 3770 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3771 else { 3772 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3773 if (log) 3774 log->Printf( 3775 "Went to stop the private state thread, but it was already invalid."); 3776 } 3777 } 3778 3779 void Process::ControlPrivateStateThread(uint32_t signal) { 3780 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3781 3782 assert(signal == eBroadcastInternalStateControlStop || 3783 signal == eBroadcastInternalStateControlPause || 3784 signal == eBroadcastInternalStateControlResume); 3785 3786 if (log) 3787 log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal); 3788 3789 // Signal the private state thread 3790 if (m_private_state_thread.IsJoinable()) { 3791 // Broadcast the event. 3792 // It is important to do this outside of the if below, because it's 3793 // possible that the thread state is invalid but that the thread is waiting 3794 // on a control event instead of simply being on its way out (this should 3795 // not happen, but it apparently can). 3796 if (log) 3797 log->Printf("Sending control event of type: %d.", signal); 3798 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3799 m_private_state_control_broadcaster.BroadcastEvent(signal, 3800 event_receipt_sp); 3801 3802 // Wait for the event receipt or for the private state thread to exit 3803 bool receipt_received = false; 3804 if (PrivateStateThreadIsValid()) { 3805 while (!receipt_received) { 3806 // Check for a receipt for 2 seconds and then check if the private 3807 // state thread is still around. 3808 receipt_received = 3809 event_receipt_sp->WaitForEventReceived(std::chrono::seconds(2)); 3810 if (!receipt_received) { 3811 // Check if the private state thread is still around. If it isn't 3812 // then we are done waiting 3813 if (!PrivateStateThreadIsValid()) 3814 break; // Private state thread exited or is exiting, we are done 3815 } 3816 } 3817 } 3818 3819 if (signal == eBroadcastInternalStateControlStop) { 3820 thread_result_t result = NULL; 3821 m_private_state_thread.Join(&result); 3822 m_private_state_thread.Reset(); 3823 } 3824 } else { 3825 if (log) 3826 log->Printf( 3827 "Private state thread already dead, no need to signal it to stop."); 3828 } 3829 } 3830 3831 void Process::SendAsyncInterrupt() { 3832 if (PrivateStateThreadIsValid()) 3833 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3834 nullptr); 3835 else 3836 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3837 } 3838 3839 void Process::HandlePrivateEvent(EventSP &event_sp) { 3840 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3841 m_resume_requested = false; 3842 3843 const StateType new_state = 3844 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3845 3846 // First check to see if anybody wants a shot at this event: 3847 if (m_next_event_action_ap) { 3848 NextEventAction::EventActionResult action_result = 3849 m_next_event_action_ap->PerformAction(event_sp); 3850 if (log) 3851 log->Printf("Ran next event action, result was %d.", action_result); 3852 3853 switch (action_result) { 3854 case NextEventAction::eEventActionSuccess: 3855 SetNextEventAction(nullptr); 3856 break; 3857 3858 case NextEventAction::eEventActionRetry: 3859 break; 3860 3861 case NextEventAction::eEventActionExit: 3862 // Handle Exiting Here. If we already got an exited event, we should 3863 // just propagate it. Otherwise, swallow this event, and set our state 3864 // to exit so the next event will kill us. 3865 if (new_state != eStateExited) { 3866 // FIXME: should cons up an exited event, and discard this one. 3867 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 3868 SetNextEventAction(nullptr); 3869 return; 3870 } 3871 SetNextEventAction(nullptr); 3872 break; 3873 } 3874 } 3875 3876 // See if we should broadcast this state to external clients? 3877 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3878 3879 if (should_broadcast) { 3880 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3881 if (log) { 3882 log->Printf("Process::%s (pid = %" PRIu64 3883 ") broadcasting new state %s (old state %s) to %s", 3884 __FUNCTION__, GetID(), StateAsCString(new_state), 3885 StateAsCString(GetState()), 3886 is_hijacked ? "hijacked" : "public"); 3887 } 3888 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3889 if (StateIsRunningState(new_state)) { 3890 // Only push the input handler if we aren't fowarding events, as this 3891 // means the curses GUI is in use... Or don't push it if we are launching 3892 // since it will come up stopped. 3893 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3894 new_state != eStateLaunching && new_state != eStateAttaching) { 3895 PushProcessIOHandler(); 3896 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3897 eBroadcastAlways); 3898 if (log) 3899 log->Printf("Process::%s updated m_iohandler_sync to %d", 3900 __FUNCTION__, m_iohandler_sync.GetValue()); 3901 } 3902 } else if (StateIsStoppedState(new_state, false)) { 3903 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3904 // If the lldb_private::Debugger is handling the events, we don't want 3905 // to pop the process IOHandler here, we want to do it when we receive 3906 // the stopped event so we can carefully control when the process 3907 // IOHandler is popped because when we stop we want to display some 3908 // text stating how and why we stopped, then maybe some 3909 // process/thread/frame info, and then we want the "(lldb) " prompt to 3910 // show up. If we pop the process IOHandler here, then we will cause 3911 // the command interpreter to become the top IOHandler after the 3912 // process pops off and it will update its prompt right away... See the 3913 // Debugger.cpp file where it calls the function as 3914 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3915 // Otherwise we end up getting overlapping "(lldb) " prompts and 3916 // garbled output. 3917 // 3918 // If we aren't handling the events in the debugger (which is indicated 3919 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3920 // we are hijacked, then we always pop the process IO handler manually. 3921 // Hijacking happens when the internal process state thread is running 3922 // thread plans, or when commands want to run in synchronous mode and 3923 // they call "process->WaitForProcessToStop()". An example of something 3924 // that will hijack the events is a simple expression: 3925 // 3926 // (lldb) expr (int)puts("hello") 3927 // 3928 // This will cause the internal process state thread to resume and halt 3929 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3930 // events) and we do need the IO handler to be pushed and popped 3931 // correctly. 3932 3933 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3934 PopProcessIOHandler(); 3935 } 3936 } 3937 3938 BroadcastEvent(event_sp); 3939 } else { 3940 if (log) { 3941 log->Printf( 3942 "Process::%s (pid = %" PRIu64 3943 ") suppressing state %s (old state %s): should_broadcast == false", 3944 __FUNCTION__, GetID(), StateAsCString(new_state), 3945 StateAsCString(GetState())); 3946 } 3947 } 3948 } 3949 3950 Status Process::HaltPrivate() { 3951 EventSP event_sp; 3952 Status error(WillHalt()); 3953 if (error.Fail()) 3954 return error; 3955 3956 // Ask the process subclass to actually halt our process 3957 bool caused_stop; 3958 error = DoHalt(caused_stop); 3959 3960 DidHalt(); 3961 return error; 3962 } 3963 3964 thread_result_t Process::PrivateStateThread(void *arg) { 3965 std::unique_ptr<PrivateStateThreadArgs> args_up( 3966 static_cast<PrivateStateThreadArgs *>(arg)); 3967 thread_result_t result = 3968 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3969 return result; 3970 } 3971 3972 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3973 bool control_only = true; 3974 3975 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3976 if (log) 3977 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3978 __FUNCTION__, static_cast<void *>(this), GetID()); 3979 3980 bool exit_now = false; 3981 bool interrupt_requested = false; 3982 while (!exit_now) { 3983 EventSP event_sp; 3984 GetEventsPrivate(event_sp, llvm::None, control_only); 3985 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3986 if (log) 3987 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3988 ") got a control event: %d", 3989 __FUNCTION__, static_cast<void *>(this), GetID(), 3990 event_sp->GetType()); 3991 3992 switch (event_sp->GetType()) { 3993 case eBroadcastInternalStateControlStop: 3994 exit_now = true; 3995 break; // doing any internal state management below 3996 3997 case eBroadcastInternalStateControlPause: 3998 control_only = true; 3999 break; 4000 4001 case eBroadcastInternalStateControlResume: 4002 control_only = false; 4003 break; 4004 } 4005 4006 continue; 4007 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4008 if (m_public_state.GetValue() == eStateAttaching) { 4009 if (log) 4010 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4011 ") woke up with an interrupt while attaching - " 4012 "forwarding interrupt.", 4013 __FUNCTION__, static_cast<void *>(this), GetID()); 4014 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4015 } else if (StateIsRunningState(m_last_broadcast_state)) { 4016 if (log) 4017 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4018 ") woke up with an interrupt - Halting.", 4019 __FUNCTION__, static_cast<void *>(this), GetID()); 4020 Status error = HaltPrivate(); 4021 if (error.Fail() && log) 4022 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4023 ") failed to halt the process: %s", 4024 __FUNCTION__, static_cast<void *>(this), GetID(), 4025 error.AsCString()); 4026 // Halt should generate a stopped event. Make a note of the fact that 4027 // we were doing the interrupt, so we can set the interrupted flag 4028 // after we receive the event. We deliberately set this to true even if 4029 // HaltPrivate failed, so that we can interrupt on the next natural 4030 // stop. 4031 interrupt_requested = true; 4032 } else { 4033 // This can happen when someone (e.g. Process::Halt) sees that we are 4034 // running and sends an interrupt request, but the process actually 4035 // stops before we receive it. In that case, we can just ignore the 4036 // request. We use m_last_broadcast_state, because the Stopped event 4037 // may not have been popped of the event queue yet, which is when the 4038 // public state gets updated. 4039 if (log) 4040 log->Printf( 4041 "Process::%s ignoring interrupt as we have already stopped.", 4042 __FUNCTION__); 4043 } 4044 continue; 4045 } 4046 4047 const StateType internal_state = 4048 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4049 4050 if (internal_state != eStateInvalid) { 4051 if (m_clear_thread_plans_on_stop && 4052 StateIsStoppedState(internal_state, true)) { 4053 m_clear_thread_plans_on_stop = false; 4054 m_thread_list.DiscardThreadPlans(); 4055 } 4056 4057 if (interrupt_requested) { 4058 if (StateIsStoppedState(internal_state, true)) { 4059 // We requested the interrupt, so mark this as such in the stop event 4060 // so clients can tell an interrupted process from a natural stop 4061 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4062 interrupt_requested = false; 4063 } else if (log) { 4064 log->Printf("Process::%s interrupt_requested, but a non-stopped " 4065 "state '%s' received.", 4066 __FUNCTION__, StateAsCString(internal_state)); 4067 } 4068 } 4069 4070 HandlePrivateEvent(event_sp); 4071 } 4072 4073 if (internal_state == eStateInvalid || internal_state == eStateExited || 4074 internal_state == eStateDetached) { 4075 if (log) 4076 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4077 ") about to exit with internal state %s...", 4078 __FUNCTION__, static_cast<void *>(this), GetID(), 4079 StateAsCString(internal_state)); 4080 4081 break; 4082 } 4083 } 4084 4085 // Verify log is still enabled before attempting to write to it... 4086 if (log) 4087 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4088 __FUNCTION__, static_cast<void *>(this), GetID()); 4089 4090 // If we are a secondary thread, then the primary thread we are working for 4091 // will have already acquired the public_run_lock, and isn't done with what 4092 // it was doing yet, so don't try to change it on the way out. 4093 if (!is_secondary_thread) 4094 m_public_run_lock.SetStopped(); 4095 return NULL; 4096 } 4097 4098 //------------------------------------------------------------------ 4099 // Process Event Data 4100 //------------------------------------------------------------------ 4101 4102 Process::ProcessEventData::ProcessEventData() 4103 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 4104 m_update_state(0), m_interrupted(false) {} 4105 4106 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4107 StateType state) 4108 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 4109 m_update_state(0), m_interrupted(false) { 4110 if (process_sp) 4111 m_process_wp = process_sp; 4112 } 4113 4114 Process::ProcessEventData::~ProcessEventData() = default; 4115 4116 const ConstString &Process::ProcessEventData::GetFlavorString() { 4117 static ConstString g_flavor("Process::ProcessEventData"); 4118 return g_flavor; 4119 } 4120 4121 const ConstString &Process::ProcessEventData::GetFlavor() const { 4122 return ProcessEventData::GetFlavorString(); 4123 } 4124 4125 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4126 ProcessSP process_sp(m_process_wp.lock()); 4127 4128 if (!process_sp) 4129 return; 4130 4131 // This function gets called twice for each event, once when the event gets 4132 // pulled off of the private process event queue, and then any number of 4133 // times, first when it gets pulled off of the public event queue, then other 4134 // times when we're pretending that this is where we stopped at the end of 4135 // expression evaluation. m_update_state is used to distinguish these three 4136 // cases; it is 0 when we're just pulling it off for private handling, and > 4137 // 1 for expression evaluation, and we don't want to do the breakpoint 4138 // command handling then. 4139 if (m_update_state != 1) 4140 return; 4141 4142 process_sp->SetPublicState( 4143 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4144 4145 if (m_state == eStateStopped && !m_restarted) { 4146 // Let process subclasses know we are about to do a public stop and do 4147 // anything they might need to in order to speed up register and memory 4148 // accesses. 4149 process_sp->WillPublicStop(); 4150 } 4151 4152 // If this is a halt event, even if the halt stopped with some reason other 4153 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4154 // the halt request came through) don't do the StopInfo actions, as they may 4155 // end up restarting the process. 4156 if (m_interrupted) 4157 return; 4158 4159 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4160 if (m_state == eStateStopped && !m_restarted) { 4161 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4162 uint32_t num_threads = curr_thread_list.GetSize(); 4163 uint32_t idx; 4164 4165 // The actions might change one of the thread's stop_info's opinions about 4166 // whether we should stop the process, so we need to query that as we go. 4167 4168 // One other complication here, is that we try to catch any case where the 4169 // target has run (except for expressions) and immediately exit, but if we 4170 // get that wrong (which is possible) then the thread list might have 4171 // changed, and that would cause our iteration here to crash. We could 4172 // make a copy of the thread list, but we'd really like to also know if it 4173 // has changed at all, so we make up a vector of the thread ID's and check 4174 // what we get back against this list & bag out if anything differs. 4175 std::vector<uint32_t> thread_index_array(num_threads); 4176 for (idx = 0; idx < num_threads; ++idx) 4177 thread_index_array[idx] = 4178 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4179 4180 // Use this to track whether we should continue from here. We will only 4181 // continue the target running if no thread says we should stop. Of course 4182 // if some thread's PerformAction actually sets the target running, then it 4183 // doesn't matter what the other threads say... 4184 4185 bool still_should_stop = false; 4186 4187 // Sometimes - for instance if we have a bug in the stub we are talking to, 4188 // we stop but no thread has a valid stop reason. In that case we should 4189 // just stop, because we have no way of telling what the right thing to do 4190 // is, and it's better to let the user decide than continue behind their 4191 // backs. 4192 4193 bool does_anybody_have_an_opinion = false; 4194 4195 for (idx = 0; idx < num_threads; ++idx) { 4196 curr_thread_list = process_sp->GetThreadList(); 4197 if (curr_thread_list.GetSize() != num_threads) { 4198 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4199 LIBLLDB_LOG_PROCESS)); 4200 if (log) 4201 log->Printf( 4202 "Number of threads changed from %u to %u while processing event.", 4203 num_threads, curr_thread_list.GetSize()); 4204 break; 4205 } 4206 4207 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4208 4209 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4210 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4211 LIBLLDB_LOG_PROCESS)); 4212 if (log) 4213 log->Printf("The thread at position %u changed from %u to %u while " 4214 "processing event.", 4215 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4216 break; 4217 } 4218 4219 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4220 if (stop_info_sp && stop_info_sp->IsValid()) { 4221 does_anybody_have_an_opinion = true; 4222 bool this_thread_wants_to_stop; 4223 if (stop_info_sp->GetOverrideShouldStop()) { 4224 this_thread_wants_to_stop = 4225 stop_info_sp->GetOverriddenShouldStopValue(); 4226 } else { 4227 stop_info_sp->PerformAction(event_ptr); 4228 // The stop action might restart the target. If it does, then we 4229 // want to mark that in the event so that whoever is receiving it 4230 // will know to wait for the running event and reflect that state 4231 // appropriately. We also need to stop processing actions, since they 4232 // aren't expecting the target to be running. 4233 4234 // FIXME: we might have run. 4235 if (stop_info_sp->HasTargetRunSinceMe()) { 4236 SetRestarted(true); 4237 break; 4238 } 4239 4240 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4241 } 4242 4243 if (!still_should_stop) 4244 still_should_stop = this_thread_wants_to_stop; 4245 } 4246 } 4247 4248 if (!GetRestarted()) { 4249 if (!still_should_stop && does_anybody_have_an_opinion) { 4250 // We've been asked to continue, so do that here. 4251 SetRestarted(true); 4252 // Use the public resume method here, since this is just extending a 4253 // public resume. 4254 process_sp->PrivateResume(); 4255 } else { 4256 // If we didn't restart, run the Stop Hooks here: They might also 4257 // restart the target, so watch for that. 4258 process_sp->GetTarget().RunStopHooks(); 4259 if (process_sp->GetPrivateState() == eStateRunning) 4260 SetRestarted(true); 4261 } 4262 } 4263 } 4264 } 4265 4266 void Process::ProcessEventData::Dump(Stream *s) const { 4267 ProcessSP process_sp(m_process_wp.lock()); 4268 4269 if (process_sp) 4270 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4271 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4272 else 4273 s->PutCString(" process = NULL, "); 4274 4275 s->Printf("state = %s", StateAsCString(GetState())); 4276 } 4277 4278 const Process::ProcessEventData * 4279 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4280 if (event_ptr) { 4281 const EventData *event_data = event_ptr->GetData(); 4282 if (event_data && 4283 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4284 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4285 } 4286 return nullptr; 4287 } 4288 4289 ProcessSP 4290 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4291 ProcessSP process_sp; 4292 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4293 if (data) 4294 process_sp = data->GetProcessSP(); 4295 return process_sp; 4296 } 4297 4298 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4299 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4300 if (data == nullptr) 4301 return eStateInvalid; 4302 else 4303 return data->GetState(); 4304 } 4305 4306 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4307 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4308 if (data == nullptr) 4309 return false; 4310 else 4311 return data->GetRestarted(); 4312 } 4313 4314 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4315 bool new_value) { 4316 ProcessEventData *data = 4317 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4318 if (data != nullptr) 4319 data->SetRestarted(new_value); 4320 } 4321 4322 size_t 4323 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4324 ProcessEventData *data = 4325 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4326 if (data != nullptr) 4327 return data->GetNumRestartedReasons(); 4328 else 4329 return 0; 4330 } 4331 4332 const char * 4333 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4334 size_t idx) { 4335 ProcessEventData *data = 4336 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4337 if (data != nullptr) 4338 return data->GetRestartedReasonAtIndex(idx); 4339 else 4340 return nullptr; 4341 } 4342 4343 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4344 const char *reason) { 4345 ProcessEventData *data = 4346 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4347 if (data != nullptr) 4348 data->AddRestartedReason(reason); 4349 } 4350 4351 bool Process::ProcessEventData::GetInterruptedFromEvent( 4352 const Event *event_ptr) { 4353 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4354 if (data == nullptr) 4355 return false; 4356 else 4357 return data->GetInterrupted(); 4358 } 4359 4360 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4361 bool new_value) { 4362 ProcessEventData *data = 4363 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4364 if (data != nullptr) 4365 data->SetInterrupted(new_value); 4366 } 4367 4368 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4369 ProcessEventData *data = 4370 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4371 if (data) { 4372 data->SetUpdateStateOnRemoval(); 4373 return true; 4374 } 4375 return false; 4376 } 4377 4378 lldb::TargetSP Process::CalculateTarget() { return m_target_sp.lock(); } 4379 4380 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4381 exe_ctx.SetTargetPtr(&GetTarget()); 4382 exe_ctx.SetProcessPtr(this); 4383 exe_ctx.SetThreadPtr(nullptr); 4384 exe_ctx.SetFramePtr(nullptr); 4385 } 4386 4387 // uint32_t 4388 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4389 // std::vector<lldb::pid_t> &pids) 4390 //{ 4391 // return 0; 4392 //} 4393 // 4394 // ArchSpec 4395 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4396 //{ 4397 // return Host::GetArchSpecForExistingProcess (pid); 4398 //} 4399 // 4400 // ArchSpec 4401 // Process::GetArchSpecForExistingProcess (const char *process_name) 4402 //{ 4403 // return Host::GetArchSpecForExistingProcess (process_name); 4404 //} 4405 4406 void Process::AppendSTDOUT(const char *s, size_t len) { 4407 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4408 m_stdout_data.append(s, len); 4409 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4410 new ProcessEventData(shared_from_this(), GetState())); 4411 } 4412 4413 void Process::AppendSTDERR(const char *s, size_t len) { 4414 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4415 m_stderr_data.append(s, len); 4416 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4417 new ProcessEventData(shared_from_this(), GetState())); 4418 } 4419 4420 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4421 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4422 m_profile_data.push_back(one_profile_data); 4423 BroadcastEventIfUnique(eBroadcastBitProfileData, 4424 new ProcessEventData(shared_from_this(), GetState())); 4425 } 4426 4427 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4428 const StructuredDataPluginSP &plugin_sp) { 4429 BroadcastEvent( 4430 eBroadcastBitStructuredData, 4431 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4432 } 4433 4434 StructuredDataPluginSP 4435 Process::GetStructuredDataPlugin(const ConstString &type_name) const { 4436 auto find_it = m_structured_data_plugin_map.find(type_name); 4437 if (find_it != m_structured_data_plugin_map.end()) 4438 return find_it->second; 4439 else 4440 return StructuredDataPluginSP(); 4441 } 4442 4443 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4444 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4445 if (m_profile_data.empty()) 4446 return 0; 4447 4448 std::string &one_profile_data = m_profile_data.front(); 4449 size_t bytes_available = one_profile_data.size(); 4450 if (bytes_available > 0) { 4451 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4452 if (log) 4453 log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4454 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4455 if (bytes_available > buf_size) { 4456 memcpy(buf, one_profile_data.c_str(), buf_size); 4457 one_profile_data.erase(0, buf_size); 4458 bytes_available = buf_size; 4459 } else { 4460 memcpy(buf, one_profile_data.c_str(), bytes_available); 4461 m_profile_data.erase(m_profile_data.begin()); 4462 } 4463 } 4464 return bytes_available; 4465 } 4466 4467 //------------------------------------------------------------------ 4468 // Process STDIO 4469 //------------------------------------------------------------------ 4470 4471 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4472 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4473 size_t bytes_available = m_stdout_data.size(); 4474 if (bytes_available > 0) { 4475 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4476 if (log) 4477 log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4478 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4479 if (bytes_available > buf_size) { 4480 memcpy(buf, m_stdout_data.c_str(), buf_size); 4481 m_stdout_data.erase(0, buf_size); 4482 bytes_available = buf_size; 4483 } else { 4484 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4485 m_stdout_data.clear(); 4486 } 4487 } 4488 return bytes_available; 4489 } 4490 4491 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4492 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4493 size_t bytes_available = m_stderr_data.size(); 4494 if (bytes_available > 0) { 4495 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4496 if (log) 4497 log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4498 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4499 if (bytes_available > buf_size) { 4500 memcpy(buf, m_stderr_data.c_str(), buf_size); 4501 m_stderr_data.erase(0, buf_size); 4502 bytes_available = buf_size; 4503 } else { 4504 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4505 m_stderr_data.clear(); 4506 } 4507 } 4508 return bytes_available; 4509 } 4510 4511 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4512 size_t src_len) { 4513 Process *process = (Process *)baton; 4514 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4515 } 4516 4517 class IOHandlerProcessSTDIO : public IOHandler { 4518 public: 4519 IOHandlerProcessSTDIO(Process *process, int write_fd) 4520 : IOHandler(process->GetTarget().GetDebugger(), 4521 IOHandler::Type::ProcessIO), 4522 m_process(process), m_write_file(write_fd, false) { 4523 m_pipe.CreateNew(false); 4524 m_read_file.SetDescriptor(GetInputFD(), false); 4525 } 4526 4527 ~IOHandlerProcessSTDIO() override = default; 4528 4529 // Each IOHandler gets to run until it is done. It should read data from the 4530 // "in" and place output into "out" and "err and return when done. 4531 void Run() override { 4532 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4533 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4534 SetIsDone(true); 4535 return; 4536 } 4537 4538 SetIsDone(false); 4539 const int read_fd = m_read_file.GetDescriptor(); 4540 TerminalState terminal_state; 4541 terminal_state.Save(read_fd, false); 4542 Terminal terminal(read_fd); 4543 terminal.SetCanonical(false); 4544 terminal.SetEcho(false); 4545 // FD_ZERO, FD_SET are not supported on windows 4546 #ifndef _WIN32 4547 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4548 m_is_running = true; 4549 while (!GetIsDone()) { 4550 SelectHelper select_helper; 4551 select_helper.FDSetRead(read_fd); 4552 select_helper.FDSetRead(pipe_read_fd); 4553 Status error = select_helper.Select(); 4554 4555 if (error.Fail()) { 4556 SetIsDone(true); 4557 } else { 4558 char ch = 0; 4559 size_t n; 4560 if (select_helper.FDIsSetRead(read_fd)) { 4561 n = 1; 4562 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4563 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4564 SetIsDone(true); 4565 } else 4566 SetIsDone(true); 4567 } 4568 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4569 size_t bytes_read; 4570 // Consume the interrupt byte 4571 Status error = m_pipe.Read(&ch, 1, bytes_read); 4572 if (error.Success()) { 4573 switch (ch) { 4574 case 'q': 4575 SetIsDone(true); 4576 break; 4577 case 'i': 4578 if (StateIsRunningState(m_process->GetState())) 4579 m_process->SendAsyncInterrupt(); 4580 break; 4581 } 4582 } 4583 } 4584 } 4585 } 4586 m_is_running = false; 4587 #endif 4588 terminal_state.Restore(); 4589 } 4590 4591 void Cancel() override { 4592 SetIsDone(true); 4593 // Only write to our pipe to cancel if we are in 4594 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4595 // is being run from the command interpreter: 4596 // 4597 // (lldb) step_process_thousands_of_times 4598 // 4599 // In this case the command interpreter will be in the middle of handling 4600 // the command and if the process pushes and pops the IOHandler thousands 4601 // of times, we can end up writing to m_pipe without ever consuming the 4602 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4603 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4604 if (m_is_running) { 4605 char ch = 'q'; // Send 'q' for quit 4606 size_t bytes_written = 0; 4607 m_pipe.Write(&ch, 1, bytes_written); 4608 } 4609 } 4610 4611 bool Interrupt() override { 4612 // Do only things that are safe to do in an interrupt context (like in a 4613 // SIGINT handler), like write 1 byte to a file descriptor. This will 4614 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4615 // that was written to the pipe and then call 4616 // m_process->SendAsyncInterrupt() from a much safer location in code. 4617 if (m_active) { 4618 char ch = 'i'; // Send 'i' for interrupt 4619 size_t bytes_written = 0; 4620 Status result = m_pipe.Write(&ch, 1, bytes_written); 4621 return result.Success(); 4622 } else { 4623 // This IOHandler might be pushed on the stack, but not being run 4624 // currently so do the right thing if we aren't actively watching for 4625 // STDIN by sending the interrupt to the process. Otherwise the write to 4626 // the pipe above would do nothing. This can happen when the command 4627 // interpreter is running and gets a "expression ...". It will be on the 4628 // IOHandler thread and sending the input is complete to the delegate 4629 // which will cause the expression to run, which will push the process IO 4630 // handler, but not run it. 4631 4632 if (StateIsRunningState(m_process->GetState())) { 4633 m_process->SendAsyncInterrupt(); 4634 return true; 4635 } 4636 } 4637 return false; 4638 } 4639 4640 void GotEOF() override {} 4641 4642 protected: 4643 Process *m_process; 4644 File m_read_file; // Read from this file (usually actual STDIN for LLDB 4645 File m_write_file; // Write to this file (usually the master pty for getting 4646 // io to debuggee) 4647 Pipe m_pipe; 4648 std::atomic<bool> m_is_running{false}; 4649 }; 4650 4651 void Process::SetSTDIOFileDescriptor(int fd) { 4652 // First set up the Read Thread for reading/handling process I/O 4653 4654 std::unique_ptr<ConnectionFileDescriptor> conn_ap( 4655 new ConnectionFileDescriptor(fd, true)); 4656 4657 if (conn_ap) { 4658 m_stdio_communication.SetConnection(conn_ap.release()); 4659 if (m_stdio_communication.IsConnected()) { 4660 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4661 STDIOReadThreadBytesReceived, this); 4662 m_stdio_communication.StartReadThread(); 4663 4664 // Now read thread is set up, set up input reader. 4665 4666 if (!m_process_input_reader) 4667 m_process_input_reader.reset(new IOHandlerProcessSTDIO(this, fd)); 4668 } 4669 } 4670 } 4671 4672 bool Process::ProcessIOHandlerIsActive() { 4673 IOHandlerSP io_handler_sp(m_process_input_reader); 4674 if (io_handler_sp) 4675 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4676 return false; 4677 } 4678 bool Process::PushProcessIOHandler() { 4679 IOHandlerSP io_handler_sp(m_process_input_reader); 4680 if (io_handler_sp) { 4681 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4682 if (log) 4683 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 4684 4685 io_handler_sp->SetIsDone(false); 4686 GetTarget().GetDebugger().PushIOHandler(io_handler_sp); 4687 return true; 4688 } 4689 return false; 4690 } 4691 4692 bool Process::PopProcessIOHandler() { 4693 IOHandlerSP io_handler_sp(m_process_input_reader); 4694 if (io_handler_sp) 4695 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4696 return false; 4697 } 4698 4699 // The process needs to know about installed plug-ins 4700 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4701 4702 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4703 4704 namespace { 4705 // RestorePlanState is used to record the "is private", "is master" and "okay 4706 // to discard" fields of the plan we are running, and reset it on Clean or on 4707 // destruction. It will only reset the state once, so you can call Clean and 4708 // then monkey with the state and it won't get reset on you again. 4709 4710 class RestorePlanState { 4711 public: 4712 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4713 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4714 if (m_thread_plan_sp) { 4715 m_private = m_thread_plan_sp->GetPrivate(); 4716 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4717 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4718 } 4719 } 4720 4721 ~RestorePlanState() { Clean(); } 4722 4723 void Clean() { 4724 if (!m_already_reset && m_thread_plan_sp) { 4725 m_already_reset = true; 4726 m_thread_plan_sp->SetPrivate(m_private); 4727 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4728 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4729 } 4730 } 4731 4732 private: 4733 lldb::ThreadPlanSP m_thread_plan_sp; 4734 bool m_already_reset; 4735 bool m_private; 4736 bool m_is_master; 4737 bool m_okay_to_discard; 4738 }; 4739 } // anonymous namespace 4740 4741 static microseconds 4742 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4743 const milliseconds default_one_thread_timeout(250); 4744 4745 // If the overall wait is forever, then we don't need to worry about it. 4746 if (!options.GetTimeout()) { 4747 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4748 : default_one_thread_timeout; 4749 } 4750 4751 // If the one thread timeout is set, use it. 4752 if (options.GetOneThreadTimeout()) 4753 return *options.GetOneThreadTimeout(); 4754 4755 // Otherwise use half the total timeout, bounded by the 4756 // default_one_thread_timeout. 4757 return std::min<microseconds>(default_one_thread_timeout, 4758 *options.GetTimeout() / 2); 4759 } 4760 4761 static Timeout<std::micro> 4762 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4763 bool before_first_timeout) { 4764 // If we are going to run all threads the whole time, or if we are only going 4765 // to run one thread, we can just return the overall timeout. 4766 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4767 return options.GetTimeout(); 4768 4769 if (before_first_timeout) 4770 return GetOneThreadExpressionTimeout(options); 4771 4772 if (!options.GetTimeout()) 4773 return llvm::None; 4774 else 4775 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4776 } 4777 4778 static llvm::Optional<ExpressionResults> 4779 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4780 RestorePlanState &restorer, const EventSP &event_sp, 4781 EventSP &event_to_broadcast_sp, 4782 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4783 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4784 4785 ThreadPlanSP plan = thread.GetCompletedPlan(); 4786 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4787 LLDB_LOG(log, "execution completed successfully"); 4788 4789 // Restore the plan state so it will get reported as intended when we are 4790 // done. 4791 restorer.Clean(); 4792 return eExpressionCompleted; 4793 } 4794 4795 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4796 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4797 stop_info_sp->ShouldNotify(event_sp.get())) { 4798 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4799 if (!options.DoesIgnoreBreakpoints()) { 4800 // Restore the plan state and then force Private to false. We are going 4801 // to stop because of this plan so we need it to become a public plan or 4802 // it won't report correctly when we continue to its termination later 4803 // on. 4804 restorer.Clean(); 4805 thread_plan_sp->SetPrivate(false); 4806 event_to_broadcast_sp = event_sp; 4807 } 4808 return eExpressionHitBreakpoint; 4809 } 4810 4811 if (!handle_interrupts && 4812 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4813 return llvm::None; 4814 4815 LLDB_LOG(log, "thread plan did not successfully complete"); 4816 if (!options.DoesUnwindOnError()) 4817 event_to_broadcast_sp = event_sp; 4818 return eExpressionInterrupted; 4819 } 4820 4821 ExpressionResults 4822 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4823 lldb::ThreadPlanSP &thread_plan_sp, 4824 const EvaluateExpressionOptions &options, 4825 DiagnosticManager &diagnostic_manager) { 4826 ExpressionResults return_value = eExpressionSetupError; 4827 4828 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4829 4830 if (!thread_plan_sp) { 4831 diagnostic_manager.PutString( 4832 eDiagnosticSeverityError, 4833 "RunThreadPlan called with empty thread plan."); 4834 return eExpressionSetupError; 4835 } 4836 4837 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4838 diagnostic_manager.PutString( 4839 eDiagnosticSeverityError, 4840 "RunThreadPlan called with an invalid thread plan."); 4841 return eExpressionSetupError; 4842 } 4843 4844 if (exe_ctx.GetProcessPtr() != this) { 4845 diagnostic_manager.PutString(eDiagnosticSeverityError, 4846 "RunThreadPlan called on wrong process."); 4847 return eExpressionSetupError; 4848 } 4849 4850 Thread *thread = exe_ctx.GetThreadPtr(); 4851 if (thread == nullptr) { 4852 diagnostic_manager.PutString(eDiagnosticSeverityError, 4853 "RunThreadPlan called with invalid thread."); 4854 return eExpressionSetupError; 4855 } 4856 4857 // We need to change some of the thread plan attributes for the thread plan 4858 // runner. This will restore them when we are done: 4859 4860 RestorePlanState thread_plan_restorer(thread_plan_sp); 4861 4862 // We rely on the thread plan we are running returning "PlanCompleted" if 4863 // when it successfully completes. For that to be true the plan can't be 4864 // private - since private plans suppress themselves in the GetCompletedPlan 4865 // call. 4866 4867 thread_plan_sp->SetPrivate(false); 4868 4869 // The plans run with RunThreadPlan also need to be terminal master plans or 4870 // when they are done we will end up asking the plan above us whether we 4871 // should stop, which may give the wrong answer. 4872 4873 thread_plan_sp->SetIsMasterPlan(true); 4874 thread_plan_sp->SetOkayToDiscard(false); 4875 4876 if (m_private_state.GetValue() != eStateStopped) { 4877 diagnostic_manager.PutString( 4878 eDiagnosticSeverityError, 4879 "RunThreadPlan called while the private state was not stopped."); 4880 return eExpressionSetupError; 4881 } 4882 4883 // Save the thread & frame from the exe_ctx for restoration after we run 4884 const uint32_t thread_idx_id = thread->GetIndexID(); 4885 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4886 if (!selected_frame_sp) { 4887 thread->SetSelectedFrame(nullptr); 4888 selected_frame_sp = thread->GetSelectedFrame(); 4889 if (!selected_frame_sp) { 4890 diagnostic_manager.Printf( 4891 eDiagnosticSeverityError, 4892 "RunThreadPlan called without a selected frame on thread %d", 4893 thread_idx_id); 4894 return eExpressionSetupError; 4895 } 4896 } 4897 4898 // Make sure the timeout values make sense. The one thread timeout needs to 4899 // be smaller than the overall timeout. 4900 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4901 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4902 diagnostic_manager.PutString(eDiagnosticSeverityError, 4903 "RunThreadPlan called with one thread " 4904 "timeout greater than total timeout"); 4905 return eExpressionSetupError; 4906 } 4907 4908 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4909 4910 // N.B. Running the target may unset the currently selected thread and frame. 4911 // We don't want to do that either, so we should arrange to reset them as 4912 // well. 4913 4914 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4915 4916 uint32_t selected_tid; 4917 StackID selected_stack_id; 4918 if (selected_thread_sp) { 4919 selected_tid = selected_thread_sp->GetIndexID(); 4920 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4921 } else { 4922 selected_tid = LLDB_INVALID_THREAD_ID; 4923 } 4924 4925 HostThread backup_private_state_thread; 4926 lldb::StateType old_state = eStateInvalid; 4927 lldb::ThreadPlanSP stopper_base_plan_sp; 4928 4929 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4930 LIBLLDB_LOG_PROCESS)); 4931 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4932 // Yikes, we are running on the private state thread! So we can't wait for 4933 // public events on this thread, since we are the thread that is generating 4934 // public events. The simplest thing to do is to spin up a temporary thread 4935 // to handle private state thread events while we are fielding public 4936 // events here. 4937 if (log) 4938 log->Printf("Running thread plan on private state thread, spinning up " 4939 "another state thread to handle the events."); 4940 4941 backup_private_state_thread = m_private_state_thread; 4942 4943 // One other bit of business: we want to run just this thread plan and 4944 // anything it pushes, and then stop, returning control here. But in the 4945 // normal course of things, the plan above us on the stack would be given a 4946 // shot at the stop event before deciding to stop, and we don't want that. 4947 // So we insert a "stopper" base plan on the stack before the plan we want 4948 // to run. Since base plans always stop and return control to the user, 4949 // that will do just what we want. 4950 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4951 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4952 // Have to make sure our public state is stopped, since otherwise the 4953 // reporting logic below doesn't work correctly. 4954 old_state = m_public_state.GetValue(); 4955 m_public_state.SetValueNoLock(eStateStopped); 4956 4957 // Now spin up the private state thread: 4958 StartPrivateStateThread(true); 4959 } 4960 4961 thread->QueueThreadPlan( 4962 thread_plan_sp, false); // This used to pass "true" does that make sense? 4963 4964 if (options.GetDebug()) { 4965 // In this case, we aren't actually going to run, we just want to stop 4966 // right away. Flush this thread so we will refetch the stacks and show the 4967 // correct backtrace. 4968 // FIXME: To make this prettier we should invent some stop reason for this, 4969 // but that 4970 // is only cosmetic, and this functionality is only of use to lldb 4971 // developers who can live with not pretty... 4972 thread->Flush(); 4973 return eExpressionStoppedForDebug; 4974 } 4975 4976 ListenerSP listener_sp( 4977 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4978 4979 lldb::EventSP event_to_broadcast_sp; 4980 4981 { 4982 // This process event hijacker Hijacks the Public events and its destructor 4983 // makes sure that the process events get restored on exit to the function. 4984 // 4985 // If the event needs to propagate beyond the hijacker (e.g., the process 4986 // exits during execution), then the event is put into 4987 // event_to_broadcast_sp for rebroadcasting. 4988 4989 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4990 4991 if (log) { 4992 StreamString s; 4993 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4994 log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4995 " to run thread plan \"%s\".", 4996 thread->GetIndexID(), thread->GetID(), s.GetData()); 4997 } 4998 4999 bool got_event; 5000 lldb::EventSP event_sp; 5001 lldb::StateType stop_state = lldb::eStateInvalid; 5002 5003 bool before_first_timeout = true; // This is set to false the first time 5004 // that we have to halt the target. 5005 bool do_resume = true; 5006 bool handle_running_event = true; 5007 5008 // This is just for accounting: 5009 uint32_t num_resumes = 0; 5010 5011 // If we are going to run all threads the whole time, or if we are only 5012 // going to run one thread, then we don't need the first timeout. So we 5013 // pretend we are after the first timeout already. 5014 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5015 before_first_timeout = false; 5016 5017 if (log) 5018 log->Printf("Stop others: %u, try all: %u, before_first: %u.\n", 5019 options.GetStopOthers(), options.GetTryAllThreads(), 5020 before_first_timeout); 5021 5022 // This isn't going to work if there are unfetched events on the queue. Are 5023 // there cases where we might want to run the remaining events here, and 5024 // then try to call the function? That's probably being too tricky for our 5025 // own good. 5026 5027 Event *other_events = listener_sp->PeekAtNextEvent(); 5028 if (other_events != nullptr) { 5029 diagnostic_manager.PutString( 5030 eDiagnosticSeverityError, 5031 "RunThreadPlan called with pending events on the queue."); 5032 return eExpressionSetupError; 5033 } 5034 5035 // We also need to make sure that the next event is delivered. We might be 5036 // calling a function as part of a thread plan, in which case the last 5037 // delivered event could be the running event, and we don't want event 5038 // coalescing to cause us to lose OUR running event... 5039 ForceNextEventDelivery(); 5040 5041 // This while loop must exit out the bottom, there's cleanup that we need to do 5042 // when we are done. So don't call return anywhere within it. 5043 5044 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5045 // It's pretty much impossible to write test cases for things like: One 5046 // thread timeout expires, I go to halt, but the process already stopped on 5047 // the function call stop breakpoint. Turning on this define will make us 5048 // not fetch the first event till after the halt. So if you run a quick 5049 // function, it will have completed, and the completion event will be 5050 // waiting, when you interrupt for halt. The expression evaluation should 5051 // still succeed. 5052 bool miss_first_event = true; 5053 #endif 5054 while (true) { 5055 // We usually want to resume the process if we get to the top of the 5056 // loop. The only exception is if we get two running events with no 5057 // intervening stop, which can happen, we will just wait for then next 5058 // stop event. 5059 if (log) 5060 log->Printf("Top of while loop: do_resume: %i handle_running_event: %i " 5061 "before_first_timeout: %i.", 5062 do_resume, handle_running_event, before_first_timeout); 5063 5064 if (do_resume || handle_running_event) { 5065 // Do the initial resume and wait for the running event before going 5066 // further. 5067 5068 if (do_resume) { 5069 num_resumes++; 5070 Status resume_error = PrivateResume(); 5071 if (!resume_error.Success()) { 5072 diagnostic_manager.Printf( 5073 eDiagnosticSeverityError, 5074 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5075 resume_error.AsCString()); 5076 return_value = eExpressionSetupError; 5077 break; 5078 } 5079 } 5080 5081 got_event = 5082 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5083 if (!got_event) { 5084 if (log) 5085 log->Printf("Process::RunThreadPlan(): didn't get any event after " 5086 "resume %" PRIu32 ", exiting.", 5087 num_resumes); 5088 5089 diagnostic_manager.Printf(eDiagnosticSeverityError, 5090 "didn't get any event after resume %" PRIu32 5091 ", exiting.", 5092 num_resumes); 5093 return_value = eExpressionSetupError; 5094 break; 5095 } 5096 5097 stop_state = 5098 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5099 5100 if (stop_state != eStateRunning) { 5101 bool restarted = false; 5102 5103 if (stop_state == eStateStopped) { 5104 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5105 event_sp.get()); 5106 if (log) 5107 log->Printf( 5108 "Process::RunThreadPlan(): didn't get running event after " 5109 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5110 "handle_running_event: %i).", 5111 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5112 handle_running_event); 5113 } 5114 5115 if (restarted) { 5116 // This is probably an overabundance of caution, I don't think I 5117 // should ever get a stopped & restarted event here. But if I do, 5118 // the best thing is to Halt and then get out of here. 5119 const bool clear_thread_plans = false; 5120 const bool use_run_lock = false; 5121 Halt(clear_thread_plans, use_run_lock); 5122 } 5123 5124 diagnostic_manager.Printf( 5125 eDiagnosticSeverityError, 5126 "didn't get running event after initial resume, got %s instead.", 5127 StateAsCString(stop_state)); 5128 return_value = eExpressionSetupError; 5129 break; 5130 } 5131 5132 if (log) 5133 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5134 // We need to call the function synchronously, so spin waiting for it 5135 // to return. If we get interrupted while executing, we're going to 5136 // lose our context, and won't be able to gather the result at this 5137 // point. We set the timeout AFTER the resume, since the resume takes 5138 // some time and we don't want to charge that to the timeout. 5139 } else { 5140 if (log) 5141 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5142 } 5143 5144 do_resume = true; 5145 handle_running_event = true; 5146 5147 // Now wait for the process to stop again: 5148 event_sp.reset(); 5149 5150 Timeout<std::micro> timeout = 5151 GetExpressionTimeout(options, before_first_timeout); 5152 if (log) { 5153 if (timeout) { 5154 auto now = system_clock::now(); 5155 log->Printf("Process::RunThreadPlan(): about to wait - now is %s - " 5156 "endpoint is %s", 5157 llvm::to_string(now).c_str(), 5158 llvm::to_string(now + *timeout).c_str()); 5159 } else { 5160 log->Printf("Process::RunThreadPlan(): about to wait forever."); 5161 } 5162 } 5163 5164 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5165 // See comment above... 5166 if (miss_first_event) { 5167 usleep(1000); 5168 miss_first_event = false; 5169 got_event = false; 5170 } else 5171 #endif 5172 got_event = listener_sp->GetEvent(event_sp, timeout); 5173 5174 if (got_event) { 5175 if (event_sp) { 5176 bool keep_going = false; 5177 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5178 const bool clear_thread_plans = false; 5179 const bool use_run_lock = false; 5180 Halt(clear_thread_plans, use_run_lock); 5181 return_value = eExpressionInterrupted; 5182 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5183 "execution halted by user interrupt."); 5184 if (log) 5185 log->Printf("Process::RunThreadPlan(): Got interrupted by " 5186 "eBroadcastBitInterrupted, exiting."); 5187 break; 5188 } else { 5189 stop_state = 5190 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5191 if (log) 5192 log->Printf( 5193 "Process::RunThreadPlan(): in while loop, got event: %s.", 5194 StateAsCString(stop_state)); 5195 5196 switch (stop_state) { 5197 case lldb::eStateStopped: { 5198 // We stopped, figure out what we are going to do now. 5199 ThreadSP thread_sp = 5200 GetThreadList().FindThreadByIndexID(thread_idx_id); 5201 if (!thread_sp) { 5202 // Ooh, our thread has vanished. Unlikely that this was 5203 // successful execution... 5204 if (log) 5205 log->Printf("Process::RunThreadPlan(): execution completed " 5206 "but our thread (index-id=%u) has vanished.", 5207 thread_idx_id); 5208 return_value = eExpressionInterrupted; 5209 } else if (Process::ProcessEventData::GetRestartedFromEvent( 5210 event_sp.get())) { 5211 // If we were restarted, we just need to go back up to fetch 5212 // another event. 5213 if (log) { 5214 log->Printf("Process::RunThreadPlan(): Got a stop and " 5215 "restart, so we'll continue waiting."); 5216 } 5217 keep_going = true; 5218 do_resume = false; 5219 handle_running_event = true; 5220 } else { 5221 const bool handle_interrupts = true; 5222 return_value = *HandleStoppedEvent( 5223 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5224 event_to_broadcast_sp, options, handle_interrupts); 5225 } 5226 } break; 5227 5228 case lldb::eStateRunning: 5229 // This shouldn't really happen, but sometimes we do get two 5230 // running events without an intervening stop, and in that case 5231 // we should just go back to waiting for the stop. 5232 do_resume = false; 5233 keep_going = true; 5234 handle_running_event = false; 5235 break; 5236 5237 default: 5238 if (log) 5239 log->Printf("Process::RunThreadPlan(): execution stopped with " 5240 "unexpected state: %s.", 5241 StateAsCString(stop_state)); 5242 5243 if (stop_state == eStateExited) 5244 event_to_broadcast_sp = event_sp; 5245 5246 diagnostic_manager.PutString( 5247 eDiagnosticSeverityError, 5248 "execution stopped with unexpected state."); 5249 return_value = eExpressionInterrupted; 5250 break; 5251 } 5252 } 5253 5254 if (keep_going) 5255 continue; 5256 else 5257 break; 5258 } else { 5259 if (log) 5260 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5261 "the event pointer was null. How odd..."); 5262 return_value = eExpressionInterrupted; 5263 break; 5264 } 5265 } else { 5266 // If we didn't get an event that means we've timed out... We will 5267 // interrupt the process here. Depending on what we were asked to do 5268 // we will either exit, or try with all threads running for the same 5269 // timeout. 5270 5271 if (log) { 5272 if (options.GetTryAllThreads()) { 5273 if (before_first_timeout) { 5274 LLDB_LOG(log, 5275 "Running function with one thread timeout timed out."); 5276 } else 5277 LLDB_LOG(log, "Restarting function with all threads enabled and " 5278 "timeout: {0} timed out, abandoning execution.", 5279 timeout); 5280 } else 5281 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5282 "abandoning execution.", 5283 timeout); 5284 } 5285 5286 // It is possible that between the time we issued the Halt, and we get 5287 // around to calling Halt the target could have stopped. That's fine, 5288 // Halt will figure that out and send the appropriate Stopped event. 5289 // BUT it is also possible that we stopped & restarted (e.g. hit a 5290 // signal with "stop" set to false.) In 5291 // that case, we'll get the stopped & restarted event, and we should go 5292 // back to waiting for the Halt's stopped event. That's what this 5293 // while loop does. 5294 5295 bool back_to_top = true; 5296 uint32_t try_halt_again = 0; 5297 bool do_halt = true; 5298 const uint32_t num_retries = 5; 5299 while (try_halt_again < num_retries) { 5300 Status halt_error; 5301 if (do_halt) { 5302 if (log) 5303 log->Printf("Process::RunThreadPlan(): Running Halt."); 5304 const bool clear_thread_plans = false; 5305 const bool use_run_lock = false; 5306 Halt(clear_thread_plans, use_run_lock); 5307 } 5308 if (halt_error.Success()) { 5309 if (log) 5310 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5311 5312 got_event = 5313 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5314 5315 if (got_event) { 5316 stop_state = 5317 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5318 if (log) { 5319 log->Printf("Process::RunThreadPlan(): Stopped with event: %s", 5320 StateAsCString(stop_state)); 5321 if (stop_state == lldb::eStateStopped && 5322 Process::ProcessEventData::GetInterruptedFromEvent( 5323 event_sp.get())) 5324 log->PutCString(" Event was the Halt interruption event."); 5325 } 5326 5327 if (stop_state == lldb::eStateStopped) { 5328 if (Process::ProcessEventData::GetRestartedFromEvent( 5329 event_sp.get())) { 5330 if (log) 5331 log->PutCString("Process::RunThreadPlan(): Went to halt " 5332 "but got a restarted event, there must be " 5333 "an un-restarted stopped event so try " 5334 "again... " 5335 "Exiting wait loop."); 5336 try_halt_again++; 5337 do_halt = false; 5338 continue; 5339 } 5340 5341 // Between the time we initiated the Halt and the time we 5342 // delivered it, the process could have already finished its 5343 // job. Check that here: 5344 const bool handle_interrupts = false; 5345 if (auto result = HandleStoppedEvent( 5346 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5347 event_to_broadcast_sp, options, handle_interrupts)) { 5348 return_value = *result; 5349 back_to_top = false; 5350 break; 5351 } 5352 5353 if (!options.GetTryAllThreads()) { 5354 if (log) 5355 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5356 "was false, we stopped so now we're " 5357 "quitting."); 5358 return_value = eExpressionInterrupted; 5359 back_to_top = false; 5360 break; 5361 } 5362 5363 if (before_first_timeout) { 5364 // Set all the other threads to run, and return to the top of 5365 // the loop, which will continue; 5366 before_first_timeout = false; 5367 thread_plan_sp->SetStopOthers(false); 5368 if (log) 5369 log->PutCString( 5370 "Process::RunThreadPlan(): about to resume."); 5371 5372 back_to_top = true; 5373 break; 5374 } else { 5375 // Running all threads failed, so return Interrupted. 5376 if (log) 5377 log->PutCString("Process::RunThreadPlan(): running all " 5378 "threads timed out."); 5379 return_value = eExpressionInterrupted; 5380 back_to_top = false; 5381 break; 5382 } 5383 } 5384 } else { 5385 if (log) 5386 log->PutCString("Process::RunThreadPlan(): halt said it " 5387 "succeeded, but I got no event. " 5388 "I'm getting out of here passing Interrupted."); 5389 return_value = eExpressionInterrupted; 5390 back_to_top = false; 5391 break; 5392 } 5393 } else { 5394 try_halt_again++; 5395 continue; 5396 } 5397 } 5398 5399 if (!back_to_top || try_halt_again > num_retries) 5400 break; 5401 else 5402 continue; 5403 } 5404 } // END WAIT LOOP 5405 5406 // If we had to start up a temporary private state thread to run this 5407 // thread plan, shut it down now. 5408 if (backup_private_state_thread.IsJoinable()) { 5409 StopPrivateStateThread(); 5410 Status error; 5411 m_private_state_thread = backup_private_state_thread; 5412 if (stopper_base_plan_sp) { 5413 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5414 } 5415 if (old_state != eStateInvalid) 5416 m_public_state.SetValueNoLock(old_state); 5417 } 5418 5419 if (return_value != eExpressionCompleted && log) { 5420 // Print a backtrace into the log so we can figure out where we are: 5421 StreamString s; 5422 s.PutCString("Thread state after unsuccessful completion: \n"); 5423 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5424 log->PutString(s.GetString()); 5425 } 5426 // Restore the thread state if we are going to discard the plan execution. 5427 // There are three cases where this could happen: 1) The execution 5428 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5429 // was true 3) We got some other error, and discard_on_error was true 5430 bool should_unwind = (return_value == eExpressionInterrupted && 5431 options.DoesUnwindOnError()) || 5432 (return_value == eExpressionHitBreakpoint && 5433 options.DoesIgnoreBreakpoints()); 5434 5435 if (return_value == eExpressionCompleted || should_unwind) { 5436 thread_plan_sp->RestoreThreadState(); 5437 } 5438 5439 // Now do some processing on the results of the run: 5440 if (return_value == eExpressionInterrupted || 5441 return_value == eExpressionHitBreakpoint) { 5442 if (log) { 5443 StreamString s; 5444 if (event_sp) 5445 event_sp->Dump(&s); 5446 else { 5447 log->PutCString("Process::RunThreadPlan(): Stop event that " 5448 "interrupted us is NULL."); 5449 } 5450 5451 StreamString ts; 5452 5453 const char *event_explanation = nullptr; 5454 5455 do { 5456 if (!event_sp) { 5457 event_explanation = "<no event>"; 5458 break; 5459 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5460 event_explanation = "<user interrupt>"; 5461 break; 5462 } else { 5463 const Process::ProcessEventData *event_data = 5464 Process::ProcessEventData::GetEventDataFromEvent( 5465 event_sp.get()); 5466 5467 if (!event_data) { 5468 event_explanation = "<no event data>"; 5469 break; 5470 } 5471 5472 Process *process = event_data->GetProcessSP().get(); 5473 5474 if (!process) { 5475 event_explanation = "<no process>"; 5476 break; 5477 } 5478 5479 ThreadList &thread_list = process->GetThreadList(); 5480 5481 uint32_t num_threads = thread_list.GetSize(); 5482 uint32_t thread_index; 5483 5484 ts.Printf("<%u threads> ", num_threads); 5485 5486 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5487 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5488 5489 if (!thread) { 5490 ts.Printf("<?> "); 5491 continue; 5492 } 5493 5494 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5495 RegisterContext *register_context = 5496 thread->GetRegisterContext().get(); 5497 5498 if (register_context) 5499 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5500 else 5501 ts.Printf("[ip unknown] "); 5502 5503 // Show the private stop info here, the public stop info will be 5504 // from the last natural stop. 5505 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5506 if (stop_info_sp) { 5507 const char *stop_desc = stop_info_sp->GetDescription(); 5508 if (stop_desc) 5509 ts.PutCString(stop_desc); 5510 } 5511 ts.Printf(">"); 5512 } 5513 5514 event_explanation = ts.GetData(); 5515 } 5516 } while (0); 5517 5518 if (event_explanation) 5519 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", 5520 s.GetData(), event_explanation); 5521 else 5522 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", 5523 s.GetData()); 5524 } 5525 5526 if (should_unwind) { 5527 if (log) 5528 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - " 5529 "discarding thread plans up to %p.", 5530 static_cast<void *>(thread_plan_sp.get())); 5531 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5532 } else { 5533 if (log) 5534 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for " 5535 "plan: %p not discarding.", 5536 static_cast<void *>(thread_plan_sp.get())); 5537 } 5538 } else if (return_value == eExpressionSetupError) { 5539 if (log) 5540 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5541 5542 if (options.DoesUnwindOnError()) { 5543 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5544 } 5545 } else { 5546 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5547 if (log) 5548 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5549 return_value = eExpressionCompleted; 5550 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5551 if (log) 5552 log->PutCString( 5553 "Process::RunThreadPlan(): thread plan was discarded"); 5554 return_value = eExpressionDiscarded; 5555 } else { 5556 if (log) 5557 log->PutCString( 5558 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5559 if (options.DoesUnwindOnError() && thread_plan_sp) { 5560 if (log) 5561 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5562 "'cause unwind_on_error is set."); 5563 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5564 } 5565 } 5566 } 5567 5568 // Thread we ran the function in may have gone away because we ran the 5569 // target Check that it's still there, and if it is put it back in the 5570 // context. Also restore the frame in the context if it is still present. 5571 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5572 if (thread) { 5573 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5574 } 5575 5576 // Also restore the current process'es selected frame & thread, since this 5577 // function calling may be done behind the user's back. 5578 5579 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5580 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5581 selected_stack_id.IsValid()) { 5582 // We were able to restore the selected thread, now restore the frame: 5583 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5584 StackFrameSP old_frame_sp = 5585 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5586 selected_stack_id); 5587 if (old_frame_sp) 5588 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5589 old_frame_sp.get()); 5590 } 5591 } 5592 } 5593 5594 // If the process exited during the run of the thread plan, notify everyone. 5595 5596 if (event_to_broadcast_sp) { 5597 if (log) 5598 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5599 BroadcastEvent(event_to_broadcast_sp); 5600 } 5601 5602 return return_value; 5603 } 5604 5605 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5606 const char *result_name; 5607 5608 switch (result) { 5609 case eExpressionCompleted: 5610 result_name = "eExpressionCompleted"; 5611 break; 5612 case eExpressionDiscarded: 5613 result_name = "eExpressionDiscarded"; 5614 break; 5615 case eExpressionInterrupted: 5616 result_name = "eExpressionInterrupted"; 5617 break; 5618 case eExpressionHitBreakpoint: 5619 result_name = "eExpressionHitBreakpoint"; 5620 break; 5621 case eExpressionSetupError: 5622 result_name = "eExpressionSetupError"; 5623 break; 5624 case eExpressionParseError: 5625 result_name = "eExpressionParseError"; 5626 break; 5627 case eExpressionResultUnavailable: 5628 result_name = "eExpressionResultUnavailable"; 5629 break; 5630 case eExpressionTimedOut: 5631 result_name = "eExpressionTimedOut"; 5632 break; 5633 case eExpressionStoppedForDebug: 5634 result_name = "eExpressionStoppedForDebug"; 5635 break; 5636 } 5637 return result_name; 5638 } 5639 5640 void Process::GetStatus(Stream &strm) { 5641 const StateType state = GetState(); 5642 if (StateIsStoppedState(state, false)) { 5643 if (state == eStateExited) { 5644 int exit_status = GetExitStatus(); 5645 const char *exit_description = GetExitDescription(); 5646 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5647 GetID(), exit_status, exit_status, 5648 exit_description ? exit_description : ""); 5649 } else { 5650 if (state == eStateConnected) 5651 strm.Printf("Connected to remote target.\n"); 5652 else 5653 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5654 } 5655 } else { 5656 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5657 } 5658 } 5659 5660 size_t Process::GetThreadStatus(Stream &strm, 5661 bool only_threads_with_stop_reason, 5662 uint32_t start_frame, uint32_t num_frames, 5663 uint32_t num_frames_with_source, 5664 bool stop_format) { 5665 size_t num_thread_infos_dumped = 0; 5666 5667 // You can't hold the thread list lock while calling Thread::GetStatus. That 5668 // very well might run code (e.g. if we need it to get return values or 5669 // arguments.) For that to work the process has to be able to acquire it. 5670 // So instead copy the thread ID's, and look them up one by one: 5671 5672 uint32_t num_threads; 5673 std::vector<lldb::tid_t> thread_id_array; 5674 // Scope for thread list locker; 5675 { 5676 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5677 ThreadList &curr_thread_list = GetThreadList(); 5678 num_threads = curr_thread_list.GetSize(); 5679 uint32_t idx; 5680 thread_id_array.resize(num_threads); 5681 for (idx = 0; idx < num_threads; ++idx) 5682 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5683 } 5684 5685 for (uint32_t i = 0; i < num_threads; i++) { 5686 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5687 if (thread_sp) { 5688 if (only_threads_with_stop_reason) { 5689 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5690 if (!stop_info_sp || !stop_info_sp->IsValid()) 5691 continue; 5692 } 5693 thread_sp->GetStatus(strm, start_frame, num_frames, 5694 num_frames_with_source, 5695 stop_format); 5696 ++num_thread_infos_dumped; 5697 } else { 5698 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5699 if (log) 5700 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 5701 " vanished while running Thread::GetStatus."); 5702 } 5703 } 5704 return num_thread_infos_dumped; 5705 } 5706 5707 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5708 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5709 } 5710 5711 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5712 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5713 region.GetByteSize()); 5714 } 5715 5716 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5717 void *baton) { 5718 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5719 } 5720 5721 bool Process::RunPreResumeActions() { 5722 bool result = true; 5723 while (!m_pre_resume_actions.empty()) { 5724 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5725 m_pre_resume_actions.pop_back(); 5726 bool this_result = action.callback(action.baton); 5727 if (result) 5728 result = this_result; 5729 } 5730 return result; 5731 } 5732 5733 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5734 5735 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5736 { 5737 PreResumeCallbackAndBaton element(callback, baton); 5738 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5739 if (found_iter != m_pre_resume_actions.end()) 5740 { 5741 m_pre_resume_actions.erase(found_iter); 5742 } 5743 } 5744 5745 ProcessRunLock &Process::GetRunLock() { 5746 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5747 return m_private_run_lock; 5748 else 5749 return m_public_run_lock; 5750 } 5751 5752 void Process::Flush() { 5753 m_thread_list.Flush(); 5754 m_extended_thread_list.Flush(); 5755 m_extended_thread_stop_id = 0; 5756 m_queue_list.Clear(); 5757 m_queue_list_stop_id = 0; 5758 } 5759 5760 void Process::DidExec() { 5761 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5762 if (log) 5763 log->Printf("Process::%s()", __FUNCTION__); 5764 5765 Target &target = GetTarget(); 5766 target.CleanupProcess(); 5767 target.ClearModules(false); 5768 m_dynamic_checkers_ap.reset(); 5769 m_abi_sp.reset(); 5770 m_system_runtime_ap.reset(); 5771 m_os_ap.reset(); 5772 m_dyld_ap.reset(); 5773 m_jit_loaders_ap.reset(); 5774 m_image_tokens.clear(); 5775 m_allocated_memory_cache.Clear(); 5776 m_language_runtimes.clear(); 5777 m_instrumentation_runtimes.clear(); 5778 m_thread_list.DiscardThreadPlans(); 5779 m_memory_cache.Clear(true); 5780 DoDidExec(); 5781 CompleteAttach(); 5782 // Flush the process (threads and all stack frames) after running 5783 // CompleteAttach() in case the dynamic loader loaded things in new 5784 // locations. 5785 Flush(); 5786 5787 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5788 // let the target know so it can do any cleanup it needs to. 5789 target.DidExec(); 5790 } 5791 5792 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5793 if (address == nullptr) { 5794 error.SetErrorString("Invalid address argument"); 5795 return LLDB_INVALID_ADDRESS; 5796 } 5797 5798 addr_t function_addr = LLDB_INVALID_ADDRESS; 5799 5800 addr_t addr = address->GetLoadAddress(&GetTarget()); 5801 std::map<addr_t, addr_t>::const_iterator iter = 5802 m_resolved_indirect_addresses.find(addr); 5803 if (iter != m_resolved_indirect_addresses.end()) { 5804 function_addr = (*iter).second; 5805 } else { 5806 if (!InferiorCall(this, address, function_addr)) { 5807 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5808 error.SetErrorStringWithFormat( 5809 "Unable to call resolver for indirect function %s", 5810 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5811 function_addr = LLDB_INVALID_ADDRESS; 5812 } else { 5813 m_resolved_indirect_addresses.insert( 5814 std::pair<addr_t, addr_t>(addr, function_addr)); 5815 } 5816 } 5817 return function_addr; 5818 } 5819 5820 void Process::ModulesDidLoad(ModuleList &module_list) { 5821 SystemRuntime *sys_runtime = GetSystemRuntime(); 5822 if (sys_runtime) { 5823 sys_runtime->ModulesDidLoad(module_list); 5824 } 5825 5826 GetJITLoaders().ModulesDidLoad(module_list); 5827 5828 // Give runtimes a chance to be created. 5829 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5830 m_instrumentation_runtimes); 5831 5832 // Tell runtimes about new modules. 5833 for (auto pos = m_instrumentation_runtimes.begin(); 5834 pos != m_instrumentation_runtimes.end(); ++pos) { 5835 InstrumentationRuntimeSP runtime = pos->second; 5836 runtime->ModulesDidLoad(module_list); 5837 } 5838 5839 // Let any language runtimes we have already created know about the modules 5840 // that loaded. 5841 5842 // Iterate over a copy of this language runtime list in case the language 5843 // runtime ModulesDidLoad somehow causes the language riuntime to be 5844 // unloaded. 5845 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5846 for (const auto &pair : language_runtimes) { 5847 // We must check language_runtime_sp to make sure it is not nullptr as we 5848 // might cache the fact that we didn't have a language runtime for a 5849 // language. 5850 LanguageRuntimeSP language_runtime_sp = pair.second; 5851 if (language_runtime_sp) 5852 language_runtime_sp->ModulesDidLoad(module_list); 5853 } 5854 5855 // If we don't have an operating system plug-in, try to load one since 5856 // loading shared libraries might cause a new one to try and load 5857 if (!m_os_ap) 5858 LoadOperatingSystemPlugin(false); 5859 5860 // Give structured-data plugins a chance to see the modified modules. 5861 for (auto pair : m_structured_data_plugin_map) { 5862 if (pair.second) 5863 pair.second->ModulesDidLoad(*this, module_list); 5864 } 5865 } 5866 5867 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5868 const char *fmt, ...) { 5869 bool print_warning = true; 5870 5871 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5872 if (!stream_sp) 5873 return; 5874 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5875 return; 5876 } 5877 5878 if (repeat_key != nullptr) { 5879 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5880 if (it == m_warnings_issued.end()) { 5881 m_warnings_issued[warning_type] = WarningsPointerSet(); 5882 m_warnings_issued[warning_type].insert(repeat_key); 5883 } else { 5884 if (it->second.find(repeat_key) != it->second.end()) { 5885 print_warning = false; 5886 } else { 5887 it->second.insert(repeat_key); 5888 } 5889 } 5890 } 5891 5892 if (print_warning) { 5893 va_list args; 5894 va_start(args, fmt); 5895 stream_sp->PrintfVarArg(fmt, args); 5896 va_end(args); 5897 } 5898 } 5899 5900 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5901 if (GetWarningsOptimization() && sc.module_sp && 5902 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5903 sc.function->GetIsOptimized()) { 5904 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5905 "%s was compiled with optimization - stepping may behave " 5906 "oddly; variables may not be available.\n", 5907 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5908 } 5909 } 5910 5911 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5912 info.Clear(); 5913 5914 PlatformSP platform_sp = GetTarget().GetPlatform(); 5915 if (!platform_sp) 5916 return false; 5917 5918 return platform_sp->GetProcessInfo(GetID(), info); 5919 } 5920 5921 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5922 ThreadCollectionSP threads; 5923 5924 const MemoryHistorySP &memory_history = 5925 MemoryHistory::FindPlugin(shared_from_this()); 5926 5927 if (!memory_history) { 5928 return threads; 5929 } 5930 5931 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 5932 5933 return threads; 5934 } 5935 5936 InstrumentationRuntimeSP 5937 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5938 InstrumentationRuntimeCollection::iterator pos; 5939 pos = m_instrumentation_runtimes.find(type); 5940 if (pos == m_instrumentation_runtimes.end()) { 5941 return InstrumentationRuntimeSP(); 5942 } else 5943 return (*pos).second; 5944 } 5945 5946 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5947 const ArchSpec &arch, ModuleSpec &module_spec) { 5948 module_spec.Clear(); 5949 return false; 5950 } 5951 5952 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5953 m_image_tokens.push_back(image_ptr); 5954 return m_image_tokens.size() - 1; 5955 } 5956 5957 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5958 if (token < m_image_tokens.size()) 5959 return m_image_tokens[token]; 5960 return LLDB_INVALID_IMAGE_TOKEN; 5961 } 5962 5963 void Process::ResetImageToken(size_t token) { 5964 if (token < m_image_tokens.size()) 5965 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5966 } 5967 5968 Address 5969 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5970 AddressRange range_bounds) { 5971 Target &target = GetTarget(); 5972 DisassemblerSP disassembler_sp; 5973 InstructionList *insn_list = nullptr; 5974 5975 Address retval = default_stop_addr; 5976 5977 if (!target.GetUseFastStepping()) 5978 return retval; 5979 if (!default_stop_addr.IsValid()) 5980 return retval; 5981 5982 ExecutionContext exe_ctx(this); 5983 const char *plugin_name = nullptr; 5984 const char *flavor = nullptr; 5985 const bool prefer_file_cache = true; 5986 disassembler_sp = Disassembler::DisassembleRange( 5987 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 5988 prefer_file_cache); 5989 if (disassembler_sp) 5990 insn_list = &disassembler_sp->GetInstructionList(); 5991 5992 if (insn_list == nullptr) { 5993 return retval; 5994 } 5995 5996 size_t insn_offset = 5997 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5998 if (insn_offset == UINT32_MAX) { 5999 return retval; 6000 } 6001 6002 uint32_t branch_index = 6003 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target); 6004 if (branch_index == UINT32_MAX) { 6005 return retval; 6006 } 6007 6008 if (branch_index > insn_offset) { 6009 Address next_branch_insn_address = 6010 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6011 if (next_branch_insn_address.IsValid() && 6012 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6013 retval = next_branch_insn_address; 6014 } 6015 } 6016 6017 return retval; 6018 } 6019 6020 Status 6021 Process::GetMemoryRegions(std::vector<lldb::MemoryRegionInfoSP> ®ion_list) { 6022 6023 Status error; 6024 6025 lldb::addr_t range_end = 0; 6026 6027 region_list.clear(); 6028 do { 6029 lldb::MemoryRegionInfoSP region_info(new lldb_private::MemoryRegionInfo()); 6030 error = GetMemoryRegionInfo(range_end, *region_info); 6031 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6032 if (error.Fail()) { 6033 region_list.clear(); 6034 break; 6035 } 6036 6037 range_end = region_info->GetRange().GetRangeEnd(); 6038 if (region_info->GetMapped() == MemoryRegionInfo::eYes) { 6039 region_list.push_back(region_info); 6040 } 6041 } while (range_end != LLDB_INVALID_ADDRESS); 6042 6043 return error; 6044 } 6045 6046 Status 6047 Process::ConfigureStructuredData(const ConstString &type_name, 6048 const StructuredData::ObjectSP &config_sp) { 6049 // If you get this, the Process-derived class needs to implement a method to 6050 // enable an already-reported asynchronous structured data feature. See 6051 // ProcessGDBRemote for an example implementation over gdb-remote. 6052 return Status("unimplemented"); 6053 } 6054 6055 void Process::MapSupportedStructuredDataPlugins( 6056 const StructuredData::Array &supported_type_names) { 6057 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6058 6059 // Bail out early if there are no type names to map. 6060 if (supported_type_names.GetSize() == 0) { 6061 if (log) 6062 log->Printf("Process::%s(): no structured data types supported", 6063 __FUNCTION__); 6064 return; 6065 } 6066 6067 // Convert StructuredData type names to ConstString instances. 6068 std::set<ConstString> const_type_names; 6069 6070 if (log) 6071 log->Printf("Process::%s(): the process supports the following async " 6072 "structured data types:", 6073 __FUNCTION__); 6074 6075 supported_type_names.ForEach( 6076 [&const_type_names, &log](StructuredData::Object *object) { 6077 if (!object) { 6078 // Invalid - shouldn't be null objects in the array. 6079 return false; 6080 } 6081 6082 auto type_name = object->GetAsString(); 6083 if (!type_name) { 6084 // Invalid format - all type names should be strings. 6085 return false; 6086 } 6087 6088 const_type_names.insert(ConstString(type_name->GetValue())); 6089 LLDB_LOG(log, "- {0}", type_name->GetValue()); 6090 return true; 6091 }); 6092 6093 // For each StructuredDataPlugin, if the plugin handles any of the types in 6094 // the supported_type_names, map that type name to that plugin. Stop when 6095 // we've consumed all the type names. 6096 // FIXME: should we return an error if there are type names nobody 6097 // supports? 6098 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 6099 auto create_instance = 6100 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6101 plugin_index); 6102 if (!create_instance) 6103 break; 6104 6105 // Create the plugin. 6106 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6107 if (!plugin_sp) { 6108 // This plugin doesn't think it can work with the process. Move on to the 6109 // next. 6110 continue; 6111 } 6112 6113 // For any of the remaining type names, map any that this plugin supports. 6114 std::vector<ConstString> names_to_remove; 6115 for (auto &type_name : const_type_names) { 6116 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6117 m_structured_data_plugin_map.insert( 6118 std::make_pair(type_name, plugin_sp)); 6119 names_to_remove.push_back(type_name); 6120 if (log) 6121 log->Printf("Process::%s(): using plugin %s for type name " 6122 "%s", 6123 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6124 type_name.GetCString()); 6125 } 6126 } 6127 6128 // Remove the type names that were consumed by this plugin. 6129 for (auto &type_name : names_to_remove) 6130 const_type_names.erase(type_name); 6131 } 6132 } 6133 6134 bool Process::RouteAsyncStructuredData( 6135 const StructuredData::ObjectSP object_sp) { 6136 // Nothing to do if there's no data. 6137 if (!object_sp) 6138 return false; 6139 6140 // The contract is this must be a dictionary, so we can look up the routing 6141 // key via the top-level 'type' string value within the dictionary. 6142 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6143 if (!dictionary) 6144 return false; 6145 6146 // Grab the async structured type name (i.e. the feature/plugin name). 6147 ConstString type_name; 6148 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6149 return false; 6150 6151 // Check if there's a plugin registered for this type name. 6152 auto find_it = m_structured_data_plugin_map.find(type_name); 6153 if (find_it == m_structured_data_plugin_map.end()) { 6154 // We don't have a mapping for this structured data type. 6155 return false; 6156 } 6157 6158 // Route the structured data to the plugin. 6159 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6160 return true; 6161 } 6162 6163 Status Process::UpdateAutomaticSignalFiltering() { 6164 // Default implementation does nothign. 6165 // No automatic signal filtering to speak of. 6166 return Status(); 6167 } 6168 6169 UtilityFunction *Process::GetLoadImageUtilityFunction( 6170 Platform *platform, 6171 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6172 if (platform != GetTarget().GetPlatform().get()) 6173 return nullptr; 6174 std::call_once(m_dlopen_utility_func_flag_once, 6175 [&] { m_dlopen_utility_func_up = factory(); }); 6176 return m_dlopen_utility_func_up.get(); 6177 } 6178