1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/ADT/ScopeExit.h" 14 #include "llvm/Support/ScopedPrinter.h" 15 #include "llvm/Support/Threading.h" 16 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/DynamicCheckerFunctions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/AssertFrameRecognizer.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/Language.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/ThreadPlanCallFunction.h" 64 #include "lldb/Target/ThreadPlanStack.h" 65 #include "lldb/Target/UnixSignals.h" 66 #include "lldb/Utility/Event.h" 67 #include "lldb/Utility/Log.h" 68 #include "lldb/Utility/NameMatches.h" 69 #include "lldb/Utility/ProcessInfo.h" 70 #include "lldb/Utility/SelectHelper.h" 71 #include "lldb/Utility/State.h" 72 #include "lldb/Utility/Timer.h" 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace std::chrono; 77 78 // Comment out line below to disable memory caching, overriding the process 79 // setting target.process.disable-memory-cache 80 #define ENABLE_MEMORY_CACHING 81 82 #ifdef ENABLE_MEMORY_CACHING 83 #define DISABLE_MEM_CACHE_DEFAULT false 84 #else 85 #define DISABLE_MEM_CACHE_DEFAULT true 86 #endif 87 88 class ProcessOptionValueProperties 89 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 90 public: 91 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 92 93 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 94 bool will_modify, 95 uint32_t idx) const override { 96 // When getting the value for a key from the process options, we will 97 // always try and grab the setting from the current process if there is 98 // one. Else we just use the one from this instance. 99 if (exe_ctx) { 100 Process *process = exe_ctx->GetProcessPtr(); 101 if (process) { 102 ProcessOptionValueProperties *instance_properties = 103 static_cast<ProcessOptionValueProperties *>( 104 process->GetValueProperties().get()); 105 if (this != instance_properties) 106 return instance_properties->ProtectedGetPropertyAtIndex(idx); 107 } 108 } 109 return ProtectedGetPropertyAtIndex(idx); 110 } 111 }; 112 113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 114 { 115 eFollowParent, 116 "parent", 117 "Continue tracing the parent process and detach the child.", 118 }, 119 { 120 eFollowChild, 121 "child", 122 "Trace the child process and detach the parent.", 123 }, 124 }; 125 126 #define LLDB_PROPERTIES_process 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process 131 #include "TargetPropertiesEnum.inc" 132 ePropertyExperimental, 133 }; 134 135 #define LLDB_PROPERTIES_process_experimental 136 #include "TargetProperties.inc" 137 138 enum { 139 #define LLDB_PROPERTIES_process_experimental 140 #include "TargetPropertiesEnum.inc" 141 }; 142 143 class ProcessExperimentalOptionValueProperties 144 : public Cloneable<ProcessExperimentalOptionValueProperties, 145 OptionValueProperties> { 146 public: 147 ProcessExperimentalOptionValueProperties() 148 : Cloneable( 149 ConstString(Properties::GetExperimentalSettingsName())) {} 150 }; 151 152 ProcessExperimentalProperties::ProcessExperimentalProperties() 153 : Properties(OptionValuePropertiesSP( 154 new ProcessExperimentalOptionValueProperties())) { 155 m_collection_sp->Initialize(g_process_experimental_properties); 156 } 157 158 ProcessProperties::ProcessProperties(lldb_private::Process *process) 159 : Properties(), 160 m_process(process) // Can be nullptr for global ProcessProperties 161 { 162 if (process == nullptr) { 163 // Global process properties, set them up one time 164 m_collection_sp = 165 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 166 m_collection_sp->Initialize(g_process_properties); 167 m_collection_sp->AppendProperty( 168 ConstString("thread"), ConstString("Settings specific to threads."), 169 true, Thread::GetGlobalProperties().GetValueProperties()); 170 } else { 171 m_collection_sp = 172 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 173 m_collection_sp->SetValueChangedCallback( 174 ePropertyPythonOSPluginPath, 175 [this] { m_process->LoadOperatingSystemPlugin(true); }); 176 } 177 178 m_experimental_properties_up = 179 std::make_unique<ProcessExperimentalProperties>(); 180 m_collection_sp->AppendProperty( 181 ConstString(Properties::GetExperimentalSettingsName()), 182 ConstString("Experimental settings - setting these won't produce " 183 "errors if the setting is not present."), 184 true, m_experimental_properties_up->GetValueProperties()); 185 } 186 187 ProcessProperties::~ProcessProperties() = default; 188 189 bool ProcessProperties::GetDisableMemoryCache() const { 190 const uint32_t idx = ePropertyDisableMemCache; 191 return m_collection_sp->GetPropertyAtIndexAsBoolean( 192 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 193 } 194 195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 196 const uint32_t idx = ePropertyMemCacheLineSize; 197 return m_collection_sp->GetPropertyAtIndexAsUInt64( 198 nullptr, idx, g_process_properties[idx].default_uint_value); 199 } 200 201 Args ProcessProperties::GetExtraStartupCommands() const { 202 Args args; 203 const uint32_t idx = ePropertyExtraStartCommand; 204 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 205 return args; 206 } 207 208 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 209 const uint32_t idx = ePropertyExtraStartCommand; 210 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 211 } 212 213 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 214 const uint32_t idx = ePropertyPythonOSPluginPath; 215 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 216 } 217 218 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 219 const uint32_t idx = ePropertyVirtualAddressableBits; 220 return m_collection_sp->GetPropertyAtIndexAsUInt64( 221 nullptr, idx, g_process_properties[idx].default_uint_value); 222 } 223 224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 225 const uint32_t idx = ePropertyVirtualAddressableBits; 226 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 227 } 228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 229 const uint32_t idx = ePropertyPythonOSPluginPath; 230 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 231 } 232 233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 234 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 235 return m_collection_sp->GetPropertyAtIndexAsBoolean( 236 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 237 } 238 239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 240 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 241 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 242 } 243 244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 245 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 246 return m_collection_sp->GetPropertyAtIndexAsBoolean( 247 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 248 } 249 250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 251 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 252 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 253 } 254 255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 256 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 257 return m_collection_sp->GetPropertyAtIndexAsBoolean( 258 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 259 } 260 261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 262 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 263 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 264 } 265 266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 267 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 268 return m_collection_sp->GetPropertyAtIndexAsBoolean( 269 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 270 } 271 272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 273 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 274 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 275 m_process->Flush(); 276 } 277 278 bool ProcessProperties::GetDetachKeepsStopped() const { 279 const uint32_t idx = ePropertyDetachKeepsStopped; 280 return m_collection_sp->GetPropertyAtIndexAsBoolean( 281 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 282 } 283 284 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 285 const uint32_t idx = ePropertyDetachKeepsStopped; 286 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 287 } 288 289 bool ProcessProperties::GetWarningsOptimization() const { 290 const uint32_t idx = ePropertyWarningOptimization; 291 return m_collection_sp->GetPropertyAtIndexAsBoolean( 292 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 293 } 294 295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 296 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 297 return m_collection_sp->GetPropertyAtIndexAsBoolean( 298 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 299 } 300 301 bool ProcessProperties::GetStopOnExec() const { 302 const uint32_t idx = ePropertyStopOnExec; 303 return m_collection_sp->GetPropertyAtIndexAsBoolean( 304 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 305 } 306 307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 308 const uint32_t idx = ePropertyUtilityExpressionTimeout; 309 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 310 nullptr, idx, g_process_properties[idx].default_uint_value); 311 return std::chrono::seconds(value); 312 } 313 314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 315 const uint32_t idx = ePropertyInterruptTimeout; 316 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 317 nullptr, idx, g_process_properties[idx].default_uint_value); 318 return std::chrono::seconds(value); 319 } 320 321 bool ProcessProperties::GetSteppingRunsAllThreads() const { 322 const uint32_t idx = ePropertySteppingRunsAllThreads; 323 return m_collection_sp->GetPropertyAtIndexAsBoolean( 324 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 325 } 326 327 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 328 const bool fail_value = true; 329 const Property *exp_property = 330 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 331 OptionValueProperties *exp_values = 332 exp_property->GetValue()->GetAsProperties(); 333 if (!exp_values) 334 return fail_value; 335 336 return exp_values->GetPropertyAtIndexAsBoolean( 337 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 338 } 339 340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 341 const Property *exp_property = 342 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 343 OptionValueProperties *exp_values = 344 exp_property->GetValue()->GetAsProperties(); 345 if (exp_values) 346 exp_values->SetPropertyAtIndexAsBoolean( 347 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 348 } 349 350 FollowForkMode ProcessProperties::GetFollowForkMode() const { 351 const uint32_t idx = ePropertyFollowForkMode; 352 return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration( 353 nullptr, idx, g_process_properties[idx].default_uint_value); 354 } 355 356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 357 llvm::StringRef plugin_name, 358 ListenerSP listener_sp, 359 const FileSpec *crash_file_path, 360 bool can_connect) { 361 static uint32_t g_process_unique_id = 0; 362 363 ProcessSP process_sp; 364 ProcessCreateInstance create_callback = nullptr; 365 if (!plugin_name.empty()) { 366 ConstString const_plugin_name(plugin_name); 367 create_callback = 368 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 369 if (create_callback) { 370 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 371 can_connect); 372 if (process_sp) { 373 if (process_sp->CanDebug(target_sp, true)) { 374 process_sp->m_process_unique_id = ++g_process_unique_id; 375 } else 376 process_sp.reset(); 377 } 378 } 379 } else { 380 for (uint32_t idx = 0; 381 (create_callback = 382 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 383 ++idx) { 384 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 385 can_connect); 386 if (process_sp) { 387 if (process_sp->CanDebug(target_sp, false)) { 388 process_sp->m_process_unique_id = ++g_process_unique_id; 389 break; 390 } else 391 process_sp.reset(); 392 } 393 } 394 } 395 return process_sp; 396 } 397 398 ConstString &Process::GetStaticBroadcasterClass() { 399 static ConstString class_name("lldb.process"); 400 return class_name; 401 } 402 403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 404 : Process(target_sp, listener_sp, 405 UnixSignals::Create(HostInfo::GetArchitecture())) { 406 // This constructor just delegates to the full Process constructor, 407 // defaulting to using the Host's UnixSignals. 408 } 409 410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 411 const UnixSignalsSP &unix_signals_sp) 412 : ProcessProperties(this), 413 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 414 Process::GetStaticBroadcasterClass().AsCString()), 415 m_target_wp(target_sp), m_public_state(eStateUnloaded), 416 m_private_state(eStateUnloaded), 417 m_private_state_broadcaster(nullptr, 418 "lldb.process.internal_state_broadcaster"), 419 m_private_state_control_broadcaster( 420 nullptr, "lldb.process.internal_state_control_broadcaster"), 421 m_private_state_listener_sp( 422 Listener::MakeListener("lldb.process.internal_state_listener")), 423 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 424 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 425 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 426 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 427 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 428 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 429 m_breakpoint_site_list(), m_dynamic_checkers_up(), 430 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 431 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 432 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 433 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 434 m_memory_cache(*this), m_allocated_memory_cache(*this), 435 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 436 m_private_run_lock(), m_finalizing(false), 437 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 438 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 439 m_can_interpret_function_calls(false), m_warnings_issued(), 440 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 441 CheckInWithManager(); 442 443 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 444 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 445 446 if (!m_unix_signals_sp) 447 m_unix_signals_sp = std::make_shared<UnixSignals>(); 448 449 SetEventName(eBroadcastBitStateChanged, "state-changed"); 450 SetEventName(eBroadcastBitInterrupt, "interrupt"); 451 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 452 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 453 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 454 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 455 456 m_private_state_control_broadcaster.SetEventName( 457 eBroadcastInternalStateControlStop, "control-stop"); 458 m_private_state_control_broadcaster.SetEventName( 459 eBroadcastInternalStateControlPause, "control-pause"); 460 m_private_state_control_broadcaster.SetEventName( 461 eBroadcastInternalStateControlResume, "control-resume"); 462 463 m_listener_sp->StartListeningForEvents( 464 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 465 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 466 eBroadcastBitProfileData | eBroadcastBitStructuredData); 467 468 m_private_state_listener_sp->StartListeningForEvents( 469 &m_private_state_broadcaster, 470 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 471 472 m_private_state_listener_sp->StartListeningForEvents( 473 &m_private_state_control_broadcaster, 474 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 475 eBroadcastInternalStateControlResume); 476 // We need something valid here, even if just the default UnixSignalsSP. 477 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 478 479 // Allow the platform to override the default cache line size 480 OptionValueSP value_sp = 481 m_collection_sp 482 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 483 ->GetValue(); 484 uint32_t platform_cache_line_size = 485 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 486 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 487 value_sp->SetUInt64Value(platform_cache_line_size); 488 489 RegisterAssertFrameRecognizer(this); 490 } 491 492 Process::~Process() { 493 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 494 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 495 StopPrivateStateThread(); 496 497 // ThreadList::Clear() will try to acquire this process's mutex, so 498 // explicitly clear the thread list here to ensure that the mutex is not 499 // destroyed before the thread list. 500 m_thread_list.Clear(); 501 } 502 503 ProcessProperties &Process::GetGlobalProperties() { 504 // NOTE: intentional leak so we don't crash if global destructor chain gets 505 // called as other threads still use the result of this function 506 static ProcessProperties *g_settings_ptr = 507 new ProcessProperties(nullptr); 508 return *g_settings_ptr; 509 } 510 511 void Process::Finalize() { 512 if (m_finalizing.exchange(true)) 513 return; 514 515 // Destroy the process. This will call the virtual function DoDestroy under 516 // the hood, giving our derived class a chance to do the ncessary tear down. 517 DestroyImpl(false); 518 519 // Clear our broadcaster before we proceed with destroying 520 Broadcaster::Clear(); 521 522 // Do any cleanup needed prior to being destructed... Subclasses that 523 // override this method should call this superclass method as well. 524 525 // We need to destroy the loader before the derived Process class gets 526 // destroyed since it is very likely that undoing the loader will require 527 // access to the real process. 528 m_dynamic_checkers_up.reset(); 529 m_abi_sp.reset(); 530 m_os_up.reset(); 531 m_system_runtime_up.reset(); 532 m_dyld_up.reset(); 533 m_jit_loaders_up.reset(); 534 m_thread_plans.Clear(); 535 m_thread_list_real.Destroy(); 536 m_thread_list.Destroy(); 537 m_extended_thread_list.Destroy(); 538 m_queue_list.Clear(); 539 m_queue_list_stop_id = 0; 540 std::vector<Notifications> empty_notifications; 541 m_notifications.swap(empty_notifications); 542 m_image_tokens.clear(); 543 m_memory_cache.Clear(); 544 m_allocated_memory_cache.Clear(); 545 { 546 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 547 m_language_runtimes.clear(); 548 } 549 m_instrumentation_runtimes.clear(); 550 m_next_event_action_up.reset(); 551 // Clear the last natural stop ID since it has a strong reference to this 552 // process 553 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 554 //#ifdef LLDB_CONFIGURATION_DEBUG 555 // StreamFile s(stdout, false); 556 // EventSP event_sp; 557 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 558 // { 559 // event_sp->Dump (&s); 560 // s.EOL(); 561 // } 562 //#endif 563 // We have to be very careful here as the m_private_state_listener might 564 // contain events that have ProcessSP values in them which can keep this 565 // process around forever. These events need to be cleared out. 566 m_private_state_listener_sp->Clear(); 567 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 568 m_public_run_lock.SetStopped(); 569 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 570 m_private_run_lock.SetStopped(); 571 m_structured_data_plugin_map.clear(); 572 } 573 574 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 575 m_notifications.push_back(callbacks); 576 if (callbacks.initialize != nullptr) 577 callbacks.initialize(callbacks.baton, this); 578 } 579 580 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 581 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 582 for (pos = m_notifications.begin(); pos != end; ++pos) { 583 if (pos->baton == callbacks.baton && 584 pos->initialize == callbacks.initialize && 585 pos->process_state_changed == callbacks.process_state_changed) { 586 m_notifications.erase(pos); 587 return true; 588 } 589 } 590 return false; 591 } 592 593 void Process::SynchronouslyNotifyStateChanged(StateType state) { 594 std::vector<Notifications>::iterator notification_pos, 595 notification_end = m_notifications.end(); 596 for (notification_pos = m_notifications.begin(); 597 notification_pos != notification_end; ++notification_pos) { 598 if (notification_pos->process_state_changed) 599 notification_pos->process_state_changed(notification_pos->baton, this, 600 state); 601 } 602 } 603 604 // FIXME: We need to do some work on events before the general Listener sees 605 // them. 606 // For instance if we are continuing from a breakpoint, we need to ensure that 607 // we do the little "insert real insn, step & stop" trick. But we can't do 608 // that when the event is delivered by the broadcaster - since that is done on 609 // the thread that is waiting for new events, so if we needed more than one 610 // event for our handling, we would stall. So instead we do it when we fetch 611 // the event off of the queue. 612 // 613 614 StateType Process::GetNextEvent(EventSP &event_sp) { 615 StateType state = eStateInvalid; 616 617 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 618 std::chrono::seconds(0)) && 619 event_sp) 620 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 621 622 return state; 623 } 624 625 void Process::SyncIOHandler(uint32_t iohandler_id, 626 const Timeout<std::micro> &timeout) { 627 // don't sync (potentially context switch) in case where there is no process 628 // IO 629 if (!m_process_input_reader) 630 return; 631 632 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 633 634 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 635 if (Result) { 636 LLDB_LOG( 637 log, 638 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 639 iohandler_id, *Result); 640 } else { 641 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 642 iohandler_id); 643 } 644 } 645 646 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 647 EventSP *event_sp_ptr, bool wait_always, 648 ListenerSP hijack_listener_sp, 649 Stream *stream, bool use_run_lock) { 650 // We can't just wait for a "stopped" event, because the stopped event may 651 // have restarted the target. We have to actually check each event, and in 652 // the case of a stopped event check the restarted flag on the event. 653 if (event_sp_ptr) 654 event_sp_ptr->reset(); 655 StateType state = GetState(); 656 // If we are exited or detached, we won't ever get back to any other valid 657 // state... 658 if (state == eStateDetached || state == eStateExited) 659 return state; 660 661 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 662 LLDB_LOG(log, "timeout = {0}", timeout); 663 664 if (!wait_always && StateIsStoppedState(state, true) && 665 StateIsStoppedState(GetPrivateState(), true)) { 666 LLDB_LOGF(log, 667 "Process::%s returning without waiting for events; process " 668 "private and public states are already 'stopped'.", 669 __FUNCTION__); 670 // We need to toggle the run lock as this won't get done in 671 // SetPublicState() if the process is hijacked. 672 if (hijack_listener_sp && use_run_lock) 673 m_public_run_lock.SetStopped(); 674 return state; 675 } 676 677 while (state != eStateInvalid) { 678 EventSP event_sp; 679 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 680 if (event_sp_ptr && event_sp) 681 *event_sp_ptr = event_sp; 682 683 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 684 Process::HandleProcessStateChangedEvent(event_sp, stream, 685 pop_process_io_handler); 686 687 switch (state) { 688 case eStateCrashed: 689 case eStateDetached: 690 case eStateExited: 691 case eStateUnloaded: 692 // We need to toggle the run lock as this won't get done in 693 // SetPublicState() if the process is hijacked. 694 if (hijack_listener_sp && use_run_lock) 695 m_public_run_lock.SetStopped(); 696 return state; 697 case eStateStopped: 698 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 699 continue; 700 else { 701 // We need to toggle the run lock as this won't get done in 702 // SetPublicState() if the process is hijacked. 703 if (hijack_listener_sp && use_run_lock) 704 m_public_run_lock.SetStopped(); 705 return state; 706 } 707 default: 708 continue; 709 } 710 } 711 return state; 712 } 713 714 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 715 Stream *stream, 716 bool &pop_process_io_handler) { 717 const bool handle_pop = pop_process_io_handler; 718 719 pop_process_io_handler = false; 720 ProcessSP process_sp = 721 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 722 723 if (!process_sp) 724 return false; 725 726 StateType event_state = 727 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 728 if (event_state == eStateInvalid) 729 return false; 730 731 switch (event_state) { 732 case eStateInvalid: 733 case eStateUnloaded: 734 case eStateAttaching: 735 case eStateLaunching: 736 case eStateStepping: 737 case eStateDetached: 738 if (stream) 739 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 740 StateAsCString(event_state)); 741 if (event_state == eStateDetached) 742 pop_process_io_handler = true; 743 break; 744 745 case eStateConnected: 746 case eStateRunning: 747 // Don't be chatty when we run... 748 break; 749 750 case eStateExited: 751 if (stream) 752 process_sp->GetStatus(*stream); 753 pop_process_io_handler = true; 754 break; 755 756 case eStateStopped: 757 case eStateCrashed: 758 case eStateSuspended: 759 // Make sure the program hasn't been auto-restarted: 760 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 761 if (stream) { 762 size_t num_reasons = 763 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 764 if (num_reasons > 0) { 765 // FIXME: Do we want to report this, or would that just be annoyingly 766 // chatty? 767 if (num_reasons == 1) { 768 const char *reason = 769 Process::ProcessEventData::GetRestartedReasonAtIndex( 770 event_sp.get(), 0); 771 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 772 process_sp->GetID(), 773 reason ? reason : "<UNKNOWN REASON>"); 774 } else { 775 stream->Printf("Process %" PRIu64 776 " stopped and restarted, reasons:\n", 777 process_sp->GetID()); 778 779 for (size_t i = 0; i < num_reasons; i++) { 780 const char *reason = 781 Process::ProcessEventData::GetRestartedReasonAtIndex( 782 event_sp.get(), i); 783 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 784 } 785 } 786 } 787 } 788 } else { 789 StopInfoSP curr_thread_stop_info_sp; 790 // Lock the thread list so it doesn't change on us, this is the scope for 791 // the locker: 792 { 793 ThreadList &thread_list = process_sp->GetThreadList(); 794 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 795 796 ThreadSP curr_thread(thread_list.GetSelectedThread()); 797 ThreadSP thread; 798 StopReason curr_thread_stop_reason = eStopReasonInvalid; 799 bool prefer_curr_thread = false; 800 if (curr_thread && curr_thread->IsValid()) { 801 curr_thread_stop_reason = curr_thread->GetStopReason(); 802 switch (curr_thread_stop_reason) { 803 case eStopReasonNone: 804 case eStopReasonInvalid: 805 // Don't prefer the current thread if it didn't stop for a reason. 806 break; 807 case eStopReasonSignal: { 808 // We need to do the same computation we do for other threads 809 // below in case the current thread happens to be the one that 810 // stopped for the no-stop signal. 811 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 812 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 813 prefer_curr_thread = true; 814 } break; 815 default: 816 prefer_curr_thread = true; 817 break; 818 } 819 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 820 } 821 822 if (!prefer_curr_thread) { 823 // Prefer a thread that has just completed its plan over another 824 // thread as current thread. 825 ThreadSP plan_thread; 826 ThreadSP other_thread; 827 828 const size_t num_threads = thread_list.GetSize(); 829 size_t i; 830 for (i = 0; i < num_threads; ++i) { 831 thread = thread_list.GetThreadAtIndex(i); 832 StopReason thread_stop_reason = thread->GetStopReason(); 833 switch (thread_stop_reason) { 834 case eStopReasonInvalid: 835 case eStopReasonNone: 836 break; 837 838 case eStopReasonSignal: { 839 // Don't select a signal thread if we weren't going to stop at 840 // that signal. We have to have had another reason for stopping 841 // here, and the user doesn't want to see this thread. 842 uint64_t signo = thread->GetStopInfo()->GetValue(); 843 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 844 if (!other_thread) 845 other_thread = thread; 846 } 847 break; 848 } 849 case eStopReasonTrace: 850 case eStopReasonBreakpoint: 851 case eStopReasonWatchpoint: 852 case eStopReasonException: 853 case eStopReasonExec: 854 case eStopReasonFork: 855 case eStopReasonVFork: 856 case eStopReasonVForkDone: 857 case eStopReasonThreadExiting: 858 case eStopReasonInstrumentation: 859 case eStopReasonProcessorTrace: 860 if (!other_thread) 861 other_thread = thread; 862 break; 863 case eStopReasonPlanComplete: 864 if (!plan_thread) 865 plan_thread = thread; 866 break; 867 } 868 } 869 if (plan_thread) 870 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 871 else if (other_thread) 872 thread_list.SetSelectedThreadByID(other_thread->GetID()); 873 else { 874 if (curr_thread && curr_thread->IsValid()) 875 thread = curr_thread; 876 else 877 thread = thread_list.GetThreadAtIndex(0); 878 879 if (thread) 880 thread_list.SetSelectedThreadByID(thread->GetID()); 881 } 882 } 883 } 884 // Drop the ThreadList mutex by here, since GetThreadStatus below might 885 // have to run code, e.g. for Data formatters, and if we hold the 886 // ThreadList mutex, then the process is going to have a hard time 887 // restarting the process. 888 if (stream) { 889 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 890 if (debugger.GetTargetList().GetSelectedTarget().get() == 891 &process_sp->GetTarget()) { 892 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 893 894 if (!thread_sp || !thread_sp->IsValid()) 895 return false; 896 897 const bool only_threads_with_stop_reason = true; 898 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 899 const uint32_t num_frames = 1; 900 const uint32_t num_frames_with_source = 1; 901 const bool stop_format = true; 902 903 process_sp->GetStatus(*stream); 904 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 905 start_frame, num_frames, 906 num_frames_with_source, 907 stop_format); 908 if (curr_thread_stop_info_sp) { 909 lldb::addr_t crashing_address; 910 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 911 curr_thread_stop_info_sp, &crashing_address); 912 if (valobj_sp) { 913 const ValueObject::GetExpressionPathFormat format = 914 ValueObject::GetExpressionPathFormat:: 915 eGetExpressionPathFormatHonorPointers; 916 stream->PutCString("Likely cause: "); 917 valobj_sp->GetExpressionPath(*stream, format); 918 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 919 } 920 } 921 } else { 922 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 923 process_sp->GetTarget().shared_from_this()); 924 if (target_idx != UINT32_MAX) 925 stream->Printf("Target %d: (", target_idx); 926 else 927 stream->Printf("Target <unknown index>: ("); 928 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 929 stream->Printf(") stopped.\n"); 930 } 931 } 932 933 // Pop the process IO handler 934 pop_process_io_handler = true; 935 } 936 break; 937 } 938 939 if (handle_pop && pop_process_io_handler) 940 process_sp->PopProcessIOHandler(); 941 942 return true; 943 } 944 945 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 946 if (listener_sp) { 947 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 948 eBroadcastBitInterrupt); 949 } else 950 return false; 951 } 952 953 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 954 955 StateType Process::GetStateChangedEvents(EventSP &event_sp, 956 const Timeout<std::micro> &timeout, 957 ListenerSP hijack_listener_sp) { 958 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 959 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 960 961 ListenerSP listener_sp = hijack_listener_sp; 962 if (!listener_sp) 963 listener_sp = m_listener_sp; 964 965 StateType state = eStateInvalid; 966 if (listener_sp->GetEventForBroadcasterWithType( 967 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 968 timeout)) { 969 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 970 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 971 else 972 LLDB_LOG(log, "got no event or was interrupted."); 973 } 974 975 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 976 return state; 977 } 978 979 Event *Process::PeekAtStateChangedEvents() { 980 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 981 982 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 983 984 Event *event_ptr; 985 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 986 this, eBroadcastBitStateChanged); 987 if (log) { 988 if (event_ptr) { 989 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 990 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 991 } else { 992 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 993 } 994 } 995 return event_ptr; 996 } 997 998 StateType 999 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1000 const Timeout<std::micro> &timeout) { 1001 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1002 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1003 1004 StateType state = eStateInvalid; 1005 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1006 &m_private_state_broadcaster, 1007 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1008 timeout)) 1009 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1010 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1011 1012 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1013 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1014 return state; 1015 } 1016 1017 bool Process::GetEventsPrivate(EventSP &event_sp, 1018 const Timeout<std::micro> &timeout, 1019 bool control_only) { 1020 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1021 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1022 1023 if (control_only) 1024 return m_private_state_listener_sp->GetEventForBroadcaster( 1025 &m_private_state_control_broadcaster, event_sp, timeout); 1026 else 1027 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1028 } 1029 1030 bool Process::IsRunning() const { 1031 return StateIsRunningState(m_public_state.GetValue()); 1032 } 1033 1034 int Process::GetExitStatus() { 1035 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1036 1037 if (m_public_state.GetValue() == eStateExited) 1038 return m_exit_status; 1039 return -1; 1040 } 1041 1042 const char *Process::GetExitDescription() { 1043 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1044 1045 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1046 return m_exit_string.c_str(); 1047 return nullptr; 1048 } 1049 1050 bool Process::SetExitStatus(int status, const char *cstr) { 1051 // Use a mutex to protect setting the exit status. 1052 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1053 1054 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1055 LIBLLDB_LOG_PROCESS)); 1056 LLDB_LOGF( 1057 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1058 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1059 1060 // We were already in the exited state 1061 if (m_private_state.GetValue() == eStateExited) { 1062 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1063 "state was already set to eStateExited"); 1064 return false; 1065 } 1066 1067 m_exit_status = status; 1068 if (cstr) 1069 m_exit_string = cstr; 1070 else 1071 m_exit_string.clear(); 1072 1073 // Clear the last natural stop ID since it has a strong reference to this 1074 // process 1075 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1076 1077 SetPrivateState(eStateExited); 1078 1079 // Allow subclasses to do some cleanup 1080 DidExit(); 1081 1082 return true; 1083 } 1084 1085 bool Process::IsAlive() { 1086 switch (m_private_state.GetValue()) { 1087 case eStateConnected: 1088 case eStateAttaching: 1089 case eStateLaunching: 1090 case eStateStopped: 1091 case eStateRunning: 1092 case eStateStepping: 1093 case eStateCrashed: 1094 case eStateSuspended: 1095 return true; 1096 default: 1097 return false; 1098 } 1099 } 1100 1101 // This static callback can be used to watch for local child processes on the 1102 // current host. The child process exits, the process will be found in the 1103 // global target list (we want to be completely sure that the 1104 // lldb_private::Process doesn't go away before we can deliver the signal. 1105 bool Process::SetProcessExitStatus( 1106 lldb::pid_t pid, bool exited, 1107 int signo, // Zero for no signal 1108 int exit_status // Exit value of process if signal is zero 1109 ) { 1110 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1111 LLDB_LOGF(log, 1112 "Process::SetProcessExitStatus (pid=%" PRIu64 1113 ", exited=%i, signal=%i, exit_status=%i)\n", 1114 pid, exited, signo, exit_status); 1115 1116 if (exited) { 1117 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1118 if (target_sp) { 1119 ProcessSP process_sp(target_sp->GetProcessSP()); 1120 if (process_sp) { 1121 const char *signal_cstr = nullptr; 1122 if (signo) 1123 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1124 1125 process_sp->SetExitStatus(exit_status, signal_cstr); 1126 } 1127 } 1128 return true; 1129 } 1130 return false; 1131 } 1132 1133 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1134 ThreadList &new_thread_list) { 1135 m_thread_plans.ClearThreadCache(); 1136 return DoUpdateThreadList(old_thread_list, new_thread_list); 1137 } 1138 1139 void Process::UpdateThreadListIfNeeded() { 1140 const uint32_t stop_id = GetStopID(); 1141 if (m_thread_list.GetSize(false) == 0 || 1142 stop_id != m_thread_list.GetStopID()) { 1143 bool clear_unused_threads = true; 1144 const StateType state = GetPrivateState(); 1145 if (StateIsStoppedState(state, true)) { 1146 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1147 m_thread_list.SetStopID(stop_id); 1148 1149 // m_thread_list does have its own mutex, but we need to hold onto the 1150 // mutex between the call to UpdateThreadList(...) and the 1151 // os->UpdateThreadList(...) so it doesn't change on us 1152 ThreadList &old_thread_list = m_thread_list; 1153 ThreadList real_thread_list(this); 1154 ThreadList new_thread_list(this); 1155 // Always update the thread list with the protocol specific thread list, 1156 // but only update if "true" is returned 1157 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1158 // Don't call into the OperatingSystem to update the thread list if we 1159 // are shutting down, since that may call back into the SBAPI's, 1160 // requiring the API lock which is already held by whoever is shutting 1161 // us down, causing a deadlock. 1162 OperatingSystem *os = GetOperatingSystem(); 1163 if (os && !m_destroy_in_process) { 1164 // Clear any old backing threads where memory threads might have been 1165 // backed by actual threads from the lldb_private::Process subclass 1166 size_t num_old_threads = old_thread_list.GetSize(false); 1167 for (size_t i = 0; i < num_old_threads; ++i) 1168 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1169 // See if the OS plugin reports all threads. If it does, then 1170 // it is safe to clear unseen thread's plans here. Otherwise we 1171 // should preserve them in case they show up again: 1172 clear_unused_threads = GetOSPluginReportsAllThreads(); 1173 1174 // Turn off dynamic types to ensure we don't run any expressions. 1175 // Objective-C can run an expression to determine if a SBValue is a 1176 // dynamic type or not and we need to avoid this. OperatingSystem 1177 // plug-ins can't run expressions that require running code... 1178 1179 Target &target = GetTarget(); 1180 const lldb::DynamicValueType saved_prefer_dynamic = 1181 target.GetPreferDynamicValue(); 1182 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1183 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1184 1185 // Now let the OperatingSystem plug-in update the thread list 1186 1187 os->UpdateThreadList( 1188 old_thread_list, // Old list full of threads created by OS plug-in 1189 real_thread_list, // The actual thread list full of threads 1190 // created by each lldb_private::Process 1191 // subclass 1192 new_thread_list); // The new thread list that we will show to the 1193 // user that gets filled in 1194 1195 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1196 target.SetPreferDynamicValue(saved_prefer_dynamic); 1197 } else { 1198 // No OS plug-in, the new thread list is the same as the real thread 1199 // list. 1200 new_thread_list = real_thread_list; 1201 } 1202 1203 m_thread_list_real.Update(real_thread_list); 1204 m_thread_list.Update(new_thread_list); 1205 m_thread_list.SetStopID(stop_id); 1206 1207 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1208 // Clear any extended threads that we may have accumulated previously 1209 m_extended_thread_list.Clear(); 1210 m_extended_thread_stop_id = GetLastNaturalStopID(); 1211 1212 m_queue_list.Clear(); 1213 m_queue_list_stop_id = GetLastNaturalStopID(); 1214 } 1215 } 1216 // Now update the plan stack map. 1217 // If we do have an OS plugin, any absent real threads in the 1218 // m_thread_list have already been removed from the ThreadPlanStackMap. 1219 // So any remaining threads are OS Plugin threads, and those we want to 1220 // preserve in case they show up again. 1221 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1222 } 1223 } 1224 } 1225 1226 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1227 return m_thread_plans.Find(tid); 1228 } 1229 1230 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1231 return m_thread_plans.PrunePlansForTID(tid); 1232 } 1233 1234 void Process::PruneThreadPlans() { 1235 m_thread_plans.Update(GetThreadList(), true, false); 1236 } 1237 1238 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1239 lldb::DescriptionLevel desc_level, 1240 bool internal, bool condense_trivial, 1241 bool skip_unreported_plans) { 1242 return m_thread_plans.DumpPlansForTID( 1243 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1244 } 1245 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1246 bool internal, bool condense_trivial, 1247 bool skip_unreported_plans) { 1248 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1249 skip_unreported_plans); 1250 } 1251 1252 void Process::UpdateQueueListIfNeeded() { 1253 if (m_system_runtime_up) { 1254 if (m_queue_list.GetSize() == 0 || 1255 m_queue_list_stop_id != GetLastNaturalStopID()) { 1256 const StateType state = GetPrivateState(); 1257 if (StateIsStoppedState(state, true)) { 1258 m_system_runtime_up->PopulateQueueList(m_queue_list); 1259 m_queue_list_stop_id = GetLastNaturalStopID(); 1260 } 1261 } 1262 } 1263 } 1264 1265 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1266 OperatingSystem *os = GetOperatingSystem(); 1267 if (os) 1268 return os->CreateThread(tid, context); 1269 return ThreadSP(); 1270 } 1271 1272 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1273 return AssignIndexIDToThread(thread_id); 1274 } 1275 1276 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1277 return (m_thread_id_to_index_id_map.find(thread_id) != 1278 m_thread_id_to_index_id_map.end()); 1279 } 1280 1281 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1282 uint32_t result = 0; 1283 std::map<uint64_t, uint32_t>::iterator iterator = 1284 m_thread_id_to_index_id_map.find(thread_id); 1285 if (iterator == m_thread_id_to_index_id_map.end()) { 1286 result = ++m_thread_index_id; 1287 m_thread_id_to_index_id_map[thread_id] = result; 1288 } else { 1289 result = iterator->second; 1290 } 1291 1292 return result; 1293 } 1294 1295 StateType Process::GetState() { 1296 return m_public_state.GetValue(); 1297 } 1298 1299 void Process::SetPublicState(StateType new_state, bool restarted) { 1300 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1301 if (new_state_is_stopped) { 1302 // This will only set the time if the public stop time has no value, so 1303 // it is ok to call this multiple times. With a public stop we can't look 1304 // at the stop ID because many private stops might have happened, so we 1305 // can't check for a stop ID of zero. This allows the "statistics" command 1306 // to dump the time it takes to reach somewhere in your code, like a 1307 // breakpoint you set. 1308 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1309 } 1310 1311 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1312 LIBLLDB_LOG_PROCESS)); 1313 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1314 StateAsCString(new_state), restarted); 1315 const StateType old_state = m_public_state.GetValue(); 1316 m_public_state.SetValue(new_state); 1317 1318 // On the transition from Run to Stopped, we unlock the writer end of the run 1319 // lock. The lock gets locked in Resume, which is the public API to tell the 1320 // program to run. 1321 if (!StateChangedIsExternallyHijacked()) { 1322 if (new_state == eStateDetached) { 1323 LLDB_LOGF(log, 1324 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1325 StateAsCString(new_state)); 1326 m_public_run_lock.SetStopped(); 1327 } else { 1328 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1329 if ((old_state_is_stopped != new_state_is_stopped)) { 1330 if (new_state_is_stopped && !restarted) { 1331 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1332 StateAsCString(new_state)); 1333 m_public_run_lock.SetStopped(); 1334 } 1335 } 1336 } 1337 } 1338 } 1339 1340 Status Process::Resume() { 1341 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1342 LIBLLDB_LOG_PROCESS)); 1343 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1344 if (!m_public_run_lock.TrySetRunning()) { 1345 Status error("Resume request failed - process still running."); 1346 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1347 return error; 1348 } 1349 Status error = PrivateResume(); 1350 if (!error.Success()) { 1351 // Undo running state change 1352 m_public_run_lock.SetStopped(); 1353 } 1354 return error; 1355 } 1356 1357 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1358 1359 Status Process::ResumeSynchronous(Stream *stream) { 1360 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1361 LIBLLDB_LOG_PROCESS)); 1362 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1363 if (!m_public_run_lock.TrySetRunning()) { 1364 Status error("Resume request failed - process still running."); 1365 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1366 return error; 1367 } 1368 1369 ListenerSP listener_sp( 1370 Listener::MakeListener(g_resume_sync_name)); 1371 HijackProcessEvents(listener_sp); 1372 1373 Status error = PrivateResume(); 1374 if (error.Success()) { 1375 StateType state = WaitForProcessToStop(llvm::None, nullptr, true, 1376 listener_sp, stream); 1377 const bool must_be_alive = 1378 false; // eStateExited is ok, so this must be false 1379 if (!StateIsStoppedState(state, must_be_alive)) 1380 error.SetErrorStringWithFormat( 1381 "process not in stopped state after synchronous resume: %s", 1382 StateAsCString(state)); 1383 } else { 1384 // Undo running state change 1385 m_public_run_lock.SetStopped(); 1386 } 1387 1388 // Undo the hijacking of process events... 1389 RestoreProcessEvents(); 1390 1391 return error; 1392 } 1393 1394 bool Process::StateChangedIsExternallyHijacked() { 1395 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1396 const char *hijacking_name = GetHijackingListenerName(); 1397 if (hijacking_name && 1398 strcmp(hijacking_name, g_resume_sync_name)) 1399 return true; 1400 } 1401 return false; 1402 } 1403 1404 bool Process::StateChangedIsHijackedForSynchronousResume() { 1405 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1406 const char *hijacking_name = GetHijackingListenerName(); 1407 if (hijacking_name && 1408 strcmp(hijacking_name, g_resume_sync_name) == 0) 1409 return true; 1410 } 1411 return false; 1412 } 1413 1414 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1415 1416 void Process::SetPrivateState(StateType new_state) { 1417 if (m_finalizing) 1418 return; 1419 1420 Log *log(lldb_private::GetLogIfAnyCategoriesSet( 1421 LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND)); 1422 bool state_changed = false; 1423 1424 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1425 1426 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1427 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1428 1429 const StateType old_state = m_private_state.GetValueNoLock(); 1430 state_changed = old_state != new_state; 1431 1432 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1433 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1434 if (old_state_is_stopped != new_state_is_stopped) { 1435 if (new_state_is_stopped) 1436 m_private_run_lock.SetStopped(); 1437 else 1438 m_private_run_lock.SetRunning(); 1439 } 1440 1441 if (state_changed) { 1442 m_private_state.SetValueNoLock(new_state); 1443 EventSP event_sp( 1444 new Event(eBroadcastBitStateChanged, 1445 new ProcessEventData(shared_from_this(), new_state))); 1446 if (StateIsStoppedState(new_state, false)) { 1447 // Note, this currently assumes that all threads in the list stop when 1448 // the process stops. In the future we will want to support a debugging 1449 // model where some threads continue to run while others are stopped. 1450 // When that happens we will either need a way for the thread list to 1451 // identify which threads are stopping or create a special thread list 1452 // containing only threads which actually stopped. 1453 // 1454 // The process plugin is responsible for managing the actual behavior of 1455 // the threads and should have stopped any threads that are going to stop 1456 // before we get here. 1457 m_thread_list.DidStop(); 1458 1459 if (m_mod_id.BumpStopID() == 0) 1460 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1461 1462 if (!m_mod_id.IsLastResumeForUserExpression()) 1463 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1464 m_memory_cache.Clear(); 1465 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1466 StateAsCString(new_state), m_mod_id.GetStopID()); 1467 } 1468 1469 m_private_state_broadcaster.BroadcastEvent(event_sp); 1470 } else { 1471 LLDB_LOGF(log, 1472 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1473 StateAsCString(new_state)); 1474 } 1475 } 1476 1477 void Process::SetRunningUserExpression(bool on) { 1478 m_mod_id.SetRunningUserExpression(on); 1479 } 1480 1481 void Process::SetRunningUtilityFunction(bool on) { 1482 m_mod_id.SetRunningUtilityFunction(on); 1483 } 1484 1485 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1486 1487 const lldb::ABISP &Process::GetABI() { 1488 if (!m_abi_sp) 1489 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1490 return m_abi_sp; 1491 } 1492 1493 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1494 std::vector<LanguageRuntime *> language_runtimes; 1495 1496 if (m_finalizing) 1497 return language_runtimes; 1498 1499 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1500 // Before we pass off a copy of the language runtimes, we must make sure that 1501 // our collection is properly populated. It's possible that some of the 1502 // language runtimes were not loaded yet, either because nobody requested it 1503 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1504 // hadn't been loaded). 1505 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1506 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1507 language_runtimes.emplace_back(runtime); 1508 } 1509 1510 return language_runtimes; 1511 } 1512 1513 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1514 if (m_finalizing) 1515 return nullptr; 1516 1517 LanguageRuntime *runtime = nullptr; 1518 1519 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1520 LanguageRuntimeCollection::iterator pos; 1521 pos = m_language_runtimes.find(language); 1522 if (pos == m_language_runtimes.end() || !pos->second) { 1523 lldb::LanguageRuntimeSP runtime_sp( 1524 LanguageRuntime::FindPlugin(this, language)); 1525 1526 m_language_runtimes[language] = runtime_sp; 1527 runtime = runtime_sp.get(); 1528 } else 1529 runtime = pos->second.get(); 1530 1531 if (runtime) 1532 // It's possible that a language runtime can support multiple LanguageTypes, 1533 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1534 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1535 // primary language type and make sure that our runtime supports it. 1536 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1537 1538 return runtime; 1539 } 1540 1541 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1542 if (m_finalizing) 1543 return false; 1544 1545 if (in_value.IsDynamic()) 1546 return false; 1547 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1548 1549 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1550 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1551 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1552 } 1553 1554 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1555 if (runtime->CouldHaveDynamicValue(in_value)) 1556 return true; 1557 } 1558 1559 return false; 1560 } 1561 1562 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1563 m_dynamic_checkers_up.reset(dynamic_checkers); 1564 } 1565 1566 BreakpointSiteList &Process::GetBreakpointSiteList() { 1567 return m_breakpoint_site_list; 1568 } 1569 1570 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1571 return m_breakpoint_site_list; 1572 } 1573 1574 void Process::DisableAllBreakpointSites() { 1575 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1576 // bp_site->SetEnabled(true); 1577 DisableBreakpointSite(bp_site); 1578 }); 1579 } 1580 1581 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1582 Status error(DisableBreakpointSiteByID(break_id)); 1583 1584 if (error.Success()) 1585 m_breakpoint_site_list.Remove(break_id); 1586 1587 return error; 1588 } 1589 1590 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1591 Status error; 1592 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1593 if (bp_site_sp) { 1594 if (bp_site_sp->IsEnabled()) 1595 error = DisableBreakpointSite(bp_site_sp.get()); 1596 } else { 1597 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1598 break_id); 1599 } 1600 1601 return error; 1602 } 1603 1604 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1605 Status error; 1606 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1607 if (bp_site_sp) { 1608 if (!bp_site_sp->IsEnabled()) 1609 error = EnableBreakpointSite(bp_site_sp.get()); 1610 } else { 1611 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1612 break_id); 1613 } 1614 return error; 1615 } 1616 1617 lldb::break_id_t 1618 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1619 bool use_hardware) { 1620 addr_t load_addr = LLDB_INVALID_ADDRESS; 1621 1622 bool show_error = true; 1623 switch (GetState()) { 1624 case eStateInvalid: 1625 case eStateUnloaded: 1626 case eStateConnected: 1627 case eStateAttaching: 1628 case eStateLaunching: 1629 case eStateDetached: 1630 case eStateExited: 1631 show_error = false; 1632 break; 1633 1634 case eStateStopped: 1635 case eStateRunning: 1636 case eStateStepping: 1637 case eStateCrashed: 1638 case eStateSuspended: 1639 show_error = IsAlive(); 1640 break; 1641 } 1642 1643 // Reset the IsIndirect flag here, in case the location changes from pointing 1644 // to a indirect symbol to a regular symbol. 1645 owner->SetIsIndirect(false); 1646 1647 if (owner->ShouldResolveIndirectFunctions()) { 1648 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1649 if (symbol && symbol->IsIndirect()) { 1650 Status error; 1651 Address symbol_address = symbol->GetAddress(); 1652 load_addr = ResolveIndirectFunction(&symbol_address, error); 1653 if (!error.Success() && show_error) { 1654 GetTarget().GetDebugger().GetErrorStream().Printf( 1655 "warning: failed to resolve indirect function at 0x%" PRIx64 1656 " for breakpoint %i.%i: %s\n", 1657 symbol->GetLoadAddress(&GetTarget()), 1658 owner->GetBreakpoint().GetID(), owner->GetID(), 1659 error.AsCString() ? error.AsCString() : "unknown error"); 1660 return LLDB_INVALID_BREAK_ID; 1661 } 1662 Address resolved_address(load_addr); 1663 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1664 owner->SetIsIndirect(true); 1665 } else 1666 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1667 } else 1668 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1669 1670 if (load_addr != LLDB_INVALID_ADDRESS) { 1671 BreakpointSiteSP bp_site_sp; 1672 1673 // Look up this breakpoint site. If it exists, then add this new owner, 1674 // otherwise create a new breakpoint site and add it. 1675 1676 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1677 1678 if (bp_site_sp) { 1679 bp_site_sp->AddOwner(owner); 1680 owner->SetBreakpointSite(bp_site_sp); 1681 return bp_site_sp->GetID(); 1682 } else { 1683 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1684 load_addr, use_hardware)); 1685 if (bp_site_sp) { 1686 Status error = EnableBreakpointSite(bp_site_sp.get()); 1687 if (error.Success()) { 1688 owner->SetBreakpointSite(bp_site_sp); 1689 return m_breakpoint_site_list.Add(bp_site_sp); 1690 } else { 1691 if (show_error || use_hardware) { 1692 // Report error for setting breakpoint... 1693 GetTarget().GetDebugger().GetErrorStream().Printf( 1694 "warning: failed to set breakpoint site at 0x%" PRIx64 1695 " for breakpoint %i.%i: %s\n", 1696 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1697 error.AsCString() ? error.AsCString() : "unknown error"); 1698 } 1699 } 1700 } 1701 } 1702 } 1703 // We failed to enable the breakpoint 1704 return LLDB_INVALID_BREAK_ID; 1705 } 1706 1707 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1708 lldb::user_id_t owner_loc_id, 1709 BreakpointSiteSP &bp_site_sp) { 1710 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1711 if (num_owners == 0) { 1712 // Don't try to disable the site if we don't have a live process anymore. 1713 if (IsAlive()) 1714 DisableBreakpointSite(bp_site_sp.get()); 1715 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1716 } 1717 } 1718 1719 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1720 uint8_t *buf) const { 1721 size_t bytes_removed = 0; 1722 BreakpointSiteList bp_sites_in_range; 1723 1724 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1725 bp_sites_in_range)) { 1726 bp_sites_in_range.ForEach([bp_addr, size, 1727 buf](BreakpointSite *bp_site) -> void { 1728 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1729 addr_t intersect_addr; 1730 size_t intersect_size; 1731 size_t opcode_offset; 1732 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1733 &intersect_size, &opcode_offset)) { 1734 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1735 assert(bp_addr < intersect_addr + intersect_size && 1736 intersect_addr + intersect_size <= bp_addr + size); 1737 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1738 size_t buf_offset = intersect_addr - bp_addr; 1739 ::memcpy(buf + buf_offset, 1740 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1741 intersect_size); 1742 } 1743 } 1744 }); 1745 } 1746 return bytes_removed; 1747 } 1748 1749 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1750 PlatformSP platform_sp(GetTarget().GetPlatform()); 1751 if (platform_sp) 1752 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1753 return 0; 1754 } 1755 1756 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1757 Status error; 1758 assert(bp_site != nullptr); 1759 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1760 const addr_t bp_addr = bp_site->GetLoadAddress(); 1761 LLDB_LOGF( 1762 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1763 bp_site->GetID(), (uint64_t)bp_addr); 1764 if (bp_site->IsEnabled()) { 1765 LLDB_LOGF( 1766 log, 1767 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1768 " -- already enabled", 1769 bp_site->GetID(), (uint64_t)bp_addr); 1770 return error; 1771 } 1772 1773 if (bp_addr == LLDB_INVALID_ADDRESS) { 1774 error.SetErrorString("BreakpointSite contains an invalid load address."); 1775 return error; 1776 } 1777 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1778 // trap for the breakpoint site 1779 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1780 1781 if (bp_opcode_size == 0) { 1782 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1783 "returned zero, unable to get breakpoint " 1784 "trap for address 0x%" PRIx64, 1785 bp_addr); 1786 } else { 1787 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1788 1789 if (bp_opcode_bytes == nullptr) { 1790 error.SetErrorString( 1791 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1792 return error; 1793 } 1794 1795 // Save the original opcode by reading it 1796 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1797 error) == bp_opcode_size) { 1798 // Write a software breakpoint in place of the original opcode 1799 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1800 bp_opcode_size) { 1801 uint8_t verify_bp_opcode_bytes[64]; 1802 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1803 error) == bp_opcode_size) { 1804 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1805 bp_opcode_size) == 0) { 1806 bp_site->SetEnabled(true); 1807 bp_site->SetType(BreakpointSite::eSoftware); 1808 LLDB_LOGF(log, 1809 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1810 "addr = 0x%" PRIx64 " -- SUCCESS", 1811 bp_site->GetID(), (uint64_t)bp_addr); 1812 } else 1813 error.SetErrorString( 1814 "failed to verify the breakpoint trap in memory."); 1815 } else 1816 error.SetErrorString( 1817 "Unable to read memory to verify breakpoint trap."); 1818 } else 1819 error.SetErrorString("Unable to write breakpoint trap to memory."); 1820 } else 1821 error.SetErrorString("Unable to read memory at breakpoint address."); 1822 } 1823 if (log && error.Fail()) 1824 LLDB_LOGF( 1825 log, 1826 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1827 " -- FAILED: %s", 1828 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1829 return error; 1830 } 1831 1832 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1833 Status error; 1834 assert(bp_site != nullptr); 1835 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1836 addr_t bp_addr = bp_site->GetLoadAddress(); 1837 lldb::user_id_t breakID = bp_site->GetID(); 1838 LLDB_LOGF(log, 1839 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1840 ") addr = 0x%" PRIx64, 1841 breakID, (uint64_t)bp_addr); 1842 1843 if (bp_site->IsHardware()) { 1844 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1845 } else if (bp_site->IsEnabled()) { 1846 const size_t break_op_size = bp_site->GetByteSize(); 1847 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1848 if (break_op_size > 0) { 1849 // Clear a software breakpoint instruction 1850 uint8_t curr_break_op[8]; 1851 assert(break_op_size <= sizeof(curr_break_op)); 1852 bool break_op_found = false; 1853 1854 // Read the breakpoint opcode 1855 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1856 break_op_size) { 1857 bool verify = false; 1858 // Make sure the breakpoint opcode exists at this address 1859 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1860 break_op_found = true; 1861 // We found a valid breakpoint opcode at this address, now restore 1862 // the saved opcode. 1863 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1864 break_op_size, error) == break_op_size) { 1865 verify = true; 1866 } else 1867 error.SetErrorString( 1868 "Memory write failed when restoring original opcode."); 1869 } else { 1870 error.SetErrorString( 1871 "Original breakpoint trap is no longer in memory."); 1872 // Set verify to true and so we can check if the original opcode has 1873 // already been restored 1874 verify = true; 1875 } 1876 1877 if (verify) { 1878 uint8_t verify_opcode[8]; 1879 assert(break_op_size < sizeof(verify_opcode)); 1880 // Verify that our original opcode made it back to the inferior 1881 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1882 break_op_size) { 1883 // compare the memory we just read with the original opcode 1884 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1885 break_op_size) == 0) { 1886 // SUCCESS 1887 bp_site->SetEnabled(false); 1888 LLDB_LOGF(log, 1889 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1890 "addr = 0x%" PRIx64 " -- SUCCESS", 1891 bp_site->GetID(), (uint64_t)bp_addr); 1892 return error; 1893 } else { 1894 if (break_op_found) 1895 error.SetErrorString("Failed to restore original opcode."); 1896 } 1897 } else 1898 error.SetErrorString("Failed to read memory to verify that " 1899 "breakpoint trap was restored."); 1900 } 1901 } else 1902 error.SetErrorString( 1903 "Unable to read memory that should contain the breakpoint trap."); 1904 } 1905 } else { 1906 LLDB_LOGF( 1907 log, 1908 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1909 " -- already disabled", 1910 bp_site->GetID(), (uint64_t)bp_addr); 1911 return error; 1912 } 1913 1914 LLDB_LOGF( 1915 log, 1916 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1917 " -- FAILED: %s", 1918 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1919 return error; 1920 } 1921 1922 // Uncomment to verify memory caching works after making changes to caching 1923 // code 1924 //#define VERIFY_MEMORY_READS 1925 1926 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1927 error.Clear(); 1928 if (!GetDisableMemoryCache()) { 1929 #if defined(VERIFY_MEMORY_READS) 1930 // Memory caching is enabled, with debug verification 1931 1932 if (buf && size) { 1933 // Uncomment the line below to make sure memory caching is working. 1934 // I ran this through the test suite and got no assertions, so I am 1935 // pretty confident this is working well. If any changes are made to 1936 // memory caching, uncomment the line below and test your changes! 1937 1938 // Verify all memory reads by using the cache first, then redundantly 1939 // reading the same memory from the inferior and comparing to make sure 1940 // everything is exactly the same. 1941 std::string verify_buf(size, '\0'); 1942 assert(verify_buf.size() == size); 1943 const size_t cache_bytes_read = 1944 m_memory_cache.Read(this, addr, buf, size, error); 1945 Status verify_error; 1946 const size_t verify_bytes_read = 1947 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1948 verify_buf.size(), verify_error); 1949 assert(cache_bytes_read == verify_bytes_read); 1950 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1951 assert(verify_error.Success() == error.Success()); 1952 return cache_bytes_read; 1953 } 1954 return 0; 1955 #else // !defined(VERIFY_MEMORY_READS) 1956 // Memory caching is enabled, without debug verification 1957 1958 return m_memory_cache.Read(addr, buf, size, error); 1959 #endif // defined (VERIFY_MEMORY_READS) 1960 } else { 1961 // Memory caching is disabled 1962 1963 return ReadMemoryFromInferior(addr, buf, size, error); 1964 } 1965 } 1966 1967 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1968 Status &error) { 1969 char buf[256]; 1970 out_str.clear(); 1971 addr_t curr_addr = addr; 1972 while (true) { 1973 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1974 if (length == 0) 1975 break; 1976 out_str.append(buf, length); 1977 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1978 // to read some more characters 1979 if (length == sizeof(buf) - 1) 1980 curr_addr += length; 1981 else 1982 break; 1983 } 1984 return out_str.size(); 1985 } 1986 1987 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1988 Status &error, size_t type_width) { 1989 size_t total_bytes_read = 0; 1990 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1991 // Ensure a null terminator independent of the number of bytes that is 1992 // read. 1993 memset(dst, 0, max_bytes); 1994 size_t bytes_left = max_bytes - type_width; 1995 1996 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1997 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1998 "string with more than 4 bytes " 1999 "per character!"); 2000 2001 addr_t curr_addr = addr; 2002 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2003 char *curr_dst = dst; 2004 2005 error.Clear(); 2006 while (bytes_left > 0 && error.Success()) { 2007 addr_t cache_line_bytes_left = 2008 cache_line_size - (curr_addr % cache_line_size); 2009 addr_t bytes_to_read = 2010 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2011 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2012 2013 if (bytes_read == 0) 2014 break; 2015 2016 // Search for a null terminator of correct size and alignment in 2017 // bytes_read 2018 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2019 for (size_t i = aligned_start; 2020 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2021 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2022 error.Clear(); 2023 return i; 2024 } 2025 2026 total_bytes_read += bytes_read; 2027 curr_dst += bytes_read; 2028 curr_addr += bytes_read; 2029 bytes_left -= bytes_read; 2030 } 2031 } else { 2032 if (max_bytes) 2033 error.SetErrorString("invalid arguments"); 2034 } 2035 return total_bytes_read; 2036 } 2037 2038 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2039 // correct code to find null terminators. 2040 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2041 size_t dst_max_len, 2042 Status &result_error) { 2043 size_t total_cstr_len = 0; 2044 if (dst && dst_max_len) { 2045 result_error.Clear(); 2046 // NULL out everything just to be safe 2047 memset(dst, 0, dst_max_len); 2048 Status error; 2049 addr_t curr_addr = addr; 2050 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2051 size_t bytes_left = dst_max_len - 1; 2052 char *curr_dst = dst; 2053 2054 while (bytes_left > 0) { 2055 addr_t cache_line_bytes_left = 2056 cache_line_size - (curr_addr % cache_line_size); 2057 addr_t bytes_to_read = 2058 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2059 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2060 2061 if (bytes_read == 0) { 2062 result_error = error; 2063 dst[total_cstr_len] = '\0'; 2064 break; 2065 } 2066 const size_t len = strlen(curr_dst); 2067 2068 total_cstr_len += len; 2069 2070 if (len < bytes_to_read) 2071 break; 2072 2073 curr_dst += bytes_read; 2074 curr_addr += bytes_read; 2075 bytes_left -= bytes_read; 2076 } 2077 } else { 2078 if (dst == nullptr) 2079 result_error.SetErrorString("invalid arguments"); 2080 else 2081 result_error.Clear(); 2082 } 2083 return total_cstr_len; 2084 } 2085 2086 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2087 Status &error) { 2088 LLDB_SCOPED_TIMER(); 2089 2090 if (buf == nullptr || size == 0) 2091 return 0; 2092 2093 size_t bytes_read = 0; 2094 uint8_t *bytes = (uint8_t *)buf; 2095 2096 while (bytes_read < size) { 2097 const size_t curr_size = size - bytes_read; 2098 const size_t curr_bytes_read = 2099 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2100 bytes_read += curr_bytes_read; 2101 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2102 break; 2103 } 2104 2105 // Replace any software breakpoint opcodes that fall into this range back 2106 // into "buf" before we return 2107 if (bytes_read > 0) 2108 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2109 return bytes_read; 2110 } 2111 2112 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2113 size_t integer_byte_size, 2114 uint64_t fail_value, 2115 Status &error) { 2116 Scalar scalar; 2117 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2118 error)) 2119 return scalar.ULongLong(fail_value); 2120 return fail_value; 2121 } 2122 2123 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2124 size_t integer_byte_size, 2125 int64_t fail_value, 2126 Status &error) { 2127 Scalar scalar; 2128 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2129 error)) 2130 return scalar.SLongLong(fail_value); 2131 return fail_value; 2132 } 2133 2134 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2135 Scalar scalar; 2136 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2137 error)) 2138 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2139 return LLDB_INVALID_ADDRESS; 2140 } 2141 2142 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2143 Status &error) { 2144 Scalar scalar; 2145 const uint32_t addr_byte_size = GetAddressByteSize(); 2146 if (addr_byte_size <= 4) 2147 scalar = (uint32_t)ptr_value; 2148 else 2149 scalar = ptr_value; 2150 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2151 addr_byte_size; 2152 } 2153 2154 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2155 Status &error) { 2156 size_t bytes_written = 0; 2157 const uint8_t *bytes = (const uint8_t *)buf; 2158 2159 while (bytes_written < size) { 2160 const size_t curr_size = size - bytes_written; 2161 const size_t curr_bytes_written = DoWriteMemory( 2162 addr + bytes_written, bytes + bytes_written, curr_size, error); 2163 bytes_written += curr_bytes_written; 2164 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2165 break; 2166 } 2167 return bytes_written; 2168 } 2169 2170 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2171 Status &error) { 2172 #if defined(ENABLE_MEMORY_CACHING) 2173 m_memory_cache.Flush(addr, size); 2174 #endif 2175 2176 if (buf == nullptr || size == 0) 2177 return 0; 2178 2179 m_mod_id.BumpMemoryID(); 2180 2181 // We need to write any data that would go where any current software traps 2182 // (enabled software breakpoints) any software traps (breakpoints) that we 2183 // may have placed in our tasks memory. 2184 2185 BreakpointSiteList bp_sites_in_range; 2186 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2187 return WriteMemoryPrivate(addr, buf, size, error); 2188 2189 // No breakpoint sites overlap 2190 if (bp_sites_in_range.IsEmpty()) 2191 return WriteMemoryPrivate(addr, buf, size, error); 2192 2193 const uint8_t *ubuf = (const uint8_t *)buf; 2194 uint64_t bytes_written = 0; 2195 2196 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2197 &error](BreakpointSite *bp) -> void { 2198 if (error.Fail()) 2199 return; 2200 2201 if (bp->GetType() != BreakpointSite::eSoftware) 2202 return; 2203 2204 addr_t intersect_addr; 2205 size_t intersect_size; 2206 size_t opcode_offset; 2207 const bool intersects = bp->IntersectsRange( 2208 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2209 UNUSED_IF_ASSERT_DISABLED(intersects); 2210 assert(intersects); 2211 assert(addr <= intersect_addr && intersect_addr < addr + size); 2212 assert(addr < intersect_addr + intersect_size && 2213 intersect_addr + intersect_size <= addr + size); 2214 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2215 2216 // Check for bytes before this breakpoint 2217 const addr_t curr_addr = addr + bytes_written; 2218 if (intersect_addr > curr_addr) { 2219 // There are some bytes before this breakpoint that we need to just 2220 // write to memory 2221 size_t curr_size = intersect_addr - curr_addr; 2222 size_t curr_bytes_written = 2223 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2224 bytes_written += curr_bytes_written; 2225 if (curr_bytes_written != curr_size) { 2226 // We weren't able to write all of the requested bytes, we are 2227 // done looping and will return the number of bytes that we have 2228 // written so far. 2229 if (error.Success()) 2230 error.SetErrorToGenericError(); 2231 } 2232 } 2233 // Now write any bytes that would cover up any software breakpoints 2234 // directly into the breakpoint opcode buffer 2235 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2236 intersect_size); 2237 bytes_written += intersect_size; 2238 }); 2239 2240 // Write any remaining bytes after the last breakpoint if we have any left 2241 if (bytes_written < size) 2242 bytes_written += 2243 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2244 size - bytes_written, error); 2245 2246 return bytes_written; 2247 } 2248 2249 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2250 size_t byte_size, Status &error) { 2251 if (byte_size == UINT32_MAX) 2252 byte_size = scalar.GetByteSize(); 2253 if (byte_size > 0) { 2254 uint8_t buf[32]; 2255 const size_t mem_size = 2256 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2257 if (mem_size > 0) 2258 return WriteMemory(addr, buf, mem_size, error); 2259 else 2260 error.SetErrorString("failed to get scalar as memory data"); 2261 } else { 2262 error.SetErrorString("invalid scalar value"); 2263 } 2264 return 0; 2265 } 2266 2267 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2268 bool is_signed, Scalar &scalar, 2269 Status &error) { 2270 uint64_t uval = 0; 2271 if (byte_size == 0) { 2272 error.SetErrorString("byte size is zero"); 2273 } else if (byte_size & (byte_size - 1)) { 2274 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2275 byte_size); 2276 } else if (byte_size <= sizeof(uval)) { 2277 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2278 if (bytes_read == byte_size) { 2279 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2280 GetAddressByteSize()); 2281 lldb::offset_t offset = 0; 2282 if (byte_size <= 4) 2283 scalar = data.GetMaxU32(&offset, byte_size); 2284 else 2285 scalar = data.GetMaxU64(&offset, byte_size); 2286 if (is_signed) 2287 scalar.SignExtend(byte_size * 8); 2288 return bytes_read; 2289 } 2290 } else { 2291 error.SetErrorStringWithFormat( 2292 "byte size of %u is too large for integer scalar type", byte_size); 2293 } 2294 return 0; 2295 } 2296 2297 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2298 Status error; 2299 for (const auto &Entry : entries) { 2300 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2301 error); 2302 if (!error.Success()) 2303 break; 2304 } 2305 return error; 2306 } 2307 2308 #define USE_ALLOCATE_MEMORY_CACHE 1 2309 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2310 Status &error) { 2311 if (GetPrivateState() != eStateStopped) { 2312 error.SetErrorToGenericError(); 2313 return LLDB_INVALID_ADDRESS; 2314 } 2315 2316 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2317 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2318 #else 2319 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2320 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2321 LLDB_LOGF(log, 2322 "Process::AllocateMemory(size=%" PRIu64 2323 ", permissions=%s) => 0x%16.16" PRIx64 2324 " (m_stop_id = %u m_memory_id = %u)", 2325 (uint64_t)size, GetPermissionsAsCString(permissions), 2326 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2327 m_mod_id.GetMemoryID()); 2328 return allocated_addr; 2329 #endif 2330 } 2331 2332 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2333 Status &error) { 2334 addr_t return_addr = AllocateMemory(size, permissions, error); 2335 if (error.Success()) { 2336 std::string buffer(size, 0); 2337 WriteMemory(return_addr, buffer.c_str(), size, error); 2338 } 2339 return return_addr; 2340 } 2341 2342 bool Process::CanJIT() { 2343 if (m_can_jit == eCanJITDontKnow) { 2344 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2345 Status err; 2346 2347 uint64_t allocated_memory = AllocateMemory( 2348 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2349 err); 2350 2351 if (err.Success()) { 2352 m_can_jit = eCanJITYes; 2353 LLDB_LOGF(log, 2354 "Process::%s pid %" PRIu64 2355 " allocation test passed, CanJIT () is true", 2356 __FUNCTION__, GetID()); 2357 } else { 2358 m_can_jit = eCanJITNo; 2359 LLDB_LOGF(log, 2360 "Process::%s pid %" PRIu64 2361 " allocation test failed, CanJIT () is false: %s", 2362 __FUNCTION__, GetID(), err.AsCString()); 2363 } 2364 2365 DeallocateMemory(allocated_memory); 2366 } 2367 2368 return m_can_jit == eCanJITYes; 2369 } 2370 2371 void Process::SetCanJIT(bool can_jit) { 2372 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2373 } 2374 2375 void Process::SetCanRunCode(bool can_run_code) { 2376 SetCanJIT(can_run_code); 2377 m_can_interpret_function_calls = can_run_code; 2378 } 2379 2380 Status Process::DeallocateMemory(addr_t ptr) { 2381 Status error; 2382 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2383 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2384 error.SetErrorStringWithFormat( 2385 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2386 } 2387 #else 2388 error = DoDeallocateMemory(ptr); 2389 2390 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2391 LLDB_LOGF(log, 2392 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2393 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2394 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2395 m_mod_id.GetMemoryID()); 2396 #endif 2397 return error; 2398 } 2399 2400 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2401 lldb::addr_t header_addr, 2402 size_t size_to_read) { 2403 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2404 if (log) { 2405 LLDB_LOGF(log, 2406 "Process::ReadModuleFromMemory reading %s binary from memory", 2407 file_spec.GetPath().c_str()); 2408 } 2409 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2410 if (module_sp) { 2411 Status error; 2412 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2413 shared_from_this(), header_addr, error, size_to_read); 2414 if (objfile) 2415 return module_sp; 2416 } 2417 return ModuleSP(); 2418 } 2419 2420 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2421 uint32_t &permissions) { 2422 MemoryRegionInfo range_info; 2423 permissions = 0; 2424 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2425 if (!error.Success()) 2426 return false; 2427 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2428 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2429 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2430 return false; 2431 } 2432 2433 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2434 permissions |= lldb::ePermissionsReadable; 2435 2436 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2437 permissions |= lldb::ePermissionsWritable; 2438 2439 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2440 permissions |= lldb::ePermissionsExecutable; 2441 2442 return true; 2443 } 2444 2445 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2446 Status error; 2447 error.SetErrorString("watchpoints are not supported"); 2448 return error; 2449 } 2450 2451 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2452 Status error; 2453 error.SetErrorString("watchpoints are not supported"); 2454 return error; 2455 } 2456 2457 StateType 2458 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2459 const Timeout<std::micro> &timeout) { 2460 StateType state; 2461 2462 while (true) { 2463 event_sp.reset(); 2464 state = GetStateChangedEventsPrivate(event_sp, timeout); 2465 2466 if (StateIsStoppedState(state, false)) 2467 break; 2468 2469 // If state is invalid, then we timed out 2470 if (state == eStateInvalid) 2471 break; 2472 2473 if (event_sp) 2474 HandlePrivateEvent(event_sp); 2475 } 2476 return state; 2477 } 2478 2479 void Process::LoadOperatingSystemPlugin(bool flush) { 2480 if (flush) 2481 m_thread_list.Clear(); 2482 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2483 if (flush) 2484 Flush(); 2485 } 2486 2487 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2488 Status error; 2489 m_abi_sp.reset(); 2490 m_dyld_up.reset(); 2491 m_jit_loaders_up.reset(); 2492 m_system_runtime_up.reset(); 2493 m_os_up.reset(); 2494 m_process_input_reader.reset(); 2495 2496 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2497 if (!exe_module) { 2498 error.SetErrorString("executable module does not exist"); 2499 return error; 2500 } 2501 2502 char local_exec_file_path[PATH_MAX]; 2503 char platform_exec_file_path[PATH_MAX]; 2504 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2505 sizeof(local_exec_file_path)); 2506 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2507 sizeof(platform_exec_file_path)); 2508 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2509 // Install anything that might need to be installed prior to launching. 2510 // For host systems, this will do nothing, but if we are connected to a 2511 // remote platform it will install any needed binaries 2512 error = GetTarget().Install(&launch_info); 2513 if (error.Fail()) 2514 return error; 2515 2516 // Listen and queue events that are broadcasted during the process launch. 2517 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2518 HijackProcessEvents(listener_sp); 2519 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2520 2521 if (PrivateStateThreadIsValid()) 2522 PausePrivateStateThread(); 2523 2524 error = WillLaunch(exe_module); 2525 if (error.Success()) { 2526 const bool restarted = false; 2527 SetPublicState(eStateLaunching, restarted); 2528 m_should_detach = false; 2529 2530 if (m_public_run_lock.TrySetRunning()) { 2531 // Now launch using these arguments. 2532 error = DoLaunch(exe_module, launch_info); 2533 } else { 2534 // This shouldn't happen 2535 error.SetErrorString("failed to acquire process run lock"); 2536 } 2537 2538 if (error.Fail()) { 2539 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2540 SetID(LLDB_INVALID_PROCESS_ID); 2541 const char *error_string = error.AsCString(); 2542 if (error_string == nullptr) 2543 error_string = "launch failed"; 2544 SetExitStatus(-1, error_string); 2545 } 2546 } else { 2547 EventSP event_sp; 2548 2549 // Now wait for the process to launch and return control to us, and then 2550 // call DidLaunch: 2551 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2552 2553 if (state == eStateInvalid || !event_sp) { 2554 // We were able to launch the process, but we failed to catch the 2555 // initial stop. 2556 error.SetErrorString("failed to catch stop after launch"); 2557 SetExitStatus(0, "failed to catch stop after launch"); 2558 Destroy(false); 2559 } else if (state == eStateStopped || state == eStateCrashed) { 2560 DidLaunch(); 2561 2562 DynamicLoader *dyld = GetDynamicLoader(); 2563 if (dyld) 2564 dyld->DidLaunch(); 2565 2566 GetJITLoaders().DidLaunch(); 2567 2568 SystemRuntime *system_runtime = GetSystemRuntime(); 2569 if (system_runtime) 2570 system_runtime->DidLaunch(); 2571 2572 if (!m_os_up) 2573 LoadOperatingSystemPlugin(false); 2574 2575 // We successfully launched the process and stopped, now it the 2576 // right time to set up signal filters before resuming. 2577 UpdateAutomaticSignalFiltering(); 2578 2579 // Note, the stop event was consumed above, but not handled. This 2580 // was done to give DidLaunch a chance to run. The target is either 2581 // stopped or crashed. Directly set the state. This is done to 2582 // prevent a stop message with a bunch of spurious output on thread 2583 // status, as well as not pop a ProcessIOHandler. 2584 SetPublicState(state, false); 2585 2586 if (PrivateStateThreadIsValid()) 2587 ResumePrivateStateThread(); 2588 else 2589 StartPrivateStateThread(); 2590 2591 // Target was stopped at entry as was intended. Need to notify the 2592 // listeners about it. 2593 if (state == eStateStopped && 2594 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2595 HandlePrivateEvent(event_sp); 2596 } else if (state == eStateExited) { 2597 // We exited while trying to launch somehow. Don't call DidLaunch 2598 // as that's not likely to work, and return an invalid pid. 2599 HandlePrivateEvent(event_sp); 2600 } 2601 } 2602 } 2603 } else { 2604 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2605 local_exec_file_path); 2606 } 2607 2608 return error; 2609 } 2610 2611 Status Process::LoadCore() { 2612 Status error = DoLoadCore(); 2613 if (error.Success()) { 2614 ListenerSP listener_sp( 2615 Listener::MakeListener("lldb.process.load_core_listener")); 2616 HijackProcessEvents(listener_sp); 2617 2618 if (PrivateStateThreadIsValid()) 2619 ResumePrivateStateThread(); 2620 else 2621 StartPrivateStateThread(); 2622 2623 DynamicLoader *dyld = GetDynamicLoader(); 2624 if (dyld) 2625 dyld->DidAttach(); 2626 2627 GetJITLoaders().DidAttach(); 2628 2629 SystemRuntime *system_runtime = GetSystemRuntime(); 2630 if (system_runtime) 2631 system_runtime->DidAttach(); 2632 2633 if (!m_os_up) 2634 LoadOperatingSystemPlugin(false); 2635 2636 // We successfully loaded a core file, now pretend we stopped so we can 2637 // show all of the threads in the core file and explore the crashed state. 2638 SetPrivateState(eStateStopped); 2639 2640 // Wait for a stopped event since we just posted one above... 2641 lldb::EventSP event_sp; 2642 StateType state = 2643 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2644 2645 if (!StateIsStoppedState(state, false)) { 2646 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2647 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2648 StateAsCString(state)); 2649 error.SetErrorString( 2650 "Did not get stopped event after loading the core file."); 2651 } 2652 RestoreProcessEvents(); 2653 } 2654 return error; 2655 } 2656 2657 DynamicLoader *Process::GetDynamicLoader() { 2658 if (!m_dyld_up) 2659 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2660 return m_dyld_up.get(); 2661 } 2662 2663 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2664 2665 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2666 return false; 2667 } 2668 2669 JITLoaderList &Process::GetJITLoaders() { 2670 if (!m_jit_loaders_up) { 2671 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2672 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2673 } 2674 return *m_jit_loaders_up; 2675 } 2676 2677 SystemRuntime *Process::GetSystemRuntime() { 2678 if (!m_system_runtime_up) 2679 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2680 return m_system_runtime_up.get(); 2681 } 2682 2683 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2684 uint32_t exec_count) 2685 : NextEventAction(process), m_exec_count(exec_count) { 2686 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2687 LLDB_LOGF( 2688 log, 2689 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2690 __FUNCTION__, static_cast<void *>(process), exec_count); 2691 } 2692 2693 Process::NextEventAction::EventActionResult 2694 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2695 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2696 2697 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2698 LLDB_LOGF(log, 2699 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2700 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2701 2702 switch (state) { 2703 case eStateAttaching: 2704 return eEventActionSuccess; 2705 2706 case eStateRunning: 2707 case eStateConnected: 2708 return eEventActionRetry; 2709 2710 case eStateStopped: 2711 case eStateCrashed: 2712 // During attach, prior to sending the eStateStopped event, 2713 // lldb_private::Process subclasses must set the new process ID. 2714 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2715 // We don't want these events to be reported, so go set the 2716 // ShouldReportStop here: 2717 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2718 2719 if (m_exec_count > 0) { 2720 --m_exec_count; 2721 2722 LLDB_LOGF(log, 2723 "Process::AttachCompletionHandler::%s state %s: reduced " 2724 "remaining exec count to %" PRIu32 ", requesting resume", 2725 __FUNCTION__, StateAsCString(state), m_exec_count); 2726 2727 RequestResume(); 2728 return eEventActionRetry; 2729 } else { 2730 LLDB_LOGF(log, 2731 "Process::AttachCompletionHandler::%s state %s: no more " 2732 "execs expected to start, continuing with attach", 2733 __FUNCTION__, StateAsCString(state)); 2734 2735 m_process->CompleteAttach(); 2736 return eEventActionSuccess; 2737 } 2738 break; 2739 2740 default: 2741 case eStateExited: 2742 case eStateInvalid: 2743 break; 2744 } 2745 2746 m_exit_string.assign("No valid Process"); 2747 return eEventActionExit; 2748 } 2749 2750 Process::NextEventAction::EventActionResult 2751 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2752 return eEventActionSuccess; 2753 } 2754 2755 const char *Process::AttachCompletionHandler::GetExitString() { 2756 return m_exit_string.c_str(); 2757 } 2758 2759 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2760 if (m_listener_sp) 2761 return m_listener_sp; 2762 else 2763 return debugger.GetListener(); 2764 } 2765 2766 Status Process::Attach(ProcessAttachInfo &attach_info) { 2767 m_abi_sp.reset(); 2768 m_process_input_reader.reset(); 2769 m_dyld_up.reset(); 2770 m_jit_loaders_up.reset(); 2771 m_system_runtime_up.reset(); 2772 m_os_up.reset(); 2773 2774 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2775 Status error; 2776 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2777 char process_name[PATH_MAX]; 2778 2779 if (attach_info.GetExecutableFile().GetPath(process_name, 2780 sizeof(process_name))) { 2781 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2782 2783 if (wait_for_launch) { 2784 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2785 if (error.Success()) { 2786 if (m_public_run_lock.TrySetRunning()) { 2787 m_should_detach = true; 2788 const bool restarted = false; 2789 SetPublicState(eStateAttaching, restarted); 2790 // Now attach using these arguments. 2791 error = DoAttachToProcessWithName(process_name, attach_info); 2792 } else { 2793 // This shouldn't happen 2794 error.SetErrorString("failed to acquire process run lock"); 2795 } 2796 2797 if (error.Fail()) { 2798 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2799 SetID(LLDB_INVALID_PROCESS_ID); 2800 if (error.AsCString() == nullptr) 2801 error.SetErrorString("attach failed"); 2802 2803 SetExitStatus(-1, error.AsCString()); 2804 } 2805 } else { 2806 SetNextEventAction(new Process::AttachCompletionHandler( 2807 this, attach_info.GetResumeCount())); 2808 StartPrivateStateThread(); 2809 } 2810 return error; 2811 } 2812 } else { 2813 ProcessInstanceInfoList process_infos; 2814 PlatformSP platform_sp(GetTarget().GetPlatform()); 2815 2816 if (platform_sp) { 2817 ProcessInstanceInfoMatch match_info; 2818 match_info.GetProcessInfo() = attach_info; 2819 match_info.SetNameMatchType(NameMatch::Equals); 2820 platform_sp->FindProcesses(match_info, process_infos); 2821 const uint32_t num_matches = process_infos.size(); 2822 if (num_matches == 1) { 2823 attach_pid = process_infos[0].GetProcessID(); 2824 // Fall through and attach using the above process ID 2825 } else { 2826 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2827 process_name, sizeof(process_name)); 2828 if (num_matches > 1) { 2829 StreamString s; 2830 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2831 for (size_t i = 0; i < num_matches; i++) { 2832 process_infos[i].DumpAsTableRow( 2833 s, platform_sp->GetUserIDResolver(), true, false); 2834 } 2835 error.SetErrorStringWithFormat( 2836 "more than one process named %s:\n%s", process_name, 2837 s.GetData()); 2838 } else 2839 error.SetErrorStringWithFormat( 2840 "could not find a process named %s", process_name); 2841 } 2842 } else { 2843 error.SetErrorString( 2844 "invalid platform, can't find processes by name"); 2845 return error; 2846 } 2847 } 2848 } else { 2849 error.SetErrorString("invalid process name"); 2850 } 2851 } 2852 2853 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2854 error = WillAttachToProcessWithID(attach_pid); 2855 if (error.Success()) { 2856 2857 if (m_public_run_lock.TrySetRunning()) { 2858 // Now attach using these arguments. 2859 m_should_detach = true; 2860 const bool restarted = false; 2861 SetPublicState(eStateAttaching, restarted); 2862 error = DoAttachToProcessWithID(attach_pid, attach_info); 2863 } else { 2864 // This shouldn't happen 2865 error.SetErrorString("failed to acquire process run lock"); 2866 } 2867 2868 if (error.Success()) { 2869 SetNextEventAction(new Process::AttachCompletionHandler( 2870 this, attach_info.GetResumeCount())); 2871 StartPrivateStateThread(); 2872 } else { 2873 if (GetID() != LLDB_INVALID_PROCESS_ID) 2874 SetID(LLDB_INVALID_PROCESS_ID); 2875 2876 const char *error_string = error.AsCString(); 2877 if (error_string == nullptr) 2878 error_string = "attach failed"; 2879 2880 SetExitStatus(-1, error_string); 2881 } 2882 } 2883 } 2884 return error; 2885 } 2886 2887 void Process::CompleteAttach() { 2888 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2889 LIBLLDB_LOG_TARGET)); 2890 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2891 2892 // Let the process subclass figure out at much as it can about the process 2893 // before we go looking for a dynamic loader plug-in. 2894 ArchSpec process_arch; 2895 DidAttach(process_arch); 2896 2897 if (process_arch.IsValid()) { 2898 GetTarget().SetArchitecture(process_arch); 2899 if (log) { 2900 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2901 LLDB_LOGF(log, 2902 "Process::%s replacing process architecture with DidAttach() " 2903 "architecture: %s", 2904 __FUNCTION__, triple_str ? triple_str : "<null>"); 2905 } 2906 } 2907 2908 // We just attached. If we have a platform, ask it for the process 2909 // architecture, and if it isn't the same as the one we've already set, 2910 // switch architectures. 2911 PlatformSP platform_sp(GetTarget().GetPlatform()); 2912 assert(platform_sp); 2913 if (platform_sp) { 2914 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2915 if (target_arch.IsValid() && 2916 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2917 ArchSpec platform_arch; 2918 platform_sp = 2919 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2920 if (platform_sp) { 2921 GetTarget().SetPlatform(platform_sp); 2922 GetTarget().SetArchitecture(platform_arch); 2923 LLDB_LOGF(log, 2924 "Process::%s switching platform to %s and architecture " 2925 "to %s based on info from attach", 2926 __FUNCTION__, platform_sp->GetName().AsCString(""), 2927 platform_arch.GetTriple().getTriple().c_str()); 2928 } 2929 } else if (!process_arch.IsValid()) { 2930 ProcessInstanceInfo process_info; 2931 GetProcessInfo(process_info); 2932 const ArchSpec &process_arch = process_info.GetArchitecture(); 2933 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2934 if (process_arch.IsValid() && 2935 target_arch.IsCompatibleMatch(process_arch) && 2936 !target_arch.IsExactMatch(process_arch)) { 2937 GetTarget().SetArchitecture(process_arch); 2938 LLDB_LOGF(log, 2939 "Process::%s switching architecture to %s based on info " 2940 "the platform retrieved for pid %" PRIu64, 2941 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2942 GetID()); 2943 } 2944 } 2945 } 2946 2947 // We have completed the attach, now it is time to find the dynamic loader 2948 // plug-in 2949 DynamicLoader *dyld = GetDynamicLoader(); 2950 if (dyld) { 2951 dyld->DidAttach(); 2952 if (log) { 2953 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2954 LLDB_LOG(log, 2955 "after DynamicLoader::DidAttach(), target " 2956 "executable is {0} (using {1} plugin)", 2957 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2958 dyld->GetPluginName()); 2959 } 2960 } 2961 2962 GetJITLoaders().DidAttach(); 2963 2964 SystemRuntime *system_runtime = GetSystemRuntime(); 2965 if (system_runtime) { 2966 system_runtime->DidAttach(); 2967 if (log) { 2968 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2969 LLDB_LOG(log, 2970 "after SystemRuntime::DidAttach(), target " 2971 "executable is {0} (using {1} plugin)", 2972 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2973 system_runtime->GetPluginName()); 2974 } 2975 } 2976 2977 if (!m_os_up) { 2978 LoadOperatingSystemPlugin(false); 2979 if (m_os_up) { 2980 // Somebody might have gotten threads before now, but we need to force the 2981 // update after we've loaded the OperatingSystem plugin or it won't get a 2982 // chance to process the threads. 2983 m_thread_list.Clear(); 2984 UpdateThreadListIfNeeded(); 2985 } 2986 } 2987 // Figure out which one is the executable, and set that in our target: 2988 ModuleSP new_executable_module_sp; 2989 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2990 if (module_sp && module_sp->IsExecutable()) { 2991 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2992 new_executable_module_sp = module_sp; 2993 break; 2994 } 2995 } 2996 if (new_executable_module_sp) { 2997 GetTarget().SetExecutableModule(new_executable_module_sp, 2998 eLoadDependentsNo); 2999 if (log) { 3000 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3001 LLDB_LOGF( 3002 log, 3003 "Process::%s after looping through modules, target executable is %s", 3004 __FUNCTION__, 3005 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3006 : "<none>"); 3007 } 3008 } 3009 } 3010 3011 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3012 m_abi_sp.reset(); 3013 m_process_input_reader.reset(); 3014 3015 // Find the process and its architecture. Make sure it matches the 3016 // architecture of the current Target, and if not adjust it. 3017 3018 Status error(DoConnectRemote(remote_url)); 3019 if (error.Success()) { 3020 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3021 EventSP event_sp; 3022 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3023 3024 if (state == eStateStopped || state == eStateCrashed) { 3025 // If we attached and actually have a process on the other end, then 3026 // this ended up being the equivalent of an attach. 3027 CompleteAttach(); 3028 3029 // This delays passing the stopped event to listeners till 3030 // CompleteAttach gets a chance to complete... 3031 HandlePrivateEvent(event_sp); 3032 } 3033 } 3034 3035 if (PrivateStateThreadIsValid()) 3036 ResumePrivateStateThread(); 3037 else 3038 StartPrivateStateThread(); 3039 } 3040 return error; 3041 } 3042 3043 Status Process::PrivateResume() { 3044 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3045 LIBLLDB_LOG_STEP)); 3046 LLDB_LOGF(log, 3047 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3048 "private state: %s", 3049 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3050 StateAsCString(m_private_state.GetValue())); 3051 3052 // If signals handing status changed we might want to update our signal 3053 // filters before resuming. 3054 UpdateAutomaticSignalFiltering(); 3055 3056 Status error(WillResume()); 3057 // Tell the process it is about to resume before the thread list 3058 if (error.Success()) { 3059 // Now let the thread list know we are about to resume so it can let all of 3060 // our threads know that they are about to be resumed. Threads will each be 3061 // called with Thread::WillResume(StateType) where StateType contains the 3062 // state that they are supposed to have when the process is resumed 3063 // (suspended/running/stepping). Threads should also check their resume 3064 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3065 // start back up with a signal. 3066 if (m_thread_list.WillResume()) { 3067 // Last thing, do the PreResumeActions. 3068 if (!RunPreResumeActions()) { 3069 error.SetErrorString( 3070 "Process::PrivateResume PreResumeActions failed, not resuming."); 3071 } else { 3072 m_mod_id.BumpResumeID(); 3073 error = DoResume(); 3074 if (error.Success()) { 3075 DidResume(); 3076 m_thread_list.DidResume(); 3077 LLDB_LOGF(log, "Process thinks the process has resumed."); 3078 } else { 3079 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3080 return error; 3081 } 3082 } 3083 } else { 3084 // Somebody wanted to run without running (e.g. we were faking a step 3085 // from one frame of a set of inlined frames that share the same PC to 3086 // another.) So generate a continue & a stopped event, and let the world 3087 // handle them. 3088 LLDB_LOGF(log, 3089 "Process::PrivateResume() asked to simulate a start & stop."); 3090 3091 SetPrivateState(eStateRunning); 3092 SetPrivateState(eStateStopped); 3093 } 3094 } else 3095 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3096 error.AsCString("<unknown error>")); 3097 return error; 3098 } 3099 3100 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3101 if (!StateIsRunningState(m_public_state.GetValue())) 3102 return Status("Process is not running."); 3103 3104 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3105 // case it was already set and some thread plan logic calls halt on its own. 3106 m_clear_thread_plans_on_stop |= clear_thread_plans; 3107 3108 ListenerSP halt_listener_sp( 3109 Listener::MakeListener("lldb.process.halt_listener")); 3110 HijackProcessEvents(halt_listener_sp); 3111 3112 EventSP event_sp; 3113 3114 SendAsyncInterrupt(); 3115 3116 if (m_public_state.GetValue() == eStateAttaching) { 3117 // Don't hijack and eat the eStateExited as the code that was doing the 3118 // attach will be waiting for this event... 3119 RestoreProcessEvents(); 3120 SetExitStatus(SIGKILL, "Cancelled async attach."); 3121 Destroy(false); 3122 return Status(); 3123 } 3124 3125 // Wait for the process halt timeout seconds for the process to stop. 3126 StateType state = 3127 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3128 halt_listener_sp, nullptr, use_run_lock); 3129 RestoreProcessEvents(); 3130 3131 if (state == eStateInvalid || !event_sp) { 3132 // We timed out and didn't get a stop event... 3133 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3134 } 3135 3136 BroadcastEvent(event_sp); 3137 3138 return Status(); 3139 } 3140 3141 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3142 Status error; 3143 3144 // Check both the public & private states here. If we're hung evaluating an 3145 // expression, for instance, then the public state will be stopped, but we 3146 // still need to interrupt. 3147 if (m_public_state.GetValue() == eStateRunning || 3148 m_private_state.GetValue() == eStateRunning) { 3149 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3150 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3151 3152 ListenerSP listener_sp( 3153 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3154 HijackProcessEvents(listener_sp); 3155 3156 SendAsyncInterrupt(); 3157 3158 // Consume the interrupt event. 3159 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3160 &exit_event_sp, true, listener_sp); 3161 3162 RestoreProcessEvents(); 3163 3164 // If the process exited while we were waiting for it to stop, put the 3165 // exited event into the shared pointer passed in and return. Our caller 3166 // doesn't need to do anything else, since they don't have a process 3167 // anymore... 3168 3169 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3170 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3171 __FUNCTION__); 3172 return error; 3173 } else 3174 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3175 3176 if (state != eStateStopped) { 3177 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3178 StateAsCString(state)); 3179 // If we really couldn't stop the process then we should just error out 3180 // here, but if the lower levels just bobbled sending the event and we 3181 // really are stopped, then continue on. 3182 StateType private_state = m_private_state.GetValue(); 3183 if (private_state != eStateStopped) { 3184 return Status( 3185 "Attempt to stop the target in order to detach timed out. " 3186 "State = %s", 3187 StateAsCString(GetState())); 3188 } 3189 } 3190 } 3191 return error; 3192 } 3193 3194 Status Process::Detach(bool keep_stopped) { 3195 EventSP exit_event_sp; 3196 Status error; 3197 m_destroy_in_process = true; 3198 3199 error = WillDetach(); 3200 3201 if (error.Success()) { 3202 if (DetachRequiresHalt()) { 3203 error = StopForDestroyOrDetach(exit_event_sp); 3204 if (!error.Success()) { 3205 m_destroy_in_process = false; 3206 return error; 3207 } else if (exit_event_sp) { 3208 // We shouldn't need to do anything else here. There's no process left 3209 // to detach from... 3210 StopPrivateStateThread(); 3211 m_destroy_in_process = false; 3212 return error; 3213 } 3214 } 3215 3216 m_thread_list.DiscardThreadPlans(); 3217 DisableAllBreakpointSites(); 3218 3219 error = DoDetach(keep_stopped); 3220 if (error.Success()) { 3221 DidDetach(); 3222 StopPrivateStateThread(); 3223 } else { 3224 return error; 3225 } 3226 } 3227 m_destroy_in_process = false; 3228 3229 // If we exited when we were waiting for a process to stop, then forward the 3230 // event here so we don't lose the event 3231 if (exit_event_sp) { 3232 // Directly broadcast our exited event because we shut down our private 3233 // state thread above 3234 BroadcastEvent(exit_event_sp); 3235 } 3236 3237 // If we have been interrupted (to kill us) in the middle of running, we may 3238 // not end up propagating the last events through the event system, in which 3239 // case we might strand the write lock. Unlock it here so when we do to tear 3240 // down the process we don't get an error destroying the lock. 3241 3242 m_public_run_lock.SetStopped(); 3243 return error; 3244 } 3245 3246 Status Process::Destroy(bool force_kill) { 3247 // If we've already called Process::Finalize then there's nothing useful to 3248 // be done here. Finalize has actually called Destroy already. 3249 if (m_finalizing) 3250 return {}; 3251 return DestroyImpl(force_kill); 3252 } 3253 3254 Status Process::DestroyImpl(bool force_kill) { 3255 // Tell ourselves we are in the process of destroying the process, so that we 3256 // don't do any unnecessary work that might hinder the destruction. Remember 3257 // to set this back to false when we are done. That way if the attempt 3258 // failed and the process stays around for some reason it won't be in a 3259 // confused state. 3260 3261 if (force_kill) 3262 m_should_detach = false; 3263 3264 if (GetShouldDetach()) { 3265 // FIXME: This will have to be a process setting: 3266 bool keep_stopped = false; 3267 Detach(keep_stopped); 3268 } 3269 3270 m_destroy_in_process = true; 3271 3272 Status error(WillDestroy()); 3273 if (error.Success()) { 3274 EventSP exit_event_sp; 3275 if (DestroyRequiresHalt()) { 3276 error = StopForDestroyOrDetach(exit_event_sp); 3277 } 3278 3279 if (m_public_state.GetValue() == eStateStopped) { 3280 // Ditch all thread plans, and remove all our breakpoints: in case we 3281 // have to restart the target to kill it, we don't want it hitting a 3282 // breakpoint... Only do this if we've stopped, however, since if we 3283 // didn't manage to halt it above, then we're not going to have much luck 3284 // doing this now. 3285 m_thread_list.DiscardThreadPlans(); 3286 DisableAllBreakpointSites(); 3287 } 3288 3289 error = DoDestroy(); 3290 if (error.Success()) { 3291 DidDestroy(); 3292 StopPrivateStateThread(); 3293 } 3294 m_stdio_communication.StopReadThread(); 3295 m_stdio_communication.Disconnect(); 3296 m_stdin_forward = false; 3297 3298 if (m_process_input_reader) { 3299 m_process_input_reader->SetIsDone(true); 3300 m_process_input_reader->Cancel(); 3301 m_process_input_reader.reset(); 3302 } 3303 3304 // If we exited when we were waiting for a process to stop, then forward 3305 // the event here so we don't lose the event 3306 if (exit_event_sp) { 3307 // Directly broadcast our exited event because we shut down our private 3308 // state thread above 3309 BroadcastEvent(exit_event_sp); 3310 } 3311 3312 // If we have been interrupted (to kill us) in the middle of running, we 3313 // may not end up propagating the last events through the event system, in 3314 // which case we might strand the write lock. Unlock it here so when we do 3315 // to tear down the process we don't get an error destroying the lock. 3316 m_public_run_lock.SetStopped(); 3317 } 3318 3319 m_destroy_in_process = false; 3320 3321 return error; 3322 } 3323 3324 Status Process::Signal(int signal) { 3325 Status error(WillSignal()); 3326 if (error.Success()) { 3327 error = DoSignal(signal); 3328 if (error.Success()) 3329 DidSignal(); 3330 } 3331 return error; 3332 } 3333 3334 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3335 assert(signals_sp && "null signals_sp"); 3336 m_unix_signals_sp = signals_sp; 3337 } 3338 3339 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3340 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3341 return m_unix_signals_sp; 3342 } 3343 3344 lldb::ByteOrder Process::GetByteOrder() const { 3345 return GetTarget().GetArchitecture().GetByteOrder(); 3346 } 3347 3348 uint32_t Process::GetAddressByteSize() const { 3349 return GetTarget().GetArchitecture().GetAddressByteSize(); 3350 } 3351 3352 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3353 const StateType state = 3354 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3355 bool return_value = true; 3356 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3357 LIBLLDB_LOG_PROCESS)); 3358 3359 switch (state) { 3360 case eStateDetached: 3361 case eStateExited: 3362 case eStateUnloaded: 3363 m_stdio_communication.SynchronizeWithReadThread(); 3364 m_stdio_communication.StopReadThread(); 3365 m_stdio_communication.Disconnect(); 3366 m_stdin_forward = false; 3367 3368 LLVM_FALLTHROUGH; 3369 case eStateConnected: 3370 case eStateAttaching: 3371 case eStateLaunching: 3372 // These events indicate changes in the state of the debugging session, 3373 // always report them. 3374 return_value = true; 3375 break; 3376 case eStateInvalid: 3377 // We stopped for no apparent reason, don't report it. 3378 return_value = false; 3379 break; 3380 case eStateRunning: 3381 case eStateStepping: 3382 // If we've started the target running, we handle the cases where we are 3383 // already running and where there is a transition from stopped to running 3384 // differently. running -> running: Automatically suppress extra running 3385 // events stopped -> running: Report except when there is one or more no 3386 // votes 3387 // and no yes votes. 3388 SynchronouslyNotifyStateChanged(state); 3389 if (m_force_next_event_delivery) 3390 return_value = true; 3391 else { 3392 switch (m_last_broadcast_state) { 3393 case eStateRunning: 3394 case eStateStepping: 3395 // We always suppress multiple runnings with no PUBLIC stop in between. 3396 return_value = false; 3397 break; 3398 default: 3399 // TODO: make this work correctly. For now always report 3400 // run if we aren't running so we don't miss any running events. If I 3401 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3402 // and hit the breakpoints on multiple threads, then somehow during the 3403 // stepping over of all breakpoints no run gets reported. 3404 3405 // This is a transition from stop to run. 3406 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3407 case eVoteYes: 3408 case eVoteNoOpinion: 3409 return_value = true; 3410 break; 3411 case eVoteNo: 3412 return_value = false; 3413 break; 3414 } 3415 break; 3416 } 3417 } 3418 break; 3419 case eStateStopped: 3420 case eStateCrashed: 3421 case eStateSuspended: 3422 // We've stopped. First see if we're going to restart the target. If we 3423 // are going to stop, then we always broadcast the event. If we aren't 3424 // going to stop, let the thread plans decide if we're going to report this 3425 // event. If no thread has an opinion, we don't report it. 3426 3427 m_stdio_communication.SynchronizeWithReadThread(); 3428 RefreshStateAfterStop(); 3429 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3430 LLDB_LOGF(log, 3431 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3432 "interrupt, state: %s", 3433 static_cast<void *>(event_ptr), StateAsCString(state)); 3434 // Even though we know we are going to stop, we should let the threads 3435 // have a look at the stop, so they can properly set their state. 3436 m_thread_list.ShouldStop(event_ptr); 3437 return_value = true; 3438 } else { 3439 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3440 bool should_resume = false; 3441 3442 // It makes no sense to ask "ShouldStop" if we've already been 3443 // restarted... Asking the thread list is also not likely to go well, 3444 // since we are running again. So in that case just report the event. 3445 3446 if (!was_restarted) 3447 should_resume = !m_thread_list.ShouldStop(event_ptr); 3448 3449 if (was_restarted || should_resume || m_resume_requested) { 3450 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3451 LLDB_LOGF(log, 3452 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3453 "%s was_restarted: %i report_stop_vote: %d.", 3454 should_resume, StateAsCString(state), was_restarted, 3455 report_stop_vote); 3456 3457 switch (report_stop_vote) { 3458 case eVoteYes: 3459 return_value = true; 3460 break; 3461 case eVoteNoOpinion: 3462 case eVoteNo: 3463 return_value = false; 3464 break; 3465 } 3466 3467 if (!was_restarted) { 3468 LLDB_LOGF(log, 3469 "Process::ShouldBroadcastEvent (%p) Restarting process " 3470 "from state: %s", 3471 static_cast<void *>(event_ptr), StateAsCString(state)); 3472 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3473 PrivateResume(); 3474 } 3475 } else { 3476 return_value = true; 3477 SynchronouslyNotifyStateChanged(state); 3478 } 3479 } 3480 break; 3481 } 3482 3483 // Forcing the next event delivery is a one shot deal. So reset it here. 3484 m_force_next_event_delivery = false; 3485 3486 // We do some coalescing of events (for instance two consecutive running 3487 // events get coalesced.) But we only coalesce against events we actually 3488 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3489 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3490 // done, because the PublicState reflects the last event pulled off the 3491 // queue, and there may be several events stacked up on the queue unserviced. 3492 // So the PublicState may not reflect the last broadcasted event yet. 3493 // m_last_broadcast_state gets updated here. 3494 3495 if (return_value) 3496 m_last_broadcast_state = state; 3497 3498 LLDB_LOGF(log, 3499 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3500 "broadcast state: %s - %s", 3501 static_cast<void *>(event_ptr), StateAsCString(state), 3502 StateAsCString(m_last_broadcast_state), 3503 return_value ? "YES" : "NO"); 3504 return return_value; 3505 } 3506 3507 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3508 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3509 3510 bool already_running = PrivateStateThreadIsValid(); 3511 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3512 already_running ? " already running" 3513 : " starting private state thread"); 3514 3515 if (!is_secondary_thread && already_running) 3516 return true; 3517 3518 // Create a thread that watches our internal state and controls which events 3519 // make it to clients (into the DCProcess event queue). 3520 char thread_name[1024]; 3521 uint32_t max_len = llvm::get_max_thread_name_length(); 3522 if (max_len > 0 && max_len <= 30) { 3523 // On platforms with abbreviated thread name lengths, choose thread names 3524 // that fit within the limit. 3525 if (already_running) 3526 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3527 else 3528 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3529 } else { 3530 if (already_running) 3531 snprintf(thread_name, sizeof(thread_name), 3532 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3533 GetID()); 3534 else 3535 snprintf(thread_name, sizeof(thread_name), 3536 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3537 } 3538 3539 // Create the private state thread, and start it running. 3540 PrivateStateThreadArgs *args_ptr = 3541 new PrivateStateThreadArgs(this, is_secondary_thread); 3542 llvm::Expected<HostThread> private_state_thread = 3543 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3544 (void *)args_ptr, 8 * 1024 * 1024); 3545 if (!private_state_thread) { 3546 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3547 "failed to launch host thread: {}", 3548 llvm::toString(private_state_thread.takeError())); 3549 return false; 3550 } 3551 3552 assert(private_state_thread->IsJoinable()); 3553 m_private_state_thread = *private_state_thread; 3554 ResumePrivateStateThread(); 3555 return true; 3556 } 3557 3558 void Process::PausePrivateStateThread() { 3559 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3560 } 3561 3562 void Process::ResumePrivateStateThread() { 3563 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3564 } 3565 3566 void Process::StopPrivateStateThread() { 3567 if (m_private_state_thread.IsJoinable()) 3568 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3569 else { 3570 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3571 LLDB_LOGF( 3572 log, 3573 "Went to stop the private state thread, but it was already invalid."); 3574 } 3575 } 3576 3577 void Process::ControlPrivateStateThread(uint32_t signal) { 3578 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3579 3580 assert(signal == eBroadcastInternalStateControlStop || 3581 signal == eBroadcastInternalStateControlPause || 3582 signal == eBroadcastInternalStateControlResume); 3583 3584 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3585 3586 // Signal the private state thread 3587 if (m_private_state_thread.IsJoinable()) { 3588 // Broadcast the event. 3589 // It is important to do this outside of the if below, because it's 3590 // possible that the thread state is invalid but that the thread is waiting 3591 // on a control event instead of simply being on its way out (this should 3592 // not happen, but it apparently can). 3593 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3594 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3595 m_private_state_control_broadcaster.BroadcastEvent(signal, 3596 event_receipt_sp); 3597 3598 // Wait for the event receipt or for the private state thread to exit 3599 bool receipt_received = false; 3600 if (PrivateStateThreadIsValid()) { 3601 while (!receipt_received) { 3602 // Check for a receipt for n seconds and then check if the private 3603 // state thread is still around. 3604 receipt_received = 3605 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3606 if (!receipt_received) { 3607 // Check if the private state thread is still around. If it isn't 3608 // then we are done waiting 3609 if (!PrivateStateThreadIsValid()) 3610 break; // Private state thread exited or is exiting, we are done 3611 } 3612 } 3613 } 3614 3615 if (signal == eBroadcastInternalStateControlStop) { 3616 thread_result_t result = {}; 3617 m_private_state_thread.Join(&result); 3618 m_private_state_thread.Reset(); 3619 } 3620 } else { 3621 LLDB_LOGF( 3622 log, 3623 "Private state thread already dead, no need to signal it to stop."); 3624 } 3625 } 3626 3627 void Process::SendAsyncInterrupt() { 3628 if (PrivateStateThreadIsValid()) 3629 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3630 nullptr); 3631 else 3632 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3633 } 3634 3635 void Process::HandlePrivateEvent(EventSP &event_sp) { 3636 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3637 m_resume_requested = false; 3638 3639 const StateType new_state = 3640 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3641 3642 // First check to see if anybody wants a shot at this event: 3643 if (m_next_event_action_up) { 3644 NextEventAction::EventActionResult action_result = 3645 m_next_event_action_up->PerformAction(event_sp); 3646 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3647 3648 switch (action_result) { 3649 case NextEventAction::eEventActionSuccess: 3650 SetNextEventAction(nullptr); 3651 break; 3652 3653 case NextEventAction::eEventActionRetry: 3654 break; 3655 3656 case NextEventAction::eEventActionExit: 3657 // Handle Exiting Here. If we already got an exited event, we should 3658 // just propagate it. Otherwise, swallow this event, and set our state 3659 // to exit so the next event will kill us. 3660 if (new_state != eStateExited) { 3661 // FIXME: should cons up an exited event, and discard this one. 3662 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3663 SetNextEventAction(nullptr); 3664 return; 3665 } 3666 SetNextEventAction(nullptr); 3667 break; 3668 } 3669 } 3670 3671 // See if we should broadcast this state to external clients? 3672 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3673 3674 if (should_broadcast) { 3675 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3676 if (log) { 3677 LLDB_LOGF(log, 3678 "Process::%s (pid = %" PRIu64 3679 ") broadcasting new state %s (old state %s) to %s", 3680 __FUNCTION__, GetID(), StateAsCString(new_state), 3681 StateAsCString(GetState()), 3682 is_hijacked ? "hijacked" : "public"); 3683 } 3684 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3685 if (StateIsRunningState(new_state)) { 3686 // Only push the input handler if we aren't fowarding events, as this 3687 // means the curses GUI is in use... Or don't push it if we are launching 3688 // since it will come up stopped. 3689 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3690 new_state != eStateLaunching && new_state != eStateAttaching) { 3691 PushProcessIOHandler(); 3692 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3693 eBroadcastAlways); 3694 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3695 __FUNCTION__, m_iohandler_sync.GetValue()); 3696 } 3697 } else if (StateIsStoppedState(new_state, false)) { 3698 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3699 // If the lldb_private::Debugger is handling the events, we don't want 3700 // to pop the process IOHandler here, we want to do it when we receive 3701 // the stopped event so we can carefully control when the process 3702 // IOHandler is popped because when we stop we want to display some 3703 // text stating how and why we stopped, then maybe some 3704 // process/thread/frame info, and then we want the "(lldb) " prompt to 3705 // show up. If we pop the process IOHandler here, then we will cause 3706 // the command interpreter to become the top IOHandler after the 3707 // process pops off and it will update its prompt right away... See the 3708 // Debugger.cpp file where it calls the function as 3709 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3710 // Otherwise we end up getting overlapping "(lldb) " prompts and 3711 // garbled output. 3712 // 3713 // If we aren't handling the events in the debugger (which is indicated 3714 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3715 // we are hijacked, then we always pop the process IO handler manually. 3716 // Hijacking happens when the internal process state thread is running 3717 // thread plans, or when commands want to run in synchronous mode and 3718 // they call "process->WaitForProcessToStop()". An example of something 3719 // that will hijack the events is a simple expression: 3720 // 3721 // (lldb) expr (int)puts("hello") 3722 // 3723 // This will cause the internal process state thread to resume and halt 3724 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3725 // events) and we do need the IO handler to be pushed and popped 3726 // correctly. 3727 3728 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3729 PopProcessIOHandler(); 3730 } 3731 } 3732 3733 BroadcastEvent(event_sp); 3734 } else { 3735 if (log) { 3736 LLDB_LOGF( 3737 log, 3738 "Process::%s (pid = %" PRIu64 3739 ") suppressing state %s (old state %s): should_broadcast == false", 3740 __FUNCTION__, GetID(), StateAsCString(new_state), 3741 StateAsCString(GetState())); 3742 } 3743 } 3744 } 3745 3746 Status Process::HaltPrivate() { 3747 EventSP event_sp; 3748 Status error(WillHalt()); 3749 if (error.Fail()) 3750 return error; 3751 3752 // Ask the process subclass to actually halt our process 3753 bool caused_stop; 3754 error = DoHalt(caused_stop); 3755 3756 DidHalt(); 3757 return error; 3758 } 3759 3760 thread_result_t Process::PrivateStateThread(void *arg) { 3761 std::unique_ptr<PrivateStateThreadArgs> args_up( 3762 static_cast<PrivateStateThreadArgs *>(arg)); 3763 thread_result_t result = 3764 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3765 return result; 3766 } 3767 3768 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3769 bool control_only = true; 3770 3771 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3772 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3773 __FUNCTION__, static_cast<void *>(this), GetID()); 3774 3775 bool exit_now = false; 3776 bool interrupt_requested = false; 3777 while (!exit_now) { 3778 EventSP event_sp; 3779 GetEventsPrivate(event_sp, llvm::None, control_only); 3780 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3781 LLDB_LOGF(log, 3782 "Process::%s (arg = %p, pid = %" PRIu64 3783 ") got a control event: %d", 3784 __FUNCTION__, static_cast<void *>(this), GetID(), 3785 event_sp->GetType()); 3786 3787 switch (event_sp->GetType()) { 3788 case eBroadcastInternalStateControlStop: 3789 exit_now = true; 3790 break; // doing any internal state management below 3791 3792 case eBroadcastInternalStateControlPause: 3793 control_only = true; 3794 break; 3795 3796 case eBroadcastInternalStateControlResume: 3797 control_only = false; 3798 break; 3799 } 3800 3801 continue; 3802 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3803 if (m_public_state.GetValue() == eStateAttaching) { 3804 LLDB_LOGF(log, 3805 "Process::%s (arg = %p, pid = %" PRIu64 3806 ") woke up with an interrupt while attaching - " 3807 "forwarding interrupt.", 3808 __FUNCTION__, static_cast<void *>(this), GetID()); 3809 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3810 } else if (StateIsRunningState(m_last_broadcast_state)) { 3811 LLDB_LOGF(log, 3812 "Process::%s (arg = %p, pid = %" PRIu64 3813 ") woke up with an interrupt - Halting.", 3814 __FUNCTION__, static_cast<void *>(this), GetID()); 3815 Status error = HaltPrivate(); 3816 if (error.Fail() && log) 3817 LLDB_LOGF(log, 3818 "Process::%s (arg = %p, pid = %" PRIu64 3819 ") failed to halt the process: %s", 3820 __FUNCTION__, static_cast<void *>(this), GetID(), 3821 error.AsCString()); 3822 // Halt should generate a stopped event. Make a note of the fact that 3823 // we were doing the interrupt, so we can set the interrupted flag 3824 // after we receive the event. We deliberately set this to true even if 3825 // HaltPrivate failed, so that we can interrupt on the next natural 3826 // stop. 3827 interrupt_requested = true; 3828 } else { 3829 // This can happen when someone (e.g. Process::Halt) sees that we are 3830 // running and sends an interrupt request, but the process actually 3831 // stops before we receive it. In that case, we can just ignore the 3832 // request. We use m_last_broadcast_state, because the Stopped event 3833 // may not have been popped of the event queue yet, which is when the 3834 // public state gets updated. 3835 LLDB_LOGF(log, 3836 "Process::%s ignoring interrupt as we have already stopped.", 3837 __FUNCTION__); 3838 } 3839 continue; 3840 } 3841 3842 const StateType internal_state = 3843 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3844 3845 if (internal_state != eStateInvalid) { 3846 if (m_clear_thread_plans_on_stop && 3847 StateIsStoppedState(internal_state, true)) { 3848 m_clear_thread_plans_on_stop = false; 3849 m_thread_list.DiscardThreadPlans(); 3850 } 3851 3852 if (interrupt_requested) { 3853 if (StateIsStoppedState(internal_state, true)) { 3854 // We requested the interrupt, so mark this as such in the stop event 3855 // so clients can tell an interrupted process from a natural stop 3856 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3857 interrupt_requested = false; 3858 } else if (log) { 3859 LLDB_LOGF(log, 3860 "Process::%s interrupt_requested, but a non-stopped " 3861 "state '%s' received.", 3862 __FUNCTION__, StateAsCString(internal_state)); 3863 } 3864 } 3865 3866 HandlePrivateEvent(event_sp); 3867 } 3868 3869 if (internal_state == eStateInvalid || internal_state == eStateExited || 3870 internal_state == eStateDetached) { 3871 LLDB_LOGF(log, 3872 "Process::%s (arg = %p, pid = %" PRIu64 3873 ") about to exit with internal state %s...", 3874 __FUNCTION__, static_cast<void *>(this), GetID(), 3875 StateAsCString(internal_state)); 3876 3877 break; 3878 } 3879 } 3880 3881 // Verify log is still enabled before attempting to write to it... 3882 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3883 __FUNCTION__, static_cast<void *>(this), GetID()); 3884 3885 // If we are a secondary thread, then the primary thread we are working for 3886 // will have already acquired the public_run_lock, and isn't done with what 3887 // it was doing yet, so don't try to change it on the way out. 3888 if (!is_secondary_thread) 3889 m_public_run_lock.SetStopped(); 3890 return {}; 3891 } 3892 3893 // Process Event Data 3894 3895 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 3896 3897 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3898 StateType state) 3899 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3900 m_update_state(0), m_interrupted(false) { 3901 if (process_sp) 3902 m_process_wp = process_sp; 3903 } 3904 3905 Process::ProcessEventData::~ProcessEventData() = default; 3906 3907 ConstString Process::ProcessEventData::GetFlavorString() { 3908 static ConstString g_flavor("Process::ProcessEventData"); 3909 return g_flavor; 3910 } 3911 3912 ConstString Process::ProcessEventData::GetFlavor() const { 3913 return ProcessEventData::GetFlavorString(); 3914 } 3915 3916 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3917 bool &found_valid_stopinfo) { 3918 found_valid_stopinfo = false; 3919 3920 ProcessSP process_sp(m_process_wp.lock()); 3921 if (!process_sp) 3922 return false; 3923 3924 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3925 uint32_t num_threads = curr_thread_list.GetSize(); 3926 uint32_t idx; 3927 3928 // The actions might change one of the thread's stop_info's opinions about 3929 // whether we should stop the process, so we need to query that as we go. 3930 3931 // One other complication here, is that we try to catch any case where the 3932 // target has run (except for expressions) and immediately exit, but if we 3933 // get that wrong (which is possible) then the thread list might have 3934 // changed, and that would cause our iteration here to crash. We could 3935 // make a copy of the thread list, but we'd really like to also know if it 3936 // has changed at all, so we make up a vector of the thread ID's and check 3937 // what we get back against this list & bag out if anything differs. 3938 ThreadList not_suspended_thread_list(process_sp.get()); 3939 std::vector<uint32_t> thread_index_array(num_threads); 3940 uint32_t not_suspended_idx = 0; 3941 for (idx = 0; idx < num_threads; ++idx) { 3942 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3943 3944 /* 3945 Filter out all suspended threads, they could not be the reason 3946 of stop and no need to perform any actions on them. 3947 */ 3948 if (thread_sp->GetResumeState() != eStateSuspended) { 3949 not_suspended_thread_list.AddThread(thread_sp); 3950 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3951 not_suspended_idx++; 3952 } 3953 } 3954 3955 // Use this to track whether we should continue from here. We will only 3956 // continue the target running if no thread says we should stop. Of course 3957 // if some thread's PerformAction actually sets the target running, then it 3958 // doesn't matter what the other threads say... 3959 3960 bool still_should_stop = false; 3961 3962 // Sometimes - for instance if we have a bug in the stub we are talking to, 3963 // we stop but no thread has a valid stop reason. In that case we should 3964 // just stop, because we have no way of telling what the right thing to do 3965 // is, and it's better to let the user decide than continue behind their 3966 // backs. 3967 3968 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3969 curr_thread_list = process_sp->GetThreadList(); 3970 if (curr_thread_list.GetSize() != num_threads) { 3971 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3972 LIBLLDB_LOG_PROCESS)); 3973 LLDB_LOGF( 3974 log, 3975 "Number of threads changed from %u to %u while processing event.", 3976 num_threads, curr_thread_list.GetSize()); 3977 break; 3978 } 3979 3980 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3981 3982 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3983 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3984 LIBLLDB_LOG_PROCESS)); 3985 LLDB_LOGF(log, 3986 "The thread at position %u changed from %u to %u while " 3987 "processing event.", 3988 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3989 break; 3990 } 3991 3992 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3993 if (stop_info_sp && stop_info_sp->IsValid()) { 3994 found_valid_stopinfo = true; 3995 bool this_thread_wants_to_stop; 3996 if (stop_info_sp->GetOverrideShouldStop()) { 3997 this_thread_wants_to_stop = 3998 stop_info_sp->GetOverriddenShouldStopValue(); 3999 } else { 4000 stop_info_sp->PerformAction(event_ptr); 4001 // The stop action might restart the target. If it does, then we 4002 // want to mark that in the event so that whoever is receiving it 4003 // will know to wait for the running event and reflect that state 4004 // appropriately. We also need to stop processing actions, since they 4005 // aren't expecting the target to be running. 4006 4007 // FIXME: we might have run. 4008 if (stop_info_sp->HasTargetRunSinceMe()) { 4009 SetRestarted(true); 4010 break; 4011 } 4012 4013 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4014 } 4015 4016 if (!still_should_stop) 4017 still_should_stop = this_thread_wants_to_stop; 4018 } 4019 } 4020 4021 return still_should_stop; 4022 } 4023 4024 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4025 ProcessSP process_sp(m_process_wp.lock()); 4026 4027 if (!process_sp) 4028 return; 4029 4030 // This function gets called twice for each event, once when the event gets 4031 // pulled off of the private process event queue, and then any number of 4032 // times, first when it gets pulled off of the public event queue, then other 4033 // times when we're pretending that this is where we stopped at the end of 4034 // expression evaluation. m_update_state is used to distinguish these three 4035 // cases; it is 0 when we're just pulling it off for private handling, and > 4036 // 1 for expression evaluation, and we don't want to do the breakpoint 4037 // command handling then. 4038 if (m_update_state != 1) 4039 return; 4040 4041 process_sp->SetPublicState( 4042 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4043 4044 if (m_state == eStateStopped && !m_restarted) { 4045 // Let process subclasses know we are about to do a public stop and do 4046 // anything they might need to in order to speed up register and memory 4047 // accesses. 4048 process_sp->WillPublicStop(); 4049 } 4050 4051 // If this is a halt event, even if the halt stopped with some reason other 4052 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4053 // the halt request came through) don't do the StopInfo actions, as they may 4054 // end up restarting the process. 4055 if (m_interrupted) 4056 return; 4057 4058 // If we're not stopped or have restarted, then skip the StopInfo actions: 4059 if (m_state != eStateStopped || m_restarted) { 4060 return; 4061 } 4062 4063 bool does_anybody_have_an_opinion = false; 4064 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4065 4066 if (GetRestarted()) { 4067 return; 4068 } 4069 4070 if (!still_should_stop && does_anybody_have_an_opinion) { 4071 // We've been asked to continue, so do that here. 4072 SetRestarted(true); 4073 // Use the public resume method here, since this is just extending a 4074 // public resume. 4075 process_sp->PrivateResume(); 4076 } else { 4077 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4078 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4079 4080 if (!hijacked) { 4081 // If we didn't restart, run the Stop Hooks here. 4082 // Don't do that if state changed events aren't hooked up to the 4083 // public (or SyncResume) broadcasters. StopHooks are just for 4084 // real public stops. They might also restart the target, 4085 // so watch for that. 4086 if (process_sp->GetTarget().RunStopHooks()) 4087 SetRestarted(true); 4088 } 4089 } 4090 } 4091 4092 void Process::ProcessEventData::Dump(Stream *s) const { 4093 ProcessSP process_sp(m_process_wp.lock()); 4094 4095 if (process_sp) 4096 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4097 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4098 else 4099 s->PutCString(" process = NULL, "); 4100 4101 s->Printf("state = %s", StateAsCString(GetState())); 4102 } 4103 4104 const Process::ProcessEventData * 4105 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4106 if (event_ptr) { 4107 const EventData *event_data = event_ptr->GetData(); 4108 if (event_data && 4109 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4110 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4111 } 4112 return nullptr; 4113 } 4114 4115 ProcessSP 4116 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4117 ProcessSP process_sp; 4118 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4119 if (data) 4120 process_sp = data->GetProcessSP(); 4121 return process_sp; 4122 } 4123 4124 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4125 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4126 if (data == nullptr) 4127 return eStateInvalid; 4128 else 4129 return data->GetState(); 4130 } 4131 4132 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4133 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4134 if (data == nullptr) 4135 return false; 4136 else 4137 return data->GetRestarted(); 4138 } 4139 4140 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4141 bool new_value) { 4142 ProcessEventData *data = 4143 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4144 if (data != nullptr) 4145 data->SetRestarted(new_value); 4146 } 4147 4148 size_t 4149 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4150 ProcessEventData *data = 4151 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4152 if (data != nullptr) 4153 return data->GetNumRestartedReasons(); 4154 else 4155 return 0; 4156 } 4157 4158 const char * 4159 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4160 size_t idx) { 4161 ProcessEventData *data = 4162 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4163 if (data != nullptr) 4164 return data->GetRestartedReasonAtIndex(idx); 4165 else 4166 return nullptr; 4167 } 4168 4169 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4170 const char *reason) { 4171 ProcessEventData *data = 4172 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4173 if (data != nullptr) 4174 data->AddRestartedReason(reason); 4175 } 4176 4177 bool Process::ProcessEventData::GetInterruptedFromEvent( 4178 const Event *event_ptr) { 4179 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4180 if (data == nullptr) 4181 return false; 4182 else 4183 return data->GetInterrupted(); 4184 } 4185 4186 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4187 bool new_value) { 4188 ProcessEventData *data = 4189 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4190 if (data != nullptr) 4191 data->SetInterrupted(new_value); 4192 } 4193 4194 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4195 ProcessEventData *data = 4196 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4197 if (data) { 4198 data->SetUpdateStateOnRemoval(); 4199 return true; 4200 } 4201 return false; 4202 } 4203 4204 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4205 4206 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4207 exe_ctx.SetTargetPtr(&GetTarget()); 4208 exe_ctx.SetProcessPtr(this); 4209 exe_ctx.SetThreadPtr(nullptr); 4210 exe_ctx.SetFramePtr(nullptr); 4211 } 4212 4213 // uint32_t 4214 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4215 // std::vector<lldb::pid_t> &pids) 4216 //{ 4217 // return 0; 4218 //} 4219 // 4220 // ArchSpec 4221 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4222 //{ 4223 // return Host::GetArchSpecForExistingProcess (pid); 4224 //} 4225 // 4226 // ArchSpec 4227 // Process::GetArchSpecForExistingProcess (const char *process_name) 4228 //{ 4229 // return Host::GetArchSpecForExistingProcess (process_name); 4230 //} 4231 4232 void Process::AppendSTDOUT(const char *s, size_t len) { 4233 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4234 m_stdout_data.append(s, len); 4235 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4236 new ProcessEventData(shared_from_this(), GetState())); 4237 } 4238 4239 void Process::AppendSTDERR(const char *s, size_t len) { 4240 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4241 m_stderr_data.append(s, len); 4242 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4243 new ProcessEventData(shared_from_this(), GetState())); 4244 } 4245 4246 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4247 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4248 m_profile_data.push_back(one_profile_data); 4249 BroadcastEventIfUnique(eBroadcastBitProfileData, 4250 new ProcessEventData(shared_from_this(), GetState())); 4251 } 4252 4253 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4254 const StructuredDataPluginSP &plugin_sp) { 4255 BroadcastEvent( 4256 eBroadcastBitStructuredData, 4257 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4258 } 4259 4260 StructuredDataPluginSP 4261 Process::GetStructuredDataPlugin(ConstString type_name) const { 4262 auto find_it = m_structured_data_plugin_map.find(type_name); 4263 if (find_it != m_structured_data_plugin_map.end()) 4264 return find_it->second; 4265 else 4266 return StructuredDataPluginSP(); 4267 } 4268 4269 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4270 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4271 if (m_profile_data.empty()) 4272 return 0; 4273 4274 std::string &one_profile_data = m_profile_data.front(); 4275 size_t bytes_available = one_profile_data.size(); 4276 if (bytes_available > 0) { 4277 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4278 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4279 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4280 if (bytes_available > buf_size) { 4281 memcpy(buf, one_profile_data.c_str(), buf_size); 4282 one_profile_data.erase(0, buf_size); 4283 bytes_available = buf_size; 4284 } else { 4285 memcpy(buf, one_profile_data.c_str(), bytes_available); 4286 m_profile_data.erase(m_profile_data.begin()); 4287 } 4288 } 4289 return bytes_available; 4290 } 4291 4292 // Process STDIO 4293 4294 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4295 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4296 size_t bytes_available = m_stdout_data.size(); 4297 if (bytes_available > 0) { 4298 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4299 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4300 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4301 if (bytes_available > buf_size) { 4302 memcpy(buf, m_stdout_data.c_str(), buf_size); 4303 m_stdout_data.erase(0, buf_size); 4304 bytes_available = buf_size; 4305 } else { 4306 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4307 m_stdout_data.clear(); 4308 } 4309 } 4310 return bytes_available; 4311 } 4312 4313 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4314 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4315 size_t bytes_available = m_stderr_data.size(); 4316 if (bytes_available > 0) { 4317 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4318 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4319 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4320 if (bytes_available > buf_size) { 4321 memcpy(buf, m_stderr_data.c_str(), buf_size); 4322 m_stderr_data.erase(0, buf_size); 4323 bytes_available = buf_size; 4324 } else { 4325 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4326 m_stderr_data.clear(); 4327 } 4328 } 4329 return bytes_available; 4330 } 4331 4332 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4333 size_t src_len) { 4334 Process *process = (Process *)baton; 4335 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4336 } 4337 4338 class IOHandlerProcessSTDIO : public IOHandler { 4339 public: 4340 IOHandlerProcessSTDIO(Process *process, int write_fd) 4341 : IOHandler(process->GetTarget().GetDebugger(), 4342 IOHandler::Type::ProcessIO), 4343 m_process(process), 4344 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4345 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4346 m_pipe.CreateNew(false); 4347 } 4348 4349 ~IOHandlerProcessSTDIO() override = default; 4350 4351 // Each IOHandler gets to run until it is done. It should read data from the 4352 // "in" and place output into "out" and "err and return when done. 4353 void Run() override { 4354 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4355 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4356 SetIsDone(true); 4357 return; 4358 } 4359 4360 SetIsDone(false); 4361 const int read_fd = m_read_file.GetDescriptor(); 4362 Terminal terminal(read_fd); 4363 TerminalState terminal_state(terminal, false); 4364 // FIXME: error handling? 4365 llvm::consumeError(terminal.SetCanonical(false)); 4366 llvm::consumeError(terminal.SetEcho(false)); 4367 // FD_ZERO, FD_SET are not supported on windows 4368 #ifndef _WIN32 4369 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4370 m_is_running = true; 4371 while (!GetIsDone()) { 4372 SelectHelper select_helper; 4373 select_helper.FDSetRead(read_fd); 4374 select_helper.FDSetRead(pipe_read_fd); 4375 Status error = select_helper.Select(); 4376 4377 if (error.Fail()) { 4378 SetIsDone(true); 4379 } else { 4380 char ch = 0; 4381 size_t n; 4382 if (select_helper.FDIsSetRead(read_fd)) { 4383 n = 1; 4384 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4385 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4386 SetIsDone(true); 4387 } else 4388 SetIsDone(true); 4389 } 4390 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4391 size_t bytes_read; 4392 // Consume the interrupt byte 4393 Status error = m_pipe.Read(&ch, 1, bytes_read); 4394 if (error.Success()) { 4395 switch (ch) { 4396 case 'q': 4397 SetIsDone(true); 4398 break; 4399 case 'i': 4400 if (StateIsRunningState(m_process->GetState())) 4401 m_process->SendAsyncInterrupt(); 4402 break; 4403 } 4404 } 4405 } 4406 } 4407 } 4408 m_is_running = false; 4409 #endif 4410 } 4411 4412 void Cancel() override { 4413 SetIsDone(true); 4414 // Only write to our pipe to cancel if we are in 4415 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4416 // is being run from the command interpreter: 4417 // 4418 // (lldb) step_process_thousands_of_times 4419 // 4420 // In this case the command interpreter will be in the middle of handling 4421 // the command and if the process pushes and pops the IOHandler thousands 4422 // of times, we can end up writing to m_pipe without ever consuming the 4423 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4424 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4425 if (m_is_running) { 4426 char ch = 'q'; // Send 'q' for quit 4427 size_t bytes_written = 0; 4428 m_pipe.Write(&ch, 1, bytes_written); 4429 } 4430 } 4431 4432 bool Interrupt() override { 4433 // Do only things that are safe to do in an interrupt context (like in a 4434 // SIGINT handler), like write 1 byte to a file descriptor. This will 4435 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4436 // that was written to the pipe and then call 4437 // m_process->SendAsyncInterrupt() from a much safer location in code. 4438 if (m_active) { 4439 char ch = 'i'; // Send 'i' for interrupt 4440 size_t bytes_written = 0; 4441 Status result = m_pipe.Write(&ch, 1, bytes_written); 4442 return result.Success(); 4443 } else { 4444 // This IOHandler might be pushed on the stack, but not being run 4445 // currently so do the right thing if we aren't actively watching for 4446 // STDIN by sending the interrupt to the process. Otherwise the write to 4447 // the pipe above would do nothing. This can happen when the command 4448 // interpreter is running and gets a "expression ...". It will be on the 4449 // IOHandler thread and sending the input is complete to the delegate 4450 // which will cause the expression to run, which will push the process IO 4451 // handler, but not run it. 4452 4453 if (StateIsRunningState(m_process->GetState())) { 4454 m_process->SendAsyncInterrupt(); 4455 return true; 4456 } 4457 } 4458 return false; 4459 } 4460 4461 void GotEOF() override {} 4462 4463 protected: 4464 Process *m_process; 4465 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4466 NativeFile m_write_file; // Write to this file (usually the master pty for 4467 // getting io to debuggee) 4468 Pipe m_pipe; 4469 std::atomic<bool> m_is_running{false}; 4470 }; 4471 4472 void Process::SetSTDIOFileDescriptor(int fd) { 4473 // First set up the Read Thread for reading/handling process I/O 4474 m_stdio_communication.SetConnection( 4475 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4476 if (m_stdio_communication.IsConnected()) { 4477 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4478 STDIOReadThreadBytesReceived, this); 4479 m_stdio_communication.StartReadThread(); 4480 4481 // Now read thread is set up, set up input reader. 4482 4483 if (!m_process_input_reader) 4484 m_process_input_reader = 4485 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4486 } 4487 } 4488 4489 bool Process::ProcessIOHandlerIsActive() { 4490 IOHandlerSP io_handler_sp(m_process_input_reader); 4491 if (io_handler_sp) 4492 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4493 return false; 4494 } 4495 bool Process::PushProcessIOHandler() { 4496 IOHandlerSP io_handler_sp(m_process_input_reader); 4497 if (io_handler_sp) { 4498 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4499 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4500 4501 io_handler_sp->SetIsDone(false); 4502 // If we evaluate an utility function, then we don't cancel the current 4503 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4504 // existing IOHandler that potentially provides the user interface (e.g. 4505 // the IOHandler for Editline). 4506 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4507 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4508 cancel_top_handler); 4509 return true; 4510 } 4511 return false; 4512 } 4513 4514 bool Process::PopProcessIOHandler() { 4515 IOHandlerSP io_handler_sp(m_process_input_reader); 4516 if (io_handler_sp) 4517 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4518 return false; 4519 } 4520 4521 // The process needs to know about installed plug-ins 4522 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4523 4524 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4525 4526 namespace { 4527 // RestorePlanState is used to record the "is private", "is master" and "okay 4528 // to discard" fields of the plan we are running, and reset it on Clean or on 4529 // destruction. It will only reset the state once, so you can call Clean and 4530 // then monkey with the state and it won't get reset on you again. 4531 4532 class RestorePlanState { 4533 public: 4534 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4535 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4536 if (m_thread_plan_sp) { 4537 m_private = m_thread_plan_sp->GetPrivate(); 4538 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4539 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4540 } 4541 } 4542 4543 ~RestorePlanState() { Clean(); } 4544 4545 void Clean() { 4546 if (!m_already_reset && m_thread_plan_sp) { 4547 m_already_reset = true; 4548 m_thread_plan_sp->SetPrivate(m_private); 4549 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4550 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4551 } 4552 } 4553 4554 private: 4555 lldb::ThreadPlanSP m_thread_plan_sp; 4556 bool m_already_reset; 4557 bool m_private; 4558 bool m_is_master; 4559 bool m_okay_to_discard; 4560 }; 4561 } // anonymous namespace 4562 4563 static microseconds 4564 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4565 const milliseconds default_one_thread_timeout(250); 4566 4567 // If the overall wait is forever, then we don't need to worry about it. 4568 if (!options.GetTimeout()) { 4569 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4570 : default_one_thread_timeout; 4571 } 4572 4573 // If the one thread timeout is set, use it. 4574 if (options.GetOneThreadTimeout()) 4575 return *options.GetOneThreadTimeout(); 4576 4577 // Otherwise use half the total timeout, bounded by the 4578 // default_one_thread_timeout. 4579 return std::min<microseconds>(default_one_thread_timeout, 4580 *options.GetTimeout() / 2); 4581 } 4582 4583 static Timeout<std::micro> 4584 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4585 bool before_first_timeout) { 4586 // If we are going to run all threads the whole time, or if we are only going 4587 // to run one thread, we can just return the overall timeout. 4588 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4589 return options.GetTimeout(); 4590 4591 if (before_first_timeout) 4592 return GetOneThreadExpressionTimeout(options); 4593 4594 if (!options.GetTimeout()) 4595 return llvm::None; 4596 else 4597 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4598 } 4599 4600 static llvm::Optional<ExpressionResults> 4601 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4602 RestorePlanState &restorer, const EventSP &event_sp, 4603 EventSP &event_to_broadcast_sp, 4604 const EvaluateExpressionOptions &options, 4605 bool handle_interrupts) { 4606 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4607 4608 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4609 .GetProcessSP() 4610 ->GetThreadList() 4611 .FindThreadByID(thread_id); 4612 if (!thread_sp) { 4613 LLDB_LOG(log, 4614 "The thread on which we were running the " 4615 "expression: tid = {0}, exited while " 4616 "the expression was running.", 4617 thread_id); 4618 return eExpressionThreadVanished; 4619 } 4620 4621 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4622 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4623 LLDB_LOG(log, "execution completed successfully"); 4624 4625 // Restore the plan state so it will get reported as intended when we are 4626 // done. 4627 restorer.Clean(); 4628 return eExpressionCompleted; 4629 } 4630 4631 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4632 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4633 stop_info_sp->ShouldNotify(event_sp.get())) { 4634 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4635 if (!options.DoesIgnoreBreakpoints()) { 4636 // Restore the plan state and then force Private to false. We are going 4637 // to stop because of this plan so we need it to become a public plan or 4638 // it won't report correctly when we continue to its termination later 4639 // on. 4640 restorer.Clean(); 4641 thread_plan_sp->SetPrivate(false); 4642 event_to_broadcast_sp = event_sp; 4643 } 4644 return eExpressionHitBreakpoint; 4645 } 4646 4647 if (!handle_interrupts && 4648 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4649 return llvm::None; 4650 4651 LLDB_LOG(log, "thread plan did not successfully complete"); 4652 if (!options.DoesUnwindOnError()) 4653 event_to_broadcast_sp = event_sp; 4654 return eExpressionInterrupted; 4655 } 4656 4657 ExpressionResults 4658 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4659 lldb::ThreadPlanSP &thread_plan_sp, 4660 const EvaluateExpressionOptions &options, 4661 DiagnosticManager &diagnostic_manager) { 4662 ExpressionResults return_value = eExpressionSetupError; 4663 4664 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4665 4666 if (!thread_plan_sp) { 4667 diagnostic_manager.PutString( 4668 eDiagnosticSeverityError, 4669 "RunThreadPlan called with empty thread plan."); 4670 return eExpressionSetupError; 4671 } 4672 4673 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4674 diagnostic_manager.PutString( 4675 eDiagnosticSeverityError, 4676 "RunThreadPlan called with an invalid thread plan."); 4677 return eExpressionSetupError; 4678 } 4679 4680 if (exe_ctx.GetProcessPtr() != this) { 4681 diagnostic_manager.PutString(eDiagnosticSeverityError, 4682 "RunThreadPlan called on wrong process."); 4683 return eExpressionSetupError; 4684 } 4685 4686 Thread *thread = exe_ctx.GetThreadPtr(); 4687 if (thread == nullptr) { 4688 diagnostic_manager.PutString(eDiagnosticSeverityError, 4689 "RunThreadPlan called with invalid thread."); 4690 return eExpressionSetupError; 4691 } 4692 4693 // Record the thread's id so we can tell when a thread we were using 4694 // to run the expression exits during the expression evaluation. 4695 lldb::tid_t expr_thread_id = thread->GetID(); 4696 4697 // We need to change some of the thread plan attributes for the thread plan 4698 // runner. This will restore them when we are done: 4699 4700 RestorePlanState thread_plan_restorer(thread_plan_sp); 4701 4702 // We rely on the thread plan we are running returning "PlanCompleted" if 4703 // when it successfully completes. For that to be true the plan can't be 4704 // private - since private plans suppress themselves in the GetCompletedPlan 4705 // call. 4706 4707 thread_plan_sp->SetPrivate(false); 4708 4709 // The plans run with RunThreadPlan also need to be terminal master plans or 4710 // when they are done we will end up asking the plan above us whether we 4711 // should stop, which may give the wrong answer. 4712 4713 thread_plan_sp->SetIsMasterPlan(true); 4714 thread_plan_sp->SetOkayToDiscard(false); 4715 4716 // If we are running some utility expression for LLDB, we now have to mark 4717 // this in the ProcesModID of this process. This RAII takes care of marking 4718 // and reverting the mark it once we are done running the expression. 4719 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4720 4721 if (m_private_state.GetValue() != eStateStopped) { 4722 diagnostic_manager.PutString( 4723 eDiagnosticSeverityError, 4724 "RunThreadPlan called while the private state was not stopped."); 4725 return eExpressionSetupError; 4726 } 4727 4728 // Save the thread & frame from the exe_ctx for restoration after we run 4729 const uint32_t thread_idx_id = thread->GetIndexID(); 4730 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4731 if (!selected_frame_sp) { 4732 thread->SetSelectedFrame(nullptr); 4733 selected_frame_sp = thread->GetSelectedFrame(); 4734 if (!selected_frame_sp) { 4735 diagnostic_manager.Printf( 4736 eDiagnosticSeverityError, 4737 "RunThreadPlan called without a selected frame on thread %d", 4738 thread_idx_id); 4739 return eExpressionSetupError; 4740 } 4741 } 4742 4743 // Make sure the timeout values make sense. The one thread timeout needs to 4744 // be smaller than the overall timeout. 4745 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4746 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4747 diagnostic_manager.PutString(eDiagnosticSeverityError, 4748 "RunThreadPlan called with one thread " 4749 "timeout greater than total timeout"); 4750 return eExpressionSetupError; 4751 } 4752 4753 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4754 4755 // N.B. Running the target may unset the currently selected thread and frame. 4756 // We don't want to do that either, so we should arrange to reset them as 4757 // well. 4758 4759 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4760 4761 uint32_t selected_tid; 4762 StackID selected_stack_id; 4763 if (selected_thread_sp) { 4764 selected_tid = selected_thread_sp->GetIndexID(); 4765 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4766 } else { 4767 selected_tid = LLDB_INVALID_THREAD_ID; 4768 } 4769 4770 HostThread backup_private_state_thread; 4771 lldb::StateType old_state = eStateInvalid; 4772 lldb::ThreadPlanSP stopper_base_plan_sp; 4773 4774 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4775 LIBLLDB_LOG_PROCESS)); 4776 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4777 // Yikes, we are running on the private state thread! So we can't wait for 4778 // public events on this thread, since we are the thread that is generating 4779 // public events. The simplest thing to do is to spin up a temporary thread 4780 // to handle private state thread events while we are fielding public 4781 // events here. 4782 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4783 "another state thread to handle the events."); 4784 4785 backup_private_state_thread = m_private_state_thread; 4786 4787 // One other bit of business: we want to run just this thread plan and 4788 // anything it pushes, and then stop, returning control here. But in the 4789 // normal course of things, the plan above us on the stack would be given a 4790 // shot at the stop event before deciding to stop, and we don't want that. 4791 // So we insert a "stopper" base plan on the stack before the plan we want 4792 // to run. Since base plans always stop and return control to the user, 4793 // that will do just what we want. 4794 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4795 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4796 // Have to make sure our public state is stopped, since otherwise the 4797 // reporting logic below doesn't work correctly. 4798 old_state = m_public_state.GetValue(); 4799 m_public_state.SetValueNoLock(eStateStopped); 4800 4801 // Now spin up the private state thread: 4802 StartPrivateStateThread(true); 4803 } 4804 4805 thread->QueueThreadPlan( 4806 thread_plan_sp, false); // This used to pass "true" does that make sense? 4807 4808 if (options.GetDebug()) { 4809 // In this case, we aren't actually going to run, we just want to stop 4810 // right away. Flush this thread so we will refetch the stacks and show the 4811 // correct backtrace. 4812 // FIXME: To make this prettier we should invent some stop reason for this, 4813 // but that 4814 // is only cosmetic, and this functionality is only of use to lldb 4815 // developers who can live with not pretty... 4816 thread->Flush(); 4817 return eExpressionStoppedForDebug; 4818 } 4819 4820 ListenerSP listener_sp( 4821 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4822 4823 lldb::EventSP event_to_broadcast_sp; 4824 4825 { 4826 // This process event hijacker Hijacks the Public events and its destructor 4827 // makes sure that the process events get restored on exit to the function. 4828 // 4829 // If the event needs to propagate beyond the hijacker (e.g., the process 4830 // exits during execution), then the event is put into 4831 // event_to_broadcast_sp for rebroadcasting. 4832 4833 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4834 4835 if (log) { 4836 StreamString s; 4837 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4838 LLDB_LOGF(log, 4839 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4840 " to run thread plan \"%s\".", 4841 thread_idx_id, expr_thread_id, s.GetData()); 4842 } 4843 4844 bool got_event; 4845 lldb::EventSP event_sp; 4846 lldb::StateType stop_state = lldb::eStateInvalid; 4847 4848 bool before_first_timeout = true; // This is set to false the first time 4849 // that we have to halt the target. 4850 bool do_resume = true; 4851 bool handle_running_event = true; 4852 4853 // This is just for accounting: 4854 uint32_t num_resumes = 0; 4855 4856 // If we are going to run all threads the whole time, or if we are only 4857 // going to run one thread, then we don't need the first timeout. So we 4858 // pretend we are after the first timeout already. 4859 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4860 before_first_timeout = false; 4861 4862 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4863 options.GetStopOthers(), options.GetTryAllThreads(), 4864 before_first_timeout); 4865 4866 // This isn't going to work if there are unfetched events on the queue. Are 4867 // there cases where we might want to run the remaining events here, and 4868 // then try to call the function? That's probably being too tricky for our 4869 // own good. 4870 4871 Event *other_events = listener_sp->PeekAtNextEvent(); 4872 if (other_events != nullptr) { 4873 diagnostic_manager.PutString( 4874 eDiagnosticSeverityError, 4875 "RunThreadPlan called with pending events on the queue."); 4876 return eExpressionSetupError; 4877 } 4878 4879 // We also need to make sure that the next event is delivered. We might be 4880 // calling a function as part of a thread plan, in which case the last 4881 // delivered event could be the running event, and we don't want event 4882 // coalescing to cause us to lose OUR running event... 4883 ForceNextEventDelivery(); 4884 4885 // This while loop must exit out the bottom, there's cleanup that we need to do 4886 // when we are done. So don't call return anywhere within it. 4887 4888 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4889 // It's pretty much impossible to write test cases for things like: One 4890 // thread timeout expires, I go to halt, but the process already stopped on 4891 // the function call stop breakpoint. Turning on this define will make us 4892 // not fetch the first event till after the halt. So if you run a quick 4893 // function, it will have completed, and the completion event will be 4894 // waiting, when you interrupt for halt. The expression evaluation should 4895 // still succeed. 4896 bool miss_first_event = true; 4897 #endif 4898 while (true) { 4899 // We usually want to resume the process if we get to the top of the 4900 // loop. The only exception is if we get two running events with no 4901 // intervening stop, which can happen, we will just wait for then next 4902 // stop event. 4903 LLDB_LOGF(log, 4904 "Top of while loop: do_resume: %i handle_running_event: %i " 4905 "before_first_timeout: %i.", 4906 do_resume, handle_running_event, before_first_timeout); 4907 4908 if (do_resume || handle_running_event) { 4909 // Do the initial resume and wait for the running event before going 4910 // further. 4911 4912 if (do_resume) { 4913 num_resumes++; 4914 Status resume_error = PrivateResume(); 4915 if (!resume_error.Success()) { 4916 diagnostic_manager.Printf( 4917 eDiagnosticSeverityError, 4918 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4919 resume_error.AsCString()); 4920 return_value = eExpressionSetupError; 4921 break; 4922 } 4923 } 4924 4925 got_event = 4926 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4927 if (!got_event) { 4928 LLDB_LOGF(log, 4929 "Process::RunThreadPlan(): didn't get any event after " 4930 "resume %" PRIu32 ", exiting.", 4931 num_resumes); 4932 4933 diagnostic_manager.Printf(eDiagnosticSeverityError, 4934 "didn't get any event after resume %" PRIu32 4935 ", exiting.", 4936 num_resumes); 4937 return_value = eExpressionSetupError; 4938 break; 4939 } 4940 4941 stop_state = 4942 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4943 4944 if (stop_state != eStateRunning) { 4945 bool restarted = false; 4946 4947 if (stop_state == eStateStopped) { 4948 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4949 event_sp.get()); 4950 LLDB_LOGF( 4951 log, 4952 "Process::RunThreadPlan(): didn't get running event after " 4953 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4954 "handle_running_event: %i).", 4955 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4956 handle_running_event); 4957 } 4958 4959 if (restarted) { 4960 // This is probably an overabundance of caution, I don't think I 4961 // should ever get a stopped & restarted event here. But if I do, 4962 // the best thing is to Halt and then get out of here. 4963 const bool clear_thread_plans = false; 4964 const bool use_run_lock = false; 4965 Halt(clear_thread_plans, use_run_lock); 4966 } 4967 4968 diagnostic_manager.Printf( 4969 eDiagnosticSeverityError, 4970 "didn't get running event after initial resume, got %s instead.", 4971 StateAsCString(stop_state)); 4972 return_value = eExpressionSetupError; 4973 break; 4974 } 4975 4976 if (log) 4977 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4978 // We need to call the function synchronously, so spin waiting for it 4979 // to return. If we get interrupted while executing, we're going to 4980 // lose our context, and won't be able to gather the result at this 4981 // point. We set the timeout AFTER the resume, since the resume takes 4982 // some time and we don't want to charge that to the timeout. 4983 } else { 4984 if (log) 4985 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4986 } 4987 4988 do_resume = true; 4989 handle_running_event = true; 4990 4991 // Now wait for the process to stop again: 4992 event_sp.reset(); 4993 4994 Timeout<std::micro> timeout = 4995 GetExpressionTimeout(options, before_first_timeout); 4996 if (log) { 4997 if (timeout) { 4998 auto now = system_clock::now(); 4999 LLDB_LOGF(log, 5000 "Process::RunThreadPlan(): about to wait - now is %s - " 5001 "endpoint is %s", 5002 llvm::to_string(now).c_str(), 5003 llvm::to_string(now + *timeout).c_str()); 5004 } else { 5005 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5006 } 5007 } 5008 5009 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5010 // See comment above... 5011 if (miss_first_event) { 5012 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5013 miss_first_event = false; 5014 got_event = false; 5015 } else 5016 #endif 5017 got_event = listener_sp->GetEvent(event_sp, timeout); 5018 5019 if (got_event) { 5020 if (event_sp) { 5021 bool keep_going = false; 5022 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5023 const bool clear_thread_plans = false; 5024 const bool use_run_lock = false; 5025 Halt(clear_thread_plans, use_run_lock); 5026 return_value = eExpressionInterrupted; 5027 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5028 "execution halted by user interrupt."); 5029 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5030 "eBroadcastBitInterrupted, exiting."); 5031 break; 5032 } else { 5033 stop_state = 5034 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5035 LLDB_LOGF(log, 5036 "Process::RunThreadPlan(): in while loop, got event: %s.", 5037 StateAsCString(stop_state)); 5038 5039 switch (stop_state) { 5040 case lldb::eStateStopped: { 5041 if (Process::ProcessEventData::GetRestartedFromEvent( 5042 event_sp.get())) { 5043 // If we were restarted, we just need to go back up to fetch 5044 // another event. 5045 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5046 "restart, so we'll continue waiting."); 5047 keep_going = true; 5048 do_resume = false; 5049 handle_running_event = true; 5050 } else { 5051 const bool handle_interrupts = true; 5052 return_value = *HandleStoppedEvent( 5053 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5054 event_sp, event_to_broadcast_sp, options, 5055 handle_interrupts); 5056 if (return_value == eExpressionThreadVanished) 5057 keep_going = false; 5058 } 5059 } break; 5060 5061 case lldb::eStateRunning: 5062 // This shouldn't really happen, but sometimes we do get two 5063 // running events without an intervening stop, and in that case 5064 // we should just go back to waiting for the stop. 5065 do_resume = false; 5066 keep_going = true; 5067 handle_running_event = false; 5068 break; 5069 5070 default: 5071 LLDB_LOGF(log, 5072 "Process::RunThreadPlan(): execution stopped with " 5073 "unexpected state: %s.", 5074 StateAsCString(stop_state)); 5075 5076 if (stop_state == eStateExited) 5077 event_to_broadcast_sp = event_sp; 5078 5079 diagnostic_manager.PutString( 5080 eDiagnosticSeverityError, 5081 "execution stopped with unexpected state."); 5082 return_value = eExpressionInterrupted; 5083 break; 5084 } 5085 } 5086 5087 if (keep_going) 5088 continue; 5089 else 5090 break; 5091 } else { 5092 if (log) 5093 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5094 "the event pointer was null. How odd..."); 5095 return_value = eExpressionInterrupted; 5096 break; 5097 } 5098 } else { 5099 // If we didn't get an event that means we've timed out... We will 5100 // interrupt the process here. Depending on what we were asked to do 5101 // we will either exit, or try with all threads running for the same 5102 // timeout. 5103 5104 if (log) { 5105 if (options.GetTryAllThreads()) { 5106 if (before_first_timeout) { 5107 LLDB_LOG(log, 5108 "Running function with one thread timeout timed out."); 5109 } else 5110 LLDB_LOG(log, "Restarting function with all threads enabled and " 5111 "timeout: {0} timed out, abandoning execution.", 5112 timeout); 5113 } else 5114 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5115 "abandoning execution.", 5116 timeout); 5117 } 5118 5119 // It is possible that between the time we issued the Halt, and we get 5120 // around to calling Halt the target could have stopped. That's fine, 5121 // Halt will figure that out and send the appropriate Stopped event. 5122 // BUT it is also possible that we stopped & restarted (e.g. hit a 5123 // signal with "stop" set to false.) In 5124 // that case, we'll get the stopped & restarted event, and we should go 5125 // back to waiting for the Halt's stopped event. That's what this 5126 // while loop does. 5127 5128 bool back_to_top = true; 5129 uint32_t try_halt_again = 0; 5130 bool do_halt = true; 5131 const uint32_t num_retries = 5; 5132 while (try_halt_again < num_retries) { 5133 Status halt_error; 5134 if (do_halt) { 5135 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5136 const bool clear_thread_plans = false; 5137 const bool use_run_lock = false; 5138 Halt(clear_thread_plans, use_run_lock); 5139 } 5140 if (halt_error.Success()) { 5141 if (log) 5142 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5143 5144 got_event = 5145 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5146 5147 if (got_event) { 5148 stop_state = 5149 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5150 if (log) { 5151 LLDB_LOGF(log, 5152 "Process::RunThreadPlan(): Stopped with event: %s", 5153 StateAsCString(stop_state)); 5154 if (stop_state == lldb::eStateStopped && 5155 Process::ProcessEventData::GetInterruptedFromEvent( 5156 event_sp.get())) 5157 log->PutCString(" Event was the Halt interruption event."); 5158 } 5159 5160 if (stop_state == lldb::eStateStopped) { 5161 if (Process::ProcessEventData::GetRestartedFromEvent( 5162 event_sp.get())) { 5163 if (log) 5164 log->PutCString("Process::RunThreadPlan(): Went to halt " 5165 "but got a restarted event, there must be " 5166 "an un-restarted stopped event so try " 5167 "again... " 5168 "Exiting wait loop."); 5169 try_halt_again++; 5170 do_halt = false; 5171 continue; 5172 } 5173 5174 // Between the time we initiated the Halt and the time we 5175 // delivered it, the process could have already finished its 5176 // job. Check that here: 5177 const bool handle_interrupts = false; 5178 if (auto result = HandleStoppedEvent( 5179 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5180 event_sp, event_to_broadcast_sp, options, 5181 handle_interrupts)) { 5182 return_value = *result; 5183 back_to_top = false; 5184 break; 5185 } 5186 5187 if (!options.GetTryAllThreads()) { 5188 if (log) 5189 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5190 "was false, we stopped so now we're " 5191 "quitting."); 5192 return_value = eExpressionInterrupted; 5193 back_to_top = false; 5194 break; 5195 } 5196 5197 if (before_first_timeout) { 5198 // Set all the other threads to run, and return to the top of 5199 // the loop, which will continue; 5200 before_first_timeout = false; 5201 thread_plan_sp->SetStopOthers(false); 5202 if (log) 5203 log->PutCString( 5204 "Process::RunThreadPlan(): about to resume."); 5205 5206 back_to_top = true; 5207 break; 5208 } else { 5209 // Running all threads failed, so return Interrupted. 5210 if (log) 5211 log->PutCString("Process::RunThreadPlan(): running all " 5212 "threads timed out."); 5213 return_value = eExpressionInterrupted; 5214 back_to_top = false; 5215 break; 5216 } 5217 } 5218 } else { 5219 if (log) 5220 log->PutCString("Process::RunThreadPlan(): halt said it " 5221 "succeeded, but I got no event. " 5222 "I'm getting out of here passing Interrupted."); 5223 return_value = eExpressionInterrupted; 5224 back_to_top = false; 5225 break; 5226 } 5227 } else { 5228 try_halt_again++; 5229 continue; 5230 } 5231 } 5232 5233 if (!back_to_top || try_halt_again > num_retries) 5234 break; 5235 else 5236 continue; 5237 } 5238 } // END WAIT LOOP 5239 5240 // If we had to start up a temporary private state thread to run this 5241 // thread plan, shut it down now. 5242 if (backup_private_state_thread.IsJoinable()) { 5243 StopPrivateStateThread(); 5244 Status error; 5245 m_private_state_thread = backup_private_state_thread; 5246 if (stopper_base_plan_sp) { 5247 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5248 } 5249 if (old_state != eStateInvalid) 5250 m_public_state.SetValueNoLock(old_state); 5251 } 5252 5253 // If our thread went away on us, we need to get out of here without 5254 // doing any more work. We don't have to clean up the thread plan, that 5255 // will have happened when the Thread was destroyed. 5256 if (return_value == eExpressionThreadVanished) { 5257 return return_value; 5258 } 5259 5260 if (return_value != eExpressionCompleted && log) { 5261 // Print a backtrace into the log so we can figure out where we are: 5262 StreamString s; 5263 s.PutCString("Thread state after unsuccessful completion: \n"); 5264 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5265 log->PutString(s.GetString()); 5266 } 5267 // Restore the thread state if we are going to discard the plan execution. 5268 // There are three cases where this could happen: 1) The execution 5269 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5270 // was true 3) We got some other error, and discard_on_error was true 5271 bool should_unwind = (return_value == eExpressionInterrupted && 5272 options.DoesUnwindOnError()) || 5273 (return_value == eExpressionHitBreakpoint && 5274 options.DoesIgnoreBreakpoints()); 5275 5276 if (return_value == eExpressionCompleted || should_unwind) { 5277 thread_plan_sp->RestoreThreadState(); 5278 } 5279 5280 // Now do some processing on the results of the run: 5281 if (return_value == eExpressionInterrupted || 5282 return_value == eExpressionHitBreakpoint) { 5283 if (log) { 5284 StreamString s; 5285 if (event_sp) 5286 event_sp->Dump(&s); 5287 else { 5288 log->PutCString("Process::RunThreadPlan(): Stop event that " 5289 "interrupted us is NULL."); 5290 } 5291 5292 StreamString ts; 5293 5294 const char *event_explanation = nullptr; 5295 5296 do { 5297 if (!event_sp) { 5298 event_explanation = "<no event>"; 5299 break; 5300 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5301 event_explanation = "<user interrupt>"; 5302 break; 5303 } else { 5304 const Process::ProcessEventData *event_data = 5305 Process::ProcessEventData::GetEventDataFromEvent( 5306 event_sp.get()); 5307 5308 if (!event_data) { 5309 event_explanation = "<no event data>"; 5310 break; 5311 } 5312 5313 Process *process = event_data->GetProcessSP().get(); 5314 5315 if (!process) { 5316 event_explanation = "<no process>"; 5317 break; 5318 } 5319 5320 ThreadList &thread_list = process->GetThreadList(); 5321 5322 uint32_t num_threads = thread_list.GetSize(); 5323 uint32_t thread_index; 5324 5325 ts.Printf("<%u threads> ", num_threads); 5326 5327 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5328 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5329 5330 if (!thread) { 5331 ts.Printf("<?> "); 5332 continue; 5333 } 5334 5335 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5336 RegisterContext *register_context = 5337 thread->GetRegisterContext().get(); 5338 5339 if (register_context) 5340 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5341 else 5342 ts.Printf("[ip unknown] "); 5343 5344 // Show the private stop info here, the public stop info will be 5345 // from the last natural stop. 5346 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5347 if (stop_info_sp) { 5348 const char *stop_desc = stop_info_sp->GetDescription(); 5349 if (stop_desc) 5350 ts.PutCString(stop_desc); 5351 } 5352 ts.Printf(">"); 5353 } 5354 5355 event_explanation = ts.GetData(); 5356 } 5357 } while (false); 5358 5359 if (event_explanation) 5360 LLDB_LOGF(log, 5361 "Process::RunThreadPlan(): execution interrupted: %s %s", 5362 s.GetData(), event_explanation); 5363 else 5364 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5365 s.GetData()); 5366 } 5367 5368 if (should_unwind) { 5369 LLDB_LOGF(log, 5370 "Process::RunThreadPlan: ExecutionInterrupted - " 5371 "discarding thread plans up to %p.", 5372 static_cast<void *>(thread_plan_sp.get())); 5373 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5374 } else { 5375 LLDB_LOGF(log, 5376 "Process::RunThreadPlan: ExecutionInterrupted - for " 5377 "plan: %p not discarding.", 5378 static_cast<void *>(thread_plan_sp.get())); 5379 } 5380 } else if (return_value == eExpressionSetupError) { 5381 if (log) 5382 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5383 5384 if (options.DoesUnwindOnError()) { 5385 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5386 } 5387 } else { 5388 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5389 if (log) 5390 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5391 return_value = eExpressionCompleted; 5392 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5393 if (log) 5394 log->PutCString( 5395 "Process::RunThreadPlan(): thread plan was discarded"); 5396 return_value = eExpressionDiscarded; 5397 } else { 5398 if (log) 5399 log->PutCString( 5400 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5401 if (options.DoesUnwindOnError() && thread_plan_sp) { 5402 if (log) 5403 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5404 "'cause unwind_on_error is set."); 5405 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5406 } 5407 } 5408 } 5409 5410 // Thread we ran the function in may have gone away because we ran the 5411 // target Check that it's still there, and if it is put it back in the 5412 // context. Also restore the frame in the context if it is still present. 5413 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5414 if (thread) { 5415 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5416 } 5417 5418 // Also restore the current process'es selected frame & thread, since this 5419 // function calling may be done behind the user's back. 5420 5421 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5422 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5423 selected_stack_id.IsValid()) { 5424 // We were able to restore the selected thread, now restore the frame: 5425 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5426 StackFrameSP old_frame_sp = 5427 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5428 selected_stack_id); 5429 if (old_frame_sp) 5430 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5431 old_frame_sp.get()); 5432 } 5433 } 5434 } 5435 5436 // If the process exited during the run of the thread plan, notify everyone. 5437 5438 if (event_to_broadcast_sp) { 5439 if (log) 5440 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5441 BroadcastEvent(event_to_broadcast_sp); 5442 } 5443 5444 return return_value; 5445 } 5446 5447 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5448 const char *result_name = "<unknown>"; 5449 5450 switch (result) { 5451 case eExpressionCompleted: 5452 result_name = "eExpressionCompleted"; 5453 break; 5454 case eExpressionDiscarded: 5455 result_name = "eExpressionDiscarded"; 5456 break; 5457 case eExpressionInterrupted: 5458 result_name = "eExpressionInterrupted"; 5459 break; 5460 case eExpressionHitBreakpoint: 5461 result_name = "eExpressionHitBreakpoint"; 5462 break; 5463 case eExpressionSetupError: 5464 result_name = "eExpressionSetupError"; 5465 break; 5466 case eExpressionParseError: 5467 result_name = "eExpressionParseError"; 5468 break; 5469 case eExpressionResultUnavailable: 5470 result_name = "eExpressionResultUnavailable"; 5471 break; 5472 case eExpressionTimedOut: 5473 result_name = "eExpressionTimedOut"; 5474 break; 5475 case eExpressionStoppedForDebug: 5476 result_name = "eExpressionStoppedForDebug"; 5477 break; 5478 case eExpressionThreadVanished: 5479 result_name = "eExpressionThreadVanished"; 5480 } 5481 return result_name; 5482 } 5483 5484 void Process::GetStatus(Stream &strm) { 5485 const StateType state = GetState(); 5486 if (StateIsStoppedState(state, false)) { 5487 if (state == eStateExited) { 5488 int exit_status = GetExitStatus(); 5489 const char *exit_description = GetExitDescription(); 5490 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5491 GetID(), exit_status, exit_status, 5492 exit_description ? exit_description : ""); 5493 } else { 5494 if (state == eStateConnected) 5495 strm.Printf("Connected to remote target.\n"); 5496 else 5497 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5498 } 5499 } else { 5500 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5501 } 5502 } 5503 5504 size_t Process::GetThreadStatus(Stream &strm, 5505 bool only_threads_with_stop_reason, 5506 uint32_t start_frame, uint32_t num_frames, 5507 uint32_t num_frames_with_source, 5508 bool stop_format) { 5509 size_t num_thread_infos_dumped = 0; 5510 5511 // You can't hold the thread list lock while calling Thread::GetStatus. That 5512 // very well might run code (e.g. if we need it to get return values or 5513 // arguments.) For that to work the process has to be able to acquire it. 5514 // So instead copy the thread ID's, and look them up one by one: 5515 5516 uint32_t num_threads; 5517 std::vector<lldb::tid_t> thread_id_array; 5518 // Scope for thread list locker; 5519 { 5520 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5521 ThreadList &curr_thread_list = GetThreadList(); 5522 num_threads = curr_thread_list.GetSize(); 5523 uint32_t idx; 5524 thread_id_array.resize(num_threads); 5525 for (idx = 0; idx < num_threads; ++idx) 5526 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5527 } 5528 5529 for (uint32_t i = 0; i < num_threads; i++) { 5530 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5531 if (thread_sp) { 5532 if (only_threads_with_stop_reason) { 5533 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5534 if (!stop_info_sp || !stop_info_sp->IsValid()) 5535 continue; 5536 } 5537 thread_sp->GetStatus(strm, start_frame, num_frames, 5538 num_frames_with_source, 5539 stop_format); 5540 ++num_thread_infos_dumped; 5541 } else { 5542 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5543 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5544 " vanished while running Thread::GetStatus."); 5545 } 5546 } 5547 return num_thread_infos_dumped; 5548 } 5549 5550 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5551 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5552 } 5553 5554 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5555 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5556 region.GetByteSize()); 5557 } 5558 5559 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5560 void *baton) { 5561 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5562 } 5563 5564 bool Process::RunPreResumeActions() { 5565 bool result = true; 5566 while (!m_pre_resume_actions.empty()) { 5567 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5568 m_pre_resume_actions.pop_back(); 5569 bool this_result = action.callback(action.baton); 5570 if (result) 5571 result = this_result; 5572 } 5573 return result; 5574 } 5575 5576 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5577 5578 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5579 { 5580 PreResumeCallbackAndBaton element(callback, baton); 5581 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5582 if (found_iter != m_pre_resume_actions.end()) 5583 { 5584 m_pre_resume_actions.erase(found_iter); 5585 } 5586 } 5587 5588 ProcessRunLock &Process::GetRunLock() { 5589 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5590 return m_private_run_lock; 5591 else 5592 return m_public_run_lock; 5593 } 5594 5595 bool Process::CurrentThreadIsPrivateStateThread() 5596 { 5597 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5598 } 5599 5600 5601 void Process::Flush() { 5602 m_thread_list.Flush(); 5603 m_extended_thread_list.Flush(); 5604 m_extended_thread_stop_id = 0; 5605 m_queue_list.Clear(); 5606 m_queue_list_stop_id = 0; 5607 } 5608 5609 lldb::addr_t Process::GetCodeAddressMask() { 5610 if (m_code_address_mask == 0) { 5611 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5612 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5613 SetCodeAddressMask(address_mask); 5614 } 5615 } 5616 return m_code_address_mask; 5617 } 5618 5619 lldb::addr_t Process::GetDataAddressMask() { 5620 if (m_data_address_mask == 0) { 5621 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5622 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5623 SetDataAddressMask(address_mask); 5624 } 5625 } 5626 return m_data_address_mask; 5627 } 5628 5629 void Process::DidExec() { 5630 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5631 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5632 5633 Target &target = GetTarget(); 5634 target.CleanupProcess(); 5635 target.ClearModules(false); 5636 m_dynamic_checkers_up.reset(); 5637 m_abi_sp.reset(); 5638 m_system_runtime_up.reset(); 5639 m_os_up.reset(); 5640 m_dyld_up.reset(); 5641 m_jit_loaders_up.reset(); 5642 m_image_tokens.clear(); 5643 m_allocated_memory_cache.Clear(); 5644 { 5645 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5646 m_language_runtimes.clear(); 5647 } 5648 m_instrumentation_runtimes.clear(); 5649 m_thread_list.DiscardThreadPlans(); 5650 m_memory_cache.Clear(true); 5651 DoDidExec(); 5652 CompleteAttach(); 5653 // Flush the process (threads and all stack frames) after running 5654 // CompleteAttach() in case the dynamic loader loaded things in new 5655 // locations. 5656 Flush(); 5657 5658 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5659 // let the target know so it can do any cleanup it needs to. 5660 target.DidExec(); 5661 } 5662 5663 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5664 if (address == nullptr) { 5665 error.SetErrorString("Invalid address argument"); 5666 return LLDB_INVALID_ADDRESS; 5667 } 5668 5669 addr_t function_addr = LLDB_INVALID_ADDRESS; 5670 5671 addr_t addr = address->GetLoadAddress(&GetTarget()); 5672 std::map<addr_t, addr_t>::const_iterator iter = 5673 m_resolved_indirect_addresses.find(addr); 5674 if (iter != m_resolved_indirect_addresses.end()) { 5675 function_addr = (*iter).second; 5676 } else { 5677 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5678 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5679 error.SetErrorStringWithFormat( 5680 "Unable to call resolver for indirect function %s", 5681 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5682 function_addr = LLDB_INVALID_ADDRESS; 5683 } else { 5684 if (ABISP abi_sp = GetABI()) 5685 function_addr = abi_sp->FixCodeAddress(function_addr); 5686 m_resolved_indirect_addresses.insert( 5687 std::pair<addr_t, addr_t>(addr, function_addr)); 5688 } 5689 } 5690 return function_addr; 5691 } 5692 5693 void Process::ModulesDidLoad(ModuleList &module_list) { 5694 // Inform the system runtime of the modified modules. 5695 SystemRuntime *sys_runtime = GetSystemRuntime(); 5696 if (sys_runtime) 5697 sys_runtime->ModulesDidLoad(module_list); 5698 5699 GetJITLoaders().ModulesDidLoad(module_list); 5700 5701 // Give the instrumentation runtimes a chance to be created before informing 5702 // them of the modified modules. 5703 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5704 m_instrumentation_runtimes); 5705 for (auto &runtime : m_instrumentation_runtimes) 5706 runtime.second->ModulesDidLoad(module_list); 5707 5708 // Give the language runtimes a chance to be created before informing them of 5709 // the modified modules. 5710 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5711 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5712 runtime->ModulesDidLoad(module_list); 5713 } 5714 5715 // If we don't have an operating system plug-in, try to load one since 5716 // loading shared libraries might cause a new one to try and load 5717 if (!m_os_up) 5718 LoadOperatingSystemPlugin(false); 5719 5720 // Inform the structured-data plugins of the modified modules. 5721 for (auto pair : m_structured_data_plugin_map) { 5722 if (pair.second) 5723 pair.second->ModulesDidLoad(*this, module_list); 5724 } 5725 } 5726 5727 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5728 const char *fmt, ...) { 5729 bool print_warning = true; 5730 5731 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5732 if (!stream_sp) 5733 return; 5734 5735 if (repeat_key != nullptr) { 5736 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5737 if (it == m_warnings_issued.end()) { 5738 m_warnings_issued[warning_type] = WarningsPointerSet(); 5739 m_warnings_issued[warning_type].insert(repeat_key); 5740 } else { 5741 if (it->second.find(repeat_key) != it->second.end()) { 5742 print_warning = false; 5743 } else { 5744 it->second.insert(repeat_key); 5745 } 5746 } 5747 } 5748 5749 if (print_warning) { 5750 va_list args; 5751 va_start(args, fmt); 5752 stream_sp->PrintfVarArg(fmt, args); 5753 va_end(args); 5754 } 5755 } 5756 5757 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5758 if (!GetWarningsOptimization()) 5759 return; 5760 if (!sc.module_sp) 5761 return; 5762 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5763 sc.function->GetIsOptimized()) { 5764 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5765 "%s was compiled with optimization - stepping may behave " 5766 "oddly; variables may not be available.\n", 5767 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5768 } 5769 } 5770 5771 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5772 if (!GetWarningsUnsupportedLanguage()) 5773 return; 5774 if (!sc.module_sp) 5775 return; 5776 LanguageType language = sc.GetLanguage(); 5777 if (language == eLanguageTypeUnknown) 5778 return; 5779 LanguageSet plugins = 5780 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5781 if (!plugins[language]) { 5782 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5783 sc.module_sp.get(), 5784 "This version of LLDB has no plugin for the language \"%s\". " 5785 "Inspection of frame variables will be limited.\n", 5786 Language::GetNameForLanguageType(language)); 5787 } 5788 } 5789 5790 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5791 info.Clear(); 5792 5793 PlatformSP platform_sp = GetTarget().GetPlatform(); 5794 if (!platform_sp) 5795 return false; 5796 5797 return platform_sp->GetProcessInfo(GetID(), info); 5798 } 5799 5800 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5801 ThreadCollectionSP threads; 5802 5803 const MemoryHistorySP &memory_history = 5804 MemoryHistory::FindPlugin(shared_from_this()); 5805 5806 if (!memory_history) { 5807 return threads; 5808 } 5809 5810 threads = std::make_shared<ThreadCollection>( 5811 memory_history->GetHistoryThreads(addr)); 5812 5813 return threads; 5814 } 5815 5816 InstrumentationRuntimeSP 5817 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5818 InstrumentationRuntimeCollection::iterator pos; 5819 pos = m_instrumentation_runtimes.find(type); 5820 if (pos == m_instrumentation_runtimes.end()) { 5821 return InstrumentationRuntimeSP(); 5822 } else 5823 return (*pos).second; 5824 } 5825 5826 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5827 const ArchSpec &arch, ModuleSpec &module_spec) { 5828 module_spec.Clear(); 5829 return false; 5830 } 5831 5832 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5833 m_image_tokens.push_back(image_ptr); 5834 return m_image_tokens.size() - 1; 5835 } 5836 5837 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5838 if (token < m_image_tokens.size()) 5839 return m_image_tokens[token]; 5840 return LLDB_INVALID_ADDRESS; 5841 } 5842 5843 void Process::ResetImageToken(size_t token) { 5844 if (token < m_image_tokens.size()) 5845 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5846 } 5847 5848 Address 5849 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5850 AddressRange range_bounds) { 5851 Target &target = GetTarget(); 5852 DisassemblerSP disassembler_sp; 5853 InstructionList *insn_list = nullptr; 5854 5855 Address retval = default_stop_addr; 5856 5857 if (!target.GetUseFastStepping()) 5858 return retval; 5859 if (!default_stop_addr.IsValid()) 5860 return retval; 5861 5862 const char *plugin_name = nullptr; 5863 const char *flavor = nullptr; 5864 disassembler_sp = Disassembler::DisassembleRange( 5865 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5866 if (disassembler_sp) 5867 insn_list = &disassembler_sp->GetInstructionList(); 5868 5869 if (insn_list == nullptr) { 5870 return retval; 5871 } 5872 5873 size_t insn_offset = 5874 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5875 if (insn_offset == UINT32_MAX) { 5876 return retval; 5877 } 5878 5879 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5880 insn_offset, false /* ignore_calls*/, nullptr); 5881 if (branch_index == UINT32_MAX) { 5882 return retval; 5883 } 5884 5885 if (branch_index > insn_offset) { 5886 Address next_branch_insn_address = 5887 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5888 if (next_branch_insn_address.IsValid() && 5889 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5890 retval = next_branch_insn_address; 5891 } 5892 } 5893 5894 return retval; 5895 } 5896 5897 Status 5898 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5899 5900 Status error; 5901 5902 lldb::addr_t range_end = 0; 5903 5904 region_list.clear(); 5905 do { 5906 lldb_private::MemoryRegionInfo region_info; 5907 error = GetMemoryRegionInfo(range_end, region_info); 5908 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5909 if (error.Fail()) { 5910 region_list.clear(); 5911 break; 5912 } 5913 5914 range_end = region_info.GetRange().GetRangeEnd(); 5915 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5916 region_list.push_back(std::move(region_info)); 5917 } 5918 } while (range_end != LLDB_INVALID_ADDRESS); 5919 5920 return error; 5921 } 5922 5923 Status 5924 Process::ConfigureStructuredData(ConstString type_name, 5925 const StructuredData::ObjectSP &config_sp) { 5926 // If you get this, the Process-derived class needs to implement a method to 5927 // enable an already-reported asynchronous structured data feature. See 5928 // ProcessGDBRemote for an example implementation over gdb-remote. 5929 return Status("unimplemented"); 5930 } 5931 5932 void Process::MapSupportedStructuredDataPlugins( 5933 const StructuredData::Array &supported_type_names) { 5934 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5935 5936 // Bail out early if there are no type names to map. 5937 if (supported_type_names.GetSize() == 0) { 5938 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5939 __FUNCTION__); 5940 return; 5941 } 5942 5943 // Convert StructuredData type names to ConstString instances. 5944 std::set<ConstString> const_type_names; 5945 5946 LLDB_LOGF(log, 5947 "Process::%s(): the process supports the following async " 5948 "structured data types:", 5949 __FUNCTION__); 5950 5951 supported_type_names.ForEach( 5952 [&const_type_names, &log](StructuredData::Object *object) { 5953 if (!object) { 5954 // Invalid - shouldn't be null objects in the array. 5955 return false; 5956 } 5957 5958 auto type_name = object->GetAsString(); 5959 if (!type_name) { 5960 // Invalid format - all type names should be strings. 5961 return false; 5962 } 5963 5964 const_type_names.insert(ConstString(type_name->GetValue())); 5965 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5966 return true; 5967 }); 5968 5969 // For each StructuredDataPlugin, if the plugin handles any of the types in 5970 // the supported_type_names, map that type name to that plugin. Stop when 5971 // we've consumed all the type names. 5972 // FIXME: should we return an error if there are type names nobody 5973 // supports? 5974 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5975 auto create_instance = 5976 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5977 plugin_index); 5978 if (!create_instance) 5979 break; 5980 5981 // Create the plugin. 5982 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5983 if (!plugin_sp) { 5984 // This plugin doesn't think it can work with the process. Move on to the 5985 // next. 5986 continue; 5987 } 5988 5989 // For any of the remaining type names, map any that this plugin supports. 5990 std::vector<ConstString> names_to_remove; 5991 for (auto &type_name : const_type_names) { 5992 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5993 m_structured_data_plugin_map.insert( 5994 std::make_pair(type_name, plugin_sp)); 5995 names_to_remove.push_back(type_name); 5996 LLDB_LOG(log, "using plugin {0} for type name {1}", 5997 plugin_sp->GetPluginName(), type_name); 5998 } 5999 } 6000 6001 // Remove the type names that were consumed by this plugin. 6002 for (auto &type_name : names_to_remove) 6003 const_type_names.erase(type_name); 6004 } 6005 } 6006 6007 bool Process::RouteAsyncStructuredData( 6008 const StructuredData::ObjectSP object_sp) { 6009 // Nothing to do if there's no data. 6010 if (!object_sp) 6011 return false; 6012 6013 // The contract is this must be a dictionary, so we can look up the routing 6014 // key via the top-level 'type' string value within the dictionary. 6015 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6016 if (!dictionary) 6017 return false; 6018 6019 // Grab the async structured type name (i.e. the feature/plugin name). 6020 ConstString type_name; 6021 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6022 return false; 6023 6024 // Check if there's a plugin registered for this type name. 6025 auto find_it = m_structured_data_plugin_map.find(type_name); 6026 if (find_it == m_structured_data_plugin_map.end()) { 6027 // We don't have a mapping for this structured data type. 6028 return false; 6029 } 6030 6031 // Route the structured data to the plugin. 6032 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6033 return true; 6034 } 6035 6036 Status Process::UpdateAutomaticSignalFiltering() { 6037 // Default implementation does nothign. 6038 // No automatic signal filtering to speak of. 6039 return Status(); 6040 } 6041 6042 UtilityFunction *Process::GetLoadImageUtilityFunction( 6043 Platform *platform, 6044 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6045 if (platform != GetTarget().GetPlatform().get()) 6046 return nullptr; 6047 llvm::call_once(m_dlopen_utility_func_flag_once, 6048 [&] { m_dlopen_utility_func_up = factory(); }); 6049 return m_dlopen_utility_func_up.get(); 6050 } 6051 6052 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6053 if (!IsLiveDebugSession()) 6054 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6055 "Can't trace a non-live process."); 6056 return llvm::make_error<UnimplementedError>(); 6057 } 6058 6059 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6060 addr_t &returned_func, 6061 bool trap_exceptions) { 6062 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6063 if (thread == nullptr || address == nullptr) 6064 return false; 6065 6066 EvaluateExpressionOptions options; 6067 options.SetStopOthers(true); 6068 options.SetUnwindOnError(true); 6069 options.SetIgnoreBreakpoints(true); 6070 options.SetTryAllThreads(true); 6071 options.SetDebug(false); 6072 options.SetTimeout(GetUtilityExpressionTimeout()); 6073 options.SetTrapExceptions(trap_exceptions); 6074 6075 auto type_system_or_err = 6076 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6077 if (!type_system_or_err) { 6078 llvm::consumeError(type_system_or_err.takeError()); 6079 return false; 6080 } 6081 CompilerType void_ptr_type = 6082 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6083 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6084 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6085 if (call_plan_sp) { 6086 DiagnosticManager diagnostics; 6087 6088 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6089 if (frame) { 6090 ExecutionContext exe_ctx; 6091 frame->CalculateExecutionContext(exe_ctx); 6092 ExpressionResults result = 6093 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6094 if (result == eExpressionCompleted) { 6095 returned_func = 6096 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6097 LLDB_INVALID_ADDRESS); 6098 6099 if (GetAddressByteSize() == 4) { 6100 if (returned_func == UINT32_MAX) 6101 return false; 6102 } else if (GetAddressByteSize() == 8) { 6103 if (returned_func == UINT64_MAX) 6104 return false; 6105 } 6106 return true; 6107 } 6108 } 6109 } 6110 6111 return false; 6112 } 6113 6114 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6115 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6116 const MemoryTagManager *tag_manager = 6117 arch ? arch->GetMemoryTagManager() : nullptr; 6118 if (!arch || !tag_manager) { 6119 return llvm::createStringError( 6120 llvm::inconvertibleErrorCode(), 6121 "This architecture does not support memory tagging"); 6122 } 6123 6124 if (!SupportsMemoryTagging()) { 6125 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6126 "Process does not support memory tagging"); 6127 } 6128 6129 return tag_manager; 6130 } 6131 6132 llvm::Expected<std::vector<lldb::addr_t>> 6133 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6134 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6135 GetMemoryTagManager(); 6136 if (!tag_manager_or_err) 6137 return tag_manager_or_err.takeError(); 6138 6139 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6140 llvm::Expected<std::vector<uint8_t>> tag_data = 6141 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6142 if (!tag_data) 6143 return tag_data.takeError(); 6144 6145 return tag_manager->UnpackTagsData(*tag_data, 6146 len / tag_manager->GetGranuleSize()); 6147 } 6148 6149 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6150 const std::vector<lldb::addr_t> &tags) { 6151 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6152 GetMemoryTagManager(); 6153 if (!tag_manager_or_err) 6154 return Status(tag_manager_or_err.takeError()); 6155 6156 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6157 llvm::Expected<std::vector<uint8_t>> packed_tags = 6158 tag_manager->PackTags(tags); 6159 if (!packed_tags) { 6160 return Status(packed_tags.takeError()); 6161 } 6162 6163 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6164 *packed_tags); 6165 } 6166