1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
17 #include "lldb/Breakpoint/BreakpointLocation.h"
18 #include "lldb/Breakpoint/StoppointCallbackContext.h"
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Expression/DiagnosticManager.h"
25 #include "lldb/Expression/DynamicCheckerFunctions.h"
26 #include "lldb/Expression/UserExpression.h"
27 #include "lldb/Expression/UtilityFunction.h"
28 #include "lldb/Host/ConnectionFileDescriptor.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Interpreter/CommandInterpreter.h"
37 #include "lldb/Interpreter/OptionArgParser.h"
38 #include "lldb/Interpreter/OptionValueProperties.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
42 #include "lldb/Target/AssertFrameRecognizer.h"
43 #include "lldb/Target/DynamicLoader.h"
44 #include "lldb/Target/InstrumentationRuntime.h"
45 #include "lldb/Target/JITLoader.h"
46 #include "lldb/Target/JITLoaderList.h"
47 #include "lldb/Target/Language.h"
48 #include "lldb/Target/LanguageRuntime.h"
49 #include "lldb/Target/MemoryHistory.h"
50 #include "lldb/Target/MemoryRegionInfo.h"
51 #include "lldb/Target/OperatingSystem.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
54 #include "lldb/Target/RegisterContext.h"
55 #include "lldb/Target/StopInfo.h"
56 #include "lldb/Target/StructuredDataPlugin.h"
57 #include "lldb/Target/SystemRuntime.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
62 #include "lldb/Target/ThreadPlanBase.h"
63 #include "lldb/Target/ThreadPlanCallFunction.h"
64 #include "lldb/Target/ThreadPlanStack.h"
65 #include "lldb/Target/UnixSignals.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/Log.h"
68 #include "lldb/Utility/NameMatches.h"
69 #include "lldb/Utility/ProcessInfo.h"
70 #include "lldb/Utility/SelectHelper.h"
71 #include "lldb/Utility/State.h"
72 #include "lldb/Utility/Timer.h"
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace std::chrono;
77 
78 // Comment out line below to disable memory caching, overriding the process
79 // setting target.process.disable-memory-cache
80 #define ENABLE_MEMORY_CACHING
81 
82 #ifdef ENABLE_MEMORY_CACHING
83 #define DISABLE_MEM_CACHE_DEFAULT false
84 #else
85 #define DISABLE_MEM_CACHE_DEFAULT true
86 #endif
87 
88 class ProcessOptionValueProperties
89     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
90 public:
91   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
92 
93   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
94                                      bool will_modify,
95                                      uint32_t idx) const override {
96     // When getting the value for a key from the process options, we will
97     // always try and grab the setting from the current process if there is
98     // one. Else we just use the one from this instance.
99     if (exe_ctx) {
100       Process *process = exe_ctx->GetProcessPtr();
101       if (process) {
102         ProcessOptionValueProperties *instance_properties =
103             static_cast<ProcessOptionValueProperties *>(
104                 process->GetValueProperties().get());
105         if (this != instance_properties)
106           return instance_properties->ProtectedGetPropertyAtIndex(idx);
107       }
108     }
109     return ProtectedGetPropertyAtIndex(idx);
110   }
111 };
112 
113 #define LLDB_PROPERTIES_process
114 #include "TargetProperties.inc"
115 
116 enum {
117 #define LLDB_PROPERTIES_process
118 #include "TargetPropertiesEnum.inc"
119   ePropertyExperimental,
120 };
121 
122 #define LLDB_PROPERTIES_process_experimental
123 #include "TargetProperties.inc"
124 
125 enum {
126 #define LLDB_PROPERTIES_process_experimental
127 #include "TargetPropertiesEnum.inc"
128 };
129 
130 class ProcessExperimentalOptionValueProperties
131     : public Cloneable<ProcessExperimentalOptionValueProperties,
132                        OptionValueProperties> {
133 public:
134   ProcessExperimentalOptionValueProperties()
135       : Cloneable(
136             ConstString(Properties::GetExperimentalSettingsName())) {}
137 };
138 
139 ProcessExperimentalProperties::ProcessExperimentalProperties()
140     : Properties(OptionValuePropertiesSP(
141           new ProcessExperimentalOptionValueProperties())) {
142   m_collection_sp->Initialize(g_process_experimental_properties);
143 }
144 
145 ProcessProperties::ProcessProperties(lldb_private::Process *process)
146     : Properties(),
147       m_process(process) // Can be nullptr for global ProcessProperties
148 {
149   if (process == nullptr) {
150     // Global process properties, set them up one time
151     m_collection_sp =
152         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
153     m_collection_sp->Initialize(g_process_properties);
154     m_collection_sp->AppendProperty(
155         ConstString("thread"), ConstString("Settings specific to threads."),
156         true, Thread::GetGlobalProperties()->GetValueProperties());
157   } else {
158     m_collection_sp =
159         OptionValueProperties::CreateLocalCopy(*Process::GetGlobalProperties());
160     m_collection_sp->SetValueChangedCallback(
161         ePropertyPythonOSPluginPath,
162         [this] { m_process->LoadOperatingSystemPlugin(true); });
163   }
164 
165   m_experimental_properties_up =
166       std::make_unique<ProcessExperimentalProperties>();
167   m_collection_sp->AppendProperty(
168       ConstString(Properties::GetExperimentalSettingsName()),
169       ConstString("Experimental settings - setting these won't produce "
170                   "errors if the setting is not present."),
171       true, m_experimental_properties_up->GetValueProperties());
172 }
173 
174 ProcessProperties::~ProcessProperties() = default;
175 
176 bool ProcessProperties::GetDisableMemoryCache() const {
177   const uint32_t idx = ePropertyDisableMemCache;
178   return m_collection_sp->GetPropertyAtIndexAsBoolean(
179       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
180 }
181 
182 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
183   const uint32_t idx = ePropertyMemCacheLineSize;
184   return m_collection_sp->GetPropertyAtIndexAsUInt64(
185       nullptr, idx, g_process_properties[idx].default_uint_value);
186 }
187 
188 Args ProcessProperties::GetExtraStartupCommands() const {
189   Args args;
190   const uint32_t idx = ePropertyExtraStartCommand;
191   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
192   return args;
193 }
194 
195 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
196   const uint32_t idx = ePropertyExtraStartCommand;
197   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
198 }
199 
200 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
201   const uint32_t idx = ePropertyPythonOSPluginPath;
202   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
203 }
204 
205 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
206   const uint32_t idx = ePropertyVirtualAddressableBits;
207   return m_collection_sp->GetPropertyAtIndexAsUInt64(
208       nullptr, idx, g_process_properties[idx].default_uint_value);
209 }
210 
211 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
212   const uint32_t idx = ePropertyVirtualAddressableBits;
213   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
214 }
215 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
216   const uint32_t idx = ePropertyPythonOSPluginPath;
217   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
218 }
219 
220 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
221   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
222   return m_collection_sp->GetPropertyAtIndexAsBoolean(
223       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
224 }
225 
226 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
227   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
228   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
229 }
230 
231 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
232   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
233   return m_collection_sp->GetPropertyAtIndexAsBoolean(
234       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
235 }
236 
237 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
238   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
239   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
240 }
241 
242 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
243   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
244   return m_collection_sp->GetPropertyAtIndexAsBoolean(
245       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
246 }
247 
248 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
249   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
250   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
251 }
252 
253 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
254   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
255   return m_collection_sp->GetPropertyAtIndexAsBoolean(
256       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
257 }
258 
259 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
260   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
261   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
262   m_process->Flush();
263 }
264 
265 bool ProcessProperties::GetDetachKeepsStopped() const {
266   const uint32_t idx = ePropertyDetachKeepsStopped;
267   return m_collection_sp->GetPropertyAtIndexAsBoolean(
268       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
269 }
270 
271 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
272   const uint32_t idx = ePropertyDetachKeepsStopped;
273   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
274 }
275 
276 bool ProcessProperties::GetWarningsOptimization() const {
277   const uint32_t idx = ePropertyWarningOptimization;
278   return m_collection_sp->GetPropertyAtIndexAsBoolean(
279       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
280 }
281 
282 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
283   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
284   return m_collection_sp->GetPropertyAtIndexAsBoolean(
285       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
286 }
287 
288 bool ProcessProperties::GetStopOnExec() const {
289   const uint32_t idx = ePropertyStopOnExec;
290   return m_collection_sp->GetPropertyAtIndexAsBoolean(
291       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
292 }
293 
294 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
295   const uint32_t idx = ePropertyUtilityExpressionTimeout;
296   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
297       nullptr, idx, g_process_properties[idx].default_uint_value);
298   return std::chrono::seconds(value);
299 }
300 
301 bool ProcessProperties::GetSteppingRunsAllThreads() const {
302   const uint32_t idx = ePropertySteppingRunsAllThreads;
303   return m_collection_sp->GetPropertyAtIndexAsBoolean(
304       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
305 }
306 
307 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
308   const bool fail_value = true;
309   const Property *exp_property =
310       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
311   OptionValueProperties *exp_values =
312       exp_property->GetValue()->GetAsProperties();
313   if (!exp_values)
314     return fail_value;
315 
316   return exp_values->GetPropertyAtIndexAsBoolean(
317       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
318 }
319 
320 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
321   const Property *exp_property =
322       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
323   OptionValueProperties *exp_values =
324       exp_property->GetValue()->GetAsProperties();
325   if (exp_values)
326     exp_values->SetPropertyAtIndexAsBoolean(
327         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
328 }
329 
330 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
331                               llvm::StringRef plugin_name,
332                               ListenerSP listener_sp,
333                               const FileSpec *crash_file_path,
334                               bool can_connect) {
335   static uint32_t g_process_unique_id = 0;
336 
337   ProcessSP process_sp;
338   ProcessCreateInstance create_callback = nullptr;
339   if (!plugin_name.empty()) {
340     ConstString const_plugin_name(plugin_name);
341     create_callback =
342         PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name);
343     if (create_callback) {
344       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
345                                    can_connect);
346       if (process_sp) {
347         if (process_sp->CanDebug(target_sp, true)) {
348           process_sp->m_process_unique_id = ++g_process_unique_id;
349         } else
350           process_sp.reset();
351       }
352     }
353   } else {
354     for (uint32_t idx = 0;
355          (create_callback =
356               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
357          ++idx) {
358       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
359                                    can_connect);
360       if (process_sp) {
361         if (process_sp->CanDebug(target_sp, false)) {
362           process_sp->m_process_unique_id = ++g_process_unique_id;
363           break;
364         } else
365           process_sp.reset();
366       }
367     }
368   }
369   return process_sp;
370 }
371 
372 ConstString &Process::GetStaticBroadcasterClass() {
373   static ConstString class_name("lldb.process");
374   return class_name;
375 }
376 
377 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
378     : Process(target_sp, listener_sp,
379               UnixSignals::Create(HostInfo::GetArchitecture())) {
380   // This constructor just delegates to the full Process constructor,
381   // defaulting to using the Host's UnixSignals.
382 }
383 
384 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
385                  const UnixSignalsSP &unix_signals_sp)
386     : ProcessProperties(this),
387       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
388                   Process::GetStaticBroadcasterClass().AsCString()),
389       m_target_wp(target_sp), m_public_state(eStateUnloaded),
390       m_private_state(eStateUnloaded),
391       m_private_state_broadcaster(nullptr,
392                                   "lldb.process.internal_state_broadcaster"),
393       m_private_state_control_broadcaster(
394           nullptr, "lldb.process.internal_state_control_broadcaster"),
395       m_private_state_listener_sp(
396           Listener::MakeListener("lldb.process.internal_state_listener")),
397       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
398       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
399       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
400       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
401       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
402       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
403       m_breakpoint_site_list(), m_dynamic_checkers_up(),
404       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
405       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
406       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
407       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
408       m_memory_cache(*this), m_allocated_memory_cache(*this),
409       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
410       m_private_run_lock(), m_finalizing(false),
411       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
412       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
413       m_can_interpret_function_calls(false), m_warnings_issued(),
414       m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
415   CheckInWithManager();
416 
417   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
418   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
419 
420   if (!m_unix_signals_sp)
421     m_unix_signals_sp = std::make_shared<UnixSignals>();
422 
423   SetEventName(eBroadcastBitStateChanged, "state-changed");
424   SetEventName(eBroadcastBitInterrupt, "interrupt");
425   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
426   SetEventName(eBroadcastBitSTDERR, "stderr-available");
427   SetEventName(eBroadcastBitProfileData, "profile-data-available");
428   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
429 
430   m_private_state_control_broadcaster.SetEventName(
431       eBroadcastInternalStateControlStop, "control-stop");
432   m_private_state_control_broadcaster.SetEventName(
433       eBroadcastInternalStateControlPause, "control-pause");
434   m_private_state_control_broadcaster.SetEventName(
435       eBroadcastInternalStateControlResume, "control-resume");
436 
437   m_listener_sp->StartListeningForEvents(
438       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
439                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
440                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
441 
442   m_private_state_listener_sp->StartListeningForEvents(
443       &m_private_state_broadcaster,
444       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
445 
446   m_private_state_listener_sp->StartListeningForEvents(
447       &m_private_state_control_broadcaster,
448       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
449           eBroadcastInternalStateControlResume);
450   // We need something valid here, even if just the default UnixSignalsSP.
451   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
452 
453   // Allow the platform to override the default cache line size
454   OptionValueSP value_sp =
455       m_collection_sp
456           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
457           ->GetValue();
458   uint32_t platform_cache_line_size =
459       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
460   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
461     value_sp->SetUInt64Value(platform_cache_line_size);
462 
463   RegisterAssertFrameRecognizer(this);
464 }
465 
466 Process::~Process() {
467   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
468   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
469   StopPrivateStateThread();
470 
471   // ThreadList::Clear() will try to acquire this process's mutex, so
472   // explicitly clear the thread list here to ensure that the mutex is not
473   // destroyed before the thread list.
474   m_thread_list.Clear();
475 }
476 
477 const ProcessPropertiesSP &Process::GetGlobalProperties() {
478   // NOTE: intentional leak so we don't crash if global destructor chain gets
479   // called as other threads still use the result of this function
480   static ProcessPropertiesSP *g_settings_sp_ptr =
481       new ProcessPropertiesSP(new ProcessProperties(nullptr));
482   return *g_settings_sp_ptr;
483 }
484 
485 void Process::Finalize() {
486   if (m_finalizing.exchange(true))
487     return;
488 
489   // Destroy this process if needed
490   switch (GetPrivateState()) {
491   case eStateConnected:
492   case eStateAttaching:
493   case eStateLaunching:
494   case eStateStopped:
495   case eStateRunning:
496   case eStateStepping:
497   case eStateCrashed:
498   case eStateSuspended:
499     DestroyImpl(false);
500     break;
501 
502   case eStateInvalid:
503   case eStateUnloaded:
504   case eStateDetached:
505   case eStateExited:
506     break;
507   }
508 
509   // Clear our broadcaster before we proceed with destroying
510   Broadcaster::Clear();
511 
512   // Do any cleanup needed prior to being destructed... Subclasses that
513   // override this method should call this superclass method as well.
514 
515   // We need to destroy the loader before the derived Process class gets
516   // destroyed since it is very likely that undoing the loader will require
517   // access to the real process.
518   m_dynamic_checkers_up.reset();
519   m_abi_sp.reset();
520   m_os_up.reset();
521   m_system_runtime_up.reset();
522   m_dyld_up.reset();
523   m_jit_loaders_up.reset();
524   m_thread_plans.Clear();
525   m_thread_list_real.Destroy();
526   m_thread_list.Destroy();
527   m_extended_thread_list.Destroy();
528   m_queue_list.Clear();
529   m_queue_list_stop_id = 0;
530   std::vector<Notifications> empty_notifications;
531   m_notifications.swap(empty_notifications);
532   m_image_tokens.clear();
533   m_memory_cache.Clear();
534   m_allocated_memory_cache.Clear();
535   {
536     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
537     m_language_runtimes.clear();
538   }
539   m_instrumentation_runtimes.clear();
540   m_next_event_action_up.reset();
541   // Clear the last natural stop ID since it has a strong reference to this
542   // process
543   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
544   //#ifdef LLDB_CONFIGURATION_DEBUG
545   //    StreamFile s(stdout, false);
546   //    EventSP event_sp;
547   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
548   //    {
549   //        event_sp->Dump (&s);
550   //        s.EOL();
551   //    }
552   //#endif
553   // We have to be very careful here as the m_private_state_listener might
554   // contain events that have ProcessSP values in them which can keep this
555   // process around forever. These events need to be cleared out.
556   m_private_state_listener_sp->Clear();
557   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
558   m_public_run_lock.SetStopped();
559   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
560   m_private_run_lock.SetStopped();
561   m_structured_data_plugin_map.clear();
562 }
563 
564 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
565   m_notifications.push_back(callbacks);
566   if (callbacks.initialize != nullptr)
567     callbacks.initialize(callbacks.baton, this);
568 }
569 
570 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
571   std::vector<Notifications>::iterator pos, end = m_notifications.end();
572   for (pos = m_notifications.begin(); pos != end; ++pos) {
573     if (pos->baton == callbacks.baton &&
574         pos->initialize == callbacks.initialize &&
575         pos->process_state_changed == callbacks.process_state_changed) {
576       m_notifications.erase(pos);
577       return true;
578     }
579   }
580   return false;
581 }
582 
583 void Process::SynchronouslyNotifyStateChanged(StateType state) {
584   std::vector<Notifications>::iterator notification_pos,
585       notification_end = m_notifications.end();
586   for (notification_pos = m_notifications.begin();
587        notification_pos != notification_end; ++notification_pos) {
588     if (notification_pos->process_state_changed)
589       notification_pos->process_state_changed(notification_pos->baton, this,
590                                               state);
591   }
592 }
593 
594 // FIXME: We need to do some work on events before the general Listener sees
595 // them.
596 // For instance if we are continuing from a breakpoint, we need to ensure that
597 // we do the little "insert real insn, step & stop" trick.  But we can't do
598 // that when the event is delivered by the broadcaster - since that is done on
599 // the thread that is waiting for new events, so if we needed more than one
600 // event for our handling, we would stall.  So instead we do it when we fetch
601 // the event off of the queue.
602 //
603 
604 StateType Process::GetNextEvent(EventSP &event_sp) {
605   StateType state = eStateInvalid;
606 
607   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
608                                             std::chrono::seconds(0)) &&
609       event_sp)
610     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
611 
612   return state;
613 }
614 
615 void Process::SyncIOHandler(uint32_t iohandler_id,
616                             const Timeout<std::micro> &timeout) {
617   // don't sync (potentially context switch) in case where there is no process
618   // IO
619   if (!m_process_input_reader)
620     return;
621 
622   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
623 
624   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
625   if (Result) {
626     LLDB_LOG(
627         log,
628         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
629         iohandler_id, *Result);
630   } else {
631     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
632              iohandler_id);
633   }
634 }
635 
636 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
637                                         EventSP *event_sp_ptr, bool wait_always,
638                                         ListenerSP hijack_listener_sp,
639                                         Stream *stream, bool use_run_lock) {
640   // We can't just wait for a "stopped" event, because the stopped event may
641   // have restarted the target. We have to actually check each event, and in
642   // the case of a stopped event check the restarted flag on the event.
643   if (event_sp_ptr)
644     event_sp_ptr->reset();
645   StateType state = GetState();
646   // If we are exited or detached, we won't ever get back to any other valid
647   // state...
648   if (state == eStateDetached || state == eStateExited)
649     return state;
650 
651   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
652   LLDB_LOG(log, "timeout = {0}", timeout);
653 
654   if (!wait_always && StateIsStoppedState(state, true) &&
655       StateIsStoppedState(GetPrivateState(), true)) {
656     LLDB_LOGF(log,
657               "Process::%s returning without waiting for events; process "
658               "private and public states are already 'stopped'.",
659               __FUNCTION__);
660     // We need to toggle the run lock as this won't get done in
661     // SetPublicState() if the process is hijacked.
662     if (hijack_listener_sp && use_run_lock)
663       m_public_run_lock.SetStopped();
664     return state;
665   }
666 
667   while (state != eStateInvalid) {
668     EventSP event_sp;
669     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
670     if (event_sp_ptr && event_sp)
671       *event_sp_ptr = event_sp;
672 
673     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
674     Process::HandleProcessStateChangedEvent(event_sp, stream,
675                                             pop_process_io_handler);
676 
677     switch (state) {
678     case eStateCrashed:
679     case eStateDetached:
680     case eStateExited:
681     case eStateUnloaded:
682       // We need to toggle the run lock as this won't get done in
683       // SetPublicState() if the process is hijacked.
684       if (hijack_listener_sp && use_run_lock)
685         m_public_run_lock.SetStopped();
686       return state;
687     case eStateStopped:
688       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
689         continue;
690       else {
691         // We need to toggle the run lock as this won't get done in
692         // SetPublicState() if the process is hijacked.
693         if (hijack_listener_sp && use_run_lock)
694           m_public_run_lock.SetStopped();
695         return state;
696       }
697     default:
698       continue;
699     }
700   }
701   return state;
702 }
703 
704 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
705                                              Stream *stream,
706                                              bool &pop_process_io_handler) {
707   const bool handle_pop = pop_process_io_handler;
708 
709   pop_process_io_handler = false;
710   ProcessSP process_sp =
711       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
712 
713   if (!process_sp)
714     return false;
715 
716   StateType event_state =
717       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
718   if (event_state == eStateInvalid)
719     return false;
720 
721   switch (event_state) {
722   case eStateInvalid:
723   case eStateUnloaded:
724   case eStateAttaching:
725   case eStateLaunching:
726   case eStateStepping:
727   case eStateDetached:
728     if (stream)
729       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
730                      StateAsCString(event_state));
731     if (event_state == eStateDetached)
732       pop_process_io_handler = true;
733     break;
734 
735   case eStateConnected:
736   case eStateRunning:
737     // Don't be chatty when we run...
738     break;
739 
740   case eStateExited:
741     if (stream)
742       process_sp->GetStatus(*stream);
743     pop_process_io_handler = true;
744     break;
745 
746   case eStateStopped:
747   case eStateCrashed:
748   case eStateSuspended:
749     // Make sure the program hasn't been auto-restarted:
750     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
751       if (stream) {
752         size_t num_reasons =
753             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
754         if (num_reasons > 0) {
755           // FIXME: Do we want to report this, or would that just be annoyingly
756           // chatty?
757           if (num_reasons == 1) {
758             const char *reason =
759                 Process::ProcessEventData::GetRestartedReasonAtIndex(
760                     event_sp.get(), 0);
761             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
762                            process_sp->GetID(),
763                            reason ? reason : "<UNKNOWN REASON>");
764           } else {
765             stream->Printf("Process %" PRIu64
766                            " stopped and restarted, reasons:\n",
767                            process_sp->GetID());
768 
769             for (size_t i = 0; i < num_reasons; i++) {
770               const char *reason =
771                   Process::ProcessEventData::GetRestartedReasonAtIndex(
772                       event_sp.get(), i);
773               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
774             }
775           }
776         }
777       }
778     } else {
779       StopInfoSP curr_thread_stop_info_sp;
780       // Lock the thread list so it doesn't change on us, this is the scope for
781       // the locker:
782       {
783         ThreadList &thread_list = process_sp->GetThreadList();
784         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
785 
786         ThreadSP curr_thread(thread_list.GetSelectedThread());
787         ThreadSP thread;
788         StopReason curr_thread_stop_reason = eStopReasonInvalid;
789         if (curr_thread) {
790           curr_thread_stop_reason = curr_thread->GetStopReason();
791           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
792         }
793         if (!curr_thread || !curr_thread->IsValid() ||
794             curr_thread_stop_reason == eStopReasonInvalid ||
795             curr_thread_stop_reason == eStopReasonNone) {
796           // Prefer a thread that has just completed its plan over another
797           // thread as current thread.
798           ThreadSP plan_thread;
799           ThreadSP other_thread;
800 
801           const size_t num_threads = thread_list.GetSize();
802           size_t i;
803           for (i = 0; i < num_threads; ++i) {
804             thread = thread_list.GetThreadAtIndex(i);
805             StopReason thread_stop_reason = thread->GetStopReason();
806             switch (thread_stop_reason) {
807             case eStopReasonInvalid:
808             case eStopReasonNone:
809               break;
810 
811             case eStopReasonSignal: {
812               // Don't select a signal thread if we weren't going to stop at
813               // that signal.  We have to have had another reason for stopping
814               // here, and the user doesn't want to see this thread.
815               uint64_t signo = thread->GetStopInfo()->GetValue();
816               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
817                 if (!other_thread)
818                   other_thread = thread;
819               }
820               break;
821             }
822             case eStopReasonTrace:
823             case eStopReasonBreakpoint:
824             case eStopReasonWatchpoint:
825             case eStopReasonException:
826             case eStopReasonExec:
827             case eStopReasonFork:
828             case eStopReasonVFork:
829             case eStopReasonVForkDone:
830             case eStopReasonThreadExiting:
831             case eStopReasonInstrumentation:
832             case eStopReasonProcessorTrace:
833               if (!other_thread)
834                 other_thread = thread;
835               break;
836             case eStopReasonPlanComplete:
837               if (!plan_thread)
838                 plan_thread = thread;
839               break;
840             }
841           }
842           if (plan_thread)
843             thread_list.SetSelectedThreadByID(plan_thread->GetID());
844           else if (other_thread)
845             thread_list.SetSelectedThreadByID(other_thread->GetID());
846           else {
847             if (curr_thread && curr_thread->IsValid())
848               thread = curr_thread;
849             else
850               thread = thread_list.GetThreadAtIndex(0);
851 
852             if (thread)
853               thread_list.SetSelectedThreadByID(thread->GetID());
854           }
855         }
856       }
857       // Drop the ThreadList mutex by here, since GetThreadStatus below might
858       // have to run code, e.g. for Data formatters, and if we hold the
859       // ThreadList mutex, then the process is going to have a hard time
860       // restarting the process.
861       if (stream) {
862         Debugger &debugger = process_sp->GetTarget().GetDebugger();
863         if (debugger.GetTargetList().GetSelectedTarget().get() ==
864             &process_sp->GetTarget()) {
865           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
866 
867           if (!thread_sp || !thread_sp->IsValid())
868             return false;
869 
870           const bool only_threads_with_stop_reason = true;
871           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
872           const uint32_t num_frames = 1;
873           const uint32_t num_frames_with_source = 1;
874           const bool stop_format = true;
875 
876           process_sp->GetStatus(*stream);
877           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
878                                       start_frame, num_frames,
879                                       num_frames_with_source,
880                                       stop_format);
881           if (curr_thread_stop_info_sp) {
882             lldb::addr_t crashing_address;
883             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
884                 curr_thread_stop_info_sp, &crashing_address);
885             if (valobj_sp) {
886               const ValueObject::GetExpressionPathFormat format =
887                   ValueObject::GetExpressionPathFormat::
888                       eGetExpressionPathFormatHonorPointers;
889               stream->PutCString("Likely cause: ");
890               valobj_sp->GetExpressionPath(*stream, format);
891               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
892             }
893           }
894         } else {
895           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
896               process_sp->GetTarget().shared_from_this());
897           if (target_idx != UINT32_MAX)
898             stream->Printf("Target %d: (", target_idx);
899           else
900             stream->Printf("Target <unknown index>: (");
901           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
902           stream->Printf(") stopped.\n");
903         }
904       }
905 
906       // Pop the process IO handler
907       pop_process_io_handler = true;
908     }
909     break;
910   }
911 
912   if (handle_pop && pop_process_io_handler)
913     process_sp->PopProcessIOHandler();
914 
915   return true;
916 }
917 
918 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
919   if (listener_sp) {
920     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
921                                               eBroadcastBitInterrupt);
922   } else
923     return false;
924 }
925 
926 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
927 
928 StateType Process::GetStateChangedEvents(EventSP &event_sp,
929                                          const Timeout<std::micro> &timeout,
930                                          ListenerSP hijack_listener_sp) {
931   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
932   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
933 
934   ListenerSP listener_sp = hijack_listener_sp;
935   if (!listener_sp)
936     listener_sp = m_listener_sp;
937 
938   StateType state = eStateInvalid;
939   if (listener_sp->GetEventForBroadcasterWithType(
940           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
941           timeout)) {
942     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
943       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
944     else
945       LLDB_LOG(log, "got no event or was interrupted.");
946   }
947 
948   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
949   return state;
950 }
951 
952 Event *Process::PeekAtStateChangedEvents() {
953   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
954 
955   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
956 
957   Event *event_ptr;
958   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
959       this, eBroadcastBitStateChanged);
960   if (log) {
961     if (event_ptr) {
962       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
963                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
964     } else {
965       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
966     }
967   }
968   return event_ptr;
969 }
970 
971 StateType
972 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
973                                       const Timeout<std::micro> &timeout) {
974   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
975   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
976 
977   StateType state = eStateInvalid;
978   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
979           &m_private_state_broadcaster,
980           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
981           timeout))
982     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
983       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
984 
985   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
986            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
987   return state;
988 }
989 
990 bool Process::GetEventsPrivate(EventSP &event_sp,
991                                const Timeout<std::micro> &timeout,
992                                bool control_only) {
993   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
994   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
995 
996   if (control_only)
997     return m_private_state_listener_sp->GetEventForBroadcaster(
998         &m_private_state_control_broadcaster, event_sp, timeout);
999   else
1000     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1001 }
1002 
1003 bool Process::IsRunning() const {
1004   return StateIsRunningState(m_public_state.GetValue());
1005 }
1006 
1007 int Process::GetExitStatus() {
1008   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1009 
1010   if (m_public_state.GetValue() == eStateExited)
1011     return m_exit_status;
1012   return -1;
1013 }
1014 
1015 const char *Process::GetExitDescription() {
1016   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1017 
1018   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1019     return m_exit_string.c_str();
1020   return nullptr;
1021 }
1022 
1023 bool Process::SetExitStatus(int status, const char *cstr) {
1024   // Use a mutex to protect setting the exit status.
1025   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1026 
1027   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1028                                                   LIBLLDB_LOG_PROCESS));
1029   LLDB_LOGF(
1030       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1031       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1032 
1033   // We were already in the exited state
1034   if (m_private_state.GetValue() == eStateExited) {
1035     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1036                    "state was already set to eStateExited");
1037     return false;
1038   }
1039 
1040   m_exit_status = status;
1041   if (cstr)
1042     m_exit_string = cstr;
1043   else
1044     m_exit_string.clear();
1045 
1046   // Clear the last natural stop ID since it has a strong reference to this
1047   // process
1048   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1049 
1050   SetPrivateState(eStateExited);
1051 
1052   // Allow subclasses to do some cleanup
1053   DidExit();
1054 
1055   return true;
1056 }
1057 
1058 bool Process::IsAlive() {
1059   switch (m_private_state.GetValue()) {
1060   case eStateConnected:
1061   case eStateAttaching:
1062   case eStateLaunching:
1063   case eStateStopped:
1064   case eStateRunning:
1065   case eStateStepping:
1066   case eStateCrashed:
1067   case eStateSuspended:
1068     return true;
1069   default:
1070     return false;
1071   }
1072 }
1073 
1074 // This static callback can be used to watch for local child processes on the
1075 // current host. The child process exits, the process will be found in the
1076 // global target list (we want to be completely sure that the
1077 // lldb_private::Process doesn't go away before we can deliver the signal.
1078 bool Process::SetProcessExitStatus(
1079     lldb::pid_t pid, bool exited,
1080     int signo,      // Zero for no signal
1081     int exit_status // Exit value of process if signal is zero
1082     ) {
1083   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
1084   LLDB_LOGF(log,
1085             "Process::SetProcessExitStatus (pid=%" PRIu64
1086             ", exited=%i, signal=%i, exit_status=%i)\n",
1087             pid, exited, signo, exit_status);
1088 
1089   if (exited) {
1090     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1091     if (target_sp) {
1092       ProcessSP process_sp(target_sp->GetProcessSP());
1093       if (process_sp) {
1094         const char *signal_cstr = nullptr;
1095         if (signo)
1096           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1097 
1098         process_sp->SetExitStatus(exit_status, signal_cstr);
1099       }
1100     }
1101     return true;
1102   }
1103   return false;
1104 }
1105 
1106 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1107                                ThreadList &new_thread_list) {
1108   m_thread_plans.ClearThreadCache();
1109   return DoUpdateThreadList(old_thread_list, new_thread_list);
1110 }
1111 
1112 void Process::UpdateThreadListIfNeeded() {
1113   const uint32_t stop_id = GetStopID();
1114   if (m_thread_list.GetSize(false) == 0 ||
1115       stop_id != m_thread_list.GetStopID()) {
1116     bool clear_unused_threads = true;
1117     const StateType state = GetPrivateState();
1118     if (StateIsStoppedState(state, true)) {
1119       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1120       m_thread_list.SetStopID(stop_id);
1121 
1122       // m_thread_list does have its own mutex, but we need to hold onto the
1123       // mutex between the call to UpdateThreadList(...) and the
1124       // os->UpdateThreadList(...) so it doesn't change on us
1125       ThreadList &old_thread_list = m_thread_list;
1126       ThreadList real_thread_list(this);
1127       ThreadList new_thread_list(this);
1128       // Always update the thread list with the protocol specific thread list,
1129       // but only update if "true" is returned
1130       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1131         // Don't call into the OperatingSystem to update the thread list if we
1132         // are shutting down, since that may call back into the SBAPI's,
1133         // requiring the API lock which is already held by whoever is shutting
1134         // us down, causing a deadlock.
1135         OperatingSystem *os = GetOperatingSystem();
1136         if (os && !m_destroy_in_process) {
1137           // Clear any old backing threads where memory threads might have been
1138           // backed by actual threads from the lldb_private::Process subclass
1139           size_t num_old_threads = old_thread_list.GetSize(false);
1140           for (size_t i = 0; i < num_old_threads; ++i)
1141             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1142           // See if the OS plugin reports all threads.  If it does, then
1143           // it is safe to clear unseen thread's plans here.  Otherwise we
1144           // should preserve them in case they show up again:
1145           clear_unused_threads = GetOSPluginReportsAllThreads();
1146 
1147           // Turn off dynamic types to ensure we don't run any expressions.
1148           // Objective-C can run an expression to determine if a SBValue is a
1149           // dynamic type or not and we need to avoid this. OperatingSystem
1150           // plug-ins can't run expressions that require running code...
1151 
1152           Target &target = GetTarget();
1153           const lldb::DynamicValueType saved_prefer_dynamic =
1154               target.GetPreferDynamicValue();
1155           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1156             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1157 
1158           // Now let the OperatingSystem plug-in update the thread list
1159 
1160           os->UpdateThreadList(
1161               old_thread_list, // Old list full of threads created by OS plug-in
1162               real_thread_list, // The actual thread list full of threads
1163                                 // created by each lldb_private::Process
1164                                 // subclass
1165               new_thread_list); // The new thread list that we will show to the
1166                                 // user that gets filled in
1167 
1168           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1169             target.SetPreferDynamicValue(saved_prefer_dynamic);
1170         } else {
1171           // No OS plug-in, the new thread list is the same as the real thread
1172           // list.
1173           new_thread_list = real_thread_list;
1174         }
1175 
1176         m_thread_list_real.Update(real_thread_list);
1177         m_thread_list.Update(new_thread_list);
1178         m_thread_list.SetStopID(stop_id);
1179 
1180         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1181           // Clear any extended threads that we may have accumulated previously
1182           m_extended_thread_list.Clear();
1183           m_extended_thread_stop_id = GetLastNaturalStopID();
1184 
1185           m_queue_list.Clear();
1186           m_queue_list_stop_id = GetLastNaturalStopID();
1187         }
1188       }
1189       // Now update the plan stack map.
1190       // If we do have an OS plugin, any absent real threads in the
1191       // m_thread_list have already been removed from the ThreadPlanStackMap.
1192       // So any remaining threads are OS Plugin threads, and those we want to
1193       // preserve in case they show up again.
1194       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1195     }
1196   }
1197 }
1198 
1199 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1200   return m_thread_plans.Find(tid);
1201 }
1202 
1203 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1204   return m_thread_plans.PrunePlansForTID(tid);
1205 }
1206 
1207 void Process::PruneThreadPlans() {
1208   m_thread_plans.Update(GetThreadList(), true, false);
1209 }
1210 
1211 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1212                                     lldb::DescriptionLevel desc_level,
1213                                     bool internal, bool condense_trivial,
1214                                     bool skip_unreported_plans) {
1215   return m_thread_plans.DumpPlansForTID(
1216       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1217 }
1218 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1219                               bool internal, bool condense_trivial,
1220                               bool skip_unreported_plans) {
1221   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1222                            skip_unreported_plans);
1223 }
1224 
1225 void Process::UpdateQueueListIfNeeded() {
1226   if (m_system_runtime_up) {
1227     if (m_queue_list.GetSize() == 0 ||
1228         m_queue_list_stop_id != GetLastNaturalStopID()) {
1229       const StateType state = GetPrivateState();
1230       if (StateIsStoppedState(state, true)) {
1231         m_system_runtime_up->PopulateQueueList(m_queue_list);
1232         m_queue_list_stop_id = GetLastNaturalStopID();
1233       }
1234     }
1235   }
1236 }
1237 
1238 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1239   OperatingSystem *os = GetOperatingSystem();
1240   if (os)
1241     return os->CreateThread(tid, context);
1242   return ThreadSP();
1243 }
1244 
1245 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1246   return AssignIndexIDToThread(thread_id);
1247 }
1248 
1249 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1250   return (m_thread_id_to_index_id_map.find(thread_id) !=
1251           m_thread_id_to_index_id_map.end());
1252 }
1253 
1254 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1255   uint32_t result = 0;
1256   std::map<uint64_t, uint32_t>::iterator iterator =
1257       m_thread_id_to_index_id_map.find(thread_id);
1258   if (iterator == m_thread_id_to_index_id_map.end()) {
1259     result = ++m_thread_index_id;
1260     m_thread_id_to_index_id_map[thread_id] = result;
1261   } else {
1262     result = iterator->second;
1263   }
1264 
1265   return result;
1266 }
1267 
1268 StateType Process::GetState() {
1269   return m_public_state.GetValue();
1270 }
1271 
1272 void Process::SetPublicState(StateType new_state, bool restarted) {
1273   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1274                                                   LIBLLDB_LOG_PROCESS));
1275   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1276             StateAsCString(new_state), restarted);
1277   const StateType old_state = m_public_state.GetValue();
1278   m_public_state.SetValue(new_state);
1279 
1280   // On the transition from Run to Stopped, we unlock the writer end of the run
1281   // lock.  The lock gets locked in Resume, which is the public API to tell the
1282   // program to run.
1283   if (!StateChangedIsExternallyHijacked()) {
1284     if (new_state == eStateDetached) {
1285       LLDB_LOGF(log,
1286                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1287                 StateAsCString(new_state));
1288       m_public_run_lock.SetStopped();
1289     } else {
1290       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1291       const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1292       if ((old_state_is_stopped != new_state_is_stopped)) {
1293         if (new_state_is_stopped && !restarted) {
1294           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1295                     StateAsCString(new_state));
1296           m_public_run_lock.SetStopped();
1297         }
1298       }
1299     }
1300   }
1301 }
1302 
1303 Status Process::Resume() {
1304   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1305                                                   LIBLLDB_LOG_PROCESS));
1306   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1307   if (!m_public_run_lock.TrySetRunning()) {
1308     Status error("Resume request failed - process still running.");
1309     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1310     return error;
1311   }
1312   Status error = PrivateResume();
1313   if (!error.Success()) {
1314     // Undo running state change
1315     m_public_run_lock.SetStopped();
1316   }
1317   return error;
1318 }
1319 
1320 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1321 
1322 Status Process::ResumeSynchronous(Stream *stream) {
1323   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1324                                                   LIBLLDB_LOG_PROCESS));
1325   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1326   if (!m_public_run_lock.TrySetRunning()) {
1327     Status error("Resume request failed - process still running.");
1328     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1329     return error;
1330   }
1331 
1332   ListenerSP listener_sp(
1333       Listener::MakeListener(g_resume_sync_name));
1334   HijackProcessEvents(listener_sp);
1335 
1336   Status error = PrivateResume();
1337   if (error.Success()) {
1338     StateType state =
1339         WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream);
1340     const bool must_be_alive =
1341         false; // eStateExited is ok, so this must be false
1342     if (!StateIsStoppedState(state, must_be_alive))
1343       error.SetErrorStringWithFormat(
1344           "process not in stopped state after synchronous resume: %s",
1345           StateAsCString(state));
1346   } else {
1347     // Undo running state change
1348     m_public_run_lock.SetStopped();
1349   }
1350 
1351   // Undo the hijacking of process events...
1352   RestoreProcessEvents();
1353 
1354   return error;
1355 }
1356 
1357 bool Process::StateChangedIsExternallyHijacked() {
1358   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1359     const char *hijacking_name = GetHijackingListenerName();
1360     if (hijacking_name &&
1361         strcmp(hijacking_name, g_resume_sync_name))
1362       return true;
1363   }
1364   return false;
1365 }
1366 
1367 bool Process::StateChangedIsHijackedForSynchronousResume() {
1368   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1369     const char *hijacking_name = GetHijackingListenerName();
1370     if (hijacking_name &&
1371         strcmp(hijacking_name, g_resume_sync_name) == 0)
1372       return true;
1373   }
1374   return false;
1375 }
1376 
1377 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1378 
1379 void Process::SetPrivateState(StateType new_state) {
1380   if (m_finalizing)
1381     return;
1382 
1383   Log *log(lldb_private::GetLogIfAnyCategoriesSet(
1384       LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND));
1385   bool state_changed = false;
1386 
1387   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1388 
1389   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1390   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1391 
1392   const StateType old_state = m_private_state.GetValueNoLock();
1393   state_changed = old_state != new_state;
1394 
1395   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1396   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1397   if (old_state_is_stopped != new_state_is_stopped) {
1398     if (new_state_is_stopped)
1399       m_private_run_lock.SetStopped();
1400     else
1401       m_private_run_lock.SetRunning();
1402   }
1403 
1404   if (state_changed) {
1405     m_private_state.SetValueNoLock(new_state);
1406     EventSP event_sp(
1407         new Event(eBroadcastBitStateChanged,
1408                   new ProcessEventData(shared_from_this(), new_state)));
1409     if (StateIsStoppedState(new_state, false)) {
1410       // Note, this currently assumes that all threads in the list stop when
1411       // the process stops.  In the future we will want to support a debugging
1412       // model where some threads continue to run while others are stopped.
1413       // When that happens we will either need a way for the thread list to
1414       // identify which threads are stopping or create a special thread list
1415       // containing only threads which actually stopped.
1416       //
1417       // The process plugin is responsible for managing the actual behavior of
1418       // the threads and should have stopped any threads that are going to stop
1419       // before we get here.
1420       m_thread_list.DidStop();
1421 
1422       m_mod_id.BumpStopID();
1423       if (!m_mod_id.IsLastResumeForUserExpression())
1424         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1425       m_memory_cache.Clear();
1426       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1427                 StateAsCString(new_state), m_mod_id.GetStopID());
1428     }
1429 
1430     m_private_state_broadcaster.BroadcastEvent(event_sp);
1431   } else {
1432     LLDB_LOGF(log,
1433               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1434               StateAsCString(new_state));
1435   }
1436 }
1437 
1438 void Process::SetRunningUserExpression(bool on) {
1439   m_mod_id.SetRunningUserExpression(on);
1440 }
1441 
1442 void Process::SetRunningUtilityFunction(bool on) {
1443   m_mod_id.SetRunningUtilityFunction(on);
1444 }
1445 
1446 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1447 
1448 const lldb::ABISP &Process::GetABI() {
1449   if (!m_abi_sp)
1450     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1451   return m_abi_sp;
1452 }
1453 
1454 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1455   std::vector<LanguageRuntime *> language_runtimes;
1456 
1457   if (m_finalizing)
1458     return language_runtimes;
1459 
1460   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1461   // Before we pass off a copy of the language runtimes, we must make sure that
1462   // our collection is properly populated. It's possible that some of the
1463   // language runtimes were not loaded yet, either because nobody requested it
1464   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1465   // hadn't been loaded).
1466   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1467     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1468       language_runtimes.emplace_back(runtime);
1469   }
1470 
1471   return language_runtimes;
1472 }
1473 
1474 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1475   if (m_finalizing)
1476     return nullptr;
1477 
1478   LanguageRuntime *runtime = nullptr;
1479 
1480   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1481   LanguageRuntimeCollection::iterator pos;
1482   pos = m_language_runtimes.find(language);
1483   if (pos == m_language_runtimes.end() || !pos->second) {
1484     lldb::LanguageRuntimeSP runtime_sp(
1485         LanguageRuntime::FindPlugin(this, language));
1486 
1487     m_language_runtimes[language] = runtime_sp;
1488     runtime = runtime_sp.get();
1489   } else
1490     runtime = pos->second.get();
1491 
1492   if (runtime)
1493     // It's possible that a language runtime can support multiple LanguageTypes,
1494     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1495     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1496     // primary language type and make sure that our runtime supports it.
1497     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1498 
1499   return runtime;
1500 }
1501 
1502 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1503   if (m_finalizing)
1504     return false;
1505 
1506   if (in_value.IsDynamic())
1507     return false;
1508   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1509 
1510   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1511     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1512     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1513   }
1514 
1515   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1516     if (runtime->CouldHaveDynamicValue(in_value))
1517       return true;
1518   }
1519 
1520   return false;
1521 }
1522 
1523 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1524   m_dynamic_checkers_up.reset(dynamic_checkers);
1525 }
1526 
1527 BreakpointSiteList &Process::GetBreakpointSiteList() {
1528   return m_breakpoint_site_list;
1529 }
1530 
1531 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1532   return m_breakpoint_site_list;
1533 }
1534 
1535 void Process::DisableAllBreakpointSites() {
1536   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1537     //        bp_site->SetEnabled(true);
1538     DisableBreakpointSite(bp_site);
1539   });
1540 }
1541 
1542 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1543   Status error(DisableBreakpointSiteByID(break_id));
1544 
1545   if (error.Success())
1546     m_breakpoint_site_list.Remove(break_id);
1547 
1548   return error;
1549 }
1550 
1551 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1552   Status error;
1553   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1554   if (bp_site_sp) {
1555     if (bp_site_sp->IsEnabled())
1556       error = DisableBreakpointSite(bp_site_sp.get());
1557   } else {
1558     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1559                                    break_id);
1560   }
1561 
1562   return error;
1563 }
1564 
1565 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1566   Status error;
1567   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1568   if (bp_site_sp) {
1569     if (!bp_site_sp->IsEnabled())
1570       error = EnableBreakpointSite(bp_site_sp.get());
1571   } else {
1572     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1573                                    break_id);
1574   }
1575   return error;
1576 }
1577 
1578 lldb::break_id_t
1579 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1580                               bool use_hardware) {
1581   addr_t load_addr = LLDB_INVALID_ADDRESS;
1582 
1583   bool show_error = true;
1584   switch (GetState()) {
1585   case eStateInvalid:
1586   case eStateUnloaded:
1587   case eStateConnected:
1588   case eStateAttaching:
1589   case eStateLaunching:
1590   case eStateDetached:
1591   case eStateExited:
1592     show_error = false;
1593     break;
1594 
1595   case eStateStopped:
1596   case eStateRunning:
1597   case eStateStepping:
1598   case eStateCrashed:
1599   case eStateSuspended:
1600     show_error = IsAlive();
1601     break;
1602   }
1603 
1604   // Reset the IsIndirect flag here, in case the location changes from pointing
1605   // to a indirect symbol to a regular symbol.
1606   owner->SetIsIndirect(false);
1607 
1608   if (owner->ShouldResolveIndirectFunctions()) {
1609     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1610     if (symbol && symbol->IsIndirect()) {
1611       Status error;
1612       Address symbol_address = symbol->GetAddress();
1613       load_addr = ResolveIndirectFunction(&symbol_address, error);
1614       if (!error.Success() && show_error) {
1615         GetTarget().GetDebugger().GetErrorStream().Printf(
1616             "warning: failed to resolve indirect function at 0x%" PRIx64
1617             " for breakpoint %i.%i: %s\n",
1618             symbol->GetLoadAddress(&GetTarget()),
1619             owner->GetBreakpoint().GetID(), owner->GetID(),
1620             error.AsCString() ? error.AsCString() : "unknown error");
1621         return LLDB_INVALID_BREAK_ID;
1622       }
1623       Address resolved_address(load_addr);
1624       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1625       owner->SetIsIndirect(true);
1626     } else
1627       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1628   } else
1629     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1630 
1631   if (load_addr != LLDB_INVALID_ADDRESS) {
1632     BreakpointSiteSP bp_site_sp;
1633 
1634     // Look up this breakpoint site.  If it exists, then add this new owner,
1635     // otherwise create a new breakpoint site and add it.
1636 
1637     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1638 
1639     if (bp_site_sp) {
1640       bp_site_sp->AddOwner(owner);
1641       owner->SetBreakpointSite(bp_site_sp);
1642       return bp_site_sp->GetID();
1643     } else {
1644       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1645                                           load_addr, use_hardware));
1646       if (bp_site_sp) {
1647         Status error = EnableBreakpointSite(bp_site_sp.get());
1648         if (error.Success()) {
1649           owner->SetBreakpointSite(bp_site_sp);
1650           return m_breakpoint_site_list.Add(bp_site_sp);
1651         } else {
1652           if (show_error || use_hardware) {
1653             // Report error for setting breakpoint...
1654             GetTarget().GetDebugger().GetErrorStream().Printf(
1655                 "warning: failed to set breakpoint site at 0x%" PRIx64
1656                 " for breakpoint %i.%i: %s\n",
1657                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1658                 error.AsCString() ? error.AsCString() : "unknown error");
1659           }
1660         }
1661       }
1662     }
1663   }
1664   // We failed to enable the breakpoint
1665   return LLDB_INVALID_BREAK_ID;
1666 }
1667 
1668 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1669                                             lldb::user_id_t owner_loc_id,
1670                                             BreakpointSiteSP &bp_site_sp) {
1671   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1672   if (num_owners == 0) {
1673     // Don't try to disable the site if we don't have a live process anymore.
1674     if (IsAlive())
1675       DisableBreakpointSite(bp_site_sp.get());
1676     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1677   }
1678 }
1679 
1680 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1681                                                   uint8_t *buf) const {
1682   size_t bytes_removed = 0;
1683   BreakpointSiteList bp_sites_in_range;
1684 
1685   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1686                                          bp_sites_in_range)) {
1687     bp_sites_in_range.ForEach([bp_addr, size,
1688                                buf](BreakpointSite *bp_site) -> void {
1689       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1690         addr_t intersect_addr;
1691         size_t intersect_size;
1692         size_t opcode_offset;
1693         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1694                                      &intersect_size, &opcode_offset)) {
1695           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1696           assert(bp_addr < intersect_addr + intersect_size &&
1697                  intersect_addr + intersect_size <= bp_addr + size);
1698           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1699           size_t buf_offset = intersect_addr - bp_addr;
1700           ::memcpy(buf + buf_offset,
1701                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1702                    intersect_size);
1703         }
1704       }
1705     });
1706   }
1707   return bytes_removed;
1708 }
1709 
1710 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1711   PlatformSP platform_sp(GetTarget().GetPlatform());
1712   if (platform_sp)
1713     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1714   return 0;
1715 }
1716 
1717 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1718   Status error;
1719   assert(bp_site != nullptr);
1720   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1721   const addr_t bp_addr = bp_site->GetLoadAddress();
1722   LLDB_LOGF(
1723       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1724       bp_site->GetID(), (uint64_t)bp_addr);
1725   if (bp_site->IsEnabled()) {
1726     LLDB_LOGF(
1727         log,
1728         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1729         " -- already enabled",
1730         bp_site->GetID(), (uint64_t)bp_addr);
1731     return error;
1732   }
1733 
1734   if (bp_addr == LLDB_INVALID_ADDRESS) {
1735     error.SetErrorString("BreakpointSite contains an invalid load address.");
1736     return error;
1737   }
1738   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1739   // trap for the breakpoint site
1740   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1741 
1742   if (bp_opcode_size == 0) {
1743     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1744                                    "returned zero, unable to get breakpoint "
1745                                    "trap for address 0x%" PRIx64,
1746                                    bp_addr);
1747   } else {
1748     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1749 
1750     if (bp_opcode_bytes == nullptr) {
1751       error.SetErrorString(
1752           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1753       return error;
1754     }
1755 
1756     // Save the original opcode by reading it
1757     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1758                      error) == bp_opcode_size) {
1759       // Write a software breakpoint in place of the original opcode
1760       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1761           bp_opcode_size) {
1762         uint8_t verify_bp_opcode_bytes[64];
1763         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1764                          error) == bp_opcode_size) {
1765           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1766                        bp_opcode_size) == 0) {
1767             bp_site->SetEnabled(true);
1768             bp_site->SetType(BreakpointSite::eSoftware);
1769             LLDB_LOGF(log,
1770                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1771                       "addr = 0x%" PRIx64 " -- SUCCESS",
1772                       bp_site->GetID(), (uint64_t)bp_addr);
1773           } else
1774             error.SetErrorString(
1775                 "failed to verify the breakpoint trap in memory.");
1776         } else
1777           error.SetErrorString(
1778               "Unable to read memory to verify breakpoint trap.");
1779       } else
1780         error.SetErrorString("Unable to write breakpoint trap to memory.");
1781     } else
1782       error.SetErrorString("Unable to read memory at breakpoint address.");
1783   }
1784   if (log && error.Fail())
1785     LLDB_LOGF(
1786         log,
1787         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1788         " -- FAILED: %s",
1789         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1790   return error;
1791 }
1792 
1793 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1794   Status error;
1795   assert(bp_site != nullptr);
1796   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1797   addr_t bp_addr = bp_site->GetLoadAddress();
1798   lldb::user_id_t breakID = bp_site->GetID();
1799   LLDB_LOGF(log,
1800             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1801             ") addr = 0x%" PRIx64,
1802             breakID, (uint64_t)bp_addr);
1803 
1804   if (bp_site->IsHardware()) {
1805     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1806   } else if (bp_site->IsEnabled()) {
1807     const size_t break_op_size = bp_site->GetByteSize();
1808     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1809     if (break_op_size > 0) {
1810       // Clear a software breakpoint instruction
1811       uint8_t curr_break_op[8];
1812       assert(break_op_size <= sizeof(curr_break_op));
1813       bool break_op_found = false;
1814 
1815       // Read the breakpoint opcode
1816       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1817           break_op_size) {
1818         bool verify = false;
1819         // Make sure the breakpoint opcode exists at this address
1820         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1821           break_op_found = true;
1822           // We found a valid breakpoint opcode at this address, now restore
1823           // the saved opcode.
1824           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1825                             break_op_size, error) == break_op_size) {
1826             verify = true;
1827           } else
1828             error.SetErrorString(
1829                 "Memory write failed when restoring original opcode.");
1830         } else {
1831           error.SetErrorString(
1832               "Original breakpoint trap is no longer in memory.");
1833           // Set verify to true and so we can check if the original opcode has
1834           // already been restored
1835           verify = true;
1836         }
1837 
1838         if (verify) {
1839           uint8_t verify_opcode[8];
1840           assert(break_op_size < sizeof(verify_opcode));
1841           // Verify that our original opcode made it back to the inferior
1842           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1843               break_op_size) {
1844             // compare the memory we just read with the original opcode
1845             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1846                          break_op_size) == 0) {
1847               // SUCCESS
1848               bp_site->SetEnabled(false);
1849               LLDB_LOGF(log,
1850                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1851                         "addr = 0x%" PRIx64 " -- SUCCESS",
1852                         bp_site->GetID(), (uint64_t)bp_addr);
1853               return error;
1854             } else {
1855               if (break_op_found)
1856                 error.SetErrorString("Failed to restore original opcode.");
1857             }
1858           } else
1859             error.SetErrorString("Failed to read memory to verify that "
1860                                  "breakpoint trap was restored.");
1861         }
1862       } else
1863         error.SetErrorString(
1864             "Unable to read memory that should contain the breakpoint trap.");
1865     }
1866   } else {
1867     LLDB_LOGF(
1868         log,
1869         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1870         " -- already disabled",
1871         bp_site->GetID(), (uint64_t)bp_addr);
1872     return error;
1873   }
1874 
1875   LLDB_LOGF(
1876       log,
1877       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1878       " -- FAILED: %s",
1879       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1880   return error;
1881 }
1882 
1883 // Uncomment to verify memory caching works after making changes to caching
1884 // code
1885 //#define VERIFY_MEMORY_READS
1886 
1887 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1888   error.Clear();
1889   if (!GetDisableMemoryCache()) {
1890 #if defined(VERIFY_MEMORY_READS)
1891     // Memory caching is enabled, with debug verification
1892 
1893     if (buf && size) {
1894       // Uncomment the line below to make sure memory caching is working.
1895       // I ran this through the test suite and got no assertions, so I am
1896       // pretty confident this is working well. If any changes are made to
1897       // memory caching, uncomment the line below and test your changes!
1898 
1899       // Verify all memory reads by using the cache first, then redundantly
1900       // reading the same memory from the inferior and comparing to make sure
1901       // everything is exactly the same.
1902       std::string verify_buf(size, '\0');
1903       assert(verify_buf.size() == size);
1904       const size_t cache_bytes_read =
1905           m_memory_cache.Read(this, addr, buf, size, error);
1906       Status verify_error;
1907       const size_t verify_bytes_read =
1908           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1909                                  verify_buf.size(), verify_error);
1910       assert(cache_bytes_read == verify_bytes_read);
1911       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1912       assert(verify_error.Success() == error.Success());
1913       return cache_bytes_read;
1914     }
1915     return 0;
1916 #else  // !defined(VERIFY_MEMORY_READS)
1917     // Memory caching is enabled, without debug verification
1918 
1919     return m_memory_cache.Read(addr, buf, size, error);
1920 #endif // defined (VERIFY_MEMORY_READS)
1921   } else {
1922     // Memory caching is disabled
1923 
1924     return ReadMemoryFromInferior(addr, buf, size, error);
1925   }
1926 }
1927 
1928 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1929                                       Status &error) {
1930   char buf[256];
1931   out_str.clear();
1932   addr_t curr_addr = addr;
1933   while (true) {
1934     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1935     if (length == 0)
1936       break;
1937     out_str.append(buf, length);
1938     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1939     // to read some more characters
1940     if (length == sizeof(buf) - 1)
1941       curr_addr += length;
1942     else
1943       break;
1944   }
1945   return out_str.size();
1946 }
1947 
1948 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes,
1949                                      Status &error, size_t type_width) {
1950   size_t total_bytes_read = 0;
1951   if (dst && max_bytes && type_width && max_bytes >= type_width) {
1952     // Ensure a null terminator independent of the number of bytes that is
1953     // read.
1954     memset(dst, 0, max_bytes);
1955     size_t bytes_left = max_bytes - type_width;
1956 
1957     const char terminator[4] = {'\0', '\0', '\0', '\0'};
1958     assert(sizeof(terminator) >= type_width && "Attempting to validate a "
1959                                                "string with more than 4 bytes "
1960                                                "per character!");
1961 
1962     addr_t curr_addr = addr;
1963     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1964     char *curr_dst = dst;
1965 
1966     error.Clear();
1967     while (bytes_left > 0 && error.Success()) {
1968       addr_t cache_line_bytes_left =
1969           cache_line_size - (curr_addr % cache_line_size);
1970       addr_t bytes_to_read =
1971           std::min<addr_t>(bytes_left, cache_line_bytes_left);
1972       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
1973 
1974       if (bytes_read == 0)
1975         break;
1976 
1977       // Search for a null terminator of correct size and alignment in
1978       // bytes_read
1979       size_t aligned_start = total_bytes_read - total_bytes_read % type_width;
1980       for (size_t i = aligned_start;
1981            i + type_width <= total_bytes_read + bytes_read; i += type_width)
1982         if (::memcmp(&dst[i], terminator, type_width) == 0) {
1983           error.Clear();
1984           return i;
1985         }
1986 
1987       total_bytes_read += bytes_read;
1988       curr_dst += bytes_read;
1989       curr_addr += bytes_read;
1990       bytes_left -= bytes_read;
1991     }
1992   } else {
1993     if (max_bytes)
1994       error.SetErrorString("invalid arguments");
1995   }
1996   return total_bytes_read;
1997 }
1998 
1999 // Deprecated in favor of ReadStringFromMemory which has wchar support and
2000 // correct code to find null terminators.
2001 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2002                                       size_t dst_max_len,
2003                                       Status &result_error) {
2004   size_t total_cstr_len = 0;
2005   if (dst && dst_max_len) {
2006     result_error.Clear();
2007     // NULL out everything just to be safe
2008     memset(dst, 0, dst_max_len);
2009     Status error;
2010     addr_t curr_addr = addr;
2011     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2012     size_t bytes_left = dst_max_len - 1;
2013     char *curr_dst = dst;
2014 
2015     while (bytes_left > 0) {
2016       addr_t cache_line_bytes_left =
2017           cache_line_size - (curr_addr % cache_line_size);
2018       addr_t bytes_to_read =
2019           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2020       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2021 
2022       if (bytes_read == 0) {
2023         result_error = error;
2024         dst[total_cstr_len] = '\0';
2025         break;
2026       }
2027       const size_t len = strlen(curr_dst);
2028 
2029       total_cstr_len += len;
2030 
2031       if (len < bytes_to_read)
2032         break;
2033 
2034       curr_dst += bytes_read;
2035       curr_addr += bytes_read;
2036       bytes_left -= bytes_read;
2037     }
2038   } else {
2039     if (dst == nullptr)
2040       result_error.SetErrorString("invalid arguments");
2041     else
2042       result_error.Clear();
2043   }
2044   return total_cstr_len;
2045 }
2046 
2047 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2048                                        Status &error) {
2049   LLDB_SCOPED_TIMER();
2050 
2051   if (buf == nullptr || size == 0)
2052     return 0;
2053 
2054   size_t bytes_read = 0;
2055   uint8_t *bytes = (uint8_t *)buf;
2056 
2057   while (bytes_read < size) {
2058     const size_t curr_size = size - bytes_read;
2059     const size_t curr_bytes_read =
2060         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2061     bytes_read += curr_bytes_read;
2062     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2063       break;
2064   }
2065 
2066   // Replace any software breakpoint opcodes that fall into this range back
2067   // into "buf" before we return
2068   if (bytes_read > 0)
2069     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2070   return bytes_read;
2071 }
2072 
2073 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2074                                                 size_t integer_byte_size,
2075                                                 uint64_t fail_value,
2076                                                 Status &error) {
2077   Scalar scalar;
2078   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2079                                   error))
2080     return scalar.ULongLong(fail_value);
2081   return fail_value;
2082 }
2083 
2084 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2085                                              size_t integer_byte_size,
2086                                              int64_t fail_value,
2087                                              Status &error) {
2088   Scalar scalar;
2089   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2090                                   error))
2091     return scalar.SLongLong(fail_value);
2092   return fail_value;
2093 }
2094 
2095 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2096   Scalar scalar;
2097   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2098                                   error))
2099     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2100   return LLDB_INVALID_ADDRESS;
2101 }
2102 
2103 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2104                                    Status &error) {
2105   Scalar scalar;
2106   const uint32_t addr_byte_size = GetAddressByteSize();
2107   if (addr_byte_size <= 4)
2108     scalar = (uint32_t)ptr_value;
2109   else
2110     scalar = ptr_value;
2111   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2112          addr_byte_size;
2113 }
2114 
2115 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2116                                    Status &error) {
2117   size_t bytes_written = 0;
2118   const uint8_t *bytes = (const uint8_t *)buf;
2119 
2120   while (bytes_written < size) {
2121     const size_t curr_size = size - bytes_written;
2122     const size_t curr_bytes_written = DoWriteMemory(
2123         addr + bytes_written, bytes + bytes_written, curr_size, error);
2124     bytes_written += curr_bytes_written;
2125     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2126       break;
2127   }
2128   return bytes_written;
2129 }
2130 
2131 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2132                             Status &error) {
2133 #if defined(ENABLE_MEMORY_CACHING)
2134   m_memory_cache.Flush(addr, size);
2135 #endif
2136 
2137   if (buf == nullptr || size == 0)
2138     return 0;
2139 
2140   m_mod_id.BumpMemoryID();
2141 
2142   // We need to write any data that would go where any current software traps
2143   // (enabled software breakpoints) any software traps (breakpoints) that we
2144   // may have placed in our tasks memory.
2145 
2146   BreakpointSiteList bp_sites_in_range;
2147   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2148     return WriteMemoryPrivate(addr, buf, size, error);
2149 
2150   // No breakpoint sites overlap
2151   if (bp_sites_in_range.IsEmpty())
2152     return WriteMemoryPrivate(addr, buf, size, error);
2153 
2154   const uint8_t *ubuf = (const uint8_t *)buf;
2155   uint64_t bytes_written = 0;
2156 
2157   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2158                              &error](BreakpointSite *bp) -> void {
2159     if (error.Fail())
2160       return;
2161 
2162     if (bp->GetType() != BreakpointSite::eSoftware)
2163       return;
2164 
2165     addr_t intersect_addr;
2166     size_t intersect_size;
2167     size_t opcode_offset;
2168     const bool intersects = bp->IntersectsRange(
2169         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2170     UNUSED_IF_ASSERT_DISABLED(intersects);
2171     assert(intersects);
2172     assert(addr <= intersect_addr && intersect_addr < addr + size);
2173     assert(addr < intersect_addr + intersect_size &&
2174            intersect_addr + intersect_size <= addr + size);
2175     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2176 
2177     // Check for bytes before this breakpoint
2178     const addr_t curr_addr = addr + bytes_written;
2179     if (intersect_addr > curr_addr) {
2180       // There are some bytes before this breakpoint that we need to just
2181       // write to memory
2182       size_t curr_size = intersect_addr - curr_addr;
2183       size_t curr_bytes_written =
2184           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2185       bytes_written += curr_bytes_written;
2186       if (curr_bytes_written != curr_size) {
2187         // We weren't able to write all of the requested bytes, we are
2188         // done looping and will return the number of bytes that we have
2189         // written so far.
2190         if (error.Success())
2191           error.SetErrorToGenericError();
2192       }
2193     }
2194     // Now write any bytes that would cover up any software breakpoints
2195     // directly into the breakpoint opcode buffer
2196     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2197              intersect_size);
2198     bytes_written += intersect_size;
2199   });
2200 
2201   // Write any remaining bytes after the last breakpoint if we have any left
2202   if (bytes_written < size)
2203     bytes_written +=
2204         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2205                            size - bytes_written, error);
2206 
2207   return bytes_written;
2208 }
2209 
2210 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2211                                     size_t byte_size, Status &error) {
2212   if (byte_size == UINT32_MAX)
2213     byte_size = scalar.GetByteSize();
2214   if (byte_size > 0) {
2215     uint8_t buf[32];
2216     const size_t mem_size =
2217         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2218     if (mem_size > 0)
2219       return WriteMemory(addr, buf, mem_size, error);
2220     else
2221       error.SetErrorString("failed to get scalar as memory data");
2222   } else {
2223     error.SetErrorString("invalid scalar value");
2224   }
2225   return 0;
2226 }
2227 
2228 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2229                                             bool is_signed, Scalar &scalar,
2230                                             Status &error) {
2231   uint64_t uval = 0;
2232   if (byte_size == 0) {
2233     error.SetErrorString("byte size is zero");
2234   } else if (byte_size & (byte_size - 1)) {
2235     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2236                                    byte_size);
2237   } else if (byte_size <= sizeof(uval)) {
2238     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2239     if (bytes_read == byte_size) {
2240       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2241                          GetAddressByteSize());
2242       lldb::offset_t offset = 0;
2243       if (byte_size <= 4)
2244         scalar = data.GetMaxU32(&offset, byte_size);
2245       else
2246         scalar = data.GetMaxU64(&offset, byte_size);
2247       if (is_signed)
2248         scalar.SignExtend(byte_size * 8);
2249       return bytes_read;
2250     }
2251   } else {
2252     error.SetErrorStringWithFormat(
2253         "byte size of %u is too large for integer scalar type", byte_size);
2254   }
2255   return 0;
2256 }
2257 
2258 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2259   Status error;
2260   for (const auto &Entry : entries) {
2261     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2262                 error);
2263     if (!error.Success())
2264       break;
2265   }
2266   return error;
2267 }
2268 
2269 #define USE_ALLOCATE_MEMORY_CACHE 1
2270 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2271                                Status &error) {
2272   if (GetPrivateState() != eStateStopped) {
2273     error.SetErrorToGenericError();
2274     return LLDB_INVALID_ADDRESS;
2275   }
2276 
2277 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2278   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2279 #else
2280   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2281   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2282   LLDB_LOGF(log,
2283             "Process::AllocateMemory(size=%" PRIu64
2284             ", permissions=%s) => 0x%16.16" PRIx64
2285             " (m_stop_id = %u m_memory_id = %u)",
2286             (uint64_t)size, GetPermissionsAsCString(permissions),
2287             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2288             m_mod_id.GetMemoryID());
2289   return allocated_addr;
2290 #endif
2291 }
2292 
2293 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2294                                 Status &error) {
2295   addr_t return_addr = AllocateMemory(size, permissions, error);
2296   if (error.Success()) {
2297     std::string buffer(size, 0);
2298     WriteMemory(return_addr, buffer.c_str(), size, error);
2299   }
2300   return return_addr;
2301 }
2302 
2303 bool Process::CanJIT() {
2304   if (m_can_jit == eCanJITDontKnow) {
2305     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2306     Status err;
2307 
2308     uint64_t allocated_memory = AllocateMemory(
2309         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2310         err);
2311 
2312     if (err.Success()) {
2313       m_can_jit = eCanJITYes;
2314       LLDB_LOGF(log,
2315                 "Process::%s pid %" PRIu64
2316                 " allocation test passed, CanJIT () is true",
2317                 __FUNCTION__, GetID());
2318     } else {
2319       m_can_jit = eCanJITNo;
2320       LLDB_LOGF(log,
2321                 "Process::%s pid %" PRIu64
2322                 " allocation test failed, CanJIT () is false: %s",
2323                 __FUNCTION__, GetID(), err.AsCString());
2324     }
2325 
2326     DeallocateMemory(allocated_memory);
2327   }
2328 
2329   return m_can_jit == eCanJITYes;
2330 }
2331 
2332 void Process::SetCanJIT(bool can_jit) {
2333   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2334 }
2335 
2336 void Process::SetCanRunCode(bool can_run_code) {
2337   SetCanJIT(can_run_code);
2338   m_can_interpret_function_calls = can_run_code;
2339 }
2340 
2341 Status Process::DeallocateMemory(addr_t ptr) {
2342   Status error;
2343 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2344   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2345     error.SetErrorStringWithFormat(
2346         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2347   }
2348 #else
2349   error = DoDeallocateMemory(ptr);
2350 
2351   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2352   LLDB_LOGF(log,
2353             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2354             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2355             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2356             m_mod_id.GetMemoryID());
2357 #endif
2358   return error;
2359 }
2360 
2361 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2362                                        lldb::addr_t header_addr,
2363                                        size_t size_to_read) {
2364   Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
2365   if (log) {
2366     LLDB_LOGF(log,
2367               "Process::ReadModuleFromMemory reading %s binary from memory",
2368               file_spec.GetPath().c_str());
2369   }
2370   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2371   if (module_sp) {
2372     Status error;
2373     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2374         shared_from_this(), header_addr, error, size_to_read);
2375     if (objfile)
2376       return module_sp;
2377   }
2378   return ModuleSP();
2379 }
2380 
2381 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2382                                         uint32_t &permissions) {
2383   MemoryRegionInfo range_info;
2384   permissions = 0;
2385   Status error(GetMemoryRegionInfo(load_addr, range_info));
2386   if (!error.Success())
2387     return false;
2388   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2389       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2390       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2391     return false;
2392   }
2393 
2394   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2395     permissions |= lldb::ePermissionsReadable;
2396 
2397   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2398     permissions |= lldb::ePermissionsWritable;
2399 
2400   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2401     permissions |= lldb::ePermissionsExecutable;
2402 
2403   return true;
2404 }
2405 
2406 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2407   Status error;
2408   error.SetErrorString("watchpoints are not supported");
2409   return error;
2410 }
2411 
2412 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2413   Status error;
2414   error.SetErrorString("watchpoints are not supported");
2415   return error;
2416 }
2417 
2418 StateType
2419 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2420                                    const Timeout<std::micro> &timeout) {
2421   StateType state;
2422 
2423   while (true) {
2424     event_sp.reset();
2425     state = GetStateChangedEventsPrivate(event_sp, timeout);
2426 
2427     if (StateIsStoppedState(state, false))
2428       break;
2429 
2430     // If state is invalid, then we timed out
2431     if (state == eStateInvalid)
2432       break;
2433 
2434     if (event_sp)
2435       HandlePrivateEvent(event_sp);
2436   }
2437   return state;
2438 }
2439 
2440 void Process::LoadOperatingSystemPlugin(bool flush) {
2441   if (flush)
2442     m_thread_list.Clear();
2443   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2444   if (flush)
2445     Flush();
2446 }
2447 
2448 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2449   Status error;
2450   m_abi_sp.reset();
2451   m_dyld_up.reset();
2452   m_jit_loaders_up.reset();
2453   m_system_runtime_up.reset();
2454   m_os_up.reset();
2455   m_process_input_reader.reset();
2456 
2457   Module *exe_module = GetTarget().GetExecutableModulePointer();
2458   if (!exe_module) {
2459     error.SetErrorString("executable module does not exist");
2460     return error;
2461   }
2462 
2463   char local_exec_file_path[PATH_MAX];
2464   char platform_exec_file_path[PATH_MAX];
2465   exe_module->GetFileSpec().GetPath(local_exec_file_path,
2466                                     sizeof(local_exec_file_path));
2467   exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path,
2468                                             sizeof(platform_exec_file_path));
2469   if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2470     // Install anything that might need to be installed prior to launching.
2471     // For host systems, this will do nothing, but if we are connected to a
2472     // remote platform it will install any needed binaries
2473     error = GetTarget().Install(&launch_info);
2474     if (error.Fail())
2475       return error;
2476 
2477     // Listen and queue events that are broadcasted during the process launch.
2478     ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2479     HijackProcessEvents(listener_sp);
2480     auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2481 
2482     if (PrivateStateThreadIsValid())
2483       PausePrivateStateThread();
2484 
2485     error = WillLaunch(exe_module);
2486     if (error.Success()) {
2487       const bool restarted = false;
2488       SetPublicState(eStateLaunching, restarted);
2489       m_should_detach = false;
2490 
2491       if (m_public_run_lock.TrySetRunning()) {
2492         // Now launch using these arguments.
2493         error = DoLaunch(exe_module, launch_info);
2494       } else {
2495         // This shouldn't happen
2496         error.SetErrorString("failed to acquire process run lock");
2497       }
2498 
2499       if (error.Fail()) {
2500         if (GetID() != LLDB_INVALID_PROCESS_ID) {
2501           SetID(LLDB_INVALID_PROCESS_ID);
2502           const char *error_string = error.AsCString();
2503           if (error_string == nullptr)
2504             error_string = "launch failed";
2505           SetExitStatus(-1, error_string);
2506         }
2507       } else {
2508         EventSP event_sp;
2509 
2510         // Now wait for the process to launch and return control to us, and then
2511         // call DidLaunch:
2512         StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
2513 
2514         if (state == eStateInvalid || !event_sp) {
2515           // We were able to launch the process, but we failed to catch the
2516           // initial stop.
2517           error.SetErrorString("failed to catch stop after launch");
2518           SetExitStatus(0, "failed to catch stop after launch");
2519           Destroy(false);
2520         } else if (state == eStateStopped || state == eStateCrashed) {
2521           DidLaunch();
2522 
2523           DynamicLoader *dyld = GetDynamicLoader();
2524           if (dyld)
2525             dyld->DidLaunch();
2526 
2527           GetJITLoaders().DidLaunch();
2528 
2529           SystemRuntime *system_runtime = GetSystemRuntime();
2530           if (system_runtime)
2531             system_runtime->DidLaunch();
2532 
2533           if (!m_os_up)
2534             LoadOperatingSystemPlugin(false);
2535 
2536           // We successfully launched the process and stopped, now it the
2537           // right time to set up signal filters before resuming.
2538           UpdateAutomaticSignalFiltering();
2539 
2540           // Note, the stop event was consumed above, but not handled. This
2541           // was done to give DidLaunch a chance to run. The target is either
2542           // stopped or crashed. Directly set the state.  This is done to
2543           // prevent a stop message with a bunch of spurious output on thread
2544           // status, as well as not pop a ProcessIOHandler.
2545           SetPublicState(state, false);
2546 
2547           if (PrivateStateThreadIsValid())
2548             ResumePrivateStateThread();
2549           else
2550             StartPrivateStateThread();
2551 
2552           // Target was stopped at entry as was intended. Need to notify the
2553           // listeners about it.
2554           if (state == eStateStopped &&
2555               launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2556             HandlePrivateEvent(event_sp);
2557         } else if (state == eStateExited) {
2558           // We exited while trying to launch somehow.  Don't call DidLaunch
2559           // as that's not likely to work, and return an invalid pid.
2560           HandlePrivateEvent(event_sp);
2561         }
2562       }
2563     }
2564   } else {
2565     error.SetErrorStringWithFormat("file doesn't exist: '%s'",
2566                                    local_exec_file_path);
2567   }
2568 
2569   return error;
2570 }
2571 
2572 Status Process::LoadCore() {
2573   Status error = DoLoadCore();
2574   if (error.Success()) {
2575     ListenerSP listener_sp(
2576         Listener::MakeListener("lldb.process.load_core_listener"));
2577     HijackProcessEvents(listener_sp);
2578 
2579     if (PrivateStateThreadIsValid())
2580       ResumePrivateStateThread();
2581     else
2582       StartPrivateStateThread();
2583 
2584     DynamicLoader *dyld = GetDynamicLoader();
2585     if (dyld)
2586       dyld->DidAttach();
2587 
2588     GetJITLoaders().DidAttach();
2589 
2590     SystemRuntime *system_runtime = GetSystemRuntime();
2591     if (system_runtime)
2592       system_runtime->DidAttach();
2593 
2594     if (!m_os_up)
2595       LoadOperatingSystemPlugin(false);
2596 
2597     // We successfully loaded a core file, now pretend we stopped so we can
2598     // show all of the threads in the core file and explore the crashed state.
2599     SetPrivateState(eStateStopped);
2600 
2601     // Wait for a stopped event since we just posted one above...
2602     lldb::EventSP event_sp;
2603     StateType state =
2604         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2605 
2606     if (!StateIsStoppedState(state, false)) {
2607       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2608       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2609                 StateAsCString(state));
2610       error.SetErrorString(
2611           "Did not get stopped event after loading the core file.");
2612     }
2613     RestoreProcessEvents();
2614   }
2615   return error;
2616 }
2617 
2618 DynamicLoader *Process::GetDynamicLoader() {
2619   if (!m_dyld_up)
2620     m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr));
2621   return m_dyld_up.get();
2622 }
2623 
2624 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2625 
2626 JITLoaderList &Process::GetJITLoaders() {
2627   if (!m_jit_loaders_up) {
2628     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2629     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2630   }
2631   return *m_jit_loaders_up;
2632 }
2633 
2634 SystemRuntime *Process::GetSystemRuntime() {
2635   if (!m_system_runtime_up)
2636     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2637   return m_system_runtime_up.get();
2638 }
2639 
2640 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2641                                                           uint32_t exec_count)
2642     : NextEventAction(process), m_exec_count(exec_count) {
2643   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2644   LLDB_LOGF(
2645       log,
2646       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2647       __FUNCTION__, static_cast<void *>(process), exec_count);
2648 }
2649 
2650 Process::NextEventAction::EventActionResult
2651 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2652   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2653 
2654   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2655   LLDB_LOGF(log,
2656             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2657             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2658 
2659   switch (state) {
2660   case eStateAttaching:
2661     return eEventActionSuccess;
2662 
2663   case eStateRunning:
2664   case eStateConnected:
2665     return eEventActionRetry;
2666 
2667   case eStateStopped:
2668   case eStateCrashed:
2669     // During attach, prior to sending the eStateStopped event,
2670     // lldb_private::Process subclasses must set the new process ID.
2671     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2672     // We don't want these events to be reported, so go set the
2673     // ShouldReportStop here:
2674     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2675 
2676     if (m_exec_count > 0) {
2677       --m_exec_count;
2678 
2679       LLDB_LOGF(log,
2680                 "Process::AttachCompletionHandler::%s state %s: reduced "
2681                 "remaining exec count to %" PRIu32 ", requesting resume",
2682                 __FUNCTION__, StateAsCString(state), m_exec_count);
2683 
2684       RequestResume();
2685       return eEventActionRetry;
2686     } else {
2687       LLDB_LOGF(log,
2688                 "Process::AttachCompletionHandler::%s state %s: no more "
2689                 "execs expected to start, continuing with attach",
2690                 __FUNCTION__, StateAsCString(state));
2691 
2692       m_process->CompleteAttach();
2693       return eEventActionSuccess;
2694     }
2695     break;
2696 
2697   default:
2698   case eStateExited:
2699   case eStateInvalid:
2700     break;
2701   }
2702 
2703   m_exit_string.assign("No valid Process");
2704   return eEventActionExit;
2705 }
2706 
2707 Process::NextEventAction::EventActionResult
2708 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2709   return eEventActionSuccess;
2710 }
2711 
2712 const char *Process::AttachCompletionHandler::GetExitString() {
2713   return m_exit_string.c_str();
2714 }
2715 
2716 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2717   if (m_listener_sp)
2718     return m_listener_sp;
2719   else
2720     return debugger.GetListener();
2721 }
2722 
2723 Status Process::Attach(ProcessAttachInfo &attach_info) {
2724   m_abi_sp.reset();
2725   m_process_input_reader.reset();
2726   m_dyld_up.reset();
2727   m_jit_loaders_up.reset();
2728   m_system_runtime_up.reset();
2729   m_os_up.reset();
2730 
2731   lldb::pid_t attach_pid = attach_info.GetProcessID();
2732   Status error;
2733   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2734     char process_name[PATH_MAX];
2735 
2736     if (attach_info.GetExecutableFile().GetPath(process_name,
2737                                                 sizeof(process_name))) {
2738       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2739 
2740       if (wait_for_launch) {
2741         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2742         if (error.Success()) {
2743           if (m_public_run_lock.TrySetRunning()) {
2744             m_should_detach = true;
2745             const bool restarted = false;
2746             SetPublicState(eStateAttaching, restarted);
2747             // Now attach using these arguments.
2748             error = DoAttachToProcessWithName(process_name, attach_info);
2749           } else {
2750             // This shouldn't happen
2751             error.SetErrorString("failed to acquire process run lock");
2752           }
2753 
2754           if (error.Fail()) {
2755             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2756               SetID(LLDB_INVALID_PROCESS_ID);
2757               if (error.AsCString() == nullptr)
2758                 error.SetErrorString("attach failed");
2759 
2760               SetExitStatus(-1, error.AsCString());
2761             }
2762           } else {
2763             SetNextEventAction(new Process::AttachCompletionHandler(
2764                 this, attach_info.GetResumeCount()));
2765             StartPrivateStateThread();
2766           }
2767           return error;
2768         }
2769       } else {
2770         ProcessInstanceInfoList process_infos;
2771         PlatformSP platform_sp(GetTarget().GetPlatform());
2772 
2773         if (platform_sp) {
2774           ProcessInstanceInfoMatch match_info;
2775           match_info.GetProcessInfo() = attach_info;
2776           match_info.SetNameMatchType(NameMatch::Equals);
2777           platform_sp->FindProcesses(match_info, process_infos);
2778           const uint32_t num_matches = process_infos.size();
2779           if (num_matches == 1) {
2780             attach_pid = process_infos[0].GetProcessID();
2781             // Fall through and attach using the above process ID
2782           } else {
2783             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2784                 process_name, sizeof(process_name));
2785             if (num_matches > 1) {
2786               StreamString s;
2787               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2788               for (size_t i = 0; i < num_matches; i++) {
2789                 process_infos[i].DumpAsTableRow(
2790                     s, platform_sp->GetUserIDResolver(), true, false);
2791               }
2792               error.SetErrorStringWithFormat(
2793                   "more than one process named %s:\n%s", process_name,
2794                   s.GetData());
2795             } else
2796               error.SetErrorStringWithFormat(
2797                   "could not find a process named %s", process_name);
2798           }
2799         } else {
2800           error.SetErrorString(
2801               "invalid platform, can't find processes by name");
2802           return error;
2803         }
2804       }
2805     } else {
2806       error.SetErrorString("invalid process name");
2807     }
2808   }
2809 
2810   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2811     error = WillAttachToProcessWithID(attach_pid);
2812     if (error.Success()) {
2813 
2814       if (m_public_run_lock.TrySetRunning()) {
2815         // Now attach using these arguments.
2816         m_should_detach = true;
2817         const bool restarted = false;
2818         SetPublicState(eStateAttaching, restarted);
2819         error = DoAttachToProcessWithID(attach_pid, attach_info);
2820       } else {
2821         // This shouldn't happen
2822         error.SetErrorString("failed to acquire process run lock");
2823       }
2824 
2825       if (error.Success()) {
2826         SetNextEventAction(new Process::AttachCompletionHandler(
2827             this, attach_info.GetResumeCount()));
2828         StartPrivateStateThread();
2829       } else {
2830         if (GetID() != LLDB_INVALID_PROCESS_ID)
2831           SetID(LLDB_INVALID_PROCESS_ID);
2832 
2833         const char *error_string = error.AsCString();
2834         if (error_string == nullptr)
2835           error_string = "attach failed";
2836 
2837         SetExitStatus(-1, error_string);
2838       }
2839     }
2840   }
2841   return error;
2842 }
2843 
2844 void Process::CompleteAttach() {
2845   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
2846                                                   LIBLLDB_LOG_TARGET));
2847   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2848 
2849   // Let the process subclass figure out at much as it can about the process
2850   // before we go looking for a dynamic loader plug-in.
2851   ArchSpec process_arch;
2852   DidAttach(process_arch);
2853 
2854   if (process_arch.IsValid()) {
2855     GetTarget().SetArchitecture(process_arch);
2856     if (log) {
2857       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2858       LLDB_LOGF(log,
2859                 "Process::%s replacing process architecture with DidAttach() "
2860                 "architecture: %s",
2861                 __FUNCTION__, triple_str ? triple_str : "<null>");
2862     }
2863   }
2864 
2865   // We just attached.  If we have a platform, ask it for the process
2866   // architecture, and if it isn't the same as the one we've already set,
2867   // switch architectures.
2868   PlatformSP platform_sp(GetTarget().GetPlatform());
2869   assert(platform_sp);
2870   if (platform_sp) {
2871     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2872     if (target_arch.IsValid() &&
2873         !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) {
2874       ArchSpec platform_arch;
2875       platform_sp =
2876           platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch);
2877       if (platform_sp) {
2878         GetTarget().SetPlatform(platform_sp);
2879         GetTarget().SetArchitecture(platform_arch);
2880         LLDB_LOGF(log,
2881                   "Process::%s switching platform to %s and architecture "
2882                   "to %s based on info from attach",
2883                   __FUNCTION__, platform_sp->GetName().AsCString(""),
2884                   platform_arch.GetTriple().getTriple().c_str());
2885       }
2886     } else if (!process_arch.IsValid()) {
2887       ProcessInstanceInfo process_info;
2888       GetProcessInfo(process_info);
2889       const ArchSpec &process_arch = process_info.GetArchitecture();
2890       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2891       if (process_arch.IsValid() &&
2892           target_arch.IsCompatibleMatch(process_arch) &&
2893           !target_arch.IsExactMatch(process_arch)) {
2894         GetTarget().SetArchitecture(process_arch);
2895         LLDB_LOGF(log,
2896                   "Process::%s switching architecture to %s based on info "
2897                   "the platform retrieved for pid %" PRIu64,
2898                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2899                   GetID());
2900       }
2901     }
2902   }
2903 
2904   // We have completed the attach, now it is time to find the dynamic loader
2905   // plug-in
2906   DynamicLoader *dyld = GetDynamicLoader();
2907   if (dyld) {
2908     dyld->DidAttach();
2909     if (log) {
2910       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2911       LLDB_LOGF(log,
2912                 "Process::%s after DynamicLoader::DidAttach(), target "
2913                 "executable is %s (using %s plugin)",
2914                 __FUNCTION__,
2915                 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2916                               : "<none>",
2917                 dyld->GetPluginName().AsCString("<unnamed>"));
2918     }
2919   }
2920 
2921   GetJITLoaders().DidAttach();
2922 
2923   SystemRuntime *system_runtime = GetSystemRuntime();
2924   if (system_runtime) {
2925     system_runtime->DidAttach();
2926     if (log) {
2927       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2928       LLDB_LOGF(log,
2929                 "Process::%s after SystemRuntime::DidAttach(), target "
2930                 "executable is %s (using %s plugin)",
2931                 __FUNCTION__,
2932                 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2933                               : "<none>",
2934                 system_runtime->GetPluginName().AsCString("<unnamed>"));
2935     }
2936   }
2937 
2938   if (!m_os_up) {
2939     LoadOperatingSystemPlugin(false);
2940     if (m_os_up) {
2941       // Somebody might have gotten threads before now, but we need to force the
2942       // update after we've loaded the OperatingSystem plugin or it won't get a
2943       // chance to process the threads.
2944       m_thread_list.Clear();
2945       UpdateThreadListIfNeeded();
2946     }
2947   }
2948   // Figure out which one is the executable, and set that in our target:
2949   ModuleSP new_executable_module_sp;
2950   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2951     if (module_sp && module_sp->IsExecutable()) {
2952       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2953         new_executable_module_sp = module_sp;
2954       break;
2955     }
2956   }
2957   if (new_executable_module_sp) {
2958     GetTarget().SetExecutableModule(new_executable_module_sp,
2959                                     eLoadDependentsNo);
2960     if (log) {
2961       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2962       LLDB_LOGF(
2963           log,
2964           "Process::%s after looping through modules, target executable is %s",
2965           __FUNCTION__,
2966           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2967                         : "<none>");
2968     }
2969   }
2970 }
2971 
2972 Status Process::ConnectRemote(llvm::StringRef remote_url) {
2973   m_abi_sp.reset();
2974   m_process_input_reader.reset();
2975 
2976   // Find the process and its architecture.  Make sure it matches the
2977   // architecture of the current Target, and if not adjust it.
2978 
2979   Status error(DoConnectRemote(remote_url));
2980   if (error.Success()) {
2981     if (GetID() != LLDB_INVALID_PROCESS_ID) {
2982       EventSP event_sp;
2983       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
2984 
2985       if (state == eStateStopped || state == eStateCrashed) {
2986         // If we attached and actually have a process on the other end, then
2987         // this ended up being the equivalent of an attach.
2988         CompleteAttach();
2989 
2990         // This delays passing the stopped event to listeners till
2991         // CompleteAttach gets a chance to complete...
2992         HandlePrivateEvent(event_sp);
2993       }
2994     }
2995 
2996     if (PrivateStateThreadIsValid())
2997       ResumePrivateStateThread();
2998     else
2999       StartPrivateStateThread();
3000   }
3001   return error;
3002 }
3003 
3004 Status Process::PrivateResume() {
3005   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
3006                                                   LIBLLDB_LOG_STEP));
3007   LLDB_LOGF(log,
3008             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3009             "private state: %s",
3010             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3011             StateAsCString(m_private_state.GetValue()));
3012 
3013   // If signals handing status changed we might want to update our signal
3014   // filters before resuming.
3015   UpdateAutomaticSignalFiltering();
3016 
3017   Status error(WillResume());
3018   // Tell the process it is about to resume before the thread list
3019   if (error.Success()) {
3020     // Now let the thread list know we are about to resume so it can let all of
3021     // our threads know that they are about to be resumed. Threads will each be
3022     // called with Thread::WillResume(StateType) where StateType contains the
3023     // state that they are supposed to have when the process is resumed
3024     // (suspended/running/stepping). Threads should also check their resume
3025     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3026     // start back up with a signal.
3027     if (m_thread_list.WillResume()) {
3028       // Last thing, do the PreResumeActions.
3029       if (!RunPreResumeActions()) {
3030         error.SetErrorString(
3031             "Process::PrivateResume PreResumeActions failed, not resuming.");
3032       } else {
3033         m_mod_id.BumpResumeID();
3034         error = DoResume();
3035         if (error.Success()) {
3036           DidResume();
3037           m_thread_list.DidResume();
3038           LLDB_LOGF(log, "Process thinks the process has resumed.");
3039         } else {
3040           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3041           return error;
3042         }
3043       }
3044     } else {
3045       // Somebody wanted to run without running (e.g. we were faking a step
3046       // from one frame of a set of inlined frames that share the same PC to
3047       // another.)  So generate a continue & a stopped event, and let the world
3048       // handle them.
3049       LLDB_LOGF(log,
3050                 "Process::PrivateResume() asked to simulate a start & stop.");
3051 
3052       SetPrivateState(eStateRunning);
3053       SetPrivateState(eStateStopped);
3054     }
3055   } else
3056     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3057               error.AsCString("<unknown error>"));
3058   return error;
3059 }
3060 
3061 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3062   if (!StateIsRunningState(m_public_state.GetValue()))
3063     return Status("Process is not running.");
3064 
3065   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3066   // case it was already set and some thread plan logic calls halt on its own.
3067   m_clear_thread_plans_on_stop |= clear_thread_plans;
3068 
3069   ListenerSP halt_listener_sp(
3070       Listener::MakeListener("lldb.process.halt_listener"));
3071   HijackProcessEvents(halt_listener_sp);
3072 
3073   EventSP event_sp;
3074 
3075   SendAsyncInterrupt();
3076 
3077   if (m_public_state.GetValue() == eStateAttaching) {
3078     // Don't hijack and eat the eStateExited as the code that was doing the
3079     // attach will be waiting for this event...
3080     RestoreProcessEvents();
3081     SetExitStatus(SIGKILL, "Cancelled async attach.");
3082     Destroy(false);
3083     return Status();
3084   }
3085 
3086   // Wait for 10 second for the process to stop.
3087   StateType state = WaitForProcessToStop(
3088       seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock);
3089   RestoreProcessEvents();
3090 
3091   if (state == eStateInvalid || !event_sp) {
3092     // We timed out and didn't get a stop event...
3093     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3094   }
3095 
3096   BroadcastEvent(event_sp);
3097 
3098   return Status();
3099 }
3100 
3101 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3102   Status error;
3103 
3104   // Check both the public & private states here.  If we're hung evaluating an
3105   // expression, for instance, then the public state will be stopped, but we
3106   // still need to interrupt.
3107   if (m_public_state.GetValue() == eStateRunning ||
3108       m_private_state.GetValue() == eStateRunning) {
3109     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3110     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3111 
3112     ListenerSP listener_sp(
3113         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3114     HijackProcessEvents(listener_sp);
3115 
3116     SendAsyncInterrupt();
3117 
3118     // Consume the interrupt event.
3119     StateType state =
3120         WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp);
3121 
3122     RestoreProcessEvents();
3123 
3124     // If the process exited while we were waiting for it to stop, put the
3125     // exited event into the shared pointer passed in and return.  Our caller
3126     // doesn't need to do anything else, since they don't have a process
3127     // anymore...
3128 
3129     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3130       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3131                 __FUNCTION__);
3132       return error;
3133     } else
3134       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3135 
3136     if (state != eStateStopped) {
3137       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3138                 StateAsCString(state));
3139       // If we really couldn't stop the process then we should just error out
3140       // here, but if the lower levels just bobbled sending the event and we
3141       // really are stopped, then continue on.
3142       StateType private_state = m_private_state.GetValue();
3143       if (private_state != eStateStopped) {
3144         return Status(
3145             "Attempt to stop the target in order to detach timed out. "
3146             "State = %s",
3147             StateAsCString(GetState()));
3148       }
3149     }
3150   }
3151   return error;
3152 }
3153 
3154 Status Process::Detach(bool keep_stopped) {
3155   EventSP exit_event_sp;
3156   Status error;
3157   m_destroy_in_process = true;
3158 
3159   error = WillDetach();
3160 
3161   if (error.Success()) {
3162     if (DetachRequiresHalt()) {
3163       error = StopForDestroyOrDetach(exit_event_sp);
3164       if (!error.Success()) {
3165         m_destroy_in_process = false;
3166         return error;
3167       } else if (exit_event_sp) {
3168         // We shouldn't need to do anything else here.  There's no process left
3169         // to detach from...
3170         StopPrivateStateThread();
3171         m_destroy_in_process = false;
3172         return error;
3173       }
3174     }
3175 
3176     m_thread_list.DiscardThreadPlans();
3177     DisableAllBreakpointSites();
3178 
3179     error = DoDetach(keep_stopped);
3180     if (error.Success()) {
3181       DidDetach();
3182       StopPrivateStateThread();
3183     } else {
3184       return error;
3185     }
3186   }
3187   m_destroy_in_process = false;
3188 
3189   // If we exited when we were waiting for a process to stop, then forward the
3190   // event here so we don't lose the event
3191   if (exit_event_sp) {
3192     // Directly broadcast our exited event because we shut down our private
3193     // state thread above
3194     BroadcastEvent(exit_event_sp);
3195   }
3196 
3197   // If we have been interrupted (to kill us) in the middle of running, we may
3198   // not end up propagating the last events through the event system, in which
3199   // case we might strand the write lock.  Unlock it here so when we do to tear
3200   // down the process we don't get an error destroying the lock.
3201 
3202   m_public_run_lock.SetStopped();
3203   return error;
3204 }
3205 
3206 Status Process::Destroy(bool force_kill) {
3207   // If we've already called Process::Finalize then there's nothing useful to
3208   // be done here.  Finalize has actually called Destroy already.
3209   if (m_finalizing)
3210     return {};
3211   return DestroyImpl(force_kill);
3212 }
3213 
3214 Status Process::DestroyImpl(bool force_kill) {
3215   // Tell ourselves we are in the process of destroying the process, so that we
3216   // don't do any unnecessary work that might hinder the destruction.  Remember
3217   // to set this back to false when we are done.  That way if the attempt
3218   // failed and the process stays around for some reason it won't be in a
3219   // confused state.
3220 
3221   if (force_kill)
3222     m_should_detach = false;
3223 
3224   if (GetShouldDetach()) {
3225     // FIXME: This will have to be a process setting:
3226     bool keep_stopped = false;
3227     Detach(keep_stopped);
3228   }
3229 
3230   m_destroy_in_process = true;
3231 
3232   Status error(WillDestroy());
3233   if (error.Success()) {
3234     EventSP exit_event_sp;
3235     if (DestroyRequiresHalt()) {
3236       error = StopForDestroyOrDetach(exit_event_sp);
3237     }
3238 
3239     if (m_public_state.GetValue() != eStateRunning) {
3240       // Ditch all thread plans, and remove all our breakpoints: in case we
3241       // have to restart the target to kill it, we don't want it hitting a
3242       // breakpoint... Only do this if we've stopped, however, since if we
3243       // didn't manage to halt it above, then we're not going to have much luck
3244       // doing this now.
3245       m_thread_list.DiscardThreadPlans();
3246       DisableAllBreakpointSites();
3247     }
3248 
3249     error = DoDestroy();
3250     if (error.Success()) {
3251       DidDestroy();
3252       StopPrivateStateThread();
3253     }
3254     m_stdio_communication.StopReadThread();
3255     m_stdio_communication.Disconnect();
3256     m_stdin_forward = false;
3257 
3258     if (m_process_input_reader) {
3259       m_process_input_reader->SetIsDone(true);
3260       m_process_input_reader->Cancel();
3261       m_process_input_reader.reset();
3262     }
3263 
3264     // If we exited when we were waiting for a process to stop, then forward
3265     // the event here so we don't lose the event
3266     if (exit_event_sp) {
3267       // Directly broadcast our exited event because we shut down our private
3268       // state thread above
3269       BroadcastEvent(exit_event_sp);
3270     }
3271 
3272     // If we have been interrupted (to kill us) in the middle of running, we
3273     // may not end up propagating the last events through the event system, in
3274     // which case we might strand the write lock.  Unlock it here so when we do
3275     // to tear down the process we don't get an error destroying the lock.
3276     m_public_run_lock.SetStopped();
3277   }
3278 
3279   m_destroy_in_process = false;
3280 
3281   return error;
3282 }
3283 
3284 Status Process::Signal(int signal) {
3285   Status error(WillSignal());
3286   if (error.Success()) {
3287     error = DoSignal(signal);
3288     if (error.Success())
3289       DidSignal();
3290   }
3291   return error;
3292 }
3293 
3294 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3295   assert(signals_sp && "null signals_sp");
3296   m_unix_signals_sp = signals_sp;
3297 }
3298 
3299 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3300   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3301   return m_unix_signals_sp;
3302 }
3303 
3304 lldb::ByteOrder Process::GetByteOrder() const {
3305   return GetTarget().GetArchitecture().GetByteOrder();
3306 }
3307 
3308 uint32_t Process::GetAddressByteSize() const {
3309   return GetTarget().GetArchitecture().GetAddressByteSize();
3310 }
3311 
3312 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3313   const StateType state =
3314       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3315   bool return_value = true;
3316   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS |
3317                                                   LIBLLDB_LOG_PROCESS));
3318 
3319   switch (state) {
3320   case eStateDetached:
3321   case eStateExited:
3322   case eStateUnloaded:
3323     m_stdio_communication.SynchronizeWithReadThread();
3324     m_stdio_communication.StopReadThread();
3325     m_stdio_communication.Disconnect();
3326     m_stdin_forward = false;
3327 
3328     LLVM_FALLTHROUGH;
3329   case eStateConnected:
3330   case eStateAttaching:
3331   case eStateLaunching:
3332     // These events indicate changes in the state of the debugging session,
3333     // always report them.
3334     return_value = true;
3335     break;
3336   case eStateInvalid:
3337     // We stopped for no apparent reason, don't report it.
3338     return_value = false;
3339     break;
3340   case eStateRunning:
3341   case eStateStepping:
3342     // If we've started the target running, we handle the cases where we are
3343     // already running and where there is a transition from stopped to running
3344     // differently. running -> running: Automatically suppress extra running
3345     // events stopped -> running: Report except when there is one or more no
3346     // votes
3347     //     and no yes votes.
3348     SynchronouslyNotifyStateChanged(state);
3349     if (m_force_next_event_delivery)
3350       return_value = true;
3351     else {
3352       switch (m_last_broadcast_state) {
3353       case eStateRunning:
3354       case eStateStepping:
3355         // We always suppress multiple runnings with no PUBLIC stop in between.
3356         return_value = false;
3357         break;
3358       default:
3359         // TODO: make this work correctly. For now always report
3360         // run if we aren't running so we don't miss any running events. If I
3361         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3362         // and hit the breakpoints on multiple threads, then somehow during the
3363         // stepping over of all breakpoints no run gets reported.
3364 
3365         // This is a transition from stop to run.
3366         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3367         case eVoteYes:
3368         case eVoteNoOpinion:
3369           return_value = true;
3370           break;
3371         case eVoteNo:
3372           return_value = false;
3373           break;
3374         }
3375         break;
3376       }
3377     }
3378     break;
3379   case eStateStopped:
3380   case eStateCrashed:
3381   case eStateSuspended:
3382     // We've stopped.  First see if we're going to restart the target. If we
3383     // are going to stop, then we always broadcast the event. If we aren't
3384     // going to stop, let the thread plans decide if we're going to report this
3385     // event. If no thread has an opinion, we don't report it.
3386 
3387     m_stdio_communication.SynchronizeWithReadThread();
3388     RefreshStateAfterStop();
3389     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3390       LLDB_LOGF(log,
3391                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3392                 "interrupt, state: %s",
3393                 static_cast<void *>(event_ptr), StateAsCString(state));
3394       // Even though we know we are going to stop, we should let the threads
3395       // have a look at the stop, so they can properly set their state.
3396       m_thread_list.ShouldStop(event_ptr);
3397       return_value = true;
3398     } else {
3399       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3400       bool should_resume = false;
3401 
3402       // It makes no sense to ask "ShouldStop" if we've already been
3403       // restarted... Asking the thread list is also not likely to go well,
3404       // since we are running again. So in that case just report the event.
3405 
3406       if (!was_restarted)
3407         should_resume = !m_thread_list.ShouldStop(event_ptr);
3408 
3409       if (was_restarted || should_resume || m_resume_requested) {
3410         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3411         LLDB_LOGF(log,
3412                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3413                   "%s was_restarted: %i report_stop_vote: %d.",
3414                   should_resume, StateAsCString(state), was_restarted,
3415                   report_stop_vote);
3416 
3417         switch (report_stop_vote) {
3418         case eVoteYes:
3419           return_value = true;
3420           break;
3421         case eVoteNoOpinion:
3422         case eVoteNo:
3423           return_value = false;
3424           break;
3425         }
3426 
3427         if (!was_restarted) {
3428           LLDB_LOGF(log,
3429                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3430                     "from state: %s",
3431                     static_cast<void *>(event_ptr), StateAsCString(state));
3432           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3433           PrivateResume();
3434         }
3435       } else {
3436         return_value = true;
3437         SynchronouslyNotifyStateChanged(state);
3438       }
3439     }
3440     break;
3441   }
3442 
3443   // Forcing the next event delivery is a one shot deal.  So reset it here.
3444   m_force_next_event_delivery = false;
3445 
3446   // We do some coalescing of events (for instance two consecutive running
3447   // events get coalesced.) But we only coalesce against events we actually
3448   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3449   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3450   // done, because the PublicState reflects the last event pulled off the
3451   // queue, and there may be several events stacked up on the queue unserviced.
3452   // So the PublicState may not reflect the last broadcasted event yet.
3453   // m_last_broadcast_state gets updated here.
3454 
3455   if (return_value)
3456     m_last_broadcast_state = state;
3457 
3458   LLDB_LOGF(log,
3459             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3460             "broadcast state: %s - %s",
3461             static_cast<void *>(event_ptr), StateAsCString(state),
3462             StateAsCString(m_last_broadcast_state),
3463             return_value ? "YES" : "NO");
3464   return return_value;
3465 }
3466 
3467 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3468   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
3469 
3470   bool already_running = PrivateStateThreadIsValid();
3471   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3472             already_running ? " already running"
3473                             : " starting private state thread");
3474 
3475   if (!is_secondary_thread && already_running)
3476     return true;
3477 
3478   // Create a thread that watches our internal state and controls which events
3479   // make it to clients (into the DCProcess event queue).
3480   char thread_name[1024];
3481   uint32_t max_len = llvm::get_max_thread_name_length();
3482   if (max_len > 0 && max_len <= 30) {
3483     // On platforms with abbreviated thread name lengths, choose thread names
3484     // that fit within the limit.
3485     if (already_running)
3486       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3487     else
3488       snprintf(thread_name, sizeof(thread_name), "intern-state");
3489   } else {
3490     if (already_running)
3491       snprintf(thread_name, sizeof(thread_name),
3492                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3493                GetID());
3494     else
3495       snprintf(thread_name, sizeof(thread_name),
3496                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3497   }
3498 
3499   // Create the private state thread, and start it running.
3500   PrivateStateThreadArgs *args_ptr =
3501       new PrivateStateThreadArgs(this, is_secondary_thread);
3502   llvm::Expected<HostThread> private_state_thread =
3503       ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread,
3504                                    (void *)args_ptr, 8 * 1024 * 1024);
3505   if (!private_state_thread) {
3506     LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST),
3507              "failed to launch host thread: {}",
3508              llvm::toString(private_state_thread.takeError()));
3509     return false;
3510   }
3511 
3512   assert(private_state_thread->IsJoinable());
3513   m_private_state_thread = *private_state_thread;
3514   ResumePrivateStateThread();
3515   return true;
3516 }
3517 
3518 void Process::PausePrivateStateThread() {
3519   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3520 }
3521 
3522 void Process::ResumePrivateStateThread() {
3523   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3524 }
3525 
3526 void Process::StopPrivateStateThread() {
3527   if (m_private_state_thread.IsJoinable())
3528     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3529   else {
3530     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3531     LLDB_LOGF(
3532         log,
3533         "Went to stop the private state thread, but it was already invalid.");
3534   }
3535 }
3536 
3537 void Process::ControlPrivateStateThread(uint32_t signal) {
3538   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3539 
3540   assert(signal == eBroadcastInternalStateControlStop ||
3541          signal == eBroadcastInternalStateControlPause ||
3542          signal == eBroadcastInternalStateControlResume);
3543 
3544   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3545 
3546   // Signal the private state thread
3547   if (m_private_state_thread.IsJoinable()) {
3548     // Broadcast the event.
3549     // It is important to do this outside of the if below, because it's
3550     // possible that the thread state is invalid but that the thread is waiting
3551     // on a control event instead of simply being on its way out (this should
3552     // not happen, but it apparently can).
3553     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3554     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3555     m_private_state_control_broadcaster.BroadcastEvent(signal,
3556                                                        event_receipt_sp);
3557 
3558     // Wait for the event receipt or for the private state thread to exit
3559     bool receipt_received = false;
3560     if (PrivateStateThreadIsValid()) {
3561       while (!receipt_received) {
3562         // Check for a receipt for n seconds and then check if the private
3563         // state thread is still around.
3564         receipt_received =
3565           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3566         if (!receipt_received) {
3567           // Check if the private state thread is still around. If it isn't
3568           // then we are done waiting
3569           if (!PrivateStateThreadIsValid())
3570             break; // Private state thread exited or is exiting, we are done
3571         }
3572       }
3573     }
3574 
3575     if (signal == eBroadcastInternalStateControlStop) {
3576       thread_result_t result = {};
3577       m_private_state_thread.Join(&result);
3578       m_private_state_thread.Reset();
3579     }
3580   } else {
3581     LLDB_LOGF(
3582         log,
3583         "Private state thread already dead, no need to signal it to stop.");
3584   }
3585 }
3586 
3587 void Process::SendAsyncInterrupt() {
3588   if (PrivateStateThreadIsValid())
3589     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3590                                                nullptr);
3591   else
3592     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3593 }
3594 
3595 void Process::HandlePrivateEvent(EventSP &event_sp) {
3596   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3597   m_resume_requested = false;
3598 
3599   const StateType new_state =
3600       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3601 
3602   // First check to see if anybody wants a shot at this event:
3603   if (m_next_event_action_up) {
3604     NextEventAction::EventActionResult action_result =
3605         m_next_event_action_up->PerformAction(event_sp);
3606     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3607 
3608     switch (action_result) {
3609     case NextEventAction::eEventActionSuccess:
3610       SetNextEventAction(nullptr);
3611       break;
3612 
3613     case NextEventAction::eEventActionRetry:
3614       break;
3615 
3616     case NextEventAction::eEventActionExit:
3617       // Handle Exiting Here.  If we already got an exited event, we should
3618       // just propagate it.  Otherwise, swallow this event, and set our state
3619       // to exit so the next event will kill us.
3620       if (new_state != eStateExited) {
3621         // FIXME: should cons up an exited event, and discard this one.
3622         SetExitStatus(0, m_next_event_action_up->GetExitString());
3623         SetNextEventAction(nullptr);
3624         return;
3625       }
3626       SetNextEventAction(nullptr);
3627       break;
3628     }
3629   }
3630 
3631   // See if we should broadcast this state to external clients?
3632   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3633 
3634   if (should_broadcast) {
3635     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3636     if (log) {
3637       LLDB_LOGF(log,
3638                 "Process::%s (pid = %" PRIu64
3639                 ") broadcasting new state %s (old state %s) to %s",
3640                 __FUNCTION__, GetID(), StateAsCString(new_state),
3641                 StateAsCString(GetState()),
3642                 is_hijacked ? "hijacked" : "public");
3643     }
3644     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3645     if (StateIsRunningState(new_state)) {
3646       // Only push the input handler if we aren't fowarding events, as this
3647       // means the curses GUI is in use... Or don't push it if we are launching
3648       // since it will come up stopped.
3649       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3650           new_state != eStateLaunching && new_state != eStateAttaching) {
3651         PushProcessIOHandler();
3652         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3653                                   eBroadcastAlways);
3654         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3655                   __FUNCTION__, m_iohandler_sync.GetValue());
3656       }
3657     } else if (StateIsStoppedState(new_state, false)) {
3658       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3659         // If the lldb_private::Debugger is handling the events, we don't want
3660         // to pop the process IOHandler here, we want to do it when we receive
3661         // the stopped event so we can carefully control when the process
3662         // IOHandler is popped because when we stop we want to display some
3663         // text stating how and why we stopped, then maybe some
3664         // process/thread/frame info, and then we want the "(lldb) " prompt to
3665         // show up. If we pop the process IOHandler here, then we will cause
3666         // the command interpreter to become the top IOHandler after the
3667         // process pops off and it will update its prompt right away... See the
3668         // Debugger.cpp file where it calls the function as
3669         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3670         // Otherwise we end up getting overlapping "(lldb) " prompts and
3671         // garbled output.
3672         //
3673         // If we aren't handling the events in the debugger (which is indicated
3674         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3675         // we are hijacked, then we always pop the process IO handler manually.
3676         // Hijacking happens when the internal process state thread is running
3677         // thread plans, or when commands want to run in synchronous mode and
3678         // they call "process->WaitForProcessToStop()". An example of something
3679         // that will hijack the events is a simple expression:
3680         //
3681         //  (lldb) expr (int)puts("hello")
3682         //
3683         // This will cause the internal process state thread to resume and halt
3684         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3685         // events) and we do need the IO handler to be pushed and popped
3686         // correctly.
3687 
3688         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3689           PopProcessIOHandler();
3690       }
3691     }
3692 
3693     BroadcastEvent(event_sp);
3694   } else {
3695     if (log) {
3696       LLDB_LOGF(
3697           log,
3698           "Process::%s (pid = %" PRIu64
3699           ") suppressing state %s (old state %s): should_broadcast == false",
3700           __FUNCTION__, GetID(), StateAsCString(new_state),
3701           StateAsCString(GetState()));
3702     }
3703   }
3704 }
3705 
3706 Status Process::HaltPrivate() {
3707   EventSP event_sp;
3708   Status error(WillHalt());
3709   if (error.Fail())
3710     return error;
3711 
3712   // Ask the process subclass to actually halt our process
3713   bool caused_stop;
3714   error = DoHalt(caused_stop);
3715 
3716   DidHalt();
3717   return error;
3718 }
3719 
3720 thread_result_t Process::PrivateStateThread(void *arg) {
3721   std::unique_ptr<PrivateStateThreadArgs> args_up(
3722       static_cast<PrivateStateThreadArgs *>(arg));
3723   thread_result_t result =
3724       args_up->process->RunPrivateStateThread(args_up->is_secondary_thread);
3725   return result;
3726 }
3727 
3728 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3729   bool control_only = true;
3730 
3731   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3732   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3733             __FUNCTION__, static_cast<void *>(this), GetID());
3734 
3735   bool exit_now = false;
3736   bool interrupt_requested = false;
3737   while (!exit_now) {
3738     EventSP event_sp;
3739     GetEventsPrivate(event_sp, llvm::None, control_only);
3740     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3741       LLDB_LOGF(log,
3742                 "Process::%s (arg = %p, pid = %" PRIu64
3743                 ") got a control event: %d",
3744                 __FUNCTION__, static_cast<void *>(this), GetID(),
3745                 event_sp->GetType());
3746 
3747       switch (event_sp->GetType()) {
3748       case eBroadcastInternalStateControlStop:
3749         exit_now = true;
3750         break; // doing any internal state management below
3751 
3752       case eBroadcastInternalStateControlPause:
3753         control_only = true;
3754         break;
3755 
3756       case eBroadcastInternalStateControlResume:
3757         control_only = false;
3758         break;
3759       }
3760 
3761       continue;
3762     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3763       if (m_public_state.GetValue() == eStateAttaching) {
3764         LLDB_LOGF(log,
3765                   "Process::%s (arg = %p, pid = %" PRIu64
3766                   ") woke up with an interrupt while attaching - "
3767                   "forwarding interrupt.",
3768                   __FUNCTION__, static_cast<void *>(this), GetID());
3769         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3770       } else if (StateIsRunningState(m_last_broadcast_state)) {
3771         LLDB_LOGF(log,
3772                   "Process::%s (arg = %p, pid = %" PRIu64
3773                   ") woke up with an interrupt - Halting.",
3774                   __FUNCTION__, static_cast<void *>(this), GetID());
3775         Status error = HaltPrivate();
3776         if (error.Fail() && log)
3777           LLDB_LOGF(log,
3778                     "Process::%s (arg = %p, pid = %" PRIu64
3779                     ") failed to halt the process: %s",
3780                     __FUNCTION__, static_cast<void *>(this), GetID(),
3781                     error.AsCString());
3782         // Halt should generate a stopped event. Make a note of the fact that
3783         // we were doing the interrupt, so we can set the interrupted flag
3784         // after we receive the event. We deliberately set this to true even if
3785         // HaltPrivate failed, so that we can interrupt on the next natural
3786         // stop.
3787         interrupt_requested = true;
3788       } else {
3789         // This can happen when someone (e.g. Process::Halt) sees that we are
3790         // running and sends an interrupt request, but the process actually
3791         // stops before we receive it. In that case, we can just ignore the
3792         // request. We use m_last_broadcast_state, because the Stopped event
3793         // may not have been popped of the event queue yet, which is when the
3794         // public state gets updated.
3795         LLDB_LOGF(log,
3796                   "Process::%s ignoring interrupt as we have already stopped.",
3797                   __FUNCTION__);
3798       }
3799       continue;
3800     }
3801 
3802     const StateType internal_state =
3803         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3804 
3805     if (internal_state != eStateInvalid) {
3806       if (m_clear_thread_plans_on_stop &&
3807           StateIsStoppedState(internal_state, true)) {
3808         m_clear_thread_plans_on_stop = false;
3809         m_thread_list.DiscardThreadPlans();
3810       }
3811 
3812       if (interrupt_requested) {
3813         if (StateIsStoppedState(internal_state, true)) {
3814           // We requested the interrupt, so mark this as such in the stop event
3815           // so clients can tell an interrupted process from a natural stop
3816           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3817           interrupt_requested = false;
3818         } else if (log) {
3819           LLDB_LOGF(log,
3820                     "Process::%s interrupt_requested, but a non-stopped "
3821                     "state '%s' received.",
3822                     __FUNCTION__, StateAsCString(internal_state));
3823         }
3824       }
3825 
3826       HandlePrivateEvent(event_sp);
3827     }
3828 
3829     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3830         internal_state == eStateDetached) {
3831       LLDB_LOGF(log,
3832                 "Process::%s (arg = %p, pid = %" PRIu64
3833                 ") about to exit with internal state %s...",
3834                 __FUNCTION__, static_cast<void *>(this), GetID(),
3835                 StateAsCString(internal_state));
3836 
3837       break;
3838     }
3839   }
3840 
3841   // Verify log is still enabled before attempting to write to it...
3842   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3843             __FUNCTION__, static_cast<void *>(this), GetID());
3844 
3845   // If we are a secondary thread, then the primary thread we are working for
3846   // will have already acquired the public_run_lock, and isn't done with what
3847   // it was doing yet, so don't try to change it on the way out.
3848   if (!is_secondary_thread)
3849     m_public_run_lock.SetStopped();
3850   return {};
3851 }
3852 
3853 // Process Event Data
3854 
3855 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3856 
3857 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3858                                             StateType state)
3859     : EventData(), m_process_wp(), m_state(state), m_restarted(false),
3860       m_update_state(0), m_interrupted(false) {
3861   if (process_sp)
3862     m_process_wp = process_sp;
3863 }
3864 
3865 Process::ProcessEventData::~ProcessEventData() = default;
3866 
3867 ConstString Process::ProcessEventData::GetFlavorString() {
3868   static ConstString g_flavor("Process::ProcessEventData");
3869   return g_flavor;
3870 }
3871 
3872 ConstString Process::ProcessEventData::GetFlavor() const {
3873   return ProcessEventData::GetFlavorString();
3874 }
3875 
3876 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3877                                            bool &found_valid_stopinfo) {
3878   found_valid_stopinfo = false;
3879 
3880   ProcessSP process_sp(m_process_wp.lock());
3881   if (!process_sp)
3882     return false;
3883 
3884   ThreadList &curr_thread_list = process_sp->GetThreadList();
3885   uint32_t num_threads = curr_thread_list.GetSize();
3886   uint32_t idx;
3887 
3888   // The actions might change one of the thread's stop_info's opinions about
3889   // whether we should stop the process, so we need to query that as we go.
3890 
3891   // One other complication here, is that we try to catch any case where the
3892   // target has run (except for expressions) and immediately exit, but if we
3893   // get that wrong (which is possible) then the thread list might have
3894   // changed, and that would cause our iteration here to crash.  We could
3895   // make a copy of the thread list, but we'd really like to also know if it
3896   // has changed at all, so we make up a vector of the thread ID's and check
3897   // what we get back against this list & bag out if anything differs.
3898   ThreadList not_suspended_thread_list(process_sp.get());
3899   std::vector<uint32_t> thread_index_array(num_threads);
3900   uint32_t not_suspended_idx = 0;
3901   for (idx = 0; idx < num_threads; ++idx) {
3902     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3903 
3904     /*
3905      Filter out all suspended threads, they could not be the reason
3906      of stop and no need to perform any actions on them.
3907      */
3908     if (thread_sp->GetResumeState() != eStateSuspended) {
3909       not_suspended_thread_list.AddThread(thread_sp);
3910       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3911       not_suspended_idx++;
3912     }
3913   }
3914 
3915   // Use this to track whether we should continue from here.  We will only
3916   // continue the target running if no thread says we should stop.  Of course
3917   // if some thread's PerformAction actually sets the target running, then it
3918   // doesn't matter what the other threads say...
3919 
3920   bool still_should_stop = false;
3921 
3922   // Sometimes - for instance if we have a bug in the stub we are talking to,
3923   // we stop but no thread has a valid stop reason.  In that case we should
3924   // just stop, because we have no way of telling what the right thing to do
3925   // is, and it's better to let the user decide than continue behind their
3926   // backs.
3927 
3928   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3929     curr_thread_list = process_sp->GetThreadList();
3930     if (curr_thread_list.GetSize() != num_threads) {
3931       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3932                                                       LIBLLDB_LOG_PROCESS));
3933       LLDB_LOGF(
3934           log,
3935           "Number of threads changed from %u to %u while processing event.",
3936           num_threads, curr_thread_list.GetSize());
3937       break;
3938     }
3939 
3940     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3941 
3942     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3943       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3944                                                       LIBLLDB_LOG_PROCESS));
3945       LLDB_LOGF(log,
3946                 "The thread at position %u changed from %u to %u while "
3947                 "processing event.",
3948                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3949       break;
3950     }
3951 
3952     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3953     if (stop_info_sp && stop_info_sp->IsValid()) {
3954       found_valid_stopinfo = true;
3955       bool this_thread_wants_to_stop;
3956       if (stop_info_sp->GetOverrideShouldStop()) {
3957         this_thread_wants_to_stop =
3958             stop_info_sp->GetOverriddenShouldStopValue();
3959       } else {
3960         stop_info_sp->PerformAction(event_ptr);
3961         // The stop action might restart the target.  If it does, then we
3962         // want to mark that in the event so that whoever is receiving it
3963         // will know to wait for the running event and reflect that state
3964         // appropriately. We also need to stop processing actions, since they
3965         // aren't expecting the target to be running.
3966 
3967         // FIXME: we might have run.
3968         if (stop_info_sp->HasTargetRunSinceMe()) {
3969           SetRestarted(true);
3970           break;
3971         }
3972 
3973         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
3974       }
3975 
3976       if (!still_should_stop)
3977         still_should_stop = this_thread_wants_to_stop;
3978     }
3979   }
3980 
3981   return still_should_stop;
3982 }
3983 
3984 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
3985   ProcessSP process_sp(m_process_wp.lock());
3986 
3987   if (!process_sp)
3988     return;
3989 
3990   // This function gets called twice for each event, once when the event gets
3991   // pulled off of the private process event queue, and then any number of
3992   // times, first when it gets pulled off of the public event queue, then other
3993   // times when we're pretending that this is where we stopped at the end of
3994   // expression evaluation.  m_update_state is used to distinguish these three
3995   // cases; it is 0 when we're just pulling it off for private handling, and >
3996   // 1 for expression evaluation, and we don't want to do the breakpoint
3997   // command handling then.
3998   if (m_update_state != 1)
3999     return;
4000 
4001   process_sp->SetPublicState(
4002       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4003 
4004   if (m_state == eStateStopped && !m_restarted) {
4005     // Let process subclasses know we are about to do a public stop and do
4006     // anything they might need to in order to speed up register and memory
4007     // accesses.
4008     process_sp->WillPublicStop();
4009   }
4010 
4011   // If this is a halt event, even if the halt stopped with some reason other
4012   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4013   // the halt request came through) don't do the StopInfo actions, as they may
4014   // end up restarting the process.
4015   if (m_interrupted)
4016     return;
4017 
4018   // If we're not stopped or have restarted, then skip the StopInfo actions:
4019   if (m_state != eStateStopped || m_restarted) {
4020     return;
4021   }
4022 
4023   bool does_anybody_have_an_opinion = false;
4024   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4025 
4026   if (GetRestarted()) {
4027     return;
4028   }
4029 
4030   if (!still_should_stop && does_anybody_have_an_opinion) {
4031     // We've been asked to continue, so do that here.
4032     SetRestarted(true);
4033     // Use the public resume method here, since this is just extending a
4034     // public resume.
4035     process_sp->PrivateResume();
4036   } else {
4037     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4038                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4039 
4040     if (!hijacked) {
4041       // If we didn't restart, run the Stop Hooks here.
4042       // Don't do that if state changed events aren't hooked up to the
4043       // public (or SyncResume) broadcasters.  StopHooks are just for
4044       // real public stops.  They might also restart the target,
4045       // so watch for that.
4046       if (process_sp->GetTarget().RunStopHooks())
4047         SetRestarted(true);
4048     }
4049   }
4050 }
4051 
4052 void Process::ProcessEventData::Dump(Stream *s) const {
4053   ProcessSP process_sp(m_process_wp.lock());
4054 
4055   if (process_sp)
4056     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4057               static_cast<void *>(process_sp.get()), process_sp->GetID());
4058   else
4059     s->PutCString(" process = NULL, ");
4060 
4061   s->Printf("state = %s", StateAsCString(GetState()));
4062 }
4063 
4064 const Process::ProcessEventData *
4065 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4066   if (event_ptr) {
4067     const EventData *event_data = event_ptr->GetData();
4068     if (event_data &&
4069         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4070       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4071   }
4072   return nullptr;
4073 }
4074 
4075 ProcessSP
4076 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4077   ProcessSP process_sp;
4078   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4079   if (data)
4080     process_sp = data->GetProcessSP();
4081   return process_sp;
4082 }
4083 
4084 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4085   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4086   if (data == nullptr)
4087     return eStateInvalid;
4088   else
4089     return data->GetState();
4090 }
4091 
4092 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4093   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4094   if (data == nullptr)
4095     return false;
4096   else
4097     return data->GetRestarted();
4098 }
4099 
4100 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4101                                                     bool new_value) {
4102   ProcessEventData *data =
4103       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4104   if (data != nullptr)
4105     data->SetRestarted(new_value);
4106 }
4107 
4108 size_t
4109 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4110   ProcessEventData *data =
4111       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4112   if (data != nullptr)
4113     return data->GetNumRestartedReasons();
4114   else
4115     return 0;
4116 }
4117 
4118 const char *
4119 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4120                                                      size_t idx) {
4121   ProcessEventData *data =
4122       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4123   if (data != nullptr)
4124     return data->GetRestartedReasonAtIndex(idx);
4125   else
4126     return nullptr;
4127 }
4128 
4129 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4130                                                    const char *reason) {
4131   ProcessEventData *data =
4132       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4133   if (data != nullptr)
4134     data->AddRestartedReason(reason);
4135 }
4136 
4137 bool Process::ProcessEventData::GetInterruptedFromEvent(
4138     const Event *event_ptr) {
4139   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4140   if (data == nullptr)
4141     return false;
4142   else
4143     return data->GetInterrupted();
4144 }
4145 
4146 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4147                                                       bool new_value) {
4148   ProcessEventData *data =
4149       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4150   if (data != nullptr)
4151     data->SetInterrupted(new_value);
4152 }
4153 
4154 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4155   ProcessEventData *data =
4156       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4157   if (data) {
4158     data->SetUpdateStateOnRemoval();
4159     return true;
4160   }
4161   return false;
4162 }
4163 
4164 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4165 
4166 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4167   exe_ctx.SetTargetPtr(&GetTarget());
4168   exe_ctx.SetProcessPtr(this);
4169   exe_ctx.SetThreadPtr(nullptr);
4170   exe_ctx.SetFramePtr(nullptr);
4171 }
4172 
4173 // uint32_t
4174 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4175 // std::vector<lldb::pid_t> &pids)
4176 //{
4177 //    return 0;
4178 //}
4179 //
4180 // ArchSpec
4181 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4182 //{
4183 //    return Host::GetArchSpecForExistingProcess (pid);
4184 //}
4185 //
4186 // ArchSpec
4187 // Process::GetArchSpecForExistingProcess (const char *process_name)
4188 //{
4189 //    return Host::GetArchSpecForExistingProcess (process_name);
4190 //}
4191 
4192 void Process::AppendSTDOUT(const char *s, size_t len) {
4193   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4194   m_stdout_data.append(s, len);
4195   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4196                          new ProcessEventData(shared_from_this(), GetState()));
4197 }
4198 
4199 void Process::AppendSTDERR(const char *s, size_t len) {
4200   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4201   m_stderr_data.append(s, len);
4202   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4203                          new ProcessEventData(shared_from_this(), GetState()));
4204 }
4205 
4206 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4207   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4208   m_profile_data.push_back(one_profile_data);
4209   BroadcastEventIfUnique(eBroadcastBitProfileData,
4210                          new ProcessEventData(shared_from_this(), GetState()));
4211 }
4212 
4213 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4214                                       const StructuredDataPluginSP &plugin_sp) {
4215   BroadcastEvent(
4216       eBroadcastBitStructuredData,
4217       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4218 }
4219 
4220 StructuredDataPluginSP
4221 Process::GetStructuredDataPlugin(ConstString type_name) const {
4222   auto find_it = m_structured_data_plugin_map.find(type_name);
4223   if (find_it != m_structured_data_plugin_map.end())
4224     return find_it->second;
4225   else
4226     return StructuredDataPluginSP();
4227 }
4228 
4229 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4230   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4231   if (m_profile_data.empty())
4232     return 0;
4233 
4234   std::string &one_profile_data = m_profile_data.front();
4235   size_t bytes_available = one_profile_data.size();
4236   if (bytes_available > 0) {
4237     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4238     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4239               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4240     if (bytes_available > buf_size) {
4241       memcpy(buf, one_profile_data.c_str(), buf_size);
4242       one_profile_data.erase(0, buf_size);
4243       bytes_available = buf_size;
4244     } else {
4245       memcpy(buf, one_profile_data.c_str(), bytes_available);
4246       m_profile_data.erase(m_profile_data.begin());
4247     }
4248   }
4249   return bytes_available;
4250 }
4251 
4252 // Process STDIO
4253 
4254 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4255   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4256   size_t bytes_available = m_stdout_data.size();
4257   if (bytes_available > 0) {
4258     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4259     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4260               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4261     if (bytes_available > buf_size) {
4262       memcpy(buf, m_stdout_data.c_str(), buf_size);
4263       m_stdout_data.erase(0, buf_size);
4264       bytes_available = buf_size;
4265     } else {
4266       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4267       m_stdout_data.clear();
4268     }
4269   }
4270   return bytes_available;
4271 }
4272 
4273 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4274   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4275   size_t bytes_available = m_stderr_data.size();
4276   if (bytes_available > 0) {
4277     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4278     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4279               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4280     if (bytes_available > buf_size) {
4281       memcpy(buf, m_stderr_data.c_str(), buf_size);
4282       m_stderr_data.erase(0, buf_size);
4283       bytes_available = buf_size;
4284     } else {
4285       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4286       m_stderr_data.clear();
4287     }
4288   }
4289   return bytes_available;
4290 }
4291 
4292 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4293                                            size_t src_len) {
4294   Process *process = (Process *)baton;
4295   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4296 }
4297 
4298 class IOHandlerProcessSTDIO : public IOHandler {
4299 public:
4300   IOHandlerProcessSTDIO(Process *process, int write_fd)
4301       : IOHandler(process->GetTarget().GetDebugger(),
4302                   IOHandler::Type::ProcessIO),
4303         m_process(process),
4304         m_read_file(GetInputFD(), File::eOpenOptionRead, false),
4305         m_write_file(write_fd, File::eOpenOptionWrite, false) {
4306     m_pipe.CreateNew(false);
4307   }
4308 
4309   ~IOHandlerProcessSTDIO() override = default;
4310 
4311   // Each IOHandler gets to run until it is done. It should read data from the
4312   // "in" and place output into "out" and "err and return when done.
4313   void Run() override {
4314     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4315         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4316       SetIsDone(true);
4317       return;
4318     }
4319 
4320     SetIsDone(false);
4321     const int read_fd = m_read_file.GetDescriptor();
4322     TerminalState terminal_state;
4323     terminal_state.Save(read_fd, false);
4324     Terminal terminal(read_fd);
4325     terminal.SetCanonical(false);
4326     terminal.SetEcho(false);
4327 // FD_ZERO, FD_SET are not supported on windows
4328 #ifndef _WIN32
4329     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4330     m_is_running = true;
4331     while (!GetIsDone()) {
4332       SelectHelper select_helper;
4333       select_helper.FDSetRead(read_fd);
4334       select_helper.FDSetRead(pipe_read_fd);
4335       Status error = select_helper.Select();
4336 
4337       if (error.Fail()) {
4338         SetIsDone(true);
4339       } else {
4340         char ch = 0;
4341         size_t n;
4342         if (select_helper.FDIsSetRead(read_fd)) {
4343           n = 1;
4344           if (m_read_file.Read(&ch, n).Success() && n == 1) {
4345             if (m_write_file.Write(&ch, n).Fail() || n != 1)
4346               SetIsDone(true);
4347           } else
4348             SetIsDone(true);
4349         }
4350         if (select_helper.FDIsSetRead(pipe_read_fd)) {
4351           size_t bytes_read;
4352           // Consume the interrupt byte
4353           Status error = m_pipe.Read(&ch, 1, bytes_read);
4354           if (error.Success()) {
4355             switch (ch) {
4356             case 'q':
4357               SetIsDone(true);
4358               break;
4359             case 'i':
4360               if (StateIsRunningState(m_process->GetState()))
4361                 m_process->SendAsyncInterrupt();
4362               break;
4363             }
4364           }
4365         }
4366       }
4367     }
4368     m_is_running = false;
4369 #endif
4370     terminal_state.Restore();
4371   }
4372 
4373   void Cancel() override {
4374     SetIsDone(true);
4375     // Only write to our pipe to cancel if we are in
4376     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4377     // is being run from the command interpreter:
4378     //
4379     // (lldb) step_process_thousands_of_times
4380     //
4381     // In this case the command interpreter will be in the middle of handling
4382     // the command and if the process pushes and pops the IOHandler thousands
4383     // of times, we can end up writing to m_pipe without ever consuming the
4384     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4385     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4386     if (m_is_running) {
4387       char ch = 'q'; // Send 'q' for quit
4388       size_t bytes_written = 0;
4389       m_pipe.Write(&ch, 1, bytes_written);
4390     }
4391   }
4392 
4393   bool Interrupt() override {
4394     // Do only things that are safe to do in an interrupt context (like in a
4395     // SIGINT handler), like write 1 byte to a file descriptor. This will
4396     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4397     // that was written to the pipe and then call
4398     // m_process->SendAsyncInterrupt() from a much safer location in code.
4399     if (m_active) {
4400       char ch = 'i'; // Send 'i' for interrupt
4401       size_t bytes_written = 0;
4402       Status result = m_pipe.Write(&ch, 1, bytes_written);
4403       return result.Success();
4404     } else {
4405       // This IOHandler might be pushed on the stack, but not being run
4406       // currently so do the right thing if we aren't actively watching for
4407       // STDIN by sending the interrupt to the process. Otherwise the write to
4408       // the pipe above would do nothing. This can happen when the command
4409       // interpreter is running and gets a "expression ...". It will be on the
4410       // IOHandler thread and sending the input is complete to the delegate
4411       // which will cause the expression to run, which will push the process IO
4412       // handler, but not run it.
4413 
4414       if (StateIsRunningState(m_process->GetState())) {
4415         m_process->SendAsyncInterrupt();
4416         return true;
4417       }
4418     }
4419     return false;
4420   }
4421 
4422   void GotEOF() override {}
4423 
4424 protected:
4425   Process *m_process;
4426   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4427   NativeFile m_write_file; // Write to this file (usually the master pty for
4428                            // getting io to debuggee)
4429   Pipe m_pipe;
4430   std::atomic<bool> m_is_running{false};
4431 };
4432 
4433 void Process::SetSTDIOFileDescriptor(int fd) {
4434   // First set up the Read Thread for reading/handling process I/O
4435   m_stdio_communication.SetConnection(
4436       std::make_unique<ConnectionFileDescriptor>(fd, true));
4437   if (m_stdio_communication.IsConnected()) {
4438     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4439         STDIOReadThreadBytesReceived, this);
4440     m_stdio_communication.StartReadThread();
4441 
4442     // Now read thread is set up, set up input reader.
4443 
4444     if (!m_process_input_reader)
4445       m_process_input_reader =
4446           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4447   }
4448 }
4449 
4450 bool Process::ProcessIOHandlerIsActive() {
4451   IOHandlerSP io_handler_sp(m_process_input_reader);
4452   if (io_handler_sp)
4453     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4454   return false;
4455 }
4456 bool Process::PushProcessIOHandler() {
4457   IOHandlerSP io_handler_sp(m_process_input_reader);
4458   if (io_handler_sp) {
4459     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4460     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4461 
4462     io_handler_sp->SetIsDone(false);
4463     // If we evaluate an utility function, then we don't cancel the current
4464     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4465     // existing IOHandler that potentially provides the user interface (e.g.
4466     // the IOHandler for Editline).
4467     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4468     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4469                                                 cancel_top_handler);
4470     return true;
4471   }
4472   return false;
4473 }
4474 
4475 bool Process::PopProcessIOHandler() {
4476   IOHandlerSP io_handler_sp(m_process_input_reader);
4477   if (io_handler_sp)
4478     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4479   return false;
4480 }
4481 
4482 // The process needs to know about installed plug-ins
4483 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4484 
4485 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4486 
4487 namespace {
4488 // RestorePlanState is used to record the "is private", "is master" and "okay
4489 // to discard" fields of the plan we are running, and reset it on Clean or on
4490 // destruction. It will only reset the state once, so you can call Clean and
4491 // then monkey with the state and it won't get reset on you again.
4492 
4493 class RestorePlanState {
4494 public:
4495   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4496       : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) {
4497     if (m_thread_plan_sp) {
4498       m_private = m_thread_plan_sp->GetPrivate();
4499       m_is_master = m_thread_plan_sp->IsMasterPlan();
4500       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4501     }
4502   }
4503 
4504   ~RestorePlanState() { Clean(); }
4505 
4506   void Clean() {
4507     if (!m_already_reset && m_thread_plan_sp) {
4508       m_already_reset = true;
4509       m_thread_plan_sp->SetPrivate(m_private);
4510       m_thread_plan_sp->SetIsMasterPlan(m_is_master);
4511       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4512     }
4513   }
4514 
4515 private:
4516   lldb::ThreadPlanSP m_thread_plan_sp;
4517   bool m_already_reset;
4518   bool m_private;
4519   bool m_is_master;
4520   bool m_okay_to_discard;
4521 };
4522 } // anonymous namespace
4523 
4524 static microseconds
4525 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4526   const milliseconds default_one_thread_timeout(250);
4527 
4528   // If the overall wait is forever, then we don't need to worry about it.
4529   if (!options.GetTimeout()) {
4530     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4531                                          : default_one_thread_timeout;
4532   }
4533 
4534   // If the one thread timeout is set, use it.
4535   if (options.GetOneThreadTimeout())
4536     return *options.GetOneThreadTimeout();
4537 
4538   // Otherwise use half the total timeout, bounded by the
4539   // default_one_thread_timeout.
4540   return std::min<microseconds>(default_one_thread_timeout,
4541                                 *options.GetTimeout() / 2);
4542 }
4543 
4544 static Timeout<std::micro>
4545 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4546                      bool before_first_timeout) {
4547   // If we are going to run all threads the whole time, or if we are only going
4548   // to run one thread, we can just return the overall timeout.
4549   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4550     return options.GetTimeout();
4551 
4552   if (before_first_timeout)
4553     return GetOneThreadExpressionTimeout(options);
4554 
4555   if (!options.GetTimeout())
4556     return llvm::None;
4557   else
4558     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4559 }
4560 
4561 static llvm::Optional<ExpressionResults>
4562 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4563                    RestorePlanState &restorer, const EventSP &event_sp,
4564                    EventSP &event_to_broadcast_sp,
4565                    const EvaluateExpressionOptions &options,
4566                    bool handle_interrupts) {
4567   Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS);
4568 
4569   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4570                            .GetProcessSP()
4571                            ->GetThreadList()
4572                            .FindThreadByID(thread_id);
4573   if (!thread_sp) {
4574     LLDB_LOG(log,
4575              "The thread on which we were running the "
4576              "expression: tid = {0}, exited while "
4577              "the expression was running.",
4578              thread_id);
4579     return eExpressionThreadVanished;
4580   }
4581 
4582   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4583   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4584     LLDB_LOG(log, "execution completed successfully");
4585 
4586     // Restore the plan state so it will get reported as intended when we are
4587     // done.
4588     restorer.Clean();
4589     return eExpressionCompleted;
4590   }
4591 
4592   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4593   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4594       stop_info_sp->ShouldNotify(event_sp.get())) {
4595     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4596     if (!options.DoesIgnoreBreakpoints()) {
4597       // Restore the plan state and then force Private to false.  We are going
4598       // to stop because of this plan so we need it to become a public plan or
4599       // it won't report correctly when we continue to its termination later
4600       // on.
4601       restorer.Clean();
4602       thread_plan_sp->SetPrivate(false);
4603       event_to_broadcast_sp = event_sp;
4604     }
4605     return eExpressionHitBreakpoint;
4606   }
4607 
4608   if (!handle_interrupts &&
4609       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4610     return llvm::None;
4611 
4612   LLDB_LOG(log, "thread plan did not successfully complete");
4613   if (!options.DoesUnwindOnError())
4614     event_to_broadcast_sp = event_sp;
4615   return eExpressionInterrupted;
4616 }
4617 
4618 ExpressionResults
4619 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4620                        lldb::ThreadPlanSP &thread_plan_sp,
4621                        const EvaluateExpressionOptions &options,
4622                        DiagnosticManager &diagnostic_manager) {
4623   ExpressionResults return_value = eExpressionSetupError;
4624 
4625   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4626 
4627   if (!thread_plan_sp) {
4628     diagnostic_manager.PutString(
4629         eDiagnosticSeverityError,
4630         "RunThreadPlan called with empty thread plan.");
4631     return eExpressionSetupError;
4632   }
4633 
4634   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4635     diagnostic_manager.PutString(
4636         eDiagnosticSeverityError,
4637         "RunThreadPlan called with an invalid thread plan.");
4638     return eExpressionSetupError;
4639   }
4640 
4641   if (exe_ctx.GetProcessPtr() != this) {
4642     diagnostic_manager.PutString(eDiagnosticSeverityError,
4643                                  "RunThreadPlan called on wrong process.");
4644     return eExpressionSetupError;
4645   }
4646 
4647   Thread *thread = exe_ctx.GetThreadPtr();
4648   if (thread == nullptr) {
4649     diagnostic_manager.PutString(eDiagnosticSeverityError,
4650                                  "RunThreadPlan called with invalid thread.");
4651     return eExpressionSetupError;
4652   }
4653 
4654   // Record the thread's id so we can tell when a thread we were using
4655   // to run the expression exits during the expression evaluation.
4656   lldb::tid_t expr_thread_id = thread->GetID();
4657 
4658   // We need to change some of the thread plan attributes for the thread plan
4659   // runner.  This will restore them when we are done:
4660 
4661   RestorePlanState thread_plan_restorer(thread_plan_sp);
4662 
4663   // We rely on the thread plan we are running returning "PlanCompleted" if
4664   // when it successfully completes. For that to be true the plan can't be
4665   // private - since private plans suppress themselves in the GetCompletedPlan
4666   // call.
4667 
4668   thread_plan_sp->SetPrivate(false);
4669 
4670   // The plans run with RunThreadPlan also need to be terminal master plans or
4671   // when they are done we will end up asking the plan above us whether we
4672   // should stop, which may give the wrong answer.
4673 
4674   thread_plan_sp->SetIsMasterPlan(true);
4675   thread_plan_sp->SetOkayToDiscard(false);
4676 
4677   // If we are running some utility expression for LLDB, we now have to mark
4678   // this in the ProcesModID of this process. This RAII takes care of marking
4679   // and reverting the mark it once we are done running the expression.
4680   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4681 
4682   if (m_private_state.GetValue() != eStateStopped) {
4683     diagnostic_manager.PutString(
4684         eDiagnosticSeverityError,
4685         "RunThreadPlan called while the private state was not stopped.");
4686     return eExpressionSetupError;
4687   }
4688 
4689   // Save the thread & frame from the exe_ctx for restoration after we run
4690   const uint32_t thread_idx_id = thread->GetIndexID();
4691   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4692   if (!selected_frame_sp) {
4693     thread->SetSelectedFrame(nullptr);
4694     selected_frame_sp = thread->GetSelectedFrame();
4695     if (!selected_frame_sp) {
4696       diagnostic_manager.Printf(
4697           eDiagnosticSeverityError,
4698           "RunThreadPlan called without a selected frame on thread %d",
4699           thread_idx_id);
4700       return eExpressionSetupError;
4701     }
4702   }
4703 
4704   // Make sure the timeout values make sense. The one thread timeout needs to
4705   // be smaller than the overall timeout.
4706   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4707       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4708     diagnostic_manager.PutString(eDiagnosticSeverityError,
4709                                  "RunThreadPlan called with one thread "
4710                                  "timeout greater than total timeout");
4711     return eExpressionSetupError;
4712   }
4713 
4714   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4715 
4716   // N.B. Running the target may unset the currently selected thread and frame.
4717   // We don't want to do that either, so we should arrange to reset them as
4718   // well.
4719 
4720   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4721 
4722   uint32_t selected_tid;
4723   StackID selected_stack_id;
4724   if (selected_thread_sp) {
4725     selected_tid = selected_thread_sp->GetIndexID();
4726     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4727   } else {
4728     selected_tid = LLDB_INVALID_THREAD_ID;
4729   }
4730 
4731   HostThread backup_private_state_thread;
4732   lldb::StateType old_state = eStateInvalid;
4733   lldb::ThreadPlanSP stopper_base_plan_sp;
4734 
4735   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
4736                                                   LIBLLDB_LOG_PROCESS));
4737   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4738     // Yikes, we are running on the private state thread!  So we can't wait for
4739     // public events on this thread, since we are the thread that is generating
4740     // public events. The simplest thing to do is to spin up a temporary thread
4741     // to handle private state thread events while we are fielding public
4742     // events here.
4743     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4744                    "another state thread to handle the events.");
4745 
4746     backup_private_state_thread = m_private_state_thread;
4747 
4748     // One other bit of business: we want to run just this thread plan and
4749     // anything it pushes, and then stop, returning control here. But in the
4750     // normal course of things, the plan above us on the stack would be given a
4751     // shot at the stop event before deciding to stop, and we don't want that.
4752     // So we insert a "stopper" base plan on the stack before the plan we want
4753     // to run.  Since base plans always stop and return control to the user,
4754     // that will do just what we want.
4755     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4756     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4757     // Have to make sure our public state is stopped, since otherwise the
4758     // reporting logic below doesn't work correctly.
4759     old_state = m_public_state.GetValue();
4760     m_public_state.SetValueNoLock(eStateStopped);
4761 
4762     // Now spin up the private state thread:
4763     StartPrivateStateThread(true);
4764   }
4765 
4766   thread->QueueThreadPlan(
4767       thread_plan_sp, false); // This used to pass "true" does that make sense?
4768 
4769   if (options.GetDebug()) {
4770     // In this case, we aren't actually going to run, we just want to stop
4771     // right away. Flush this thread so we will refetch the stacks and show the
4772     // correct backtrace.
4773     // FIXME: To make this prettier we should invent some stop reason for this,
4774     // but that
4775     // is only cosmetic, and this functionality is only of use to lldb
4776     // developers who can live with not pretty...
4777     thread->Flush();
4778     return eExpressionStoppedForDebug;
4779   }
4780 
4781   ListenerSP listener_sp(
4782       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4783 
4784   lldb::EventSP event_to_broadcast_sp;
4785 
4786   {
4787     // This process event hijacker Hijacks the Public events and its destructor
4788     // makes sure that the process events get restored on exit to the function.
4789     //
4790     // If the event needs to propagate beyond the hijacker (e.g., the process
4791     // exits during execution), then the event is put into
4792     // event_to_broadcast_sp for rebroadcasting.
4793 
4794     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4795 
4796     if (log) {
4797       StreamString s;
4798       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4799       LLDB_LOGF(log,
4800                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4801                 " to run thread plan \"%s\".",
4802                 thread_idx_id, expr_thread_id, s.GetData());
4803     }
4804 
4805     bool got_event;
4806     lldb::EventSP event_sp;
4807     lldb::StateType stop_state = lldb::eStateInvalid;
4808 
4809     bool before_first_timeout = true; // This is set to false the first time
4810                                       // that we have to halt the target.
4811     bool do_resume = true;
4812     bool handle_running_event = true;
4813 
4814     // This is just for accounting:
4815     uint32_t num_resumes = 0;
4816 
4817     // If we are going to run all threads the whole time, or if we are only
4818     // going to run one thread, then we don't need the first timeout.  So we
4819     // pretend we are after the first timeout already.
4820     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4821       before_first_timeout = false;
4822 
4823     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4824               options.GetStopOthers(), options.GetTryAllThreads(),
4825               before_first_timeout);
4826 
4827     // This isn't going to work if there are unfetched events on the queue. Are
4828     // there cases where we might want to run the remaining events here, and
4829     // then try to call the function?  That's probably being too tricky for our
4830     // own good.
4831 
4832     Event *other_events = listener_sp->PeekAtNextEvent();
4833     if (other_events != nullptr) {
4834       diagnostic_manager.PutString(
4835           eDiagnosticSeverityError,
4836           "RunThreadPlan called with pending events on the queue.");
4837       return eExpressionSetupError;
4838     }
4839 
4840     // We also need to make sure that the next event is delivered.  We might be
4841     // calling a function as part of a thread plan, in which case the last
4842     // delivered event could be the running event, and we don't want event
4843     // coalescing to cause us to lose OUR running event...
4844     ForceNextEventDelivery();
4845 
4846 // This while loop must exit out the bottom, there's cleanup that we need to do
4847 // when we are done. So don't call return anywhere within it.
4848 
4849 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4850     // It's pretty much impossible to write test cases for things like: One
4851     // thread timeout expires, I go to halt, but the process already stopped on
4852     // the function call stop breakpoint.  Turning on this define will make us
4853     // not fetch the first event till after the halt.  So if you run a quick
4854     // function, it will have completed, and the completion event will be
4855     // waiting, when you interrupt for halt. The expression evaluation should
4856     // still succeed.
4857     bool miss_first_event = true;
4858 #endif
4859     while (true) {
4860       // We usually want to resume the process if we get to the top of the
4861       // loop. The only exception is if we get two running events with no
4862       // intervening stop, which can happen, we will just wait for then next
4863       // stop event.
4864       LLDB_LOGF(log,
4865                 "Top of while loop: do_resume: %i handle_running_event: %i "
4866                 "before_first_timeout: %i.",
4867                 do_resume, handle_running_event, before_first_timeout);
4868 
4869       if (do_resume || handle_running_event) {
4870         // Do the initial resume and wait for the running event before going
4871         // further.
4872 
4873         if (do_resume) {
4874           num_resumes++;
4875           Status resume_error = PrivateResume();
4876           if (!resume_error.Success()) {
4877             diagnostic_manager.Printf(
4878                 eDiagnosticSeverityError,
4879                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4880                 resume_error.AsCString());
4881             return_value = eExpressionSetupError;
4882             break;
4883           }
4884         }
4885 
4886         got_event =
4887             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4888         if (!got_event) {
4889           LLDB_LOGF(log,
4890                     "Process::RunThreadPlan(): didn't get any event after "
4891                     "resume %" PRIu32 ", exiting.",
4892                     num_resumes);
4893 
4894           diagnostic_manager.Printf(eDiagnosticSeverityError,
4895                                     "didn't get any event after resume %" PRIu32
4896                                     ", exiting.",
4897                                     num_resumes);
4898           return_value = eExpressionSetupError;
4899           break;
4900         }
4901 
4902         stop_state =
4903             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4904 
4905         if (stop_state != eStateRunning) {
4906           bool restarted = false;
4907 
4908           if (stop_state == eStateStopped) {
4909             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4910                 event_sp.get());
4911             LLDB_LOGF(
4912                 log,
4913                 "Process::RunThreadPlan(): didn't get running event after "
4914                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4915                 "handle_running_event: %i).",
4916                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4917                 handle_running_event);
4918           }
4919 
4920           if (restarted) {
4921             // This is probably an overabundance of caution, I don't think I
4922             // should ever get a stopped & restarted event here.  But if I do,
4923             // the best thing is to Halt and then get out of here.
4924             const bool clear_thread_plans = false;
4925             const bool use_run_lock = false;
4926             Halt(clear_thread_plans, use_run_lock);
4927           }
4928 
4929           diagnostic_manager.Printf(
4930               eDiagnosticSeverityError,
4931               "didn't get running event after initial resume, got %s instead.",
4932               StateAsCString(stop_state));
4933           return_value = eExpressionSetupError;
4934           break;
4935         }
4936 
4937         if (log)
4938           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4939         // We need to call the function synchronously, so spin waiting for it
4940         // to return. If we get interrupted while executing, we're going to
4941         // lose our context, and won't be able to gather the result at this
4942         // point. We set the timeout AFTER the resume, since the resume takes
4943         // some time and we don't want to charge that to the timeout.
4944       } else {
4945         if (log)
4946           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4947       }
4948 
4949       do_resume = true;
4950       handle_running_event = true;
4951 
4952       // Now wait for the process to stop again:
4953       event_sp.reset();
4954 
4955       Timeout<std::micro> timeout =
4956           GetExpressionTimeout(options, before_first_timeout);
4957       if (log) {
4958         if (timeout) {
4959           auto now = system_clock::now();
4960           LLDB_LOGF(log,
4961                     "Process::RunThreadPlan(): about to wait - now is %s - "
4962                     "endpoint is %s",
4963                     llvm::to_string(now).c_str(),
4964                     llvm::to_string(now + *timeout).c_str());
4965         } else {
4966           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
4967         }
4968       }
4969 
4970 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4971       // See comment above...
4972       if (miss_first_event) {
4973         std::this_thread::sleep_for(std::chrono::milliseconds(1));
4974         miss_first_event = false;
4975         got_event = false;
4976       } else
4977 #endif
4978         got_event = listener_sp->GetEvent(event_sp, timeout);
4979 
4980       if (got_event) {
4981         if (event_sp) {
4982           bool keep_going = false;
4983           if (event_sp->GetType() == eBroadcastBitInterrupt) {
4984             const bool clear_thread_plans = false;
4985             const bool use_run_lock = false;
4986             Halt(clear_thread_plans, use_run_lock);
4987             return_value = eExpressionInterrupted;
4988             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
4989                                          "execution halted by user interrupt.");
4990             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
4991                            "eBroadcastBitInterrupted, exiting.");
4992             break;
4993           } else {
4994             stop_state =
4995                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4996             LLDB_LOGF(log,
4997                       "Process::RunThreadPlan(): in while loop, got event: %s.",
4998                       StateAsCString(stop_state));
4999 
5000             switch (stop_state) {
5001             case lldb::eStateStopped: {
5002               if (Process::ProcessEventData::GetRestartedFromEvent(
5003                       event_sp.get())) {
5004                 // If we were restarted, we just need to go back up to fetch
5005                 // another event.
5006                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5007                                "restart, so we'll continue waiting.");
5008                 keep_going = true;
5009                 do_resume = false;
5010                 handle_running_event = true;
5011               } else {
5012                 const bool handle_interrupts = true;
5013                 return_value = *HandleStoppedEvent(
5014                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5015                     event_sp, event_to_broadcast_sp, options,
5016                     handle_interrupts);
5017                 if (return_value == eExpressionThreadVanished)
5018                   keep_going = false;
5019               }
5020             } break;
5021 
5022             case lldb::eStateRunning:
5023               // This shouldn't really happen, but sometimes we do get two
5024               // running events without an intervening stop, and in that case
5025               // we should just go back to waiting for the stop.
5026               do_resume = false;
5027               keep_going = true;
5028               handle_running_event = false;
5029               break;
5030 
5031             default:
5032               LLDB_LOGF(log,
5033                         "Process::RunThreadPlan(): execution stopped with "
5034                         "unexpected state: %s.",
5035                         StateAsCString(stop_state));
5036 
5037               if (stop_state == eStateExited)
5038                 event_to_broadcast_sp = event_sp;
5039 
5040               diagnostic_manager.PutString(
5041                   eDiagnosticSeverityError,
5042                   "execution stopped with unexpected state.");
5043               return_value = eExpressionInterrupted;
5044               break;
5045             }
5046           }
5047 
5048           if (keep_going)
5049             continue;
5050           else
5051             break;
5052         } else {
5053           if (log)
5054             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5055                             "the event pointer was null.  How odd...");
5056           return_value = eExpressionInterrupted;
5057           break;
5058         }
5059       } else {
5060         // If we didn't get an event that means we've timed out... We will
5061         // interrupt the process here.  Depending on what we were asked to do
5062         // we will either exit, or try with all threads running for the same
5063         // timeout.
5064 
5065         if (log) {
5066           if (options.GetTryAllThreads()) {
5067             if (before_first_timeout) {
5068               LLDB_LOG(log,
5069                        "Running function with one thread timeout timed out.");
5070             } else
5071               LLDB_LOG(log, "Restarting function with all threads enabled and "
5072                             "timeout: {0} timed out, abandoning execution.",
5073                        timeout);
5074           } else
5075             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5076                           "abandoning execution.",
5077                      timeout);
5078         }
5079 
5080         // It is possible that between the time we issued the Halt, and we get
5081         // around to calling Halt the target could have stopped.  That's fine,
5082         // Halt will figure that out and send the appropriate Stopped event.
5083         // BUT it is also possible that we stopped & restarted (e.g. hit a
5084         // signal with "stop" set to false.)  In
5085         // that case, we'll get the stopped & restarted event, and we should go
5086         // back to waiting for the Halt's stopped event.  That's what this
5087         // while loop does.
5088 
5089         bool back_to_top = true;
5090         uint32_t try_halt_again = 0;
5091         bool do_halt = true;
5092         const uint32_t num_retries = 5;
5093         while (try_halt_again < num_retries) {
5094           Status halt_error;
5095           if (do_halt) {
5096             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5097             const bool clear_thread_plans = false;
5098             const bool use_run_lock = false;
5099             Halt(clear_thread_plans, use_run_lock);
5100           }
5101           if (halt_error.Success()) {
5102             if (log)
5103               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5104 
5105             got_event =
5106                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5107 
5108             if (got_event) {
5109               stop_state =
5110                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5111               if (log) {
5112                 LLDB_LOGF(log,
5113                           "Process::RunThreadPlan(): Stopped with event: %s",
5114                           StateAsCString(stop_state));
5115                 if (stop_state == lldb::eStateStopped &&
5116                     Process::ProcessEventData::GetInterruptedFromEvent(
5117                         event_sp.get()))
5118                   log->PutCString("    Event was the Halt interruption event.");
5119               }
5120 
5121               if (stop_state == lldb::eStateStopped) {
5122                 if (Process::ProcessEventData::GetRestartedFromEvent(
5123                         event_sp.get())) {
5124                   if (log)
5125                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5126                                     "but got a restarted event, there must be "
5127                                     "an un-restarted stopped event so try "
5128                                     "again...  "
5129                                     "Exiting wait loop.");
5130                   try_halt_again++;
5131                   do_halt = false;
5132                   continue;
5133                 }
5134 
5135                 // Between the time we initiated the Halt and the time we
5136                 // delivered it, the process could have already finished its
5137                 // job.  Check that here:
5138                 const bool handle_interrupts = false;
5139                 if (auto result = HandleStoppedEvent(
5140                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5141                         event_sp, event_to_broadcast_sp, options,
5142                         handle_interrupts)) {
5143                   return_value = *result;
5144                   back_to_top = false;
5145                   break;
5146                 }
5147 
5148                 if (!options.GetTryAllThreads()) {
5149                   if (log)
5150                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5151                                     "was false, we stopped so now we're "
5152                                     "quitting.");
5153                   return_value = eExpressionInterrupted;
5154                   back_to_top = false;
5155                   break;
5156                 }
5157 
5158                 if (before_first_timeout) {
5159                   // Set all the other threads to run, and return to the top of
5160                   // the loop, which will continue;
5161                   before_first_timeout = false;
5162                   thread_plan_sp->SetStopOthers(false);
5163                   if (log)
5164                     log->PutCString(
5165                         "Process::RunThreadPlan(): about to resume.");
5166 
5167                   back_to_top = true;
5168                   break;
5169                 } else {
5170                   // Running all threads failed, so return Interrupted.
5171                   if (log)
5172                     log->PutCString("Process::RunThreadPlan(): running all "
5173                                     "threads timed out.");
5174                   return_value = eExpressionInterrupted;
5175                   back_to_top = false;
5176                   break;
5177                 }
5178               }
5179             } else {
5180               if (log)
5181                 log->PutCString("Process::RunThreadPlan(): halt said it "
5182                                 "succeeded, but I got no event.  "
5183                                 "I'm getting out of here passing Interrupted.");
5184               return_value = eExpressionInterrupted;
5185               back_to_top = false;
5186               break;
5187             }
5188           } else {
5189             try_halt_again++;
5190             continue;
5191           }
5192         }
5193 
5194         if (!back_to_top || try_halt_again > num_retries)
5195           break;
5196         else
5197           continue;
5198       }
5199     } // END WAIT LOOP
5200 
5201     // If we had to start up a temporary private state thread to run this
5202     // thread plan, shut it down now.
5203     if (backup_private_state_thread.IsJoinable()) {
5204       StopPrivateStateThread();
5205       Status error;
5206       m_private_state_thread = backup_private_state_thread;
5207       if (stopper_base_plan_sp) {
5208         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5209       }
5210       if (old_state != eStateInvalid)
5211         m_public_state.SetValueNoLock(old_state);
5212     }
5213 
5214     // If our thread went away on us, we need to get out of here without
5215     // doing any more work.  We don't have to clean up the thread plan, that
5216     // will have happened when the Thread was destroyed.
5217     if (return_value == eExpressionThreadVanished) {
5218       return return_value;
5219     }
5220 
5221     if (return_value != eExpressionCompleted && log) {
5222       // Print a backtrace into the log so we can figure out where we are:
5223       StreamString s;
5224       s.PutCString("Thread state after unsuccessful completion: \n");
5225       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5226       log->PutString(s.GetString());
5227     }
5228     // Restore the thread state if we are going to discard the plan execution.
5229     // There are three cases where this could happen: 1) The execution
5230     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5231     // was true 3) We got some other error, and discard_on_error was true
5232     bool should_unwind = (return_value == eExpressionInterrupted &&
5233                           options.DoesUnwindOnError()) ||
5234                          (return_value == eExpressionHitBreakpoint &&
5235                           options.DoesIgnoreBreakpoints());
5236 
5237     if (return_value == eExpressionCompleted || should_unwind) {
5238       thread_plan_sp->RestoreThreadState();
5239     }
5240 
5241     // Now do some processing on the results of the run:
5242     if (return_value == eExpressionInterrupted ||
5243         return_value == eExpressionHitBreakpoint) {
5244       if (log) {
5245         StreamString s;
5246         if (event_sp)
5247           event_sp->Dump(&s);
5248         else {
5249           log->PutCString("Process::RunThreadPlan(): Stop event that "
5250                           "interrupted us is NULL.");
5251         }
5252 
5253         StreamString ts;
5254 
5255         const char *event_explanation = nullptr;
5256 
5257         do {
5258           if (!event_sp) {
5259             event_explanation = "<no event>";
5260             break;
5261           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5262             event_explanation = "<user interrupt>";
5263             break;
5264           } else {
5265             const Process::ProcessEventData *event_data =
5266                 Process::ProcessEventData::GetEventDataFromEvent(
5267                     event_sp.get());
5268 
5269             if (!event_data) {
5270               event_explanation = "<no event data>";
5271               break;
5272             }
5273 
5274             Process *process = event_data->GetProcessSP().get();
5275 
5276             if (!process) {
5277               event_explanation = "<no process>";
5278               break;
5279             }
5280 
5281             ThreadList &thread_list = process->GetThreadList();
5282 
5283             uint32_t num_threads = thread_list.GetSize();
5284             uint32_t thread_index;
5285 
5286             ts.Printf("<%u threads> ", num_threads);
5287 
5288             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5289               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5290 
5291               if (!thread) {
5292                 ts.Printf("<?> ");
5293                 continue;
5294               }
5295 
5296               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5297               RegisterContext *register_context =
5298                   thread->GetRegisterContext().get();
5299 
5300               if (register_context)
5301                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5302               else
5303                 ts.Printf("[ip unknown] ");
5304 
5305               // Show the private stop info here, the public stop info will be
5306               // from the last natural stop.
5307               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5308               if (stop_info_sp) {
5309                 const char *stop_desc = stop_info_sp->GetDescription();
5310                 if (stop_desc)
5311                   ts.PutCString(stop_desc);
5312               }
5313               ts.Printf(">");
5314             }
5315 
5316             event_explanation = ts.GetData();
5317           }
5318         } while (false);
5319 
5320         if (event_explanation)
5321           LLDB_LOGF(log,
5322                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5323                     s.GetData(), event_explanation);
5324         else
5325           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5326                     s.GetData());
5327       }
5328 
5329       if (should_unwind) {
5330         LLDB_LOGF(log,
5331                   "Process::RunThreadPlan: ExecutionInterrupted - "
5332                   "discarding thread plans up to %p.",
5333                   static_cast<void *>(thread_plan_sp.get()));
5334         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5335       } else {
5336         LLDB_LOGF(log,
5337                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5338                   "plan: %p not discarding.",
5339                   static_cast<void *>(thread_plan_sp.get()));
5340       }
5341     } else if (return_value == eExpressionSetupError) {
5342       if (log)
5343         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5344 
5345       if (options.DoesUnwindOnError()) {
5346         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5347       }
5348     } else {
5349       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5350         if (log)
5351           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5352         return_value = eExpressionCompleted;
5353       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5354         if (log)
5355           log->PutCString(
5356               "Process::RunThreadPlan(): thread plan was discarded");
5357         return_value = eExpressionDiscarded;
5358       } else {
5359         if (log)
5360           log->PutCString(
5361               "Process::RunThreadPlan(): thread plan stopped in mid course");
5362         if (options.DoesUnwindOnError() && thread_plan_sp) {
5363           if (log)
5364             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5365                             "'cause unwind_on_error is set.");
5366           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5367         }
5368       }
5369     }
5370 
5371     // Thread we ran the function in may have gone away because we ran the
5372     // target Check that it's still there, and if it is put it back in the
5373     // context. Also restore the frame in the context if it is still present.
5374     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5375     if (thread) {
5376       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5377     }
5378 
5379     // Also restore the current process'es selected frame & thread, since this
5380     // function calling may be done behind the user's back.
5381 
5382     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5383       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5384           selected_stack_id.IsValid()) {
5385         // We were able to restore the selected thread, now restore the frame:
5386         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5387         StackFrameSP old_frame_sp =
5388             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5389                 selected_stack_id);
5390         if (old_frame_sp)
5391           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5392               old_frame_sp.get());
5393       }
5394     }
5395   }
5396 
5397   // If the process exited during the run of the thread plan, notify everyone.
5398 
5399   if (event_to_broadcast_sp) {
5400     if (log)
5401       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5402     BroadcastEvent(event_to_broadcast_sp);
5403   }
5404 
5405   return return_value;
5406 }
5407 
5408 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5409   const char *result_name = "<unknown>";
5410 
5411   switch (result) {
5412   case eExpressionCompleted:
5413     result_name = "eExpressionCompleted";
5414     break;
5415   case eExpressionDiscarded:
5416     result_name = "eExpressionDiscarded";
5417     break;
5418   case eExpressionInterrupted:
5419     result_name = "eExpressionInterrupted";
5420     break;
5421   case eExpressionHitBreakpoint:
5422     result_name = "eExpressionHitBreakpoint";
5423     break;
5424   case eExpressionSetupError:
5425     result_name = "eExpressionSetupError";
5426     break;
5427   case eExpressionParseError:
5428     result_name = "eExpressionParseError";
5429     break;
5430   case eExpressionResultUnavailable:
5431     result_name = "eExpressionResultUnavailable";
5432     break;
5433   case eExpressionTimedOut:
5434     result_name = "eExpressionTimedOut";
5435     break;
5436   case eExpressionStoppedForDebug:
5437     result_name = "eExpressionStoppedForDebug";
5438     break;
5439   case eExpressionThreadVanished:
5440     result_name = "eExpressionThreadVanished";
5441   }
5442   return result_name;
5443 }
5444 
5445 void Process::GetStatus(Stream &strm) {
5446   const StateType state = GetState();
5447   if (StateIsStoppedState(state, false)) {
5448     if (state == eStateExited) {
5449       int exit_status = GetExitStatus();
5450       const char *exit_description = GetExitDescription();
5451       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5452                   GetID(), exit_status, exit_status,
5453                   exit_description ? exit_description : "");
5454     } else {
5455       if (state == eStateConnected)
5456         strm.Printf("Connected to remote target.\n");
5457       else
5458         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5459     }
5460   } else {
5461     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5462   }
5463 }
5464 
5465 size_t Process::GetThreadStatus(Stream &strm,
5466                                 bool only_threads_with_stop_reason,
5467                                 uint32_t start_frame, uint32_t num_frames,
5468                                 uint32_t num_frames_with_source,
5469                                 bool stop_format) {
5470   size_t num_thread_infos_dumped = 0;
5471 
5472   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5473   // very well might run code (e.g. if we need it to get return values or
5474   // arguments.)  For that to work the process has to be able to acquire it.
5475   // So instead copy the thread ID's, and look them up one by one:
5476 
5477   uint32_t num_threads;
5478   std::vector<lldb::tid_t> thread_id_array;
5479   // Scope for thread list locker;
5480   {
5481     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5482     ThreadList &curr_thread_list = GetThreadList();
5483     num_threads = curr_thread_list.GetSize();
5484     uint32_t idx;
5485     thread_id_array.resize(num_threads);
5486     for (idx = 0; idx < num_threads; ++idx)
5487       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5488   }
5489 
5490   for (uint32_t i = 0; i < num_threads; i++) {
5491     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5492     if (thread_sp) {
5493       if (only_threads_with_stop_reason) {
5494         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5495         if (!stop_info_sp || !stop_info_sp->IsValid())
5496           continue;
5497       }
5498       thread_sp->GetStatus(strm, start_frame, num_frames,
5499                            num_frames_with_source,
5500                            stop_format);
5501       ++num_thread_infos_dumped;
5502     } else {
5503       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5504       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5505                      " vanished while running Thread::GetStatus.");
5506     }
5507   }
5508   return num_thread_infos_dumped;
5509 }
5510 
5511 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5512   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5513 }
5514 
5515 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5516   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5517                                            region.GetByteSize());
5518 }
5519 
5520 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5521                                  void *baton) {
5522   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5523 }
5524 
5525 bool Process::RunPreResumeActions() {
5526   bool result = true;
5527   while (!m_pre_resume_actions.empty()) {
5528     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5529     m_pre_resume_actions.pop_back();
5530     bool this_result = action.callback(action.baton);
5531     if (result)
5532       result = this_result;
5533   }
5534   return result;
5535 }
5536 
5537 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5538 
5539 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5540 {
5541     PreResumeCallbackAndBaton element(callback, baton);
5542     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5543     if (found_iter != m_pre_resume_actions.end())
5544     {
5545         m_pre_resume_actions.erase(found_iter);
5546     }
5547 }
5548 
5549 ProcessRunLock &Process::GetRunLock() {
5550   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5551     return m_private_run_lock;
5552   else
5553     return m_public_run_lock;
5554 }
5555 
5556 bool Process::CurrentThreadIsPrivateStateThread()
5557 {
5558   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5559 }
5560 
5561 
5562 void Process::Flush() {
5563   m_thread_list.Flush();
5564   m_extended_thread_list.Flush();
5565   m_extended_thread_stop_id = 0;
5566   m_queue_list.Clear();
5567   m_queue_list_stop_id = 0;
5568 }
5569 
5570 lldb::addr_t Process::GetCodeAddressMask() {
5571   if (m_code_address_mask == 0) {
5572     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5573       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5574       SetCodeAddressMask(address_mask);
5575     }
5576   }
5577   return m_code_address_mask;
5578 }
5579 
5580 lldb::addr_t Process::GetDataAddressMask() {
5581   if (m_data_address_mask == 0) {
5582     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5583       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5584       SetDataAddressMask(address_mask);
5585     }
5586   }
5587   return m_data_address_mask;
5588 }
5589 
5590 void Process::DidExec() {
5591   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
5592   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5593 
5594   Target &target = GetTarget();
5595   target.CleanupProcess();
5596   target.ClearModules(false);
5597   m_dynamic_checkers_up.reset();
5598   m_abi_sp.reset();
5599   m_system_runtime_up.reset();
5600   m_os_up.reset();
5601   m_dyld_up.reset();
5602   m_jit_loaders_up.reset();
5603   m_image_tokens.clear();
5604   m_allocated_memory_cache.Clear();
5605   {
5606     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5607     m_language_runtimes.clear();
5608   }
5609   m_instrumentation_runtimes.clear();
5610   m_thread_list.DiscardThreadPlans();
5611   m_memory_cache.Clear(true);
5612   DoDidExec();
5613   CompleteAttach();
5614   // Flush the process (threads and all stack frames) after running
5615   // CompleteAttach() in case the dynamic loader loaded things in new
5616   // locations.
5617   Flush();
5618 
5619   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5620   // let the target know so it can do any cleanup it needs to.
5621   target.DidExec();
5622 }
5623 
5624 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5625   if (address == nullptr) {
5626     error.SetErrorString("Invalid address argument");
5627     return LLDB_INVALID_ADDRESS;
5628   }
5629 
5630   addr_t function_addr = LLDB_INVALID_ADDRESS;
5631 
5632   addr_t addr = address->GetLoadAddress(&GetTarget());
5633   std::map<addr_t, addr_t>::const_iterator iter =
5634       m_resolved_indirect_addresses.find(addr);
5635   if (iter != m_resolved_indirect_addresses.end()) {
5636     function_addr = (*iter).second;
5637   } else {
5638     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5639       Symbol *symbol = address->CalculateSymbolContextSymbol();
5640       error.SetErrorStringWithFormat(
5641           "Unable to call resolver for indirect function %s",
5642           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5643       function_addr = LLDB_INVALID_ADDRESS;
5644     } else {
5645       if (ABISP abi_sp = GetABI())
5646         function_addr = abi_sp->FixCodeAddress(function_addr);
5647       m_resolved_indirect_addresses.insert(
5648           std::pair<addr_t, addr_t>(addr, function_addr));
5649     }
5650   }
5651   return function_addr;
5652 }
5653 
5654 void Process::ModulesDidLoad(ModuleList &module_list) {
5655   // Inform the system runtime of the modified modules.
5656   SystemRuntime *sys_runtime = GetSystemRuntime();
5657   if (sys_runtime)
5658     sys_runtime->ModulesDidLoad(module_list);
5659 
5660   GetJITLoaders().ModulesDidLoad(module_list);
5661 
5662   // Give the instrumentation runtimes a chance to be created before informing
5663   // them of the modified modules.
5664   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5665                                          m_instrumentation_runtimes);
5666   for (auto &runtime : m_instrumentation_runtimes)
5667     runtime.second->ModulesDidLoad(module_list);
5668 
5669   // Give the language runtimes a chance to be created before informing them of
5670   // the modified modules.
5671   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5672     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5673       runtime->ModulesDidLoad(module_list);
5674   }
5675 
5676   // If we don't have an operating system plug-in, try to load one since
5677   // loading shared libraries might cause a new one to try and load
5678   if (!m_os_up)
5679     LoadOperatingSystemPlugin(false);
5680 
5681   // Inform the structured-data plugins of the modified modules.
5682   for (auto pair : m_structured_data_plugin_map) {
5683     if (pair.second)
5684       pair.second->ModulesDidLoad(*this, module_list);
5685   }
5686 }
5687 
5688 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key,
5689                            const char *fmt, ...) {
5690   bool print_warning = true;
5691 
5692   StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream();
5693   if (!stream_sp)
5694     return;
5695 
5696   if (repeat_key != nullptr) {
5697     WarningsCollection::iterator it = m_warnings_issued.find(warning_type);
5698     if (it == m_warnings_issued.end()) {
5699       m_warnings_issued[warning_type] = WarningsPointerSet();
5700       m_warnings_issued[warning_type].insert(repeat_key);
5701     } else {
5702       if (it->second.find(repeat_key) != it->second.end()) {
5703         print_warning = false;
5704       } else {
5705         it->second.insert(repeat_key);
5706       }
5707     }
5708   }
5709 
5710   if (print_warning) {
5711     va_list args;
5712     va_start(args, fmt);
5713     stream_sp->PrintfVarArg(fmt, args);
5714     va_end(args);
5715   }
5716 }
5717 
5718 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5719   if (!GetWarningsOptimization())
5720     return;
5721   if (!sc.module_sp)
5722     return;
5723   if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function &&
5724       sc.function->GetIsOptimized()) {
5725     PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(),
5726                  "%s was compiled with optimization - stepping may behave "
5727                  "oddly; variables may not be available.\n",
5728                  sc.module_sp->GetFileSpec().GetFilename().GetCString());
5729   }
5730 }
5731 
5732 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5733   if (!GetWarningsUnsupportedLanguage())
5734     return;
5735   if (!sc.module_sp)
5736     return;
5737   LanguageType language = sc.GetLanguage();
5738   if (language == eLanguageTypeUnknown)
5739     return;
5740   LanguageSet plugins =
5741       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5742   if (!plugins[language]) {
5743     PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage,
5744                  sc.module_sp.get(),
5745                  "This version of LLDB has no plugin for the language \"%s\". "
5746                  "Inspection of frame variables will be limited.\n",
5747                  Language::GetNameForLanguageType(language));
5748   }
5749 }
5750 
5751 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5752   info.Clear();
5753 
5754   PlatformSP platform_sp = GetTarget().GetPlatform();
5755   if (!platform_sp)
5756     return false;
5757 
5758   return platform_sp->GetProcessInfo(GetID(), info);
5759 }
5760 
5761 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5762   ThreadCollectionSP threads;
5763 
5764   const MemoryHistorySP &memory_history =
5765       MemoryHistory::FindPlugin(shared_from_this());
5766 
5767   if (!memory_history) {
5768     return threads;
5769   }
5770 
5771   threads = std::make_shared<ThreadCollection>(
5772       memory_history->GetHistoryThreads(addr));
5773 
5774   return threads;
5775 }
5776 
5777 InstrumentationRuntimeSP
5778 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5779   InstrumentationRuntimeCollection::iterator pos;
5780   pos = m_instrumentation_runtimes.find(type);
5781   if (pos == m_instrumentation_runtimes.end()) {
5782     return InstrumentationRuntimeSP();
5783   } else
5784     return (*pos).second;
5785 }
5786 
5787 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5788                             const ArchSpec &arch, ModuleSpec &module_spec) {
5789   module_spec.Clear();
5790   return false;
5791 }
5792 
5793 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5794   m_image_tokens.push_back(image_ptr);
5795   return m_image_tokens.size() - 1;
5796 }
5797 
5798 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5799   if (token < m_image_tokens.size())
5800     return m_image_tokens[token];
5801   return LLDB_INVALID_ADDRESS;
5802 }
5803 
5804 void Process::ResetImageToken(size_t token) {
5805   if (token < m_image_tokens.size())
5806     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5807 }
5808 
5809 Address
5810 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5811                                                AddressRange range_bounds) {
5812   Target &target = GetTarget();
5813   DisassemblerSP disassembler_sp;
5814   InstructionList *insn_list = nullptr;
5815 
5816   Address retval = default_stop_addr;
5817 
5818   if (!target.GetUseFastStepping())
5819     return retval;
5820   if (!default_stop_addr.IsValid())
5821     return retval;
5822 
5823   const char *plugin_name = nullptr;
5824   const char *flavor = nullptr;
5825   disassembler_sp = Disassembler::DisassembleRange(
5826       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5827   if (disassembler_sp)
5828     insn_list = &disassembler_sp->GetInstructionList();
5829 
5830   if (insn_list == nullptr) {
5831     return retval;
5832   }
5833 
5834   size_t insn_offset =
5835       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5836   if (insn_offset == UINT32_MAX) {
5837     return retval;
5838   }
5839 
5840   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5841       insn_offset, false /* ignore_calls*/, nullptr);
5842   if (branch_index == UINT32_MAX) {
5843     return retval;
5844   }
5845 
5846   if (branch_index > insn_offset) {
5847     Address next_branch_insn_address =
5848         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5849     if (next_branch_insn_address.IsValid() &&
5850         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5851       retval = next_branch_insn_address;
5852     }
5853   }
5854 
5855   return retval;
5856 }
5857 
5858 Status
5859 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5860 
5861   Status error;
5862 
5863   lldb::addr_t range_end = 0;
5864 
5865   region_list.clear();
5866   do {
5867     lldb_private::MemoryRegionInfo region_info;
5868     error = GetMemoryRegionInfo(range_end, region_info);
5869     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5870     if (error.Fail()) {
5871       region_list.clear();
5872       break;
5873     }
5874 
5875     range_end = region_info.GetRange().GetRangeEnd();
5876     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5877       region_list.push_back(std::move(region_info));
5878     }
5879   } while (range_end != LLDB_INVALID_ADDRESS);
5880 
5881   return error;
5882 }
5883 
5884 Status
5885 Process::ConfigureStructuredData(ConstString type_name,
5886                                  const StructuredData::ObjectSP &config_sp) {
5887   // If you get this, the Process-derived class needs to implement a method to
5888   // enable an already-reported asynchronous structured data feature. See
5889   // ProcessGDBRemote for an example implementation over gdb-remote.
5890   return Status("unimplemented");
5891 }
5892 
5893 void Process::MapSupportedStructuredDataPlugins(
5894     const StructuredData::Array &supported_type_names) {
5895   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5896 
5897   // Bail out early if there are no type names to map.
5898   if (supported_type_names.GetSize() == 0) {
5899     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5900               __FUNCTION__);
5901     return;
5902   }
5903 
5904   // Convert StructuredData type names to ConstString instances.
5905   std::set<ConstString> const_type_names;
5906 
5907   LLDB_LOGF(log,
5908             "Process::%s(): the process supports the following async "
5909             "structured data types:",
5910             __FUNCTION__);
5911 
5912   supported_type_names.ForEach(
5913       [&const_type_names, &log](StructuredData::Object *object) {
5914         if (!object) {
5915           // Invalid - shouldn't be null objects in the array.
5916           return false;
5917         }
5918 
5919         auto type_name = object->GetAsString();
5920         if (!type_name) {
5921           // Invalid format - all type names should be strings.
5922           return false;
5923         }
5924 
5925         const_type_names.insert(ConstString(type_name->GetValue()));
5926         LLDB_LOG(log, "- {0}", type_name->GetValue());
5927         return true;
5928       });
5929 
5930   // For each StructuredDataPlugin, if the plugin handles any of the types in
5931   // the supported_type_names, map that type name to that plugin. Stop when
5932   // we've consumed all the type names.
5933   // FIXME: should we return an error if there are type names nobody
5934   // supports?
5935   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5936     auto create_instance =
5937            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5938                plugin_index);
5939     if (!create_instance)
5940       break;
5941 
5942     // Create the plugin.
5943     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5944     if (!plugin_sp) {
5945       // This plugin doesn't think it can work with the process. Move on to the
5946       // next.
5947       continue;
5948     }
5949 
5950     // For any of the remaining type names, map any that this plugin supports.
5951     std::vector<ConstString> names_to_remove;
5952     for (auto &type_name : const_type_names) {
5953       if (plugin_sp->SupportsStructuredDataType(type_name)) {
5954         m_structured_data_plugin_map.insert(
5955             std::make_pair(type_name, plugin_sp));
5956         names_to_remove.push_back(type_name);
5957         LLDB_LOGF(log,
5958                   "Process::%s(): using plugin %s for type name "
5959                   "%s",
5960                   __FUNCTION__, plugin_sp->GetPluginName().GetCString(),
5961                   type_name.GetCString());
5962       }
5963     }
5964 
5965     // Remove the type names that were consumed by this plugin.
5966     for (auto &type_name : names_to_remove)
5967       const_type_names.erase(type_name);
5968   }
5969 }
5970 
5971 bool Process::RouteAsyncStructuredData(
5972     const StructuredData::ObjectSP object_sp) {
5973   // Nothing to do if there's no data.
5974   if (!object_sp)
5975     return false;
5976 
5977   // The contract is this must be a dictionary, so we can look up the routing
5978   // key via the top-level 'type' string value within the dictionary.
5979   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
5980   if (!dictionary)
5981     return false;
5982 
5983   // Grab the async structured type name (i.e. the feature/plugin name).
5984   ConstString type_name;
5985   if (!dictionary->GetValueForKeyAsString("type", type_name))
5986     return false;
5987 
5988   // Check if there's a plugin registered for this type name.
5989   auto find_it = m_structured_data_plugin_map.find(type_name);
5990   if (find_it == m_structured_data_plugin_map.end()) {
5991     // We don't have a mapping for this structured data type.
5992     return false;
5993   }
5994 
5995   // Route the structured data to the plugin.
5996   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
5997   return true;
5998 }
5999 
6000 Status Process::UpdateAutomaticSignalFiltering() {
6001   // Default implementation does nothign.
6002   // No automatic signal filtering to speak of.
6003   return Status();
6004 }
6005 
6006 UtilityFunction *Process::GetLoadImageUtilityFunction(
6007     Platform *platform,
6008     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6009   if (platform != GetTarget().GetPlatform().get())
6010     return nullptr;
6011   llvm::call_once(m_dlopen_utility_func_flag_once,
6012                   [&] { m_dlopen_utility_func_up = factory(); });
6013   return m_dlopen_utility_func_up.get();
6014 }
6015 
6016 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6017   if (!IsLiveDebugSession())
6018     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6019                                    "Can't trace a non-live process.");
6020   return llvm::make_error<UnimplementedError>();
6021 }
6022 
6023 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6024                                        addr_t &returned_func,
6025                                        bool trap_exceptions) {
6026   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6027   if (thread == nullptr || address == nullptr)
6028     return false;
6029 
6030   EvaluateExpressionOptions options;
6031   options.SetStopOthers(true);
6032   options.SetUnwindOnError(true);
6033   options.SetIgnoreBreakpoints(true);
6034   options.SetTryAllThreads(true);
6035   options.SetDebug(false);
6036   options.SetTimeout(GetUtilityExpressionTimeout());
6037   options.SetTrapExceptions(trap_exceptions);
6038 
6039   auto type_system_or_err =
6040       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6041   if (!type_system_or_err) {
6042     llvm::consumeError(type_system_or_err.takeError());
6043     return false;
6044   }
6045   CompilerType void_ptr_type =
6046       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6047   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6048       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6049   if (call_plan_sp) {
6050     DiagnosticManager diagnostics;
6051 
6052     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6053     if (frame) {
6054       ExecutionContext exe_ctx;
6055       frame->CalculateExecutionContext(exe_ctx);
6056       ExpressionResults result =
6057           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6058       if (result == eExpressionCompleted) {
6059         returned_func =
6060             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6061                 LLDB_INVALID_ADDRESS);
6062 
6063         if (GetAddressByteSize() == 4) {
6064           if (returned_func == UINT32_MAX)
6065             return false;
6066         } else if (GetAddressByteSize() == 8) {
6067           if (returned_func == UINT64_MAX)
6068             return false;
6069         }
6070         return true;
6071       }
6072     }
6073   }
6074 
6075   return false;
6076 }
6077 
6078 llvm::Expected<const MemoryTagManager *>
6079 Process::GetMemoryTagManager(lldb::addr_t addr, lldb::addr_t end_addr) {
6080   Architecture *arch = GetTarget().GetArchitecturePlugin();
6081   const MemoryTagManager *tag_manager =
6082       arch ? arch->GetMemoryTagManager() : nullptr;
6083   if (!arch || !tag_manager) {
6084     return llvm::createStringError(
6085         llvm::inconvertibleErrorCode(),
6086         "This architecture does not support memory tagging",
6087         GetPluginName().GetCString());
6088   }
6089 
6090   if (!SupportsMemoryTagging()) {
6091     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6092                                    "Process does not support memory tagging");
6093   }
6094 
6095   ptrdiff_t len = tag_manager->AddressDiff(end_addr, addr);
6096   if (len <= 0) {
6097     return llvm::createStringError(
6098         llvm::inconvertibleErrorCode(),
6099         "End address (0x%" PRIx64
6100         ") must be greater than the start address (0x%" PRIx64 ")",
6101         end_addr, addr);
6102   }
6103 
6104   // Region lookup is not address size aware so mask the address
6105   MemoryRegionInfo::RangeType tag_range(tag_manager->RemoveNonAddressBits(addr),
6106                                         len);
6107   tag_range = tag_manager->ExpandToGranule(tag_range);
6108 
6109   // Make a copy so we can use the original range in errors
6110   MemoryRegionInfo::RangeType remaining_range(tag_range);
6111 
6112   // While we haven't found a matching memory region for some of the range
6113   while (remaining_range.IsValid()) {
6114     MemoryRegionInfo region;
6115     Status status = GetMemoryRegionInfo(remaining_range.GetRangeBase(), region);
6116 
6117     if (status.Fail() || region.GetMemoryTagged() != MemoryRegionInfo::eYes) {
6118       return llvm::createStringError(
6119           llvm::inconvertibleErrorCode(),
6120           "Address range 0x%lx:0x%lx is not in a memory tagged region",
6121           tag_range.GetRangeBase(), tag_range.GetRangeEnd());
6122     }
6123 
6124     if (region.GetRange().GetRangeEnd() >= remaining_range.GetRangeEnd()) {
6125       // We've found a region for the whole range or the last piece of a range
6126       remaining_range.SetByteSize(0);
6127     } else {
6128       // We've found some part of the range, look for the rest
6129       remaining_range.SetRangeBase(region.GetRange().GetRangeEnd());
6130     }
6131   }
6132 
6133   return tag_manager;
6134 }
6135 
6136 llvm::Expected<std::vector<lldb::addr_t>>
6137 Process::ReadMemoryTags(const MemoryTagManager *tag_manager, lldb::addr_t addr,
6138                         size_t len) {
6139   if (!tag_manager) {
6140     return llvm::createStringError(
6141         llvm::inconvertibleErrorCode(),
6142         "A memory tag manager is required for reading memory tags.");
6143   }
6144 
6145   MemoryTagManager::TagRange range(tag_manager->RemoveNonAddressBits(addr),
6146                                    len);
6147   range = tag_manager->ExpandToGranule(range);
6148 
6149   llvm::Expected<std::vector<uint8_t>> tag_data =
6150       DoReadMemoryTags(range.GetRangeBase(), range.GetByteSize(),
6151                        tag_manager->GetAllocationTagType());
6152   if (!tag_data)
6153     return tag_data.takeError();
6154 
6155   return tag_manager->UnpackTagsData(
6156       *tag_data, range.GetByteSize() / tag_manager->GetGranuleSize());
6157 }
6158