1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/ThreadPlanStack.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/Event.h" 66 #include "lldb/Utility/Log.h" 67 #include "lldb/Utility/NameMatches.h" 68 #include "lldb/Utility/ProcessInfo.h" 69 #include "lldb/Utility/SelectHelper.h" 70 #include "lldb/Utility/State.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties 87 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 88 public: 89 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 90 91 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 92 bool will_modify, 93 uint32_t idx) const override { 94 // When getting the value for a key from the process options, we will 95 // always try and grab the setting from the current process if there is 96 // one. Else we just use the one from this instance. 97 if (exe_ctx) { 98 Process *process = exe_ctx->GetProcessPtr(); 99 if (process) { 100 ProcessOptionValueProperties *instance_properties = 101 static_cast<ProcessOptionValueProperties *>( 102 process->GetValueProperties().get()); 103 if (this != instance_properties) 104 return instance_properties->ProtectedGetPropertyAtIndex(idx); 105 } 106 } 107 return ProtectedGetPropertyAtIndex(idx); 108 } 109 }; 110 111 #define LLDB_PROPERTIES_process 112 #include "TargetProperties.inc" 113 114 enum { 115 #define LLDB_PROPERTIES_process 116 #include "TargetPropertiesEnum.inc" 117 ePropertyExperimental, 118 }; 119 120 #define LLDB_PROPERTIES_process_experimental 121 #include "TargetProperties.inc" 122 123 enum { 124 #define LLDB_PROPERTIES_process_experimental 125 #include "TargetPropertiesEnum.inc" 126 }; 127 128 class ProcessExperimentalOptionValueProperties 129 : public Cloneable<ProcessExperimentalOptionValueProperties, 130 OptionValueProperties> { 131 public: 132 ProcessExperimentalOptionValueProperties() 133 : Cloneable( 134 ConstString(Properties::GetExperimentalSettingsName())) {} 135 }; 136 137 ProcessExperimentalProperties::ProcessExperimentalProperties() 138 : Properties(OptionValuePropertiesSP( 139 new ProcessExperimentalOptionValueProperties())) { 140 m_collection_sp->Initialize(g_process_experimental_properties); 141 } 142 143 ProcessProperties::ProcessProperties(lldb_private::Process *process) 144 : Properties(), 145 m_process(process) // Can be nullptr for global ProcessProperties 146 { 147 if (process == nullptr) { 148 // Global process properties, set them up one time 149 m_collection_sp = 150 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 151 m_collection_sp->Initialize(g_process_properties); 152 m_collection_sp->AppendProperty( 153 ConstString("thread"), ConstString("Settings specific to threads."), 154 true, Thread::GetGlobalProperties()->GetValueProperties()); 155 } else { 156 m_collection_sp = 157 OptionValueProperties::CreateLocalCopy(*Process::GetGlobalProperties()); 158 m_collection_sp->SetValueChangedCallback( 159 ePropertyPythonOSPluginPath, 160 [this] { m_process->LoadOperatingSystemPlugin(true); }); 161 } 162 163 m_experimental_properties_up = 164 std::make_unique<ProcessExperimentalProperties>(); 165 m_collection_sp->AppendProperty( 166 ConstString(Properties::GetExperimentalSettingsName()), 167 ConstString("Experimental settings - setting these won't produce " 168 "errors if the setting is not present."), 169 true, m_experimental_properties_up->GetValueProperties()); 170 } 171 172 ProcessProperties::~ProcessProperties() = default; 173 174 bool ProcessProperties::GetDisableMemoryCache() const { 175 const uint32_t idx = ePropertyDisableMemCache; 176 return m_collection_sp->GetPropertyAtIndexAsBoolean( 177 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 178 } 179 180 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 181 const uint32_t idx = ePropertyMemCacheLineSize; 182 return m_collection_sp->GetPropertyAtIndexAsUInt64( 183 nullptr, idx, g_process_properties[idx].default_uint_value); 184 } 185 186 Args ProcessProperties::GetExtraStartupCommands() const { 187 Args args; 188 const uint32_t idx = ePropertyExtraStartCommand; 189 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 190 return args; 191 } 192 193 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 194 const uint32_t idx = ePropertyExtraStartCommand; 195 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 196 } 197 198 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 199 const uint32_t idx = ePropertyPythonOSPluginPath; 200 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 201 } 202 203 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 204 const uint32_t idx = ePropertyVirtualAddressableBits; 205 return m_collection_sp->GetPropertyAtIndexAsUInt64( 206 nullptr, idx, g_process_properties[idx].default_uint_value); 207 } 208 209 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 210 const uint32_t idx = ePropertyVirtualAddressableBits; 211 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 212 } 213 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 214 const uint32_t idx = ePropertyPythonOSPluginPath; 215 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 216 } 217 218 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 219 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 220 return m_collection_sp->GetPropertyAtIndexAsBoolean( 221 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 222 } 223 224 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 225 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 226 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 227 } 228 229 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 230 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 231 return m_collection_sp->GetPropertyAtIndexAsBoolean( 232 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 233 } 234 235 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 236 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 237 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 238 } 239 240 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 241 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 242 return m_collection_sp->GetPropertyAtIndexAsBoolean( 243 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 244 } 245 246 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 247 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 248 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 249 } 250 251 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 252 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 253 return m_collection_sp->GetPropertyAtIndexAsBoolean( 254 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 255 } 256 257 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 258 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 259 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 260 m_process->Flush(); 261 } 262 263 bool ProcessProperties::GetDetachKeepsStopped() const { 264 const uint32_t idx = ePropertyDetachKeepsStopped; 265 return m_collection_sp->GetPropertyAtIndexAsBoolean( 266 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 267 } 268 269 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 270 const uint32_t idx = ePropertyDetachKeepsStopped; 271 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 272 } 273 274 bool ProcessProperties::GetWarningsOptimization() const { 275 const uint32_t idx = ePropertyWarningOptimization; 276 return m_collection_sp->GetPropertyAtIndexAsBoolean( 277 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 278 } 279 280 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 281 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 282 return m_collection_sp->GetPropertyAtIndexAsBoolean( 283 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 284 } 285 286 bool ProcessProperties::GetStopOnExec() const { 287 const uint32_t idx = ePropertyStopOnExec; 288 return m_collection_sp->GetPropertyAtIndexAsBoolean( 289 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 290 } 291 292 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 293 const uint32_t idx = ePropertyUtilityExpressionTimeout; 294 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 295 nullptr, idx, g_process_properties[idx].default_uint_value); 296 return std::chrono::seconds(value); 297 } 298 299 bool ProcessProperties::GetSteppingRunsAllThreads() const { 300 const uint32_t idx = ePropertySteppingRunsAllThreads; 301 return m_collection_sp->GetPropertyAtIndexAsBoolean( 302 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 303 } 304 305 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 306 const bool fail_value = true; 307 const Property *exp_property = 308 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 309 OptionValueProperties *exp_values = 310 exp_property->GetValue()->GetAsProperties(); 311 if (!exp_values) 312 return fail_value; 313 314 return exp_values->GetPropertyAtIndexAsBoolean( 315 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 316 } 317 318 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 319 const Property *exp_property = 320 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 321 OptionValueProperties *exp_values = 322 exp_property->GetValue()->GetAsProperties(); 323 if (exp_values) 324 exp_values->SetPropertyAtIndexAsBoolean( 325 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 326 } 327 328 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 329 llvm::StringRef plugin_name, 330 ListenerSP listener_sp, 331 const FileSpec *crash_file_path, 332 bool can_connect) { 333 static uint32_t g_process_unique_id = 0; 334 335 ProcessSP process_sp; 336 ProcessCreateInstance create_callback = nullptr; 337 if (!plugin_name.empty()) { 338 ConstString const_plugin_name(plugin_name); 339 create_callback = 340 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 341 if (create_callback) { 342 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 343 can_connect); 344 if (process_sp) { 345 if (process_sp->CanDebug(target_sp, true)) { 346 process_sp->m_process_unique_id = ++g_process_unique_id; 347 } else 348 process_sp.reset(); 349 } 350 } 351 } else { 352 for (uint32_t idx = 0; 353 (create_callback = 354 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 355 ++idx) { 356 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 357 can_connect); 358 if (process_sp) { 359 if (process_sp->CanDebug(target_sp, false)) { 360 process_sp->m_process_unique_id = ++g_process_unique_id; 361 break; 362 } else 363 process_sp.reset(); 364 } 365 } 366 } 367 return process_sp; 368 } 369 370 ConstString &Process::GetStaticBroadcasterClass() { 371 static ConstString class_name("lldb.process"); 372 return class_name; 373 } 374 375 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 376 : Process(target_sp, listener_sp, 377 UnixSignals::Create(HostInfo::GetArchitecture())) { 378 // This constructor just delegates to the full Process constructor, 379 // defaulting to using the Host's UnixSignals. 380 } 381 382 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 383 const UnixSignalsSP &unix_signals_sp) 384 : ProcessProperties(this), 385 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 386 Process::GetStaticBroadcasterClass().AsCString()), 387 m_target_wp(target_sp), m_public_state(eStateUnloaded), 388 m_private_state(eStateUnloaded), 389 m_private_state_broadcaster(nullptr, 390 "lldb.process.internal_state_broadcaster"), 391 m_private_state_control_broadcaster( 392 nullptr, "lldb.process.internal_state_control_broadcaster"), 393 m_private_state_listener_sp( 394 Listener::MakeListener("lldb.process.internal_state_listener")), 395 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 396 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 397 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 398 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 399 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 400 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 401 m_breakpoint_site_list(), m_dynamic_checkers_up(), 402 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 403 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 404 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 405 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 406 m_memory_cache(*this), m_allocated_memory_cache(*this), 407 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 408 m_private_run_lock(), m_finalizing(false), 409 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 410 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 411 m_can_interpret_function_calls(false), m_warnings_issued(), 412 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 413 CheckInWithManager(); 414 415 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 416 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 417 418 if (!m_unix_signals_sp) 419 m_unix_signals_sp = std::make_shared<UnixSignals>(); 420 421 SetEventName(eBroadcastBitStateChanged, "state-changed"); 422 SetEventName(eBroadcastBitInterrupt, "interrupt"); 423 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 424 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 425 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 426 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 427 428 m_private_state_control_broadcaster.SetEventName( 429 eBroadcastInternalStateControlStop, "control-stop"); 430 m_private_state_control_broadcaster.SetEventName( 431 eBroadcastInternalStateControlPause, "control-pause"); 432 m_private_state_control_broadcaster.SetEventName( 433 eBroadcastInternalStateControlResume, "control-resume"); 434 435 m_listener_sp->StartListeningForEvents( 436 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 437 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 438 eBroadcastBitProfileData | eBroadcastBitStructuredData); 439 440 m_private_state_listener_sp->StartListeningForEvents( 441 &m_private_state_broadcaster, 442 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 443 444 m_private_state_listener_sp->StartListeningForEvents( 445 &m_private_state_control_broadcaster, 446 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 447 eBroadcastInternalStateControlResume); 448 // We need something valid here, even if just the default UnixSignalsSP. 449 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 450 451 // Allow the platform to override the default cache line size 452 OptionValueSP value_sp = 453 m_collection_sp 454 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 455 ->GetValue(); 456 uint32_t platform_cache_line_size = 457 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 458 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 459 value_sp->SetUInt64Value(platform_cache_line_size); 460 461 RegisterAssertFrameRecognizer(this); 462 } 463 464 Process::~Process() { 465 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 466 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 467 StopPrivateStateThread(); 468 469 // ThreadList::Clear() will try to acquire this process's mutex, so 470 // explicitly clear the thread list here to ensure that the mutex is not 471 // destroyed before the thread list. 472 m_thread_list.Clear(); 473 } 474 475 const ProcessPropertiesSP &Process::GetGlobalProperties() { 476 // NOTE: intentional leak so we don't crash if global destructor chain gets 477 // called as other threads still use the result of this function 478 static ProcessPropertiesSP *g_settings_sp_ptr = 479 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 480 return *g_settings_sp_ptr; 481 } 482 483 void Process::Finalize() { 484 if (m_finalizing.exchange(true)) 485 return; 486 487 // Destroy this process if needed 488 switch (GetPrivateState()) { 489 case eStateConnected: 490 case eStateAttaching: 491 case eStateLaunching: 492 case eStateStopped: 493 case eStateRunning: 494 case eStateStepping: 495 case eStateCrashed: 496 case eStateSuspended: 497 DestroyImpl(false); 498 break; 499 500 case eStateInvalid: 501 case eStateUnloaded: 502 case eStateDetached: 503 case eStateExited: 504 break; 505 } 506 507 // Clear our broadcaster before we proceed with destroying 508 Broadcaster::Clear(); 509 510 // Do any cleanup needed prior to being destructed... Subclasses that 511 // override this method should call this superclass method as well. 512 513 // We need to destroy the loader before the derived Process class gets 514 // destroyed since it is very likely that undoing the loader will require 515 // access to the real process. 516 m_dynamic_checkers_up.reset(); 517 m_abi_sp.reset(); 518 m_os_up.reset(); 519 m_system_runtime_up.reset(); 520 m_dyld_up.reset(); 521 m_jit_loaders_up.reset(); 522 m_thread_plans.Clear(); 523 m_thread_list_real.Destroy(); 524 m_thread_list.Destroy(); 525 m_extended_thread_list.Destroy(); 526 m_queue_list.Clear(); 527 m_queue_list_stop_id = 0; 528 std::vector<Notifications> empty_notifications; 529 m_notifications.swap(empty_notifications); 530 m_image_tokens.clear(); 531 m_memory_cache.Clear(); 532 m_allocated_memory_cache.Clear(); 533 { 534 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 535 m_language_runtimes.clear(); 536 } 537 m_instrumentation_runtimes.clear(); 538 m_next_event_action_up.reset(); 539 // Clear the last natural stop ID since it has a strong reference to this 540 // process 541 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 542 //#ifdef LLDB_CONFIGURATION_DEBUG 543 // StreamFile s(stdout, false); 544 // EventSP event_sp; 545 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 546 // { 547 // event_sp->Dump (&s); 548 // s.EOL(); 549 // } 550 //#endif 551 // We have to be very careful here as the m_private_state_listener might 552 // contain events that have ProcessSP values in them which can keep this 553 // process around forever. These events need to be cleared out. 554 m_private_state_listener_sp->Clear(); 555 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 556 m_public_run_lock.SetStopped(); 557 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 558 m_private_run_lock.SetStopped(); 559 m_structured_data_plugin_map.clear(); 560 } 561 562 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 563 m_notifications.push_back(callbacks); 564 if (callbacks.initialize != nullptr) 565 callbacks.initialize(callbacks.baton, this); 566 } 567 568 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 569 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 570 for (pos = m_notifications.begin(); pos != end; ++pos) { 571 if (pos->baton == callbacks.baton && 572 pos->initialize == callbacks.initialize && 573 pos->process_state_changed == callbacks.process_state_changed) { 574 m_notifications.erase(pos); 575 return true; 576 } 577 } 578 return false; 579 } 580 581 void Process::SynchronouslyNotifyStateChanged(StateType state) { 582 std::vector<Notifications>::iterator notification_pos, 583 notification_end = m_notifications.end(); 584 for (notification_pos = m_notifications.begin(); 585 notification_pos != notification_end; ++notification_pos) { 586 if (notification_pos->process_state_changed) 587 notification_pos->process_state_changed(notification_pos->baton, this, 588 state); 589 } 590 } 591 592 // FIXME: We need to do some work on events before the general Listener sees 593 // them. 594 // For instance if we are continuing from a breakpoint, we need to ensure that 595 // we do the little "insert real insn, step & stop" trick. But we can't do 596 // that when the event is delivered by the broadcaster - since that is done on 597 // the thread that is waiting for new events, so if we needed more than one 598 // event for our handling, we would stall. So instead we do it when we fetch 599 // the event off of the queue. 600 // 601 602 StateType Process::GetNextEvent(EventSP &event_sp) { 603 StateType state = eStateInvalid; 604 605 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 606 std::chrono::seconds(0)) && 607 event_sp) 608 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 609 610 return state; 611 } 612 613 void Process::SyncIOHandler(uint32_t iohandler_id, 614 const Timeout<std::micro> &timeout) { 615 // don't sync (potentially context switch) in case where there is no process 616 // IO 617 if (!m_process_input_reader) 618 return; 619 620 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 621 622 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 623 if (Result) { 624 LLDB_LOG( 625 log, 626 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 627 iohandler_id, *Result); 628 } else { 629 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 630 iohandler_id); 631 } 632 } 633 634 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 635 EventSP *event_sp_ptr, bool wait_always, 636 ListenerSP hijack_listener_sp, 637 Stream *stream, bool use_run_lock) { 638 // We can't just wait for a "stopped" event, because the stopped event may 639 // have restarted the target. We have to actually check each event, and in 640 // the case of a stopped event check the restarted flag on the event. 641 if (event_sp_ptr) 642 event_sp_ptr->reset(); 643 StateType state = GetState(); 644 // If we are exited or detached, we won't ever get back to any other valid 645 // state... 646 if (state == eStateDetached || state == eStateExited) 647 return state; 648 649 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 650 LLDB_LOG(log, "timeout = {0}", timeout); 651 652 if (!wait_always && StateIsStoppedState(state, true) && 653 StateIsStoppedState(GetPrivateState(), true)) { 654 LLDB_LOGF(log, 655 "Process::%s returning without waiting for events; process " 656 "private and public states are already 'stopped'.", 657 __FUNCTION__); 658 // We need to toggle the run lock as this won't get done in 659 // SetPublicState() if the process is hijacked. 660 if (hijack_listener_sp && use_run_lock) 661 m_public_run_lock.SetStopped(); 662 return state; 663 } 664 665 while (state != eStateInvalid) { 666 EventSP event_sp; 667 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 668 if (event_sp_ptr && event_sp) 669 *event_sp_ptr = event_sp; 670 671 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 672 Process::HandleProcessStateChangedEvent(event_sp, stream, 673 pop_process_io_handler); 674 675 switch (state) { 676 case eStateCrashed: 677 case eStateDetached: 678 case eStateExited: 679 case eStateUnloaded: 680 // We need to toggle the run lock as this won't get done in 681 // SetPublicState() if the process is hijacked. 682 if (hijack_listener_sp && use_run_lock) 683 m_public_run_lock.SetStopped(); 684 return state; 685 case eStateStopped: 686 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 687 continue; 688 else { 689 // We need to toggle the run lock as this won't get done in 690 // SetPublicState() if the process is hijacked. 691 if (hijack_listener_sp && use_run_lock) 692 m_public_run_lock.SetStopped(); 693 return state; 694 } 695 default: 696 continue; 697 } 698 } 699 return state; 700 } 701 702 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 703 Stream *stream, 704 bool &pop_process_io_handler) { 705 const bool handle_pop = pop_process_io_handler; 706 707 pop_process_io_handler = false; 708 ProcessSP process_sp = 709 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 710 711 if (!process_sp) 712 return false; 713 714 StateType event_state = 715 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 716 if (event_state == eStateInvalid) 717 return false; 718 719 switch (event_state) { 720 case eStateInvalid: 721 case eStateUnloaded: 722 case eStateAttaching: 723 case eStateLaunching: 724 case eStateStepping: 725 case eStateDetached: 726 if (stream) 727 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 728 StateAsCString(event_state)); 729 if (event_state == eStateDetached) 730 pop_process_io_handler = true; 731 break; 732 733 case eStateConnected: 734 case eStateRunning: 735 // Don't be chatty when we run... 736 break; 737 738 case eStateExited: 739 if (stream) 740 process_sp->GetStatus(*stream); 741 pop_process_io_handler = true; 742 break; 743 744 case eStateStopped: 745 case eStateCrashed: 746 case eStateSuspended: 747 // Make sure the program hasn't been auto-restarted: 748 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 749 if (stream) { 750 size_t num_reasons = 751 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 752 if (num_reasons > 0) { 753 // FIXME: Do we want to report this, or would that just be annoyingly 754 // chatty? 755 if (num_reasons == 1) { 756 const char *reason = 757 Process::ProcessEventData::GetRestartedReasonAtIndex( 758 event_sp.get(), 0); 759 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 760 process_sp->GetID(), 761 reason ? reason : "<UNKNOWN REASON>"); 762 } else { 763 stream->Printf("Process %" PRIu64 764 " stopped and restarted, reasons:\n", 765 process_sp->GetID()); 766 767 for (size_t i = 0; i < num_reasons; i++) { 768 const char *reason = 769 Process::ProcessEventData::GetRestartedReasonAtIndex( 770 event_sp.get(), i); 771 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 772 } 773 } 774 } 775 } 776 } else { 777 StopInfoSP curr_thread_stop_info_sp; 778 // Lock the thread list so it doesn't change on us, this is the scope for 779 // the locker: 780 { 781 ThreadList &thread_list = process_sp->GetThreadList(); 782 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 783 784 ThreadSP curr_thread(thread_list.GetSelectedThread()); 785 ThreadSP thread; 786 StopReason curr_thread_stop_reason = eStopReasonInvalid; 787 if (curr_thread) { 788 curr_thread_stop_reason = curr_thread->GetStopReason(); 789 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 790 } 791 if (!curr_thread || !curr_thread->IsValid() || 792 curr_thread_stop_reason == eStopReasonInvalid || 793 curr_thread_stop_reason == eStopReasonNone) { 794 // Prefer a thread that has just completed its plan over another 795 // thread as current thread. 796 ThreadSP plan_thread; 797 ThreadSP other_thread; 798 799 const size_t num_threads = thread_list.GetSize(); 800 size_t i; 801 for (i = 0; i < num_threads; ++i) { 802 thread = thread_list.GetThreadAtIndex(i); 803 StopReason thread_stop_reason = thread->GetStopReason(); 804 switch (thread_stop_reason) { 805 case eStopReasonInvalid: 806 case eStopReasonNone: 807 break; 808 809 case eStopReasonSignal: { 810 // Don't select a signal thread if we weren't going to stop at 811 // that signal. We have to have had another reason for stopping 812 // here, and the user doesn't want to see this thread. 813 uint64_t signo = thread->GetStopInfo()->GetValue(); 814 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 815 if (!other_thread) 816 other_thread = thread; 817 } 818 break; 819 } 820 case eStopReasonTrace: 821 case eStopReasonBreakpoint: 822 case eStopReasonWatchpoint: 823 case eStopReasonException: 824 case eStopReasonExec: 825 case eStopReasonThreadExiting: 826 case eStopReasonInstrumentation: 827 case eStopReasonProcessorTrace: 828 if (!other_thread) 829 other_thread = thread; 830 break; 831 case eStopReasonPlanComplete: 832 if (!plan_thread) 833 plan_thread = thread; 834 break; 835 } 836 } 837 if (plan_thread) 838 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 839 else if (other_thread) 840 thread_list.SetSelectedThreadByID(other_thread->GetID()); 841 else { 842 if (curr_thread && curr_thread->IsValid()) 843 thread = curr_thread; 844 else 845 thread = thread_list.GetThreadAtIndex(0); 846 847 if (thread) 848 thread_list.SetSelectedThreadByID(thread->GetID()); 849 } 850 } 851 } 852 // Drop the ThreadList mutex by here, since GetThreadStatus below might 853 // have to run code, e.g. for Data formatters, and if we hold the 854 // ThreadList mutex, then the process is going to have a hard time 855 // restarting the process. 856 if (stream) { 857 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 858 if (debugger.GetTargetList().GetSelectedTarget().get() == 859 &process_sp->GetTarget()) { 860 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 861 862 if (!thread_sp || !thread_sp->IsValid()) 863 return false; 864 865 const bool only_threads_with_stop_reason = true; 866 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 867 const uint32_t num_frames = 1; 868 const uint32_t num_frames_with_source = 1; 869 const bool stop_format = true; 870 871 process_sp->GetStatus(*stream); 872 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 873 start_frame, num_frames, 874 num_frames_with_source, 875 stop_format); 876 if (curr_thread_stop_info_sp) { 877 lldb::addr_t crashing_address; 878 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 879 curr_thread_stop_info_sp, &crashing_address); 880 if (valobj_sp) { 881 const ValueObject::GetExpressionPathFormat format = 882 ValueObject::GetExpressionPathFormat:: 883 eGetExpressionPathFormatHonorPointers; 884 stream->PutCString("Likely cause: "); 885 valobj_sp->GetExpressionPath(*stream, format); 886 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 887 } 888 } 889 } else { 890 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 891 process_sp->GetTarget().shared_from_this()); 892 if (target_idx != UINT32_MAX) 893 stream->Printf("Target %d: (", target_idx); 894 else 895 stream->Printf("Target <unknown index>: ("); 896 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 897 stream->Printf(") stopped.\n"); 898 } 899 } 900 901 // Pop the process IO handler 902 pop_process_io_handler = true; 903 } 904 break; 905 } 906 907 if (handle_pop && pop_process_io_handler) 908 process_sp->PopProcessIOHandler(); 909 910 return true; 911 } 912 913 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 914 if (listener_sp) { 915 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 916 eBroadcastBitInterrupt); 917 } else 918 return false; 919 } 920 921 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 922 923 StateType Process::GetStateChangedEvents(EventSP &event_sp, 924 const Timeout<std::micro> &timeout, 925 ListenerSP hijack_listener_sp) { 926 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 927 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 928 929 ListenerSP listener_sp = hijack_listener_sp; 930 if (!listener_sp) 931 listener_sp = m_listener_sp; 932 933 StateType state = eStateInvalid; 934 if (listener_sp->GetEventForBroadcasterWithType( 935 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 936 timeout)) { 937 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 938 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 939 else 940 LLDB_LOG(log, "got no event or was interrupted."); 941 } 942 943 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 944 return state; 945 } 946 947 Event *Process::PeekAtStateChangedEvents() { 948 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 949 950 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 951 952 Event *event_ptr; 953 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 954 this, eBroadcastBitStateChanged); 955 if (log) { 956 if (event_ptr) { 957 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 958 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 959 } else { 960 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 961 } 962 } 963 return event_ptr; 964 } 965 966 StateType 967 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 968 const Timeout<std::micro> &timeout) { 969 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 970 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 971 972 StateType state = eStateInvalid; 973 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 974 &m_private_state_broadcaster, 975 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 976 timeout)) 977 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 978 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 979 980 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 981 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 982 return state; 983 } 984 985 bool Process::GetEventsPrivate(EventSP &event_sp, 986 const Timeout<std::micro> &timeout, 987 bool control_only) { 988 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 989 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 990 991 if (control_only) 992 return m_private_state_listener_sp->GetEventForBroadcaster( 993 &m_private_state_control_broadcaster, event_sp, timeout); 994 else 995 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 996 } 997 998 bool Process::IsRunning() const { 999 return StateIsRunningState(m_public_state.GetValue()); 1000 } 1001 1002 int Process::GetExitStatus() { 1003 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1004 1005 if (m_public_state.GetValue() == eStateExited) 1006 return m_exit_status; 1007 return -1; 1008 } 1009 1010 const char *Process::GetExitDescription() { 1011 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1012 1013 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1014 return m_exit_string.c_str(); 1015 return nullptr; 1016 } 1017 1018 bool Process::SetExitStatus(int status, const char *cstr) { 1019 // Use a mutex to protect setting the exit status. 1020 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1021 1022 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1023 LIBLLDB_LOG_PROCESS)); 1024 LLDB_LOGF( 1025 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1026 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1027 1028 // We were already in the exited state 1029 if (m_private_state.GetValue() == eStateExited) { 1030 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1031 "state was already set to eStateExited"); 1032 return false; 1033 } 1034 1035 m_exit_status = status; 1036 if (cstr) 1037 m_exit_string = cstr; 1038 else 1039 m_exit_string.clear(); 1040 1041 // Clear the last natural stop ID since it has a strong reference to this 1042 // process 1043 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1044 1045 SetPrivateState(eStateExited); 1046 1047 // Allow subclasses to do some cleanup 1048 DidExit(); 1049 1050 return true; 1051 } 1052 1053 bool Process::IsAlive() { 1054 switch (m_private_state.GetValue()) { 1055 case eStateConnected: 1056 case eStateAttaching: 1057 case eStateLaunching: 1058 case eStateStopped: 1059 case eStateRunning: 1060 case eStateStepping: 1061 case eStateCrashed: 1062 case eStateSuspended: 1063 return true; 1064 default: 1065 return false; 1066 } 1067 } 1068 1069 // This static callback can be used to watch for local child processes on the 1070 // current host. The child process exits, the process will be found in the 1071 // global target list (we want to be completely sure that the 1072 // lldb_private::Process doesn't go away before we can deliver the signal. 1073 bool Process::SetProcessExitStatus( 1074 lldb::pid_t pid, bool exited, 1075 int signo, // Zero for no signal 1076 int exit_status // Exit value of process if signal is zero 1077 ) { 1078 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1079 LLDB_LOGF(log, 1080 "Process::SetProcessExitStatus (pid=%" PRIu64 1081 ", exited=%i, signal=%i, exit_status=%i)\n", 1082 pid, exited, signo, exit_status); 1083 1084 if (exited) { 1085 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1086 if (target_sp) { 1087 ProcessSP process_sp(target_sp->GetProcessSP()); 1088 if (process_sp) { 1089 const char *signal_cstr = nullptr; 1090 if (signo) 1091 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1092 1093 process_sp->SetExitStatus(exit_status, signal_cstr); 1094 } 1095 } 1096 return true; 1097 } 1098 return false; 1099 } 1100 1101 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1102 ThreadList &new_thread_list) { 1103 m_thread_plans.ClearThreadCache(); 1104 return DoUpdateThreadList(old_thread_list, new_thread_list); 1105 } 1106 1107 void Process::UpdateThreadListIfNeeded() { 1108 const uint32_t stop_id = GetStopID(); 1109 if (m_thread_list.GetSize(false) == 0 || 1110 stop_id != m_thread_list.GetStopID()) { 1111 bool clear_unused_threads = true; 1112 const StateType state = GetPrivateState(); 1113 if (StateIsStoppedState(state, true)) { 1114 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1115 m_thread_list.SetStopID(stop_id); 1116 1117 // m_thread_list does have its own mutex, but we need to hold onto the 1118 // mutex between the call to UpdateThreadList(...) and the 1119 // os->UpdateThreadList(...) so it doesn't change on us 1120 ThreadList &old_thread_list = m_thread_list; 1121 ThreadList real_thread_list(this); 1122 ThreadList new_thread_list(this); 1123 // Always update the thread list with the protocol specific thread list, 1124 // but only update if "true" is returned 1125 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1126 // Don't call into the OperatingSystem to update the thread list if we 1127 // are shutting down, since that may call back into the SBAPI's, 1128 // requiring the API lock which is already held by whoever is shutting 1129 // us down, causing a deadlock. 1130 OperatingSystem *os = GetOperatingSystem(); 1131 if (os && !m_destroy_in_process) { 1132 // Clear any old backing threads where memory threads might have been 1133 // backed by actual threads from the lldb_private::Process subclass 1134 size_t num_old_threads = old_thread_list.GetSize(false); 1135 for (size_t i = 0; i < num_old_threads; ++i) 1136 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1137 // See if the OS plugin reports all threads. If it does, then 1138 // it is safe to clear unseen thread's plans here. Otherwise we 1139 // should preserve them in case they show up again: 1140 clear_unused_threads = GetOSPluginReportsAllThreads(); 1141 1142 // Turn off dynamic types to ensure we don't run any expressions. 1143 // Objective-C can run an expression to determine if a SBValue is a 1144 // dynamic type or not and we need to avoid this. OperatingSystem 1145 // plug-ins can't run expressions that require running code... 1146 1147 Target &target = GetTarget(); 1148 const lldb::DynamicValueType saved_prefer_dynamic = 1149 target.GetPreferDynamicValue(); 1150 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1151 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1152 1153 // Now let the OperatingSystem plug-in update the thread list 1154 1155 os->UpdateThreadList( 1156 old_thread_list, // Old list full of threads created by OS plug-in 1157 real_thread_list, // The actual thread list full of threads 1158 // created by each lldb_private::Process 1159 // subclass 1160 new_thread_list); // The new thread list that we will show to the 1161 // user that gets filled in 1162 1163 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1164 target.SetPreferDynamicValue(saved_prefer_dynamic); 1165 } else { 1166 // No OS plug-in, the new thread list is the same as the real thread 1167 // list. 1168 new_thread_list = real_thread_list; 1169 } 1170 1171 m_thread_list_real.Update(real_thread_list); 1172 m_thread_list.Update(new_thread_list); 1173 m_thread_list.SetStopID(stop_id); 1174 1175 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1176 // Clear any extended threads that we may have accumulated previously 1177 m_extended_thread_list.Clear(); 1178 m_extended_thread_stop_id = GetLastNaturalStopID(); 1179 1180 m_queue_list.Clear(); 1181 m_queue_list_stop_id = GetLastNaturalStopID(); 1182 } 1183 } 1184 // Now update the plan stack map. 1185 // If we do have an OS plugin, any absent real threads in the 1186 // m_thread_list have already been removed from the ThreadPlanStackMap. 1187 // So any remaining threads are OS Plugin threads, and those we want to 1188 // preserve in case they show up again. 1189 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1190 } 1191 } 1192 } 1193 1194 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1195 return m_thread_plans.Find(tid); 1196 } 1197 1198 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1199 return m_thread_plans.PrunePlansForTID(tid); 1200 } 1201 1202 void Process::PruneThreadPlans() { 1203 m_thread_plans.Update(GetThreadList(), true, false); 1204 } 1205 1206 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1207 lldb::DescriptionLevel desc_level, 1208 bool internal, bool condense_trivial, 1209 bool skip_unreported_plans) { 1210 return m_thread_plans.DumpPlansForTID( 1211 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1212 } 1213 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1214 bool internal, bool condense_trivial, 1215 bool skip_unreported_plans) { 1216 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1217 skip_unreported_plans); 1218 } 1219 1220 void Process::UpdateQueueListIfNeeded() { 1221 if (m_system_runtime_up) { 1222 if (m_queue_list.GetSize() == 0 || 1223 m_queue_list_stop_id != GetLastNaturalStopID()) { 1224 const StateType state = GetPrivateState(); 1225 if (StateIsStoppedState(state, true)) { 1226 m_system_runtime_up->PopulateQueueList(m_queue_list); 1227 m_queue_list_stop_id = GetLastNaturalStopID(); 1228 } 1229 } 1230 } 1231 } 1232 1233 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1234 OperatingSystem *os = GetOperatingSystem(); 1235 if (os) 1236 return os->CreateThread(tid, context); 1237 return ThreadSP(); 1238 } 1239 1240 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1241 return AssignIndexIDToThread(thread_id); 1242 } 1243 1244 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1245 return (m_thread_id_to_index_id_map.find(thread_id) != 1246 m_thread_id_to_index_id_map.end()); 1247 } 1248 1249 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1250 uint32_t result = 0; 1251 std::map<uint64_t, uint32_t>::iterator iterator = 1252 m_thread_id_to_index_id_map.find(thread_id); 1253 if (iterator == m_thread_id_to_index_id_map.end()) { 1254 result = ++m_thread_index_id; 1255 m_thread_id_to_index_id_map[thread_id] = result; 1256 } else { 1257 result = iterator->second; 1258 } 1259 1260 return result; 1261 } 1262 1263 StateType Process::GetState() { 1264 return m_public_state.GetValue(); 1265 } 1266 1267 void Process::SetPublicState(StateType new_state, bool restarted) { 1268 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1269 LIBLLDB_LOG_PROCESS)); 1270 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1271 StateAsCString(new_state), restarted); 1272 const StateType old_state = m_public_state.GetValue(); 1273 m_public_state.SetValue(new_state); 1274 1275 // On the transition from Run to Stopped, we unlock the writer end of the run 1276 // lock. The lock gets locked in Resume, which is the public API to tell the 1277 // program to run. 1278 if (!StateChangedIsExternallyHijacked()) { 1279 if (new_state == eStateDetached) { 1280 LLDB_LOGF(log, 1281 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1282 StateAsCString(new_state)); 1283 m_public_run_lock.SetStopped(); 1284 } else { 1285 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1286 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1287 if ((old_state_is_stopped != new_state_is_stopped)) { 1288 if (new_state_is_stopped && !restarted) { 1289 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1290 StateAsCString(new_state)); 1291 m_public_run_lock.SetStopped(); 1292 } 1293 } 1294 } 1295 } 1296 } 1297 1298 Status Process::Resume() { 1299 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1300 LIBLLDB_LOG_PROCESS)); 1301 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1302 if (!m_public_run_lock.TrySetRunning()) { 1303 Status error("Resume request failed - process still running."); 1304 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1305 return error; 1306 } 1307 Status error = PrivateResume(); 1308 if (!error.Success()) { 1309 // Undo running state change 1310 m_public_run_lock.SetStopped(); 1311 } 1312 return error; 1313 } 1314 1315 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1316 1317 Status Process::ResumeSynchronous(Stream *stream) { 1318 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1319 LIBLLDB_LOG_PROCESS)); 1320 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1321 if (!m_public_run_lock.TrySetRunning()) { 1322 Status error("Resume request failed - process still running."); 1323 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1324 return error; 1325 } 1326 1327 ListenerSP listener_sp( 1328 Listener::MakeListener(g_resume_sync_name)); 1329 HijackProcessEvents(listener_sp); 1330 1331 Status error = PrivateResume(); 1332 if (error.Success()) { 1333 StateType state = 1334 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1335 const bool must_be_alive = 1336 false; // eStateExited is ok, so this must be false 1337 if (!StateIsStoppedState(state, must_be_alive)) 1338 error.SetErrorStringWithFormat( 1339 "process not in stopped state after synchronous resume: %s", 1340 StateAsCString(state)); 1341 } else { 1342 // Undo running state change 1343 m_public_run_lock.SetStopped(); 1344 } 1345 1346 // Undo the hijacking of process events... 1347 RestoreProcessEvents(); 1348 1349 return error; 1350 } 1351 1352 bool Process::StateChangedIsExternallyHijacked() { 1353 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1354 const char *hijacking_name = GetHijackingListenerName(); 1355 if (hijacking_name && 1356 strcmp(hijacking_name, g_resume_sync_name)) 1357 return true; 1358 } 1359 return false; 1360 } 1361 1362 bool Process::StateChangedIsHijackedForSynchronousResume() { 1363 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1364 const char *hijacking_name = GetHijackingListenerName(); 1365 if (hijacking_name && 1366 strcmp(hijacking_name, g_resume_sync_name) == 0) 1367 return true; 1368 } 1369 return false; 1370 } 1371 1372 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1373 1374 void Process::SetPrivateState(StateType new_state) { 1375 if (m_finalizing) 1376 return; 1377 1378 Log *log(lldb_private::GetLogIfAnyCategoriesSet( 1379 LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND)); 1380 bool state_changed = false; 1381 1382 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1383 1384 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1385 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1386 1387 const StateType old_state = m_private_state.GetValueNoLock(); 1388 state_changed = old_state != new_state; 1389 1390 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1391 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1392 if (old_state_is_stopped != new_state_is_stopped) { 1393 if (new_state_is_stopped) 1394 m_private_run_lock.SetStopped(); 1395 else 1396 m_private_run_lock.SetRunning(); 1397 } 1398 1399 if (state_changed) { 1400 m_private_state.SetValueNoLock(new_state); 1401 EventSP event_sp( 1402 new Event(eBroadcastBitStateChanged, 1403 new ProcessEventData(shared_from_this(), new_state))); 1404 if (StateIsStoppedState(new_state, false)) { 1405 // Note, this currently assumes that all threads in the list stop when 1406 // the process stops. In the future we will want to support a debugging 1407 // model where some threads continue to run while others are stopped. 1408 // When that happens we will either need a way for the thread list to 1409 // identify which threads are stopping or create a special thread list 1410 // containing only threads which actually stopped. 1411 // 1412 // The process plugin is responsible for managing the actual behavior of 1413 // the threads and should have stopped any threads that are going to stop 1414 // before we get here. 1415 m_thread_list.DidStop(); 1416 1417 m_mod_id.BumpStopID(); 1418 if (!m_mod_id.IsLastResumeForUserExpression()) 1419 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1420 m_memory_cache.Clear(); 1421 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1422 StateAsCString(new_state), m_mod_id.GetStopID()); 1423 } 1424 1425 m_private_state_broadcaster.BroadcastEvent(event_sp); 1426 } else { 1427 LLDB_LOGF(log, 1428 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1429 StateAsCString(new_state)); 1430 } 1431 } 1432 1433 void Process::SetRunningUserExpression(bool on) { 1434 m_mod_id.SetRunningUserExpression(on); 1435 } 1436 1437 void Process::SetRunningUtilityFunction(bool on) { 1438 m_mod_id.SetRunningUtilityFunction(on); 1439 } 1440 1441 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1442 1443 const lldb::ABISP &Process::GetABI() { 1444 if (!m_abi_sp) 1445 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1446 return m_abi_sp; 1447 } 1448 1449 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1450 std::vector<LanguageRuntime *> language_runtimes; 1451 1452 if (m_finalizing) 1453 return language_runtimes; 1454 1455 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1456 // Before we pass off a copy of the language runtimes, we must make sure that 1457 // our collection is properly populated. It's possible that some of the 1458 // language runtimes were not loaded yet, either because nobody requested it 1459 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1460 // hadn't been loaded). 1461 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1462 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1463 language_runtimes.emplace_back(runtime); 1464 } 1465 1466 return language_runtimes; 1467 } 1468 1469 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1470 if (m_finalizing) 1471 return nullptr; 1472 1473 LanguageRuntime *runtime = nullptr; 1474 1475 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1476 LanguageRuntimeCollection::iterator pos; 1477 pos = m_language_runtimes.find(language); 1478 if (pos == m_language_runtimes.end() || !pos->second) { 1479 lldb::LanguageRuntimeSP runtime_sp( 1480 LanguageRuntime::FindPlugin(this, language)); 1481 1482 m_language_runtimes[language] = runtime_sp; 1483 runtime = runtime_sp.get(); 1484 } else 1485 runtime = pos->second.get(); 1486 1487 if (runtime) 1488 // It's possible that a language runtime can support multiple LanguageTypes, 1489 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1490 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1491 // primary language type and make sure that our runtime supports it. 1492 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1493 1494 return runtime; 1495 } 1496 1497 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1498 if (m_finalizing) 1499 return false; 1500 1501 if (in_value.IsDynamic()) 1502 return false; 1503 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1504 1505 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1506 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1507 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1508 } 1509 1510 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1511 if (runtime->CouldHaveDynamicValue(in_value)) 1512 return true; 1513 } 1514 1515 return false; 1516 } 1517 1518 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1519 m_dynamic_checkers_up.reset(dynamic_checkers); 1520 } 1521 1522 BreakpointSiteList &Process::GetBreakpointSiteList() { 1523 return m_breakpoint_site_list; 1524 } 1525 1526 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1527 return m_breakpoint_site_list; 1528 } 1529 1530 void Process::DisableAllBreakpointSites() { 1531 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1532 // bp_site->SetEnabled(true); 1533 DisableBreakpointSite(bp_site); 1534 }); 1535 } 1536 1537 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1538 Status error(DisableBreakpointSiteByID(break_id)); 1539 1540 if (error.Success()) 1541 m_breakpoint_site_list.Remove(break_id); 1542 1543 return error; 1544 } 1545 1546 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1547 Status error; 1548 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1549 if (bp_site_sp) { 1550 if (bp_site_sp->IsEnabled()) 1551 error = DisableBreakpointSite(bp_site_sp.get()); 1552 } else { 1553 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1554 break_id); 1555 } 1556 1557 return error; 1558 } 1559 1560 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1561 Status error; 1562 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1563 if (bp_site_sp) { 1564 if (!bp_site_sp->IsEnabled()) 1565 error = EnableBreakpointSite(bp_site_sp.get()); 1566 } else { 1567 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1568 break_id); 1569 } 1570 return error; 1571 } 1572 1573 lldb::break_id_t 1574 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1575 bool use_hardware) { 1576 addr_t load_addr = LLDB_INVALID_ADDRESS; 1577 1578 bool show_error = true; 1579 switch (GetState()) { 1580 case eStateInvalid: 1581 case eStateUnloaded: 1582 case eStateConnected: 1583 case eStateAttaching: 1584 case eStateLaunching: 1585 case eStateDetached: 1586 case eStateExited: 1587 show_error = false; 1588 break; 1589 1590 case eStateStopped: 1591 case eStateRunning: 1592 case eStateStepping: 1593 case eStateCrashed: 1594 case eStateSuspended: 1595 show_error = IsAlive(); 1596 break; 1597 } 1598 1599 // Reset the IsIndirect flag here, in case the location changes from pointing 1600 // to a indirect symbol to a regular symbol. 1601 owner->SetIsIndirect(false); 1602 1603 if (owner->ShouldResolveIndirectFunctions()) { 1604 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1605 if (symbol && symbol->IsIndirect()) { 1606 Status error; 1607 Address symbol_address = symbol->GetAddress(); 1608 load_addr = ResolveIndirectFunction(&symbol_address, error); 1609 if (!error.Success() && show_error) { 1610 GetTarget().GetDebugger().GetErrorStream().Printf( 1611 "warning: failed to resolve indirect function at 0x%" PRIx64 1612 " for breakpoint %i.%i: %s\n", 1613 symbol->GetLoadAddress(&GetTarget()), 1614 owner->GetBreakpoint().GetID(), owner->GetID(), 1615 error.AsCString() ? error.AsCString() : "unknown error"); 1616 return LLDB_INVALID_BREAK_ID; 1617 } 1618 Address resolved_address(load_addr); 1619 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1620 owner->SetIsIndirect(true); 1621 } else 1622 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1623 } else 1624 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1625 1626 if (load_addr != LLDB_INVALID_ADDRESS) { 1627 BreakpointSiteSP bp_site_sp; 1628 1629 // Look up this breakpoint site. If it exists, then add this new owner, 1630 // otherwise create a new breakpoint site and add it. 1631 1632 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1633 1634 if (bp_site_sp) { 1635 bp_site_sp->AddOwner(owner); 1636 owner->SetBreakpointSite(bp_site_sp); 1637 return bp_site_sp->GetID(); 1638 } else { 1639 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1640 load_addr, use_hardware)); 1641 if (bp_site_sp) { 1642 Status error = EnableBreakpointSite(bp_site_sp.get()); 1643 if (error.Success()) { 1644 owner->SetBreakpointSite(bp_site_sp); 1645 return m_breakpoint_site_list.Add(bp_site_sp); 1646 } else { 1647 if (show_error || use_hardware) { 1648 // Report error for setting breakpoint... 1649 GetTarget().GetDebugger().GetErrorStream().Printf( 1650 "warning: failed to set breakpoint site at 0x%" PRIx64 1651 " for breakpoint %i.%i: %s\n", 1652 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1653 error.AsCString() ? error.AsCString() : "unknown error"); 1654 } 1655 } 1656 } 1657 } 1658 } 1659 // We failed to enable the breakpoint 1660 return LLDB_INVALID_BREAK_ID; 1661 } 1662 1663 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1664 lldb::user_id_t owner_loc_id, 1665 BreakpointSiteSP &bp_site_sp) { 1666 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1667 if (num_owners == 0) { 1668 // Don't try to disable the site if we don't have a live process anymore. 1669 if (IsAlive()) 1670 DisableBreakpointSite(bp_site_sp.get()); 1671 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1672 } 1673 } 1674 1675 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1676 uint8_t *buf) const { 1677 size_t bytes_removed = 0; 1678 BreakpointSiteList bp_sites_in_range; 1679 1680 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1681 bp_sites_in_range)) { 1682 bp_sites_in_range.ForEach([bp_addr, size, 1683 buf](BreakpointSite *bp_site) -> void { 1684 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1685 addr_t intersect_addr; 1686 size_t intersect_size; 1687 size_t opcode_offset; 1688 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1689 &intersect_size, &opcode_offset)) { 1690 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1691 assert(bp_addr < intersect_addr + intersect_size && 1692 intersect_addr + intersect_size <= bp_addr + size); 1693 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1694 size_t buf_offset = intersect_addr - bp_addr; 1695 ::memcpy(buf + buf_offset, 1696 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1697 intersect_size); 1698 } 1699 } 1700 }); 1701 } 1702 return bytes_removed; 1703 } 1704 1705 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1706 PlatformSP platform_sp(GetTarget().GetPlatform()); 1707 if (platform_sp) 1708 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1709 return 0; 1710 } 1711 1712 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1713 Status error; 1714 assert(bp_site != nullptr); 1715 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1716 const addr_t bp_addr = bp_site->GetLoadAddress(); 1717 LLDB_LOGF( 1718 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1719 bp_site->GetID(), (uint64_t)bp_addr); 1720 if (bp_site->IsEnabled()) { 1721 LLDB_LOGF( 1722 log, 1723 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1724 " -- already enabled", 1725 bp_site->GetID(), (uint64_t)bp_addr); 1726 return error; 1727 } 1728 1729 if (bp_addr == LLDB_INVALID_ADDRESS) { 1730 error.SetErrorString("BreakpointSite contains an invalid load address."); 1731 return error; 1732 } 1733 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1734 // trap for the breakpoint site 1735 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1736 1737 if (bp_opcode_size == 0) { 1738 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1739 "returned zero, unable to get breakpoint " 1740 "trap for address 0x%" PRIx64, 1741 bp_addr); 1742 } else { 1743 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1744 1745 if (bp_opcode_bytes == nullptr) { 1746 error.SetErrorString( 1747 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1748 return error; 1749 } 1750 1751 // Save the original opcode by reading it 1752 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1753 error) == bp_opcode_size) { 1754 // Write a software breakpoint in place of the original opcode 1755 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1756 bp_opcode_size) { 1757 uint8_t verify_bp_opcode_bytes[64]; 1758 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1759 error) == bp_opcode_size) { 1760 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1761 bp_opcode_size) == 0) { 1762 bp_site->SetEnabled(true); 1763 bp_site->SetType(BreakpointSite::eSoftware); 1764 LLDB_LOGF(log, 1765 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1766 "addr = 0x%" PRIx64 " -- SUCCESS", 1767 bp_site->GetID(), (uint64_t)bp_addr); 1768 } else 1769 error.SetErrorString( 1770 "failed to verify the breakpoint trap in memory."); 1771 } else 1772 error.SetErrorString( 1773 "Unable to read memory to verify breakpoint trap."); 1774 } else 1775 error.SetErrorString("Unable to write breakpoint trap to memory."); 1776 } else 1777 error.SetErrorString("Unable to read memory at breakpoint address."); 1778 } 1779 if (log && error.Fail()) 1780 LLDB_LOGF( 1781 log, 1782 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1783 " -- FAILED: %s", 1784 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1785 return error; 1786 } 1787 1788 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1789 Status error; 1790 assert(bp_site != nullptr); 1791 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1792 addr_t bp_addr = bp_site->GetLoadAddress(); 1793 lldb::user_id_t breakID = bp_site->GetID(); 1794 LLDB_LOGF(log, 1795 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1796 ") addr = 0x%" PRIx64, 1797 breakID, (uint64_t)bp_addr); 1798 1799 if (bp_site->IsHardware()) { 1800 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1801 } else if (bp_site->IsEnabled()) { 1802 const size_t break_op_size = bp_site->GetByteSize(); 1803 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1804 if (break_op_size > 0) { 1805 // Clear a software breakpoint instruction 1806 uint8_t curr_break_op[8]; 1807 assert(break_op_size <= sizeof(curr_break_op)); 1808 bool break_op_found = false; 1809 1810 // Read the breakpoint opcode 1811 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1812 break_op_size) { 1813 bool verify = false; 1814 // Make sure the breakpoint opcode exists at this address 1815 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1816 break_op_found = true; 1817 // We found a valid breakpoint opcode at this address, now restore 1818 // the saved opcode. 1819 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1820 break_op_size, error) == break_op_size) { 1821 verify = true; 1822 } else 1823 error.SetErrorString( 1824 "Memory write failed when restoring original opcode."); 1825 } else { 1826 error.SetErrorString( 1827 "Original breakpoint trap is no longer in memory."); 1828 // Set verify to true and so we can check if the original opcode has 1829 // already been restored 1830 verify = true; 1831 } 1832 1833 if (verify) { 1834 uint8_t verify_opcode[8]; 1835 assert(break_op_size < sizeof(verify_opcode)); 1836 // Verify that our original opcode made it back to the inferior 1837 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1838 break_op_size) { 1839 // compare the memory we just read with the original opcode 1840 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1841 break_op_size) == 0) { 1842 // SUCCESS 1843 bp_site->SetEnabled(false); 1844 LLDB_LOGF(log, 1845 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1846 "addr = 0x%" PRIx64 " -- SUCCESS", 1847 bp_site->GetID(), (uint64_t)bp_addr); 1848 return error; 1849 } else { 1850 if (break_op_found) 1851 error.SetErrorString("Failed to restore original opcode."); 1852 } 1853 } else 1854 error.SetErrorString("Failed to read memory to verify that " 1855 "breakpoint trap was restored."); 1856 } 1857 } else 1858 error.SetErrorString( 1859 "Unable to read memory that should contain the breakpoint trap."); 1860 } 1861 } else { 1862 LLDB_LOGF( 1863 log, 1864 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1865 " -- already disabled", 1866 bp_site->GetID(), (uint64_t)bp_addr); 1867 return error; 1868 } 1869 1870 LLDB_LOGF( 1871 log, 1872 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1873 " -- FAILED: %s", 1874 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1875 return error; 1876 } 1877 1878 // Uncomment to verify memory caching works after making changes to caching 1879 // code 1880 //#define VERIFY_MEMORY_READS 1881 1882 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1883 error.Clear(); 1884 if (!GetDisableMemoryCache()) { 1885 #if defined(VERIFY_MEMORY_READS) 1886 // Memory caching is enabled, with debug verification 1887 1888 if (buf && size) { 1889 // Uncomment the line below to make sure memory caching is working. 1890 // I ran this through the test suite and got no assertions, so I am 1891 // pretty confident this is working well. If any changes are made to 1892 // memory caching, uncomment the line below and test your changes! 1893 1894 // Verify all memory reads by using the cache first, then redundantly 1895 // reading the same memory from the inferior and comparing to make sure 1896 // everything is exactly the same. 1897 std::string verify_buf(size, '\0'); 1898 assert(verify_buf.size() == size); 1899 const size_t cache_bytes_read = 1900 m_memory_cache.Read(this, addr, buf, size, error); 1901 Status verify_error; 1902 const size_t verify_bytes_read = 1903 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1904 verify_buf.size(), verify_error); 1905 assert(cache_bytes_read == verify_bytes_read); 1906 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1907 assert(verify_error.Success() == error.Success()); 1908 return cache_bytes_read; 1909 } 1910 return 0; 1911 #else // !defined(VERIFY_MEMORY_READS) 1912 // Memory caching is enabled, without debug verification 1913 1914 return m_memory_cache.Read(addr, buf, size, error); 1915 #endif // defined (VERIFY_MEMORY_READS) 1916 } else { 1917 // Memory caching is disabled 1918 1919 return ReadMemoryFromInferior(addr, buf, size, error); 1920 } 1921 } 1922 1923 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1924 Status &error) { 1925 char buf[256]; 1926 out_str.clear(); 1927 addr_t curr_addr = addr; 1928 while (true) { 1929 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1930 if (length == 0) 1931 break; 1932 out_str.append(buf, length); 1933 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1934 // to read some more characters 1935 if (length == sizeof(buf) - 1) 1936 curr_addr += length; 1937 else 1938 break; 1939 } 1940 return out_str.size(); 1941 } 1942 1943 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1944 Status &error, size_t type_width) { 1945 size_t total_bytes_read = 0; 1946 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1947 // Ensure a null terminator independent of the number of bytes that is 1948 // read. 1949 memset(dst, 0, max_bytes); 1950 size_t bytes_left = max_bytes - type_width; 1951 1952 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1953 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1954 "string with more than 4 bytes " 1955 "per character!"); 1956 1957 addr_t curr_addr = addr; 1958 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1959 char *curr_dst = dst; 1960 1961 error.Clear(); 1962 while (bytes_left > 0 && error.Success()) { 1963 addr_t cache_line_bytes_left = 1964 cache_line_size - (curr_addr % cache_line_size); 1965 addr_t bytes_to_read = 1966 std::min<addr_t>(bytes_left, cache_line_bytes_left); 1967 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 1968 1969 if (bytes_read == 0) 1970 break; 1971 1972 // Search for a null terminator of correct size and alignment in 1973 // bytes_read 1974 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 1975 for (size_t i = aligned_start; 1976 i + type_width <= total_bytes_read + bytes_read; i += type_width) 1977 if (::memcmp(&dst[i], terminator, type_width) == 0) { 1978 error.Clear(); 1979 return i; 1980 } 1981 1982 total_bytes_read += bytes_read; 1983 curr_dst += bytes_read; 1984 curr_addr += bytes_read; 1985 bytes_left -= bytes_read; 1986 } 1987 } else { 1988 if (max_bytes) 1989 error.SetErrorString("invalid arguments"); 1990 } 1991 return total_bytes_read; 1992 } 1993 1994 // Deprecated in favor of ReadStringFromMemory which has wchar support and 1995 // correct code to find null terminators. 1996 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 1997 size_t dst_max_len, 1998 Status &result_error) { 1999 size_t total_cstr_len = 0; 2000 if (dst && dst_max_len) { 2001 result_error.Clear(); 2002 // NULL out everything just to be safe 2003 memset(dst, 0, dst_max_len); 2004 Status error; 2005 addr_t curr_addr = addr; 2006 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2007 size_t bytes_left = dst_max_len - 1; 2008 char *curr_dst = dst; 2009 2010 while (bytes_left > 0) { 2011 addr_t cache_line_bytes_left = 2012 cache_line_size - (curr_addr % cache_line_size); 2013 addr_t bytes_to_read = 2014 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2015 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2016 2017 if (bytes_read == 0) { 2018 result_error = error; 2019 dst[total_cstr_len] = '\0'; 2020 break; 2021 } 2022 const size_t len = strlen(curr_dst); 2023 2024 total_cstr_len += len; 2025 2026 if (len < bytes_to_read) 2027 break; 2028 2029 curr_dst += bytes_read; 2030 curr_addr += bytes_read; 2031 bytes_left -= bytes_read; 2032 } 2033 } else { 2034 if (dst == nullptr) 2035 result_error.SetErrorString("invalid arguments"); 2036 else 2037 result_error.Clear(); 2038 } 2039 return total_cstr_len; 2040 } 2041 2042 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2043 Status &error) { 2044 if (buf == nullptr || size == 0) 2045 return 0; 2046 2047 size_t bytes_read = 0; 2048 uint8_t *bytes = (uint8_t *)buf; 2049 2050 while (bytes_read < size) { 2051 const size_t curr_size = size - bytes_read; 2052 const size_t curr_bytes_read = 2053 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2054 bytes_read += curr_bytes_read; 2055 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2056 break; 2057 } 2058 2059 // Replace any software breakpoint opcodes that fall into this range back 2060 // into "buf" before we return 2061 if (bytes_read > 0) 2062 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2063 return bytes_read; 2064 } 2065 2066 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2067 size_t integer_byte_size, 2068 uint64_t fail_value, 2069 Status &error) { 2070 Scalar scalar; 2071 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2072 error)) 2073 return scalar.ULongLong(fail_value); 2074 return fail_value; 2075 } 2076 2077 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2078 size_t integer_byte_size, 2079 int64_t fail_value, 2080 Status &error) { 2081 Scalar scalar; 2082 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2083 error)) 2084 return scalar.SLongLong(fail_value); 2085 return fail_value; 2086 } 2087 2088 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2089 Scalar scalar; 2090 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2091 error)) 2092 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2093 return LLDB_INVALID_ADDRESS; 2094 } 2095 2096 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2097 Status &error) { 2098 Scalar scalar; 2099 const uint32_t addr_byte_size = GetAddressByteSize(); 2100 if (addr_byte_size <= 4) 2101 scalar = (uint32_t)ptr_value; 2102 else 2103 scalar = ptr_value; 2104 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2105 addr_byte_size; 2106 } 2107 2108 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2109 Status &error) { 2110 size_t bytes_written = 0; 2111 const uint8_t *bytes = (const uint8_t *)buf; 2112 2113 while (bytes_written < size) { 2114 const size_t curr_size = size - bytes_written; 2115 const size_t curr_bytes_written = DoWriteMemory( 2116 addr + bytes_written, bytes + bytes_written, curr_size, error); 2117 bytes_written += curr_bytes_written; 2118 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2119 break; 2120 } 2121 return bytes_written; 2122 } 2123 2124 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2125 Status &error) { 2126 #if defined(ENABLE_MEMORY_CACHING) 2127 m_memory_cache.Flush(addr, size); 2128 #endif 2129 2130 if (buf == nullptr || size == 0) 2131 return 0; 2132 2133 m_mod_id.BumpMemoryID(); 2134 2135 // We need to write any data that would go where any current software traps 2136 // (enabled software breakpoints) any software traps (breakpoints) that we 2137 // may have placed in our tasks memory. 2138 2139 BreakpointSiteList bp_sites_in_range; 2140 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2141 return WriteMemoryPrivate(addr, buf, size, error); 2142 2143 // No breakpoint sites overlap 2144 if (bp_sites_in_range.IsEmpty()) 2145 return WriteMemoryPrivate(addr, buf, size, error); 2146 2147 const uint8_t *ubuf = (const uint8_t *)buf; 2148 uint64_t bytes_written = 0; 2149 2150 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2151 &error](BreakpointSite *bp) -> void { 2152 if (error.Fail()) 2153 return; 2154 2155 if (bp->GetType() != BreakpointSite::eSoftware) 2156 return; 2157 2158 addr_t intersect_addr; 2159 size_t intersect_size; 2160 size_t opcode_offset; 2161 const bool intersects = bp->IntersectsRange( 2162 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2163 UNUSED_IF_ASSERT_DISABLED(intersects); 2164 assert(intersects); 2165 assert(addr <= intersect_addr && intersect_addr < addr + size); 2166 assert(addr < intersect_addr + intersect_size && 2167 intersect_addr + intersect_size <= addr + size); 2168 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2169 2170 // Check for bytes before this breakpoint 2171 const addr_t curr_addr = addr + bytes_written; 2172 if (intersect_addr > curr_addr) { 2173 // There are some bytes before this breakpoint that we need to just 2174 // write to memory 2175 size_t curr_size = intersect_addr - curr_addr; 2176 size_t curr_bytes_written = 2177 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2178 bytes_written += curr_bytes_written; 2179 if (curr_bytes_written != curr_size) { 2180 // We weren't able to write all of the requested bytes, we are 2181 // done looping and will return the number of bytes that we have 2182 // written so far. 2183 if (error.Success()) 2184 error.SetErrorToGenericError(); 2185 } 2186 } 2187 // Now write any bytes that would cover up any software breakpoints 2188 // directly into the breakpoint opcode buffer 2189 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2190 intersect_size); 2191 bytes_written += intersect_size; 2192 }); 2193 2194 // Write any remaining bytes after the last breakpoint if we have any left 2195 if (bytes_written < size) 2196 bytes_written += 2197 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2198 size - bytes_written, error); 2199 2200 return bytes_written; 2201 } 2202 2203 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2204 size_t byte_size, Status &error) { 2205 if (byte_size == UINT32_MAX) 2206 byte_size = scalar.GetByteSize(); 2207 if (byte_size > 0) { 2208 uint8_t buf[32]; 2209 const size_t mem_size = 2210 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2211 if (mem_size > 0) 2212 return WriteMemory(addr, buf, mem_size, error); 2213 else 2214 error.SetErrorString("failed to get scalar as memory data"); 2215 } else { 2216 error.SetErrorString("invalid scalar value"); 2217 } 2218 return 0; 2219 } 2220 2221 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2222 bool is_signed, Scalar &scalar, 2223 Status &error) { 2224 uint64_t uval = 0; 2225 if (byte_size == 0) { 2226 error.SetErrorString("byte size is zero"); 2227 } else if (byte_size & (byte_size - 1)) { 2228 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2229 byte_size); 2230 } else if (byte_size <= sizeof(uval)) { 2231 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2232 if (bytes_read == byte_size) { 2233 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2234 GetAddressByteSize()); 2235 lldb::offset_t offset = 0; 2236 if (byte_size <= 4) 2237 scalar = data.GetMaxU32(&offset, byte_size); 2238 else 2239 scalar = data.GetMaxU64(&offset, byte_size); 2240 if (is_signed) 2241 scalar.SignExtend(byte_size * 8); 2242 return bytes_read; 2243 } 2244 } else { 2245 error.SetErrorStringWithFormat( 2246 "byte size of %u is too large for integer scalar type", byte_size); 2247 } 2248 return 0; 2249 } 2250 2251 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2252 Status error; 2253 for (const auto &Entry : entries) { 2254 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2255 error); 2256 if (!error.Success()) 2257 break; 2258 } 2259 return error; 2260 } 2261 2262 #define USE_ALLOCATE_MEMORY_CACHE 1 2263 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2264 Status &error) { 2265 if (GetPrivateState() != eStateStopped) { 2266 error.SetErrorToGenericError(); 2267 return LLDB_INVALID_ADDRESS; 2268 } 2269 2270 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2271 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2272 #else 2273 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2274 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2275 LLDB_LOGF(log, 2276 "Process::AllocateMemory(size=%" PRIu64 2277 ", permissions=%s) => 0x%16.16" PRIx64 2278 " (m_stop_id = %u m_memory_id = %u)", 2279 (uint64_t)size, GetPermissionsAsCString(permissions), 2280 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2281 m_mod_id.GetMemoryID()); 2282 return allocated_addr; 2283 #endif 2284 } 2285 2286 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2287 Status &error) { 2288 addr_t return_addr = AllocateMemory(size, permissions, error); 2289 if (error.Success()) { 2290 std::string buffer(size, 0); 2291 WriteMemory(return_addr, buffer.c_str(), size, error); 2292 } 2293 return return_addr; 2294 } 2295 2296 bool Process::CanJIT() { 2297 if (m_can_jit == eCanJITDontKnow) { 2298 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2299 Status err; 2300 2301 uint64_t allocated_memory = AllocateMemory( 2302 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2303 err); 2304 2305 if (err.Success()) { 2306 m_can_jit = eCanJITYes; 2307 LLDB_LOGF(log, 2308 "Process::%s pid %" PRIu64 2309 " allocation test passed, CanJIT () is true", 2310 __FUNCTION__, GetID()); 2311 } else { 2312 m_can_jit = eCanJITNo; 2313 LLDB_LOGF(log, 2314 "Process::%s pid %" PRIu64 2315 " allocation test failed, CanJIT () is false: %s", 2316 __FUNCTION__, GetID(), err.AsCString()); 2317 } 2318 2319 DeallocateMemory(allocated_memory); 2320 } 2321 2322 return m_can_jit == eCanJITYes; 2323 } 2324 2325 void Process::SetCanJIT(bool can_jit) { 2326 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2327 } 2328 2329 void Process::SetCanRunCode(bool can_run_code) { 2330 SetCanJIT(can_run_code); 2331 m_can_interpret_function_calls = can_run_code; 2332 } 2333 2334 Status Process::DeallocateMemory(addr_t ptr) { 2335 Status error; 2336 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2337 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2338 error.SetErrorStringWithFormat( 2339 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2340 } 2341 #else 2342 error = DoDeallocateMemory(ptr); 2343 2344 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2345 LLDB_LOGF(log, 2346 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2347 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2348 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2349 m_mod_id.GetMemoryID()); 2350 #endif 2351 return error; 2352 } 2353 2354 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2355 lldb::addr_t header_addr, 2356 size_t size_to_read) { 2357 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2358 if (log) { 2359 LLDB_LOGF(log, 2360 "Process::ReadModuleFromMemory reading %s binary from memory", 2361 file_spec.GetPath().c_str()); 2362 } 2363 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2364 if (module_sp) { 2365 Status error; 2366 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2367 shared_from_this(), header_addr, error, size_to_read); 2368 if (objfile) 2369 return module_sp; 2370 } 2371 return ModuleSP(); 2372 } 2373 2374 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2375 uint32_t &permissions) { 2376 MemoryRegionInfo range_info; 2377 permissions = 0; 2378 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2379 if (!error.Success()) 2380 return false; 2381 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2382 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2383 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2384 return false; 2385 } 2386 2387 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2388 permissions |= lldb::ePermissionsReadable; 2389 2390 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2391 permissions |= lldb::ePermissionsWritable; 2392 2393 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2394 permissions |= lldb::ePermissionsExecutable; 2395 2396 return true; 2397 } 2398 2399 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2400 Status error; 2401 error.SetErrorString("watchpoints are not supported"); 2402 return error; 2403 } 2404 2405 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2406 Status error; 2407 error.SetErrorString("watchpoints are not supported"); 2408 return error; 2409 } 2410 2411 StateType 2412 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2413 const Timeout<std::micro> &timeout) { 2414 StateType state; 2415 2416 while (true) { 2417 event_sp.reset(); 2418 state = GetStateChangedEventsPrivate(event_sp, timeout); 2419 2420 if (StateIsStoppedState(state, false)) 2421 break; 2422 2423 // If state is invalid, then we timed out 2424 if (state == eStateInvalid) 2425 break; 2426 2427 if (event_sp) 2428 HandlePrivateEvent(event_sp); 2429 } 2430 return state; 2431 } 2432 2433 void Process::LoadOperatingSystemPlugin(bool flush) { 2434 if (flush) 2435 m_thread_list.Clear(); 2436 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2437 if (flush) 2438 Flush(); 2439 } 2440 2441 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2442 Status error; 2443 m_abi_sp.reset(); 2444 m_dyld_up.reset(); 2445 m_jit_loaders_up.reset(); 2446 m_system_runtime_up.reset(); 2447 m_os_up.reset(); 2448 m_process_input_reader.reset(); 2449 2450 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2451 if (!exe_module) { 2452 error.SetErrorString("executable module does not exist"); 2453 return error; 2454 } 2455 2456 char local_exec_file_path[PATH_MAX]; 2457 char platform_exec_file_path[PATH_MAX]; 2458 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2459 sizeof(local_exec_file_path)); 2460 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2461 sizeof(platform_exec_file_path)); 2462 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2463 // Install anything that might need to be installed prior to launching. 2464 // For host systems, this will do nothing, but if we are connected to a 2465 // remote platform it will install any needed binaries 2466 error = GetTarget().Install(&launch_info); 2467 if (error.Fail()) 2468 return error; 2469 2470 if (PrivateStateThreadIsValid()) 2471 PausePrivateStateThread(); 2472 2473 error = WillLaunch(exe_module); 2474 if (error.Success()) { 2475 const bool restarted = false; 2476 SetPublicState(eStateLaunching, restarted); 2477 m_should_detach = false; 2478 2479 if (m_public_run_lock.TrySetRunning()) { 2480 // Now launch using these arguments. 2481 error = DoLaunch(exe_module, launch_info); 2482 } else { 2483 // This shouldn't happen 2484 error.SetErrorString("failed to acquire process run lock"); 2485 } 2486 2487 if (error.Fail()) { 2488 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2489 SetID(LLDB_INVALID_PROCESS_ID); 2490 const char *error_string = error.AsCString(); 2491 if (error_string == nullptr) 2492 error_string = "launch failed"; 2493 SetExitStatus(-1, error_string); 2494 } 2495 } else { 2496 EventSP event_sp; 2497 2498 // Now wait for the process to launch and return control to us, and then 2499 // call DidLaunch: 2500 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2501 2502 if (state == eStateInvalid || !event_sp) { 2503 // We were able to launch the process, but we failed to catch the 2504 // initial stop. 2505 error.SetErrorString("failed to catch stop after launch"); 2506 SetExitStatus(0, "failed to catch stop after launch"); 2507 Destroy(false); 2508 } else if (state == eStateStopped || state == eStateCrashed) { 2509 DidLaunch(); 2510 2511 DynamicLoader *dyld = GetDynamicLoader(); 2512 if (dyld) 2513 dyld->DidLaunch(); 2514 2515 GetJITLoaders().DidLaunch(); 2516 2517 SystemRuntime *system_runtime = GetSystemRuntime(); 2518 if (system_runtime) 2519 system_runtime->DidLaunch(); 2520 2521 if (!m_os_up) 2522 LoadOperatingSystemPlugin(false); 2523 2524 // We successfully launched the process and stopped, now it the 2525 // right time to set up signal filters before resuming. 2526 UpdateAutomaticSignalFiltering(); 2527 2528 // Note, the stop event was consumed above, but not handled. This 2529 // was done to give DidLaunch a chance to run. The target is either 2530 // stopped or crashed. Directly set the state. This is done to 2531 // prevent a stop message with a bunch of spurious output on thread 2532 // status, as well as not pop a ProcessIOHandler. 2533 SetPublicState(state, false); 2534 2535 if (PrivateStateThreadIsValid()) 2536 ResumePrivateStateThread(); 2537 else 2538 StartPrivateStateThread(); 2539 2540 // Target was stopped at entry as was intended. Need to notify the 2541 // listeners about it. 2542 if (state == eStateStopped && 2543 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2544 HandlePrivateEvent(event_sp); 2545 } else if (state == eStateExited) { 2546 // We exited while trying to launch somehow. Don't call DidLaunch 2547 // as that's not likely to work, and return an invalid pid. 2548 HandlePrivateEvent(event_sp); 2549 } 2550 } 2551 } 2552 } else { 2553 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2554 local_exec_file_path); 2555 } 2556 2557 return error; 2558 } 2559 2560 Status Process::LoadCore() { 2561 Status error = DoLoadCore(); 2562 if (error.Success()) { 2563 ListenerSP listener_sp( 2564 Listener::MakeListener("lldb.process.load_core_listener")); 2565 HijackProcessEvents(listener_sp); 2566 2567 if (PrivateStateThreadIsValid()) 2568 ResumePrivateStateThread(); 2569 else 2570 StartPrivateStateThread(); 2571 2572 DynamicLoader *dyld = GetDynamicLoader(); 2573 if (dyld) 2574 dyld->DidAttach(); 2575 2576 GetJITLoaders().DidAttach(); 2577 2578 SystemRuntime *system_runtime = GetSystemRuntime(); 2579 if (system_runtime) 2580 system_runtime->DidAttach(); 2581 2582 if (!m_os_up) 2583 LoadOperatingSystemPlugin(false); 2584 2585 // We successfully loaded a core file, now pretend we stopped so we can 2586 // show all of the threads in the core file and explore the crashed state. 2587 SetPrivateState(eStateStopped); 2588 2589 // Wait for a stopped event since we just posted one above... 2590 lldb::EventSP event_sp; 2591 StateType state = 2592 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2593 2594 if (!StateIsStoppedState(state, false)) { 2595 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2596 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2597 StateAsCString(state)); 2598 error.SetErrorString( 2599 "Did not get stopped event after loading the core file."); 2600 } 2601 RestoreProcessEvents(); 2602 } 2603 return error; 2604 } 2605 2606 DynamicLoader *Process::GetDynamicLoader() { 2607 if (!m_dyld_up) 2608 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2609 return m_dyld_up.get(); 2610 } 2611 2612 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2613 2614 JITLoaderList &Process::GetJITLoaders() { 2615 if (!m_jit_loaders_up) { 2616 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2617 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2618 } 2619 return *m_jit_loaders_up; 2620 } 2621 2622 SystemRuntime *Process::GetSystemRuntime() { 2623 if (!m_system_runtime_up) 2624 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2625 return m_system_runtime_up.get(); 2626 } 2627 2628 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2629 uint32_t exec_count) 2630 : NextEventAction(process), m_exec_count(exec_count) { 2631 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2632 LLDB_LOGF( 2633 log, 2634 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2635 __FUNCTION__, static_cast<void *>(process), exec_count); 2636 } 2637 2638 Process::NextEventAction::EventActionResult 2639 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2640 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2641 2642 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2643 LLDB_LOGF(log, 2644 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2645 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2646 2647 switch (state) { 2648 case eStateAttaching: 2649 return eEventActionSuccess; 2650 2651 case eStateRunning: 2652 case eStateConnected: 2653 return eEventActionRetry; 2654 2655 case eStateStopped: 2656 case eStateCrashed: 2657 // During attach, prior to sending the eStateStopped event, 2658 // lldb_private::Process subclasses must set the new process ID. 2659 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2660 // We don't want these events to be reported, so go set the 2661 // ShouldReportStop here: 2662 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2663 2664 if (m_exec_count > 0) { 2665 --m_exec_count; 2666 2667 LLDB_LOGF(log, 2668 "Process::AttachCompletionHandler::%s state %s: reduced " 2669 "remaining exec count to %" PRIu32 ", requesting resume", 2670 __FUNCTION__, StateAsCString(state), m_exec_count); 2671 2672 RequestResume(); 2673 return eEventActionRetry; 2674 } else { 2675 LLDB_LOGF(log, 2676 "Process::AttachCompletionHandler::%s state %s: no more " 2677 "execs expected to start, continuing with attach", 2678 __FUNCTION__, StateAsCString(state)); 2679 2680 m_process->CompleteAttach(); 2681 return eEventActionSuccess; 2682 } 2683 break; 2684 2685 default: 2686 case eStateExited: 2687 case eStateInvalid: 2688 break; 2689 } 2690 2691 m_exit_string.assign("No valid Process"); 2692 return eEventActionExit; 2693 } 2694 2695 Process::NextEventAction::EventActionResult 2696 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2697 return eEventActionSuccess; 2698 } 2699 2700 const char *Process::AttachCompletionHandler::GetExitString() { 2701 return m_exit_string.c_str(); 2702 } 2703 2704 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2705 if (m_listener_sp) 2706 return m_listener_sp; 2707 else 2708 return debugger.GetListener(); 2709 } 2710 2711 Status Process::Attach(ProcessAttachInfo &attach_info) { 2712 m_abi_sp.reset(); 2713 m_process_input_reader.reset(); 2714 m_dyld_up.reset(); 2715 m_jit_loaders_up.reset(); 2716 m_system_runtime_up.reset(); 2717 m_os_up.reset(); 2718 2719 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2720 Status error; 2721 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2722 char process_name[PATH_MAX]; 2723 2724 if (attach_info.GetExecutableFile().GetPath(process_name, 2725 sizeof(process_name))) { 2726 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2727 2728 if (wait_for_launch) { 2729 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2730 if (error.Success()) { 2731 if (m_public_run_lock.TrySetRunning()) { 2732 m_should_detach = true; 2733 const bool restarted = false; 2734 SetPublicState(eStateAttaching, restarted); 2735 // Now attach using these arguments. 2736 error = DoAttachToProcessWithName(process_name, attach_info); 2737 } else { 2738 // This shouldn't happen 2739 error.SetErrorString("failed to acquire process run lock"); 2740 } 2741 2742 if (error.Fail()) { 2743 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2744 SetID(LLDB_INVALID_PROCESS_ID); 2745 if (error.AsCString() == nullptr) 2746 error.SetErrorString("attach failed"); 2747 2748 SetExitStatus(-1, error.AsCString()); 2749 } 2750 } else { 2751 SetNextEventAction(new Process::AttachCompletionHandler( 2752 this, attach_info.GetResumeCount())); 2753 StartPrivateStateThread(); 2754 } 2755 return error; 2756 } 2757 } else { 2758 ProcessInstanceInfoList process_infos; 2759 PlatformSP platform_sp(GetTarget().GetPlatform()); 2760 2761 if (platform_sp) { 2762 ProcessInstanceInfoMatch match_info; 2763 match_info.GetProcessInfo() = attach_info; 2764 match_info.SetNameMatchType(NameMatch::Equals); 2765 platform_sp->FindProcesses(match_info, process_infos); 2766 const uint32_t num_matches = process_infos.size(); 2767 if (num_matches == 1) { 2768 attach_pid = process_infos[0].GetProcessID(); 2769 // Fall through and attach using the above process ID 2770 } else { 2771 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2772 process_name, sizeof(process_name)); 2773 if (num_matches > 1) { 2774 StreamString s; 2775 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2776 for (size_t i = 0; i < num_matches; i++) { 2777 process_infos[i].DumpAsTableRow( 2778 s, platform_sp->GetUserIDResolver(), true, false); 2779 } 2780 error.SetErrorStringWithFormat( 2781 "more than one process named %s:\n%s", process_name, 2782 s.GetData()); 2783 } else 2784 error.SetErrorStringWithFormat( 2785 "could not find a process named %s", process_name); 2786 } 2787 } else { 2788 error.SetErrorString( 2789 "invalid platform, can't find processes by name"); 2790 return error; 2791 } 2792 } 2793 } else { 2794 error.SetErrorString("invalid process name"); 2795 } 2796 } 2797 2798 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2799 error = WillAttachToProcessWithID(attach_pid); 2800 if (error.Success()) { 2801 2802 if (m_public_run_lock.TrySetRunning()) { 2803 // Now attach using these arguments. 2804 m_should_detach = true; 2805 const bool restarted = false; 2806 SetPublicState(eStateAttaching, restarted); 2807 error = DoAttachToProcessWithID(attach_pid, attach_info); 2808 } else { 2809 // This shouldn't happen 2810 error.SetErrorString("failed to acquire process run lock"); 2811 } 2812 2813 if (error.Success()) { 2814 SetNextEventAction(new Process::AttachCompletionHandler( 2815 this, attach_info.GetResumeCount())); 2816 StartPrivateStateThread(); 2817 } else { 2818 if (GetID() != LLDB_INVALID_PROCESS_ID) 2819 SetID(LLDB_INVALID_PROCESS_ID); 2820 2821 const char *error_string = error.AsCString(); 2822 if (error_string == nullptr) 2823 error_string = "attach failed"; 2824 2825 SetExitStatus(-1, error_string); 2826 } 2827 } 2828 } 2829 return error; 2830 } 2831 2832 void Process::CompleteAttach() { 2833 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2834 LIBLLDB_LOG_TARGET)); 2835 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2836 2837 // Let the process subclass figure out at much as it can about the process 2838 // before we go looking for a dynamic loader plug-in. 2839 ArchSpec process_arch; 2840 DidAttach(process_arch); 2841 2842 if (process_arch.IsValid()) { 2843 GetTarget().SetArchitecture(process_arch); 2844 if (log) { 2845 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2846 LLDB_LOGF(log, 2847 "Process::%s replacing process architecture with DidAttach() " 2848 "architecture: %s", 2849 __FUNCTION__, triple_str ? triple_str : "<null>"); 2850 } 2851 } 2852 2853 // We just attached. If we have a platform, ask it for the process 2854 // architecture, and if it isn't the same as the one we've already set, 2855 // switch architectures. 2856 PlatformSP platform_sp(GetTarget().GetPlatform()); 2857 assert(platform_sp); 2858 if (platform_sp) { 2859 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2860 if (target_arch.IsValid() && 2861 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2862 ArchSpec platform_arch; 2863 platform_sp = 2864 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2865 if (platform_sp) { 2866 GetTarget().SetPlatform(platform_sp); 2867 GetTarget().SetArchitecture(platform_arch); 2868 LLDB_LOGF(log, 2869 "Process::%s switching platform to %s and architecture " 2870 "to %s based on info from attach", 2871 __FUNCTION__, platform_sp->GetName().AsCString(""), 2872 platform_arch.GetTriple().getTriple().c_str()); 2873 } 2874 } else if (!process_arch.IsValid()) { 2875 ProcessInstanceInfo process_info; 2876 GetProcessInfo(process_info); 2877 const ArchSpec &process_arch = process_info.GetArchitecture(); 2878 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2879 if (process_arch.IsValid() && 2880 target_arch.IsCompatibleMatch(process_arch) && 2881 !target_arch.IsExactMatch(process_arch)) { 2882 GetTarget().SetArchitecture(process_arch); 2883 LLDB_LOGF(log, 2884 "Process::%s switching architecture to %s based on info " 2885 "the platform retrieved for pid %" PRIu64, 2886 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2887 GetID()); 2888 } 2889 } 2890 } 2891 2892 // We have completed the attach, now it is time to find the dynamic loader 2893 // plug-in 2894 DynamicLoader *dyld = GetDynamicLoader(); 2895 if (dyld) { 2896 dyld->DidAttach(); 2897 if (log) { 2898 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2899 LLDB_LOGF(log, 2900 "Process::%s after DynamicLoader::DidAttach(), target " 2901 "executable is %s (using %s plugin)", 2902 __FUNCTION__, 2903 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2904 : "<none>", 2905 dyld->GetPluginName().AsCString("<unnamed>")); 2906 } 2907 } 2908 2909 GetJITLoaders().DidAttach(); 2910 2911 SystemRuntime *system_runtime = GetSystemRuntime(); 2912 if (system_runtime) { 2913 system_runtime->DidAttach(); 2914 if (log) { 2915 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2916 LLDB_LOGF(log, 2917 "Process::%s after SystemRuntime::DidAttach(), target " 2918 "executable is %s (using %s plugin)", 2919 __FUNCTION__, 2920 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2921 : "<none>", 2922 system_runtime->GetPluginName().AsCString("<unnamed>")); 2923 } 2924 } 2925 2926 if (!m_os_up) { 2927 LoadOperatingSystemPlugin(false); 2928 if (m_os_up) { 2929 // Somebody might have gotten threads before now, but we need to force the 2930 // update after we've loaded the OperatingSystem plugin or it won't get a 2931 // chance to process the threads. 2932 m_thread_list.Clear(); 2933 UpdateThreadListIfNeeded(); 2934 } 2935 } 2936 // Figure out which one is the executable, and set that in our target: 2937 ModuleSP new_executable_module_sp; 2938 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2939 if (module_sp && module_sp->IsExecutable()) { 2940 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2941 new_executable_module_sp = module_sp; 2942 break; 2943 } 2944 } 2945 if (new_executable_module_sp) { 2946 GetTarget().SetExecutableModule(new_executable_module_sp, 2947 eLoadDependentsNo); 2948 if (log) { 2949 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2950 LLDB_LOGF( 2951 log, 2952 "Process::%s after looping through modules, target executable is %s", 2953 __FUNCTION__, 2954 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2955 : "<none>"); 2956 } 2957 } 2958 } 2959 2960 Status Process::ConnectRemote(llvm::StringRef remote_url) { 2961 m_abi_sp.reset(); 2962 m_process_input_reader.reset(); 2963 2964 // Find the process and its architecture. Make sure it matches the 2965 // architecture of the current Target, and if not adjust it. 2966 2967 Status error(DoConnectRemote(remote_url)); 2968 if (error.Success()) { 2969 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2970 EventSP event_sp; 2971 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 2972 2973 if (state == eStateStopped || state == eStateCrashed) { 2974 // If we attached and actually have a process on the other end, then 2975 // this ended up being the equivalent of an attach. 2976 CompleteAttach(); 2977 2978 // This delays passing the stopped event to listeners till 2979 // CompleteAttach gets a chance to complete... 2980 HandlePrivateEvent(event_sp); 2981 } 2982 } 2983 2984 if (PrivateStateThreadIsValid()) 2985 ResumePrivateStateThread(); 2986 else 2987 StartPrivateStateThread(); 2988 } 2989 return error; 2990 } 2991 2992 Status Process::PrivateResume() { 2993 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2994 LIBLLDB_LOG_STEP)); 2995 LLDB_LOGF(log, 2996 "Process::PrivateResume() m_stop_id = %u, public state: %s " 2997 "private state: %s", 2998 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 2999 StateAsCString(m_private_state.GetValue())); 3000 3001 // If signals handing status changed we might want to update our signal 3002 // filters before resuming. 3003 UpdateAutomaticSignalFiltering(); 3004 3005 Status error(WillResume()); 3006 // Tell the process it is about to resume before the thread list 3007 if (error.Success()) { 3008 // Now let the thread list know we are about to resume so it can let all of 3009 // our threads know that they are about to be resumed. Threads will each be 3010 // called with Thread::WillResume(StateType) where StateType contains the 3011 // state that they are supposed to have when the process is resumed 3012 // (suspended/running/stepping). Threads should also check their resume 3013 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3014 // start back up with a signal. 3015 if (m_thread_list.WillResume()) { 3016 // Last thing, do the PreResumeActions. 3017 if (!RunPreResumeActions()) { 3018 error.SetErrorString( 3019 "Process::PrivateResume PreResumeActions failed, not resuming."); 3020 } else { 3021 m_mod_id.BumpResumeID(); 3022 error = DoResume(); 3023 if (error.Success()) { 3024 DidResume(); 3025 m_thread_list.DidResume(); 3026 LLDB_LOGF(log, "Process thinks the process has resumed."); 3027 } else { 3028 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3029 return error; 3030 } 3031 } 3032 } else { 3033 // Somebody wanted to run without running (e.g. we were faking a step 3034 // from one frame of a set of inlined frames that share the same PC to 3035 // another.) So generate a continue & a stopped event, and let the world 3036 // handle them. 3037 LLDB_LOGF(log, 3038 "Process::PrivateResume() asked to simulate a start & stop."); 3039 3040 SetPrivateState(eStateRunning); 3041 SetPrivateState(eStateStopped); 3042 } 3043 } else 3044 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3045 error.AsCString("<unknown error>")); 3046 return error; 3047 } 3048 3049 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3050 if (!StateIsRunningState(m_public_state.GetValue())) 3051 return Status("Process is not running."); 3052 3053 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3054 // case it was already set and some thread plan logic calls halt on its own. 3055 m_clear_thread_plans_on_stop |= clear_thread_plans; 3056 3057 ListenerSP halt_listener_sp( 3058 Listener::MakeListener("lldb.process.halt_listener")); 3059 HijackProcessEvents(halt_listener_sp); 3060 3061 EventSP event_sp; 3062 3063 SendAsyncInterrupt(); 3064 3065 if (m_public_state.GetValue() == eStateAttaching) { 3066 // Don't hijack and eat the eStateExited as the code that was doing the 3067 // attach will be waiting for this event... 3068 RestoreProcessEvents(); 3069 SetExitStatus(SIGKILL, "Cancelled async attach."); 3070 Destroy(false); 3071 return Status(); 3072 } 3073 3074 // Wait for 10 second for the process to stop. 3075 StateType state = WaitForProcessToStop( 3076 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3077 RestoreProcessEvents(); 3078 3079 if (state == eStateInvalid || !event_sp) { 3080 // We timed out and didn't get a stop event... 3081 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3082 } 3083 3084 BroadcastEvent(event_sp); 3085 3086 return Status(); 3087 } 3088 3089 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3090 Status error; 3091 3092 // Check both the public & private states here. If we're hung evaluating an 3093 // expression, for instance, then the public state will be stopped, but we 3094 // still need to interrupt. 3095 if (m_public_state.GetValue() == eStateRunning || 3096 m_private_state.GetValue() == eStateRunning) { 3097 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3098 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3099 3100 ListenerSP listener_sp( 3101 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3102 HijackProcessEvents(listener_sp); 3103 3104 SendAsyncInterrupt(); 3105 3106 // Consume the interrupt event. 3107 StateType state = 3108 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3109 3110 RestoreProcessEvents(); 3111 3112 // If the process exited while we were waiting for it to stop, put the 3113 // exited event into the shared pointer passed in and return. Our caller 3114 // doesn't need to do anything else, since they don't have a process 3115 // anymore... 3116 3117 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3118 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3119 __FUNCTION__); 3120 return error; 3121 } else 3122 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3123 3124 if (state != eStateStopped) { 3125 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3126 StateAsCString(state)); 3127 // If we really couldn't stop the process then we should just error out 3128 // here, but if the lower levels just bobbled sending the event and we 3129 // really are stopped, then continue on. 3130 StateType private_state = m_private_state.GetValue(); 3131 if (private_state != eStateStopped) { 3132 return Status( 3133 "Attempt to stop the target in order to detach timed out. " 3134 "State = %s", 3135 StateAsCString(GetState())); 3136 } 3137 } 3138 } 3139 return error; 3140 } 3141 3142 Status Process::Detach(bool keep_stopped) { 3143 EventSP exit_event_sp; 3144 Status error; 3145 m_destroy_in_process = true; 3146 3147 error = WillDetach(); 3148 3149 if (error.Success()) { 3150 if (DetachRequiresHalt()) { 3151 error = StopForDestroyOrDetach(exit_event_sp); 3152 if (!error.Success()) { 3153 m_destroy_in_process = false; 3154 return error; 3155 } else if (exit_event_sp) { 3156 // We shouldn't need to do anything else here. There's no process left 3157 // to detach from... 3158 StopPrivateStateThread(); 3159 m_destroy_in_process = false; 3160 return error; 3161 } 3162 } 3163 3164 m_thread_list.DiscardThreadPlans(); 3165 DisableAllBreakpointSites(); 3166 3167 error = DoDetach(keep_stopped); 3168 if (error.Success()) { 3169 DidDetach(); 3170 StopPrivateStateThread(); 3171 } else { 3172 return error; 3173 } 3174 } 3175 m_destroy_in_process = false; 3176 3177 // If we exited when we were waiting for a process to stop, then forward the 3178 // event here so we don't lose the event 3179 if (exit_event_sp) { 3180 // Directly broadcast our exited event because we shut down our private 3181 // state thread above 3182 BroadcastEvent(exit_event_sp); 3183 } 3184 3185 // If we have been interrupted (to kill us) in the middle of running, we may 3186 // not end up propagating the last events through the event system, in which 3187 // case we might strand the write lock. Unlock it here so when we do to tear 3188 // down the process we don't get an error destroying the lock. 3189 3190 m_public_run_lock.SetStopped(); 3191 return error; 3192 } 3193 3194 Status Process::Destroy(bool force_kill) { 3195 // If we've already called Process::Finalize then there's nothing useful to 3196 // be done here. Finalize has actually called Destroy already. 3197 if (m_finalizing) 3198 return {}; 3199 return DestroyImpl(force_kill); 3200 } 3201 3202 Status Process::DestroyImpl(bool force_kill) { 3203 // Tell ourselves we are in the process of destroying the process, so that we 3204 // don't do any unnecessary work that might hinder the destruction. Remember 3205 // to set this back to false when we are done. That way if the attempt 3206 // failed and the process stays around for some reason it won't be in a 3207 // confused state. 3208 3209 if (force_kill) 3210 m_should_detach = false; 3211 3212 if (GetShouldDetach()) { 3213 // FIXME: This will have to be a process setting: 3214 bool keep_stopped = false; 3215 Detach(keep_stopped); 3216 } 3217 3218 m_destroy_in_process = true; 3219 3220 Status error(WillDestroy()); 3221 if (error.Success()) { 3222 EventSP exit_event_sp; 3223 if (DestroyRequiresHalt()) { 3224 error = StopForDestroyOrDetach(exit_event_sp); 3225 } 3226 3227 if (m_public_state.GetValue() != eStateRunning) { 3228 // Ditch all thread plans, and remove all our breakpoints: in case we 3229 // have to restart the target to kill it, we don't want it hitting a 3230 // breakpoint... Only do this if we've stopped, however, since if we 3231 // didn't manage to halt it above, then we're not going to have much luck 3232 // doing this now. 3233 m_thread_list.DiscardThreadPlans(); 3234 DisableAllBreakpointSites(); 3235 } 3236 3237 error = DoDestroy(); 3238 if (error.Success()) { 3239 DidDestroy(); 3240 StopPrivateStateThread(); 3241 } 3242 m_stdio_communication.StopReadThread(); 3243 m_stdio_communication.Disconnect(); 3244 m_stdin_forward = false; 3245 3246 if (m_process_input_reader) { 3247 m_process_input_reader->SetIsDone(true); 3248 m_process_input_reader->Cancel(); 3249 m_process_input_reader.reset(); 3250 } 3251 3252 // If we exited when we were waiting for a process to stop, then forward 3253 // the event here so we don't lose the event 3254 if (exit_event_sp) { 3255 // Directly broadcast our exited event because we shut down our private 3256 // state thread above 3257 BroadcastEvent(exit_event_sp); 3258 } 3259 3260 // If we have been interrupted (to kill us) in the middle of running, we 3261 // may not end up propagating the last events through the event system, in 3262 // which case we might strand the write lock. Unlock it here so when we do 3263 // to tear down the process we don't get an error destroying the lock. 3264 m_public_run_lock.SetStopped(); 3265 } 3266 3267 m_destroy_in_process = false; 3268 3269 return error; 3270 } 3271 3272 Status Process::Signal(int signal) { 3273 Status error(WillSignal()); 3274 if (error.Success()) { 3275 error = DoSignal(signal); 3276 if (error.Success()) 3277 DidSignal(); 3278 } 3279 return error; 3280 } 3281 3282 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3283 assert(signals_sp && "null signals_sp"); 3284 m_unix_signals_sp = signals_sp; 3285 } 3286 3287 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3288 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3289 return m_unix_signals_sp; 3290 } 3291 3292 lldb::ByteOrder Process::GetByteOrder() const { 3293 return GetTarget().GetArchitecture().GetByteOrder(); 3294 } 3295 3296 uint32_t Process::GetAddressByteSize() const { 3297 return GetTarget().GetArchitecture().GetAddressByteSize(); 3298 } 3299 3300 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3301 const StateType state = 3302 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3303 bool return_value = true; 3304 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3305 LIBLLDB_LOG_PROCESS)); 3306 3307 switch (state) { 3308 case eStateDetached: 3309 case eStateExited: 3310 case eStateUnloaded: 3311 m_stdio_communication.SynchronizeWithReadThread(); 3312 m_stdio_communication.StopReadThread(); 3313 m_stdio_communication.Disconnect(); 3314 m_stdin_forward = false; 3315 3316 LLVM_FALLTHROUGH; 3317 case eStateConnected: 3318 case eStateAttaching: 3319 case eStateLaunching: 3320 // These events indicate changes in the state of the debugging session, 3321 // always report them. 3322 return_value = true; 3323 break; 3324 case eStateInvalid: 3325 // We stopped for no apparent reason, don't report it. 3326 return_value = false; 3327 break; 3328 case eStateRunning: 3329 case eStateStepping: 3330 // If we've started the target running, we handle the cases where we are 3331 // already running and where there is a transition from stopped to running 3332 // differently. running -> running: Automatically suppress extra running 3333 // events stopped -> running: Report except when there is one or more no 3334 // votes 3335 // and no yes votes. 3336 SynchronouslyNotifyStateChanged(state); 3337 if (m_force_next_event_delivery) 3338 return_value = true; 3339 else { 3340 switch (m_last_broadcast_state) { 3341 case eStateRunning: 3342 case eStateStepping: 3343 // We always suppress multiple runnings with no PUBLIC stop in between. 3344 return_value = false; 3345 break; 3346 default: 3347 // TODO: make this work correctly. For now always report 3348 // run if we aren't running so we don't miss any running events. If I 3349 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3350 // and hit the breakpoints on multiple threads, then somehow during the 3351 // stepping over of all breakpoints no run gets reported. 3352 3353 // This is a transition from stop to run. 3354 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3355 case eVoteYes: 3356 case eVoteNoOpinion: 3357 return_value = true; 3358 break; 3359 case eVoteNo: 3360 return_value = false; 3361 break; 3362 } 3363 break; 3364 } 3365 } 3366 break; 3367 case eStateStopped: 3368 case eStateCrashed: 3369 case eStateSuspended: 3370 // We've stopped. First see if we're going to restart the target. If we 3371 // are going to stop, then we always broadcast the event. If we aren't 3372 // going to stop, let the thread plans decide if we're going to report this 3373 // event. If no thread has an opinion, we don't report it. 3374 3375 m_stdio_communication.SynchronizeWithReadThread(); 3376 RefreshStateAfterStop(); 3377 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3378 LLDB_LOGF(log, 3379 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3380 "interrupt, state: %s", 3381 static_cast<void *>(event_ptr), StateAsCString(state)); 3382 // Even though we know we are going to stop, we should let the threads 3383 // have a look at the stop, so they can properly set their state. 3384 m_thread_list.ShouldStop(event_ptr); 3385 return_value = true; 3386 } else { 3387 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3388 bool should_resume = false; 3389 3390 // It makes no sense to ask "ShouldStop" if we've already been 3391 // restarted... Asking the thread list is also not likely to go well, 3392 // since we are running again. So in that case just report the event. 3393 3394 if (!was_restarted) 3395 should_resume = !m_thread_list.ShouldStop(event_ptr); 3396 3397 if (was_restarted || should_resume || m_resume_requested) { 3398 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3399 LLDB_LOGF(log, 3400 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3401 "%s was_restarted: %i report_stop_vote: %d.", 3402 should_resume, StateAsCString(state), was_restarted, 3403 report_stop_vote); 3404 3405 switch (report_stop_vote) { 3406 case eVoteYes: 3407 return_value = true; 3408 break; 3409 case eVoteNoOpinion: 3410 case eVoteNo: 3411 return_value = false; 3412 break; 3413 } 3414 3415 if (!was_restarted) { 3416 LLDB_LOGF(log, 3417 "Process::ShouldBroadcastEvent (%p) Restarting process " 3418 "from state: %s", 3419 static_cast<void *>(event_ptr), StateAsCString(state)); 3420 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3421 PrivateResume(); 3422 } 3423 } else { 3424 return_value = true; 3425 SynchronouslyNotifyStateChanged(state); 3426 } 3427 } 3428 break; 3429 } 3430 3431 // Forcing the next event delivery is a one shot deal. So reset it here. 3432 m_force_next_event_delivery = false; 3433 3434 // We do some coalescing of events (for instance two consecutive running 3435 // events get coalesced.) But we only coalesce against events we actually 3436 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3437 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3438 // done, because the PublicState reflects the last event pulled off the 3439 // queue, and there may be several events stacked up on the queue unserviced. 3440 // So the PublicState may not reflect the last broadcasted event yet. 3441 // m_last_broadcast_state gets updated here. 3442 3443 if (return_value) 3444 m_last_broadcast_state = state; 3445 3446 LLDB_LOGF(log, 3447 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3448 "broadcast state: %s - %s", 3449 static_cast<void *>(event_ptr), StateAsCString(state), 3450 StateAsCString(m_last_broadcast_state), 3451 return_value ? "YES" : "NO"); 3452 return return_value; 3453 } 3454 3455 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3456 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3457 3458 bool already_running = PrivateStateThreadIsValid(); 3459 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3460 already_running ? " already running" 3461 : " starting private state thread"); 3462 3463 if (!is_secondary_thread && already_running) 3464 return true; 3465 3466 // Create a thread that watches our internal state and controls which events 3467 // make it to clients (into the DCProcess event queue). 3468 char thread_name[1024]; 3469 uint32_t max_len = llvm::get_max_thread_name_length(); 3470 if (max_len > 0 && max_len <= 30) { 3471 // On platforms with abbreviated thread name lengths, choose thread names 3472 // that fit within the limit. 3473 if (already_running) 3474 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3475 else 3476 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3477 } else { 3478 if (already_running) 3479 snprintf(thread_name, sizeof(thread_name), 3480 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3481 GetID()); 3482 else 3483 snprintf(thread_name, sizeof(thread_name), 3484 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3485 } 3486 3487 // Create the private state thread, and start it running. 3488 PrivateStateThreadArgs *args_ptr = 3489 new PrivateStateThreadArgs(this, is_secondary_thread); 3490 llvm::Expected<HostThread> private_state_thread = 3491 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3492 (void *)args_ptr, 8 * 1024 * 1024); 3493 if (!private_state_thread) { 3494 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3495 "failed to launch host thread: {}", 3496 llvm::toString(private_state_thread.takeError())); 3497 return false; 3498 } 3499 3500 assert(private_state_thread->IsJoinable()); 3501 m_private_state_thread = *private_state_thread; 3502 ResumePrivateStateThread(); 3503 return true; 3504 } 3505 3506 void Process::PausePrivateStateThread() { 3507 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3508 } 3509 3510 void Process::ResumePrivateStateThread() { 3511 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3512 } 3513 3514 void Process::StopPrivateStateThread() { 3515 if (m_private_state_thread.IsJoinable()) 3516 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3517 else { 3518 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3519 LLDB_LOGF( 3520 log, 3521 "Went to stop the private state thread, but it was already invalid."); 3522 } 3523 } 3524 3525 void Process::ControlPrivateStateThread(uint32_t signal) { 3526 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3527 3528 assert(signal == eBroadcastInternalStateControlStop || 3529 signal == eBroadcastInternalStateControlPause || 3530 signal == eBroadcastInternalStateControlResume); 3531 3532 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3533 3534 // Signal the private state thread 3535 if (m_private_state_thread.IsJoinable()) { 3536 // Broadcast the event. 3537 // It is important to do this outside of the if below, because it's 3538 // possible that the thread state is invalid but that the thread is waiting 3539 // on a control event instead of simply being on its way out (this should 3540 // not happen, but it apparently can). 3541 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3542 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3543 m_private_state_control_broadcaster.BroadcastEvent(signal, 3544 event_receipt_sp); 3545 3546 // Wait for the event receipt or for the private state thread to exit 3547 bool receipt_received = false; 3548 if (PrivateStateThreadIsValid()) { 3549 while (!receipt_received) { 3550 // Check for a receipt for n seconds and then check if the private 3551 // state thread is still around. 3552 receipt_received = 3553 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3554 if (!receipt_received) { 3555 // Check if the private state thread is still around. If it isn't 3556 // then we are done waiting 3557 if (!PrivateStateThreadIsValid()) 3558 break; // Private state thread exited or is exiting, we are done 3559 } 3560 } 3561 } 3562 3563 if (signal == eBroadcastInternalStateControlStop) { 3564 thread_result_t result = {}; 3565 m_private_state_thread.Join(&result); 3566 m_private_state_thread.Reset(); 3567 } 3568 } else { 3569 LLDB_LOGF( 3570 log, 3571 "Private state thread already dead, no need to signal it to stop."); 3572 } 3573 } 3574 3575 void Process::SendAsyncInterrupt() { 3576 if (PrivateStateThreadIsValid()) 3577 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3578 nullptr); 3579 else 3580 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3581 } 3582 3583 void Process::HandlePrivateEvent(EventSP &event_sp) { 3584 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3585 m_resume_requested = false; 3586 3587 const StateType new_state = 3588 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3589 3590 // First check to see if anybody wants a shot at this event: 3591 if (m_next_event_action_up) { 3592 NextEventAction::EventActionResult action_result = 3593 m_next_event_action_up->PerformAction(event_sp); 3594 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3595 3596 switch (action_result) { 3597 case NextEventAction::eEventActionSuccess: 3598 SetNextEventAction(nullptr); 3599 break; 3600 3601 case NextEventAction::eEventActionRetry: 3602 break; 3603 3604 case NextEventAction::eEventActionExit: 3605 // Handle Exiting Here. If we already got an exited event, we should 3606 // just propagate it. Otherwise, swallow this event, and set our state 3607 // to exit so the next event will kill us. 3608 if (new_state != eStateExited) { 3609 // FIXME: should cons up an exited event, and discard this one. 3610 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3611 SetNextEventAction(nullptr); 3612 return; 3613 } 3614 SetNextEventAction(nullptr); 3615 break; 3616 } 3617 } 3618 3619 // See if we should broadcast this state to external clients? 3620 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3621 3622 if (should_broadcast) { 3623 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3624 if (log) { 3625 LLDB_LOGF(log, 3626 "Process::%s (pid = %" PRIu64 3627 ") broadcasting new state %s (old state %s) to %s", 3628 __FUNCTION__, GetID(), StateAsCString(new_state), 3629 StateAsCString(GetState()), 3630 is_hijacked ? "hijacked" : "public"); 3631 } 3632 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3633 if (StateIsRunningState(new_state)) { 3634 // Only push the input handler if we aren't fowarding events, as this 3635 // means the curses GUI is in use... Or don't push it if we are launching 3636 // since it will come up stopped. 3637 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3638 new_state != eStateLaunching && new_state != eStateAttaching) { 3639 PushProcessIOHandler(); 3640 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3641 eBroadcastAlways); 3642 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3643 __FUNCTION__, m_iohandler_sync.GetValue()); 3644 } 3645 } else if (StateIsStoppedState(new_state, false)) { 3646 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3647 // If the lldb_private::Debugger is handling the events, we don't want 3648 // to pop the process IOHandler here, we want to do it when we receive 3649 // the stopped event so we can carefully control when the process 3650 // IOHandler is popped because when we stop we want to display some 3651 // text stating how and why we stopped, then maybe some 3652 // process/thread/frame info, and then we want the "(lldb) " prompt to 3653 // show up. If we pop the process IOHandler here, then we will cause 3654 // the command interpreter to become the top IOHandler after the 3655 // process pops off and it will update its prompt right away... See the 3656 // Debugger.cpp file where it calls the function as 3657 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3658 // Otherwise we end up getting overlapping "(lldb) " prompts and 3659 // garbled output. 3660 // 3661 // If we aren't handling the events in the debugger (which is indicated 3662 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3663 // we are hijacked, then we always pop the process IO handler manually. 3664 // Hijacking happens when the internal process state thread is running 3665 // thread plans, or when commands want to run in synchronous mode and 3666 // they call "process->WaitForProcessToStop()". An example of something 3667 // that will hijack the events is a simple expression: 3668 // 3669 // (lldb) expr (int)puts("hello") 3670 // 3671 // This will cause the internal process state thread to resume and halt 3672 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3673 // events) and we do need the IO handler to be pushed and popped 3674 // correctly. 3675 3676 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3677 PopProcessIOHandler(); 3678 } 3679 } 3680 3681 BroadcastEvent(event_sp); 3682 } else { 3683 if (log) { 3684 LLDB_LOGF( 3685 log, 3686 "Process::%s (pid = %" PRIu64 3687 ") suppressing state %s (old state %s): should_broadcast == false", 3688 __FUNCTION__, GetID(), StateAsCString(new_state), 3689 StateAsCString(GetState())); 3690 } 3691 } 3692 } 3693 3694 Status Process::HaltPrivate() { 3695 EventSP event_sp; 3696 Status error(WillHalt()); 3697 if (error.Fail()) 3698 return error; 3699 3700 // Ask the process subclass to actually halt our process 3701 bool caused_stop; 3702 error = DoHalt(caused_stop); 3703 3704 DidHalt(); 3705 return error; 3706 } 3707 3708 thread_result_t Process::PrivateStateThread(void *arg) { 3709 std::unique_ptr<PrivateStateThreadArgs> args_up( 3710 static_cast<PrivateStateThreadArgs *>(arg)); 3711 thread_result_t result = 3712 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3713 return result; 3714 } 3715 3716 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3717 bool control_only = true; 3718 3719 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3720 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3721 __FUNCTION__, static_cast<void *>(this), GetID()); 3722 3723 bool exit_now = false; 3724 bool interrupt_requested = false; 3725 while (!exit_now) { 3726 EventSP event_sp; 3727 GetEventsPrivate(event_sp, llvm::None, control_only); 3728 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3729 LLDB_LOGF(log, 3730 "Process::%s (arg = %p, pid = %" PRIu64 3731 ") got a control event: %d", 3732 __FUNCTION__, static_cast<void *>(this), GetID(), 3733 event_sp->GetType()); 3734 3735 switch (event_sp->GetType()) { 3736 case eBroadcastInternalStateControlStop: 3737 exit_now = true; 3738 break; // doing any internal state management below 3739 3740 case eBroadcastInternalStateControlPause: 3741 control_only = true; 3742 break; 3743 3744 case eBroadcastInternalStateControlResume: 3745 control_only = false; 3746 break; 3747 } 3748 3749 continue; 3750 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3751 if (m_public_state.GetValue() == eStateAttaching) { 3752 LLDB_LOGF(log, 3753 "Process::%s (arg = %p, pid = %" PRIu64 3754 ") woke up with an interrupt while attaching - " 3755 "forwarding interrupt.", 3756 __FUNCTION__, static_cast<void *>(this), GetID()); 3757 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3758 } else if (StateIsRunningState(m_last_broadcast_state)) { 3759 LLDB_LOGF(log, 3760 "Process::%s (arg = %p, pid = %" PRIu64 3761 ") woke up with an interrupt - Halting.", 3762 __FUNCTION__, static_cast<void *>(this), GetID()); 3763 Status error = HaltPrivate(); 3764 if (error.Fail() && log) 3765 LLDB_LOGF(log, 3766 "Process::%s (arg = %p, pid = %" PRIu64 3767 ") failed to halt the process: %s", 3768 __FUNCTION__, static_cast<void *>(this), GetID(), 3769 error.AsCString()); 3770 // Halt should generate a stopped event. Make a note of the fact that 3771 // we were doing the interrupt, so we can set the interrupted flag 3772 // after we receive the event. We deliberately set this to true even if 3773 // HaltPrivate failed, so that we can interrupt on the next natural 3774 // stop. 3775 interrupt_requested = true; 3776 } else { 3777 // This can happen when someone (e.g. Process::Halt) sees that we are 3778 // running and sends an interrupt request, but the process actually 3779 // stops before we receive it. In that case, we can just ignore the 3780 // request. We use m_last_broadcast_state, because the Stopped event 3781 // may not have been popped of the event queue yet, which is when the 3782 // public state gets updated. 3783 LLDB_LOGF(log, 3784 "Process::%s ignoring interrupt as we have already stopped.", 3785 __FUNCTION__); 3786 } 3787 continue; 3788 } 3789 3790 const StateType internal_state = 3791 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3792 3793 if (internal_state != eStateInvalid) { 3794 if (m_clear_thread_plans_on_stop && 3795 StateIsStoppedState(internal_state, true)) { 3796 m_clear_thread_plans_on_stop = false; 3797 m_thread_list.DiscardThreadPlans(); 3798 } 3799 3800 if (interrupt_requested) { 3801 if (StateIsStoppedState(internal_state, true)) { 3802 // We requested the interrupt, so mark this as such in the stop event 3803 // so clients can tell an interrupted process from a natural stop 3804 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3805 interrupt_requested = false; 3806 } else if (log) { 3807 LLDB_LOGF(log, 3808 "Process::%s interrupt_requested, but a non-stopped " 3809 "state '%s' received.", 3810 __FUNCTION__, StateAsCString(internal_state)); 3811 } 3812 } 3813 3814 HandlePrivateEvent(event_sp); 3815 } 3816 3817 if (internal_state == eStateInvalid || internal_state == eStateExited || 3818 internal_state == eStateDetached) { 3819 LLDB_LOGF(log, 3820 "Process::%s (arg = %p, pid = %" PRIu64 3821 ") about to exit with internal state %s...", 3822 __FUNCTION__, static_cast<void *>(this), GetID(), 3823 StateAsCString(internal_state)); 3824 3825 break; 3826 } 3827 } 3828 3829 // Verify log is still enabled before attempting to write to it... 3830 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3831 __FUNCTION__, static_cast<void *>(this), GetID()); 3832 3833 // If we are a secondary thread, then the primary thread we are working for 3834 // will have already acquired the public_run_lock, and isn't done with what 3835 // it was doing yet, so don't try to change it on the way out. 3836 if (!is_secondary_thread) 3837 m_public_run_lock.SetStopped(); 3838 return {}; 3839 } 3840 3841 // Process Event Data 3842 3843 Process::ProcessEventData::ProcessEventData() 3844 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3845 m_update_state(0), m_interrupted(false) {} 3846 3847 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3848 StateType state) 3849 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3850 m_update_state(0), m_interrupted(false) { 3851 if (process_sp) 3852 m_process_wp = process_sp; 3853 } 3854 3855 Process::ProcessEventData::~ProcessEventData() = default; 3856 3857 ConstString Process::ProcessEventData::GetFlavorString() { 3858 static ConstString g_flavor("Process::ProcessEventData"); 3859 return g_flavor; 3860 } 3861 3862 ConstString Process::ProcessEventData::GetFlavor() const { 3863 return ProcessEventData::GetFlavorString(); 3864 } 3865 3866 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3867 bool &found_valid_stopinfo) { 3868 found_valid_stopinfo = false; 3869 3870 ProcessSP process_sp(m_process_wp.lock()); 3871 if (!process_sp) 3872 return false; 3873 3874 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3875 uint32_t num_threads = curr_thread_list.GetSize(); 3876 uint32_t idx; 3877 3878 // The actions might change one of the thread's stop_info's opinions about 3879 // whether we should stop the process, so we need to query that as we go. 3880 3881 // One other complication here, is that we try to catch any case where the 3882 // target has run (except for expressions) and immediately exit, but if we 3883 // get that wrong (which is possible) then the thread list might have 3884 // changed, and that would cause our iteration here to crash. We could 3885 // make a copy of the thread list, but we'd really like to also know if it 3886 // has changed at all, so we make up a vector of the thread ID's and check 3887 // what we get back against this list & bag out if anything differs. 3888 ThreadList not_suspended_thread_list(process_sp.get()); 3889 std::vector<uint32_t> thread_index_array(num_threads); 3890 uint32_t not_suspended_idx = 0; 3891 for (idx = 0; idx < num_threads; ++idx) { 3892 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3893 3894 /* 3895 Filter out all suspended threads, they could not be the reason 3896 of stop and no need to perform any actions on them. 3897 */ 3898 if (thread_sp->GetResumeState() != eStateSuspended) { 3899 not_suspended_thread_list.AddThread(thread_sp); 3900 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3901 not_suspended_idx++; 3902 } 3903 } 3904 3905 // Use this to track whether we should continue from here. We will only 3906 // continue the target running if no thread says we should stop. Of course 3907 // if some thread's PerformAction actually sets the target running, then it 3908 // doesn't matter what the other threads say... 3909 3910 bool still_should_stop = false; 3911 3912 // Sometimes - for instance if we have a bug in the stub we are talking to, 3913 // we stop but no thread has a valid stop reason. In that case we should 3914 // just stop, because we have no way of telling what the right thing to do 3915 // is, and it's better to let the user decide than continue behind their 3916 // backs. 3917 3918 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3919 curr_thread_list = process_sp->GetThreadList(); 3920 if (curr_thread_list.GetSize() != num_threads) { 3921 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3922 LIBLLDB_LOG_PROCESS)); 3923 LLDB_LOGF( 3924 log, 3925 "Number of threads changed from %u to %u while processing event.", 3926 num_threads, curr_thread_list.GetSize()); 3927 break; 3928 } 3929 3930 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3931 3932 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3933 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3934 LIBLLDB_LOG_PROCESS)); 3935 LLDB_LOGF(log, 3936 "The thread at position %u changed from %u to %u while " 3937 "processing event.", 3938 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3939 break; 3940 } 3941 3942 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3943 if (stop_info_sp && stop_info_sp->IsValid()) { 3944 found_valid_stopinfo = true; 3945 bool this_thread_wants_to_stop; 3946 if (stop_info_sp->GetOverrideShouldStop()) { 3947 this_thread_wants_to_stop = 3948 stop_info_sp->GetOverriddenShouldStopValue(); 3949 } else { 3950 stop_info_sp->PerformAction(event_ptr); 3951 // The stop action might restart the target. If it does, then we 3952 // want to mark that in the event so that whoever is receiving it 3953 // will know to wait for the running event and reflect that state 3954 // appropriately. We also need to stop processing actions, since they 3955 // aren't expecting the target to be running. 3956 3957 // FIXME: we might have run. 3958 if (stop_info_sp->HasTargetRunSinceMe()) { 3959 SetRestarted(true); 3960 break; 3961 } 3962 3963 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 3964 } 3965 3966 if (!still_should_stop) 3967 still_should_stop = this_thread_wants_to_stop; 3968 } 3969 } 3970 3971 return still_should_stop; 3972 } 3973 3974 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3975 ProcessSP process_sp(m_process_wp.lock()); 3976 3977 if (!process_sp) 3978 return; 3979 3980 // This function gets called twice for each event, once when the event gets 3981 // pulled off of the private process event queue, and then any number of 3982 // times, first when it gets pulled off of the public event queue, then other 3983 // times when we're pretending that this is where we stopped at the end of 3984 // expression evaluation. m_update_state is used to distinguish these three 3985 // cases; it is 0 when we're just pulling it off for private handling, and > 3986 // 1 for expression evaluation, and we don't want to do the breakpoint 3987 // command handling then. 3988 if (m_update_state != 1) 3989 return; 3990 3991 process_sp->SetPublicState( 3992 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 3993 3994 if (m_state == eStateStopped && !m_restarted) { 3995 // Let process subclasses know we are about to do a public stop and do 3996 // anything they might need to in order to speed up register and memory 3997 // accesses. 3998 process_sp->WillPublicStop(); 3999 } 4000 4001 // If this is a halt event, even if the halt stopped with some reason other 4002 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4003 // the halt request came through) don't do the StopInfo actions, as they may 4004 // end up restarting the process. 4005 if (m_interrupted) 4006 return; 4007 4008 // If we're not stopped or have restarted, then skip the StopInfo actions: 4009 if (m_state != eStateStopped || m_restarted) { 4010 return; 4011 } 4012 4013 bool does_anybody_have_an_opinion = false; 4014 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4015 4016 if (GetRestarted()) { 4017 return; 4018 } 4019 4020 if (!still_should_stop && does_anybody_have_an_opinion) { 4021 // We've been asked to continue, so do that here. 4022 SetRestarted(true); 4023 // Use the public resume method here, since this is just extending a 4024 // public resume. 4025 process_sp->PrivateResume(); 4026 } else { 4027 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4028 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4029 4030 if (!hijacked) { 4031 // If we didn't restart, run the Stop Hooks here. 4032 // Don't do that if state changed events aren't hooked up to the 4033 // public (or SyncResume) broadcasters. StopHooks are just for 4034 // real public stops. They might also restart the target, 4035 // so watch for that. 4036 if (process_sp->GetTarget().RunStopHooks()) 4037 SetRestarted(true); 4038 } 4039 } 4040 } 4041 4042 void Process::ProcessEventData::Dump(Stream *s) const { 4043 ProcessSP process_sp(m_process_wp.lock()); 4044 4045 if (process_sp) 4046 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4047 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4048 else 4049 s->PutCString(" process = NULL, "); 4050 4051 s->Printf("state = %s", StateAsCString(GetState())); 4052 } 4053 4054 const Process::ProcessEventData * 4055 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4056 if (event_ptr) { 4057 const EventData *event_data = event_ptr->GetData(); 4058 if (event_data && 4059 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4060 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4061 } 4062 return nullptr; 4063 } 4064 4065 ProcessSP 4066 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4067 ProcessSP process_sp; 4068 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4069 if (data) 4070 process_sp = data->GetProcessSP(); 4071 return process_sp; 4072 } 4073 4074 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4075 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4076 if (data == nullptr) 4077 return eStateInvalid; 4078 else 4079 return data->GetState(); 4080 } 4081 4082 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4083 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4084 if (data == nullptr) 4085 return false; 4086 else 4087 return data->GetRestarted(); 4088 } 4089 4090 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4091 bool new_value) { 4092 ProcessEventData *data = 4093 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4094 if (data != nullptr) 4095 data->SetRestarted(new_value); 4096 } 4097 4098 size_t 4099 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4100 ProcessEventData *data = 4101 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4102 if (data != nullptr) 4103 return data->GetNumRestartedReasons(); 4104 else 4105 return 0; 4106 } 4107 4108 const char * 4109 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4110 size_t idx) { 4111 ProcessEventData *data = 4112 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4113 if (data != nullptr) 4114 return data->GetRestartedReasonAtIndex(idx); 4115 else 4116 return nullptr; 4117 } 4118 4119 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4120 const char *reason) { 4121 ProcessEventData *data = 4122 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4123 if (data != nullptr) 4124 data->AddRestartedReason(reason); 4125 } 4126 4127 bool Process::ProcessEventData::GetInterruptedFromEvent( 4128 const Event *event_ptr) { 4129 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4130 if (data == nullptr) 4131 return false; 4132 else 4133 return data->GetInterrupted(); 4134 } 4135 4136 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4137 bool new_value) { 4138 ProcessEventData *data = 4139 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4140 if (data != nullptr) 4141 data->SetInterrupted(new_value); 4142 } 4143 4144 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4145 ProcessEventData *data = 4146 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4147 if (data) { 4148 data->SetUpdateStateOnRemoval(); 4149 return true; 4150 } 4151 return false; 4152 } 4153 4154 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4155 4156 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4157 exe_ctx.SetTargetPtr(&GetTarget()); 4158 exe_ctx.SetProcessPtr(this); 4159 exe_ctx.SetThreadPtr(nullptr); 4160 exe_ctx.SetFramePtr(nullptr); 4161 } 4162 4163 // uint32_t 4164 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4165 // std::vector<lldb::pid_t> &pids) 4166 //{ 4167 // return 0; 4168 //} 4169 // 4170 // ArchSpec 4171 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4172 //{ 4173 // return Host::GetArchSpecForExistingProcess (pid); 4174 //} 4175 // 4176 // ArchSpec 4177 // Process::GetArchSpecForExistingProcess (const char *process_name) 4178 //{ 4179 // return Host::GetArchSpecForExistingProcess (process_name); 4180 //} 4181 4182 void Process::AppendSTDOUT(const char *s, size_t len) { 4183 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4184 m_stdout_data.append(s, len); 4185 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4186 new ProcessEventData(shared_from_this(), GetState())); 4187 } 4188 4189 void Process::AppendSTDERR(const char *s, size_t len) { 4190 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4191 m_stderr_data.append(s, len); 4192 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4193 new ProcessEventData(shared_from_this(), GetState())); 4194 } 4195 4196 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4197 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4198 m_profile_data.push_back(one_profile_data); 4199 BroadcastEventIfUnique(eBroadcastBitProfileData, 4200 new ProcessEventData(shared_from_this(), GetState())); 4201 } 4202 4203 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4204 const StructuredDataPluginSP &plugin_sp) { 4205 BroadcastEvent( 4206 eBroadcastBitStructuredData, 4207 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4208 } 4209 4210 StructuredDataPluginSP 4211 Process::GetStructuredDataPlugin(ConstString type_name) const { 4212 auto find_it = m_structured_data_plugin_map.find(type_name); 4213 if (find_it != m_structured_data_plugin_map.end()) 4214 return find_it->second; 4215 else 4216 return StructuredDataPluginSP(); 4217 } 4218 4219 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4220 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4221 if (m_profile_data.empty()) 4222 return 0; 4223 4224 std::string &one_profile_data = m_profile_data.front(); 4225 size_t bytes_available = one_profile_data.size(); 4226 if (bytes_available > 0) { 4227 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4228 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4229 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4230 if (bytes_available > buf_size) { 4231 memcpy(buf, one_profile_data.c_str(), buf_size); 4232 one_profile_data.erase(0, buf_size); 4233 bytes_available = buf_size; 4234 } else { 4235 memcpy(buf, one_profile_data.c_str(), bytes_available); 4236 m_profile_data.erase(m_profile_data.begin()); 4237 } 4238 } 4239 return bytes_available; 4240 } 4241 4242 // Process STDIO 4243 4244 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4245 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4246 size_t bytes_available = m_stdout_data.size(); 4247 if (bytes_available > 0) { 4248 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4249 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4250 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4251 if (bytes_available > buf_size) { 4252 memcpy(buf, m_stdout_data.c_str(), buf_size); 4253 m_stdout_data.erase(0, buf_size); 4254 bytes_available = buf_size; 4255 } else { 4256 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4257 m_stdout_data.clear(); 4258 } 4259 } 4260 return bytes_available; 4261 } 4262 4263 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4264 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4265 size_t bytes_available = m_stderr_data.size(); 4266 if (bytes_available > 0) { 4267 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4268 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4269 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4270 if (bytes_available > buf_size) { 4271 memcpy(buf, m_stderr_data.c_str(), buf_size); 4272 m_stderr_data.erase(0, buf_size); 4273 bytes_available = buf_size; 4274 } else { 4275 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4276 m_stderr_data.clear(); 4277 } 4278 } 4279 return bytes_available; 4280 } 4281 4282 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4283 size_t src_len) { 4284 Process *process = (Process *)baton; 4285 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4286 } 4287 4288 class IOHandlerProcessSTDIO : public IOHandler { 4289 public: 4290 IOHandlerProcessSTDIO(Process *process, int write_fd) 4291 : IOHandler(process->GetTarget().GetDebugger(), 4292 IOHandler::Type::ProcessIO), 4293 m_process(process), 4294 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4295 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4296 m_pipe.CreateNew(false); 4297 } 4298 4299 ~IOHandlerProcessSTDIO() override = default; 4300 4301 // Each IOHandler gets to run until it is done. It should read data from the 4302 // "in" and place output into "out" and "err and return when done. 4303 void Run() override { 4304 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4305 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4306 SetIsDone(true); 4307 return; 4308 } 4309 4310 SetIsDone(false); 4311 const int read_fd = m_read_file.GetDescriptor(); 4312 TerminalState terminal_state; 4313 terminal_state.Save(read_fd, false); 4314 Terminal terminal(read_fd); 4315 terminal.SetCanonical(false); 4316 terminal.SetEcho(false); 4317 // FD_ZERO, FD_SET are not supported on windows 4318 #ifndef _WIN32 4319 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4320 m_is_running = true; 4321 while (!GetIsDone()) { 4322 SelectHelper select_helper; 4323 select_helper.FDSetRead(read_fd); 4324 select_helper.FDSetRead(pipe_read_fd); 4325 Status error = select_helper.Select(); 4326 4327 if (error.Fail()) { 4328 SetIsDone(true); 4329 } else { 4330 char ch = 0; 4331 size_t n; 4332 if (select_helper.FDIsSetRead(read_fd)) { 4333 n = 1; 4334 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4335 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4336 SetIsDone(true); 4337 } else 4338 SetIsDone(true); 4339 } 4340 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4341 size_t bytes_read; 4342 // Consume the interrupt byte 4343 Status error = m_pipe.Read(&ch, 1, bytes_read); 4344 if (error.Success()) { 4345 switch (ch) { 4346 case 'q': 4347 SetIsDone(true); 4348 break; 4349 case 'i': 4350 if (StateIsRunningState(m_process->GetState())) 4351 m_process->SendAsyncInterrupt(); 4352 break; 4353 } 4354 } 4355 } 4356 } 4357 } 4358 m_is_running = false; 4359 #endif 4360 terminal_state.Restore(); 4361 } 4362 4363 void Cancel() override { 4364 SetIsDone(true); 4365 // Only write to our pipe to cancel if we are in 4366 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4367 // is being run from the command interpreter: 4368 // 4369 // (lldb) step_process_thousands_of_times 4370 // 4371 // In this case the command interpreter will be in the middle of handling 4372 // the command and if the process pushes and pops the IOHandler thousands 4373 // of times, we can end up writing to m_pipe without ever consuming the 4374 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4375 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4376 if (m_is_running) { 4377 char ch = 'q'; // Send 'q' for quit 4378 size_t bytes_written = 0; 4379 m_pipe.Write(&ch, 1, bytes_written); 4380 } 4381 } 4382 4383 bool Interrupt() override { 4384 // Do only things that are safe to do in an interrupt context (like in a 4385 // SIGINT handler), like write 1 byte to a file descriptor. This will 4386 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4387 // that was written to the pipe and then call 4388 // m_process->SendAsyncInterrupt() from a much safer location in code. 4389 if (m_active) { 4390 char ch = 'i'; // Send 'i' for interrupt 4391 size_t bytes_written = 0; 4392 Status result = m_pipe.Write(&ch, 1, bytes_written); 4393 return result.Success(); 4394 } else { 4395 // This IOHandler might be pushed on the stack, but not being run 4396 // currently so do the right thing if we aren't actively watching for 4397 // STDIN by sending the interrupt to the process. Otherwise the write to 4398 // the pipe above would do nothing. This can happen when the command 4399 // interpreter is running and gets a "expression ...". It will be on the 4400 // IOHandler thread and sending the input is complete to the delegate 4401 // which will cause the expression to run, which will push the process IO 4402 // handler, but not run it. 4403 4404 if (StateIsRunningState(m_process->GetState())) { 4405 m_process->SendAsyncInterrupt(); 4406 return true; 4407 } 4408 } 4409 return false; 4410 } 4411 4412 void GotEOF() override {} 4413 4414 protected: 4415 Process *m_process; 4416 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4417 NativeFile m_write_file; // Write to this file (usually the master pty for 4418 // getting io to debuggee) 4419 Pipe m_pipe; 4420 std::atomic<bool> m_is_running{false}; 4421 }; 4422 4423 void Process::SetSTDIOFileDescriptor(int fd) { 4424 // First set up the Read Thread for reading/handling process I/O 4425 m_stdio_communication.SetConnection( 4426 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4427 if (m_stdio_communication.IsConnected()) { 4428 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4429 STDIOReadThreadBytesReceived, this); 4430 m_stdio_communication.StartReadThread(); 4431 4432 // Now read thread is set up, set up input reader. 4433 4434 if (!m_process_input_reader) 4435 m_process_input_reader = 4436 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4437 } 4438 } 4439 4440 bool Process::ProcessIOHandlerIsActive() { 4441 IOHandlerSP io_handler_sp(m_process_input_reader); 4442 if (io_handler_sp) 4443 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4444 return false; 4445 } 4446 bool Process::PushProcessIOHandler() { 4447 IOHandlerSP io_handler_sp(m_process_input_reader); 4448 if (io_handler_sp) { 4449 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4450 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4451 4452 io_handler_sp->SetIsDone(false); 4453 // If we evaluate an utility function, then we don't cancel the current 4454 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4455 // existing IOHandler that potentially provides the user interface (e.g. 4456 // the IOHandler for Editline). 4457 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4458 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4459 cancel_top_handler); 4460 return true; 4461 } 4462 return false; 4463 } 4464 4465 bool Process::PopProcessIOHandler() { 4466 IOHandlerSP io_handler_sp(m_process_input_reader); 4467 if (io_handler_sp) 4468 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4469 return false; 4470 } 4471 4472 // The process needs to know about installed plug-ins 4473 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4474 4475 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4476 4477 namespace { 4478 // RestorePlanState is used to record the "is private", "is master" and "okay 4479 // to discard" fields of the plan we are running, and reset it on Clean or on 4480 // destruction. It will only reset the state once, so you can call Clean and 4481 // then monkey with the state and it won't get reset on you again. 4482 4483 class RestorePlanState { 4484 public: 4485 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4486 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4487 if (m_thread_plan_sp) { 4488 m_private = m_thread_plan_sp->GetPrivate(); 4489 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4490 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4491 } 4492 } 4493 4494 ~RestorePlanState() { Clean(); } 4495 4496 void Clean() { 4497 if (!m_already_reset && m_thread_plan_sp) { 4498 m_already_reset = true; 4499 m_thread_plan_sp->SetPrivate(m_private); 4500 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4501 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4502 } 4503 } 4504 4505 private: 4506 lldb::ThreadPlanSP m_thread_plan_sp; 4507 bool m_already_reset; 4508 bool m_private; 4509 bool m_is_master; 4510 bool m_okay_to_discard; 4511 }; 4512 } // anonymous namespace 4513 4514 static microseconds 4515 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4516 const milliseconds default_one_thread_timeout(250); 4517 4518 // If the overall wait is forever, then we don't need to worry about it. 4519 if (!options.GetTimeout()) { 4520 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4521 : default_one_thread_timeout; 4522 } 4523 4524 // If the one thread timeout is set, use it. 4525 if (options.GetOneThreadTimeout()) 4526 return *options.GetOneThreadTimeout(); 4527 4528 // Otherwise use half the total timeout, bounded by the 4529 // default_one_thread_timeout. 4530 return std::min<microseconds>(default_one_thread_timeout, 4531 *options.GetTimeout() / 2); 4532 } 4533 4534 static Timeout<std::micro> 4535 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4536 bool before_first_timeout) { 4537 // If we are going to run all threads the whole time, or if we are only going 4538 // to run one thread, we can just return the overall timeout. 4539 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4540 return options.GetTimeout(); 4541 4542 if (before_first_timeout) 4543 return GetOneThreadExpressionTimeout(options); 4544 4545 if (!options.GetTimeout()) 4546 return llvm::None; 4547 else 4548 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4549 } 4550 4551 static llvm::Optional<ExpressionResults> 4552 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4553 RestorePlanState &restorer, const EventSP &event_sp, 4554 EventSP &event_to_broadcast_sp, 4555 const EvaluateExpressionOptions &options, 4556 bool handle_interrupts) { 4557 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4558 4559 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4560 .GetProcessSP() 4561 ->GetThreadList() 4562 .FindThreadByID(thread_id); 4563 if (!thread_sp) { 4564 LLDB_LOG(log, 4565 "The thread on which we were running the " 4566 "expression: tid = {0}, exited while " 4567 "the expression was running.", 4568 thread_id); 4569 return eExpressionThreadVanished; 4570 } 4571 4572 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4573 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4574 LLDB_LOG(log, "execution completed successfully"); 4575 4576 // Restore the plan state so it will get reported as intended when we are 4577 // done. 4578 restorer.Clean(); 4579 return eExpressionCompleted; 4580 } 4581 4582 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4583 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4584 stop_info_sp->ShouldNotify(event_sp.get())) { 4585 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4586 if (!options.DoesIgnoreBreakpoints()) { 4587 // Restore the plan state and then force Private to false. We are going 4588 // to stop because of this plan so we need it to become a public plan or 4589 // it won't report correctly when we continue to its termination later 4590 // on. 4591 restorer.Clean(); 4592 thread_plan_sp->SetPrivate(false); 4593 event_to_broadcast_sp = event_sp; 4594 } 4595 return eExpressionHitBreakpoint; 4596 } 4597 4598 if (!handle_interrupts && 4599 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4600 return llvm::None; 4601 4602 LLDB_LOG(log, "thread plan did not successfully complete"); 4603 if (!options.DoesUnwindOnError()) 4604 event_to_broadcast_sp = event_sp; 4605 return eExpressionInterrupted; 4606 } 4607 4608 ExpressionResults 4609 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4610 lldb::ThreadPlanSP &thread_plan_sp, 4611 const EvaluateExpressionOptions &options, 4612 DiagnosticManager &diagnostic_manager) { 4613 ExpressionResults return_value = eExpressionSetupError; 4614 4615 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4616 4617 if (!thread_plan_sp) { 4618 diagnostic_manager.PutString( 4619 eDiagnosticSeverityError, 4620 "RunThreadPlan called with empty thread plan."); 4621 return eExpressionSetupError; 4622 } 4623 4624 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4625 diagnostic_manager.PutString( 4626 eDiagnosticSeverityError, 4627 "RunThreadPlan called with an invalid thread plan."); 4628 return eExpressionSetupError; 4629 } 4630 4631 if (exe_ctx.GetProcessPtr() != this) { 4632 diagnostic_manager.PutString(eDiagnosticSeverityError, 4633 "RunThreadPlan called on wrong process."); 4634 return eExpressionSetupError; 4635 } 4636 4637 Thread *thread = exe_ctx.GetThreadPtr(); 4638 if (thread == nullptr) { 4639 diagnostic_manager.PutString(eDiagnosticSeverityError, 4640 "RunThreadPlan called with invalid thread."); 4641 return eExpressionSetupError; 4642 } 4643 4644 // Record the thread's id so we can tell when a thread we were using 4645 // to run the expression exits during the expression evaluation. 4646 lldb::tid_t expr_thread_id = thread->GetID(); 4647 4648 // We need to change some of the thread plan attributes for the thread plan 4649 // runner. This will restore them when we are done: 4650 4651 RestorePlanState thread_plan_restorer(thread_plan_sp); 4652 4653 // We rely on the thread plan we are running returning "PlanCompleted" if 4654 // when it successfully completes. For that to be true the plan can't be 4655 // private - since private plans suppress themselves in the GetCompletedPlan 4656 // call. 4657 4658 thread_plan_sp->SetPrivate(false); 4659 4660 // The plans run with RunThreadPlan also need to be terminal master plans or 4661 // when they are done we will end up asking the plan above us whether we 4662 // should stop, which may give the wrong answer. 4663 4664 thread_plan_sp->SetIsMasterPlan(true); 4665 thread_plan_sp->SetOkayToDiscard(false); 4666 4667 // If we are running some utility expression for LLDB, we now have to mark 4668 // this in the ProcesModID of this process. This RAII takes care of marking 4669 // and reverting the mark it once we are done running the expression. 4670 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4671 4672 if (m_private_state.GetValue() != eStateStopped) { 4673 diagnostic_manager.PutString( 4674 eDiagnosticSeverityError, 4675 "RunThreadPlan called while the private state was not stopped."); 4676 return eExpressionSetupError; 4677 } 4678 4679 // Save the thread & frame from the exe_ctx for restoration after we run 4680 const uint32_t thread_idx_id = thread->GetIndexID(); 4681 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4682 if (!selected_frame_sp) { 4683 thread->SetSelectedFrame(nullptr); 4684 selected_frame_sp = thread->GetSelectedFrame(); 4685 if (!selected_frame_sp) { 4686 diagnostic_manager.Printf( 4687 eDiagnosticSeverityError, 4688 "RunThreadPlan called without a selected frame on thread %d", 4689 thread_idx_id); 4690 return eExpressionSetupError; 4691 } 4692 } 4693 4694 // Make sure the timeout values make sense. The one thread timeout needs to 4695 // be smaller than the overall timeout. 4696 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4697 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4698 diagnostic_manager.PutString(eDiagnosticSeverityError, 4699 "RunThreadPlan called with one thread " 4700 "timeout greater than total timeout"); 4701 return eExpressionSetupError; 4702 } 4703 4704 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4705 4706 // N.B. Running the target may unset the currently selected thread and frame. 4707 // We don't want to do that either, so we should arrange to reset them as 4708 // well. 4709 4710 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4711 4712 uint32_t selected_tid; 4713 StackID selected_stack_id; 4714 if (selected_thread_sp) { 4715 selected_tid = selected_thread_sp->GetIndexID(); 4716 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4717 } else { 4718 selected_tid = LLDB_INVALID_THREAD_ID; 4719 } 4720 4721 HostThread backup_private_state_thread; 4722 lldb::StateType old_state = eStateInvalid; 4723 lldb::ThreadPlanSP stopper_base_plan_sp; 4724 4725 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4726 LIBLLDB_LOG_PROCESS)); 4727 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4728 // Yikes, we are running on the private state thread! So we can't wait for 4729 // public events on this thread, since we are the thread that is generating 4730 // public events. The simplest thing to do is to spin up a temporary thread 4731 // to handle private state thread events while we are fielding public 4732 // events here. 4733 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4734 "another state thread to handle the events."); 4735 4736 backup_private_state_thread = m_private_state_thread; 4737 4738 // One other bit of business: we want to run just this thread plan and 4739 // anything it pushes, and then stop, returning control here. But in the 4740 // normal course of things, the plan above us on the stack would be given a 4741 // shot at the stop event before deciding to stop, and we don't want that. 4742 // So we insert a "stopper" base plan on the stack before the plan we want 4743 // to run. Since base plans always stop and return control to the user, 4744 // that will do just what we want. 4745 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4746 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4747 // Have to make sure our public state is stopped, since otherwise the 4748 // reporting logic below doesn't work correctly. 4749 old_state = m_public_state.GetValue(); 4750 m_public_state.SetValueNoLock(eStateStopped); 4751 4752 // Now spin up the private state thread: 4753 StartPrivateStateThread(true); 4754 } 4755 4756 thread->QueueThreadPlan( 4757 thread_plan_sp, false); // This used to pass "true" does that make sense? 4758 4759 if (options.GetDebug()) { 4760 // In this case, we aren't actually going to run, we just want to stop 4761 // right away. Flush this thread so we will refetch the stacks and show the 4762 // correct backtrace. 4763 // FIXME: To make this prettier we should invent some stop reason for this, 4764 // but that 4765 // is only cosmetic, and this functionality is only of use to lldb 4766 // developers who can live with not pretty... 4767 thread->Flush(); 4768 return eExpressionStoppedForDebug; 4769 } 4770 4771 ListenerSP listener_sp( 4772 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4773 4774 lldb::EventSP event_to_broadcast_sp; 4775 4776 { 4777 // This process event hijacker Hijacks the Public events and its destructor 4778 // makes sure that the process events get restored on exit to the function. 4779 // 4780 // If the event needs to propagate beyond the hijacker (e.g., the process 4781 // exits during execution), then the event is put into 4782 // event_to_broadcast_sp for rebroadcasting. 4783 4784 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4785 4786 if (log) { 4787 StreamString s; 4788 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4789 LLDB_LOGF(log, 4790 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4791 " to run thread plan \"%s\".", 4792 thread_idx_id, expr_thread_id, s.GetData()); 4793 } 4794 4795 bool got_event; 4796 lldb::EventSP event_sp; 4797 lldb::StateType stop_state = lldb::eStateInvalid; 4798 4799 bool before_first_timeout = true; // This is set to false the first time 4800 // that we have to halt the target. 4801 bool do_resume = true; 4802 bool handle_running_event = true; 4803 4804 // This is just for accounting: 4805 uint32_t num_resumes = 0; 4806 4807 // If we are going to run all threads the whole time, or if we are only 4808 // going to run one thread, then we don't need the first timeout. So we 4809 // pretend we are after the first timeout already. 4810 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4811 before_first_timeout = false; 4812 4813 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4814 options.GetStopOthers(), options.GetTryAllThreads(), 4815 before_first_timeout); 4816 4817 // This isn't going to work if there are unfetched events on the queue. Are 4818 // there cases where we might want to run the remaining events here, and 4819 // then try to call the function? That's probably being too tricky for our 4820 // own good. 4821 4822 Event *other_events = listener_sp->PeekAtNextEvent(); 4823 if (other_events != nullptr) { 4824 diagnostic_manager.PutString( 4825 eDiagnosticSeverityError, 4826 "RunThreadPlan called with pending events on the queue."); 4827 return eExpressionSetupError; 4828 } 4829 4830 // We also need to make sure that the next event is delivered. We might be 4831 // calling a function as part of a thread plan, in which case the last 4832 // delivered event could be the running event, and we don't want event 4833 // coalescing to cause us to lose OUR running event... 4834 ForceNextEventDelivery(); 4835 4836 // This while loop must exit out the bottom, there's cleanup that we need to do 4837 // when we are done. So don't call return anywhere within it. 4838 4839 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4840 // It's pretty much impossible to write test cases for things like: One 4841 // thread timeout expires, I go to halt, but the process already stopped on 4842 // the function call stop breakpoint. Turning on this define will make us 4843 // not fetch the first event till after the halt. So if you run a quick 4844 // function, it will have completed, and the completion event will be 4845 // waiting, when you interrupt for halt. The expression evaluation should 4846 // still succeed. 4847 bool miss_first_event = true; 4848 #endif 4849 while (true) { 4850 // We usually want to resume the process if we get to the top of the 4851 // loop. The only exception is if we get two running events with no 4852 // intervening stop, which can happen, we will just wait for then next 4853 // stop event. 4854 LLDB_LOGF(log, 4855 "Top of while loop: do_resume: %i handle_running_event: %i " 4856 "before_first_timeout: %i.", 4857 do_resume, handle_running_event, before_first_timeout); 4858 4859 if (do_resume || handle_running_event) { 4860 // Do the initial resume and wait for the running event before going 4861 // further. 4862 4863 if (do_resume) { 4864 num_resumes++; 4865 Status resume_error = PrivateResume(); 4866 if (!resume_error.Success()) { 4867 diagnostic_manager.Printf( 4868 eDiagnosticSeverityError, 4869 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4870 resume_error.AsCString()); 4871 return_value = eExpressionSetupError; 4872 break; 4873 } 4874 } 4875 4876 got_event = 4877 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4878 if (!got_event) { 4879 LLDB_LOGF(log, 4880 "Process::RunThreadPlan(): didn't get any event after " 4881 "resume %" PRIu32 ", exiting.", 4882 num_resumes); 4883 4884 diagnostic_manager.Printf(eDiagnosticSeverityError, 4885 "didn't get any event after resume %" PRIu32 4886 ", exiting.", 4887 num_resumes); 4888 return_value = eExpressionSetupError; 4889 break; 4890 } 4891 4892 stop_state = 4893 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4894 4895 if (stop_state != eStateRunning) { 4896 bool restarted = false; 4897 4898 if (stop_state == eStateStopped) { 4899 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4900 event_sp.get()); 4901 LLDB_LOGF( 4902 log, 4903 "Process::RunThreadPlan(): didn't get running event after " 4904 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4905 "handle_running_event: %i).", 4906 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4907 handle_running_event); 4908 } 4909 4910 if (restarted) { 4911 // This is probably an overabundance of caution, I don't think I 4912 // should ever get a stopped & restarted event here. But if I do, 4913 // the best thing is to Halt and then get out of here. 4914 const bool clear_thread_plans = false; 4915 const bool use_run_lock = false; 4916 Halt(clear_thread_plans, use_run_lock); 4917 } 4918 4919 diagnostic_manager.Printf( 4920 eDiagnosticSeverityError, 4921 "didn't get running event after initial resume, got %s instead.", 4922 StateAsCString(stop_state)); 4923 return_value = eExpressionSetupError; 4924 break; 4925 } 4926 4927 if (log) 4928 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4929 // We need to call the function synchronously, so spin waiting for it 4930 // to return. If we get interrupted while executing, we're going to 4931 // lose our context, and won't be able to gather the result at this 4932 // point. We set the timeout AFTER the resume, since the resume takes 4933 // some time and we don't want to charge that to the timeout. 4934 } else { 4935 if (log) 4936 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4937 } 4938 4939 do_resume = true; 4940 handle_running_event = true; 4941 4942 // Now wait for the process to stop again: 4943 event_sp.reset(); 4944 4945 Timeout<std::micro> timeout = 4946 GetExpressionTimeout(options, before_first_timeout); 4947 if (log) { 4948 if (timeout) { 4949 auto now = system_clock::now(); 4950 LLDB_LOGF(log, 4951 "Process::RunThreadPlan(): about to wait - now is %s - " 4952 "endpoint is %s", 4953 llvm::to_string(now).c_str(), 4954 llvm::to_string(now + *timeout).c_str()); 4955 } else { 4956 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4957 } 4958 } 4959 4960 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4961 // See comment above... 4962 if (miss_first_event) { 4963 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4964 miss_first_event = false; 4965 got_event = false; 4966 } else 4967 #endif 4968 got_event = listener_sp->GetEvent(event_sp, timeout); 4969 4970 if (got_event) { 4971 if (event_sp) { 4972 bool keep_going = false; 4973 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4974 const bool clear_thread_plans = false; 4975 const bool use_run_lock = false; 4976 Halt(clear_thread_plans, use_run_lock); 4977 return_value = eExpressionInterrupted; 4978 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 4979 "execution halted by user interrupt."); 4980 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 4981 "eBroadcastBitInterrupted, exiting."); 4982 break; 4983 } else { 4984 stop_state = 4985 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4986 LLDB_LOGF(log, 4987 "Process::RunThreadPlan(): in while loop, got event: %s.", 4988 StateAsCString(stop_state)); 4989 4990 switch (stop_state) { 4991 case lldb::eStateStopped: { 4992 if (Process::ProcessEventData::GetRestartedFromEvent( 4993 event_sp.get())) { 4994 // If we were restarted, we just need to go back up to fetch 4995 // another event. 4996 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 4997 "restart, so we'll continue waiting."); 4998 keep_going = true; 4999 do_resume = false; 5000 handle_running_event = true; 5001 } else { 5002 const bool handle_interrupts = true; 5003 return_value = *HandleStoppedEvent( 5004 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5005 event_sp, event_to_broadcast_sp, options, 5006 handle_interrupts); 5007 if (return_value == eExpressionThreadVanished) 5008 keep_going = false; 5009 } 5010 } break; 5011 5012 case lldb::eStateRunning: 5013 // This shouldn't really happen, but sometimes we do get two 5014 // running events without an intervening stop, and in that case 5015 // we should just go back to waiting for the stop. 5016 do_resume = false; 5017 keep_going = true; 5018 handle_running_event = false; 5019 break; 5020 5021 default: 5022 LLDB_LOGF(log, 5023 "Process::RunThreadPlan(): execution stopped with " 5024 "unexpected state: %s.", 5025 StateAsCString(stop_state)); 5026 5027 if (stop_state == eStateExited) 5028 event_to_broadcast_sp = event_sp; 5029 5030 diagnostic_manager.PutString( 5031 eDiagnosticSeverityError, 5032 "execution stopped with unexpected state."); 5033 return_value = eExpressionInterrupted; 5034 break; 5035 } 5036 } 5037 5038 if (keep_going) 5039 continue; 5040 else 5041 break; 5042 } else { 5043 if (log) 5044 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5045 "the event pointer was null. How odd..."); 5046 return_value = eExpressionInterrupted; 5047 break; 5048 } 5049 } else { 5050 // If we didn't get an event that means we've timed out... We will 5051 // interrupt the process here. Depending on what we were asked to do 5052 // we will either exit, or try with all threads running for the same 5053 // timeout. 5054 5055 if (log) { 5056 if (options.GetTryAllThreads()) { 5057 if (before_first_timeout) { 5058 LLDB_LOG(log, 5059 "Running function with one thread timeout timed out."); 5060 } else 5061 LLDB_LOG(log, "Restarting function with all threads enabled and " 5062 "timeout: {0} timed out, abandoning execution.", 5063 timeout); 5064 } else 5065 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5066 "abandoning execution.", 5067 timeout); 5068 } 5069 5070 // It is possible that between the time we issued the Halt, and we get 5071 // around to calling Halt the target could have stopped. That's fine, 5072 // Halt will figure that out and send the appropriate Stopped event. 5073 // BUT it is also possible that we stopped & restarted (e.g. hit a 5074 // signal with "stop" set to false.) In 5075 // that case, we'll get the stopped & restarted event, and we should go 5076 // back to waiting for the Halt's stopped event. That's what this 5077 // while loop does. 5078 5079 bool back_to_top = true; 5080 uint32_t try_halt_again = 0; 5081 bool do_halt = true; 5082 const uint32_t num_retries = 5; 5083 while (try_halt_again < num_retries) { 5084 Status halt_error; 5085 if (do_halt) { 5086 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5087 const bool clear_thread_plans = false; 5088 const bool use_run_lock = false; 5089 Halt(clear_thread_plans, use_run_lock); 5090 } 5091 if (halt_error.Success()) { 5092 if (log) 5093 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5094 5095 got_event = 5096 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5097 5098 if (got_event) { 5099 stop_state = 5100 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5101 if (log) { 5102 LLDB_LOGF(log, 5103 "Process::RunThreadPlan(): Stopped with event: %s", 5104 StateAsCString(stop_state)); 5105 if (stop_state == lldb::eStateStopped && 5106 Process::ProcessEventData::GetInterruptedFromEvent( 5107 event_sp.get())) 5108 log->PutCString(" Event was the Halt interruption event."); 5109 } 5110 5111 if (stop_state == lldb::eStateStopped) { 5112 if (Process::ProcessEventData::GetRestartedFromEvent( 5113 event_sp.get())) { 5114 if (log) 5115 log->PutCString("Process::RunThreadPlan(): Went to halt " 5116 "but got a restarted event, there must be " 5117 "an un-restarted stopped event so try " 5118 "again... " 5119 "Exiting wait loop."); 5120 try_halt_again++; 5121 do_halt = false; 5122 continue; 5123 } 5124 5125 // Between the time we initiated the Halt and the time we 5126 // delivered it, the process could have already finished its 5127 // job. Check that here: 5128 const bool handle_interrupts = false; 5129 if (auto result = HandleStoppedEvent( 5130 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5131 event_sp, event_to_broadcast_sp, options, 5132 handle_interrupts)) { 5133 return_value = *result; 5134 back_to_top = false; 5135 break; 5136 } 5137 5138 if (!options.GetTryAllThreads()) { 5139 if (log) 5140 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5141 "was false, we stopped so now we're " 5142 "quitting."); 5143 return_value = eExpressionInterrupted; 5144 back_to_top = false; 5145 break; 5146 } 5147 5148 if (before_first_timeout) { 5149 // Set all the other threads to run, and return to the top of 5150 // the loop, which will continue; 5151 before_first_timeout = false; 5152 thread_plan_sp->SetStopOthers(false); 5153 if (log) 5154 log->PutCString( 5155 "Process::RunThreadPlan(): about to resume."); 5156 5157 back_to_top = true; 5158 break; 5159 } else { 5160 // Running all threads failed, so return Interrupted. 5161 if (log) 5162 log->PutCString("Process::RunThreadPlan(): running all " 5163 "threads timed out."); 5164 return_value = eExpressionInterrupted; 5165 back_to_top = false; 5166 break; 5167 } 5168 } 5169 } else { 5170 if (log) 5171 log->PutCString("Process::RunThreadPlan(): halt said it " 5172 "succeeded, but I got no event. " 5173 "I'm getting out of here passing Interrupted."); 5174 return_value = eExpressionInterrupted; 5175 back_to_top = false; 5176 break; 5177 } 5178 } else { 5179 try_halt_again++; 5180 continue; 5181 } 5182 } 5183 5184 if (!back_to_top || try_halt_again > num_retries) 5185 break; 5186 else 5187 continue; 5188 } 5189 } // END WAIT LOOP 5190 5191 // If we had to start up a temporary private state thread to run this 5192 // thread plan, shut it down now. 5193 if (backup_private_state_thread.IsJoinable()) { 5194 StopPrivateStateThread(); 5195 Status error; 5196 m_private_state_thread = backup_private_state_thread; 5197 if (stopper_base_plan_sp) { 5198 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5199 } 5200 if (old_state != eStateInvalid) 5201 m_public_state.SetValueNoLock(old_state); 5202 } 5203 5204 // If our thread went away on us, we need to get out of here without 5205 // doing any more work. We don't have to clean up the thread plan, that 5206 // will have happened when the Thread was destroyed. 5207 if (return_value == eExpressionThreadVanished) { 5208 return return_value; 5209 } 5210 5211 if (return_value != eExpressionCompleted && log) { 5212 // Print a backtrace into the log so we can figure out where we are: 5213 StreamString s; 5214 s.PutCString("Thread state after unsuccessful completion: \n"); 5215 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5216 log->PutString(s.GetString()); 5217 } 5218 // Restore the thread state if we are going to discard the plan execution. 5219 // There are three cases where this could happen: 1) The execution 5220 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5221 // was true 3) We got some other error, and discard_on_error was true 5222 bool should_unwind = (return_value == eExpressionInterrupted && 5223 options.DoesUnwindOnError()) || 5224 (return_value == eExpressionHitBreakpoint && 5225 options.DoesIgnoreBreakpoints()); 5226 5227 if (return_value == eExpressionCompleted || should_unwind) { 5228 thread_plan_sp->RestoreThreadState(); 5229 } 5230 5231 // Now do some processing on the results of the run: 5232 if (return_value == eExpressionInterrupted || 5233 return_value == eExpressionHitBreakpoint) { 5234 if (log) { 5235 StreamString s; 5236 if (event_sp) 5237 event_sp->Dump(&s); 5238 else { 5239 log->PutCString("Process::RunThreadPlan(): Stop event that " 5240 "interrupted us is NULL."); 5241 } 5242 5243 StreamString ts; 5244 5245 const char *event_explanation = nullptr; 5246 5247 do { 5248 if (!event_sp) { 5249 event_explanation = "<no event>"; 5250 break; 5251 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5252 event_explanation = "<user interrupt>"; 5253 break; 5254 } else { 5255 const Process::ProcessEventData *event_data = 5256 Process::ProcessEventData::GetEventDataFromEvent( 5257 event_sp.get()); 5258 5259 if (!event_data) { 5260 event_explanation = "<no event data>"; 5261 break; 5262 } 5263 5264 Process *process = event_data->GetProcessSP().get(); 5265 5266 if (!process) { 5267 event_explanation = "<no process>"; 5268 break; 5269 } 5270 5271 ThreadList &thread_list = process->GetThreadList(); 5272 5273 uint32_t num_threads = thread_list.GetSize(); 5274 uint32_t thread_index; 5275 5276 ts.Printf("<%u threads> ", num_threads); 5277 5278 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5279 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5280 5281 if (!thread) { 5282 ts.Printf("<?> "); 5283 continue; 5284 } 5285 5286 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5287 RegisterContext *register_context = 5288 thread->GetRegisterContext().get(); 5289 5290 if (register_context) 5291 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5292 else 5293 ts.Printf("[ip unknown] "); 5294 5295 // Show the private stop info here, the public stop info will be 5296 // from the last natural stop. 5297 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5298 if (stop_info_sp) { 5299 const char *stop_desc = stop_info_sp->GetDescription(); 5300 if (stop_desc) 5301 ts.PutCString(stop_desc); 5302 } 5303 ts.Printf(">"); 5304 } 5305 5306 event_explanation = ts.GetData(); 5307 } 5308 } while (false); 5309 5310 if (event_explanation) 5311 LLDB_LOGF(log, 5312 "Process::RunThreadPlan(): execution interrupted: %s %s", 5313 s.GetData(), event_explanation); 5314 else 5315 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5316 s.GetData()); 5317 } 5318 5319 if (should_unwind) { 5320 LLDB_LOGF(log, 5321 "Process::RunThreadPlan: ExecutionInterrupted - " 5322 "discarding thread plans up to %p.", 5323 static_cast<void *>(thread_plan_sp.get())); 5324 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5325 } else { 5326 LLDB_LOGF(log, 5327 "Process::RunThreadPlan: ExecutionInterrupted - for " 5328 "plan: %p not discarding.", 5329 static_cast<void *>(thread_plan_sp.get())); 5330 } 5331 } else if (return_value == eExpressionSetupError) { 5332 if (log) 5333 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5334 5335 if (options.DoesUnwindOnError()) { 5336 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5337 } 5338 } else { 5339 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5340 if (log) 5341 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5342 return_value = eExpressionCompleted; 5343 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5344 if (log) 5345 log->PutCString( 5346 "Process::RunThreadPlan(): thread plan was discarded"); 5347 return_value = eExpressionDiscarded; 5348 } else { 5349 if (log) 5350 log->PutCString( 5351 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5352 if (options.DoesUnwindOnError() && thread_plan_sp) { 5353 if (log) 5354 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5355 "'cause unwind_on_error is set."); 5356 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5357 } 5358 } 5359 } 5360 5361 // Thread we ran the function in may have gone away because we ran the 5362 // target Check that it's still there, and if it is put it back in the 5363 // context. Also restore the frame in the context if it is still present. 5364 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5365 if (thread) { 5366 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5367 } 5368 5369 // Also restore the current process'es selected frame & thread, since this 5370 // function calling may be done behind the user's back. 5371 5372 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5373 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5374 selected_stack_id.IsValid()) { 5375 // We were able to restore the selected thread, now restore the frame: 5376 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5377 StackFrameSP old_frame_sp = 5378 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5379 selected_stack_id); 5380 if (old_frame_sp) 5381 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5382 old_frame_sp.get()); 5383 } 5384 } 5385 } 5386 5387 // If the process exited during the run of the thread plan, notify everyone. 5388 5389 if (event_to_broadcast_sp) { 5390 if (log) 5391 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5392 BroadcastEvent(event_to_broadcast_sp); 5393 } 5394 5395 return return_value; 5396 } 5397 5398 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5399 const char *result_name = "<unknown>"; 5400 5401 switch (result) { 5402 case eExpressionCompleted: 5403 result_name = "eExpressionCompleted"; 5404 break; 5405 case eExpressionDiscarded: 5406 result_name = "eExpressionDiscarded"; 5407 break; 5408 case eExpressionInterrupted: 5409 result_name = "eExpressionInterrupted"; 5410 break; 5411 case eExpressionHitBreakpoint: 5412 result_name = "eExpressionHitBreakpoint"; 5413 break; 5414 case eExpressionSetupError: 5415 result_name = "eExpressionSetupError"; 5416 break; 5417 case eExpressionParseError: 5418 result_name = "eExpressionParseError"; 5419 break; 5420 case eExpressionResultUnavailable: 5421 result_name = "eExpressionResultUnavailable"; 5422 break; 5423 case eExpressionTimedOut: 5424 result_name = "eExpressionTimedOut"; 5425 break; 5426 case eExpressionStoppedForDebug: 5427 result_name = "eExpressionStoppedForDebug"; 5428 break; 5429 case eExpressionThreadVanished: 5430 result_name = "eExpressionThreadVanished"; 5431 } 5432 return result_name; 5433 } 5434 5435 void Process::GetStatus(Stream &strm) { 5436 const StateType state = GetState(); 5437 if (StateIsStoppedState(state, false)) { 5438 if (state == eStateExited) { 5439 int exit_status = GetExitStatus(); 5440 const char *exit_description = GetExitDescription(); 5441 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5442 GetID(), exit_status, exit_status, 5443 exit_description ? exit_description : ""); 5444 } else { 5445 if (state == eStateConnected) 5446 strm.Printf("Connected to remote target.\n"); 5447 else 5448 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5449 } 5450 } else { 5451 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5452 } 5453 } 5454 5455 size_t Process::GetThreadStatus(Stream &strm, 5456 bool only_threads_with_stop_reason, 5457 uint32_t start_frame, uint32_t num_frames, 5458 uint32_t num_frames_with_source, 5459 bool stop_format) { 5460 size_t num_thread_infos_dumped = 0; 5461 5462 // You can't hold the thread list lock while calling Thread::GetStatus. That 5463 // very well might run code (e.g. if we need it to get return values or 5464 // arguments.) For that to work the process has to be able to acquire it. 5465 // So instead copy the thread ID's, and look them up one by one: 5466 5467 uint32_t num_threads; 5468 std::vector<lldb::tid_t> thread_id_array; 5469 // Scope for thread list locker; 5470 { 5471 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5472 ThreadList &curr_thread_list = GetThreadList(); 5473 num_threads = curr_thread_list.GetSize(); 5474 uint32_t idx; 5475 thread_id_array.resize(num_threads); 5476 for (idx = 0; idx < num_threads; ++idx) 5477 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5478 } 5479 5480 for (uint32_t i = 0; i < num_threads; i++) { 5481 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5482 if (thread_sp) { 5483 if (only_threads_with_stop_reason) { 5484 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5485 if (!stop_info_sp || !stop_info_sp->IsValid()) 5486 continue; 5487 } 5488 thread_sp->GetStatus(strm, start_frame, num_frames, 5489 num_frames_with_source, 5490 stop_format); 5491 ++num_thread_infos_dumped; 5492 } else { 5493 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5494 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5495 " vanished while running Thread::GetStatus."); 5496 } 5497 } 5498 return num_thread_infos_dumped; 5499 } 5500 5501 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5502 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5503 } 5504 5505 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5506 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5507 region.GetByteSize()); 5508 } 5509 5510 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5511 void *baton) { 5512 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5513 } 5514 5515 bool Process::RunPreResumeActions() { 5516 bool result = true; 5517 while (!m_pre_resume_actions.empty()) { 5518 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5519 m_pre_resume_actions.pop_back(); 5520 bool this_result = action.callback(action.baton); 5521 if (result) 5522 result = this_result; 5523 } 5524 return result; 5525 } 5526 5527 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5528 5529 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5530 { 5531 PreResumeCallbackAndBaton element(callback, baton); 5532 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5533 if (found_iter != m_pre_resume_actions.end()) 5534 { 5535 m_pre_resume_actions.erase(found_iter); 5536 } 5537 } 5538 5539 ProcessRunLock &Process::GetRunLock() { 5540 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5541 return m_private_run_lock; 5542 else 5543 return m_public_run_lock; 5544 } 5545 5546 bool Process::CurrentThreadIsPrivateStateThread() 5547 { 5548 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5549 } 5550 5551 5552 void Process::Flush() { 5553 m_thread_list.Flush(); 5554 m_extended_thread_list.Flush(); 5555 m_extended_thread_stop_id = 0; 5556 m_queue_list.Clear(); 5557 m_queue_list_stop_id = 0; 5558 } 5559 5560 lldb::addr_t Process::GetCodeAddressMask() { 5561 if (m_code_address_mask == 0) { 5562 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5563 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5564 SetCodeAddressMask(address_mask); 5565 } 5566 } 5567 return m_code_address_mask; 5568 } 5569 5570 lldb::addr_t Process::GetDataAddressMask() { 5571 if (m_data_address_mask == 0) { 5572 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5573 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5574 SetDataAddressMask(address_mask); 5575 } 5576 } 5577 return m_data_address_mask; 5578 } 5579 5580 void Process::DidExec() { 5581 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5582 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5583 5584 Target &target = GetTarget(); 5585 target.CleanupProcess(); 5586 target.ClearModules(false); 5587 m_dynamic_checkers_up.reset(); 5588 m_abi_sp.reset(); 5589 m_system_runtime_up.reset(); 5590 m_os_up.reset(); 5591 m_dyld_up.reset(); 5592 m_jit_loaders_up.reset(); 5593 m_image_tokens.clear(); 5594 m_allocated_memory_cache.Clear(); 5595 { 5596 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5597 m_language_runtimes.clear(); 5598 } 5599 m_instrumentation_runtimes.clear(); 5600 m_thread_list.DiscardThreadPlans(); 5601 m_memory_cache.Clear(true); 5602 DoDidExec(); 5603 CompleteAttach(); 5604 // Flush the process (threads and all stack frames) after running 5605 // CompleteAttach() in case the dynamic loader loaded things in new 5606 // locations. 5607 Flush(); 5608 5609 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5610 // let the target know so it can do any cleanup it needs to. 5611 target.DidExec(); 5612 } 5613 5614 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5615 if (address == nullptr) { 5616 error.SetErrorString("Invalid address argument"); 5617 return LLDB_INVALID_ADDRESS; 5618 } 5619 5620 addr_t function_addr = LLDB_INVALID_ADDRESS; 5621 5622 addr_t addr = address->GetLoadAddress(&GetTarget()); 5623 std::map<addr_t, addr_t>::const_iterator iter = 5624 m_resolved_indirect_addresses.find(addr); 5625 if (iter != m_resolved_indirect_addresses.end()) { 5626 function_addr = (*iter).second; 5627 } else { 5628 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5629 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5630 error.SetErrorStringWithFormat( 5631 "Unable to call resolver for indirect function %s", 5632 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5633 function_addr = LLDB_INVALID_ADDRESS; 5634 } else { 5635 m_resolved_indirect_addresses.insert( 5636 std::pair<addr_t, addr_t>(addr, function_addr)); 5637 } 5638 } 5639 return function_addr; 5640 } 5641 5642 void Process::ModulesDidLoad(ModuleList &module_list) { 5643 // Inform the system runtime of the modified modules. 5644 SystemRuntime *sys_runtime = GetSystemRuntime(); 5645 if (sys_runtime) 5646 sys_runtime->ModulesDidLoad(module_list); 5647 5648 GetJITLoaders().ModulesDidLoad(module_list); 5649 5650 // Give the instrumentation runtimes a chance to be created before informing 5651 // them of the modified modules. 5652 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5653 m_instrumentation_runtimes); 5654 for (auto &runtime : m_instrumentation_runtimes) 5655 runtime.second->ModulesDidLoad(module_list); 5656 5657 // Give the language runtimes a chance to be created before informing them of 5658 // the modified modules. 5659 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5660 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5661 runtime->ModulesDidLoad(module_list); 5662 } 5663 5664 // If we don't have an operating system plug-in, try to load one since 5665 // loading shared libraries might cause a new one to try and load 5666 if (!m_os_up) 5667 LoadOperatingSystemPlugin(false); 5668 5669 // Inform the structured-data plugins of the modified modules. 5670 for (auto pair : m_structured_data_plugin_map) { 5671 if (pair.second) 5672 pair.second->ModulesDidLoad(*this, module_list); 5673 } 5674 } 5675 5676 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5677 const char *fmt, ...) { 5678 bool print_warning = true; 5679 5680 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5681 if (!stream_sp) 5682 return; 5683 5684 if (repeat_key != nullptr) { 5685 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5686 if (it == m_warnings_issued.end()) { 5687 m_warnings_issued[warning_type] = WarningsPointerSet(); 5688 m_warnings_issued[warning_type].insert(repeat_key); 5689 } else { 5690 if (it->second.find(repeat_key) != it->second.end()) { 5691 print_warning = false; 5692 } else { 5693 it->second.insert(repeat_key); 5694 } 5695 } 5696 } 5697 5698 if (print_warning) { 5699 va_list args; 5700 va_start(args, fmt); 5701 stream_sp->PrintfVarArg(fmt, args); 5702 va_end(args); 5703 } 5704 } 5705 5706 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5707 if (!GetWarningsOptimization()) 5708 return; 5709 if (!sc.module_sp) 5710 return; 5711 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5712 sc.function->GetIsOptimized()) { 5713 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5714 "%s was compiled with optimization - stepping may behave " 5715 "oddly; variables may not be available.\n", 5716 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5717 } 5718 } 5719 5720 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5721 if (!GetWarningsUnsupportedLanguage()) 5722 return; 5723 if (!sc.module_sp) 5724 return; 5725 LanguageType language = sc.GetLanguage(); 5726 if (language == eLanguageTypeUnknown) 5727 return; 5728 LanguageSet plugins = 5729 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5730 if (!plugins[language]) { 5731 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5732 sc.module_sp.get(), 5733 "This version of LLDB has no plugin for the %s language. " 5734 "Inspection of frame variables will be limited.\n", 5735 Language::GetNameForLanguageType(language)); 5736 } 5737 } 5738 5739 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5740 info.Clear(); 5741 5742 PlatformSP platform_sp = GetTarget().GetPlatform(); 5743 if (!platform_sp) 5744 return false; 5745 5746 return platform_sp->GetProcessInfo(GetID(), info); 5747 } 5748 5749 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5750 ThreadCollectionSP threads; 5751 5752 const MemoryHistorySP &memory_history = 5753 MemoryHistory::FindPlugin(shared_from_this()); 5754 5755 if (!memory_history) { 5756 return threads; 5757 } 5758 5759 threads = std::make_shared<ThreadCollection>( 5760 memory_history->GetHistoryThreads(addr)); 5761 5762 return threads; 5763 } 5764 5765 InstrumentationRuntimeSP 5766 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5767 InstrumentationRuntimeCollection::iterator pos; 5768 pos = m_instrumentation_runtimes.find(type); 5769 if (pos == m_instrumentation_runtimes.end()) { 5770 return InstrumentationRuntimeSP(); 5771 } else 5772 return (*pos).second; 5773 } 5774 5775 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5776 const ArchSpec &arch, ModuleSpec &module_spec) { 5777 module_spec.Clear(); 5778 return false; 5779 } 5780 5781 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5782 m_image_tokens.push_back(image_ptr); 5783 return m_image_tokens.size() - 1; 5784 } 5785 5786 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5787 if (token < m_image_tokens.size()) 5788 return m_image_tokens[token]; 5789 return LLDB_INVALID_ADDRESS; 5790 } 5791 5792 void Process::ResetImageToken(size_t token) { 5793 if (token < m_image_tokens.size()) 5794 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5795 } 5796 5797 Address 5798 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5799 AddressRange range_bounds) { 5800 Target &target = GetTarget(); 5801 DisassemblerSP disassembler_sp; 5802 InstructionList *insn_list = nullptr; 5803 5804 Address retval = default_stop_addr; 5805 5806 if (!target.GetUseFastStepping()) 5807 return retval; 5808 if (!default_stop_addr.IsValid()) 5809 return retval; 5810 5811 const char *plugin_name = nullptr; 5812 const char *flavor = nullptr; 5813 disassembler_sp = Disassembler::DisassembleRange( 5814 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5815 if (disassembler_sp) 5816 insn_list = &disassembler_sp->GetInstructionList(); 5817 5818 if (insn_list == nullptr) { 5819 return retval; 5820 } 5821 5822 size_t insn_offset = 5823 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5824 if (insn_offset == UINT32_MAX) { 5825 return retval; 5826 } 5827 5828 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5829 insn_offset, false /* ignore_calls*/, nullptr); 5830 if (branch_index == UINT32_MAX) { 5831 return retval; 5832 } 5833 5834 if (branch_index > insn_offset) { 5835 Address next_branch_insn_address = 5836 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5837 if (next_branch_insn_address.IsValid() && 5838 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5839 retval = next_branch_insn_address; 5840 } 5841 } 5842 5843 return retval; 5844 } 5845 5846 Status 5847 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5848 5849 Status error; 5850 5851 lldb::addr_t range_end = 0; 5852 5853 region_list.clear(); 5854 do { 5855 lldb_private::MemoryRegionInfo region_info; 5856 error = GetMemoryRegionInfo(range_end, region_info); 5857 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5858 if (error.Fail()) { 5859 region_list.clear(); 5860 break; 5861 } 5862 5863 range_end = region_info.GetRange().GetRangeEnd(); 5864 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5865 region_list.push_back(std::move(region_info)); 5866 } 5867 } while (range_end != LLDB_INVALID_ADDRESS); 5868 5869 return error; 5870 } 5871 5872 Status 5873 Process::ConfigureStructuredData(ConstString type_name, 5874 const StructuredData::ObjectSP &config_sp) { 5875 // If you get this, the Process-derived class needs to implement a method to 5876 // enable an already-reported asynchronous structured data feature. See 5877 // ProcessGDBRemote for an example implementation over gdb-remote. 5878 return Status("unimplemented"); 5879 } 5880 5881 void Process::MapSupportedStructuredDataPlugins( 5882 const StructuredData::Array &supported_type_names) { 5883 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5884 5885 // Bail out early if there are no type names to map. 5886 if (supported_type_names.GetSize() == 0) { 5887 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5888 __FUNCTION__); 5889 return; 5890 } 5891 5892 // Convert StructuredData type names to ConstString instances. 5893 std::set<ConstString> const_type_names; 5894 5895 LLDB_LOGF(log, 5896 "Process::%s(): the process supports the following async " 5897 "structured data types:", 5898 __FUNCTION__); 5899 5900 supported_type_names.ForEach( 5901 [&const_type_names, &log](StructuredData::Object *object) { 5902 if (!object) { 5903 // Invalid - shouldn't be null objects in the array. 5904 return false; 5905 } 5906 5907 auto type_name = object->GetAsString(); 5908 if (!type_name) { 5909 // Invalid format - all type names should be strings. 5910 return false; 5911 } 5912 5913 const_type_names.insert(ConstString(type_name->GetValue())); 5914 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5915 return true; 5916 }); 5917 5918 // For each StructuredDataPlugin, if the plugin handles any of the types in 5919 // the supported_type_names, map that type name to that plugin. Stop when 5920 // we've consumed all the type names. 5921 // FIXME: should we return an error if there are type names nobody 5922 // supports? 5923 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5924 auto create_instance = 5925 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5926 plugin_index); 5927 if (!create_instance) 5928 break; 5929 5930 // Create the plugin. 5931 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5932 if (!plugin_sp) { 5933 // This plugin doesn't think it can work with the process. Move on to the 5934 // next. 5935 continue; 5936 } 5937 5938 // For any of the remaining type names, map any that this plugin supports. 5939 std::vector<ConstString> names_to_remove; 5940 for (auto &type_name : const_type_names) { 5941 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5942 m_structured_data_plugin_map.insert( 5943 std::make_pair(type_name, plugin_sp)); 5944 names_to_remove.push_back(type_name); 5945 LLDB_LOGF(log, 5946 "Process::%s(): using plugin %s for type name " 5947 "%s", 5948 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5949 type_name.GetCString()); 5950 } 5951 } 5952 5953 // Remove the type names that were consumed by this plugin. 5954 for (auto &type_name : names_to_remove) 5955 const_type_names.erase(type_name); 5956 } 5957 } 5958 5959 bool Process::RouteAsyncStructuredData( 5960 const StructuredData::ObjectSP object_sp) { 5961 // Nothing to do if there's no data. 5962 if (!object_sp) 5963 return false; 5964 5965 // The contract is this must be a dictionary, so we can look up the routing 5966 // key via the top-level 'type' string value within the dictionary. 5967 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5968 if (!dictionary) 5969 return false; 5970 5971 // Grab the async structured type name (i.e. the feature/plugin name). 5972 ConstString type_name; 5973 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5974 return false; 5975 5976 // Check if there's a plugin registered for this type name. 5977 auto find_it = m_structured_data_plugin_map.find(type_name); 5978 if (find_it == m_structured_data_plugin_map.end()) { 5979 // We don't have a mapping for this structured data type. 5980 return false; 5981 } 5982 5983 // Route the structured data to the plugin. 5984 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5985 return true; 5986 } 5987 5988 Status Process::UpdateAutomaticSignalFiltering() { 5989 // Default implementation does nothign. 5990 // No automatic signal filtering to speak of. 5991 return Status(); 5992 } 5993 5994 UtilityFunction *Process::GetLoadImageUtilityFunction( 5995 Platform *platform, 5996 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 5997 if (platform != GetTarget().GetPlatform().get()) 5998 return nullptr; 5999 llvm::call_once(m_dlopen_utility_func_flag_once, 6000 [&] { m_dlopen_utility_func_up = factory(); }); 6001 return m_dlopen_utility_func_up.get(); 6002 } 6003 6004 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6005 if (!IsLiveDebugSession()) 6006 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6007 "Can't trace a non-live process."); 6008 return llvm::make_error<UnimplementedError>(); 6009 } 6010 6011 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6012 addr_t &returned_func, 6013 bool trap_exceptions) { 6014 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6015 if (thread == nullptr || address == nullptr) 6016 return false; 6017 6018 EvaluateExpressionOptions options; 6019 options.SetStopOthers(true); 6020 options.SetUnwindOnError(true); 6021 options.SetIgnoreBreakpoints(true); 6022 options.SetTryAllThreads(true); 6023 options.SetDebug(false); 6024 options.SetTimeout(GetUtilityExpressionTimeout()); 6025 options.SetTrapExceptions(trap_exceptions); 6026 6027 auto type_system_or_err = 6028 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6029 if (!type_system_or_err) { 6030 llvm::consumeError(type_system_or_err.takeError()); 6031 return false; 6032 } 6033 CompilerType void_ptr_type = 6034 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6035 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6036 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6037 if (call_plan_sp) { 6038 DiagnosticManager diagnostics; 6039 6040 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6041 if (frame) { 6042 ExecutionContext exe_ctx; 6043 frame->CalculateExecutionContext(exe_ctx); 6044 ExpressionResults result = 6045 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6046 if (result == eExpressionCompleted) { 6047 returned_func = 6048 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6049 LLDB_INVALID_ADDRESS); 6050 6051 if (GetAddressByteSize() == 4) { 6052 if (returned_func == UINT32_MAX) 6053 return false; 6054 } else if (GetAddressByteSize() == 8) { 6055 if (returned_func == UINT64_MAX) 6056 return false; 6057 } 6058 return true; 6059 } 6060 } 6061 } 6062 6063 return false; 6064 } 6065